WO2022244385A1 - Robot control system, robot control method, and program - Google Patents

Robot control system, robot control method, and program Download PDF

Info

Publication number
WO2022244385A1
WO2022244385A1 PCT/JP2022/009392 JP2022009392W WO2022244385A1 WO 2022244385 A1 WO2022244385 A1 WO 2022244385A1 JP 2022009392 W JP2022009392 W JP 2022009392W WO 2022244385 A1 WO2022244385 A1 WO 2022244385A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
image
captured image
camera
environment
Prior art date
Application number
PCT/JP2022/009392
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 一藁
洋 伊藤
健次郎 山本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022244385A1 publication Critical patent/WO2022244385A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices

Definitions

  • the present invention relates to a robot control system, a robot control method, and a program that have a function of monitoring the work status of a robot.
  • the appropriate position, angle of view, and number of cameras depend on the content of the work. For example, when a work area including work objects and robots is large, it is necessary to use a wide-angle camera, and the camera image becomes large. Therefore, the operator or the supervisor needs to confirm the camera image while zooming the camera image or moving the line of sight.
  • An operator is a person who operates a robot when the robot is operated manually.
  • a supervisor is a person who monitors the working status of the robot, whether the robot is manually operated or automatically operated. In the case of manual operation, the operator and supervisor may be the same.
  • Japanese Patent Laid-Open No. 2002-200002 describes automatically switching a suitable camera image for remote-controlling a robot based on camera image switching information stored in advance.
  • Patent Document 1 Although the technique described in Patent Document 1 enables switching between multiple camera images, it does not mention cropping or zooming of camera images.
  • a robot control system includes a robot, a control device that transmits a control command to the robot, and a camera that captures at least a working environment of the robot and acquires a captured image. , at least a part of the captured image that is important for the work of the robot, based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the robot and/or the environment. and an image display device for displaying the captured image region selected by the image region selection device.
  • an image or a region within the image that is important for the work of the robot captured by the camera is selected and displayed on the image display device.
  • images can be automatically cropped and zoomed, and the burden of switching images captured by the camera and moving the line of sight of the operator and the monitor can be reduced.
  • FIG. 1 is a schematic diagram showing a configuration example of a robot control system to which the present invention is applied;
  • FIG. 2 is a block diagram showing a hardware configuration example of an image area selection device included in the robot control system;
  • FIG. 3 is a block diagram showing an internal configuration example of an image area selection device included in the robot control system;
  • FIG. 4 is a flow chart showing an operation example of the image area selection device and the image display device when the camera image is a single image in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of an input camera image;
  • FIG. FIG. 4 is a diagram showing an example of a heat map for an input camera image according to the first embodiment of the present invention;
  • FIG. 4 is a diagram showing an example of image display of the image display device in the first embodiment of the present invention
  • 9 is a flow chart showing an operation example of the image area selection device and the image display device when there are a plurality of camera images in the second embodiment of the present invention.
  • FIG. 10 is a diagram showing an example (1) of an input camera image and an obtained heat map in the second embodiment of the present invention
  • FIG. 10 is a diagram showing an example (2) of an input camera image and an obtained heat map in the second embodiment of the present invention
  • FIG. 10 is a diagram showing an example (3) of an input camera image and an obtained heat map in the second embodiment of the present invention
  • FIG. 10 is an explanatory diagram showing an example of image display of the image display device in the second embodiment of the present invention.
  • 10 is an explanatory diagram showing another example of image display of the image display device in the second embodiment of the present invention
  • 13 is a flow chart showing an operation example of an image area selection device and an image display device when automatically generating an operation command for a robot according to the third embodiment of the present invention
  • FIG. 1 is a schematic diagram showing a configuration example of a robot control system to which the present invention is applied.
  • the robot 10 is a device capable of handling objects and performing predetermined work such as assembling and transporting parts.
  • the configuration of the robot 10 does not matter, and it may be a single robot arm, or may include a moving device such as a crawler or wheels.
  • the robot control device 20 outputs control commands to the robot 10 based on motion commands such as joint angles and forces (torques) of the robot 10 input to the robot control device 20 to control the motion of the robot 10 .
  • the control command is, for example, a signal indicating a current value, a voltage value, or the like for an actuator (such as a motor) provided at a joint of the robot 10, the end effector 11, or the like.
  • the robot 10 receives a control command from the robot controller 20, the built-in drive circuit supplies a drive signal to the corresponding actuator.
  • the robot control device 20 may be configured to automatically control the motion of the robot 10 based on the camera image captured by the camera 3. A configuration in which the robot control device 20 automatically controls the motion of the robot 10 will be described in a third embodiment.
  • the camera 3 is an imaging device for imaging the working environment of the robot 10 and the surrounding environment.
  • the number of cameras 3 may be one or a plurality of them as shown in FIG. In FIG. 1, three cameras 3a, 3b, and 3c are installed as the cameras 3.
  • the camera 3a is attached to the robot arm, and the cameras 3b and 3c are installed around the robot 10 (for example, walls of a working room or a building).
  • the work environment corresponds to the movable area of the robot 10, that is, the range in which the robot 10 can move (work area).
  • the surrounding environment corresponds to the surrounding area outside the movable area of the robot 10 .
  • the camera 3 is assumed to be a network camera without attitude change function and hardware zoom function.
  • the image region selection device 30 selects the work of the robot 10 based on the information obtained from the camera image captured by the camera 3 and the sensors arranged in the robot 10 and/or the environment (hereinafter referred to as "sensor information"). It is a device that selects important images and areas within those images.
  • the type of sensor information of the robot 10 and the environment does not matter.
  • the sensor information may be a current value of a motor provided in a joint of the robot 10, an output signal of a tactile sensor or an inertial sensor externally attached to the robot 10, or the like.
  • the sensor information may be a temperature sensor that measures the work environment, an output signal from a line-of-sight sensor (not shown) attached to the operator of the robot 10, or the like. In this way, each sensor detects the state of the robot 10 and/or the state of the environment, and outputs a detection signal according to the content of detection.
  • the image display device 40 is a device that selectively displays the image selected by the image region selection device 30 and the region within the image.
  • the robot operating device 50 is provided with buttons, a joystick, and the like corresponding to the motion of the robot 10 , and is a device that receives input from the operator and transmits an operation command corresponding to the content of the input to the robot control device 20 .
  • FIG. 2 is a block diagram showing a hardware configuration example of a computer included in the image area selection device 30.
  • the illustrated computer 60 is an example of hardware that constitutes a computer used in the robot control device 20 and the image area selection device 30 .
  • a personal computer for example, can be used as the computer 60 .
  • the computer 60 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, and a RAM (Random Access Memory) 63 connected to a bus 64 respectively.
  • Computer 60 further comprises non-volatile storage 66 , input/output interface 67 and network interface 68 .
  • the CPU 61 reads the program code of the software that implements the functions of the image area selection device 30 according to this embodiment from the ROM 62, loads the program into the RAM 63, and executes it. In the RAM 63, variables, parameters, etc. generated during the arithmetic processing of the CPU 61 are temporarily written. Variables and parameters written in the RAM 63 are appropriately read by the CPU 61 .
  • the CPU 61 is used as the arithmetic processing unit, other processors such as MPU (Micro Processing Unit) may be used.
  • the non-volatile storage 66 is an example of a recording medium, and can store data used by programs and data obtained by executing programs.
  • the nonvolatile storage 66 stores learning data, learning models, etc., which will be described later.
  • an OS Operating System
  • a program executed by the CPU 61 may be recorded in the nonvolatile storage 66 .
  • a semiconductor memory a HDD (Hard Disk Drive), an SSD (Solid State Drive), a disk device using magnetism or light, or the like is used.
  • the input/output interface 67 is an interface that communicates signals and data with each sensor and each actuator provided in the robot control system 100 .
  • the input/output interface 67 may also serve as an A/D (Analog/digital) converter and/or a D/A converter (not shown) that processes an input signal or an output signal.
  • the sensor information herein includes information obtained from each actuator as well as from each sensor.
  • the network interface 68 for example, a NIC (Network Interface Card), modem, or the like is used.
  • the network interface 68 is configured to be capable of transmitting and receiving various data to and from an external device via a communication network such as a LAN or the Internet to which terminals are connected, a dedicated line, or the like.
  • FIG. 3 is a block diagram showing an internal configuration example of the image region selection device 30.
  • the image region selection device 30 includes a learning data storage unit 31 , a learning unit 32 , a learning model storage unit 33 and an inference unit 34 .
  • the learning data storage unit 31 stores learning data used for learning the learning model 33a.
  • the learning data includes at least camera images of the work environment of the robot 10 and the surrounding environment acquired in time series during the work of the robot 10, and sensor information of the robot 10 and the environment.
  • the learning unit 32 uses learning data stored in the learning data storage unit 31 to learn predicted values of sensor information of the robot 10 and the environment, and heat maps (important areas of camera images, importance). Let the model 33a learn. For example, the learning unit 32 adjusts the model parameters of the learning model 33a by learning the learning model 33a through machine learning.
  • the learning model 33a can be configured using a neural network as an example.
  • the learning method of the learning model 33a is not limited to machine learning based on deep learning using a neural network, and other learning methods may be used.
  • the learning model storage unit 33 stores the learning model 33a and its model parameters.
  • the model parameters are weights such as the degree of connectivity between neurons forming the neural network and the firing threshold of neurons.
  • the learning model storage unit 33 is realized by the nonvolatile storage 66 as an example.
  • the learning model 33a stored in the learning model storage unit 33 is a trained model (inference program) in which learning results (model parameters) are reflected.
  • the inference unit 34 uses the learning model 33a stored in the learning model storage unit 33 to infer (predict) the input camera image and the sensor information of the robot 10 and the environment, and outputs their predicted values. do.
  • the inference unit 34 also includes a heat map generation unit 331 that generates a heat map, and uses the learning model 33a to infer a heat map (important region, importance) for the input camera image. Details of the heat map and the heat map generator 331 will be described later.
  • the result of inference by the inference unit 34 is output to the robot control device 20 and the image display device 40 .
  • the inference unit 34 processes (post-processes) the camera image based on the inference result, and outputs data necessary for displaying the image on the image display device 40 . As the processing of the camera image, for example, cutting out a specific area and enlarging it can be mentioned.
  • the method of selecting important regions in the camera image is divided into a teaching phase and an operating phase. For example, by preparing a learning mode and an operation mode in the robot control system 100 and selecting either the learning mode or the operation mode displayed on a menu screen (not shown) with the robot operation device 50, the teaching phase or the operation phase can be started. Transition.
  • the robot 10 is used to perform the work with the image area selection function of the image area selection device 30 disabled.
  • the image area selection device 30 saves the camera image acquired during the work and the sensor information of the robot 10 and the environment as learning data in the learning data storage unit 31 .
  • Learning in the learning unit 32 is performed using the learning data at this time as teacher data.
  • the operator may control the robot 10 using the robot operating device 50 , or the robot 10 may automatically reproduce the previously planned motion of the robot 10 .
  • the learning unit 32 of the image region selection device 30 when the robot 10 performs a certain task, the next time (for example, The model parameters of the learning model 33 a that predicts the camera image after time t+1) and the sensor information of the robot 10 and the environment are learned and stored in the learning model storage unit 33 .
  • the learning of the learning model 33a is performed for each work type. Furthermore, the accuracy of learning increases by performing learning multiple times for one type of work.
  • the learning model 33a has a heat map generation unit 331 that generates a heat map indicating areas within the camera image, particularly image areas (important areas) necessary for the prediction.
  • the learning model 33a is configured such that the heat map generation unit 331 optimizes the heat map value so that the image region necessary for prediction is large or small so that the prediction error for each data is reduced in the process of learning. It has become.
  • Each data is a camera image, sensor information of the robot 10 and the environment.
  • the learning unit 32 is configured so as to set an area in which the values of the heat map generated by the heat map generating unit 331 of the learning model 33a are equal to or greater than the set threshold value as the important area.
  • the important area in this embodiment is assumed to be at least part of the camera image, but may be the entire image.
  • the learning model 33a is composed of a camera image at time t+1, sensor information of the robot 10 and the environment, and a camera image corresponding to the time t+1 stored in the learning model storage unit 33, and sensor information of the robot 10 and the environment. and calculate the error of each data (corresponding to the prediction error).
  • the value of this heat map is regarded as the "importance" of the region in the camera image.
  • the image region is not limited to a region having a certain area.
  • a region of an image can be a point and a heatmap value can be a single value at that point.
  • the learning model 33a detects a work object in a camera image, and sets a position (x coordinate, y coordinate) as a search reference in the image based on the work type, the work object, and the like.
  • the learning model 33a configures a temporary area with a plurality of pixels contained within a certain radius centered on the reference position, and calculates a prediction error using the image of the temporary area.
  • the learning model 33a changes the range of the temporary region (for example, reduces the range) and calculates the prediction error.
  • the learning model 33a compares the prediction error when using the previous provisional region and the prediction error when using the current provisional region, and determines whether the prediction error decreases from the previous time. If the prediction error becomes smaller, the learning model 33a further reduces the range of the temporary region, calculates and compares the prediction error, and repeats these processes. When the prediction error gradually decreases and then increases, the temporary area having the range and the reference position immediately before the prediction error starts to increase is considered to be an important area for the work of the robot 10 .
  • the heat map generator 331 of the learning model 33a calculates the prediction error for each pixel in the image or for the pixel representing the region in the process of setting the range of the region and calculating and comparing the prediction error. Generate a heatmap by giving heatmap values. As described above, a region composed of pixels whose heat map values are greater than or equal to a set threshold is specified as an important region. Note that depending on the type of work (for example, work that requires a bird's-eye view), calculation and comparison of prediction errors are performed while enlarging the range of the temporary area, and areas important to the work of the robot 10 are specified.
  • FIG. 4 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when the camera image is a single image.
  • the robot control device 20 receives an operation command for the robot 10 input by the operator from the robot operation device 50, and generates a control command for each actuator for controlling the robot 10 based on the operation command.
  • the motion command is, for example, the joint angle of the robot 10, the posture (position) and force (torque) of the end effector 11, and the like.
  • the robot 10 receives a control command from the robot control device 20 and starts an operation (work) (S1).
  • the operator or supervisor confirms the camera image displayed on the screen of the image display device 40 and determines whether the work of the robot 10 has been completed (S2). For example, an icon of a work completion button 74 (see FIG. 5C described later) is displayed in the camera image displayed on the image display device 40 .
