WO2022244846A1 - Composition for regulating cell proliferation and regulation method of cell proliferation - Google Patents

Composition for regulating cell proliferation and regulation method of cell proliferation Download PDF

Info

Publication number
WO2022244846A1
WO2022244846A1 PCT/JP2022/020851 JP2022020851W WO2022244846A1 WO 2022244846 A1 WO2022244846 A1 WO 2022244846A1 JP 2022020851 W JP2022020851 W JP 2022020851W WO 2022244846 A1 WO2022244846 A1 WO 2022244846A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
amino acids
serine
amount
cell proliferation
Prior art date
Application number
PCT/JP2022/020851
Other languages
French (fr)
Japanese (ja)
Inventor
友則 木村
篤 部坂
悠介 塚本
真史 三田
Original Assignee
Kagami株式会社
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagami株式会社, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical Kagami株式会社
Priority to JP2023522721A priority Critical patent/JPWO2022244846A1/ja
Publication of WO2022244846A1 publication Critical patent/WO2022244846A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)

Definitions

  • the present invention relates to a composition for modulating cell proliferation and a method for modulating cell proliferation.
  • Cells are generally recognized as the most basic building blocks of living organisms. They have organs responsible for metabolism such as the glycolytic system and the citric acid cycle for constant life activities, and contain genetic information for self-renewal and replication. It has the ability to express it. Humans are composed of more than 30 trillion somatic and germ cells.
  • somatic cells There are about 200 types of somatic cells that account for most of them, and a proliferating dividing cell group that constantly divides and proliferates (e.g., myeloblasts, basal cells, etc.), a differentiated dividing cell group that divides and proliferates while differentiating (e.g., myeloid cells, neuroblasts, myoblasts, etc.), reversible postmitotic cell groups that do not normally proliferate (e.g., stem cells, smooth muscle cells, lymphocytes, etc.), fixed postmitotic cell groups that have lost their ability to divide (nerve cells, myocardial cells, etc.) cells, red blood cells, etc.).
  • a proliferating dividing cell group that constantly divides and proliferates
  • a differentiated dividing cell group that divides and proliferates while differentiating
  • reversible postmitotic cell groups that do not normally proliferate
  • stem cells smooth muscle cells, lymphocytes, etc.
  • cells that repeat regeneration, function, and death under normal conditions e.g., epithelial cells, blood cells, etc.
  • Cells that proliferate and regenerate under special circumstances e.g., organ parenchymal cells, vascular endothelial cells, connective tissue, etc.
  • highly organized and differentiated cells that do not have the ability to spontaneously generate and proliferate in non-regenerative tissues.
  • cell types such as (eg, nerve cells, skeletal muscle, cardiomyocytes, etc.).
  • a tumor is a cell that autonomously proliferates against normal control due to some abnormality in the gene of the cell, and a malignant tumor (cancer) is a tumor that invasively proliferates and metastasizes.
  • Non-Patent Document 1 describes that the metabolism and regulation of amino acids regulates the proliferative potential of human pluripotent stem cells.
  • D-amino acids are affected by ingestion, symbiotic bacteria, metabolism (decomposition, synthesis), transportation, excretion, etc.
  • Non-Patent Documents 2 to 6 and the amount in living organisms, tissues, cells, and body fluids changes, and kidney disease , showing a chiral amino acid profile characteristic of diseases such as heart disease and diabetes (Patent Document 1), furthermore, the involvement of D-amino acids in intestinal immunity (Non-Patent Document 7) and protecting kidney-derived cells A phenomenon has been reported (Non-Patent Document 3). There is also a report that carbohydrate metabolism is involved in D-serine biosynthesis in nerve cells (Non-Patent Document 8).
  • Patent Document 1 It has been disclosed that the amounts of D-serine and D-alanine in the blood vary in renal cancer, and the amounts of D-alanine, D-proline and D-aspartic acid in the blood vary in diabetes (Patent Document 1. , Patent Document 2). It has also been reported that D-alanine is localized in cells containing insulin in pancreatic islets of Langerhans and cells containing adrenocorticotropic hormone in the anterior pituitary gland (Non-Patent Documents 9 and 10). However, the relationship between the presence of D-amino acids and cell proliferation has not yet been elucidated.
  • Nagamori D-Serine, an emerging biomarker of kidney diseases , is a hidden substrate of sodium-coupled monocarboxylate transporters, bioRxiv preprint. DOI: 10.1101/2020.08.10.244822 A. Hesaka, S. Sakai, K. Hamase, T. Ikeda, R. Matsui, M. Mita, M. Horio, Y. Isaka and T. Kimura, D-Serine reflects kidney function and diseases, Scientific Reports, 9( 2019). DOI: 10.1038/s41598-019-41608-0 J. Sasabe, Y. Miyoshi, S. Rakoff-Nahoum, T. Zhang, M. Mita, B.M.
  • the inventors adjusted the amount of D-amino acid and L-amino acid in the medium in primary or subcultures of renal tubular cells and fibroblasts, and found that D-amino acids promoted cell proliferation more than L-amino acids. I discovered that it works. As a result of intensive research on its effect and mechanism, a method for adjusting the growth and regeneration of cells, tissues and organs inside and outside the body, especially conditionally regenerative tissues, was found by increasing or decreasing the amount of D-amino acids. Arrived. That is, the present invention includes the following inventions.
  • a composition for regulating cell growth comprising an agent for controlling the amount of D-amino acids.
  • the control agent is an agent for controlling the amount of D-amino acids in the subject's living body.
  • the cell proliferation is cell proliferation in a living tissue and/or organ, thereby adjusting the size of the living tissue and/or organ.
  • the composition according to item 2 wherein the subject is a subject with kidney disease.
  • the composition according to item 2, wherein the subject is a kidney transplant donor and/or recipient.
  • the composition according to item 2 which improves renal function.
  • the composition according to item 6, wherein the renal function is glomerular filtration rate.
  • a composition according to item 1 for modulating the growth of isolated cells [9] The composition according to any one of items 1 to 8, wherein the control agent is a D-amino acid or a derivative thereof. [10] The composition according to item 9, wherein the D-amino acid is selected from the group consisting of D-serine, D-asparagine and D-glutamine. [11] The composition according to any one of items 1 to 8, wherein the control agent is an agent that modulates protein activity related to absorption, transport, distribution, metabolism or excretion of D-amino acids. [12] The composition according to item 11, wherein the metabolism is degradation or synthesis.
  • composition according to item 11 or 12, wherein the agent that modulates the activity of the protein is an agent that regulates gene expression of the protein.
  • the protein is selected from the group consisting of D-aspartate oxidase and serine isomerase.
  • the protein is a D-amino acid transporter protein.
  • the D-amino acid transporter protein is one or more selected from the group consisting of SMCT family, GLUT5, CAT1, THTR2, SNAT2, ASCT family, Asc1, PAT1 and ATB 0,+ Composition.
  • composition according to any one of items 1 to 16, which is a pharmaceutical is a pharmaceutical.
  • composition according to any one of Items 1 to 16, which is a food is a food with health claims or a dietary supplement.
  • the control agent is an agent for controlling the amount of D-amino acid in the subject's living body.
  • the cell proliferation is cell proliferation in a living tissue and/or organ, thereby adjusting the size of the living tissue and/or organ. thing.
  • the composition of item 22-2, wherein the subject is a subject with renal disease.
  • the composition according to item 22-2, wherein the subject is a kidney transplant donor and/or recipient.
  • composition according to item 22-6 wherein the renal function is glomerular filtration rate.
  • the composition according to item 22-1 for modulating growth of isolated cells.
  • the control agent is a D-amino acid or a derivative thereof.
  • the D-amino acid is selected from the group consisting of D-serine, D-asparagine and D-glutamine.
  • the control agent is an agent that modulates protein activity related to D-amino acid absorption, transport, distribution, metabolism or excretion; The described composition.
  • composition according to item 22-11 wherein the metabolism is degradation or synthesis.
  • the agent that modulates the activity of the protein is an agent that regulates gene expression of the protein.
  • the protein is selected from the group consisting of D-aspartate oxidase and serine isomerase.
  • the protein is a D-amino acid transporter protein.
  • a method of modulating cell proliferation in a subject comprising: A method comprising administering to a subject in need thereof an agent for controlling the amount of D-amino acids in vivo.
  • a method of modulating cell proliferation in vitro or ex vivo comprising: A method comprising applying a D-amino acid amount controlling agent to a cell, biological tissue or organ and culturing.
  • the present invention by controlling the amount of D-amino acids, it is possible to regulate cell proliferation. It becomes possible to treat or evaluate.
  • FIG. 1 shows the effect of D, L-amino acids (10 ⁇ M) on cell growth in culture.
  • FIG. 2 shows the effect of D, L-amino acids (1 ⁇ M) on cell growth in culture.
  • FIG. 3 shows the effects of glycylserine isomers (10 ⁇ M) on cell growth in culture.
  • FIG. 4 shows administration of D, L-amino acids and uptake into each organ. Ditto.
  • Statistical analysis was performed by two-way ANOVA. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001. Data are shown as mean ⁇ SEM.
  • FIG. 6 shows the results of pathway analysis on the effects of D-serine administration. Ditto.
  • FIG. 7 shows the results of D-serine administration and cell cycle-related gene expression analysis.
  • FIG. 8 shows Ki67 positive nuclei analysis by D-serine administration.
  • A Representative images of renal cortex stained with anti-Ki67 antibody. The lower left figure in each figure is an enlarged view of the area enclosed by the rectangle in the figure. Scale bar: 50 ⁇ m.
  • FIG. 9 shows the effect of D-serine administration on proliferation of proximal tubule cells.
  • Lectin-positive proximal tubule green, Ki67: red, DAPI (nucleus): blue.
  • Scale bar 50 ⁇ m.
  • FIG. 10 shows the effect of D-serine administration on glomerular cell proliferation.
  • FIG. 11 shows the proliferative effect of D-serine administration on renal tubular cells and HK-2 cells.
  • A Normal human primary renal proximal tubule cells (RPTEC) or
  • B HK-2 cells cultured with 10 ⁇ M D-serine relative proliferation rate (%) over time.
  • C Normal human primary renal proximal tubule cells (RPTEC) or
  • D HK-2 cells cultured with various concentrations of D-serine relative proliferation rate (%).
  • FIG. 12 shows the results of phosphorylation analysis of HK-2 cells by D-serine administration.
  • A Western blot results of phosphorylation of S6K at Thr389 (phospho-S6K (p-S6K)) of HK-2 cells treated with 5 ⁇ M D- or L-serine for 10 min in serine-free medium. show.
  • FIG. 13 shows the results of phosphorylation analysis of mouse kidney cells by administration of D-serine.
  • A Fed on a serine-free diet and water with or without 0.1% D-serine for 1 week and sacrificed 2 days after unilateral nephrectomy (UNX) or not. Immunoblot of phospho-S6 ribosomal protein (p-S6RP) at Ser235/236 from renal cortex of week-old C57 BL/6 male mice.
  • FIG. 14 shows the effect of D-serine administration on cell proliferation in p18-deficient strains.
  • Statistical analysis was performed by two-way ANOVA. ***p ⁇ 0.001.
  • FIG. 15 shows the effect of D-serine administration on cell proliferation in Rheb-deficient strains.
  • FIG. 16 shows cell proliferation effects by administration of D-serine and rapamycin or PI3 inhibitors.
  • Statistical analysis was performed by two-way ANOVA. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
  • (B) Relative growth rates of HK-2 cells treated simultaneously with or without the indicated concentrations of D-serine and Ly294002 for 6 hours using serine-free medium and D-serine untreated. relative growth rate of the corresponding cell lines. N 21-24.
  • FIG. 17 shows the results of AKT phosphorylation analysis by D-serine administration.
  • A Fed on a serine-free diet and water with or without 0.1% D-serine for 1 week and sacrificed 2 days after unilateral nephrectomy (UNX) or not. Immunoblot results for phospho-AKT (p-AKT) at Ser473 from renal cortex of week-old C57 BL/6 male mice are shown (left).
  • B Plotted the relative index (RI) of three independent experiments. Statistical analysis was performed by one-way ANOVA using Dunnett's post-hoc test.
  • FIG. 18 shows localization analysis of mTOR lysosomes by D-serine administration.
  • A High-content microscopy quantification of co-localization of mTOR and LAMP2 in HK-2 cells that were incubated in culture medium followed by amino acid starvation in the presence of 5 ⁇ M D- or L-serine for 10 minutes.
  • Statistical analysis was performed by one-way ANOVA using Bonferroni's post-hoc test.
  • NS not significantly different, *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
  • B Quantification by high-content microscopy of co-localization of mTOR and LAMP1 in HK-2 cells that were incubated in culture medium followed by amino acid starvation in the presence of 5 ⁇ M D- or L-serine for 10 minutes.
  • Mask overlay primary object (algorithm-defined cell boundaries based on CellMask (red pseudocolor)), and internal secondary object (computationally defined co-localization between mTOR (green) and LAMP1 (yellow)).
  • Statistical analysis was performed by one-way ANOVA using Bonferroni's post-hoc test.
  • NS not significantly different, *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
  • FIG. 19 shows a schematic representation of the activation scheme of mTOR-related pathways by D-serine.
  • A Schematic showing that D-serine activates cell proliferation through the mTOR-related pathway (mTOR/p18/Rheb). D-serine can mediate renal remodeling after unilateral nephrectomy.
  • B Schematic representation of activation of mTORC1 signaling by D-serine. D-serine enhances the signal from L-amino acids to mTORC1 activation. D-serine also activates mTROC1 through the phosphoinositide 3-kinase (PI3K)/Rheb pathway.
  • FIG. 20 shows the effect of administration of D-serine on increasing glomerular filtration rate (GFR).
  • FIG. 21 shows the results of examining the cell proliferation ability of D-amino acids in B cells.
  • One embodiment of the present invention provides a composition for modulating cell growth, comprising an agent for controlling the amount of D-amino acids.
  • one embodiment of the present invention provides a composition that activates the mTOR-related pathway, comprising a regulator of the amount of D-amino acids.
  • one embodiment of the present invention provides a method for regulating cell proliferation, a method for regulating tissue/organ size, or a tissue/organ function, comprising regulating the amount of D-amino acids in a subject. Provide a way to improve.
  • controlling the amount of D-amino acids refers to intentionally increasing or decreasing the amount of D-amino acids inside or outside cells, tissues and/or organs, and in body fluids. If there is a target amount and concentration, the D-amino acid in the sample and D-amino acid clearance may be evaluated by monitoring as appropriate.
  • cell proliferation may be cell proliferation in a living tissue and/or organ, and may thereby adjust the size of the living tissue and/or organ.
  • the term "adjustment of size of biological tissue and/or organ” means that the amount, morphology, abnormalities, excesses, deficiencies, etc. of cells in a biological tissue and/or organ are brought into a balanced state or in a correct state. It means to Size can be expressed in units of measurement such as physical size, weight, and function, and may be corrected for weight and the like. When there is a desired effect, for example, when the purpose is to grow cultured cells, the effect may be evaluated by performing metabolome analysis of the cell count or medium.
  • markers in urine tests (urine protein, hematuria, creatinine amount, etc.) and blood tests (creatinine, cystatin C, urea nitrogen: BUN, etc.) for the purpose of adjusting kidney cell proliferation, size, and function
  • renal function test renal blood flow: RPF, glomerular filtration rate: GFR
  • X-ray examination angiography, ultrasonography, CT, MRI
  • nuclear medicine examination endoscopy
  • renal biopsy The effect may be evaluated by performing (pathological examination) or the like.
  • D-amino acid amount control agent means that it is applied (eg, administered) to a subject in vivo. (eg, in a cell, tissue, organ, or body fluid), or an agent capable of increasing or decreasing the amount of D-amino acids in an isolated cell.
  • regulating the amount of D-amino acids in cells means increasing or decreasing the amount of D-amino acids in cells by applying a D-amino acid amount controlling agent, It means adjusting the amount of amino acid to an arbitrary range.
  • regulating the amount of D-amino acids in tissues means that the amount of D-amino acids in tissues (e.g., renal tubules, glomeruli, etc.) is It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount.
  • regulating the amount of D-amino acids in an organ means that the amount of D-amino acids in an organ (for example, kidney, heart, etc.) is controlled by applying a D-amino acid amount controlling agent. It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount.
  • regulating the amount of D-amino acids in body fluids means that the amount of D-amino acids in body fluids (e.g., blood, urine, etc.) is reduced by applying a D-amino acid amount controlling agent. It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount.
  • D-amino acid is meant to include "D-form" proteinogenic amino acids, which are stereoisomers of "L-form” proteinogenic amino acids, and glycine without stereoisomers. Specifically, glycine, D-alanine, D-histidine, D-isoleucine, D-allo-isoleucine, D-leucine, D-lysine, D-methionine, D-phenylalanine, D-threonine, D- allo-threonine, D-tryptophan, D-valine, D-arginine, D-cysteine, D-glutamine, D-proline, D-tyrosine, D-aspartic acid, D-asparagine, D-glutamic acid, and D-serine What it contains.
  • D-cysteine contained in a biological sample is oxidized and changed to D-cystine in vitro
  • D-cysteine can be measured instead of D-cysteine.
  • the amount of D-cysteine contained in the biological sample can be calculated.
  • the amount of D-amino acids and/or the amount of L-amino acids can be measured by any method, such as chiral column chromatography, measurement using an enzymatic method, and monoclonal antibodies that distinguish optical isomers of amino acids. can be quantified by immunological techniques using Measurement of the amount of D-amino acid and/or the amount of L-amino acid in the sample in the present invention may be carried out using any method known to those skilled in the art. For example, chromatographic methods and enzymatic methods (Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A.
  • the separation and analysis system for optical isomers in the present invention may combine multiple separation analyses. More specifically, a step of passing a sample containing components having optical isomers through a first column packing material as a stationary phase together with a first liquid as a mobile phase to separate said components of said sample; holding each of said components of said sample individually in a multi-loop unit, each of said components of said sample held individually in said multi-loop unit as a stationary phase, with a second liquid as a mobile phase; and resolving the optical isomers contained in each of the components of the sample by feeding through a channel to a second column packing material having an optically active center of
  • the amount of D-amino acids and/or the amount of L-amino acids in a sample can be measured by using a method for analyzing optical isomers, which is characterized by including a step of detecting isomers (Japanese Patent No.
  • D- and L-amino acids were previously derivatized with fluorescent reagents such as o-phthalaldehyde (OPA) and 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). or diastereomerization using N-tert-butyloxycarbonyl-L-cysteine (Boc-L-Cys) (Kenji Hamase and Kiyoshi Zaitsu, Analytical Chemistry, Vol. 53, 677-690 ( 2004)).
  • fluorescent reagents such as o-phthalaldehyde (OPA) and 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F).
  • Boc-L-Cys N-tert-butyloxycarbonyl-L-cysteine
  • D-amino acids or L-amino acids are measured by an immunological technique using monoclonal antibodies that distinguish optical isomers of amino acids, such as monoclonal antibodies that specifically bind to D-amino acids or L-amino acids. can do.
  • monoclonal antibodies that distinguish optical isomers of amino acids such as monoclonal antibodies that specifically bind to D-amino acids or L-amino acids.
  • the amino acids can be analyzed without distinguishing between the D- and L-isomers. Also in that case, it can be separated and quantified by an enzymatic method, an antibody method, GC, CE, or HPLC.
  • mTOR-related pathway refers to a signal pathway involving mTOR (mechanistic target of rapamycin), which is a type of protein kinase (serine-threonine kinase) involved in intracellular signal transduction. It may be a signal pathway containing factors involved in the activation of complex 1 (mTORC1) or mTOR complex 2 (mTORC2), such as Akt, Rheb, and the like.
  • mTORC1 complex 1
  • mTORC2 mTOR complex 2
  • the present invention integrates intracellular and extracellular environmental information such as insulin, growth factors, nutritional/energy status, redox status, etc., by activating mTOR-related pathways, and through transcription, translation, etc., cells respond accordingly. Regulates size, division, survival, etc. Their physiology may regulate cell proliferation.
  • the amount of biomolecules such as D-amino acids, creatinine, proteins, and drugs is not limited to mere mass, weight, and amount of substance (mol), but also mass per unit of tissue, cell, organ, molecule, volume, or weight. , weight, amount of substance (mol), mass in a liquid such as blood or urine, weight, amount of substance (mol), concentration, specific gravity, density, or any other physical quantity that can be measured.
  • D-amino acids administration of D-amino acids from the outside, addition or removal of D-amino acids in foods, addition or removal of D-amino acids in culture media, and , and drugs or foods that can increase or decrease the amount of D-amino acids in body fluids.
  • aqueous solution containing D-amino acids it is possible to increase the concentration of D-amino acids in blood and cells/tissues (Non-Patent Document 2).
  • D-serine may be directed to the kidney by oral or intravenous administration to control D-serine levels in the kidney (see, eg, Example 2).
  • the D-amino acid used here may contain modifications or derivatives of D-amino acids, or pharmaceutically acceptable salts thereof, as long as the amount of D-amino acid can be increased or decreased, or a pharmacologically acceptable may contain carriers, diluents or excipients that may be used, and may be in the form of a prodrug. In addition, it may contain a target organ function improving agent and the like.
  • the drug in the present invention can be formulated by selecting a dosage form suitable for its administration route. For oral administration, dosage forms such as tablets, capsules, liquids, powders, granules, chewing agents, etc., and for parenteral administration, injections, powders, infusion preparations, etc. can be designed.
  • these formulations contain various adjuvants used for pharmaceutical purposes, namely, carriers and other adjuvants such as stabilizers, preservatives, soothing agents, flavoring agents, corrigents, fragrances, emulsifiers and fillers. , a pH adjuster, etc., and can be blended within a range that does not impair the effects of the agent (composition) of the present invention.
  • the optical purity of D-amino acids used as drugs and raw materials is preferably 50% or higher, more preferably 90% or higher, but any optical purity can be selected within the range in which the effect is exhibited, It is not limited.
  • the D-amino acid amount controlling agent that can be used in the present invention is selected from the group consisting of D-serine, D-asparagine and D-glutamine, and modifications and derivatives thereof. It may be selected from the group consisting of D-serine, D-asparagine and D-glutamine, and modifications and derivatives thereof. It may be selected from the group consisting of D-serine, D-asparagine and D-glutamine, and modifications and derivatives thereof. It may be any suitable amino acid amount controlling agent that can be used in the present invention.
  • the present invention may utilize any physiological mechanism to vary the amount of target D-amino acids.
  • proteins related to absorption, transport, distribution, metabolism (synthesis/degradation), excretion, action, etc. of D-amino acids such as enzymes (D-amino acid oxidase (DAO), D-aspartate oxidase ( DDO), serine isomerase (SRR), DPP-4, etc.), transporters, and receptor expression (stimulation, suppression, etc.) and activity (action, inhibition, stimulation, etc.) regulate the amount of target D-amino acids. It becomes possible.
  • DAO inhibitors e.g., sodium benzoate, chlorpromazine, risperidone, etc.
  • D-amino acid transporter is an inhibitor/activator. increases or decreases the amount of D-amino acids in the transport source/destination.
  • Agents that act on proteins such as enzymes and transporters may not be effective directly. - It may vary in the amount of amino acids. In that case, the effect can be evaluated by measuring the amount of D-amino acid in body fluids, cells, and tissues at the site of action. In addition, such evaluations can be used to screen drug candidates.
  • any physiological mechanism can be used to vary the amount of D-amino acids in the body, and as a result, it is possible to regulate cell proliferation in the subject.
  • the expression (promotion, suppression) of proteins related to D-amino acid absorption, transport, distribution, metabolism (synthesis and / or degradation), excretion, action, etc., or D-amino acid transporters or receptors etc.) and/or activity (action, inhibition, stimulation, etc.) can control the amount of D-amino acids in the body.
  • the D-amino acid amount control agent that can be used in the present invention directly or indirectly promotes the gene expression of proteins involved in the absorption, transport, distribution, metabolism or excretion of D-amino acids.
  • it may be the protein or a vector that expresses it, or it may be a factor that promotes the upstream activity of the cascade that promotes the expression of the protein, or a vector that expresses it.
  • the D-amino acid amount control agent that can be used in the present invention is one that directly or indirectly suppresses gene expression of proteins related to absorption, transport, distribution, metabolism or excretion of D-amino acids.
  • D-amino acids from, for example, small molecules, aptamers, antibodies, antibody fragments, and antisense RNA or DNA molecules, RNAi-inducing nucleic acids, microRNAs (miRNAs), ribozymes, genome-editing nucleic acids and their expression vectors. may be selected.
  • proteins related to absorption, transport, distribution, metabolism (synthesis and/or degradation), excretion, action, etc. of D-amino acids may be enzymes, for example, D-amino acid oxidation It may be an enzyme (DAO), D-aspartate oxidase (DDO), serine isomerase (SRR), DPP-4, and the like.
  • DAO inhibitors can increase the amount of D-amino acids at the site of action by suppressing the oxidation of D-amino acids. obtain.
  • D-amino acid transporter can increase or decrease the amount of D-amino acid in the source/destination, agents that act directly or indirectly on the D-amino acid transporter can also be applied to the present invention.
  • Non-Patent Document 5 describes that as D-amino acid transporter proteins, the SMCT family, the ASCT family, etc. expressed in the brain and kidneys increase the localized amount of D-amino acids by agonists/inhibitors. It is disclosed to change Since these transporters are affected by co-transport substances (e.g., sodium ions) and coordination/competition through scaffolds, D-amino acid transport activity is reduced even by sodium/glucose co-transporter (SGLT2) inhibitors. can be controlled.
  • Patent Document 3 discloses that angiotensin 2 receptor blockers (ARBs) change the amount of D-amino acids in blood.
  • ARBs angiotensin 2 receptor blockers
  • drugs and candidates that can control the amount of D-amino acids in the body can be identified. Screening is possible.
  • aptamers refer to synthetic DNA or RNA molecules and peptidic molecules that have the ability to specifically bind to target substances, and can be chemically synthesized in vitro in a short period of time. Aptamers used in the present invention can bind to, for example, proteins involved in absorption, transport, distribution, metabolism or excretion of D-amino acids and inhibit their activity.
  • Aptamers used in the present invention can be obtained, for example, by repeatedly selecting bindings to various molecular targets such as small molecules, proteins, and nucleic acids in vitro using the SELEX method (Tuerk C., Gold L., Science, 1990, 249(4968), 505-510; Ellington AD, Szostak JW., Nature, 1990, 346(6287):818-822; No. 5,567,588; U.S. Pat. No. 6,699,843).
  • antibody fragment refers to a portion of a full-length antibody that maintains antigen-binding activity, generally including its antigen-binding domain or variable domain.
  • antibody fragments include F(ab')2, Fab', Fab or Fv antibody fragments (including scFv antibody fragments), and the like.
  • Antibody fragments also include fragments obtained by treating an antibody with a protease enzyme and optionally reducing it.
  • Antibodies or antibody fragments used in the present invention may be any of human-derived antibodies, mouse-derived antibodies, rat-derived antibodies, rabbit-derived antibodies, camelid-derived antibodies such as llamas, or goat-derived antibodies.
  • Antibodies may be monoclonal, complete or truncated (eg, F(ab')2, Fab', Fab or Fv fragments), chimerized, humanized or fully human.
  • antisense RNA or DNA molecule means a base sequence complementary to RNA (sense RNA) having a certain function, such as messenger RNA (mRNA), and forms a double strand with the sense RNA. In other words, it refers to a molecule that has the function of inhibiting protein synthesis that the sense RNA should be responsible for.
  • antisense oligonucleotides including antisense RNA or DNA molecules, inhibit translation into proteins by binding to mRNAs of proteins involved in absorption, transport, distribution, metabolism or excretion of D-amino acids. do.
  • RNAi-inducing nucleic acid refers to a polynucleotide capable of inducing RNA interference (RNAi) when introduced into a cell, usually 19-30 nucleotides, preferably 19-25 nucleotides. , more preferably RNA, DNA, or chimeric molecules of RNA and DNA containing 19-23 nucleotides, optionally modified.
  • RNAi may occur on mRNA or on post-transcriptional RNA before processing, i.e. RNA of nucleotide sequences comprising exons, introns, 3' untranslated regions and 5' untranslated regions.
  • the RNAi method that can be used in the present invention includes (1) direct introduction of short double-stranded RNA (siRNA) into cells, or (2) incorporation of small hairpin RNA (shRNA) into various expression vectors, or (3) constructing a vector that expresses siRNA by inserting a short double-stranded DNA corresponding to the siRNA into a vector having two promoters arranged in opposite directions between the promoters, and RNAi may be induced by techniques such as introduction into
  • the RNAi-inducing nucleic acid may include siRNA, shRNA, or miRNA that allows cleavage of the RNA of the D-serine transporter protein or suppression of its function, and these RNAi nucleic acids may be directly introduced using liposomes or the like. Alternatively, they may be introduced using an expression vector that directs these RNAi nucleic acids.
  • the RNAi-inducing nucleic acid for a protein associated with D-amino acid absorption, transport, distribution, metabolism or excretion used in the present invention is Any nucleic acid that exhibits a biological effect of inhibiting or significantly inhibiting protein expression can be synthesized by those skilled in the art with reference to the base sequence of the protein. For example, it is chemically synthesized using a DNA (/RNA) automatic synthesizer that utilizes DNA synthesis technology such as the solid-phase phosphoramidite method, or by an siRNA-related contract synthesis company (such as Life Technologies). It is also possible to consign and synthesize.
  • the siRNA used in the present invention is derived from its precursor, short-hairpin double-stranded RNA (shRNA), through processing by the intracellular RNase Dicer. There may be.
  • miRNA is a single-stranded RNA molecule with a length of 21 to 25 bases, and refers to a molecule involved in post-transcriptional regulation of gene expression in eukaryotes. miRNAs generally recognize the 3'UTR of mRNAs and suppress translation of target mRNAs to suppress protein production. Therefore, miRNAs that can directly and/or indirectly reduce the expression level of the D-serine transporter protein are also included in the scope of the present invention.
  • ribozyme is a generic term for enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and M1 RNA contained in RNase P, but there are also hammerhead-type and hairpin-type ribozymes that have an active domain of about 40 nucleotides. (See, for example, Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191).
  • the self-cleaving domain of the hammerhead ribozyme cleaves the sequence G13U14C15 at the 3' side of C15, but base pairing between U14 and A9 is important for its activity.
  • base pairing between U14 and A9 is important for its activity.
  • Hairpin-type ribozymes can also be used in the present invention.
  • This ribozyme is found, for example, in the minus strand of satellite RNA of tobacco ringspot virus (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (for example, Kikuchi, Y. & Sasaki, N., Nucl. Acids. Res., 1991, 19, 6751; Kikuchi Hiroshi, Chemistry and Biology, 1992, 30, 112.). Expression of the D-serine transporter protein can be inhibited by specifically cleaving the transcript of the gene encoding the D-serine transporter protein using a ribozyme.
  • a genome-editing nucleic acid refers to a nucleic acid used to edit a desired gene in a nuclease-based system used for gene targeting.
  • Nucleases used for gene targeting include known nucleases as well as new nucleases that will be used for gene targeting in the future.
  • known nucleases include CRISPR/Cas9 (Ran, FA, et al., Cell, 2013, 154, 1380-1389), TALEN (Mahfouz, M., et al., PNAS, 2011, 108 , 2623-2628), ZFN (Urnov, F., et al., Nature, 2005, 435, 646-651) and the like.
  • symbiotic bacteria such as intestinal bacteria are one of the resources of D-amino acids in the body
  • administration of antibiotics, intestinal regulators, oligosaccharides, probiotics, microbial transplantation, fecal transplantation It is possible to increase or decrease the amount of D-amino acids in the living body by changing the microflora or the growth environment by means such as improvement of dysbiosis.
  • a probiotic ingestion of yogurt containing 1073R-1 lactobacillus is known to increase fecal D-serine and decrease D-lysine.
  • D-amino acids such as black vinegar, yogurt, microbial fermentation products such as cheese, and bacterial cells or bacterial cell extracts
  • microbial fermentation products such as cheese
  • bacterial cells or bacterial cell extracts have many active ingredient candidates in addition to D-amino acids. Therefore, when used as the D-amino acid control agent of the present invention, it is essential to use an amount that allows confirmation of an increase or decrease in the amount of D-amino acid at the site of action upon ingestion.
  • L-amino acids have various physiological activities different from those of D-amino acids
  • foods for which the standards (optical purity, amount), etc. of active ingredients that increase or decrease the amount of D-amino acids have not been set are not suitable for the composition of the present invention. not included in the range of
  • drugs or foods that can increase or decrease the amount of D-amino acids in cells, tissues, organs, body fluids, or media for culturing cells in a subject, regardless of the mechanism, are applicable to the present invention. It can optionally be used as a means of controlling the amount of D-amino acids obtained.
  • food means food in general, but in addition to general food including so-called health food, it also includes food with health claims such as food for specified health use and food with nutrient function claims. Supplements (supplements, dietary supplements), feeds, food additives and the like are also included in the food of the present invention.
  • Methods of administering drugs include local administration (cutaneous, inhalation, enema, eye drops, ear drops, nasal, intravaginal, etc.), enteral administration, parenteral administration (intravenous, transarterial, transdermal, intramuscular, etc.). enteral administration is preferred.
  • Enteral administration includes oral administration, tube administration, and enema administration.
  • Tube administration includes administration through a nasogastric tube, gastrostomy, or duodenal fistula.
  • Enema administration includes administration using suppositories and enemas.
  • the dosage form of the drug is not particularly limited, and may be liquid or solid, and can be produced according to the common technical knowledge of those skilled in the art.
  • the specific administration method is also not particularly limited, and administration can be suitably performed according to the common technical knowledge of those skilled in the art.
  • Targets to which the present invention can be applied include cultured cells, tissues, and organoids in any environment different from in vivo, and patients with cell proliferation, abnormal organ function, or organ atrophy due to disease or injury, or abnormal include patients with suspected Organ transplantation can be performed with the liver, pancreas, kidney, digestive tract, heart, eyeball, etc. In many cases, both the donor from whom the organ is removed and the recipient who receives the organ are transplanted before and after surgery. The present invention can be applied to such subjects because organ damage and functional deterioration accompanied by abnormal cell proliferation appear.
  • organ injury for example, the kidney is classified as type I (subcapsular injury), type II (superficial injury), type III (deep injury), etc.
  • Non-Patent Document 11 The present invention can be applied to any subject.
  • the donor loses one of two kidneys, i.e., total kidney size is approximately halved and kidney function is halved, but the size of the remaining kidney increases to compensate for the loss of function.
  • D- By increasing the amount of amino acids, regeneration of cells, tissues, and organs can be assisted, and glomerular filtration rate, which is one of renal functions, can be improved.
  • subjects to which the present invention can be applied may be subjects with kidney disease, kidney transplant donors and/or recipients, and/or dialysis patients, or patients undergoing renal replacement therapy.
  • animals in which abnormal cell proliferation is induced by genetic modification or drugs e.g., uninephrectomized mice, etc.
  • cultured cells/tissues e.g., cancer model cells/tissues, stem cells, differentiated cells/tissues, etc.
  • One embodiment of the present invention is that the amount of D-amino acids in a medium for culturing cells, and the increase or decrease in the amount of D-amino acids in target cells, tissues and/or body fluids affect cell proliferation. , by measuring the amount of D-amino acids thereof, it can be used as an index of the state of abnormal cell proliferation and the effect of treatment. For example, in the kidney, by monitoring the amount of D-amino acids in the body and the amount of glomerular filtration, it is possible to diagnose and evaluate cell proliferation and functional abnormalities, analyze the mechanism of action of drugs, screen effects and toxicity, and select treatment methods and drugs. , it is possible to assist in determining the dosage, period, etc. Since the amount of D-amino acids in body fluids is affected by other diseases, for the purpose of distinguishing them, the values corrected by renal function markers such as creatinine and other markers are analyzed. may be used for
  • One embodiment of the present invention is a method of modulating cell proliferation in a subject, comprising: A method comprising administering to a subject in need thereof an agent for controlling the amount of D-amino acids in vivo is provided.
  • one embodiment of the present invention is a method for modulating cell proliferation in vitro or ex vivo, comprising applying a D-amino acid amount controlling agent to a cell, biological tissue or organ and culturing it.
  • a D-amino acid amount controlling agent for example, in an in vitro or ex vivo environment, by culturing a cell, biological tissue, or organ using a buffer solution (e.g., medium) or physiological saline containing the above-mentioned D-amino acid amount regulator, Cell proliferation can be regulated.
  • the buffer that can be used in the present invention may be any known buffer that can be used for culturing, protecting or preserving cells, living tissue or organs.
  • one embodiment of the present invention provides the use of an agent for controlling the amount of D-amino acids for the manufacture of a pharmaceutical composition for modulating cell proliferation.
  • the method of regulating cell proliferation by controlling the amount of D-amino acids is extremely useful not only for efficient cell culture, but also for the prevention, treatment, and diagnosis of biological tissue and organ abnormalities.
  • TIG-1 cells isolated from fetal tissue were plated on a 96-well plate so that the number of viable cells per well was 1.5 ⁇ 10 4 cells.
  • the cells were cultured in a DMEM high glucose + 10% FBS medium overnight at 37°C in 5% CO 2 , the medium was removed, and the cells were washed with 150 ⁇ l of PBS. It was cultured in DMEM amino acid free medium + 0.5% dialyzed FBS at 37°C under 5% CO 2 for 18 hours.
  • L-serine L-Ser
  • D-serine D-Ser
  • Alanine (Ala), asparagine (Asn), glutamine (Gln), aspartic acid (Asp), glutamic acid (Glu), valine (Val), and lysine (Lys) were found to have a similar significant proliferative effect on DL bodies. rice field. D-methionine (D-Met) had no cell proliferation effect, but L-methionine (L-Met) had a significant cell proliferation effect (Fig. 1).
  • the level of D-serine in plasma was higher than in the vehicle group, and the kidney size (kidney weight per body weight) was increased (Fig. 5). This will serve as a model for cell proliferation/tissue regeneration and functional recovery of the remnant kidney of a donor in renal transplantation.
  • Sequencing was performed on an Illumina HiSeq2500 platform in 75 base single-ended mode and base calling using Illumina Casava 1.8.2 software.
  • the sequence read is Top Hat Ver. 2.0.13 to Bowtie2 Ver. 2.2.3 and SAMtools Ver. 0.1.19, and mapped to the mouse reference genome sequence (mm10), fragments per exon kilobase per million mapped fragments (FPKM) were obtained from Cufflinks Ver. 2.2.1 was used for calculation.
  • RNAseq data uses TargetMine (YA Chen, et al, PLoS One 6, e17844 (2011)), an integrated warehouse of human and mouse biological data from data sources such as Reactome and KEGG. Then, pathway analysis and gene ontology analysis were performed. Genes that were upregulated 2-fold change over the mean in D-serine treated mice compared to Vehicle treated mice were uploaded to TargetMine. Enrichment of Reactome pathways and gene ontology (GO) (M. Ashburner, et al, Nat Genet 25, 25-29 (2000)) was assessed by hypergeometric distributions and estimated p-values, and further by Benajmini and Hochberg Multiple-test correction was performed to suppress false positives using the method (W. S. Noble, et al., Nat Biotechnol 27, 1135-1137 (2009).). Heatmaps were drawn using R.
  • mice were perfused with saline, excised kidneys were sectioned, fixed with 4% paraformaldehyde, embedded in paraffin, and sections were stained with periodic acid Schiff (PAS). , or immunostained with anti-Ki67 antibody and Histofine Simple Stain Rat MAX PO (R) (414181F, Nichirei Biosciences) (T. Kimura, et al, Y. J Am Soc Nephrol 22, 902-913 (2011)). To count Ki67-positive cells per image, at least 10 fields (x200) were reviewed by a nephrologist blinded to the experimental conditions. For immunofluorescence, paraffin sections were incubated with Ki67 antibody and Alexa594-labeled secondary antibody.
  • PAPS periodic acid Schiff
  • FITC-binding lectin from Triticum vulgaris was used to stain proximal tubules and nuclei were counterstained with DAPI. Images were captured using a fluorescence microscope (Axio Observer) and a digital camera (AxioCam506 mono and AxioCamMRc, ZEISS, Oberkochen, Germany). All images were processed using ZEN 2 pro software (ZEISS) and Image J (NIH).
  • HK-2 CRL-2190, ATCC, Manassas, USA
  • RPTEC human primary renal proximal tubular cells
  • HeLa cells JCRB9004, JCRB Cell Bank, Japan, Japan
  • DMEM Dulbecco's Modified Eagle Medium
  • FCS 10% FCS (10270-106, Gibco, Carlsbad, USA).
  • p18-deficient MEFs p18 KO
  • Rev revertant
  • Rheb and p18 double-deficient MEFs Rheb and p18 double-deficient MEFs
  • cells were seeded in 96-well plates using medium. The next day, the medium was changed to 0.5% dialyzed FCS (26400-036, Gibco) and serine-free medium (amino acid-free DMEM [048-33575] supplemented with MEM essential amino acids [132-15641], glycine [073-00732], and GlutaMax ( L-alanyl-L-glutamine) [016-21841, Fujifilm Wako]), was added). After overnight incubation, D-serine and L-serine were added, respectively, and relative cell numbers were measured over time using a WST-8 kit (CK04, Dojindo Laboratories, Kumamoto, Japan). Experiments using MEFs used type I collagen-coated microplates (4860-010, AGC Techno Glass, Haibara, Japan).
  • Immunoblots were performed by lysing cells for 1 hour on ice with RIPA buffer (89901, Thermo Fisher) supplemented with protease inhibitor cocktail (4693132001, Roshe) with or without phosphatase inhibitors (4906837001, Roshe, Basel, Switzerland). and centrifuged at 15000G for 10 minutes. The supernatant was boiled in SDS-PAGE gel loading buffer for 3 minutes, separated by SDS-PAGE, transferred to a PVDF membrane, and subjected to Western blot analysis (T. Kimura, et al EMBO J 36, 42-60 (2017)). .
  • the group supplemented with D-serine promoted cell proliferation at a low concentration in human renal tubular cell lines and primary cells (Fig. 11).
  • Addition of D-serine enhanced Thr389 phosphorylation of S6K in HK-2 cells (FIG. 12).
  • D-serine addition also induced Ser235/236-phosphorylation of S6RP in the kidney of UNX mice (FIG. 13).
  • D-serine was shown to enhance the signal for activation of mTORC1.
  • the effect of D-serine on the mTOR pathway was also confirmed by the suppression of D-serine-induced cell proliferation in p18-deficient strains (Fig. 14) (R.
  • Example 7 D-serine administration and glomerular filtration rate
  • IL-3-dependent mouse pro-B-cell line Ba/F3 cells were seeded in 96-well plates using culture medium.
  • the medium is alanine-free medium (amino acid-free RPMI, MEM essential amino acids, GlutaMax (l-Alanyl-l-Glutamine), and 5% (v/v) dialyzed FCS (26400-036, Gibco) and 100 ng/10 ⁇ M D - Cells were cultured in the presence or absence of alanine for 48 hours, relative cell numbers were determined using WST-8 kit (CK04, Dojindo Laboratories, Kumamoto, Japan) and T-test was performed.
  • WST-8 kit CK04, Dojindo Laboratories, Kumamoto, Japan

Abstract

The present invention provides a composition for regulating cell proliferation, said composition containing a regulator of D-amino acid content, or a composition that activates an mTOR-related pathway. The present invention also provides a regulation method of cell proliferation in a subject, said method comprising administering a regulator of D-amino acid content in vivo to a subject requiring the same. The present invention also provides a regulation method of cell proliferation in vitro or ex vivo, said method comprising a step for applying a regulator of D-amino acid content to a cell, a biological tissue or an organ and culturing. The present invention also provides a use of a regulator of D-amino acid content to produce a pharmaceutical composition for regulating cell proliferation.

Description

細胞増殖の調整のための組成物及び細胞増殖の調整方法Compositions and methods for modulating cell proliferation
 本発明は、細胞増殖の調整のための組成物及び細胞増殖の調整方法に関する。 The present invention relates to a composition for modulating cell proliferation and a method for modulating cell proliferation.
 細胞は一般に生物の最も基本的な構成単位と認められ、恒常的な生命活動のために解糖系・クエン酸回路等の代謝を担う器官を有し、自己再生と複製のための遺伝情報とそれを発現させる機能が備えられている。ヒトは30兆個を超える体細胞と生殖細胞から構成されている。その多くを占める体細胞は約200種あり、絶えず分裂増殖する増殖性分裂細胞群(例えば、骨髄芽細胞、基底細胞等)、分化しながら分裂増殖する分化性分裂細胞群(例えば、骨髄細胞、神経芽細胞、筋芽細胞等)、通常は増殖しない可逆性分裂終了細胞群(例えば、幹細胞、平滑筋細胞、リンパ球等)、分裂能力を消失した固定制分裂終了細胞群(神経細胞、心筋細胞、赤血球等)がある。 Cells are generally recognized as the most basic building blocks of living organisms. They have organs responsible for metabolism such as the glycolytic system and the citric acid cycle for constant life activities, and contain genetic information for self-renewal and replication. It has the ability to express it. Humans are composed of more than 30 trillion somatic and germ cells. There are about 200 types of somatic cells that account for most of them, and a proliferating dividing cell group that constantly divides and proliferates (e.g., myeloblasts, basal cells, etc.), a differentiated dividing cell group that divides and proliferates while differentiating (e.g., myeloid cells, neuroblasts, myoblasts, etc.), reversible postmitotic cell groups that do not normally proliferate (e.g., stem cells, smooth muscle cells, lymphocytes, etc.), fixed postmitotic cell groups that have lost their ability to divide (nerve cells, myocardial cells, etc.) cells, red blood cells, etc.).
 生理的再生系組織においては、正常な状態で再生・機能・死を繰り返している細胞(例えば、上皮系細胞、血球系細胞等)、条件再生系組織においては、通常ほぼ増殖しないが障害等の特別な環境下で増殖・再生する細胞(例えば、臓器の実質細胞、血管内皮細胞、結合組織等)、非再生系組織おいては、自然発生・増殖能力がなく高度に組織化・分化した細胞(例えば、神経細胞、骨格筋、心筋細胞等)のような細胞種が存在する。 In physiologically regenerative tissue, cells that repeat regeneration, function, and death under normal conditions (e.g., epithelial cells, blood cells, etc.). Cells that proliferate and regenerate under special circumstances (e.g., organ parenchymal cells, vascular endothelial cells, connective tissue, etc.), and highly organized and differentiated cells that do not have the ability to spontaneously generate and proliferate in non-regenerative tissues. There are cell types such as (eg, nerve cells, skeletal muscle, cardiomyocytes, etc.).
 細胞はテロメアに起因する分裂寿命、分化寿命により増殖できなくなると細胞死の状態となり、その総和が個体の老化であると考えられている。再生系細胞はアポトーシスにより全体の細胞数が減少し、一細胞当たりの負担が増加することで、さらなるアポトーシスが促進され、組織・臓器の実質細胞数が減少(委縮)することで機能が低下する。細胞の遺伝子に何らかの異常が起きることで、正常な制御を受け付けず自律的に増殖する細胞が腫瘍であり、浸潤的に細胞増殖、及び転移するものを悪性腫瘍(癌)という。細胞融合、細胞への遺伝子導入、及び細胞培養は、細胞の機構や異常に対し、人為的操作を加え遺伝的、生理的な機能を制御・改変する技術であり、細胞・組織に関する機能解明・再生医療・医薬品等の研究開発に用いられている。細胞・組織培養においては、温度・雰囲気・培地成分(グルコース量、成長因子(例えば、上皮成長因子、インスリン様成長因子等)栄養素等)の条件を設定することで分化・増殖を制御されており、非特許文献1には、アミノ酸の代謝・調節がヒト多能性幹細胞の増殖能を調節することが記載されている。 Cells enter a state of cell death when they can no longer proliferate due to the mitotic lifespan and differentiation lifespan caused by telomeres, and the sum of these events is considered to be the aging of an individual. In regenerative cells, the total number of cells decreases due to apoptosis, and as the burden per cell increases, further apoptosis is promoted, and the number of parenchymal cells in tissues and organs decreases (atrophy), resulting in decreased function. . A tumor is a cell that autonomously proliferates against normal control due to some abnormality in the gene of the cell, and a malignant tumor (cancer) is a tumor that invasively proliferates and metastasizes. Cell fusion, gene introduction into cells, and cell culture are techniques for controlling and modifying genetic and physiological functions by artificially manipulating cell mechanisms and abnormalities. It is used for research and development of regenerative medicine and pharmaceuticals. In cell/tissue culture, differentiation/proliferation is controlled by setting conditions such as temperature, atmosphere, and medium components (glucose, growth factors (e.g., epidermal growth factor, insulin-like growth factor, etc.), nutrients, etc.). , Non-Patent Document 1 describes that the metabolism and regulation of amino acids regulates the proliferative potential of human pluripotent stem cells.
 近年、キラルアミノ酸を識別して分析する技術の高性能化により、哺乳類をはじめとする生体において微量なD-アミノ酸とL-アミノ酸の定量的な研究が進展したことで、従来の技術的限界により総アミノ酸(D-アミノ酸+L-アミノ酸)、又は便宜的にL-アミノ酸として取り扱われてきた一部のD-アミノ酸の存在や機能が明らかになってきている。D-アミノ酸は、摂取、共生細菌、代謝(分解、合成)、輸送、排泄等(非特許文献2~6)の影響により生体、組織、細胞、体液中の量が変化すること、そして腎臓病、心臓病、糖尿病等の疾患によって特徴的なキラルアミノ酸プロファイルを示すこと(特許文献1)、さらには、D-アミノ酸の腸管における免疫への関与(非特許文献7)や、腎臓由来細胞を保護する現象が報告されている(非特許文献3)。また、神経細胞において糖質代謝がD-セリンの生合成に関与している報告がある(非特許文献8)。 In recent years, due to the advancement of technology for identifying and analyzing chiral amino acids, quantitative research on trace amounts of D-amino acids and L-amino acids in living organisms such as mammals has progressed. The existence and functions of some D-amino acids that have been treated as total amino acids (D-amino acids + L-amino acids) or L-amino acids for convenience have been clarified. D-amino acids are affected by ingestion, symbiotic bacteria, metabolism (decomposition, synthesis), transportation, excretion, etc. (Non-Patent Documents 2 to 6), and the amount in living organisms, tissues, cells, and body fluids changes, and kidney disease , showing a chiral amino acid profile characteristic of diseases such as heart disease and diabetes (Patent Document 1), furthermore, the involvement of D-amino acids in intestinal immunity (Non-Patent Document 7) and protecting kidney-derived cells A phenomenon has been reported (Non-Patent Document 3). There is also a report that carbohydrate metabolism is involved in D-serine biosynthesis in nerve cells (Non-Patent Document 8).
 腎臓癌においては、血液中のD-セリン、D-アラニンが、糖尿病においては、血液中のD-アラニン、D-プロリン、D-アスパラギン酸量が変動することが開示されている(特許文献1、特許文献2)。また、D-アラニンは膵臓ランゲルハンス島ではインスリンを、下垂体前葉では副腎皮質刺激ホルモンを含む細胞に局在していることが報告されている(非特許文献9、非特許文献10)。しかし、D-アミノ酸の存在と細胞増殖との関連については未だ明らかとなっていない。 It has been disclosed that the amounts of D-serine and D-alanine in the blood vary in renal cancer, and the amounts of D-alanine, D-proline and D-aspartic acid in the blood vary in diabetes (Patent Document 1. , Patent Document 2). It has also been reported that D-alanine is localized in cells containing insulin in pancreatic islets of Langerhans and cells containing adrenocorticotropic hormone in the anterior pituitary gland (Non-Patent Documents 9 and 10). However, the relationship between the presence of D-amino acids and cell proliferation has not yet been elucidated.
国際公開第2013/140785号WO2013/140785 特開2017-207490号公報JP 2017-207490 A 国際公開第2020/196436号WO2020/196436
 細胞をより効率的に増殖させる方法、正常でない生体内外の細胞・組織・臓器の再生により、機能を回復・維持・増進させる方法や薬剤が切望されている。 There is a strong need for methods and drugs to more efficiently proliferate cells, restore, maintain, and enhance functions by regenerating abnormal cells, tissues, and organs inside and outside the body.
 発明者らは腎尿細管細胞、線維芽細胞の初代又は継代培養において、培地中のD-アミノ酸量とL-アミノ酸量を調節したところ、D-アミノ酸にL-アミノ酸よりも細胞増殖を促進する作用があることを発見した。その効果と機構について鋭意研究を行った結果、D-アミノ酸量を増減させることによって、生体内外の細胞・組織・臓器、特に条件再生系組織の増殖・再生を調整する方法を見出し、本発明に至った。すなわち本発明は以下の発明を包含する。 The inventors adjusted the amount of D-amino acid and L-amino acid in the medium in primary or subcultures of renal tubular cells and fibroblasts, and found that D-amino acids promoted cell proliferation more than L-amino acids. I discovered that it works. As a result of intensive research on its effect and mechanism, a method for adjusting the growth and regeneration of cells, tissues and organs inside and outside the body, especially conditionally regenerative tissues, was found by increasing or decreasing the amount of D-amino acids. Arrived. That is, the present invention includes the following inventions.
[1] D-アミノ酸の量の制御剤を含む、細胞増殖の調整のための組成物。
[2] 前記制御剤が、対象の生体中のD-アミノ酸の量の制御剤である、項目1に記載の組成物。
[3] 前記細胞増殖が、生体組織及び/又は臓器の細胞増殖であって、それにより前記生体組織及び/又は臓器のサイズを調整する、項目1又は2に記載の組成物。
[4] 前記対象が、腎臓病を有する対象である、項目2に記載の組成物。
[5] 前記対象が、腎移植のドナー及び/又はレシピエントである、項目2に記載の組成物。
[6] 腎機能を向上させる、項目2に記載の組成物。
[7] 前記腎機能が糸球体濾過量である、項目6に記載の組成物。
[8] 単離された細胞の増殖の調整のための、項目1に記載の組成物。
[9] 前記制御剤が、D-アミノ酸又はその誘導体である、項目1~8のいずれか一項に記載の組成物。
[10] 前記D-アミノ酸が、D-セリン、D-アスパラギン及びD-グルタミンからなる群から選択される、項目9に記載の組成物。
[11] 前記制御剤が、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の活性を調整する剤である、項目1~8のいずれか一項に記載の組成物。
[12] 前記代謝が、分解又は合成である、項目11に記載の組成物。
[13] 前記タンパク質の活性を調整する剤が、前記タンパク質の遺伝子発現の制御剤である、項目11又は12に記載の組成物。
[14] 前記タンパク質が、D-アスパラギン酸酸化酵素及びセリン異性化酵素からなる群から選択される、項目11~13のいずれか一項に記載の組成物。
[15] 前記タンパク質が、D-アミノ酸輸送体タンパク質である、項目11~13のいずれか一項に記載の組成物。
[16] 前記D-アミノ酸輸送体タンパク質が、SMCTファミリー、GLUT5、CAT1、THTR2、SNAT2、ASCTファミリー、Asc1、PAT1及びATB0,+からなる群から1又は複数選択される、項目15に記載の組成物。
[17] 医薬品である、項目1~16のいずれか1項に記載の組成物。
[18] 食品である、項目1~16のいずれか1項に記載の組成物。
[19] 前記食品が、保健機能食品またはダイエタリーサプリメントである、項目18に記載の組成物。
[20] 前記保健機能食品が、特定保健用食品または栄養機能食品である、項目19に記載の組成物。
[21] mTOR関連経路を活性化する、項目1~20のいずれか1項に記載の組成物。
[1] A composition for regulating cell growth, comprising an agent for controlling the amount of D-amino acids.
[2] The composition according to item 1, wherein the control agent is an agent for controlling the amount of D-amino acids in the subject's living body.
[3] The composition according to item 1 or 2, wherein the cell proliferation is cell proliferation in a living tissue and/or organ, thereby adjusting the size of the living tissue and/or organ.
[4] The composition according to item 2, wherein the subject is a subject with kidney disease.
[5] The composition according to item 2, wherein the subject is a kidney transplant donor and/or recipient.
[6] The composition according to item 2, which improves renal function.
[7] The composition according to item 6, wherein the renal function is glomerular filtration rate.
[8] A composition according to item 1 for modulating the growth of isolated cells.
[9] The composition according to any one of items 1 to 8, wherein the control agent is a D-amino acid or a derivative thereof.
[10] The composition according to item 9, wherein the D-amino acid is selected from the group consisting of D-serine, D-asparagine and D-glutamine.
[11] The composition according to any one of items 1 to 8, wherein the control agent is an agent that modulates protein activity related to absorption, transport, distribution, metabolism or excretion of D-amino acids.
[12] The composition according to item 11, wherein the metabolism is degradation or synthesis.
[13] The composition according to item 11 or 12, wherein the agent that modulates the activity of the protein is an agent that regulates gene expression of the protein.
[14] The composition according to any one of items 11 to 13, wherein the protein is selected from the group consisting of D-aspartate oxidase and serine isomerase.
[15] The composition according to any one of items 11 to 13, wherein the protein is a D-amino acid transporter protein.
[16] Item 15, wherein the D-amino acid transporter protein is one or more selected from the group consisting of SMCT family, GLUT5, CAT1, THTR2, SNAT2, ASCT family, Asc1, PAT1 and ATB 0,+ Composition.
[17] The composition according to any one of items 1 to 16, which is a pharmaceutical.
[18] The composition according to any one of Items 1 to 16, which is a food.
[19] The composition according to item 18, wherein the food is a food with health claims or a dietary supplement.
[20] The composition according to item 19, wherein the food with health claims is a food for specified health uses or a food with nutrient claims.
[21] The composition according to any one of items 1 to 20, which activates an mTOR-related pathway.
[22-1] D-アミノ酸の量の制御剤を含む、mTOR関連経路を活性化する組成物。
[22-2] 前記制御剤が、対象の生体中のD-アミノ酸の量の制御剤である、項目22-1に記載の組成物。
[22-3] 前記細胞増殖が、生体組織及び/又は臓器の細胞増殖であって、それにより前記生体組織及び/又は臓器のサイズを調整する、項目22-1又は22-2に記載の組成物。
[22-4] 前記対象が、腎臓病を有する対象である、項目22-2に記載の組成物。
[22-5] 前記対象が、腎移植のドナー及び/又はレシピエントである、項目22-2に記載の組成物。
[22-6] 腎機能を向上させる、項目22-2に記載の組成物。
[22-7] 前記腎機能が糸球体濾過量である、項目22-6に記載の組成物。
[22-8] 単離された細胞の増殖の調整のための、項目22-1に記載の組成物。
[22-9] 前記制御剤が、D-アミノ酸又はその誘導体である、項目22-1~22-8のいずれか一項に記載の組成物。
[22-10] 前記D-アミノ酸が、D-セリン、D-アスパラギン及びD-グルタミンからなる群から選択される、項目22-9に記載の組成物。
[22-11] 前記制御剤が、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の活性を調整する剤である、項目22-1~22-8のいずれか一項に記載の組成物。
[22-12] 前記代謝が、分解又は合成である、項目22-11に記載の組成物。
[22-13] 前記タンパク質の活性を調整する剤が、前記タンパク質の遺伝子発現の制御剤である、項目22-11又は22-12に記載の組成物。
[22-14] 前記タンパク質が、D-アスパラギン酸酸化酵素及びセリン異性化酵素からなる群から選択される、項目22-11~22-13のいずれか一項に記載の組成物。
[22-15] 前記タンパク質が、D-アミノ酸輸送体タンパク質である、項目22-11~22-13のいずれか一項に記載の組成物。
[22-16] 前記D-アミノ酸輸送体タンパク質が、SMCTファミリー、GLUT5、CAT1、THTR2、SNAT2、ASCTファミリー、Asc1、PAT1及びATB0,+からなる群から1又は複数選択される、項目22-15に記載の組成物。
[22-17] 医薬品である、項目22-1~22-16のいずれか1項に記載の組成物。
[22-18] 食品である、項目22-1~22-16のいずれか1項に記載の組成物。
[22-19] 前記食品が、保健機能食品またはダイエタリーサプリメントである、項目22-18に記載の組成物。
[22-20] 前記保健機能食品が、特定保健用食品または栄養機能食品である、項目22-19に記載の組成物。
[22-1] A composition that activates an mTOR-associated pathway, comprising a regulator of the amount of D-amino acids.
[22-2] The composition according to item 22-1, wherein the control agent is an agent for controlling the amount of D-amino acid in the subject's living body.
[22-3] The composition according to item 22-1 or 22-2, wherein the cell proliferation is cell proliferation in a living tissue and/or organ, thereby adjusting the size of the living tissue and/or organ. thing.
[22-4] The composition of item 22-2, wherein the subject is a subject with renal disease.
[22-5] The composition according to item 22-2, wherein the subject is a kidney transplant donor and/or recipient.
[22-6] The composition of item 22-2, which improves renal function.
[22-7] The composition according to item 22-6, wherein the renal function is glomerular filtration rate.
[22-8] The composition according to item 22-1 for modulating growth of isolated cells.
[22-9] The composition according to any one of items 22-1 to 22-8, wherein the control agent is a D-amino acid or a derivative thereof.
[22-10] The composition according to item 22-9, wherein the D-amino acid is selected from the group consisting of D-serine, D-asparagine and D-glutamine.
[22-11] any one of items 22-1 to 22-8, wherein the control agent is an agent that modulates protein activity related to D-amino acid absorption, transport, distribution, metabolism or excretion; The described composition.
[22-12] The composition according to item 22-11, wherein the metabolism is degradation or synthesis.
[22-13] The composition according to item 22-11 or 22-12, wherein the agent that modulates the activity of the protein is an agent that regulates gene expression of the protein.
[22-14] The composition according to any one of items 22-11 to 22-13, wherein the protein is selected from the group consisting of D-aspartate oxidase and serine isomerase.
[22-15] The composition according to any one of items 22-11 to 22-13, wherein the protein is a D-amino acid transporter protein.
[22-16] Item 22-, wherein the D-amino acid transporter protein is one or more selected from the group consisting of SMCT family, GLUT5, CAT1, THTR2, SNAT2, ASCT family, Asc1, PAT1 and ATB 0,+ 16. The composition according to 15.
[22-17] The composition according to any one of items 22-1 to 22-16, which is a pharmaceutical.
[22-18] The composition according to any one of items 22-1 to 22-16, which is a food.
[22-19] The composition according to item 22-18, wherein the food is a food with health claims or a dietary supplement.
[22-20] The composition according to item 22-19, wherein the food with health claims is a food for specified health uses or a food with nutrient claims.
[23] 対象における細胞増殖の調整方法であって、
 それを必要とする対象に、生体内のD-アミノ酸の量の制御剤を投与すること
を含む、方法。
[23] A method of modulating cell proliferation in a subject, comprising:
A method comprising administering to a subject in need thereof an agent for controlling the amount of D-amino acids in vivo.
[24] インビトロ又はエクスビボにおける細胞増殖の調整方法であって、
 細胞、生体組織又は臓器に、D-アミノ酸の量の制御剤を適用し、培養する工程
を含む、方法。
[24] A method of modulating cell proliferation in vitro or ex vivo, comprising:
A method comprising applying a D-amino acid amount controlling agent to a cell, biological tissue or organ and culturing.
[25] 細胞増殖の調整用の医薬組成物の製造のための、D-アミノ酸の量の制御剤の使用。 [25] Use of an agent for controlling the amount of D-amino acids for the manufacture of a pharmaceutical composition for regulating cell proliferation.
 本発明によれば、D-アミノ酸量を制御することにより、細胞増殖を調整することが可能となることから、細胞増殖が異常をきたしている状態や疾患(例えば、腫瘍等)について、予防、治療又は評価することが可能となる。 According to the present invention, by controlling the amount of D-amino acids, it is possible to regulate cell proliferation. It becomes possible to treat or evaluate.