  • the robot operation device 50 is used to click the icon of the work completion button 74 .
  • the inference unit 34 of the image area selection device 30 detects that the work completion button 74 has been operated, it determines that the work has been completed.
  • a mechanical work end button may be arranged on the robot operating device 50 .
  • the inference unit 34 acquires the camera image and the sensor information of the robot 10 and the environment to create a learning model. 33a (S3) to obtain an output (inference result) corresponding to the input.
  • the inference unit 34 acquires the important region of the camera image as an output in response to the input of the camera image to the learning model 33a in step S3, the sensor information of the robot 10 and the environment (S4).
  • the important areas of the camera image correspond to areas with high values (importance) in the heatmap.
  • the inference unit 34 acquires predicted values of the camera image and the sensor information of the robot 10 and the environment as an output corresponding to the input of each data to the learning model 33a in step S3 (S5). This predicted value is used when the robot 10 automatically performs the work in the third embodiment.
  • the image area selection device 30 transmits information (for example, position, range) of the important area of the camera image inferred by the inference unit 34 to the image display device 40 .
  • the image region selection device 30 displays on the image display device 40 an image including the important region in the camera image obtained by the inference unit 34 in step S4 (S6).
  • the image display device 40 enlarges and displays the important area in the camera image on the screen.
  • FIG. 5A to 5C show examples of heat maps and image displays for input camera images in the first embodiment.
  • 5A is an input camera image
  • FIG. 5B is a heat map
  • FIG. 5C is an image display example of the image display device 40.
  • FIG. in the example of the heat map shown in FIG. 5B as an example, areas with high heat map values, i.e., areas with high importance, are expressed darkly, and areas with small heat map values, i.e., areas with low importance, are expressed lightly.
  • the image display device 40 displays the image of the area (specific area Ai) having a large value in the heat map 72 as shown in FIG. 5C. to display.
  • FIG. 5C shows an example of an image 73 in which an area corresponding to the specific area Ai of the heat map 72 in the input camera image 71 is enlarged and displayed. Specifically, in the image 73, the local area including the work object 12 and the end effector 11 of the image 71, which is the input camera image, is enlarged.
  • the robot control system includes a robot (robot 10) that performs a task and a control device (robot control device) that transmits control commands to the robot based on motion commands. 20), a camera (camera 3) that captures at least the work environment of the robot and acquires a captured image, the captured image, the state of the robot and/or the robot placed in the environment, and/or the state of the environment.
  • an image region selection device image region selection device 30
  • selects at least a partial region of the captured image that is important for the work of the robot, based on the sensor information acquired from the sensor, and the image region selection device that is selected by the image region selection device.
  • an image display device image display device 40 for displaying the captured image area.
  • the robot control system 100 sequentially acquires the important regions of the image captured by the camera 3, and displays the image or the region within the image on the image display device 40.
  • images important for work and areas within the images are presented to the operator or supervisor according to the work situation. That is, the robot control system 100 uses the image area selection device 30 to automatically cut out an image that is important for the work of the robot 10 captured by the camera 3 or an area within the image, and enlarge and display it on the image display device 40 .
  • the robot control system 100 can reduce the load on the operator or the observer due to switching between images captured by the camera 3 or areas within the images and movement of the line of sight. For example, since the work area is wide, an image from a viewpoint that overlooks the work environment and an image from a viewpoint that requires detailed information can be automatically switched and displayed on the image display device 40 .
  • the image area selection device selects the following from the captured image captured by the camera at the current time and the sensor information: A learning model (learning model 33a) that has been trained to predict captured images and sensor information after that time, and a heat map generation unit (heat map generator 331). Then, the learning model is optimized so that the values in the region necessary for prediction become larger or smaller so that the prediction error is reduced in the process of learning. Let the area be an important area (specific area Ai).
  • a model storage unit that stores a learning model (learning model 33a) for selecting an important region (specific region Ai) in a captured image; a learning unit for learning a learning model; a learning data storage unit for storing time-series learning data including at least captured images and sensor information obtained during the robot's work and used for learning the learning model; and a model storage.
  • an inference unit that infers important regions in the captured image using the learning model stored in the unit.
  • the camera image may be divided and an image may be displayed for each important area.
  • FIG. 6 The basic configuration of the robot control system according to the second embodiment is the same as the robot control system 100 shown in FIG.
  • FIG. 6 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when there are a plurality of camera images in the second embodiment.
  • the second embodiment is different from the first embodiment in that there are a plurality of camera images acquired by the camera 3, and the flowchart of FIG. 6 is different from that of FIG. 4 shown in the first embodiment.
  • the different parts are steps S14 and S16-S17. Since the processes of steps S11 to S13, S15 and S18 are the same as the processes of steps S1 to S3, S5 and S7 in FIG. 4, detailed description thereof will be omitted.
  • the inference unit 34 of the image region selection device 30 selects a plurality of camera images, the robot 10 and the environment. sensor information is acquired and input to the learning model 33a (S13), and an output (inference result) corresponding to the input is obtained.
  • the inference unit 34 outputs important regions and importance (heat map values) for each of the plurality of camera images as outputs for the input of the plurality of camera images, the sensor information of the robot 10 and the environment to the learning model 33a in step S13. (S14). In addition, the inference unit 34 acquires predicted values of a plurality of camera images, sensor information of the robot 10 and the environment as an output corresponding to the input of each data to the learning model 33a in step S13 (S15).
  • the inference unit 34 compares the degrees of importance acquired in step S14 among a plurality of camera images, and selects a camera image or demand area to be displayed (S16). In this example, two or more camera images are selected in descending order of importance.
  • the image region selection device 30 then transmits the camera image or the important region selected by the inference unit 34 to the image display device 40 . Thereby, the image region selection device 30 displays the camera image or the important region obtained by the inference unit 34 in step S14 on the image display device 40 (S17).
  • steps S15 and S17 After the processing of steps S15 and S17, the process returns to the determination processing of step S12, and if the work is not completed (NO in S12), the processing of steps S13 to S17 is repeated.
  • 7A to 7C show image display examples of the image display device 40. FIG.
  • FIG. 7A to 7C show examples of input camera images and obtained heat maps in the second embodiment.
  • FIG. 7A is an input camera image (image 81) of camera 3a
  • FIG. 7B is an input camera image (image 82) of a camera such as camera 3c that can overlook the entire robot 10
  • FIG. 7C is an input camera image of camera 3b. (image 83).
  • Images 81 to 83 in FIGS. 7A to 7C respectively show specific areas Ai1 to Ai3 having relatively higher heat map values than other pixels.
  • FIG. 8 shows an example of image display of the image display device 40 in the second embodiment.
  • an image 91 corresponds to the input camera image 81
  • an image 92 corresponds to the input camera image 82
  • an image 93 corresponds to the input camera image 83 .
  • FIGS. 7A to 7C when heat maps each including specific areas Ai1 to Ai3 are obtained for the plurality of input camera images 81 to 83 in FIG.
  • Priority is given to the camera image of the area with a high degree of importance with a large value of .
  • FIG. 8 shows an example in which camera images to be displayed are arranged in order (predetermined positions) according to the degree of importance of the camera images.
  • an image is displayed in a large size according to the degree of importance of the camera image, and other small images are displayed in a reduced size.
  • the heat map values in the specific areas Ai1 to Ai3 are larger in the order of Ai1>Ai2>Ai1. Therefore, on the display screen 90 shown in FIG. 8, an image 91 with the largest heat map value is displayed in the left and center areas, and an image 92 with the second heat map value and an image 93 with the third heat map value are displayed. , are reduced at the same reduction ratio and displayed vertically in the area on the right. It goes without saying that the arrangement of the image with the largest heat map value and the other images is not limited to the arrangement shown in FIG.
  • the area of the image to be displayed is determined according to the value (importance) of the heat map as shown in FIG. You can change it.
  • FIG. 9 shows another example of image display of the image display device 40 in the second embodiment.
  • the example shown in FIG. 9 is an example in which the area of the camera image to be displayed is changed according to the importance of the camera image.
  • Images 91A to 93A corresponding to the images 91 to 93 shown in FIG. 8 are displayed on the display screen 90A shown in FIG.
  • the relative positional relationship of the images 91A-93A and the ratio of the long side to the short side (aspect ratio) of each image are the same as those of the images 91-93.
  • the relation of the areas (sizes) of the images 91A-93A is different from that of the images 91-93. That is, in FIG. 9, the areas of the image 92A and the image 93A are different.
  • images may be displayed in larger sizes in descending order of heat map value (higher importance).
  • the display screen 90A has blank spaces below the image 91A and to the right of the image 93A.
  • the size, shape, and arrangement of the images 91A to 93A can be appropriately changed within the range of the rule that images are displayed larger in order of importance.
  • the robot control system 100 successively acquires the important regions and importance of the images that are important for the work of the robot 10 when there are a plurality of images captured by the camera 3. Then, by updating the display of images on the image display device 40 based on the degree of importance of each image, images important to the work are presented to the operator or supervisor according to the work situation. That is, the robot control system 100 uses the image region selection device 30 to compare the degrees of importance of a plurality of images captured by the camera 3, automatically selects an image based on the degree of importance, and displays it on the image display device 40. .
  • the robot control system 100 can reduce the load on the operator and the monitor due to switching between a plurality of images captured by the plurality of cameras 3 and movement of the line of sight.
  • a plurality of images such as an image from a bird's-eye view of the working environment and an image from a local viewpoint to prevent occlusion for fine positioning, can be automatically switched and displayed on the image display device 40 .
  • the configuration for cutting and enlarging the image area of the camera image in the first embodiment may be applied to the robot control system 100 according to the second embodiment that switches between a plurality of camera images. With this configuration, the effects of the first embodiment can be obtained in addition to the effects of the second embodiment.
  • a robot control system in which an operation command for the robot 10 is automatically generated and the robot 10 operates autonomously in parallel with displaying an image on the image display device 40. Description will be made with reference to FIG.
  • the basic configuration of the robot control system according to the third embodiment is the same as the robot control system 100 shown in FIG.
  • FIG. 10 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when automatically generating an action command for the robot 10 in the third embodiment.
  • the third embodiment differs from the first embodiment in that an operation command for the robot 10 is automatically generated. The difference is that step S27 is added. Since the processing of steps S21 to S26 and S28 is the same as the processing of steps S1 to S7 in FIG. 4, detailed description thereof will be omitted.
  • the weight area (and the degree of importance) of the acquired camera image and the predicted value are used to generate the motion command for the robot 10 .
  • the image region selection device 30 determines the motion of the robot 10 based on the important region (importance) of the camera image output from the learning model 33a by the inference unit 34, the camera image, and the predicted values of the sensor information of the robot 10 and the environment.
  • the robot 10 is controlled by sending commands to the robot control device 20 .
  • the input from the robot operating device 50 may be accepted so that the operator can operate the robot 10, or the input from the robot operating device 50 may not be accepted and the robot 10 may be operated completely automatically.
  • the processing of step S27 is as follows.
  • the inference unit 34 inputs to the robot control device 20 the predicted value regarding the motion of the robot 10 among the predicted values of the camera image, the robot 10, and the sensor information acquired in step S25 (S27 ).
  • the robot control device 20 outputs a control command to the robot 10 using the predicted value input from the image area selection device 30 as an action command, thereby controlling the action (work) of the robot 10 .
  • the predicted value regarding the motion of the robot 10 corresponds to the motion command of the robot 10, and includes, for example, the joint angle of the robot 10, the posture (position) and force (torque) of the end effector 11, and the like.
  • steps S26 and S27 After the processing of steps S26 and S27, the process returns to the judgment processing of step S22, and if the work is not completed (NO in S22), the processing of steps S23 to S27 is repeated.
  • the robot control system 100 updates the display of an image or an area within the image on the image display device 40 while the robot 10 automatically performs a task. , to present an image important to the work and a region within the image to the operator or supervisor according to the work situation.
  • the robot control system 100 according to the present embodiment allows the operator or the observer to switch between the image captured by the camera 3 or the area within the image and move the line of sight. In addition to being able to reduce the load caused by the robot 10, the robot 10 can be made to automatically perform the work.
  • the configuration for switching between a plurality of camera images in the second embodiment may be applied to the robot control system 100 according to the third embodiment that automatically generates motion commands for the robot 10 .
  • the effects of the second embodiment can be obtained in addition to the effects of the third embodiment.
  • the robot control system 100 according to the present embodiment can reduce the load on the operator or the observer due to switching between a plurality of images captured by the plurality of cameras 3 and movement of the line of sight, and in addition, the robot 10 can be automatically operated. can be implemented.
  • the robot operating device 50 of the robot control system 100 can be deleted.
  • the operator since the operator does not operate the robot operation device 50, confirmation of the work status using the image display device 40 for inputting operation commands may be unnecessary. Therefore, the image display device 40 of the robot control system 100 may be deleted. However, the image display device 40 may remain in the robot control system 100 in order for the observer to check the work status of the automatic operation of the robot 10 .
  • the image area selection device 30 and each camera 3, or the robot control device 20 and each camera 3 are configured to be able to communicate with each other, and each camera 3 is provided with a posture change function and a hardware zoom function.
  • each camera 3 is provided with a posture change function and a hardware zoom function.
  • the robot operation device 50 outputs commands such as camera posture and zoom to the camera 3 via the image area selection device 30 or the robot control device 20 .
  • the operator can change the posture and zoom the camera 3 for the purpose of displaying an image that facilitates the operation of the robot 10 .
  • the camera image at this time is used as learning data.
  • the image obtained by the camera 3 is not limited to being post-processed (clipping and enlarging the area) and displayed. It is possible to employ a configuration in which the image area selection device 30 directly gives a zoom command to the camera 3 to acquire an image depending on the situation.
  • each of the above configurations, functions, processing units, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit.
  • a broadly defined processor device such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) may be used.
  • each component of the image region selection device 30 may be implemented in the robot control device 20 . Further, the processing performed by a certain processing unit of the image region selection device 30 may be implemented by one piece of hardware, or may be implemented by distributed processing by a plurality of pieces of hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

One embodiment of the present invention comprises: a robot; a control device that transmits a control command to the robot; a camera that captures and obtains a captured image of at least a work environment of the robot; an image region selection device that selects at least one region of the captured image which is important for robot work, on the basis of the captured image, and sensor information acquired from a sensor that is placed on the robot and/or in the environment and that detects the state of the robot and/or the environment; and an image display device that displays the region of the captured image, which has been selected by the image region selection device.