図1は、D、L-アミノ酸(10μM)の培養細胞増殖効果を示す。FIG. 1 shows the effect of D, L-amino acids (10 μM) on cell growth in culture. 図2は、D、L-アミノ酸(1μM)の培養細胞増殖効果を示す。FIG. 2 shows the effect of D, L-amino acids (1 μM) on cell growth in culture. 図3は、グリシルセリン異性体(10μM)の培養細胞増殖効果を示す。FIG. 3 shows the effects of glycylserine isomers (10 μM) on cell growth in culture. 図4は、D、L-アミノ酸の投与と各臓器への取り込みを示す。FIG. 4 shows administration of D, L-amino acids and uptake into each organ. 同上。Ditto. 図5は、D-セリン投与と腎臓サイズの増大効果を示す。n=6~7。統計解析はtwo-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。データは平均±SEMで示す。FIG. 5 shows the effect of D-serine administration on increasing kidney size. n=6-7. Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. Data are shown as mean ± SEM. 図6は、D-セリン投与の影響に関するパスウェイ解析の結果を示す。FIG. 6 shows the results of pathway analysis on the effects of D-serine administration. 同上。Ditto. 図7は、D-セリン投与と細胞周期関連遺伝子発現解析の結果を示す。(A)相対mRNA発現量。n=6~7。統計解析はunpaired two-tailed Student’s t-testにて行った。*p<0.05。データは平均±SEMで示す。(B)相対mRNA発現量。n=6~7。統計解析はtwo-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。FIG. 7 shows the results of D-serine administration and cell cycle-related gene expression analysis. (A) Relative mRNA expression levels. n=6-7. Statistical analysis was performed with an unpaired two-tailed Student's t-test. *p<0.05. Data are shown as mean ± SEM. (B) Relative mRNA expression levels. n=6-7. Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 図8は、D-セリン投与によるKi67 positive nuclei 解析を示す。(A)抗Ki67抗体で染色した腎皮質の代表的な画像。各図の左下の図は、図中の四角で囲まれた領域の拡大図である。スケールバー:50μm。(B)フィールドごとの近位尿細管のKi67陽性核の数(n=6~7)、(C)相対的尿細管面積(n=6~7)、(D)尿細管あたりの細胞数(n=6~7)。統計解析はtwo-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。データは平均±SEMで示す。FIG. 8 shows Ki67 positive nuclei analysis by D-serine administration. (A) Representative images of renal cortex stained with anti-Ki67 antibody. The lower left figure in each figure is an enlarged view of the area enclosed by the rectangle in the figure. Scale bar: 50 μm. (B) Number of Ki67-positive nuclei in proximal tubules per field (n=6-7), (C) Relative tubule area (n=6-7), (D) Number of cells per tubule ( n=6-7). Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. Data are shown as mean ± SEM. 図9は、D-セリン投与による近位尿細管の細胞増殖効果を示す。レクチン陽性近位尿細管:緑、Ki67:赤、DAPI(核):青。スケールバー:50μm。FIG. 9 shows the effect of D-serine administration on proliferation of proximal tubule cells. Lectin-positive proximal tubule: green, Ki67: red, DAPI (nucleus): blue. Scale bar: 50 μm. 図10、D-セリン投与による糸球体の細胞増殖効果を示す。相対的な糸球体領域(%)を示す。統計解析はtwo-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。データは平均±SEMで示す。FIG. 10 shows the effect of D-serine administration on glomerular cell proliferation. Relative glomerular area (%) is shown. Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. Data are shown as mean ± SEM. 図11は、D-セリン投与による腎尿細管細胞、HK-2細胞の増殖効果を示す。(A)正常ヒト初代腎近位尿細管細胞(RPTEC)又は(B)HK-2細胞を10μMのD-セリンと共に培養した場合の経時的な相対増殖率(%)を示す。(C)正常ヒト初代腎近位尿細管細胞(RPTEC)又は(D)HK-2細胞を各濃度のD-セリンと共に培養した場合の相対増殖率(%)を示す。(E)正常ヒト初代腎近位尿細管細胞(RPTEC)又は(F)HK-2細胞を各濃度のD-セリン又はL-セリンと共に培養した場合の相対増殖率(%)を示す。統計解析は、Dunnett’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。FIG. 11 shows the proliferative effect of D-serine administration on renal tubular cells and HK-2 cells. (A) Normal human primary renal proximal tubule cells (RPTEC) or (B) HK-2 cells cultured with 10 μM D-serine relative proliferation rate (%) over time. (C) Normal human primary renal proximal tubule cells (RPTEC) or (D) HK-2 cells cultured with various concentrations of D-serine relative proliferation rate (%). (E) Normal human primary renal proximal tubule cells (RPTEC) or (F) HK-2 cells cultured with each concentration of D-serine or L-serine relative proliferation rate (%). Statistical analysis was performed by one-way ANOVA using Dunnett's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. 図12は、D-セリン投与によるHK-2細胞のリン酸化解析の結果を示す。(A)セリンを含まない培地で5μMのD-またはL-セリンで10分間処理したHK-2細胞のS6KのThr389におけるリン酸化(リン酸化-S6K(p-S6K))のウエスタンブロットの結果を示す。(B)独立した5回の実験の相対インデックス(RI)をプロットした図である。統計解析は、Dunnett’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。FIG. 12 shows the results of phosphorylation analysis of HK-2 cells by D-serine administration. (A) Western blot results of phosphorylation of S6K at Thr389 (phospho-S6K (p-S6K)) of HK-2 cells treated with 5 μM D- or L-serine for 10 min in serine-free medium. show. (B) Plot of the relative index (RI) of five independent experiments. Statistical analysis was performed by one-way ANOVA using Dunnett's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. 図13は、D-セリン投与によるマウス腎臓細胞のリン酸化解析の結果を示す。(A)セリンを含まない食餌と、0.1%D-セリンを含む又は含まない水が1週間与えられ、片側腎摘出術(UNX)を実施又は未実施の2日後に犠牲死された10週齢のC57 BL/6雄マウスの腎皮質からのSer235/236でのホスホ-S6リボソームタンパク質(p-S6RP)のイムノブロット。(B)独立した3回の実験の相対インデックス(RI)をプロットした。統計解析は、Dunnett’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。FIG. 13 shows the results of phosphorylation analysis of mouse kidney cells by administration of D-serine. (A) Fed on a serine-free diet and water with or without 0.1% D-serine for 1 week and sacrificed 2 days after unilateral nephrectomy (UNX) or not. Immunoblot of phospho-S6 ribosomal protein (p-S6RP) at Ser235/236 from renal cortex of week-old C57 BL/6 male mice. (B) Plotted the relative index (RI) of three independent experiments. Statistical analysis was performed by one-way ANOVA using Dunnett's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. 図14は、D-セリン投与によるp18欠損株の細胞増殖効果を示す。(A)セリンを含まない培地を用いて、図中に示された濃度のD-セリンで6時間処理されたp18欠損マウス胚性線維芽細胞(MEF)及びそれらの復帰突然変異体(Rev)の相対増殖速度と、ビヒクルで処理された対応する細胞株の相対増殖速度。N=6。統計解析は、two-way ANOVAにて行った。***p<0.001。(B)p18欠損MEFのp18タンパク質及びそれらの復帰突然変異体のイムノブロット。FIG. 14 shows the effect of D-serine administration on cell proliferation in p18-deficient strains. (A) p18-deficient mouse embryonic fibroblasts (MEFs) and their revertants (Rev) treated with the indicated concentrations of D-serine for 6 hours using serine-free medium. and relative growth rates of the corresponding cell lines treated with vehicle. N=6. Statistical analysis was performed by two-way ANOVA. ***p<0.001. (B) Immunoblot of p18 proteins of p18-deficient MEFs and their revertants. 図15は、D-セリン投与によるRheb欠損株の細胞増殖効果を示す。(A)セリンを含まない培地を用いて、図中に示された濃度のD-セリンで6時間処理されたRheb欠損又は野生型MEFの相対増殖速度、並びにビヒクル処理された対応する細胞株の相対増殖速度。N=12。統計解析は、two-way ANOVAにて行った。***p<0.001。(B)Rheb欠損-及び野生型MEFのRhebのイムノブロット。FIG. 15 shows the effect of D-serine administration on cell proliferation in Rheb-deficient strains. (A) Relative growth rates of Rheb-deficient or wild-type MEFs treated with the concentrations of D-serine indicated in the figure for 6 h using serine-free medium, as well as that of the vehicle-treated corresponding cell lines. relative growth rate. N=12. Statistical analysis was performed by two-way ANOVA. ***p<0.001. (B) Rheb immunoblot of Rheb-deficient- and wild-type MEFs. 図16は、D-セリンとラパマイシン又はPI3阻害剤の投与による細胞増殖効果を示す。(A)セリンを含まない培地を用いて、ラパマイシンあり又はなしで24時間処理し、図中に示された濃度のD-セリンで6時間処理されたHK-2細胞の相対増殖速度、並びにD-セリン非処理された対応する細胞株の相対増殖速度。N=21~24。統計解析は、two-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。(B)セリンを含まない培地を用いて、図中に示された濃度のD-セリン及びLy294002有り又は無しで同時に6時間処理されたHK-2細胞の相対増殖速度、並びにD-セリン非処理の対応する細胞株の相対増殖速度。N=21~24。統計解析は、two-way ANOVAにて行った。*p<0.05、**p<0.01、***p<0.001。FIG. 16 shows cell proliferation effects by administration of D-serine and rapamycin or PI3 inhibitors. (A) Relative growth rates of HK-2 cells treated with or without rapamycin for 24 hours using serine-free medium and treated with the indicated concentrations of D-serine for 6 hours, and D - Relative growth rate of corresponding cell lines not treated with serine. N=21-24. Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. (B) Relative growth rates of HK-2 cells treated simultaneously with or without the indicated concentrations of D-serine and Ly294002 for 6 hours using serine-free medium and D-serine untreated. relative growth rate of the corresponding cell lines. N=21-24. Statistical analysis was performed by two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 図17は、D-セリン投与によるAKTリン酸化解析の結果を示す。(A)セリンを含まない食餌と、0.1%D-セリンを含む又は含まない水が1週間与えられ、片側腎摘出術(UNX)を実施又は未実施の2日後に犠牲死された10週齢のC57 BL/6雄マウスの腎皮質からのSer473でのホスホ-AKT(p-AKT)のイムノブロットの結果を示す(左)。(B)独立した3回の実験の相対インデックス(RI)をプロットした。統計解析は、Dunnett’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。FIG. 17 shows the results of AKT phosphorylation analysis by D-serine administration. (A) Fed on a serine-free diet and water with or without 0.1% D-serine for 1 week and sacrificed 2 days after unilateral nephrectomy (UNX) or not. Immunoblot results for phospho-AKT (p-AKT) at Ser473 from renal cortex of week-old C57 BL/6 male mice are shown (left). (B) Plotted the relative index (RI) of three independent experiments. Statistical analysis was performed by one-way ANOVA using Dunnett's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. 図18は、D-セリン投与によるmTORリソソームの局在解析を示す。(A)培地中でインキュベートした後、5μMのD-又はL-セリンの存在下で10分間アミノ酸を飢餓状態にしたHK-2細胞におけるmTOR及びLAMP2の共局在のハイコンテント顕微鏡による定量化。マスクオーバーレイ、プライマリオブジェクト(CellMask(赤の疑似色)に基づくアルゴリズム定義の細胞境界)、および内部セカンダリオブジェクト(mTOR(緑)とLAMP2(黄)の間の計算で定義された共局在化)。統計解析は、Bonferroni’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。(B)培地中でインキュベートした後、5μMのD-又はL-セリンの存在下で10分間アミノ酸を飢餓状態にしたHK-2細胞におけるmTOR及びLAMP1の共局在のハイコンテント顕微鏡による定量化。マスクオーバーレイ、プライマリオブジェクト(CellMask(赤の疑似色)に基づくアルゴリズム定義の細胞境界)、および内部セカンダリオブジェクト(mTOR(緑)とLAMP1(黄)の間の計算で定義された共局在化)。統計解析は、Bonferroni’s post-hoc testを使用したone-way ANOVAにて行った。NS:有意差なし、*p<0.05、**p<0.01、***p<0.001。FIG. 18 shows localization analysis of mTOR lysosomes by D-serine administration. (A) High-content microscopy quantification of co-localization of mTOR and LAMP2 in HK-2 cells that were incubated in culture medium followed by amino acid starvation in the presence of 5 μM D- or L-serine for 10 minutes. Mask overlay, primary object (algorithm-defined cell boundaries based on CellMask (red pseudocolor)), and internal secondary object (computationally defined co-localization between mTOR (green) and LAMP2 (yellow)). Statistical analysis was performed by one-way ANOVA using Bonferroni's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. (B) Quantification by high-content microscopy of co-localization of mTOR and LAMP1 in HK-2 cells that were incubated in culture medium followed by amino acid starvation in the presence of 5 μM D- or L-serine for 10 minutes. Mask overlay, primary object (algorithm-defined cell boundaries based on CellMask (red pseudocolor)), and internal secondary object (computationally defined co-localization between mTOR (green) and LAMP1 (yellow)). Statistical analysis was performed by one-way ANOVA using Bonferroni's post-hoc test. NS: not significantly different, *p<0.05, **p<0.01, ***p<0.001. 図19は、D-セリンによるmTOR関連経路の活性化スキームの概略図を示す。(A)D-セリンが、mTOR関連経路(mTOR/p18/Rheb)を介して細胞増殖を活性化することを示す概略図である。D-セリンが、片側腎摘出術後の腎臓リモデリングを仲介し得ることを示している。(B)D-セリンによるmTORC1シグナルの活性化のスキーム概略図を示す。D-セリンは、Lアミノ酸からmTORC1の活性化へのシグナルを増強する。D-セリンはまたホスホイノシチド3-キナーゼ(PI3K)/Rheb経路を介してmTROC1を活性化する。FIG. 19 shows a schematic representation of the activation scheme of mTOR-related pathways by D-serine. (A) Schematic showing that D-serine activates cell proliferation through the mTOR-related pathway (mTOR/p18/Rheb). D-serine can mediate renal remodeling after unilateral nephrectomy. (B) Schematic representation of activation of mTORC1 signaling by D-serine. D-serine enhances the signal from L-amino acids to mTORC1 activation. D-serine also activates mTROC1 through the phosphoinositide 3-kinase (PI3K)/Rheb pathway. 図20は、D-セリンの投与による糸球体濾過量(GFR)の増加効果を示す。FIG. 20 shows the effect of administration of D-serine on increasing glomerular filtration rate (GFR). 図21は、B細胞におけるD-アミノ酸の細胞増殖能を調べた結果を示す。 FIG. 21 shows the results of examining the cell proliferation ability of D-amino acids in B cells.
 以下、本発明を実施するための形態について説明するが、本発明の技術的範囲は下記の形態のみに限定されない。なお、本明細書で引用されている先行技術文献は、参照により本明細書に取り込まれる。 Embodiments for carrying out the present invention will be described below, but the technical scope of the present invention is not limited to the following embodiments. It should be noted that the prior art documents cited herein are hereby incorporated by reference.
 本発明の一実施形態は、D-アミノ酸の量の制御剤を含む、細胞増殖の調整のための組成物を提供する。 One embodiment of the present invention provides a composition for modulating cell growth, comprising an agent for controlling the amount of D-amino acids.
 また、本発明の一実施形態は、D-アミノ酸の量の制御剤を含む、mTOR関連経路を活性化する組成物を提供する。 Also, one embodiment of the present invention provides a composition that activates the mTOR-related pathway, comprising a regulator of the amount of D-amino acids.
 また、本発明の一実施形態は、対象におけるD-アミノ酸の量を制御することを特徴とする、細胞増殖を調整する方法、組織・臓器のサイズを調整する方法、又は組織・臓器の機能を増進する方法を提供する。 Also, one embodiment of the present invention provides a method for regulating cell proliferation, a method for regulating tissue/organ size, or a tissue/organ function, comprising regulating the amount of D-amino acids in a subject. Provide a way to improve.
 本明細書において、「D-アミノ酸の量の制御」とは、意図的に細胞、組織及び/又は臓器の内外、並びに体液中のD-アミノ酸量を増減させることをいう。目的の量、濃度がある場合は、試料中のD-アミノ酸、D-アミノ酸クリアランスについて、適宜モニタリングすることで評価してもよい。 As used herein, "controlling the amount of D-amino acids" refers to intentionally increasing or decreasing the amount of D-amino acids inside or outside cells, tissues and/or organs, and in body fluids. If there is a target amount and concentration, the D-amino acid in the sample and D-amino acid clearance may be evaluated by monitoring as appropriate.
 本明細書において「細胞増殖」とは、生体組織及び/又は臓器の細胞増殖であってもよく、それにより前記生体組織及び/又は臓器のサイズを調整するものであってもよい。 As used herein, "cell proliferation" may be cell proliferation in a living tissue and/or organ, and may thereby adjust the size of the living tissue and/or organ.
 本明細書において、「生体組織及び/又は臓器のサイズの調整」とは、生体組織及び/又は臓器における細胞量や形態、機能の異常や過不足等について、つり合いのとれた状態や正しい状態にすることをいう。サイズは、形態的な大きさや重量、機能等の測定単位で表すことができ、体重等で補正されてもよい。目的の効果がある場合は、例えば、培養細胞の増殖を目的とする場合は細胞数や培地のメタボローム解析を実施したりすることで効果を評価してもよい。また、腎臓の細胞増殖・サイズ・機能の調整を目的とする場合は、尿検査(尿蛋白、血尿、クレアチニン量等)、血液検査(クレアチニン、シスタチンC、尿素窒素:BUN等)、におけるマーカーについて適宜モニタリングしたり、腎機能検査(腎血流量:RPF、糸球体濾過量:GFR)、X線検査、血管造影、超音波検査、CT、MRI、核医学検査、内視鏡検査、腎生検(病理検査)等を実施したりすることで効果を評価してもよい。 As used herein, the term "adjustment of size of biological tissue and/or organ" means that the amount, morphology, abnormalities, excesses, deficiencies, etc. of cells in a biological tissue and/or organ are brought into a balanced state or in a correct state. It means to Size can be expressed in units of measurement such as physical size, weight, and function, and may be corrected for weight and the like. When there is a desired effect, for example, when the purpose is to grow cultured cells, the effect may be evaluated by performing metabolome analysis of the cell count or medium. In addition, markers in urine tests (urine protein, hematuria, creatinine amount, etc.) and blood tests (creatinine, cystatin C, urea nitrogen: BUN, etc.) for the purpose of adjusting kidney cell proliferation, size, and function Appropriate monitoring, renal function test (renal blood flow: RPF, glomerular filtration rate: GFR), X-ray examination, angiography, ultrasonography, CT, MRI, nuclear medicine examination, endoscopy, renal biopsy The effect may be evaluated by performing (pathological examination) or the like.
 本明細書において、「D-アミノ酸の量の制御剤」(「D-アミノ酸量制御剤」ともいう。)とは、それが適用される(例えば、投与される)ことで、対象の生体中(例えば、細胞内、組織内、器官内又は体液中)、又は単離された細胞内のD-アミノ酸の量を増加又は減少させ得る剤をいう。本明細書において、「細胞内のD-アミノ酸の量を調節する」とは、D-アミノ酸量制御剤を適用することによって、細胞内におけるD-アミノ酸の量を増加または減少させて、D-アミノ酸の量を任意の範囲に調節することを意味する。本明細書において、「組織内のD-アミノ酸の量を調節する」とは、D-アミノ酸量制御剤を適用することによって、組織内(例えば、尿細管、糸球体など)におけるD-アミノ酸の量を増加または減少させて、D-アミノ酸の量を任意の範囲に調節することを意味する。本明細書において、「器官内のD-アミノ酸の量を調節する」とは、D-アミノ酸量制御剤を適用することによって、器官内(例えば、腎臓内、心臓内など)におけるD-アミノ酸の量を増加または減少させて、D-アミノ酸の量を任意の範囲に調節することを意味する。本明細書において、「体液中のD-アミノ酸の量を調節する」とは、D-アミノ酸量制御剤を適用することによって、体液中(例えば、血液中、尿中など)におけるD-アミノ酸の量を増加または減少させて、D-アミノ酸の量を任意の範囲に調節することを意味する。 As used herein, the term “D-amino acid amount control agent” (also referred to as “D-amino acid amount control agent”) means that it is applied (eg, administered) to a subject in vivo. (eg, in a cell, tissue, organ, or body fluid), or an agent capable of increasing or decreasing the amount of D-amino acids in an isolated cell. As used herein, "regulating the amount of D-amino acids in cells" means increasing or decreasing the amount of D-amino acids in cells by applying a D-amino acid amount controlling agent, It means adjusting the amount of amino acid to an arbitrary range. As used herein, “regulating the amount of D-amino acids in tissues” means that the amount of D-amino acids in tissues (e.g., renal tubules, glomeruli, etc.) is It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount. As used herein, “regulating the amount of D-amino acids in an organ” means that the amount of D-amino acids in an organ (for example, kidney, heart, etc.) is controlled by applying a D-amino acid amount controlling agent. It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount. As used herein, "regulating the amount of D-amino acids in body fluids" means that the amount of D-amino acids in body fluids (e.g., blood, urine, etc.) is reduced by applying a D-amino acid amount controlling agent. It means adjusting the amount of D-amino acids to any range by increasing or decreasing the amount.
 本明細書において、「D-アミノ酸」とは、「L体」のタンパク質構成アミノ酸の立体異性体である「D体」のタンパク質構成アミノ酸、及び、立体異性体を有さないグリシンを含む意味で用いられ、具体的には、グリシン、D-アラニン、D-ヒスチジン、D-イソロイシン、D-アロ-イソロイシン、D-ロイシン、D-リシン、D-メチオニン、D-フェニルアラニン、D-スレオニン、D-アロ-スレオニン、D-トリプトファン、D-バリン、D-アルギニン、D-システイン、D-グルタミン、D-プロリン、D-チロシン、D-アスパラギン酸、D-アスパラギン、D-グルタミン酸、及びD-セリンを含むものをいう。なお、生物試料に含まれるD-システインは、生体外においては、酸化されてD-シスチンと変化するため、本発明の一実施態様において、D-システインの代わりにD-シスチンを測定することで生物試料に含まれるD-システインの量を算出することができる。 As used herein, the term "D-amino acid" is meant to include "D-form" proteinogenic amino acids, which are stereoisomers of "L-form" proteinogenic amino acids, and glycine without stereoisomers. Specifically, glycine, D-alanine, D-histidine, D-isoleucine, D-allo-isoleucine, D-leucine, D-lysine, D-methionine, D-phenylalanine, D-threonine, D- allo-threonine, D-tryptophan, D-valine, D-arginine, D-cysteine, D-glutamine, D-proline, D-tyrosine, D-aspartic acid, D-asparagine, D-glutamic acid, and D-serine What it contains. Since D-cysteine contained in a biological sample is oxidized and changed to D-cystine in vitro, in one embodiment of the present invention, D-cysteine can be measured instead of D-cysteine. The amount of D-cysteine contained in the biological sample can be calculated.
 D-アミノ酸の量及び/又はL-アミノ酸の量は、任意の方法によって測定することができ、例えばキラルカラムクロマトグラフィーや、酵素法を用いた測定、さらにはアミノ酸の光学異性体を識別するモノクローナル抗体を用いる免疫学的手法によって定量することができる。本発明における試料中のDーアミノ酸量及び/又はL-アミノ酸量の測定は、当業者に周知ないかなる方法を用いて実施しても構わない。例えば、クロマトグラフィー法や酵素法(Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analytical Biochemistry, 287 (2000), 196., G. Molla et al., Methods in Molecular Biology, 794 (2012), 273., T. Ito et al., Analytical Biochemistry, 371 (2007), 167. 等)、抗体法(T. Ohgusu et al., Analytical Biochemistry, 357 (2006), 15. 等 )、ガスクロマトグラフィー(GC)(H. Hasegawa et al., Journal of Mass Spectrometry, 46 (2011), 502., M. C. Waldhier et al., Analytical and Bioanalytical Chemistry, 394 (2009), 695., A. Hashimoto, T. Nishikawa et al., FEBS Letters, 296 (1992), 33., H. Bruckner and A. Schieber, Biomedical Chromatography, 15 (2001), 166. , M. Junge et al., Chirality, 19 (2007), 228., M. C. Waldhier et al., Journal of Chromatography A, 1218 (2011), 4537. 等)、キャピラリー電気泳動法(CE)(H. Miao et al., Analytical Chemistry, 77 (2005), 7190., D. L. Kirschner et al., Analytical Chemistry, 79 (2007), 736., F. Kitagawa, K. Otsuka, Journal of Chromatography B, 879 (2011), 3078., G. Thorsen and J. Bergquist, Journal of Chromatography B, 745 (2000), 389. 等)、高速液体クロマトグラフィー(HPLC)(N. Nimura and T. Kinoshita, Journal of Chromatography, 352 (1986), 169., A. Hashimoto et al., Journal of Chromatography, 582 (1992), 41., H. Bruckner et al., Journal of Chromatography A, 666 (1994), 259., N. Nimura et al., Analytical Biochemistry, 315 (2003), 262., C. Muller et al., Journal of Chromatography A, 1324 (2014), 109., S. Einarsson et al., Analytical Chemistry, 59 (1987), 1191., E. Okuma and H. Abe, Journal of Chromatography B, 660 (1994), 243., Y. Gogami et al., Journal of Chromatography B, 879 (2011), 3259., Y. Nagata et al., Journal of Chromatography, 575 (1992), 147., S. A. Fuchs et al., Clinical Chemistry, 54 (2008), 1443., D. Gordes et al., Amino Acids, 40 (2011), 553., D. Jin et al., Analytical Biochemistry, 269 (1999), 124., J. Z. Min et al., Journal of Chromatography B, 879 (2011), 3220., T. Sakamoto et al., Analytical and Bioanalytical Chemistry, 408 (2016), 517., W. F. Visser et al., Journal of Chromatography A, 1218 (2011), 7130., Y. Xing et al., Analytical and Bioanalytical Chemistry, 408 (2016), 141., K. Imai et al., Biomedical Chromatography, 9 (1995), 106., T. Fukushima et al., Biomedical Chromatography, 9 (1995), 10., R. J. Reischl et al., Journal of Chromatography A, 1218 (2011), 8379., R. J. Reischl and W. Lindner, Journal of Chromatography A, 1269 (2012), 262., S. Karakawa et al., Journal of Pharmaceutical and Biomedical Analysis, 115 (2015), 123., Hamase K, et al.,Chromatography 39 (2018) 147-152 等)がある。 The amount of D-amino acids and/or the amount of L-amino acids can be measured by any method, such as chiral column chromatography, measurement using an enzymatic method, and monoclonal antibodies that distinguish optical isomers of amino acids. can be quantified by immunological techniques using Measurement of the amount of D-amino acid and/or the amount of L-amino acid in the sample in the present invention may be carried out using any method known to those skilled in the art. For example, chromatographic methods and enzymatic methods (Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analytical Biochemistry, 287 (2000), 196., G. Molla et al., Methods in Molecular Biology, 794 (2012), 273., T. Ito et al., Analytical Biochemistry, 371 (2007), 167 etc.), antibody method (T. Ohgusu et al., Analytical Biochemistry, 357 (2006), 15. etc.), gas chromatography (GC) (H. Hasegawa et al., Journal of Mass Spectrometry, 46 (2011) , 502., M. C. Waldhier et al., Analytical and Bioanalytical Chemistry, 394 (2009), 695., A. Hashimoto, T. Nishikawa et al., FEBS Letters, 296 (1992), 33., H. Bruckner and A. Schieber, Biomedical Chromatography, 15 (2001), 166., M. Junge et al., Chirality, 19 (2007), 228., M. C. Waldhier et al., Journal of Chromatography A, 1218( 2011), 45 37. etc.), capillary electrophoresis (CE) (H. Miao et al., Analytical Chemistry, 77 (2005), 7190., D. L. Kirschner et al., Analytical Chemistry, 79 (2007), 736. , F. Kitagawa, K. Otsuka, Journal of Chromatography B, 879 (2011), 3078., G. Thorsen and J. Bergquist, Journal of Chromatography B, 745 (2000), 389. etc.), high performance liquid chromatography ( HPLC) (N. Nimura and T. Kinoshita, Journal of Chromatography, 352 (1986), 169., A. Hashimoto et al., Journal of Chromatography, 582 (1992), 41., H. Bruckner et al., Journal of Chromatography A, 666 (1994), 259., N. Nimura et al., Analytical Biochemistry, 315 (2003), 262., C. Muller et al., Journal of Chromatography A, 1324 (2014), 109., S. Einarsson et al., Analytical Chemistry, 59 (1987), 1191., E. Okuma and H. Abe, Journal of Chromatography B, 660 (1994), 243., Y. Gogami et al., Journal of Chromatography B , 879 (2011), 3259., Y. Nagata et al., Journal of Chromatography, 575 (1992), 147., S. A. Fuchs et al., Clinical Chemistry, 54 (2008), 1443., D. Gordes et al., Amino Acids, 40 (2011) , 553., D. Jin et al., Analytical Biochemistry, 269 (1999), 124., J. Z. Min et al., Journal of Chromatography B, 879 (2011), 3220., T. Sakamoto et al. , Analytical and Bioanalytical Chemistry, 408 (2016), 517., W. F. Visser et al., Journal of Chromatography A, 1218 (2011), 7130., Y. Xing et al., Analytical and Bioanalytical Chemistry, 408( 2016), 141., K. Imai et al., Biomedical Chromatography, 9 (1995), 106., T. Fukushima et al., Biomedical Chromatography, 9 (1995), 10., R. J. Reischl et al. , Journal of Chromatography A, 1218 (2011), 8379., R. J. Reischl and W. Lindner, Journal of Chromatography A, 1269 (2012), 262., S. Karakawa et al., Journal of Pharmaceutical and Biomedical Analysis , 115 (2015), 123., Hamase K, et al., Chromatography 39 (2018) 147-152, etc.).
 本発明における光学異性体の分離分析系は、複数の分離分析を組み合わせてもよい。より具体的に、光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、前記試料の前記成分の各々をマルチループユニットにおいて個別に保持するステップ、前記マルチループユニットにおいて個別に保持された前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に流路を通じて供給し、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び前記試料の成分の各々に含まれる前記光学異性体を検出するステップを含むことを特徴とする光学異性体の分析方法を用いることにより、試料中のD-アミノ酸量及び/又はL-アミノ酸量を測定することができる(特許第4291628号)。HPLC分析では、予めo-フタルアルデヒド(OPA)や4-フルオロ-7-ニトロ-2,1,3-ベンゾキサジアゾール(NBD-F)のような蛍光試薬でD-及びL-アミノ酸を誘導体化したり、N-tert-ブチルオキシカルボニル-L-システイン(Boc-L-Cys)等を用いてジアステレオマー化する場合がある(浜瀬健司及び財津潔、分析化学、53巻、677-690(2004))。代替的には、アミノ酸の光学異性体を識別するモノクローナル抗体、例えば、D-アミノ酸又はL-アミノ酸等に特異的に結合するモノクローナル抗体を用いる免疫学的手法によってD-アミノ酸又はL-アミノ酸を測定することができる。また、D体及びL体の合計量を指標とする場合、D体及びL体を分離して分析する必要はなく、D体及びL体を区別せずにアミノ酸を分析することもできる。その場合も酵素法、抗体法、GC、CE、HPLCで分離及び定量することができる。 The separation and analysis system for optical isomers in the present invention may combine multiple separation analyses. More specifically, a step of passing a sample containing components having optical isomers through a first column packing material as a stationary phase together with a first liquid as a mobile phase to separate said components of said sample; holding each of said components of said sample individually in a multi-loop unit, each of said components of said sample held individually in said multi-loop unit as a stationary phase, with a second liquid as a mobile phase; and resolving the optical isomers contained in each of the components of the sample by feeding through a channel to a second column packing material having an optically active center of The amount of D-amino acids and/or the amount of L-amino acids in a sample can be measured by using a method for analyzing optical isomers, which is characterized by including a step of detecting isomers (Japanese Patent No. 4291628). For HPLC analysis, D- and L-amino acids were previously derivatized with fluorescent reagents such as o-phthalaldehyde (OPA) and 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). or diastereomerization using N-tert-butyloxycarbonyl-L-cysteine (Boc-L-Cys) (Kenji Hamase and Kiyoshi Zaitsu, Analytical Chemistry, Vol. 53, 677-690 ( 2004)). Alternatively, D-amino acids or L-amino acids are measured by an immunological technique using monoclonal antibodies that distinguish optical isomers of amino acids, such as monoclonal antibodies that specifically bind to D-amino acids or L-amino acids. can do. In addition, when the total amount of D- and L-isomers is used as an index, it is not necessary to separate the D- and L-isomers for analysis, and the amino acids can be analyzed without distinguishing between the D- and L-isomers. Also in that case, it can be separated and quantified by an enzymatic method, an antibody method, GC, CE, or HPLC.
 本明細書において、「mTOR関連経路」とは、細胞内シグナル伝達に関与するタンパク質キナーゼ(セリン・スレオニンキナーゼ)の一種であるmTOR(mechanistic target of rapamycin)が関与するシグナルパスウェイを指し、例えば、mTOR複合体1(mTORC1)又はmTOR複合体2(mTORC2)の活性化に関与する因子、例えば、Akt、Rheb等を含むシグナルパスウェイであり得る。本発明は、mTOR関連経路を活性化させることにより、インスリンや成長因子、栄養・エネルギー状態、酸化還元状態等、細胞内外の環境情報を統合し、転写、翻訳等を通じて、それらに応じた細胞のサイズ、分裂、生存等を調節する。それらの生理機構により、細胞増殖を調節し得る。 As used herein, the term "mTOR-related pathway" refers to a signal pathway involving mTOR (mechanistic target of rapamycin), which is a type of protein kinase (serine-threonine kinase) involved in intracellular signal transduction. It may be a signal pathway containing factors involved in the activation of complex 1 (mTORC1) or mTOR complex 2 (mTORC2), such as Akt, Rheb, and the like. The present invention integrates intracellular and extracellular environmental information such as insulin, growth factors, nutritional/energy status, redox status, etc., by activating mTOR-related pathways, and through transcription, translation, etc., cells respond accordingly. Regulates size, division, survival, etc. Their physiology may regulate cell proliferation.
 本発明においてD-アミノ酸、クレアチニン、タンパク質等の生体分子や薬剤の量は、単なる質量、重量、物質量(mol)のみならず、組織・細胞・器官・分子ユニット単位や体積・重量当たりの質量、重量、物質量(mol)、血液や尿のような液体中の質量、重量、物質量(mol)、濃度、比重、及び密度等、計測され得る任意の物理量で表現される。 In the present invention, the amount of biomolecules such as D-amino acids, creatinine, proteins, and drugs is not limited to mere mass, weight, and amount of substance (mol), but also mass per unit of tissue, cell, organ, molecule, volume, or weight. , weight, amount of substance (mol), mass in a liquid such as blood or urine, weight, amount of substance (mol), concentration, specific gravity, density, or any other physical quantity that can be measured.
 本発明の一態様として、外部からのD-アミノ酸の投与や、食品中へのD-アミノ酸の添加、或いは抜去、培地中へのD-アミノ酸の添加、或いは抜去により、細胞・組織・臓器内外、及び体液中のD-アミノ酸量を増減させることができる薬剤や食品であってもよい。例えば、D-アミノ酸を含む水溶液を飲用することにより、血液や細胞・組織中のD-アミノ酸濃度を上昇させることができ(非特許文献2)、D-アミノ酸を抜去した食品の摂取により、血液中のD-アミノ酸濃度を低下させることができる。例えば、D-セリンは経口・静脈注射投与で腎臓を指向することを利用して腎臓におけるD-セリン量を制御してもよい(例えば、実施例2を参照)。ここで用いるD-アミノ酸は、D-アミノ酸量を増減させ得る限り、D-アミノ酸の修飾体または誘導体、或いはそれらの薬学的に許容される塩を含有してもよいし、薬理学的に許容され得る担体、希釈剤もしくは賦形剤を含んでいてもよく、プロドラッグの形態をとってもよい。さらに加えて対象の臓器機能改善剤等を含んでもよい。本発明における薬剤は、その投与経路に適した剤形を選択し製剤化することができる。経口投与に用いる場合、錠剤、カプセル剤、液剤、粉末剤、顆粒剤、咀嚼剤等、非経口投与の場合、注射剤、粉末剤、輸液製剤などの剤形が設計されうる。また、これらの製剤は医薬用に用いられる種々の補助剤、即ち、担体や他の助剤、例えば、安定化剤、防腐剤、無痛化剤、味剤、矯味剤、香料、乳化剤、充填剤、pH調整剤などが含まれてもよく、本発明の薬剤(組成物)の効果を損なわない範囲で配合することができる。薬剤、及び原料としてのD-アミノ酸の光学純度は50%以上であることが好ましく、90%以上であることがより好ましいが、効果を示す範囲においては任意の光学純度を選択することができ、限定されるものではない。 As one aspect of the present invention, administration of D-amino acids from the outside, addition or removal of D-amino acids in foods, addition or removal of D-amino acids in culture media, and , and drugs or foods that can increase or decrease the amount of D-amino acids in body fluids. For example, by drinking an aqueous solution containing D-amino acids, it is possible to increase the concentration of D-amino acids in blood and cells/tissues (Non-Patent Document 2). can reduce the D-amino acid concentration in For example, D-serine may be directed to the kidney by oral or intravenous administration to control D-serine levels in the kidney (see, eg, Example 2). The D-amino acid used here may contain modifications or derivatives of D-amino acids, or pharmaceutically acceptable salts thereof, as long as the amount of D-amino acid can be increased or decreased, or a pharmacologically acceptable may contain carriers, diluents or excipients that may be used, and may be in the form of a prodrug. In addition, it may contain a target organ function improving agent and the like. The drug in the present invention can be formulated by selecting a dosage form suitable for its administration route. For oral administration, dosage forms such as tablets, capsules, liquids, powders, granules, chewing agents, etc., and for parenteral administration, injections, powders, infusion preparations, etc. can be designed. In addition, these formulations contain various adjuvants used for pharmaceutical purposes, namely, carriers and other adjuvants such as stabilizers, preservatives, soothing agents, flavoring agents, corrigents, fragrances, emulsifiers and fillers. , a pH adjuster, etc., and can be blended within a range that does not impair the effects of the agent (composition) of the present invention. The optical purity of D-amino acids used as drugs and raw materials is preferably 50% or higher, more preferably 90% or higher, but any optical purity can be selected within the range in which the effect is exhibited, It is not limited.
 一実施態様において、本発明に用いられ得るD-アミノ酸量制御剤は、D-セリン、D-アスパラギン及びD-グルタミンからなる群から選択される、並びにそれらの修飾体及び誘導体からなる群から選択されるものであってもよい。 In one embodiment, the D-amino acid amount controlling agent that can be used in the present invention is selected from the group consisting of D-serine, D-asparagine and D-glutamine, and modifications and derivatives thereof. It may be
 本発明は、任意の生理機構を利用して標的のD-アミノ酸量を変動させるものであってもよい。一態様として、D-アミノ酸の吸収、輸送、分布、代謝(合成・分解)、排泄、作用等に関連するタンパク質、例えば、酵素(D-アミノ酸酸化酵素(DAO)、D-アスパラギン酸酸化酵素(DDO)、セリン異性化酵素(SRR)、DPP-4等)や輸送体、受容体の発現(促進、抑制等)・活性(作動、阻害、刺激等)によって標的のD-アミノ酸量の制御が可能となる。DAO阻害薬(例えば、安息香酸ナトリウム、クロルプロマジン、リスペリドン等)はD-アミノ酸の酸化を抑制することで、作用部位でのD-アミノ酸量を増加させ、D-アミノ酸輸送体は阻害剤・活性剤は輸送元・輸送先のD-アミノ酸量を増減させる。酵素や輸送体等のタンパク質に作用する薬剤は、直接的に効果を得るものでなくてもよく、例えば、基質やアゴニスト・アンタゴニストの競争的反応、スキャフォールド共有による作用等により、間接的にD-アミノ酸量を変化させるものでもよい。その場合、作用部位の体液、細胞、組織中のD-アミノ酸量を測定することで効果を評価することができる。また、このような評価により、薬剤候補をスクリーニングすることが可能である。 The present invention may utilize any physiological mechanism to vary the amount of target D-amino acids. As one aspect, proteins related to absorption, transport, distribution, metabolism (synthesis/degradation), excretion, action, etc. of D-amino acids, such as enzymes (D-amino acid oxidase (DAO), D-aspartate oxidase ( DDO), serine isomerase (SRR), DPP-4, etc.), transporters, and receptor expression (stimulation, suppression, etc.) and activity (action, inhibition, stimulation, etc.) regulate the amount of target D-amino acids. It becomes possible. DAO inhibitors (e.g., sodium benzoate, chlorpromazine, risperidone, etc.) suppress the oxidation of D-amino acids, thereby increasing the amount of D-amino acids at the site of action, and the D-amino acid transporter is an inhibitor/activator. increases or decreases the amount of D-amino acids in the transport source/destination. Agents that act on proteins such as enzymes and transporters may not be effective directly. - It may vary in the amount of amino acids. In that case, the effect can be evaluated by measuring the amount of D-amino acid in body fluids, cells, and tissues at the site of action. In addition, such evaluations can be used to screen drug candidates.
 本発明が適用されることで、任意の生理機構を利用して生体中のD-アミノ酸量を変動させ、その結果、対象における細胞増殖を調整することができる。一態様として、D-アミノ酸の吸収、輸送、分布、代謝(合成及び/又は分解)、排泄、又は作用等に関連するタンパク質や、D-アミノ酸の輸送体又は受容体の、発現(促進、抑制等)及び/又は活性(作動、阻害、刺激等)を調整することによって生体中のD-アミノ酸量の制御が可能となる。 By applying the present invention, any physiological mechanism can be used to vary the amount of D-amino acids in the body, and as a result, it is possible to regulate cell proliferation in the subject. As one aspect, the expression (promotion, suppression) of proteins related to D-amino acid absorption, transport, distribution, metabolism (synthesis and / or degradation), excretion, action, etc., or D-amino acid transporters or receptors etc.) and/or activity (action, inhibition, stimulation, etc.) can control the amount of D-amino acids in the body.
 従って、本発明に用いられ得るD-アミノ酸の量の制御剤は、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の遺伝子発現を直接的又は間接的に促進するものであってもよく、例えば、当該タンパク質又はそれを発現するベクターであってもよく、当該タンパク質の発現を促進するカスケードの上流の活性を促進する因子又はそれを発現するベクターであってもよい。 Therefore, the D-amino acid amount control agent that can be used in the present invention directly or indirectly promotes the gene expression of proteins involved in the absorption, transport, distribution, metabolism or excretion of D-amino acids. For example, it may be the protein or a vector that expresses it, or it may be a factor that promotes the upstream activity of the cascade that promotes the expression of the protein, or a vector that expresses it.
 また、例えば、本発明に用いられ得るD-アミノ酸の量の制御剤は、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の遺伝子発現を直接的又は間接的に抑制するものであってもよく、例えば、低分子化合物、アプタマー、抗体、抗体フラグメント、並びに、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸及びそれらの発現ベクターから選択されるものであってもよい。 In addition, for example, the D-amino acid amount control agent that can be used in the present invention is one that directly or indirectly suppresses gene expression of proteins related to absorption, transport, distribution, metabolism or excretion of D-amino acids. from, for example, small molecules, aptamers, antibodies, antibody fragments, and antisense RNA or DNA molecules, RNAi-inducing nucleic acids, microRNAs (miRNAs), ribozymes, genome-editing nucleic acids and their expression vectors. may be selected.
 本明細書において、D-アミノ酸の吸収、輸送、分布、代謝(合成及び/又は分解)、排泄、又は作用等に関連するタンパク質は、例えば、酵素であってもよく、例えば、D-アミノ酸酸化酵素(DAO)、D-アスパラギン酸酸化酵素(DDO)、セリン異性化酵素(SRR)、DPP-4等であってもよい。例えば、DAOの阻害薬は、D-アミノ酸の酸化を抑制することで、作用部位でのD-アミノ酸量を増加させることができるため、本発明において、D-アミノ酸の量の制御剤として用いられ得る。 As used herein, proteins related to absorption, transport, distribution, metabolism (synthesis and/or degradation), excretion, action, etc. of D-amino acids may be enzymes, for example, D-amino acid oxidation It may be an enzyme (DAO), D-aspartate oxidase (DDO), serine isomerase (SRR), DPP-4, and the like. For example, DAO inhibitors can increase the amount of D-amino acids at the site of action by suppressing the oxidation of D-amino acids. obtain.
 また、D-アミノ酸輸送体は輸送元・輸送先のD-アミノ酸量を増加又は減少させることができるために、D-アミノ酸輸送体に直接又は間接的に作用する剤も本発明に適用され得る。 In addition, since the D-amino acid transporter can increase or decrease the amount of D-amino acid in the source/destination, agents that act directly or indirectly on the D-amino acid transporter can also be applied to the present invention. .
 限定を意図するものではないが、非特許文献5には、D-アミノ酸輸送体タンパク質として、脳や腎臓に発現するSMCTファミリー、ASCTファミリー等が作動/阻害薬によってD-アミノ酸の局在量を変化させることが開示されている。これらの輸送体は共輸送物質(例えば、ナトリウムイオン)やスキャフォールドを通じた協調・競合等の影響を受けるため、例えばナトリウム/グルコース共輸送体(SGLT2)阻害薬等でもD-アミノ酸の輸送活性は制御され得る。また、特許文献3にはアンジオテンシン2受容体拮抗薬(ARB)が、血液中D-アミノ酸量を変化させることが開示されている。例えば、降圧剤や糖尿病性腎症治療薬等の投与前後の培地・細胞・組織・体液中のD-アミノ酸量を計測することにより、生体中のD-アミノ酸量を制御し得る薬剤及び候補をスクリーニングすることが可能である。 Although not intended to be limiting, Non-Patent Document 5 describes that as D-amino acid transporter proteins, the SMCT family, the ASCT family, etc. expressed in the brain and kidneys increase the localized amount of D-amino acids by agonists/inhibitors. It is disclosed to change Since these transporters are affected by co-transport substances (e.g., sodium ions) and coordination/competition through scaffolds, D-amino acid transport activity is reduced even by sodium/glucose co-transporter (SGLT2) inhibitors. can be controlled. In addition, Patent Document 3 discloses that angiotensin 2 receptor blockers (ARBs) change the amount of D-amino acids in blood. For example, by measuring the amount of D-amino acid in culture media, cells, tissues, and body fluids before and after administration of antihypertensive agents and antidiabetic nephropathy drugs, drugs and candidates that can control the amount of D-amino acids in the body can be identified. Screening is possible.
 本明細書において、「アプタマー」とは、特異的に標的物質に結合する能力を持つ合成DNA又はRNA分子及びペプチド性分子をいい、試験管内において化学的に短時間で合成することができる。本発明に用いられるアプタマーは、例えば、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質に結合し、その活性を阻害し得るものである。本発明に用いられるアプタマーは、例えば、SELEX法を用い、小分子、タンパク質、核酸など各種の分子標的への結合を、インビトロで反復して選択することにより得ることができる(Tuerk C.,Gold L.,Science,1990,249(4968),505-510;Ellington AD,Szostak JW.,Nature,1990,346(6287):818-822;米国特許第6,867,289号明細書;米国特許第5,567,588号明細書;米国特許第6,699,843号明細書を参照)。 As used herein, "aptamers" refer to synthetic DNA or RNA molecules and peptidic molecules that have the ability to specifically bind to target substances, and can be chemically synthesized in vitro in a short period of time. Aptamers used in the present invention can bind to, for example, proteins involved in absorption, transport, distribution, metabolism or excretion of D-amino acids and inhibit their activity. Aptamers used in the present invention can be obtained, for example, by repeatedly selecting bindings to various molecular targets such as small molecules, proteins, and nucleic acids in vitro using the SELEX method (Tuerk C., Gold L., Science, 1990, 249(4968), 505-510; Ellington AD, Szostak JW., Nature, 1990, 346(6287):818-822; No. 5,567,588; U.S. Pat. No. 6,699,843).
 本明細書において、「抗体フラグメント」とは、抗原に結合し得る活性を維持した完全長抗体の一部をいい、一般的には、その抗原結合ドメインあるいは可変ドメインを含むものである。抗体フラグメントの例として、F(ab’)2、Fab’、Fab又はFv抗体フラグメント(scFv抗体フラグメントを含む。)などが挙げられる。また、抗体をプロテアーゼ酵素により処理し、場合により還元して得ることができる断片も、抗体フラグメントに含まれる。本発明に用いられる抗体又は抗体フラグメントは、ヒト由来抗体、マウス由来抗体、ラット由来抗体、ウサギ由来抗体、ラマなどのラクダ科由来抗体又はヤギ由来抗体のいずれの抗体でもよく、さらにそれらのポリクローナル若しくはモノクローナル抗体、完全型若しくは短縮型(例えば、F(ab’)2、Fab’、FabまたはFvフラグメント)抗体、キメラ化抗体、ヒト化抗体又は完全ヒト型抗体のいずれのものでもよい。 As used herein, the term "antibody fragment" refers to a portion of a full-length antibody that maintains antigen-binding activity, generally including its antigen-binding domain or variable domain. Examples of antibody fragments include F(ab')2, Fab', Fab or Fv antibody fragments (including scFv antibody fragments), and the like. Antibody fragments also include fragments obtained by treating an antibody with a protease enzyme and optionally reducing it. Antibodies or antibody fragments used in the present invention may be any of human-derived antibodies, mouse-derived antibodies, rat-derived antibodies, rabbit-derived antibodies, camelid-derived antibodies such as llamas, or goat-derived antibodies. Antibodies may be monoclonal, complete or truncated (eg, F(ab')2, Fab', Fab or Fv fragments), chimerized, humanized or fully human.
 本明細書において、「アンチセンスRNA又はDNA分子」とは、メッセンジャーRNA(mRNA)など、ある機能を持つRNA(センスRNA)と相補的な塩基配列を持ち、センスRNAと2本鎖を形成することで、そのセンスRNAが担うべきタンパク質の合成を阻害する機能を有する分子をいう。本発明において、アンチセンスRNA又はDNA分子を含むアンチセンスオリゴヌクレオチドは、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質のmRNAに結合することによってタンパク質に翻訳されることを阻害する。それにより、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の発現量を低減させ、その活性を阻害することができる。アンチセンスRNA又はDNA分子を合成する方法は、当該技術分野で周知であり、本発明に用いることができる。 As used herein, the term "antisense RNA or DNA molecule" means a base sequence complementary to RNA (sense RNA) having a certain function, such as messenger RNA (mRNA), and forms a double strand with the sense RNA. In other words, it refers to a molecule that has the function of inhibiting protein synthesis that the sense RNA should be responsible for. In the present invention, antisense oligonucleotides, including antisense RNA or DNA molecules, inhibit translation into proteins by binding to mRNAs of proteins involved in absorption, transport, distribution, metabolism or excretion of D-amino acids. do. Thereby, it is possible to reduce the expression level of proteins involved in the absorption, transport, distribution, metabolism or excretion of D-amino acids and inhibit their activity. Methods for synthesizing antisense RNA or DNA molecules are well known in the art and can be used in the present invention.