Description

ロボット制御システム、ロボット制御方法及びプログラムRobot control system, robot control method and program
 本発明は、ロボットの作業状況を監視する機能を備えたロボット制御システム、ロボット制御方法、及びプログラムに関する。 The present invention relates to a robot control system, a robot control method, and a program that have a function of monitoring the work status of a robot.
 生産効率向上や人件費削減のため、工業製品の組立、溶接、搬送などの人が行っていた作業をロボットに代替させる取り組みが増えている。これらのロボットシステムでは、適切な位置にカメラを設置し、そのカメラの画像を基に人(操作者)がロボットを操作したり、自動でロボットを制御したりすることで作業を遂行することが多い。 In order to improve production efficiency and reduce labor costs, there is an increasing number of initiatives to substitute robots for tasks that were previously performed by humans, such as assembling, welding, and transporting industrial products. In these robot systems, a camera is installed at an appropriate position, and a person (operator) can operate the robot based on the image of the camera, or the robot can be automatically controlled to perform the work. many.
 このとき、カメラの適切な位置や画角、個数は、作業内容に依存している。例えば、作業対象物やロボットを含む作業領域が広い場合、広角なカメラを用いる必要があり、カメラ画像は大きくなる。そのため、操作者や監視者はカメラ画像をズームしたり、視線を動かしたりしながらカメラ画像を確認する必要がある。操作者は、ロボットを手動で操作する場合においてロボットを操作する人である。また、監視者は、ロボットを手動で操作する又は自動で動作させるいずれの場合において、ロボットの作業状況を監視する人である。手動操作の場合、操作者と監視者が同じであることもある。 At this time, the appropriate position, angle of view, and number of cameras depend on the content of the work. For example, when a work area including work objects and robots is large, it is necessary to use a wide-angle camera, and the camera image becomes large. Therefore, the operator or the supervisor needs to confirm the camera image while zooming the camera image or moving the line of sight. An operator is a person who operates a robot when the robot is operated manually. A supervisor is a person who monitors the working status of the robot, whether the robot is manually operated or automatically operated. In the case of manual operation, the operator and supervisor may be the same.
 また、ねじ締めなどを含む部品の組立作業などでは、状況の認識、動作計画のための作業環境を俯瞰する視点と、細かい位置決めのためにオクルージョンを防ぐ局所的な視点が必要である。そのため、操作者や監視者は、複数のカメラ画像を切り替えながら画像を確認する必要がある。 In addition, in parts assembly work that includes screw tightening, etc., it is necessary to have a bird's-eye view of the work environment for recognizing situations and planning operations, and a local perspective to prevent occlusion for fine positioning. Therefore, an operator or a supervisor needs to check images while switching between a plurality of camera images.
 以上のように、カメラ画像を用いたロボットシステムでは、操作者や監視者の視線移動や視点の切替えが必要となり、作業の負担となる。そのため、特許文献1では、ロボットを遠隔操作するために適切なカメラの画像を、予め記憶しておいたカメラ画像切替情報に基づいて自動で切り替えることが記載されている。 As described above, in a robot system that uses camera images, it is necessary for the operator or monitor to move the line of sight or switch the viewpoint, which is a burden on the work. Therefore, Japanese Patent Laid-Open No. 2002-200002 describes automatically switching a suitable camera image for remote-controlling a robot based on camera image switching information stored in advance.
国際公開2017/033359号明細書International Publication 2017/033359
 しかしながら、特許文献1に記載の技術は、複数のカメラ画像の切替えは可能であるが、カメラ画像の切り取りやズームについては言及していない。 However, although the technique described in Patent Document 1 enables switching between multiple camera images, it does not mention cropping or zooming of camera images.
 上記の状況から、ロボットの作業中にカメラで撮像された画像又は画像内の領域を切り替えて操作者や監視者に提示する手法が要望されていた。 In view of the above situation, there has been a demand for a method of switching between images captured by a camera while the robot is working or areas within images and presenting them to the operator or supervisor.
 上記課題を解決するために、本発明の一態様のロボット制御システムは、ロボットと、当該ロボットに制御指令を送信する制御装置と、少なくともロボットの作業環境を撮像して撮像画像を取得するカメラと、撮像画像と、ロボット及び/又は環境に配置された当該ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、ロボットの作業に重要な撮像画像の少なくとも一部の領域を選択する画像領域選択装置と、当該画像領域選択装置で選択された撮像画像の領域を表示する画像表示装置と、を備える。 In order to solve the above problems, a robot control system according to one aspect of the present invention includes a robot, a control device that transmits a control command to the robot, and a camera that captures at least a working environment of the robot and acquires a captured image. , at least a part of the captured image that is important for the work of the robot, based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the robot and/or the environment. and an image display device for displaying the captured image region selected by the image region selection device.
 本発明の少なくとも一態様によれば、カメラで撮像されたロボットの作業に重要な画像又は画像内の領域を選択して画像表示装置に表示する。これにより、自動で画像の切り取りやズームが可能となり、操作者や監視者の、カメラで撮像された画像の切替え及び視線移動の負荷を低減することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to at least one aspect of the present invention, an image or a region within the image that is important for the work of the robot captured by the camera is selected and displayed on the image display device. As a result, images can be automatically cropped and zoomed, and the burden of switching images captured by the camera and moving the line of sight of the operator and the monitor can be reduced.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明が適用されるロボット制御システムの構成例を示す概略図である。1 is a schematic diagram showing a configuration example of a robot control system to which the present invention is applied; FIG. ロボット制御システムが備える画像領域選択装置のハードウェア構成例を示すブロック図である。2 is a block diagram showing a hardware configuration example of an image area selection device included in the robot control system; FIG. ロボット制御システムが備える画像領域選択装置の内部構成例を示すブロック図である。3 is a block diagram showing an internal configuration example of an image area selection device included in the robot control system; FIG. 本発明の第1の実施形態における、カメラ画像が単一である場合の画像領域選択装置と画像表示装置の動作例を示すフローチャートである。4 is a flow chart showing an operation example of the image area selection device and the image display device when the camera image is a single image in the first embodiment of the present invention. 入力カメラ画像の例を示す図である。FIG. 4 is a diagram showing an example of an input camera image; FIG. 本発明の第1の実施形態における、入力カメラ画像に対するヒートマップの例を示す図である。FIG. 4 is a diagram showing an example of a heat map for an input camera image according to the first embodiment of the present invention; FIG. 本発明の第1の実施形態における、画像表示装置の画像表示の例を示す図である。FIG. 4 is a diagram showing an example of image display of the image display device in the first embodiment of the present invention; 本発明の第2の実施形態における、カメラ画像が複数である場合の画像領域選択装置と画像表示装置の動作例を示すフローチャートである。9 is a flow chart showing an operation example of the image area selection device and the image display device when there are a plurality of camera images in the second embodiment of the present invention. 本発明の第2の実施形態における、入力カメラ画像と得られたヒートマップの例(1)を示す図である。FIG. 10 is a diagram showing an example (1) of an input camera image and an obtained heat map in the second embodiment of the present invention; 本発明の第2の実施形態における、入力カメラ画像と得られたヒートマップの例(2)を示す図である。FIG. 10 is a diagram showing an example (2) of an input camera image and an obtained heat map in the second embodiment of the present invention; 本発明の第2の実施形態における、入力カメラ画像と得られたヒートマップの例(3)を示す図である。FIG. 10 is a diagram showing an example (3) of an input camera image and an obtained heat map in the second embodiment of the present invention; 本発明の第2の実施形態における、画像表示装置の画像表示の例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of image display of the image display device in the second embodiment of the present invention; 本発明の第2の実施形態における、画像表示装置の画像表示の他の例を示す説明図である。FIG. 10 is an explanatory diagram showing another example of image display of the image display device in the second embodiment of the present invention; 本発明の第3の実施形態における、ロボットの動作指令を自動で生成する場合の画像領域選択装置と画像表示装置の動作例を示すフローチャートである。13 is a flow chart showing an operation example of an image area selection device and an image display device when automatically generating an operation command for a robot according to the third embodiment of the present invention;
 以下、本発明を実施するための形態の例について、添付図面を参照して説明する。本明細書及び添付図面において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。 Hereinafter, examples of embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In this specification and the accompanying drawings, constituent elements having substantially the same function or configuration are denoted by the same reference numerals, and overlapping descriptions are omitted.
<第1の実施形態>
 まず、本発明の第1の実施形態に係るロボット制御システムについて図1~図4、図5A~図5Cを参照して説明する。
<First Embodiment>
First, a robot control system according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4 and 5A to 5C.
 図1は、本発明が適用されるロボット制御システムの構成例を示す概略図である。図1に示すロボット制御システム100において、ロボット10は、物体のハンドリングが可能であり、部品の組立や搬送などの所定の作業を実施するための装置である。ここで、ロボット10の構成は問わず、ロボットアーム単体でもよく、クローラや車輪などの移動装置を含むものでもよい。 FIG. 1 is a schematic diagram showing a configuration example of a robot control system to which the present invention is applied. In the robot control system 100 shown in FIG. 1, the robot 10 is a device capable of handling objects and performing predetermined work such as assembling and transporting parts. Here, the configuration of the robot 10 does not matter, and it may be a single robot arm, or may include a moving device such as a crawler or wheels.
 ロボット制御装置20は、当該ロボット制御装置20に入力されたロボット10の関節角や力(トルク)などの動作指令を基に、ロボット10に制御指令を出力してロボット10の動作を制御する装置である。制御指令は、例えばロボット10の関節やエンドエフェクタ11等に設けられたアクチュエータ(モータ等)に対する電流値や電圧値などを示す信号である。ロボット10は、ロボット制御装置20から制御指令を受信すると内蔵の駆動回路が該当するアクチュエータに駆動信号を供給する。 The robot control device 20 outputs control commands to the robot 10 based on motion commands such as joint angles and forces (torques) of the robot 10 input to the robot control device 20 to control the motion of the robot 10 . is. The control command is, for example, a signal indicating a current value, a voltage value, or the like for an actuator (such as a motor) provided at a joint of the robot 10, the end effector 11, or the like. When the robot 10 receives a control command from the robot controller 20, the built-in drive circuit supplies a drive signal to the corresponding actuator.
 なお、ロボット制御装置20は、カメラ3により撮像されたカメラ画像に基づいて、ロボット10の動作を自動で制御するように構成してもよい。ロボット制御装置20が自動でロボット10の動作を制御する構成については第3の実施形態で説明する。 The robot control device 20 may be configured to automatically control the motion of the robot 10 based on the camera image captured by the camera 3. A configuration in which the robot control device 20 automatically controls the motion of the robot 10 will be described in a third embodiment.
 カメラ3は、ロボット10の作業環境や周辺環境を撮像するための撮像装置である。カメラ3は、一台でもよく図1のように複数台あってもよい。図1では、カメラ3として3台のカメラ、すなわちカメラ3a,3b,3cが設置されている。カメラ3aはロボットアームに取り付けられており、カメラ3b,3cはロボット10の周辺(例えば、作業室や建物の壁)に設置されている。ここで、作業環境は、ロボット10の可動領域、すなわちロボット10が可動する範囲(作業エリア)に相当する。また、周辺環境は、ロボット10の可動領域外の周辺領域に相当する。カメラ3は、姿勢変更機能及びハードウェアによるズーム機能がないネットワークカメラを想定している。 The camera 3 is an imaging device for imaging the working environment of the robot 10 and the surrounding environment. The number of cameras 3 may be one or a plurality of them as shown in FIG. In FIG. 1, three cameras 3a, 3b, and 3c are installed as the cameras 3. In FIG. The camera 3a is attached to the robot arm, and the cameras 3b and 3c are installed around the robot 10 (for example, walls of a working room or a building). Here, the work environment corresponds to the movable area of the robot 10, that is, the range in which the robot 10 can move (work area). The surrounding environment corresponds to the surrounding area outside the movable area of the robot 10 . The camera 3 is assumed to be a network camera without attitude change function and hardware zoom function.
 本実施形態では、カメラ画像が単一の場合について述べ、第2の実施形態においてカメラ画像が複数の場合について述べる。 In this embodiment, the case of a single camera image will be described, and in the second embodiment, the case of multiple camera images will be described.
 画像領域選択装置30は、カメラ3により撮像されたカメラ画像、ロボット10及び/又は環境に配置されたセンサから得られた情報(以下「センサ情報」と呼ぶ)に基づいて、ロボット10の作業に重要な画像やその画像内の領域を選択する装置である。ここで、ロボット10や環境のセンサ情報の種類は問わない。例えば、センサ情報は、ロボット10の関節に備わっているモータの電流値、ロボット10に外付けされている触覚センサや慣性センサの出力信号などでもよい。さらに、センサ情報は、作業環境を計測している温度センサ、ロボット10の操作者に取り付けられている視線計測センサ(図示略)の出力信号などでもよい。このように、各センサは、ロボット10の状態及び/又は環境の状態を検出し、検出内容に応じた検出信号を出力する。 The image region selection device 30 selects the work of the robot 10 based on the information obtained from the camera image captured by the camera 3 and the sensors arranged in the robot 10 and/or the environment (hereinafter referred to as "sensor information"). It is a device that selects important images and areas within those images. Here, the type of sensor information of the robot 10 and the environment does not matter. For example, the sensor information may be a current value of a motor provided in a joint of the robot 10, an output signal of a tactile sensor or an inertial sensor externally attached to the robot 10, or the like. Furthermore, the sensor information may be a temperature sensor that measures the work environment, an output signal from a line-of-sight sensor (not shown) attached to the operator of the robot 10, or the like. In this way, each sensor detects the state of the robot 10 and/or the state of the environment, and outputs a detection signal according to the content of detection.
 画像表示装置40は、画像領域選択装置30で選択された画像や当該画像内の領域を選択的に表示する装置である。ロボット操作装置50は、ロボット10の動作に対応するボタンやジョイスティックなどを備え、操作者の入力を受け付けてその内容に応じた操作指令をロボット制御装置20に送信する装置である。 The image display device 40 is a device that selectively displays the image selected by the image region selection device 30 and the region within the image. The robot operating device 50 is provided with buttons, a joystick, and the like corresponding to the motion of the robot 10 , and is a device that receives input from the operator and transmits an operation command corresponding to the content of the input to the robot control device 20 .
[各装置のハードウェア構成]
 次に、ロボット制御システム100が備える画像領域選択装置30のハードウェア構成について図2を参照して説明する。ここでは、画像領域選択装置30が備える計算機のハードウェア構成例を説明する。
[Hardware configuration of each device]
Next, the hardware configuration of the image area selection device 30 included in the robot control system 100 will be described with reference to FIG. Here, a hardware configuration example of a computer included in the image region selection device 30 will be described.
 図2は、画像領域選択装置30が備える計算機のハードウェア構成例を示すブロック図である。図示する計算機60は、ロボット制御装置20及び画像領域選択装置30で使用されるコンピューターを構成するハードウェアの一例である。計算機60には、例えばパーソナルコンピュータを用いることができる。 FIG. 2 is a block diagram showing a hardware configuration example of a computer included in the image area selection device 30. As shown in FIG. The illustrated computer 60 is an example of hardware that constitutes a computer used in the robot control device 20 and the image area selection device 30 . A personal computer, for example, can be used as the computer 60 .
 計算機60は、バス64にそれぞれ接続されたCPU(Central Processing Unit)61、ROM(Read Only Memory)62、及びRAM(Random Access Memory)63を備える。さらに、計算機60は、不揮発性ストレージ66、入出力インターフェース67、及びネットワークインターフェース68を備える。 The computer 60 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, and a RAM (Random Access Memory) 63 connected to a bus 64 respectively. Computer 60 further comprises non-volatile storage 66 , input/output interface 67 and network interface 68 .
 CPU61は、本実施形態に係る画像領域選択装置30の機能を実現するソフトウェアのプログラムコードをROM62から読み出し、該プログラムをRAM63にロードして実行する。RAM63には、CPU61の演算処理の途中で発生した変数やパラメーター等が一時的に書き込まれる。RAM63に書き込まれた変数やパラメーターなどは、CPU61によって適宜読み出される。演算処理装置としてCPU61を用いているが、MPU(Micro Processing Unit)等の他のプロセッサを用いてもよい。 The CPU 61 reads the program code of the software that implements the functions of the image area selection device 30 according to this embodiment from the ROM 62, loads the program into the RAM 63, and executes it. In the RAM 63, variables, parameters, etc. generated during the arithmetic processing of the CPU 61 are temporarily written. Variables and parameters written in the RAM 63 are appropriately read by the CPU 61 . Although the CPU 61 is used as the arithmetic processing unit, other processors such as MPU (Micro Processing Unit) may be used.
 不揮発性ストレージ66は、記録媒体の一例であり、プログラムが使用するデータやプログラムを実行して得られたデータなどを保存することが可能である。例えば、不揮発性ストレージ66には、後述する学習用データや学習モデル等が保存される。また、不揮発性ストレージ66に、OS(Operating System)や、CPU61が実行するプログラムを記録してもよい。不揮発性ストレージ66としては、半導体メモリやHDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気や光を利用するディスク装置等が用いられる。 The non-volatile storage 66 is an example of a recording medium, and can store data used by programs and data obtained by executing programs. For example, the nonvolatile storage 66 stores learning data, learning models, etc., which will be described later. Also, an OS (Operating System) and a program executed by the CPU 61 may be recorded in the nonvolatile storage 66 . As the nonvolatile storage 66, a semiconductor memory, a HDD (Hard Disk Drive), an SSD (Solid State Drive), a disk device using magnetism or light, or the like is used.