 本明細書において、「RNAi誘導性核酸」とは、細胞内に導入されることにより、RNA干渉(RNAi)を誘導し得るポリヌクレオチドをいい、通常、19~30ヌクレオチド、好ましくは19~25ヌクレオチド、より好ましくは19~23ヌクレオチドを含むRNA、DNA、又はRNAとDNAのキメラ分子であり、任意に修飾が施されている。RNAiは、mRNAに対して生じてもよいし、プロセッシング前の転写直後のRNA、すなわちエキソン、イントロン、3’非翻訳領域、及び5’非翻訳領域を含むヌクレオチド配列のRNAであってもよい。本発明で使用可能なRNAi法は、(1)短い二重鎖RNA(siRNA)を細胞内に直接導入するか、(2)低分子ヘアピンRNA(shRNA)を各種発現ベクターに組み込み、そのベクターを細胞内に導入するか、或いは(3)対立方向に並ぶ2個のプロモーターを持つベクターに、siRNAに対応する短い二重鎖DNAをプロモーター間に挿入してsiRNAを発現させるベクターを作製し、細胞内に導入する、などの手法によりRNAiを誘導させてもよい。RNAi誘導性核酸は、D-セリン輸送体タンパク質のRNAの切断又はその機能抑制を可能にするsiRNA、shRNA又はmiRNAを含んでもよく、これらのRNAi核酸は、リポソームなどを用いて直接導入されてもよいし、これらのRNAi核酸を誘導する発現ベクターを用いて導入されてもよい。 As used herein, the term "RNAi-inducing nucleic acid" refers to a polynucleotide capable of inducing RNA interference (RNAi) when introduced into a cell, usually 19-30 nucleotides, preferably 19-25 nucleotides. , more preferably RNA, DNA, or chimeric molecules of RNA and DNA containing 19-23 nucleotides, optionally modified. RNAi may occur on mRNA or on post-transcriptional RNA before processing, i.e. RNA of nucleotide sequences comprising exons, introns, 3' untranslated regions and 5' untranslated regions. The RNAi method that can be used in the present invention includes (1) direct introduction of short double-stranded RNA (siRNA) into cells, or (2) incorporation of small hairpin RNA (shRNA) into various expression vectors, or (3) constructing a vector that expresses siRNA by inserting a short double-stranded DNA corresponding to the siRNA into a vector having two promoters arranged in opposite directions between the promoters, and RNAi may be induced by techniques such as introduction into The RNAi-inducing nucleic acid may include siRNA, shRNA, or miRNA that allows cleavage of the RNA of the D-serine transporter protein or suppression of its function, and these RNAi nucleic acids may be directly introduced using liposomes or the like. Alternatively, they may be introduced using an expression vector that directs these RNAi nucleic acids.
 一実施態様において、本発明で用いられるD-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質に対するRNAi誘導性核酸は、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の発現を阻害する、又は有意に抑制する生物学的効果を示す核酸であればよく、当業者であれば、当該タンパク質の塩基配列を参考に合成することが可能である。例えば、固相ホスホアミダイト法などのDNA合成技術を利用したDNA(/RNA)自動合成装置を使用して化学的に合成するか、或いは、siRNA関連の受託合成会社(例えばLife Technologies社など)に委託して合成することも可能である。一実施形態において、本発明に用いられるsiRNAは、その前駆体であるshort-hairpin型二本鎖RNA(shRNA)から、細胞内RNaseであるダイサー(Dicer)によるプロセシングを介して誘導されるものであってもよい。 In one embodiment, the RNAi-inducing nucleic acid for a protein associated with D-amino acid absorption, transport, distribution, metabolism or excretion used in the present invention is Any nucleic acid that exhibits a biological effect of inhibiting or significantly inhibiting protein expression can be synthesized by those skilled in the art with reference to the base sequence of the protein. For example, it is chemically synthesized using a DNA (/RNA) automatic synthesizer that utilizes DNA synthesis technology such as the solid-phase phosphoramidite method, or by an siRNA-related contract synthesis company (such as Life Technologies). It is also possible to consign and synthesize. In one embodiment, the siRNA used in the present invention is derived from its precursor, short-hairpin double-stranded RNA (shRNA), through processing by the intracellular RNase Dicer. There may be.
 本明細書において、「マイクロRNA(miRNA)」とは、21~25塩基長の1本鎖RNA分子であり、真核生物において遺伝子の転写後発現調節に関与する分子をいう。miRNAは、一般にmRNAの3’UTRを認識して、標的mRNAの翻訳を抑制し、タンパク質産生を抑制する。従って、D-セリン輸送体タンパク質の発現量を直接的及び/又は間接的に低減させることができるmiRNAも、本発明の範囲に含まれる。 As used herein, "microRNA (miRNA)" is a single-stranded RNA molecule with a length of 21 to 25 bases, and refers to a molecule involved in post-transcriptional regulation of gene expression in eukaryotes. miRNAs generally recognize the 3'UTR of mRNAs and suppress translation of target mRNAs to suppress protein production. Therefore, miRNAs that can directly and/or indirectly reduce the expression level of the D-serine transporter protein are also included in the scope of the present invention.
 本明細書において、「リボザイム」とは、RNAの特異的切断を触媒することができる酵素的RNA分子の総称をいう。リボザイムには、グループIイントロン型やRNase Pに含まれるM1 RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(例えば、小泉誠及び大塚栄子、タンパク質核酸酵素、1990、35、2191を参照)。 As used herein, "ribozyme" is a generic term for enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and M1 RNA contained in RNase P, but there are also hammerhead-type and hairpin-type ribozymes that have an active domain of about 40 nucleotides. (See, for example, Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191).
 例えば、ハンマーヘッド型リボザイムの自己切断ドメインは、G13U14C15という配列のC15の3’側を切断するが、その活性にはU14とA9との塩基対形成が重要とされ、C15の代わりにA15又はU15でも切断され得ることが示されている(例えば、Koizumi,M.et al.,FEBS Lett,1988,228,228.を参照)。基質結合部位が標的部位近傍のRNA配列と相補的なリボザイムを設計すれば、標的RNA中のUC、UU又はUAという配列を認識する制限酵素的なRNA切断リボザイムを得ることが可能であり、当業者であれば、以下の文献を参考に製造可能である:Koizumi,M.et al.,FEBS Lett,1988,239,285.;小泉誠及び大塚栄子,タンパク質核酸酵素,1990,35,2191.;Koizumi,M.et al.,Nucl.Acids Res.,1989,17,7059.。 For example, the self-cleaving domain of the hammerhead ribozyme cleaves the sequence G13U14C15 at the 3' side of C15, but base pairing between U14 and A9 is important for its activity. (See, for example, Koizumi, M. et al., FEBS Lett, 1988, 228, 228.). By designing a ribozyme whose substrate-binding site is complementary to the RNA sequence near the target site, it is possible to obtain a restriction enzyme-like RNA-cleaving ribozyme that recognizes the sequence UC, UU or UA in the target RNA. Manufacturers can refer to the following document: Koizumi, M.; et al. , FEBS Lett, 1988, 239, 285. Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191. Koizumi, M.; et al. , Nucl. Acids Res. , 1989, 17, 7059. .
 また、ヘアピン型リボザイムも本発明に用いることができる。このリボザイムは、例えば、タバコリングスポットウイルスのサテライトRNAのマイナス鎖に見出される(Buzayan,JM.,Nature,1986,323,349.)。ヘアピン型リボザイムからも、標的特異的なRNA切断リボザイムを作出できることが示されている(例えば、Kikuchi,Y.&Sasaki,N.,Nucl.Acids.Res.,1991,19,6751.;菊池洋,化学と生物,1992,30,112.を参照)。リボザイムを用いてD-セリン輸送体タンパク質をコードする遺伝子の転写産物を特異的に切断することで、D-セリン輸送体タンパク質の発現を阻害することができる。 Hairpin-type ribozymes can also be used in the present invention. This ribozyme is found, for example, in the minus strand of satellite RNA of tobacco ringspot virus (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (for example, Kikuchi, Y. & Sasaki, N., Nucl. Acids. Res., 1991, 19, 6751; Kikuchi Hiroshi, Chemistry and Biology, 1992, 30, 112.). Expression of the D-serine transporter protein can be inhibited by specifically cleaving the transcript of the gene encoding the D-serine transporter protein using a ribozyme.
 本明細書において、ゲノム編集核酸とは、遺伝子ターゲッティングに用いられるヌクレアーゼを利用したシステムにおいて、所望の遺伝子を編集するために用いられる核酸をいう。遺伝子ターゲッティングに用いられるヌクレアーゼは、公知のヌクレアーゼの他、今後遺伝子ターゲッティングのために使用される新たなヌクレアーゼも包含される。例えば、公知のヌクレアーゼとしては、CRISPR/Cas9(Ran,F.A.,et al.,Cell,2013,154,1380-1389)、TALEN(Mahfouz,M.,et al.,PNAS,2011,108,2623-2628)、ZFN(Urnov,F.,et al.,Nature,2005,435,646-651)等が挙げられる。 As used herein, a genome-editing nucleic acid refers to a nucleic acid used to edit a desired gene in a nuclease-based system used for gene targeting. Nucleases used for gene targeting include known nucleases as well as new nucleases that will be used for gene targeting in the future. For example, known nucleases include CRISPR/Cas9 (Ran, FA, et al., Cell, 2013, 154, 1380-1389), TALEN (Mahfouz, M., et al., PNAS, 2011, 108 , 2623-2628), ZFN (Urnov, F., et al., Nature, 2005, 435, 646-651) and the like.
 一態様として、腸内細菌をはじめとする共生細菌が生体のD-アミノ酸のリソースの一つであることを利用し、抗生物質、整腸剤、オリゴ糖類の投与やプロバイオティクス、微生物移植、糞便移植、ディスバイオシスの改善等の手段によって、微生物叢や生育環境を変化させ、生体中のD-アミノ酸量を増減させることができる。限定を意図するものではないが、プロバイオティクスの一例として、1073R-1乳酸菌を含むヨーグルトの摂取により、便中のD-セリンが増加し、D-リジンが減少することが知られている。但し、D-アミノ酸を含むことが知られている食品、例えば、黒酢、ヨーグルト、チーズ等の微生物発酵物、及び菌体又は菌体抽出物は、D-アミノ酸の他に多く有効成分候補が含まれるため、本発明のD-アミノ酸の量の制御剤として用いる場合においては、その摂取により作用部位におけるD-アミノ酸量の増減が確認できる量を用いることが肝要である。特にL-アミノ酸は、D-アミノ酸と異なる様々な生理活性を有するため、D-アミノ酸量を増減させる有効成分の規格(光学純度、量)等が設定されていない食品は、本発明の組成物の範囲に含まれない。 As one aspect, taking advantage of the fact that symbiotic bacteria such as intestinal bacteria are one of the resources of D-amino acids in the body, administration of antibiotics, intestinal regulators, oligosaccharides, probiotics, microbial transplantation, fecal transplantation It is possible to increase or decrease the amount of D-amino acids in the living body by changing the microflora or the growth environment by means such as improvement of dysbiosis. As a non-limiting example of a probiotic, ingestion of yogurt containing 1073R-1 lactobacillus is known to increase fecal D-serine and decrease D-lysine. However, foods known to contain D-amino acids, such as black vinegar, yogurt, microbial fermentation products such as cheese, and bacterial cells or bacterial cell extracts, have many active ingredient candidates in addition to D-amino acids. Therefore, when used as the D-amino acid control agent of the present invention, it is essential to use an amount that allows confirmation of an increase or decrease in the amount of D-amino acid at the site of action upon ingestion. In particular, since L-amino acids have various physiological activities different from those of D-amino acids, foods for which the standards (optical purity, amount), etc. of active ingredients that increase or decrease the amount of D-amino acids have not been set, are not suitable for the composition of the present invention. not included in the range of
 上述したように、機序にかかわらず対象における細胞、組織、臓器、体液、や、細胞を培養するための培地中のD-アミノ酸量を増減させ得る薬剤又は食品等は、本発明に適用し得るD-アミノ酸量を制御する手段として任意に利用することができる。 As described above, drugs or foods that can increase or decrease the amount of D-amino acids in cells, tissues, organs, body fluids, or media for culturing cells in a subject, regardless of the mechanism, are applicable to the present invention. It can optionally be used as a means of controlling the amount of D-amino acids obtained.
 本明細書において、「医薬品」とは、医薬品及び医薬部外品を含む意味で用いられる。 In this specification, the term "pharmaceuticals" is used to include pharmaceuticals and quasi-drugs.
 本明細書において、「食品」は、食品全般を意味するが、いわゆる健康食品を含む一般食品の他、特定保健用食品や栄養機能食品等の保健機能食品をも含むものであり、さらにダイエタリーサプリメント(サプリメント、栄養補助食品)、飼料、食品添加物等も本発明の食品に包含される。 In this specification, "food" means food in general, but in addition to general food including so-called health food, it also includes food with health claims such as food for specified health use and food with nutrient function claims. Supplements (supplements, dietary supplements), feeds, food additives and the like are also included in the food of the present invention.
 薬剤等の投与方法としては、局所投与(皮膚上、吸入、注腸、点眼、点耳、経鼻、膣内など)、経腸投与、非経口投与(経静脈、経動脈、経皮、筋肉注など)に適する剤形として提供されるものであってもよいが、経腸投与することが好ましい。経腸投与には、経口投与、経管投与、注腸投与が含まれる。経管投与には、経鼻胃管や胃瘻、十二指腸瘻による投与が含まれる。注腸投与には、座剤や浣腸を用いた投与が含まれる。いずれの場合でも、薬剤の剤型は特に限定されず、液状であっても、固体状であってもよく、当業者の技術常識によって製造できる。具体的な投与方法も特に限定されず、当業者の技術常識に従って、好適に投与できる。 Methods of administering drugs include local administration (cutaneous, inhalation, enema, eye drops, ear drops, nasal, intravaginal, etc.), enteral administration, parenteral administration (intravenous, transarterial, transdermal, intramuscular, etc.). enteral administration is preferred. Enteral administration includes oral administration, tube administration, and enema administration. Tube administration includes administration through a nasogastric tube, gastrostomy, or duodenal fistula. Enema administration includes administration using suppositories and enemas. In any case, the dosage form of the drug is not particularly limited, and may be liquid or solid, and can be produced according to the common technical knowledge of those skilled in the art. The specific administration method is also not particularly limited, and administration can be suitably performed according to the common technical knowledge of those skilled in the art.
 本発明が適用され得る対象としては、生体内とは異なる任意の環境下にある培養細胞・組織・オルガノイド、及び疾患や損傷により細胞増殖、臓器機能の異常や臓器委縮を呈した患者、又は異常が疑われた患者が挙げられる。臓器移植は、肝臓、膵臓、腎臓、消化管、心臓、眼球等で実施され得るが、多くの場合は、臓器を摘出されるドナーも、臓器を移植されるレシピエントも術前・術後に細胞増殖の異常をともなう臓器の損傷、機能低下が現れるために、このような対象に対して本発明は適用され得る。臓器損傷については、例えば腎臓ではI型(被膜下損傷)、II型(表在性損傷)、III型(深在性損傷)等、日本外傷学会により分類されており(非特許文献11)、いずれの対象も本発明は適用され得る。腎臓移植においては、ドナーは二つの腎臓のうち一つを失うことになる、すなわちトータルの腎臓サイズは約1/2となり腎機能が半減するが、残存腎臓のサイズが増大し、損失機能を代償することが知られており、透析治療を受けている患者の腎臓のサイズ・機能とも健常時と比較して減少していることが知られているが、本発明が適用されることでD-アミノ酸量を増加することにより、細胞・組織・臓器の再生を補助できることに加え、腎機能の一つである糸球体濾過量を向上させることができる。従って、一態様において、本発明が適用され得る対象は、腎臓病を有する対象、腎移植のドナー及び/又はレシピエント、及び/又は透析患者、或いは腎代替療法を受ける患者であってもよい。また、遺伝子改変や薬剤により細胞増殖能の異常を誘発させた動物(例えば、片腎摘出マウス等)や培養細胞・組織(例えば、がんモデル細胞・組織、幹細胞や分化細胞・組織等)も、本発明が適用される対象となり得る。 Targets to which the present invention can be applied include cultured cells, tissues, and organoids in any environment different from in vivo, and patients with cell proliferation, abnormal organ function, or organ atrophy due to disease or injury, or abnormal include patients with suspected Organ transplantation can be performed with the liver, pancreas, kidney, digestive tract, heart, eyeball, etc. In many cases, both the donor from whom the organ is removed and the recipient who receives the organ are transplanted before and after surgery. The present invention can be applied to such subjects because organ damage and functional deterioration accompanied by abnormal cell proliferation appear. Regarding organ injury, for example, the kidney is classified as type I (subcapsular injury), type II (superficial injury), type III (deep injury), etc. by the Japanese Society of Traumatology (Non-Patent Document 11). The present invention can be applied to any subject. In kidney transplantation, the donor loses one of two kidneys, i.e., total kidney size is approximately halved and kidney function is halved, but the size of the remaining kidney increases to compensate for the loss of function. It is known to do, and it is known that the size and function of the kidneys of patients undergoing dialysis treatment are reduced compared to when they are healthy, but when the present invention is applied, D- By increasing the amount of amino acids, regeneration of cells, tissues, and organs can be assisted, and glomerular filtration rate, which is one of renal functions, can be improved. Thus, in one aspect, subjects to which the present invention can be applied may be subjects with kidney disease, kidney transplant donors and/or recipients, and/or dialysis patients, or patients undergoing renal replacement therapy. In addition, animals in which abnormal cell proliferation is induced by genetic modification or drugs (e.g., uninephrectomized mice, etc.) and cultured cells/tissues (e.g., cancer model cells/tissues, stem cells, differentiated cells/tissues, etc.) , can be the object to which the present invention is applied.
 本発明の一実施形態は、細胞を培養するための培地中のD-アミノ酸量や、対象の細胞、組織及び/又は体液中のD-アミノ酸量の増減が、細胞増殖に影響を与えることから、それらのD-アミノ酸量を計測することにより、細胞増殖異常の状態、治療による効果の指標とすることができる。例えば、腎臓においては生体中D-アミノ酸量と糸球体濾過量をモニタリングすることで、細胞増殖や機能異常の診断・評価、薬剤の作用機序解析や効果・毒性スクリーニング、治療方法や薬剤の選択、投与量・期間等の決定を補助することが可能となる。体液中のD-アミノ酸量は、他疾患に影響を受けることから、それを判別する目的でD-アミノ酸クリアランスやD-アミノ酸量をクレアチニン等の腎機能マーカーやその他マーカー等で補正した値を解析に用いてもよい。 One embodiment of the present invention is that the amount of D-amino acids in a medium for culturing cells, and the increase or decrease in the amount of D-amino acids in target cells, tissues and/or body fluids affect cell proliferation. , by measuring the amount of D-amino acids thereof, it can be used as an index of the state of abnormal cell proliferation and the effect of treatment. For example, in the kidney, by monitoring the amount of D-amino acids in the body and the amount of glomerular filtration, it is possible to diagnose and evaluate cell proliferation and functional abnormalities, analyze the mechanism of action of drugs, screen effects and toxicity, and select treatment methods and drugs. , it is possible to assist in determining the dosage, period, etc. Since the amount of D-amino acids in body fluids is affected by other diseases, for the purpose of distinguishing them, the values corrected by renal function markers such as creatinine and other markers are analyzed. may be used for
 本発明の一実施態様は、対象における細胞増殖の調整方法であって、
 それを必要とする対象に、生体内のD-アミノ酸の量の制御剤を投与すること
を含む方法を提供する。
One embodiment of the present invention is a method of modulating cell proliferation in a subject, comprising:
A method comprising administering to a subject in need thereof an agent for controlling the amount of D-amino acids in vivo is provided.
 また、本発明の一実施態様は、インビトロ又はエクスビボにおける細胞増殖の調整方法であって、細胞、生体組織又は臓器に、D-アミノ酸の量の制御剤を適用し、培養する工程、を含む方法を提供する。例えば、インビトロ、又はエクスビボの環境において、上述のD-アミノ酸の量の制御剤を含む、緩衝液(例えば、培地)や生理食塩水を用いて、細胞、生体組織又は臓器を培養することにより、細胞増殖を調整することが可能となる。本発明において用いられ得る緩衝液は、細胞、生体組織又は臓器の培養、保護または保存などに用いられ得る公知の緩衝液であればよい。 Also, one embodiment of the present invention is a method for modulating cell proliferation in vitro or ex vivo, comprising applying a D-amino acid amount controlling agent to a cell, biological tissue or organ and culturing it. I will provide a. For example, in an in vitro or ex vivo environment, by culturing a cell, biological tissue, or organ using a buffer solution (e.g., medium) or physiological saline containing the above-mentioned D-amino acid amount regulator, Cell proliferation can be regulated. The buffer that can be used in the present invention may be any known buffer that can be used for culturing, protecting or preserving cells, living tissue or organs.
 また、本発明の一実施態様は、細胞増殖の調整用の医薬組成物の製造のための、D-アミノ酸の量の制御剤の使用を提供する。 Also, one embodiment of the present invention provides the use of an agent for controlling the amount of D-amino acids for the manufacture of a pharmaceutical composition for modulating cell proliferation.
 以上のように、D-アミノ酸量の制御による、細胞増殖の調整方法は、細胞の効率的培養のみならず、生体組織・臓器異常に対する予防・治療・診断に極めて有用である。 As described above, the method of regulating cell proliferation by controlling the amount of D-amino acids is extremely useful not only for efficient cell culture, but also for the prevention, treatment, and diagnosis of biological tissue and organ abnormalities.
 以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。実施例においては、特に断りが無い限り下記の試薬を用いた。 The present invention will be described in more detail below based on examples, but these are not intended to limit the present invention in any way. In the examples, the following reagents were used unless otherwise specified.
・抗phospho-p70 S6 キナーゼ(Thr389)抗体(#9234; 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗p70 S6キナーゼ抗体(#2708; 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・phospho-S6 リボソームタンパク質(Ser235/236)抗体(#4858, 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗S6リボソームタンパク質抗体(#2217, 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗phospho-AKT(Ser473)抗体(#9271; 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗AKT抗体(#9272; 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗p18 LAMTOR1/C11orf59抗体(#8975; 1:2000 IB)(Cell Signaling Technology (Danvers, USA)
・抗mTOR抗体(#2983; 1:1000 IF)(Cell Signaling Technology (Danvers, USA)
・HRP-標識 抗-マウスIgG抗体(#7076; 1:5000 IB)(Cell Signaling Technology (Danvers, USA)
・HRP-標識 抗-ウサギIgG抗体(#7074; 1:5000 IB(Cell Signaling Technology (Danvers, USA)
・抗Rheb抗体(sc-271509; 1:2000 IB)(Santa Cruz Biotechnology, Dallas,USA)
・抗LAMP1抗体(sc-19992; 1:1000 IF)(Santa Cruz Biotechnology, Dallas,USA)
・抗抗β-Actin抗体(A-5316; 1:20000 IB)(Sigma-Aldrich, St. Louis, USA)
・抗Ki67抗体(#718071; 1:1 IHC)(Nichirei Biosciences, Tokyo, Japan)
・Alexa Fluor 488-標識二次抗体(A-32790; 1:1000 IF)(Invitrogen, Carlsbad, USA)
・Alexa Fluor 594-標識二次抗体(A-21207,1:1000 IHC; およびA-11007, 1:1000 IF)(Invitrogen, Carlsbad, USA)
・抗LAMP2抗体(ab25631; 1:200 IF)(abcam, Cambridge, UK)
・Alexa Fluor 594-標識二次抗体(ab150116;1:1000 IF)(abcam, Cambridge, UK).
・insulin 8(I9278-5ML, Sigma-Aldrich)
・ラパマイシン(R0161, LKT Laboratories, St. Paul,USA),
・Ly294002 (129-04861, Fujifilm Wako Chemicals Corporation, Osaka, Japan),
・L-セリン(#2719)およびD-セリン(#2818, Peptide Institute, Ibaragi, Japan)
・L-ロイシン(124-00852, Fujifilm Wako)
- Anti-phospho-p70 S6 kinase (Thr389) antibody (#9234; 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-p70 S6 kinase antibody (#2708; 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Phospho-S6 ribosomal protein (Ser235/236) antibody (#4858, 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-S6 ribosomal protein antibody (#2217, 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-phospho-AKT (Ser473) antibody (#9271; 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-AKT antibody (#9272; 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-p18 LAMTOR1/C11orf59 antibody (#8975; 1:2000 IB) (Cell Signaling Technology (Danvers, USA)
- Anti-mTOR antibody (#2983; 1:1000 IF) (Cell Signaling Technology (Danvers, USA)
- HRP-labeled anti-mouse IgG antibody (#7076; 1:5000 IB) (Cell Signaling Technology (Danvers, USA)