 入出力インターフェース67は、ロボット制御システム100が備える各センサや各アクチュエータと信号やデータの通信を行うインターフェースである。入出力インターフェース67が、入力信号又は出力信号を処理する図示しないA/D(Analog/digital)変換器、及び/又は、D/A変換器を兼ねてもよい。本明細書のセンサ情報には、各センサだけではなく各アクチュエータから得られる情報も含まれる。 The input/output interface 67 is an interface that communicates signals and data with each sensor and each actuator provided in the robot control system 100 . The input/output interface 67 may also serve as an A/D (Analog/digital) converter and/or a D/A converter (not shown) that processes an input signal or an output signal. The sensor information herein includes information obtained from each actuator as well as from each sensor.
 ネットワークインターフェース68は、例えばNIC(Network Interface Card)やモデム等が用いられる。ネットワークインターフェース68は、端子が接続されたLANやインターネット等の通信ネットワーク又は専用線等を介して、外部装置との間で各種のデータを送受信することが可能に構成されている。 For the network interface 68, for example, a NIC (Network Interface Card), modem, or the like is used. The network interface 68 is configured to be capable of transmitting and receiving various data to and from an external device via a communication network such as a LAN or the Internet to which terminals are connected, a dedicated line, or the like.
[画像領域選択装置の内部構成]
 図3は、画像領域選択装置30の内部構成例を示すブロック図である。画像領域選択装置30は、学習用データ記憶部31、学習部32、学習モデル記憶部33、及び推論部34を備える。
[Internal configuration of image area selection device]
FIG. 3 is a block diagram showing an internal configuration example of the image region selection device 30. As shown in FIG. The image region selection device 30 includes a learning data storage unit 31 , a learning unit 32 , a learning model storage unit 33 and an inference unit 34 .
 学習用データ記憶部31は、学習モデル33aの学習に用いる学習用データを記憶する。学習用データには、少なくともロボット10の作業中に時系列に取得した、ロボット10の作業環境や周辺環境を撮像したカメラ画像と、ロボット10や環境のセンサ情報とが含まれる。 The learning data storage unit 31 stores learning data used for learning the learning model 33a. The learning data includes at least camera images of the work environment of the robot 10 and the surrounding environment acquired in time series during the work of the robot 10, and sensor information of the robot 10 and the environment.
 学習部32は、学習用データ記憶部31に記憶されている学習用データを用いて、ロボット10や環境のセンサ情報の予測値と、ヒートマップ(カメラ画像の重要領域、重要度)とを学習モデル33aに学習させる。例えば、学習部32は、機械学習により学習モデル33aの学習を実施して学習モデル33aのモデルパラメーターを調整する。学習モデル33aは、一例としてニューラルネットワークを用いて構成することができる。学習モデル33aの学習方法は、ニューラルネットワークを用いた深層学習による機械学習に限らず、他の学習方法であってもよい。 The learning unit 32 uses learning data stored in the learning data storage unit 31 to learn predicted values of sensor information of the robot 10 and the environment, and heat maps (important areas of camera images, importance). Let the model 33a learn. For example, the learning unit 32 adjusts the model parameters of the learning model 33a by learning the learning model 33a through machine learning. The learning model 33a can be configured using a neural network as an example. The learning method of the learning model 33a is not limited to machine learning based on deep learning using a neural network, and other learning methods may be used.
 学習モデル記憶部33は、学習モデル33aとそのモデルパラメーターを記憶する。例えば、学習モデル33aにニューラルネットワークを用いた場合、モデルパラメーターは、ニューラルネットワークを構成する各ニューロン間の結合度やニューロンの発火閾値等の重みである。学習モデル記憶部33は、一例として不揮発性ストレージ66により実現される。学習モデル記憶部33に記憶されている学習モデル33aは、学習の結果(モデルパラメーター)が反映された学習済みモデル(推論プログラム)である。 The learning model storage unit 33 stores the learning model 33a and its model parameters. For example, when a neural network is used for the learning model 33a, the model parameters are weights such as the degree of connectivity between neurons forming the neural network and the firing threshold of neurons. The learning model storage unit 33 is realized by the nonvolatile storage 66 as an example. The learning model 33a stored in the learning model storage unit 33 is a trained model (inference program) in which learning results (model parameters) are reflected.
 推論部34は、学習モデル記憶部33に記憶された学習モデル33aを用いて、入力されるカメラ画像と、ロボット10や環境のセンサ情報とについて推論(予測)を行い、それらの予測値を出力する。また、推論部34は、ヒートマップを生成するヒートマップ生成部331を備え、学習モデル33aを用いて、入力カメラ画像に対してヒートマップ(重要領域、重要度)を推論する。ヒートマップ及びヒートマップ生成部331の詳細については後述する。推論部34が推論した結果は、ロボット制御装置20及び画像表示装置40に出力される。推論部34は、推論結果に基づいてカメラ画像を処理(後処理)し、画像表示装置40で画像の表示に必要なデータを出力する。カメラ画像の処理として、例えば特定領域を切り取って拡大処理することが挙げられる。 The inference unit 34 uses the learning model 33a stored in the learning model storage unit 33 to infer (predict) the input camera image and the sensor information of the robot 10 and the environment, and outputs their predicted values. do. The inference unit 34 also includes a heat map generation unit 331 that generates a heat map, and uses the learning model 33a to infer a heat map (important region, importance) for the input camera image. Details of the heat map and the heat map generator 331 will be described later. The result of inference by the inference unit 34 is output to the robot control device 20 and the image display device 40 . The inference unit 34 processes (post-processes) the camera image based on the inference result, and outputs data necessary for displaying the image on the image display device 40 . As the processing of the camera image, for example, cutting out a specific area and enlarging it can be mentioned.
 次に、ロボット制御システム100において、画像領域選択装置30が、ロボット10が作業を実施するために重要なカメラ画像内の領域(以下「重要領域」と呼ぶ)を選択する方法の一例を説明する。カメラ画像内の重要領域を選択する方法は、教示フェーズと運用フェーズに分かれる。例えば、ロボット制御システム100に学習モードと操作モードを用意し、ロボット操作装置50で不図示のメニュー画面に表示された学習モードと操作モードのいずれかを選択することで、教示フェーズ又は運用フェーズに移行する。 Next, in the robot control system 100, an example of how the image area selection device 30 selects an important area in the camera image for the robot 10 to perform a task (hereinafter referred to as "important area") will be described. . The method of selecting important regions in the camera image is divided into a teaching phase and an operating phase. For example, by preparing a learning mode and an operation mode in the robot control system 100 and selecting either the learning mode or the operation mode displayed on a menu screen (not shown) with the robot operation device 50, the teaching phase or the operation phase can be started. Transition.
[ロボット制御システムの教示フェーズ]
 教示フェーズでは、はじめに画像領域選択装置30の画像領域選択機能を無効にした状態で、ロボット10を用いて作業を実施する。画像領域選択装置30は、その作業中に取得されたカメラ画像、ロボット10や環境のセンサ情報を学習用データとして、学習用データ記憶部31に保存する。このときの学習用データを教師データとして学習部32での学習が行われる。なお、操作者がロボット操作装置50を用いてロボット10を制御してもよく、又は予め計画されたロボット10の動作を自動でロボット10に再生させてもよい。
[Teaching phase of robot control system]
In the teaching phase, the robot 10 is used to perform the work with the image area selection function of the image area selection device 30 disabled. The image area selection device 30 saves the camera image acquired during the work and the sensor information of the robot 10 and the environment as learning data in the learning data storage unit 31 . Learning in the learning unit 32 is performed using the learning data at this time as teacher data. The operator may control the robot 10 using the robot operating device 50 , or the robot 10 may automatically reproduce the previously planned motion of the robot 10 .
 次に、画像領域選択装置30の学習部32において、ロボット10がある作業をする際に、現在時刻(例えば時刻t)のカメラ画像と、ロボット10や環境のセンサ情報とから、次時刻(例えば時刻t+1)以降のカメラ画像と、ロボット10や環境のセンサ情報とを予測する学習モデル33aのモデルパラメーターを学習し、学習モデル記憶部33に記憶する。学習モデル33aの学習は作業の種類ごとに実施する。さらに、一種類の作業で複数回学習を実施することで、学習の精度が高まる。 Next, in the learning unit 32 of the image region selection device 30, when the robot 10 performs a certain task, the next time (for example, The model parameters of the learning model 33 a that predicts the camera image after time t+1) and the sensor information of the robot 10 and the environment are learned and stored in the learning model storage unit 33 . The learning of the learning model 33a is performed for each work type. Furthermore, the accuracy of learning increases by performing learning multiple times for one type of work.
 上述したように、学習モデル33aは、内部にカメラ画像内の領域、特に上記予測に必要な画像領域(重要領域)を示すヒートマップを生成するヒートマップ生成部331を有する。学習モデル33aは、ヒートマップ生成部331により、学習の過程において各データについての予測誤差が低減するように、予測に必要な画像領域ではヒートマップの値が大きく、又は小さくなるよう最適化する構成になっている。各データとは、カメラ画像、ロボット10や環境のセンサ情報である。そして、学習部32は、学習モデル33aのヒートマップ生成部331で生成されたヒートマップの値が、設定した閾値以上となる領域を重要領域とするように構成されている。本実施形態の重要領域は、少なくともカメラ画像の一部を想定しているが画像全体であってもよい。 As described above, the learning model 33a has a heat map generation unit 331 that generates a heat map indicating areas within the camera image, particularly image areas (important areas) necessary for the prediction. The learning model 33a is configured such that the heat map generation unit 331 optimizes the heat map value so that the image region necessary for prediction is large or small so that the prediction error for each data is reduced in the process of learning. It has become. Each data is a camera image, sensor information of the robot 10 and the environment. Then, the learning unit 32 is configured so as to set an area in which the values of the heat map generated by the heat map generating unit 331 of the learning model 33a are equal to or greater than the set threshold value as the important area. The important area in this embodiment is assumed to be at least part of the camera image, but may be the entire image.
 学習モデル33aは、時刻t+1におけるカメラ画像、ロボット10や環境のセンサ情報と、学習モデル記憶部33に記憶されている当該時刻t+1に相当するカメラ画像、ロボット10や環境のセンサ情報とを比較し、各データの誤差(予測誤差に該当)を算出する。本実施形態では、このヒートマップの値をカメラ画像内の領域の「重要度」とみなす。ここで、画像の領域は一定の面積を有する領域に限らない。画像の領域は点でもよく、ヒートマップの値はその点における1つの値でもよい。 The learning model 33a is composed of a camera image at time t+1, sensor information of the robot 10 and the environment, and a camera image corresponding to the time t+1 stored in the learning model storage unit 33, and sensor information of the robot 10 and the environment. and calculate the error of each data (corresponding to the prediction error). In this embodiment, the value of this heat map is regarded as the "importance" of the region in the camera image. Here, the image region is not limited to a region having a certain area. A region of an image can be a point and a heatmap value can be a single value at that point.
 ロボット10の作業に重要な画像又は当該画像内の領域は、所定の領域探索アルゴリズムに従って探索する。領域の形状は円形を想定するが、楕円形や四角形でもよい。一例として、次のような領域探索アルゴリズムが考えられる。まず、学習モデル33aは、カメラ画像内の作業対象物を検知し、作業種類と作業対象物等に基づいて画像内で探索の基準となる位置(x座標、y座標)を設定する。学習モデル33aは、その基準位置を中心とするある半径内に含まれる複数画素で仮領域を構成し、その仮領域の画像を用いて予測誤差を計算する。次いで、学習モデル33aは、仮領域の範囲を変えて(例えば範囲を小さくする)予測誤差を計算する。 An image or a region within the image that is important for the work of the robot 10 is searched according to a predetermined region search algorithm. The shape of the area is assumed to be circular, but may be elliptical or rectangular. As an example, the following area search algorithm is conceivable. First, the learning model 33a detects a work object in a camera image, and sets a position (x coordinate, y coordinate) as a search reference in the image based on the work type, the work object, and the like. The learning model 33a configures a temporary area with a plurality of pixels contained within a certain radius centered on the reference position, and calculates a prediction error using the image of the temporary area. Next, the learning model 33a changes the range of the temporary region (for example, reduces the range) and calculates the prediction error.
 そして、学習モデル33aは、前回の仮領域を用いた場合の予測誤差と今回の仮領域を用いた場合の予測誤差とを比較し、前回よりも予測誤差が減少するかどうかを判定する。学習モデル33aは、予測誤差が小さくなればさらに仮領域の範囲を小さくして予測誤差の計算及び比較を行い、これらの処理を繰り返す。予測誤差が徐々に減少した後に増加に転じた場合、予測誤差が増加に転じる直前の範囲及び基準位置を持つ仮領域がロボット10の作業に重要な領域であると考えられる。 Then, the learning model 33a compares the prediction error when using the previous provisional region and the prediction error when using the current provisional region, and determines whether the prediction error decreases from the previous time. If the prediction error becomes smaller, the learning model 33a further reduces the range of the temporary region, calculates and compares the prediction error, and repeats these processes. When the prediction error gradually decreases and then increases, the temporary area having the range and the reference position immediately before the prediction error starts to increase is considered to be an important area for the work of the robot 10 .
 さらに、仮領域の範囲だけではく、仮領域の画像内の基準位置を変更して予測誤差の計算及び比較を行うことで、ロボット10の作業により重要と推定できる領域を特定することができる。学習モデル33aのヒートマップ生成部331は、このような領域の範囲設定、予測誤差の計算及び比較の過程で、画像内の画素毎に又は領域を代表する画素に対して、予測誤差に応じてヒートマップの値を付与することでヒートマップを生成する。上述したように、ヒートマップの値が、設定した閾値以上となる画素からなる領域が重要領域として特定される。なお、作業の種類(例えば、俯瞰した視点が必要な作業など)によっては、仮領域の範囲を大きくしながら予測誤差の計算及び比較を行い、ロボット10の作業に重要な領域を特定する。 Furthermore, by calculating and comparing prediction errors by changing not only the range of the temporary area but also the reference position in the image of the temporary area, it is possible to specify an area that can be estimated to be important for the work of the robot 10 . The heat map generator 331 of the learning model 33a calculates the prediction error for each pixel in the image or for the pixel representing the region in the process of setting the range of the region and calculating and comparing the prediction error. Generate a heatmap by giving heatmap values. As described above, a region composed of pixels whose heat map values are greater than or equal to a set threshold is specified as an important region. Note that depending on the type of work (for example, work that requires a bird's-eye view), calculation and comparison of prediction errors are performed while enlarging the range of the temporary area, and areas important to the work of the robot 10 are specified.
[ロボット制御システムの運用フェーズ]
 次に、ロボット制御システム100の運用フェーズについて図4を参照して説明する。 図4は、カメラ画像が単一である場合の、画像領域選択装置30の推論部34と画像表示装置40の動作例を示すフローチャートである。まず、ロボット制御装置20はロボット操作装置50から操作者が入力したロボット10の動作指令を受信し、動作指令に基づいてロボット10を制御するための各アクチュエータに対する制御指令を生成する。動作指令は、例えばロボット10の関節角、エンドエフェクタ11の姿勢(位置)や力(トルク)などである。ロボット10は、ロボット制御装置20から制御指令を受信して動作(作業)を開始する(S1)。
[Robot control system operation phase]
Next, operation phases of the robot control system 100 will be described with reference to FIG. FIG. 4 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when the camera image is a single image. First, the robot control device 20 receives an operation command for the robot 10 input by the operator from the robot operation device 50, and generates a control command for each actuator for controlling the robot 10 based on the operation command. The motion command is, for example, the joint angle of the robot 10, the posture (position) and force (torque) of the end effector 11, and the like. The robot 10 receives a control command from the robot control device 20 and starts an operation (work) (S1).
 次いで、操作者又は監視者は、画像表示装置40の画面に表示されたカメラ画像を確認してロボット10の作業が完了したかどうかを判断する(S2)。例えば、画像表示装置40に表示されたカメラ画像内に作業完了ボタン74(後述する図5C参照)のアイコンが表示される。操作者又は監視者は、作業が完了したと判断した場合、ロボット操作装置50により作業完了ボタン74のアイコンをクリック操作する。画像領域選択装置30の推論部34は、作業完了ボタン74が操作されたことを検知すると、作業が完了したと判定する。なお、ロボット操作装置50に機械的な作業終了ボタンが配置されていてもよい。 Next, the operator or supervisor confirms the camera image displayed on the screen of the image display device 40 and determines whether the work of the robot 10 has been completed (S2). For example, an icon of a work completion button 74 (see FIG. 5C described later) is displayed in the camera image displayed on the image display device 40 . When the operator or supervisor determines that the work is completed, the robot operation device 50 is used to click the icon of the work completion button 74 . When the inference unit 34 of the image area selection device 30 detects that the work completion button 74 has been operated, it determines that the work has been completed. A mechanical work end button may be arranged on the robot operating device 50 .
 操作者又は監視者は、ロボット10の作業が完了したと判断した場合(S2のYES)、作業完了ボタン74を操作した後、ロボット10の作業を終了する(S7)。 When the operator or supervisor determines that the work of the robot 10 is completed (YES in S2), the work of the robot 10 is finished after operating the work completion button 74 (S7).
 一方、操作者又は監視者がロボット10の作業は完了していないと判断した場合(S2のNO)、推論部34は、カメラ画像と、ロボット10や環境のセンサ情報とを取得して学習モデル33aに入力し(S3)、当該入力に対する出力(推論結果)を得る。 On the other hand, if the operator or supervisor determines that the work of the robot 10 has not been completed (NO in S2), the inference unit 34 acquires the camera image and the sensor information of the robot 10 and the environment to create a learning model. 33a (S3) to obtain an output (inference result) corresponding to the input.