- HRP-labeled anti-rabbit IgG antibody (#7074; 1:5000 IB (Cell Signaling Technology (Danvers, USA))
- Anti-Rheb antibody (sc-271509; 1:2000 IB) (Santa Cruz Biotechnology, Dallas, USA)
- Anti-LAMP1 antibody (sc-19992; 1:1000 IF) (Santa Cruz Biotechnology, Dallas, USA)
- Anti-anti-β-Actin antibody (A-5316; 1:20000 IB) (Sigma-Aldrich, St. Louis, USA)
・Anti-Ki67 antibody (#718071; 1:1 IHC) (Nichirei Biosciences, Tokyo, Japan)
- Alexa Fluor 488-labeled secondary antibody (A-32790; 1:1000 IF) (Invitrogen, Carlsbad, USA)
- Alexa Fluor 594-labeled secondary antibody (A-21207, 1:1000 IHC; and A-11007, 1:1000 IF) (Invitrogen, Carlsbad, USA)
- Anti-LAMP2 antibody (ab25631; 1:200 IF) (abcam, Cambridge, UK)
• Alexa Fluor 594-labeled secondary antibody (ab150116; 1:1000 IF) (abcam, Cambridge, UK).
- insulin 8 (I9278-5ML, Sigma-Aldrich)
- Rapamycin (R0161, LKT Laboratories, St. Paul, USA),
・Ly294002 (129-04861, Fujifilm Wako Chemicals Corporation, Osaka, Japan),
- L-serine (#2719) and D-serine (#2818, Peptide Institute, Ibaragi, Japan)
・L-Leucine (124-00852, Fujifilm Wako)
実施例1.TIG-1細胞におけるD-アミノ酸の細胞増殖能Example 1. Cell Proliferative Potential of D-Amino Acids in TIG-1 Cells
 胎児の組織より分離されたTIG-1細胞を96wellプレートに生細胞が1well当たり1.5×10細胞になるように撒いた。DMEM high glucose + 10% FBS培地で1晩5%CO、37℃で培養し、培地を取り除いた後、PBS150μlで細胞を洗浄した。DMEM amino acid free medium + 0.5% dialyzed FBSで 18時間 5% CO、37℃で培養した。DMEM amino acid free medium + 0.5% dialyzed FBS 90μlをウェルに加え、PBSに溶解した各濃度のD-アミノ酸、L-アミノ酸、結合型アミノ酸溶液を10μl加えて、5% CO、37℃で6時間培養した。続いて、Cell Counting Kit-8を10μl加え、5%CO、37℃で6時間培養した後、450nmの波長で吸光度を測定した。 TIG-1 cells isolated from fetal tissue were plated on a 96-well plate so that the number of viable cells per well was 1.5×10 4 cells. The cells were cultured in a DMEM high glucose + 10% FBS medium overnight at 37°C in 5% CO 2 , the medium was removed, and the cells were washed with 150 µl of PBS. It was cultured in DMEM amino acid free medium + 0.5% dialyzed FBS at 37°C under 5% CO 2 for 18 hours. 90 μl of DMEM amino acid free medium + 0.5% dialyzed FBS was added to the wells, 10 μl of each concentration of D-amino acid, L-amino acid, and conjugated amino acid solutions dissolved in PBS was added, and incubated at 37° C. in 5% CO 2 . Incubated for 6 hours. Subsequently, 10 μl of Cell Counting Kit-8 was added, cultured at 37° C. in 5% CO 2 for 6 hours, and absorbance was measured at a wavelength of 450 nm.
 アミノ酸フリー培地に10μMの各アミノ酸を加えると、L-セリン(L-Ser)は細胞増殖作用が認められなかったが、D-セリン(D-Ser)には細胞増殖作用が顕著に認められた。アラニン(Ala)、アスパラギン(Asn)、グルタミン(Gln)、アスパラギン酸(Asp)、グルタミン酸(Glu)、バリン(Val)、リジン(Lys)は、DL体ともに同程度に顕著な増殖作用が認められた。D-メチオニン(D-Met)は細胞増殖作用が認められなかったが、L-メチオニン(L-Met)には細胞増殖作用が顕著に認められた(図1)。 When 10 μM of each amino acid was added to the amino acid-free medium, L-serine (L-Ser) had no cell proliferation effect, but D-serine (D-Ser) had a significant cell proliferation effect. . Alanine (Ala), asparagine (Asn), glutamine (Gln), aspartic acid (Asp), glutamic acid (Glu), valine (Val), and lysine (Lys) were found to have a similar significant proliferative effect on DL bodies. rice field. D-methionine (D-Met) had no cell proliferation effect, but L-methionine (L-Met) had a significant cell proliferation effect (Fig. 1).
 アミノ酸フリー培地に1μMのアミノ酸を加えると、L-Asn、L-Glnは細胞増殖作用が認められなかったが、D-Asn、D-Glnでは顕著な細胞増殖作用が認められた(図2)。 When 1 μM amino acid was added to the amino acid-free medium, L-Asn and L-Gln showed no cell growth effect, but D-Asn and D-Gln showed a significant cell growth effect (Fig. 2). .
 アミノ酸フリー培地に10μMの結合型アミノ酸(ジペプチド)を加えると、D-セリン-グリシン(dSG)、グリシン-D-セリン(GdS)では細胞増殖作用が認められた(図3)。 When 10 μM of conjugated amino acids (dipeptides) were added to the amino acid-free medium, D-serine-glycine (dSG) and glycine-D-serine (GdS) exhibited a cell proliferation effect (Fig. 3).
実施例2.アミノ酸の投与と臓器への分布Example 2. Amino acid administration and distribution to organs
 12週齢のBalb/c雄マウス(SLC、東京)にH標識D-セリンおよびL-セリン溶液を静脈内注射し、5、30、80、180分後に、血液、脾臓、心臓、腎臓、肺、膵臓、肝臓、脳、腸のそれぞれの組織を採取し、ホモジナイズ後にEcoscint XR (National Diagnostics, Atlanta, GA)とシンチレーションカウンターLSC 5100 (Hitachi, Tokyo, Japan)を用いて放射能をカウント(cps: count per second)し、放射能濃度は、クロス9キャリブレーション係数を使用してkBq/g測定単位に変換、注射量(MBq)と体重で補正して標準化取込値(Standardized uptake values:SUV)として、統計処理した(n=4~5、平均±SEM、*p<0.05、**p<0.01、***p<0.001)。投与されたD-セリンとL-セリンは特異的な体内動態により各臓器に分布し、経時的にアミノ酸量を変化させ得ることが示された(図4)。 12-week-old Balb/c male mice (SLC, Tokyo) were intravenously injected with 3 H-labeled D-serine and L-serine solutions, and 5, 30, 80, 180 minutes later blood, spleen, heart, kidney, Each tissue of lung, pancreas, liver, brain, and intestine was collected, and after homogenization, radioactivity was counted (cps) using Ecoscint XR (National Diagnostics, Atlanta, GA) and a scintillation counter LSC 5100 (Hitachi, Tokyo, Japan). : count per second), and radioactivity concentrations were converted to kBq/g units of measure using a cross-9 calibration factor, corrected for injection volume (MBq) and body weight to obtain Standardized uptake values (SUV ), statistically processed (n=4-5, mean±SEM, *p<0.05, **p<0.01, ***p<0.001). It was shown that the administered D-serine and L-serine are distributed to each organ due to their specific pharmacokinetics, and that the amount of amino acids can be changed over time (Fig. 4).
実施例3.D-セリン投与と片腎摘出マウスの腎臓サイズExample 3. D-serine administration and kidney size in uninephrectomized mice
 セリンを含まない食餌と、0.1%D-セリンを含む(D-Ser)又は含まない(Vehicle)水を与えられた10週齢のC57BL/6雄マウス(SLC、東京)において、片腎摘出(UNX)と偽手術(Sham)を行った。腎臓摘出は、麻酔をかけたマウスの左腎臓の腎臓茎を背中の切開によって露出させ、絹糸で結紮処理し、Shamは同様の切開のみを行った(T. Kimura, Y. et al, J Am Soc Nephrol 22, 902-913 (2011))。2日後に体重当りの腎臓重量と血漿中のD-セリン、L-セリン量を計測し、統計処理を行った(n=6~7;two-way ANOVA、*p<0.05、**p<0.01、***p<0.001)。D-Ser投与群では、Vehicle群と比較して血漿中のD-セリン量のレベルが高くなっており、腎臓サイズ(腎臓重量 weight per body weight)が増加した(図5)。これは、腎移植におけるドナーの残存腎臓の細胞増殖・組織再生と機能回復のモデルとなる。 In 10-week-old C57BL/6 male mice (SLC, Tokyo) fed a serine-free diet and water with (D-Ser) or without (Vehicle) 0.1% D-serine, one kidney Excision (UNX) and sham surgery (Sham) were performed. For nephrectomy, the renal pedicle of the left kidney of an anesthetized mouse was exposed through a dorsal incision and ligated with a silk thread. Soc Nephrol 22, 902-913 (2011)). Two days later, the kidney weight per body weight and the amount of D-serine and L-serine in plasma were measured and statistically processed (n = 6 to 7; two-way ANOVA, * p < 0.05, ** p<0.01, ***p<0.001). In the D-Ser administration group, the level of D-serine in plasma was higher than in the vehicle group, and the kidney size (kidney weight per body weight) was increased (Fig. 5). This will serve as a model for cell proliferation/tissue regeneration and functional recovery of the remnant kidney of a donor in renal transplantation.
実施例4.D-セリン投与と細胞周期関連遺伝子の発現Example 4. D-serine administration and expression of cell cycle-related genes
 実施例3と同様の手法で、セリンを含まない食餌と、0.1%D-セリンを含む(D-Ser)又は含まない(Vehicle)水を与えられた10週齢のC57BL/6雄マウス(SLC、東京)において、片腎摘出(UNX)と偽手術(Sham)を行い、2日後に処理した検体をRNAseq解析に供した(n=3)。RNAは、TRIzol(15596018、Thermo Fisher Scientific、Waltham、USA)を使用して抽出した。ライブラリープレパレーション(Library preparation)は、TruSeq stranded mRNAサンプルプレップキット(Illumina、 San Diego、 CA)により行った。シーケンスは、イルミナHiSeq2500プラットフォームで75ベースのシングルエンドモードで実行し、ベースコールはイルミナCasava1.8.2ソフトウェアを使用した。シーケンスリードは、TopHat Ver.2.0.13をBowtie2 Ver.2.2.3およびSAMtools Ver.0.1.19と組み合わせて使用して、マウスリファレンスゲノム配列(mm10)にマッピングし、マップされたフラグメント(FPKM)100万当りのエキソンのキロベース当りのフラグメントは、Cufflinks Ver.2.2.1を使用して計算した。 10-week-old C57BL/6 male mice given a diet containing no serine and water containing (D-Ser) or not containing (Vehicle) 0.1% D-serine in the same manner as in Example 3 At (SLC, Tokyo), unilateral nephrectomy (UNX) and sham surgery (Sham) were performed, and 2 days later the processed specimens were subjected to RNAseq analysis (n=3). RNA was extracted using TRIzol (15596018, Thermo Fisher Scientific, Waltham, USA). Library preparation was performed with the TruSeq stranded mRNA sample prep kit (Illumina, San Diego, Calif.). Sequencing was performed on an Illumina HiSeq2500 platform in 75 base single-ended mode and base calling using Illumina Casava 1.8.2 software. The sequence read is Top Hat Ver. 2.0.13 to Bowtie2 Ver. 2.2.3 and SAMtools Ver. 0.1.19, and mapped to the mouse reference genome sequence (mm10), fragments per exon kilobase per million mapped fragments (FPKM) were obtained from Cufflinks Ver. 2.2.1 was used for calculation.
 RNAseqデータは、ReactomeやKEGG等のデータソースからのヒトとマウスの生物学的データなどの統合ウェアハウスであるTargetMine(Y. A. Chen, et al, PLoS One 6, e17844 (2011))を利用し、パスウェイ解析及び遺伝子オントロジー解析を実施した。Vehicle処置マウスと比較し、D-セリン処置マウスで平均値の2倍以上(2-fold change)アップレギュレートされた遺伝子をTargetMineにアップロードした。Reactome経路と遺伝子オントロジー(GO)(M. Ashburner, et al, Nat Genet 25, 25-29 (2000))のエンリッチメントは超幾何分布(Hyper geometric)と推定p値によって評価され、さらにBenajmini and Hochberg手法(W. S. Noble, et al, Nat Biotechnol 27, 1135-1137 (2009).)を使用して誤検出を抑制するために複数テストによる補正を実施した。ヒートマップはRを使用して描画した。 RNAseq data uses TargetMine (YA Chen, et al, PLoS One 6, e17844 (2011)), an integrated warehouse of human and mouse biological data from data sources such as Reactome and KEGG. Then, pathway analysis and gene ontology analysis were performed. Genes that were upregulated 2-fold change over the mean in D-serine treated mice compared to Vehicle treated mice were uploaded to TargetMine. Enrichment of Reactome pathways and gene ontology (GO) (M. Ashburner, et al, Nat Genet 25, 25-29 (2000)) was assessed by hypergeometric distributions and estimated p-values, and further by Benajmini and Hochberg Multiple-test correction was performed to suppress false positives using the method (W. S. Noble, et al., Nat Biotechnol 27, 1135-1137 (2009).). Heatmaps were drawn using R.
 解析データは、D-セリン投与による細胞周期関連経路の活性化を示し(図6)、アップレギュレートされた遺伝子には、サイクリン、細胞周期活性化ファミリータンパク質、およびサイクリンの分解による有糸分裂終了の主要な調節因子であるCDC20が含まれ、これらの結果はqPCRによって再現された(図7)。D-セリン量の増加が、細胞増殖を促進・制御する生理活性に関連することが明らかとなった。 Analysis data showed activation of cell cycle-related pathways by D-serine administration (Fig. 6), and upregulated genes included cyclins, cell cycle activation family proteins, and mitotic exit upon degradation of cyclins. These results were reproduced by qPCR (Fig. 7). It was found that an increase in the amount of D-serine is associated with physiological activity that promotes and regulates cell proliferation.
実施例5.D-セリン投与と腎臓細胞増殖Example 5. D-serine administration and kidney cell proliferation
 実施例3と同様の手法で、セリンを含まない食餌と、0.1%D-セリンを含む(D-Ser)又は含まない(Vehicle)水を与えられた10週齢のC57BL/6雄マウス(SLC、東京)において、片腎摘出(UNX)と偽手術(Sham)を行い、2日後に処理した検体を組織学的解析に供した。 10-week-old C57BL/6 male mice given a diet containing no serine and water containing (D-Ser) or not containing (Vehicle) 0.1% D-serine in the same manner as in Example 3 (SLC, Tokyo), unilateral nephrectomy (UNX) and sham surgery (Sham) were performed, and 2 days later the processed specimens were subjected to histological analysis.
 組織学的解析は、マウスを生理食塩水を使用して灌流し、摘出した腎臓を切片化し、4%パラホルムアルデヒドで固定後、パラフィンに包埋し、切片を過ヨウ素酸シッフ(PAS)で染色、または抗Ki67抗体とHistofine Simple Stain Rat MAX PO(R)(414181F、ニチレイバイオサイエンス)で免疫染色した(T. Kimura, et al, Y. J Am Soc Nephrol 22, 902-913 (2011))。画像ごとにKi67陽性細胞をカウントするために、少なくとも10個のフィールド(x200)が、実験条件を知らされていない腎臓内科医によってレビューされた。免疫蛍光法では、パラフィン切片をKi67抗体およびAlexa594標識二次抗体とともにインキュベートした。Triticum vulgarisからのFITC結合レクチン(L4895-5MG、Sigma-Aldrich)を使用して近位尿細管を染色し、核をDAPIで対比染色した。画像は、蛍光顕微鏡(Axio Observer)とデジタルカメラ(AxioCam506モノラルおよびAxioCamMRc、ZEISS、オーバーコッヘン、ドイツ)を使用してキャプチャした。すべての画像は、ZEN 2 proソフトウェア(ZEISS)とImage J(NIH)を使用して処理された。 For histological analysis, mice were perfused with saline, excised kidneys were sectioned, fixed with 4% paraformaldehyde, embedded in paraffin, and sections were stained with periodic acid Schiff (PAS). , or immunostained with anti-Ki67 antibody and Histofine Simple Stain Rat MAX PO (R) (414181F, Nichirei Biosciences) (T. Kimura, et al, Y. J Am Soc Nephrol 22, 902-913 (2011)). To count Ki67-positive cells per image, at least 10 fields (x200) were reviewed by a nephrologist blinded to the experimental conditions. For immunofluorescence, paraffin sections were incubated with Ki67 antibody and Alexa594-labeled secondary antibody. FITC-binding lectin from Triticum vulgaris (L4895-5MG, Sigma-Aldrich) was used to stain proximal tubules and nuclei were counterstained with DAPI. Images were captured using a fluorescence microscope (Axio Observer) and a digital camera (AxioCam506 mono and AxioCamMRc, ZEISS, Oberkochen, Germany). All images were processed using ZEN 2 pro software (ZEISS) and Image J (NIH).
 PAS染色された腎臓の解析によると、D-セリンで処理されたUNXマウスの腎尿細管におけるKi67陽性核の数が、Vehicleで処理されたものと比較して増加しており、D-セリンが細胞増殖を促進したことが示された。(図8)。細胞増殖は、D-セリン再吸収の主要領域である腎臓の近位尿細管で観察され(図9)、糸球体領域は、D-セリン投与で拡大する傾向が観察された(図10)。 Analysis of PAS-stained kidneys showed that the number of Ki67-positive nuclei in renal tubules of UNX mice treated with D-serine was increased compared to those treated with Vehicle, indicating that D-serine It was shown to promote cell proliferation. (Fig. 8). Cell proliferation was observed in the proximal renal tubule of the kidney, which is the major region of D-serine reabsorption (Fig. 9), and the glomerular region tended to expand with D-serine administration (Fig. 10).
実施例6.D-セリン添加と培養細胞増殖、mTOR関連代謝調整Example 6. Addition of D-serine and proliferation of cultured cells, mTOR-related metabolic regulation
 HK-2(CRL-2190、ATCC、Manassas、USA)およびヒト初代腎近位尿細管細胞(RPTEC;CC-2553、Lonza、Basewl、Switzerland)を推奨培地で培養した。HeLa細胞(JCRB9004、JCRBセルバンク、日本、日本)は、10%FCS(10270-106、Gibco、Carlsbad、USA)を含むダルベッコ改変イーグル培地(DMEM、08458-16、ナカライテスク、京都、日本)で培養した。p18欠損MEF(p18 KO)とその復帰突然変異体(Rev)、およびp18を発現するRhebとp18の二重欠損MEF(Rheb KO)については、S. Nada, et al, EMBO J 28, 477-489 (2009),及びS. Nada, et al, J Biochem, (2020)を参照のこと。Rheb KO細胞を使用した実験では、p18復帰突然変異体をコントロールとして使用した(RhebWT)。 HK-2 (CRL-2190, ATCC, Manassas, USA) and human primary renal proximal tubular cells (RPTEC; CC-2553, Lonza, Basel, Switzerland) were cultured in recommended media. HeLa cells (JCRB9004, JCRB Cell Bank, Japan, Japan) were cultured in Dulbecco's Modified Eagle Medium (DMEM, 08458-16, Nacalai Tesque, Kyoto, Japan) containing 10% FCS (10270-106, Gibco, Carlsbad, USA). did. For p18-deficient MEFs (p18 KO) and its revertant (Rev), and p18-expressing Rheb and p18 double-deficient MEFs (Rheb KO), S. et al. Nada, et al, EMBO J 28, 477-489 (2009), and S. See Nada, et al, J Biochem, (2020). In experiments using Rheb KO cells, a p18 revertant was used as a control (RhebWT).
 増殖アッセイでは、培地を使用して細胞を96ウェルプレートに播種した。翌日、培地を0.5%透析FCS(26400-036、Gibco)とセリンフリー培地(アミノ酸フリーDMEM[048-33575]にMEM必須アミノ酸[132-15641]、グリシン[073-00732]、およびGlutaMax(L-アラニル-L-グルタミン)[016-21841、Fujifilm Wako])、を添加)に交換した。一晩のインキュベーション後、D-セリン、L-セリンをそれぞれ添加し、相対細胞数をWST-8キット(CK04、Dojindo Laboratories、熊本、日本)を使用して経時的に測定した。MEFを使用した実験では、I型コラーゲンでコーティングされたマイクロプレート(4860-010、AGCテクノグラス、榛原、日本)を使用した。 For proliferation assays, cells were seeded in 96-well plates using medium. The next day, the medium was changed to 0.5% dialyzed FCS (26400-036, Gibco) and serine-free medium (amino acid-free DMEM [048-33575] supplemented with MEM essential amino acids [132-15641], glycine [073-00732], and GlutaMax ( L-alanyl-L-glutamine) [016-21841, Fujifilm Wako]), was added). After overnight incubation, D-serine and L-serine were added, respectively, and relative cell numbers were measured over time using a WST-8 kit (CK04, Dojindo Laboratories, Kumamoto, Japan). Experiments using MEFs used type I collagen-coated microplates (4860-010, AGC Techno Glass, Haibara, Japan).
 イムノブロットは、細胞をホスファターゼ阻害剤(4906837001、Roshe、Basel、 Switzerland)を含む、又は含まないプロテアーゼ阻害剤カクテル(4693132001、Roshe)を補充したRIPAバッファー(89901、Thermo Fisher)で氷上で1時間溶解し、15000Gで10分間遠心分離した。上清をSDS-PAGEゲルローディングバッファーで3分間煮沸し、SDS-PAGEで分離後、PVDFメンブレンに転写し、ウエスタンブロット解析した(T. Kimura, et al EMBO J 36, 42-60 (2017))。 Immunoblots were performed by lysing cells for 1 hour on ice with RIPA buffer (89901, Thermo Fisher) supplemented with protease inhibitor cocktail (4693132001, Roshe) with or without phosphatase inhibitors (4906837001, Roshe, Basel, Switzerland). and centrifuged at 15000G for 10 minutes. The supernatant was boiled in SDS-PAGE gel loading buffer for 3 minutes, separated by SDS-PAGE, transferred to a PVDF membrane, and subjected to Western blot analysis (T. Kimura, et al EMBO J 36, 42-60 (2017)). .
 セリンフリー培地群と比較し、D-セリンを添加した群ではヒト腎尿細管細胞株および一次細胞において低濃度で細胞増殖を促進した(図11)。D-セリン添加により、HK-2細胞におけるS6KのThr389リン酸化が増強された(図12)。また、D-セリン添加は、UNXマウスの腎臓においてS6RPのSer235/236-リン酸化を誘導した(図13)。このようにD-セリンがmTORC1の活性化へのシグナルを増強することが示された。D-セリンのmTOR経路への影響は、p18欠損株では、D-セリン誘発性の細胞増殖が抑制されることでも確認された(図14)(R. Yonehara, et al Nat Commun 8, 1625 (2017))。Rheb欠損株ではD-セリンの細胞増殖効果を抑制したため、D-セリンの効果もインスリン/PI3Kシグナルを介して媒介されることが示唆された(図15)(R. A. Saxton, et al Metabolism, and Disease. Cell 168, 960-976 (2017))。ラパマイシンまたはPI3K阻害剤であるLy294002を使用したmTORの阻害も、D-セリン誘発性の細胞増殖を抑制した(図16)。D-セリンによる処置は、UNXマウスの腎臓(実施例3参照)においてAKTのSer473-リン酸化を誘導した(図17)。さらに、D-セリンによる処理は、リソソームからのmTORの解離を抑制し(図18)、D-セリンがmTORのリソソーム局在化を支援することを示唆していた。以上の結果から、D-セリンとmTORは細胞増殖に関して協力・協調していることが明らかとなった(図19)。 Compared to the serine-free medium group, the group supplemented with D-serine promoted cell proliferation at a low concentration in human renal tubular cell lines and primary cells (Fig. 11). Addition of D-serine enhanced Thr389 phosphorylation of S6K in HK-2 cells (FIG. 12). D-serine addition also induced Ser235/236-phosphorylation of S6RP in the kidney of UNX mice (FIG. 13). Thus, D-serine was shown to enhance the signal for activation of mTORC1. The effect of D-serine on the mTOR pathway was also confirmed by the suppression of D-serine-induced cell proliferation in p18-deficient strains (Fig. 14) (R. Yonehara, et al Nat Commun 8, 1625 ( 2017)). Since the Rheb-deficient strain suppressed the cell proliferation effect of D-serine, it was suggested that the effect of D-serine was also mediated via insulin/PI3K signaling (Fig. 15) (RA Saxton, et al Metabolism , and Disease. Cell 168, 960-976 (2017)). Inhibition of mTOR using rapamycin or the PI3K inhibitor Ly294002 also suppressed D-serine-induced cell proliferation (FIG. 16). Treatment with D-serine induced Ser473-phosphorylation of AKT in the kidney of UNX mice (see Example 3) (Figure 17). Furthermore, treatment with D-serine inhibited the dissociation of mTOR from lysosomes (Fig. 18), suggesting that D-serine assists lysosomal localization of mTOR. From the above results, it was revealed that D-serine and mTOR are cooperating and coordinating in cell proliferation (Fig. 19).
実施例7.D-セリン投与と糸球体濾過量Example 7. D-serine administration and glomerular filtration rate
 18週齢のセリンラセマーゼノックアウトラットに、0.1-0.5%D-セリンを含む(D-Ser)又は含まない(Vehicle)水を自由飲水で1か月与えた後、FITC-シニストリン静注のクリアランス測定により、糸球体濾過量(GFR)を測定した。D-セリン投与群(n=8)では、Vehicle群(n=2)と比較して、平均で約15%GFRが増加した(図20)。 Eighteen-week-old serine racemase knockout rats were given water containing (D-Ser) or not containing 0.1-0.5% D-serine (Vehicle) ad libitum for one month, followed by FITC-sinistrin static. Glomerular filtration rate (GFR) was measured by clearance measurements of note. In the D-serine administration group (n=8), GFR increased by about 15% on average compared to the vehicle group (n=2) (FIG. 20).
実施例8.B細胞におけるD-アミノ酸の細胞増殖能Example 8. Cell Proliferative Potential of D-Amino Acids in B Cells
 B細胞株の増殖アッセイのために、IL-3依存性マウスプロB細胞株Ba/F3細胞を、培地を使用して96ウェルプレートに播種した。培地はアラニンフリー培地(アミノ酸フリーRPMI、MEM必須アミノ酸、GlutaMax(l-Alanyl-l-Glutamine)、及び5%(v/v)透析FCS(26400-036、Gibco)および100 ng / 10 μMのD-アラニンの存在下または非存在下で細胞を48時間培養し、WST-8キット(CK04、Dojindo Laboratories、熊本、日本)を使用して相対細胞数を測定し、T検定を実施した。 For the B-cell line proliferation assay, IL-3-dependent mouse pro-B-cell line Ba/F3 cells were seeded in 96-well plates using culture medium. The medium is alanine-free medium (amino acid-free RPMI, MEM essential amino acids, GlutaMax (l-Alanyl-l-Glutamine), and 5% (v/v) dialyzed FCS (26400-036, Gibco) and 100 ng/10 μM D - Cells were cultured in the presence or absence of alanine for 48 hours, relative cell numbers were determined using WST-8 kit (CK04, Dojindo Laboratories, Kumamoto, Japan) and T-test was performed.
 D-アラニンの存在は、有意にB細胞を増殖させることが示された(図21)。 The presence of D-alanine was shown to significantly proliferate B cells (Fig. 21).