 次いで、推論部34は、ステップS3における学習モデル33aへのカメラ画像、ロボット10や環境のセンサ情報の入力に対する出力として、カメラ画像の重要領域を取得する(S4)。カメラ画像の重要領域は、ヒートマップの値(重要度)が高い領域に対応する。また、推論部34は、ステップS3における学習モデル33aへの各データの入力に対する出力として、カメラ画像及び、ロボット10や環境のセンサ情報の予測値を取得する(S5)。なお、この予測値は、第3の実施形態においてロボット10が自動で作業を実施する場合に使用する。 Next, the inference unit 34 acquires the important region of the camera image as an output in response to the input of the camera image to the learning model 33a in step S3, the sensor information of the robot 10 and the environment (S4). The important areas of the camera image correspond to areas with high values (importance) in the heatmap. In addition, the inference unit 34 acquires predicted values of the camera image and the sensor information of the robot 10 and the environment as an output corresponding to the input of each data to the learning model 33a in step S3 (S5). This predicted value is used when the robot 10 automatically performs the work in the third embodiment.
 次いで、画像領域選択装置30は、推論部34で推論されたカメラ画像の重要領域の情報(例えば、位置、範囲)を画像表示装置40へ送信する。これにより、画像領域選択装置30は、ステップS4において推論部34で得られたカメラ画像内の重要領域を含む画像を画像表示装置40に表示する(S6)。結果として、画像表示装置40は、カメラ画像内の重要領域を画面に拡大して表示する。ステップS5及びS6の処理後、ステップS2の判断処理に戻り、作業が完了したと判断されない場合には、カメラ画像と、ロボット10や環境のセンサ情報とが学習モデル33aに入力される。このように、作業が完了したと判断されるまで、すなわち作業開始から作業終了までステップS2~S6の処理が繰り返される。図5Cに、画像表示装置40の画像表示例を示す。 Next, the image area selection device 30 transmits information (for example, position, range) of the important area of the camera image inferred by the inference unit 34 to the image display device 40 . As a result, the image region selection device 30 displays on the image display device 40 an image including the important region in the camera image obtained by the inference unit 34 in step S4 (S6). As a result, the image display device 40 enlarges and displays the important area in the camera image on the screen. After the processing of steps S5 and S6, the process returns to the judgment processing of step S2, and if it is not judged that the work is completed, the camera image and the sensor information of the robot 10 and the environment are input to the learning model 33a. In this way, the processing of steps S2 to S6 is repeated until it is determined that the work is completed, that is, from the start of the work to the end of the work. FIG. 5C shows an image display example of the image display device 40 .
[画像表示例]
 図5A~図5Cは、第1の実施形態における入力カメラ画像に対するヒートマップと画像表示の例を示す。図5Aは入力カメラ画像、図5Bはヒートマップ、及び図5Cは画像表示装置40の画像表示例である。図5Bに示すヒートマップの例では、一例としてヒートマップの値が大きい領域すなわち重要度が高い領域を濃く表現し、ヒートマップの値が小さい領域すなわち重要度が低い領域を薄く表現している。
[Image display example]
5A to 5C show examples of heat maps and image displays for input camera images in the first embodiment. 5A is an input camera image, FIG. 5B is a heat map, and FIG. 5C is an image display example of the image display device 40. FIG. In the example of the heat map shown in FIG. 5B, as an example, areas with high heat map values, i.e., areas with high importance, are expressed darkly, and areas with small heat map values, i.e., areas with low importance, are expressed lightly.
 図5Aに示す入力カメラ画像71に対し、図5Bに示すヒートマップ72が得られた場合、画像表示装置40は、ヒートマップ72の値が大きい領域(特定領域Ai)の画像を図5Cのように表示する。図5Cでは、入力カメラ画像71のうち、ヒートマップ72の特定領域Aiに対応する領域が拡大して表示された画像73の例が示されている。具体的には、画像73では、入力カメラ画像である画像71の作業対象物12とエンドエフェクタ11を含む局所領域が拡大処理されている。 When the heat map 72 shown in FIG. 5B is obtained for the input camera image 71 shown in FIG. 5A, the image display device 40 displays the image of the area (specific area Ai) having a large value in the heat map 72 as shown in FIG. 5C. to display. FIG. 5C shows an example of an image 73 in which an area corresponding to the specific area Ai of the heat map 72 in the input camera image 71 is enlarged and displayed. Specifically, in the image 73, the local area including the work object 12 and the end effector 11 of the image 71, which is the input camera image, is enlarged.
 以上のとおり、第1の実施形態に係るロボット制御システム(ロボット制御システム100)は、作業を行うロボット(ロボット10)と、動作指令に基づいてロボットに制御指令を送信する制御装置(ロボット制御装置20)と、少なくともロボットの作業環境を撮像して撮像画像を取得するカメラ(カメラ3)と、その撮像画像と、ロボット及び/又は環境に配置されたロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、ロボットの作業に重要な撮像画像の少なくとも一部の領域を選択する画像領域選択装置(画像領域選択装置30)と、その画像領域選択装置で選択された撮像画像の領域を表示する画像表示装置(画像表示装置40)と、を備えるように構成される。 As described above, the robot control system (robot control system 100) according to the first embodiment includes a robot (robot 10) that performs a task and a control device (robot control device) that transmits control commands to the robot based on motion commands. 20), a camera (camera 3) that captures at least the work environment of the robot and acquires a captured image, the captured image, the state of the robot and/or the robot placed in the environment, and/or the state of the environment. an image region selection device (image region selection device 30) that selects at least a partial region of the captured image that is important for the work of the robot, based on the sensor information acquired from the sensor, and the image region selection device that is selected by the image region selection device. and an image display device (image display device 40) for displaying the captured image area.
 上記のように構成された第1の実施形態に係るロボット制御システム100は、逐次カメラ3で撮像された画像の重要領域を取得し、画像表示装置40における画像又はその画像内の領域の表示を更新することで、作業状況に応じて作業に重要な画像やその画像内の領域を操作者や監視者に提示する。すなわち、ロボット制御システム100は、画像領域選択装置30により、カメラ3で撮像されたロボット10の作業に重要な画像又はその画像内の領域を、自動で切り取って画像表示装置40に拡大表示する。これにより、ロボット制御システム100は、操作者や監視者の、カメラ3で撮像された画像又はその画像内の領域の切替え及び視線移動による負荷を低減することができる。例えば、作業領域が広いために作業環境を俯瞰する視点からの画像や、細かい部分の情報が必要な視点からの画像を自動で切り替えて画像表示装置40に表示することができる。 The robot control system 100 according to the first embodiment configured as described above sequentially acquires the important regions of the image captured by the camera 3, and displays the image or the region within the image on the image display device 40. By updating, images important for work and areas within the images are presented to the operator or supervisor according to the work situation. That is, the robot control system 100 uses the image area selection device 30 to automatically cut out an image that is important for the work of the robot 10 captured by the camera 3 or an area within the image, and enlarge and display it on the image display device 40 . As a result, the robot control system 100 can reduce the load on the operator or the observer due to switching between images captured by the camera 3 or areas within the images and movement of the line of sight. For example, since the work area is wide, an image from a viewpoint that overlooks the work environment and an image from a viewpoint that requires detailed information can be automatically switched and displayed on the image display device 40 .
 また、第1の実施形態に係るロボット制御システム(ロボット制御システム100)では、画像領域選択装置(画像領域選択装置30)は、現在時刻におけるカメラで撮像された撮像画像とセンサ情報とから、次時刻以降の撮像画像とセンサ情報とを予測するように学習された学習モデル(学習モデル33a)と、当該学習モデルの内部に撮像画像中の領域を示すヒートマップを生成するヒートマップ生成部(ヒートマップ生成部331)と、を有するように構成されている。そして、学習モデルは、学習の過程において予測誤差が低減するように、予測に必要な領域では値が大きくなる又は小さくなるように最適化される上記ヒートマップの値が、設定した閾値以上となる領域を重要領域(特定領域Ai)とする。 Further, in the robot control system (robot control system 100) according to the first embodiment, the image area selection device (image area selection device 30) selects the following from the captured image captured by the camera at the current time and the sensor information: A learning model (learning model 33a) that has been trained to predict captured images and sensor information after that time, and a heat map generation unit (heat map generator 331). Then, the learning model is optimized so that the values in the region necessary for prediction become larger or smaller so that the prediction error is reduced in the process of learning. Let the area be an important area (specific area Ai).
 また、第1の実施形態に係るロボット制御システム(ロボット制御システム100)では、撮像画像中の重要領域(特定領域Ai)を選択するための学習モデル(学習モデル33a)を記憶するモデル記憶部と、学習モデルを学習する学習部と、少なくともロボットの作業中に得られる撮像画像及びセンサ情報を含み、学習モデルの学習に用いる時系列の学習用データを記憶する学習用データ記憶部と、モデル記憶部に記憶された学習モデルを用いて、撮像画像中の重要領域を推論する推論部と、を備える。 Further, in the robot control system (robot control system 100) according to the first embodiment, a model storage unit that stores a learning model (learning model 33a) for selecting an important region (specific region Ai) in a captured image; a learning unit for learning a learning model; a learning data storage unit for storing time-series learning data including at least captured images and sensor information obtained during the robot's work and used for learning the learning model; and a model storage. an inference unit that infers important regions in the captured image using the learning model stored in the unit.
 なお、重要領域は1つのカメラ画像に対し複数あってもよい。例えば、カメラ画像内に複数の重要領域が存在する場合には、カメラ画像を分割して重要領域ごとに画像を表示するなどしてもよい。このとき、カメラ画像に重要領域が多数存在する場合には、ステップS4において重要領域ごとに重要度を取得し、重要度がより高い重要領域の画像から優先的に表示するようにするとよい。 Note that there may be a plurality of important areas for one camera image. For example, when a plurality of important areas exist within a camera image, the camera image may be divided and an image may be displayed for each important area. At this time, if there are a large number of important areas in the camera image, it is preferable to obtain the degree of importance for each important area in step S4, and to display the image of the important area with the highest degree of importance first.
<第2の実施形態>
 次に、本発明の第2の実施形態として、カメラ画像が複数の場合におけるロボット制御システムについて図6から図9を参照して説明する。第2の実施形態に係るロボット制御システムの基本構成は、図1に示したロボット制御システム100と同じである。
<Second embodiment>
Next, as a second embodiment of the present invention, a robot control system in which there are a plurality of camera images will be described with reference to FIGS. 6 to 9. FIG. The basic configuration of the robot control system according to the second embodiment is the same as the robot control system 100 shown in FIG.
 図6は、第2の実施形態におけるカメラ画像が複数である場合の、画像領域選択装置30の推論部34と画像表示装置40の動作例を示すフローチャートである。第2の実施形態では、カメラ3で取得したカメラ画像が複数ある点が第1の実施形態と比較した場合の変更点であり、図6のフローチャートが第1の実施形態で示した図4と異なる部分は、ステップS14,S16~S17である。ステップS11~S13,S15,S18の処理は、図4のステップS1~S3,S5,S7の処理と同じであるため詳細な説明はしない。 FIG. 6 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when there are a plurality of camera images in the second embodiment. The second embodiment is different from the first embodiment in that there are a plurality of camera images acquired by the camera 3, and the flowchart of FIG. 6 is different from that of FIG. 4 shown in the first embodiment. The different parts are steps S14 and S16-S17. Since the processes of steps S11 to S13, S15 and S18 are the same as the processes of steps S1 to S3, S5 and S7 in FIG. 4, detailed description thereof will be omitted.
 図6において、操作者又は監視者によりロボット10の作業が完了していないと判断された場合(S12のNO)、画像領域選択装置30の推論部34は、複数のカメラ画像、ロボット10や環境のセンサ情報を取得して学習モデル33aに入力し(S13)、当該入力に対する出力(推論結果)を得る。 In FIG. 6, when the operator or supervisor determines that the work of the robot 10 has not been completed (NO in S12), the inference unit 34 of the image region selection device 30 selects a plurality of camera images, the robot 10 and the environment. sensor information is acquired and input to the learning model 33a (S13), and an output (inference result) corresponding to the input is obtained.
 次いで、推論部34は、ステップS13における学習モデル33aへの複数のカメラ画像、ロボット10や環境のセンサ情報の入力に対する出力として、複数のカメラ画像ごとの重要領域と重要度(ヒートマップの値)を取得する(S14)。また、推論部34は、ステップS13における学習モデル33aへの各データの入力に対する出力として、複数のカメラ画像、ロボット10や環境のセンサ情報の予測値を取得する(S15)。 Next, the inference unit 34 outputs important regions and importance (heat map values) for each of the plurality of camera images as outputs for the input of the plurality of camera images, the sensor information of the robot 10 and the environment to the learning model 33a in step S13. (S14). In addition, the inference unit 34 acquires predicted values of a plurality of camera images, sensor information of the robot 10 and the environment as an output corresponding to the input of each data to the learning model 33a in step S13 (S15).
 次いで、推論部34は、ステップS14で取得された重要度を複数のカメラ画像間で比較し、表示するカメラ画像又は需要領域を選択する(S16)。本例では、重要度の高い順に2以上のカメラ画像を選択する。 Next, the inference unit 34 compares the degrees of importance acquired in step S14 among a plurality of camera images, and selects a camera image or demand area to be displayed (S16). In this example, two or more camera images are selected in descending order of importance.
 次いで、画像領域選択装置30は、推論部34で選択されたカメラ画像又は重要領域を画像表示装置40へ送信する。これにより、画像領域選択装置30は、ステップS14において推論部34で得られたカメラ画像又は重要領域を画像表示装置40に表示する(S17)。 The image region selection device 30 then transmits the camera image or the important region selected by the inference unit 34 to the image display device 40 . Thereby, the image region selection device 30 displays the camera image or the important region obtained by the inference unit 34 in step S14 on the image display device 40 (S17).
 ステップS15及びS17の処理後、ステップS12の判断処理に戻り、作業が完了していない場合(S12のNO)にはステップS13~S17の処理が繰り返される。図7A~図7Cに、画像表示装置40の画像表示例を示す。 After the processing of steps S15 and S17, the process returns to the determination processing of step S12, and if the work is not completed (NO in S12), the processing of steps S13 to S17 is repeated. 7A to 7C show image display examples of the image display device 40. FIG.
 図7A~図7Cは、第2の実施形態における入力カメラ画像と得られたヒートマップの例を示す。例えば、図7Aはカメラ3aの入力カメラ画像(画像81)、図7Bはカメラ3cのようなロボット10全体を俯瞰できるカメラの入力カメラ画像(画像82)、及び図7Cはカメラ3bの入力カメラ画像(画像83)を示している。図7A~図7Cの画像81~83には、それぞれヒートマップの値が他の画素よりも比較的高い特定領域Ai1~Ai3が示されている。 7A to 7C show examples of input camera images and obtained heat maps in the second embodiment. For example, FIG. 7A is an input camera image (image 81) of camera 3a, FIG. 7B is an input camera image (image 82) of a camera such as camera 3c that can overlook the entire robot 10, and FIG. 7C is an input camera image of camera 3b. (image 83). Images 81 to 83 in FIGS. 7A to 7C respectively show specific areas Ai1 to Ai3 having relatively higher heat map values than other pixels.
[画像表示の一例]
 図8は、第2の実施形態における画像表示装置40の画像表示の一例を示す。図8において、画像91は入力カメラ画像81と、画像92は入力カメラ画像82と、画像93は入力カメラ画像83と対応している。
[Example of image display]
FIG. 8 shows an example of image display of the image display device 40 in the second embodiment. In FIG. 8 , an image 91 corresponds to the input camera image 81 , an image 92 corresponds to the input camera image 82 , and an image 93 corresponds to the input camera image 83 .
 図7A~図7Cに示すように、図8の複数の入力カメラ画像81~83に対し、特定領域Ai1~Ai3をそれぞれに含む各ヒートマップが得られた場合、画像表示装置40は、ヒートマップの値が大きい重要度が高い領域のカメラ画像から優先的に表示する。図8には、カメラ画像の重要度に応じて、表示するカメラ画像を順(所定の位置)に並べた例が示されている。ここでは、表示画面90において、カメラ画像の重要度の高さに応じて画像を大きく表示し、その他の小さい画像は縮小して表示する。このように重要度の高さに応じてカメラ3で取得した複数の画像の配置が決定されることで、操作者又は監視者は、どの画像を優先的に確認すればよいかが明確になる。さらに、優先度の高さで画像の面積(大きさ)が異なることにより、操作者又は監視者は、どの画像を優先的に確認すればよいかがより明確になる。 As shown in FIGS. 7A to 7C, when heat maps each including specific areas Ai1 to Ai3 are obtained for the plurality of input camera images 81 to 83 in FIG. Priority is given to the camera image of the area with a high degree of importance with a large value of . FIG. 8 shows an example in which camera images to be displayed are arranged in order (predetermined positions) according to the degree of importance of the camera images. Here, on the display screen 90, an image is displayed in a large size according to the degree of importance of the camera image, and other small images are displayed in a reduced size. By determining the arrangement of the plurality of images acquired by the camera 3 according to the degree of importance in this manner, it becomes clear to the operator or the supervisor which image should be checked with priority. Furthermore, since the areas (sizes) of the images differ depending on the level of priority, it becomes clearer for the operator or supervisor which images should be checked with priority.
 例えば、図7A~図7Cでは、特定領域Ai1~Ai3におけるヒートマップの値は、Ai1>Ai2>Ai1の順に大きい。そのため、図8に示す表示画面90では、ヒートマップの値が一番大きい画像91を左側及び中央のエリアに最も大きく表示し、ヒートマップの値が二番目の画像92と三番目の画像93を、それぞれ同じ縮小率で縮小して右側のエリアに縦に並べて表示している。なお、ヒートマップの値が一番大きい画像とその他の画像の配置は、図8の配置の例に限らないことは勿論である。 For example, in FIGS. 7A to 7C, the heat map values in the specific areas Ai1 to Ai3 are larger in the order of Ai1>Ai2>Ai1. Therefore, on the display screen 90 shown in FIG. 8, an image 91 with the largest heat map value is displayed in the left and center areas, and an image 92 with the second heat map value and an image 93 with the third heat map value are displayed. , are reduced at the same reduction ratio and displayed vertically in the area on the right. It goes without saying that the arrangement of the image with the largest heat map value and the other images is not limited to the arrangement shown in FIG.
 ここで、画像表示装置40における画像の表示方法(画像の大きさ、形状、配置など)は問わず、図9に示すようにヒートマップの値(重要度)に応じて表示する画像の面積を変えるなどしてもよい。 Here, regardless of the image display method (image size, shape, arrangement, etc.) in the image display device 40, the area of the image to be displayed is determined according to the value (importance) of the heat map as shown in FIG. You can change it.
[画像表示の他の例]
 図9は、第2の実施形態における画像表示装置40の画像表示の他の例を示す。図9に示す例は、カメラ画像の重要度に応じて、表示するカメラ画像の面積を変える例である。
[Another example of image display]
FIG. 9 shows another example of image display of the image display device 40 in the second embodiment. The example shown in FIG. 9 is an example in which the area of the camera image to be displayed is changed according to the importance of the camera image.
 図9に示す表示画面90Aには、図8に示した画像91~93に対応する画像91A~93Aが表示されている。画像91A~93Aの相対的な位置関係、及び各画像の長辺と短辺の比(アスペクト比)は、画像91~93の場合と同じである。ただし、画像91A~93Aの面積(大きさ)の関係が画像91~93の場合と異なる。すなわち、図9では、画像92Aと画像93Aの面積が異なる。このように、ヒートマップの値が大きい(重要度が高い)順に、画像を大きく表示するようにしてもよい。このように重要度の高さに応じてカメラ3で取得した複数の画像の面積が決定されることで、操作者又は監視者は、どの画像を優先的に確認すればよいかが明確になる。 Images 91A to 93A corresponding to the images 91 to 93 shown in FIG. 8 are displayed on the display screen 90A shown in FIG. The relative positional relationship of the images 91A-93A and the ratio of the long side to the short side (aspect ratio) of each image are the same as those of the images 91-93. However, the relation of the areas (sizes) of the images 91A-93A is different from that of the images 91-93. That is, in FIG. 9, the areas of the image 92A and the image 93A are different. In this way, images may be displayed in larger sizes in descending order of heat map value (higher importance). By determining the areas of the plurality of images acquired by the camera 3 according to the degree of importance in this way, it becomes clear to the operator or the supervisor which image should be checked with priority.
 なお、表示画面90Aには、画像91Aの下や93Aの右に余白がある。表示画面90Aの表示エリアを有効利用するために、画像91A~93Aの大きさ、形状、及び配置は、重要度が高い順に画像を大きく表示するというルールの範囲内で適宜変更することができる。 It should be noted that the display screen 90A has blank spaces below the image 91A and to the right of the image 93A. In order to effectively use the display area of the display screen 90A, the size, shape, and arrangement of the images 91A to 93A can be appropriately changed within the range of the rule that images are displayed larger in order of importance.
 上記のように構成された第2の実施形態に係るロボット制御システム100は、カメラ3で撮像された画像が複数ある場合に、逐次ロボット10の作業に重要な画像の重要領域と重要度を取得し、各画像の重要度に基づいて画像表示装置40における画像の表示を更新することで、作業状況に応じて作業に重要な画像を操作者や監視者に提示する。すなわち、ロボット制御システム100は、画像領域選択装置30により、カメラ3で撮像された複数の画像の重要度を比較し、重要度に基づいて自動で画像を選択して画像表示装置40に表示する。これにより、本実施形態に係るロボット制御システム100は、操作者や監視者の、複数のカメラ3で撮像された複数の画像の切替え及び視線移動による負荷を低減することができる。例えば、作業環境を俯瞰する視点からの画像や、細かい位置決めのためにオクルージョンを防ぐ局所的な視点からの画像などの複数の画像を自動で切り替えて画像表示装置40に表示することができる。 The robot control system 100 according to the second embodiment configured as described above successively acquires the important regions and importance of the images that are important for the work of the robot 10 when there are a plurality of images captured by the camera 3. Then, by updating the display of images on the image display device 40 based on the degree of importance of each image, images important to the work are presented to the operator or supervisor according to the work situation. That is, the robot control system 100 uses the image region selection device 30 to compare the degrees of importance of a plurality of images captured by the camera 3, automatically selects an image based on the degree of importance, and displays it on the image display device 40. . As a result, the robot control system 100 according to the present embodiment can reduce the load on the operator and the monitor due to switching between a plurality of images captured by the plurality of cameras 3 and movement of the line of sight. For example, a plurality of images, such as an image from a bird's-eye view of the working environment and an image from a local viewpoint to prevent occlusion for fine positioning, can be automatically switched and displayed on the image display device 40 .
 なお、複数のカメラ画像を切り替える第2の実施形態に係るロボット制御システム100に、第1の実施形態におけるカメラ画像の画像領域を切り取り及び拡大する構成を適用してもよい。このように構成することで、第2の実施形態の効果に加え、第1の実施形態の効果を得ることができる。 The configuration for cutting and enlarging the image area of the camera image in the first embodiment may be applied to the robot control system 100 according to the second embodiment that switches between a plurality of camera images. With this configuration, the effects of the first embodiment can be obtained in addition to the effects of the second embodiment.
<第3の実施形態>
 次に、本発明の第3の実施形態として、画像表示装置40への画像の表示と並行して、ロボット10の動作指令を自動で生成してロボット10が自律的に動作するロボット制御システムについて図10を参照して説明する。第3の実施形態に係るロボット制御システムの基本構成は、図1に示したロボット制御システム100と同じである。
<Third Embodiment>
Next, as a third embodiment of the present invention, a robot control system in which an operation command for the robot 10 is automatically generated and the robot 10 operates autonomously in parallel with displaying an image on the image display device 40. Description will be made with reference to FIG. The basic configuration of the robot control system according to the third embodiment is the same as the robot control system 100 shown in FIG.
 図10は、第3の実施形態におけるロボット10の動作指令を自動で生成する場合の、画像領域選択装置30の推論部34と画像表示装置40の動作例を示すフローチャートである。第3の実施形態では、ロボット10の動作指令を自動で生成する点が第1の実施形態と比較した場合の変更点であり、図10のフローチャートが第1の実施形態で示した図4と異なる部分は、ステップS27が追加されたことである。ステップS21~S26,S28の処理は、図4のステップS1~S7の処理と同じであるため詳細な説明はしない。本実施形態では、取得されたカメラ画像の重量領域(及び重要度)、予測値をロボット10の動作指令の生成に利用する。 FIG. 10 is a flow chart showing an operation example of the inference section 34 of the image area selection device 30 and the image display device 40 when automatically generating an action command for the robot 10 in the third embodiment. The third embodiment differs from the first embodiment in that an operation command for the robot 10 is automatically generated. The difference is that step S27 is added. Since the processing of steps S21 to S26 and S28 is the same as the processing of steps S1 to S7 in FIG. 4, detailed description thereof will be omitted. In the present embodiment, the weight area (and the degree of importance) of the acquired camera image and the predicted value are used to generate the motion command for the robot 10 .
 画像領域選択装置30は、推論部34により学習モデル33aから出力されるカメラ画像の重要領域(重要度)、カメラ画像、ロボット10や環境のセンサ情報の予測値を基に、ロボット10の動作に関する指令をロボット制御装置20に送信することでロボット10を制御する。このとき、ロボット操作装置50の入力を受け付けて操作者がロボット10を操作できるようにしてもよく、ロボット操作装置50の入力を受け付けず完全に自動でロボット10を動作させてもよい。ステップS27の処理は以下のとおりである。 The image region selection device 30 determines the motion of the robot 10 based on the important region (importance) of the camera image output from the learning model 33a by the inference unit 34, the camera image, and the predicted values of the sensor information of the robot 10 and the environment. The robot 10 is controlled by sending commands to the robot control device 20 . At this time, the input from the robot operating device 50 may be accepted so that the operator can operate the robot 10, or the input from the robot operating device 50 may not be accepted and the robot 10 may be operated completely automatically. The processing of step S27 is as follows.
 推論部34は、ステップS25の処理を終了後、ステップS25で取得されたカメラ画像、ロボット10やセンサ情報の予測値のうち、ロボット10の動作に関する予測値をロボット制御装置20に入力する(S27)。ロボット制御装置20は、画像領域選択装置30から入力された予測値を動作指令としてロボット10に制御指令を出力し、ロボット10の動作(作業)を制御する。ここで、ロボット10の動作に関する予測値とは、ロボット10の動作指令に相当するものであり、例えばロボット10の関節角、エンドエフェクタ11の姿勢(位置)や力(トルク)などである。 After completing the process of step S25, the inference unit 34 inputs to the robot control device 20 the predicted value regarding the motion of the robot 10 among the predicted values of the camera image, the robot 10, and the sensor information acquired in step S25 (S27 ). The robot control device 20 outputs a control command to the robot 10 using the predicted value input from the image area selection device 30 as an action command, thereby controlling the action (work) of the robot 10 . Here, the predicted value regarding the motion of the robot 10 corresponds to the motion command of the robot 10, and includes, for example, the joint angle of the robot 10, the posture (position) and force (torque) of the end effector 11, and the like.
 ステップS26及びS27の処理後、ステップS22の判断処理に戻り、作業が完了していない場合(S22のNO)にはステップS23~S27の処理が繰り返される。 After the processing of steps S26 and S27, the process returns to the judgment processing of step S22, and if the work is not completed (NO in S22), the processing of steps S23 to S27 is repeated.
 上記のように構成された第3の実施形態に係るロボット制御システム100は、ロボット10が自動で作業を実施しつつ、画像表示装置40における画像又はその画像内の領域の表示を更新することで、作業状況に応じて作業に重要な画像やその画像内の領域を操作者や監視者に提示する。これにより、本実施形態に係るロボット制御システム100は、第1の実施形態の場合と同様に、操作者や監視者の、カメラ3で撮像された画像又はその画像内の領域の切替え及び視線移動による負荷を低減できることに加え、ロボット10に自動で作業を実施させることができる。 The robot control system 100 according to the third embodiment configured as described above updates the display of an image or an area within the image on the image display device 40 while the robot 10 automatically performs a task. , to present an image important to the work and a region within the image to the operator or supervisor according to the work situation. As a result, the robot control system 100 according to the present embodiment, as in the case of the first embodiment, allows the operator or the observer to switch between the image captured by the camera 3 or the area within the image and move the line of sight. In addition to being able to reduce the load caused by the robot 10, the robot 10 can be made to automatically perform the work.
 なお、ロボット10の動作指令を自動で生成する第3の実施形態に係るロボット制御システム100に、第2の実施形態における複数のカメラ画像を切り替える構成を適用してもよい。このように構成することで、第3の実施形態の効果に加え、第2の実施形態の効果を得ることができる。つまり、本実施形態に係るロボット制御システム100は、操作者や監視者の、複数のカメラ3で撮像された複数の画像の切替え及び視線移動による負荷を低減できることに加え、ロボット10に自動で作業を実施させることができる。 Note that the configuration for switching between a plurality of camera images in the second embodiment may be applied to the robot control system 100 according to the third embodiment that automatically generates motion commands for the robot 10 . With this configuration, the effects of the second embodiment can be obtained in addition to the effects of the third embodiment. In other words, the robot control system 100 according to the present embodiment can reduce the load on the operator or the observer due to switching between a plurality of images captured by the plurality of cameras 3 and movement of the line of sight, and in addition, the robot 10 can be automatically operated. can be implemented.
 また、第3の実施形態では、ロボット10が自動で動作指令を生成するため、ロボット制御システム100のロボット操作装置50を削除することが可能である。また、第3の実施形態では、操作者がロボット操作装置50を操作しないことから、動作指令を入力するために画像表示装置40を用いた作業状況の確認を不要としてもよい。そのため、ロボット制御システム100の画像表示装置40を削除してもよい。ただし、監視者がロボット10の自動動作による作業状況を確認するために、ロボット制御システム100に画像表示装置40を残してもよい。 Also, in the third embodiment, since the robot 10 automatically generates motion commands, the robot operating device 50 of the robot control system 100 can be deleted. In addition, in the third embodiment, since the operator does not operate the robot operation device 50, confirmation of the work status using the image display device 40 for inputting operation commands may be unnecessary. Therefore, the image display device 40 of the robot control system 100 may be deleted. However, the image display device 40 may remain in the robot control system 100 in order for the observer to check the work status of the automatic operation of the robot 10 .
<変形例>
 なお、本発明は上述した第1から第3の実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。例えば、上述した各実施形態は本発明を分かりやすく説明するためにロボット制御システム及び画像領域選択装置の構成を詳細かつ具体的に説明したものであり、必ずしも説明したすべての構成要素を備えるものに限定されない。また、ある実施形態の構成の一部を他の実施形態の構成要素に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成要素を加えることも可能である。また、各実施形態の構成の一部について、他の構成要素の追加又は置換、削除をすることも可能である。
<Modification>
It should be noted that the present invention is not limited to the first to third embodiments described above, and various other applications and modifications can be made without departing from the gist of the present invention described in the claims. is of course. For example, each of the above-described embodiments is a detailed and specific description of the configuration of the robot control system and the image area selection device in order to explain the present invention in an easy-to-understand manner. Not limited. Also, it is possible to replace part of the configuration of one embodiment with the constituent elements of another embodiment. It is also possible to add components of other embodiments to the configuration of one embodiment. Moreover, it is also possible to add, replace, or delete other components for a part of the configuration of each embodiment.
 また、画像領域選択装置30と各カメラ3、又は、ロボット制御装置20と各カメラ3を相互に通信可能に構成するとともに、各カメラ3に、姿勢変更機能及びハードウェアによるズーム機能を持たせるようにしてもよい。例えば、教示フェーズにおいて人がロボット10を操作する際に、カメラの姿勢やズーム等の指令を、ロボット操作装置50から画像領域選択装置30又はロボット制御装置20を介してカメラ3に出力する。これにより、操作者は、ロボット10の操作をしやすい画像を表示する目的で、カメラ3の姿勢変更及びズームを実施できる。このときのカメラ画像が学習用データとして利用される。また、第3の実施形態においてロボット10の動作指令を自動で生成する際に、カメラ3で得られた画像を後処理(領域の切り取り及び拡大)して表示する構成に限らず、ロボット10の状況に応じて画像領域選択装置30がカメラ3に直接ズーム等の指令を与えて画像を取得する構成を採用することが可能となる。 In addition, the image area selection device 30 and each camera 3, or the robot control device 20 and each camera 3 are configured to be able to communicate with each other, and each camera 3 is provided with a posture change function and a hardware zoom function. can be For example, when a person operates the robot 10 in the teaching phase, the robot operation device 50 outputs commands such as camera posture and zoom to the camera 3 via the image area selection device 30 or the robot control device 20 . As a result, the operator can change the posture and zoom the camera 3 for the purpose of displaying an image that facilitates the operation of the robot 10 . The camera image at this time is used as learning data. Further, in the third embodiment, when automatically generating an operation command for the robot 10, the image obtained by the camera 3 is not limited to being post-processed (clipping and enlarging the area) and displayed. It is possible to employ a configuration in which the image area selection device 30 directly gives a zoom command to the camera 3 to acquire an image depending on the situation.
 また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。ハードウェアとして、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの広義のプロセッサデバイスを用いてもよい。 In addition, each of the above configurations, functions, processing units, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit. As hardware, a broadly defined processor device such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) may be used.
 また、上述した各実施形態に係る画像領域選択装置30の各構成要素は、ロボット制御装置20に実装されてもよい。また、画像領域選択装置30のある処理部により実施される処理が、1つのハードウェアにより実現されてもよいし、複数のハードウェアによる分散処理により実現されてもよい。 Also, each component of the image region selection device 30 according to each embodiment described above may be implemented in the robot control device 20 . Further, the processing performed by a certain processing unit of the image region selection device 30 may be implemented by one piece of hardware, or may be implemented by distributed processing by a plurality of pieces of hardware.
 また、図4、図6、及び図10に示すフローチャートにおいて、処理結果に影響を及ぼさない範囲で、複数の処理を並列的に実行したり、処理順序を変更したりしてもよい。 In addition, in the flowcharts shown in FIGS. 4, 6, and 10, multiple processes may be executed in parallel or the order of the processes may be changed as long as the processing results are not affected.
 10…ロボット、20…ロボット制御装置、3,3a,3b,3c…カメラ、30…画像領域選択装置、40…画像表示装置、50…ロボット操作装置、31…学習用データ記憶部、32…学習部、33…学習モデル記憶部、33a…学習モデル、331…ヒートマップ生成部、34…推論部、60…計算機、61…CPU、71…入力カメラ画像、72…ヒートマップ、73…画像、74…作業完了ボタン、81,82,83…画像(入力カメラ画像とヒートマップ)、90,90A…表示画面、91~93,91A~93A…画像、100…ロボット制御システム DESCRIPTION OF SYMBOLS 10... Robot 20... Robot control apparatus 3, 3a, 3b, 3c... Cameras 30... Image area selection apparatus 40... Image display apparatus 50... Robot operation apparatus 31... Learning data storage part 32... Learning Unit 33 Learning model storage unit 33a Learning model 331 Heat map generation unit 34 Inference unit 60 Calculator 61 CPU 71 Input camera image 72 Heat map 73 Image 74 ... work completion button, 81, 82, 83 ... image (input camera image and heat map), 90, 90A ... display screen, 91 to 93, 91A to 93A ... image, 100 ... robot control system

Claims (12)

  1.  作業を行うロボットと、
     動作指令に基づいて前記ロボットに制御指令を送信する制御装置と、
     少なくとも前記ロボットの作業環境を撮像して撮像画像を取得するカメラと、
     前記撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する画像領域選択装置と、
     前記画像領域選択装置で選択された前記撮像画像の前記領域を表示する画像表示装置と、を備える、
     ロボット制御システム。
    a robot that does the work,
    a control device that transmits a control command to the robot based on the motion command;
    a camera that captures at least the work environment of the robot and acquires a captured image;
    Based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the environment, the captured image that is important for the work of the robot is generated. an image region selection device for selecting at least a partial region;
    an image display device that displays the region of the captured image selected by the image region selection device;
    robot control system.
  2.  前記画像領域選択装置は、
     現在時刻における前記カメラで撮像された撮像画像と前記センサ情報とから、次時刻以降の前記撮像画像と前記センサ情報とを予測するように学習された学習モデルと、
     前記学習モデルの内部に前記撮像画像中の領域を示すヒートマップを生成するヒートマップ生成部と、を有し、
     前記学習モデルは、学習の過程において予測誤差が低減するように、予測に必要な領域では値が大きくなる又は小さくなるように最適化される前記ヒートマップの値が、設定した閾値以上となる領域を重要領域とする
     請求項1に記載のロボット制御システム。
    The image area selection device comprises:
    a learning model trained to predict the captured image and the sensor information after the next time from the captured image captured by the camera at the current time and the sensor information;
    a heat map generation unit that generates a heat map indicating an area in the captured image inside the learning model,
    The learning model is optimized so that the values in the regions necessary for prediction increase or decrease so that the prediction error is reduced in the process of learning. 2. The robot control system according to claim 1, wherein is the important area.
  3.  前記画像領域選択装置は、
     前記撮像画像中の前記重要領域を選択するための前記学習モデルを記憶するモデル記憶部と、
     前記学習モデルを学習する学習部と、
     少なくとも前記ロボットの作業中に得られる前記撮像画像及び前記センサ情報を含み、前記学習モデルの学習に用いる時系列の学習用データを記憶する学習用データ記憶部と、
     前記モデル記憶部に記憶された前記学習モデルを用いて、前記撮像画像中の前記重要領域を推論する推論部と、を備える
     請求項2に記載のロボット制御システム。
    The image area selection device comprises:
    a model storage unit that stores the learning model for selecting the important region in the captured image;
    a learning unit that learns the learning model;
    a learning data storage unit that stores time-series learning data that includes at least the captured image and the sensor information obtained during the operation of the robot and that is used for learning the learning model;
    The robot control system according to claim 2, further comprising an inference section that infers the important region in the captured image using the learning model stored in the model storage section.
  4.  前記推論部は、前記撮像画像ごとの前記ヒートマップの値に基づいて、前記画像領域選択装置の前記推論部が出力した前記撮像画像の重要度を複数の前記撮像画像間で比較し、前記重要度に応じて少なくとも前記画像表示装置に表示する前記撮像画像の配置を変える
     請求項3に記載のロボット制御システム。
    The inference unit compares the importance levels of the captured images output by the inference unit of the image area selection device among a plurality of the captured images based on the values of the heat map for each of the captured images, and 4. The robot control system according to claim 3, wherein an arrangement of said captured images displayed on at least said image display device is changed depending on the degree of movement.
  5.  前記推論部は、前記撮像画像ごとの前記ヒートマップの値に基づいて、前記画像領域選択装置の前記推論部が出力した前記撮像画像の重要度を複数の前記撮像画像間で比較し、前記重要度に応じて前記画像表示装置に表示する前記撮像画像の面積を変える
     請求項3に記載のロボット制御システム。
    The inference unit compares the importance levels of the captured images output by the inference unit of the image area selection device among a plurality of the captured images based on the values of the heat map for each of the captured images, and 4. The robot control system according to claim 3, wherein the area of the captured image displayed on the image display device is changed according to the degree.
  6.  前記画像表示装置は、前記画像領域選択装置で選択された前記撮像画像の前記領域を切り取った画像を画面に表示する
     請求項1に記載のロボット制御システム。
    2. The robot control system according to claim 1, wherein the image display device displays on a screen an image obtained by cutting out the region of the captured image selected by the image region selection device.
  7.  操作者の操作に応じて前記制御装置に前記動作指令を送信するロボット操作装置、をさらに備える
     請求項1に記載のロボット制御システム。
    2. The robot control system according to claim 1, further comprising a robot operation device that transmits the action command to the control device according to an operation by an operator.
  8.  作業を行うロボットと、
     動作指令に基づいて前記ロボットに制御指令を送信する制御装置と、
     少なくとも前記ロボットの作業環境を撮像して撮像画像を取得するカメラと、
     前記撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する画像領域選択装置と、を備え、
     前記画像領域選択装置は、
     現在時刻における前記カメラで撮像された撮像画像と前記センサ情報とから、次時刻以降の前記撮像画像と前記センサ情報とを予測するように学習された学習モデルと、
     前記学習モデルの内部に前記撮像画像中の領域を示すヒートマップを生成するヒートマップ生成部と、を有し、
     前記学習モデルは、学習の過程において予測誤差が低減するように、予測に必要な領域では値が大きくなるように最適化される前記ヒートマップの値が、設定した閾値以上となる領域を重要領域とし、
     前記画像領域選択装置は、前記学習モデルによる前記撮像画像と前記センサ情報の予測値のうち、前記ロボットの動作に関する予測値を前記動作指令として前記制御装置に出力する
     ロボット制御システム。
    a robot that does the work,
    a control device that transmits a control command to the robot based on the motion command;
    a camera that captures at least the work environment of the robot and acquires a captured image;
    Based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the environment, the captured image that is important for the work of the robot is generated. an image region selection device that selects at least a partial region;
    The image area selection device comprises:
    a learning model trained to predict the captured image and the sensor information after the next time from the captured image captured by the camera at the current time and the sensor information;
    a heat map generation unit that generates a heat map indicating an area in the captured image inside the learning model,
    The learning model is optimized so that the value in the region necessary for prediction is large so that the prediction error is reduced in the process of learning. year,
    A robot control system, wherein the image area selection device outputs a predicted value related to the motion of the robot, out of predicted values of the captured image and the sensor information based on the learning model, to the control device as the motion command.
  9.  動作指令に基づいてロボットに制御指令を送信する制御装置と、
     少なくとも前記ロボットの作業環境を撮像して撮像画像を取得するカメラと、
     前記撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する画像領域選択装置と、
     前記画像領域選択装置で選択された前記撮像画像の前記領域を表示する画像表示装置と、を備える、
     ロボット制御システム。
    a control device that transmits a control command to the robot based on the motion command;
    a camera that captures at least the work environment of the robot and acquires a captured image;
    Based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the environment, the captured image that is important for the work of the robot is generated. an image region selection device for selecting at least a partial region;
    an image display device that displays the region of the captured image selected by the image region selection device;
    robot control system.
  10.  動作指令に基づいてロボットに制御指令を送信する制御装置と、
     少なくとも前記ロボットの作業環境を撮像して撮像画像を取得するカメラと、
     前記撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する画像領域選択装置と、を備え、
     前記画像領域選択装置は、
     現在時刻における前記カメラで撮像された撮像画像と前記センサ情報とから、次時刻以降の前記撮像画像と前記センサ情報とを予測するように学習された学習モデルと、
     前記学習モデルの内部に前記撮像画像中の領域を示すヒートマップを生成するヒートマップ生成部と、を有し、
     前記学習モデルは、学習の過程において予測誤差が低減するように、予測に必要な領域では値が大きくなるように最適化される前記ヒートマップの値が、設定した閾値以上となる領域を重要領域とし、
     前記画像領域選択装置は、前記学習モデルによる前記撮像画像と前記センサ情報の予測値のうち、前記ロボットの動作に関する予測値を前記動作指令として前記制御装置に出力する
     ロボット制御システム。
    a control device that transmits a control command to the robot based on the motion command;
    a camera that captures at least the work environment of the robot and acquires a captured image;
    Based on the captured image and sensor information obtained from a sensor that detects the state of the robot and/or the environment and/or the state of the environment, the captured image that is important for the work of the robot is generated. an image region selection device that selects at least a partial region;
    The image area selection device comprises:
    a learning model trained to predict the captured image and the sensor information after the next time from the captured image captured by the camera at the current time and the sensor information;
    a heat map generation unit that generates a heat map indicating an area in the captured image inside the learning model,
    The learning model is optimized so that the value in the region necessary for prediction is large so that the prediction error is reduced in the process of learning. year,
    A robot control system, wherein the image area selection device outputs a predicted value related to the motion of the robot, out of predicted values of the captured image and the sensor information based on the learning model, to the control device as the motion command.
  11.  動作指令に基づいてロボットに制御指令を送信する制御装置と、画像領域選択装置とを備えたロボット制御システムによるロボット制御方法であって、
     前記画像領域選択装置が、
     少なくとも前記ロボットの作業環境を撮像するカメラにより取得された撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する処理と、
     選択した前記撮像画像の前記領域を画像表示装置に出力する処理を実行する
     ロボット制御方法。
    A robot control method by a robot control system comprising a control device for transmitting a control command to a robot based on a motion command and an image area selection device,
    The image region selection device,
    Based on at least a captured image acquired by a camera that captures the work environment of the robot and sensor information acquired from a sensor that detects the state of the robot and/or the robot placed in the environment and/or the state of the environment. a process of selecting at least a partial area of the captured image that is important for the work of the robot;
    A robot control method for executing a process of outputting the selected area of the captured image to an image display device.
  12.  動作指令に基づいてロボットに制御指令を送信する制御装置と、画像領域選択装置とで構成されるロボット制御システムの前記画像領域選択装置が備えるコンピューターに、
     少なくとも前記ロボットの作業環境を撮像するカメラにより取得された撮像画像と、前記ロボット及び/又は環境に配置された前記ロボットの状態及び/又は環境の状態を検出するセンサから取得したセンサ情報とに基づいて、前記ロボットの作業に重要な前記撮像画像の少なくとも一部の領域を選択する手順と、
     選択した前記撮像画像の前記領域を画像表示装置に出力する手順を
     実行させるためのプログラム。
    A computer provided in the image area selection device of a robot control system composed of a control device that transmits a control command to the robot based on an operation command and an image region selection device,
    Based on at least a captured image acquired by a camera that captures the work environment of the robot and sensor information acquired from a sensor that detects the state of the robot and/or the robot placed in the environment and/or the state of the environment. selecting at least a partial region of the captured image that is important for the work of the robot;
    A program for executing a procedure of outputting the selected area of the captured image to an image display device.
PCT/JP2022/009392 2021-05-18 2022-03-04 Robot control system, robot control method, and program WO2022244385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-084007 2021-05-18
JP2021084007A JP2022177613A (en) 2021-05-18 2021-05-18 Robot control system, robot control method, and program

Publications (1)

Publication Number Publication Date
WO2022244385A1 true WO2022244385A1 (en) 2022-11-24

Family

ID=84140913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009392 WO2022244385A1 (en) 2021-05-18 2022-03-04 Robot control system, robot control method, and program

Country Status (2)

Country Link
JP (1) JP2022177613A (en)
WO (1) WO2022244385A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177958A (en) * 2003-12-24 2005-07-07 Olympus Corp Remote control system
JP2015085493A (en) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 Robot, processor, and inspection method
JP2018112787A (en) * 2017-01-06 2018-07-19 富士通株式会社 Determination device, determination method and determination program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177958A (en) * 2003-12-24 2005-07-07 Olympus Corp Remote control system
JP2015085493A (en) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 Robot, processor, and inspection method
JP2018112787A (en) * 2017-01-06 2018-07-19 富士通株式会社 Determination device, determination method and determination program

Also Published As

Publication number Publication date
JP2022177613A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
CN107921642B (en) Remote manipulator system and method for operating the same
JP6886869B2 (en) Motion prediction system and motion prediction method
KR100855469B1 (en) Pose estimation apparatus used in a mobile robot and method thereof
US9387589B2 (en) Visual debugging of robotic tasks
JP5200772B2 (en) Robot apparatus control method and robot apparatus
EP3126936B1 (en) Portable apparatus for controlling robot and method thereof
WO2020241037A1 (en) Learning device, learning method, learning program, automatic control device, automatic control method, and automatic control program
JP2022036201A (en) Robot system
CN107820002B (en) Improved surveillance camera directional control
JP7039389B2 (en) Robot system and robot control method
US20220105625A1 (en) Device and method for controlling a robotic device
US10315305B2 (en) Robot control apparatus which displays operation program including state of additional axis
JP2006000977A (en) Device for presenting action state of force between robot and environment
JP6514273B2 (en) Robot system that displays speed
CN114274147B (en) Target tracking control method and device, mechanical arm control equipment and storage medium
WO2022244385A1 (en) Robot control system, robot control method, and program
US20210205032A1 (en) Confidence-Based Robotically-Assisted Surgery System
JP2020082314A (en) Learning device, robot control method, and robot control system
CN110722548A (en) Robot control system, robot device, and storage medium
JP4730337B2 (en) Robot installation position determining apparatus and robot installation position determining method
WO2021157104A1 (en) Robot control system, robot system, operation system, robot control method, and robot control program
Coskun et al. Robotic Grasping in Simulation Using Deep Reinforcement Learning
JP4200357B2 (en) Method for starting up motor control device and motor control device
WO2024013895A1 (en) Remote control system, remote control method, and remote control program
JP6248694B2 (en) Robot, robot system, and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804306

Country of ref document: EP

Kind code of ref document: A1