Claims (25)

  1.  D-アミノ酸の量の制御剤を含む、細胞増殖の調整のための組成物。 A composition for regulating cell growth, comprising an agent for controlling the amount of D-amino acids.
  2.  前記制御剤が、対象の生体中のD-アミノ酸の量の制御剤である、請求項1に記載の組成物。 The composition according to claim 1, wherein the control agent is an agent for controlling the amount of D-amino acids in a subject's body.
  3.  前記細胞増殖が、生体組織及び/又は臓器の細胞増殖であって、それにより前記生体組織及び/又は臓器のサイズを調整する、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the cell proliferation is cell proliferation of a living tissue and/or organ, thereby adjusting the size of the living tissue and/or organ.
  4.  前記対象が、腎臓病を有する対象である、請求項2に記載の組成物。 The composition of claim 2, wherein the subject is a subject with kidney disease.
  5.  前記対象が、腎移植のドナー及び/又はレシピエントである、請求項2に記載の組成物。 The composition according to claim 2, wherein the subject is a kidney transplant donor and/or recipient.
  6.  腎機能を向上させる、請求項2に記載の組成物。 The composition according to claim 2, which improves renal function.
  7.  前記腎機能が糸球体濾過量である、請求項6に記載の組成物。 The composition according to claim 6, wherein the renal function is glomerular filtration rate.
  8.  単離された細胞の増殖の調整のための、請求項1に記載の組成物。 The composition according to claim 1 for modulating growth of isolated cells.
  9.  前記制御剤が、D-アミノ酸又はその誘導体である、請求項1~8のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the control agent is a D-amino acid or derivative thereof.
  10.  前記D-アミノ酸が、D-セリン、D-アスパラギン及びD-グルタミンからなる群から選択される、請求項9に記載の組成物。 The composition according to claim 9, wherein said D-amino acid is selected from the group consisting of D-serine, D-asparagine and D-glutamine.
  11.  前記制御剤が、D-アミノ酸の吸収、輸送、分布、代謝又は排泄に関連するタンパク質の活性を調整する剤である、請求項1~8のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the control agent is an agent that modulates protein activity related to absorption, transport, distribution, metabolism or excretion of D-amino acids.
  12.  前記代謝が、分解又は合成である、請求項11に記載の組成物。 The composition according to claim 11, wherein said metabolism is degradation or synthesis.
  13.  前記タンパク質の活性を調整する剤が、前記タンパク質の遺伝子発現の制御剤である、請求項11又は12に記載の組成物。 The composition according to claim 11 or 12, wherein the agent that modulates the activity of the protein is an agent that regulates gene expression of the protein.
  14.  前記タンパク質が、D-アスパラギン酸酸化酵素及びセリン異性化酵素からなる群から選択される、請求項11~13のいずれか一項に記載の組成物。 The composition according to any one of claims 11 to 13, wherein the protein is selected from the group consisting of D-aspartate oxidase and serine isomerase.
  15.  前記タンパク質が、D-アミノ酸輸送体タンパク質である、請求項11~13のいずれか一項に記載の組成物。 The composition according to any one of claims 11 to 13, wherein said protein is a D-amino acid transporter protein.
  16.  前記D-アミノ酸輸送体タンパク質が、SMCTファミリー、GLUT5、CAT1、THTR2、SNAT2、ASCTファミリー、Asc1、PAT1及びATB0,+からなる群から1又は複数選択される、請求項15に記載の組成物。 16. The composition according to claim 15, wherein said D-amino acid transporter protein is one or more selected from the group consisting of SMCT family, GLUT5, CAT1, THTR2, SNAT2, ASCT family, Asc1, PAT1 and ATB 0,+ . .
  17.  医薬品である、請求項1~16のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 16, which is a pharmaceutical.
  18.  食品である、請求項1~16のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 16, which is a food.
  19.  前記食品が、保健機能食品またはダイエタリーサプリメントである、請求項18に記載の組成物。 The composition according to claim 18, wherein the food is a food with health claims or a dietary supplement.
  20.  前記保健機能食品が、特定保健用食品または栄養機能食品である、請求項19に記載の組成物。 The composition according to claim 19, wherein the food with health claims is a food for specified health uses or a food with nutrient claims.
  21.  mTOR関連経路を活性化する、請求項1~20のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 20, which activates mTOR-related pathways.
  22.  D-アミノ酸の量の制御剤を含む、mTOR関連経路を活性化する組成物。 A composition that activates an mTOR-related pathway, comprising a regulatory agent in the amount of D-amino acids.
  23.  対象における細胞増殖の調整方法であって、
     それを必要とする対象に、生体内のD-アミノ酸の量の制御剤を投与すること
    を含む、方法。
    A method of modulating cell proliferation in a subject, comprising:
    A method comprising administering to a subject in need thereof an agent for controlling the amount of D-amino acids in vivo.
  24.  インビトロ又はエクスビボにおける細胞増殖の調整方法であって、
     細胞、生体組織又は臓器に、D-アミノ酸の量の制御剤を適用し、培養する工程
    を含む、方法。
    A method of modulating cell proliferation in vitro or ex vivo, comprising:
    A method comprising applying a D-amino acid amount controlling agent to a cell, biological tissue or organ and culturing.
  25.  細胞増殖の調整用の医薬組成物の製造のための、D-アミノ酸の量の制御剤の使用。  Use of an agent for controlling the amount of D-amino acids for the manufacture of a pharmaceutical composition for the regulation of cell proliferation.
PCT/JP2022/020851 2021-05-19 2022-05-19 Composition for regulating cell proliferation and regulation method of cell proliferation WO2022244846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522721A JPWO2022244846A1 (en) 2021-05-19 2022-05-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-084974 2021-05-19
JP2021084974 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022244846A1 true WO2022244846A1 (en) 2022-11-24

Family

ID=84141625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020851 WO2022244846A1 (en) 2021-05-19 2022-05-19 Composition for regulating cell proliferation and regulation method of cell proliferation

Country Status (2)

Country Link
JP (1) JPWO2022244846A1 (en)
WO (1) WO2022244846A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514069A (en) * 2002-01-17 2005-05-19 ビーエーエスエフ プラント サイエンス ゲーエムベーハー Selective plant growth using D amino acids
WO2011087091A1 (en) * 2010-01-15 2011-07-21 協和発酵キリン株式会社 Anti-asct2 (system asc amino acid transporter type 2) antibody
JP2015027265A (en) * 2013-07-30 2015-02-12 ダイソー株式会社 Medium for cell culture
JP2015516456A (en) * 2012-05-14 2015-06-11 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome
JP2016510795A (en) * 2013-03-15 2016-04-11 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of linagliptin in cardioprotective and renal protective antidiabetic treatments
WO2019235592A1 (en) * 2018-06-07 2019-12-12 国立大学法人金沢大学 Pharmaceutical composition for prevention or treatment of kidney damage
JP2019214558A (en) * 2018-06-07 2019-12-19 国立大学法人金沢大学 Pharmaceutical composition for prevention or treatment of kidney damage
WO2020218737A1 (en) * 2019-04-22 2020-10-29 씨제이제일제당 (주) Microorganism with enhanced l-threonine production capacity, and threonine production method using same
WO2021132691A1 (en) * 2019-12-27 2021-07-01 Kagami株式会社 D-serine transport modifier and screening method thereof, and screening method of d-serine transporter protein

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514069A (en) * 2002-01-17 2005-05-19 ビーエーエスエフ プラント サイエンス ゲーエムベーハー Selective plant growth using D amino acids
WO2011087091A1 (en) * 2010-01-15 2011-07-21 協和発酵キリン株式会社 Anti-asct2 (system asc amino acid transporter type 2) antibody
JP2015516456A (en) * 2012-05-14 2015-06-11 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome
JP2016510795A (en) * 2013-03-15 2016-04-11 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of linagliptin in cardioprotective and renal protective antidiabetic treatments
JP2015027265A (en) * 2013-07-30 2015-02-12 ダイソー株式会社 Medium for cell culture
WO2019235592A1 (en) * 2018-06-07 2019-12-12 国立大学法人金沢大学 Pharmaceutical composition for prevention or treatment of kidney damage
JP2019214558A (en) * 2018-06-07 2019-12-19 国立大学法人金沢大学 Pharmaceutical composition for prevention or treatment of kidney damage
WO2020218737A1 (en) * 2019-04-22 2020-10-29 씨제이제일제당 (주) Microorganism with enhanced l-threonine production capacity, and threonine production method using same
WO2021132691A1 (en) * 2019-12-27 2021-07-01 Kagami株式会社 D-serine transport modifier and screening method thereof, and screening method of d-serine transporter protein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATO TSUTOMU, YAMOCHI TADANORI, YAMOCHI TOSHIKO, AYTAC UGUR, OHNUMA KEI, MCKEE KATHRYN S., MORIMOTO CHIKAO, DANG NAM H.: "CD26 Regulates p38 Mitogen-Activated Protein Kinase–Dependent Phosphorylation of Integrin β 1 , Adhesion to Extracellular Matrix, and Tumorigenicity of T-Anaplastic Large Cell Lymphoma Karpas 299", CANCER RESEARCH, vol. 65, no. 15, 1 August 2005 (2005-08-01), US, pages 6950 - 6956, XP055873919, ISSN: 0008-5472, DOI: 10.1158/0008-5472.CAN-05-0647 *
THIELITZ ANJA, ANSORGE SIEGFRIED, BANK UTE, TAGER MICHAEL, WRENGER SABINE, GOLLNICK HARALD, REINHOLD DIRK: "The ectopeptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related enzymes as possible targets in the treatment of skin diseases", FRONTIERS IN BIOSCIENCE, vol. 13, no. 13, 1 January 2008 (2008-01-01), US , pages 2364 - 2375, XP093005632, ISSN: 1093-9946, DOI: 10.2741/2850 *

Also Published As

Publication number Publication date
JPWO2022244846A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
Hua et al. TRIB3 interacts with β-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis
Zhang et al. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase
Chao et al. Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/β-catenin pathway
Ma et al. Small extracellular vesicles deliver osteolytic effectors and mediate cancer‐induced osteolysis in bone metastatic niche
Guan et al. KLF7 promotes polyamine biosynthesis and glioma development through transcriptionally activating ASL
Du et al. Hypoxia-induced ebv-circLMP2A promotes angiogenesis in EBV-associated gastric carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway
US20210361694A1 (en) Method for preventing or treating cancer using syt11 inhibitor
Ma et al. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p
Geng et al. Targeting miR-9 in glioma stem cell-derived extracellular vesicles: a novel diagnostic and therapeutic biomarker
Pan et al. METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy
EP3597739A1 (en) Composition for regulating cancer cell division or differentiation comprising setdb1 or a setdb1 inhibitor
Ciccone et al. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL‑8/Notch signaling cascade
Xiao et al. Therapeutic inhibition of phospholipase D1 suppresses hepatocellular carcinoma
US20180318448A1 (en) Method for determining presence or absence of suffering from malignant lymphoma or leukemia, and agent for treatment and/or prevention of leukemia
Li et al. Novel long non‐coding RNA CYB561‐5 promotes aerobic glycolysis and tumorigenesis by interacting with basigin in non‐small cell lung cancer
Ding et al. NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA
WO2022244846A1 (en) Composition for regulating cell proliferation and regulation method of cell proliferation
Yuan et al. Dual VEGF/PDGF knockdown suppresses vasculogenic mimicry formation in choroidal melanoma cells via the Wnt5a/β-catenin/AKT signaling pathway
van Zyl et al. Isoginkgetin leads to decreased protein synthesis and activates an ATF4-dependent transcriptional response
CN103800919B (en) TUFT1 application in preparing diagnosing cancer of liver and treatment preparation
Dai et al. miR‑122/SENP1 axis confers stemness and chemoresistance to liver cancer through Wnt/β‑catenin signaling
Tang et al. MicroRNA-31 induced by Fusobacterium nucleatum infection promotes colorectal cancer tumorigenesis
Chen et al. Hsa_circ_0005050 regulated the progression of oral squamous cell carcinoma via miR-487a-3p/CHSY1 axis
EP3406253A1 (en) Inhibitors and antagonists of human pycr1
WO2022244842A1 (en) Composition for regulating carbohydrate metabolism, and method for assessing carbohydrate metabolism conditions of subject

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804755

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE