WO2022244373A1 - Base station, communication control device, communication method, and communication control method - Google Patents

Base station, communication control device, communication method, and communication control method Download PDF

Info

Publication number
WO2022244373A1
WO2022244373A1 PCT/JP2022/008484 JP2022008484W WO2022244373A1 WO 2022244373 A1 WO2022244373 A1 WO 2022244373A1 JP 2022008484 W JP2022008484 W JP 2022008484W WO 2022244373 A1 WO2022244373 A1 WO 2022244373A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
interference
information
terminal
beams
Prior art date
Application number
PCT/JP2022/008484
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 高野
啓文 葛西
寛斗 栗木
隆志 臼居
智彰 松村
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022244373A1 publication Critical patent/WO2022244373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices

Definitions

  • the present disclosure relates to base stations, communication control devices, communication methods, and communication control methods.
  • a service called local 5G or private 5G is known as a cellular communication service that is performed in limited areas such as factories, offices, studios, hospitals, and universities. This service is sometimes called a non-public network.
  • This service is sometimes called a non-public network.
  • By limiting the service area to a local area there is an advantage that customized cellular service can be provided.
  • Wi-Fi communication and communication based on standards such as 802.11a, b, g, n, and ac have been used for local area communication.
  • Communication such as Wi-Fi has the advantage of good performance, but since the access point does not have a scheduler that adjusts resources among different users, LBT (Listen Before Talk) is a contention-based method based on carrier sense. In a way the traffic between users is multiplexed. User packets collide frequently. Therefore, when there are a plurality of users, there is a demand to use cellular communication even in local areas because cellular communication can maintain quality.
  • LBT Listen Before Talk
  • 5G base stations can perform beamforming.
  • beamforming a desired beam is determined between a base station and a terminal by a procedure called beam management, and data is transmitted using that beam.
  • beamforming interference control is performed so that beams provided by adjacent base stations do not interfere with each other.
  • interference control may become difficult due to various factors such as the positional relationship between the base station and the terminal, the direction and beam width of the beam generated by the base station, and the like. Since very important communications exist in local area communications, communications that maintain quality are required even when beamforming is used.
  • the present disclosure provides a base station, a communication control device, a communication method, and a communication control method that realize high-quality communication between the base station and communication devices.
  • the base station of the present disclosure includes a transmission unit that transmits a request to use the target beam, including identification information that identifies the target beam, and information on whether or not to use the target beam, which is transmitted in response to the use request. and a receiving unit that receives a response including:
  • the communication control device of the present disclosure includes a receiving unit that receives a request to use the target beam, which includes identification information that identifies the target beam, and information about interference that each of the one or more beams gives to the first communication device, a controller for determining whether or not the target beam can be used based on corresponding data held in association with identification information for identifying the beam; and information about whether or not the target beam can be used based on the determination of the controller. and a transmission unit that transmits a response.
  • the communication method of the present disclosure transmits a request for using the target beam, which includes identification information for identifying the target beam, and transmits a response including information regarding whether or not to use the target beam, which is transmitted in response to the use request. receive.
  • the communication control method of the present disclosure receives a request to use the target beam, which includes identification information that identifies the target beam, and transmits information about interference each of the one or more beams gives to the first communication device. Use of the target beam is determined based on the corresponding data held in association with the identified identification information, and a response including information on whether the target beam can be used is transmitted based on the determination of the control unit.
  • FIG. 4 is a sequence diagram showing an example of beam management procedures; FIG. 4 is a diagram schematically showing beam sweeping performed in a beam management procedure; FIG. 4 is a diagram showing an example in which tilting between a base station and a terminal is large; FIG. 4 is a diagram showing an example in which tilting between a base station and a terminal is small; A diagram schematically showing the measurement of L1-SINR. Partial figure from 3GPP Rel16 38.214 Section 5.2.1. A diagram schematically showing the measurement of L1-SINR. An excerpt of the report configuration in Rel16 TS38.331 Section 6.3.2. Diagram extracting resource configuration from Rel16 TS38.331 Section 6.3.2.
  • FIG. 1 is a diagram schematically showing an example of a communication system according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing an example of a base station according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing an example of a beam coordinator according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing an example of beam transmission from a start time specified by a base station in a beam request
  • FIG. 4 is a diagram showing an example in which a base station uses beams periodically
  • FIG. 4 is a diagram showing an example in which a base station uses a beam only once
  • FIG. 2 is a sequence diagram showing an example of overall procedures of the communication system according to the embodiment
  • 9 is a flowchart showing an example of operations of a beam coordinator and a plurality of base stations according to the second embodiment
  • 10 is a flow chart showing an example of operations of a beam coordinator and a plurality of base stations according to the third embodiment
  • beams e.g., reference signals with directivity (e.g., CSI-RS)
  • beam management can be achieved by performing a procedure called beam management between 5G base stations and terminals. can be done with the terminal.
  • beam may also mean a directional reference signal (e.g., CSI-RS) or simply a reference signal (e.g., CSI-RS).
  • a beam may refer to a directional SSB (SS/PBCH block) or simply SSB.
  • SSB is an information block containing Synchronization Signal (Primary Synchronization Signal and Secondary Synchronization Signal) and Physical Broadcast Channel.
  • FIG. 1 is a sequence diagram showing an example of beam management procedures.
  • FIG. 2 is a diagram schematically showing beam sweeping performed in a beam management procedure.
  • the base station 1000 sequentially transmits a plurality of beams by beam sweeping (S101), and receives a beam measurement result report (for example, a measurement report including a desired beam to be used) from the terminal 2000 (S102). ).
  • the base station 1000 transmits a reference signal for communication quality measurement with the desired beam to the terminal 2000 (S103).
  • the base station 1000 receives a report indicating beam channel quality (communication quality) from the terminal 2000 (S104).
  • the base station 1000 determines parameters such as modulation scheme and coding scheme based on the channel quality, and transmits downlink data (user data) to the terminal 2000 using the determined beam (S105).
  • FIG. 3 shows an example in which the tilting between the base station 1000A and the terminal 2000A and the tilting between the base station 1000B adjacent to the base station 1000A and the terminal 2000B are large.
  • FIG. 4 shows an example in which the tilting between the base station 1000A and the terminal 2000A and the tilting between the base station 1000B adjacent to the base station 1000A and the terminal 2000B are small.
  • interference between adjacent cells may increase.
  • a beam is used for communication between a base station and a terminal, not only the distance between the base station and the terminal but also the direction of the beam affects the amount of interference to the terminal.
  • the energy is not dispersed, so the signal of the beam may reach other distant terminals beyond the terminal.
  • the direction of the beam rather than the distance from the base station, has a greater bearing on whether or not interference occurs, making interference control difficult. Reducing interference by such beams is important.
  • the base station can selectively obtain the information shown in Table 1 from the terminal.
  • a desired beam is a beam that the terminal desires to use.
  • FIG. 5 schematically shows the measurement of L1-RSRP.
  • a plurality of resources (frequency/time resources) for channel measurement are set from the base station to the terminal.
  • the configured resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG.
  • the base station uses the set resources to transmit reference signals with different beams.
  • the terminal monitors a plurality of resources and measures received power to detect the resource from which the beam with the highest received power is transmitted.
  • the terminal reports information identifying the detected resource to the base station together with the received power of the beam.
  • the information specifying the detected resource is, for example, CRI (CSI-RS Reference Identification), and the received power of the beam is, for example, RSRP (Reference Signal Received Power).
  • CRI and RSRP are information for notifying the base station which beam is desirable for the terminal (desired beam).
  • the L1-RSRP report is a mechanism for identifying a desired beam on the base station side, and is not a mechanism for identifying an interfering beam.
  • L1-SINR the amount of interference between the desired beam for the terminal and the beam from the interfering source measured while the terminal is receiving the desired beam is reported to the base station as desired beam power vs. interference beam power, called L1-SINR. reportedly can be reported.
  • Figure 6 is an excerpt from 3GPP Rel16 38.214 Section 5.2.1. A measurement of L1-SINR is described.
  • Fig. 7 schematically shows the measurement of L1-SINR.
  • a base station transmits multiple different beams with resources for channel measurement.
  • Channel measurement resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG.
  • the terminal identifies the resource from which the beam (desired beam) with the highest received power is transmitted.
  • the terminal uses the beam (receive beam) used to receive the desired beam to receive multiple different beams transmitted from the base station using resources for interference measurement, and measures the amount of interference with the desired beam (SINR).
  • Resources for interference measurement correspond to NZP CSI-RS resources for interference measurement or interference measurement resource (IMR) in FIG.
  • the IMR is a resource in which a base station guarantees no signals from its own station, and is a window for monitoring interference signals from other base stations.
  • the terminal uses the same receiving beam as when receiving the desired beam from the base station to receive the beam (interference beam) transmitted by the resource for interference measurement.
  • the terminal calculates SINR (Signal to Interference and Noise Ratio) from the received power of the desired beam (desired power) and the received power of the interference beam (interference power).
  • the terminal reports the CRI indicating the resource on which the desired beam is transmitted to the base station together with the calculated SINR (L1-SINR). If there are multiple interference measurement resources, the SINR to be reported is, for example, a representative value (minimum value, maximum value, etc.) of the measured SINRs.
  • the base station sets one resource for interference measurement, for the beam used by the terminal (desired beam) , the interference situation of the beams transmitted on the resources for interference measurement (eg, whether the amount of interference is high or low, in other words, whether there is unacceptable interference). That is, when the base station receives a report indicating that the SINR is large, the base station can know that the amount of interference is low with respect to the beam used by the terminal (desired beam) with the beam transmitted using the resource for interference measurement. .
  • the base station when the base station receives a report indicating that the SINR is small, it can know that the beam transmitted using the resources for interference measurement has a large amount of interference.
  • a base station that supports 3GPP Rel16 can indirectly acquire information on beams with high and low interference with respect to a desired beam.
  • the base station can configure multiple resources for channel measurement.
  • Channel measurement resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG.
  • NZP Non-Zero Power
  • the resource for interference measurement corresponds to NZP CSI-RS resources for interference measurement or interference measurement resource in FIG.
  • the IMR is a resource in which a base station guarantees no signals from its own station, and is a window for monitoring interference signals from other base stations.
  • the terminal designates, by CRI, the resource that transmits the beam with the highest received power (desired beam) among the sources for channel measurement, and uses the desired beam.
  • the modulation scheme and coding rate (code rate) required for receiving downlink data on the terminal side are specified by CQI (number assigned to a combination of modulation scheme and coding rate).
  • CQI number assigned to a combination of modulation scheme and coding rate.
  • the terminal reports CRI and CQI to the base station. The higher the CQI value (number), the higher the quality of the channel and the higher the quality of the channel. Therefore, by checking the CQI value, the base station can know the state of interference with the desired beam (for example, whether the amount of interference is high or low, in other words, whether there is unacceptable interference).
  • Figure 8 shows an excerpt of the report configuration in Rel16 TS38.331 Section 6.3.2.
  • the terminal monitors (measures the received power) multiple resources set by frequency and time, and the settings for reporting the monitoring results are sent from the base station to the terminal in advance. (ie, the terminal configures itself using the configuration information element by sending an RRC message including the configuration information element from the base station to the terminal in advance). More details are as follows.
  • the Resource Configuration ID for channel measurement indicates which resource configuration to monitor to obtain the received power of the candidate beam (candidate beam) to be used with the terminal.
  • the Resource Configuration ID for interference measurement indicates which resource configuration to monitor to obtain information (RSRP, SINR or CQI) on interference by interference beams.
  • Resource configuration for Report indicates which Uplink Resource to use to report to the base station.
  • CRI-SINR CRI-SINR
  • CRI-SINR CRI-SINR
  • CRI-CQI CRI-CQI
  • CRI-SINR means reporting a resource ID in which a desired beam desired by a terminal among candidate beams is transmitted, and an amount of interference (SINR) between the desired beam and an interference beam.
  • SINR an amount of interference
  • the format of the Resource Configuration ID is the same for channel measurement and interference measurement, but different resources are specified for both measurements.
  • Fig. 9 shows an excerpt of the resource configuration settings in Rel16 TS38.331 Section 6.3.2. As mentioned above, the same format is used for both channel and interference measurements.
  • the Reference Signal Resource Set List contains multiple RS Resource Sets (Reference Signal Resource Sets) composed of multiple DL RS (Downlink Reference Signal) resources. That is, the list includes a set of resources to which reference signals are transmitted.
  • RS Resource Sets Reference Signal Resource Sets
  • DL RS Downlink Reference Signal
  • the BWP ID indicates which BWP (Bandwidth Part) to use. In other words, it indicates to which BWP the above resource or resource set belongs.
  • a BWP is each part obtained by dividing a component carrier, which is a frequency band, into partial frequency domains.
  • the terminal calculates RSRP, SINR or CQI and reports the calculated value to the base station together with the CRI. Note that this report is intended to report the RSRP, SINR, or CQI of the interference beam for the desired beam, and is not intended to report information identifying the interference beam to the base station.
  • the desired reference signal (Reference Signals) arranged in one BWP in one frequency band (Component Carrier)
  • the information of the resource on which the RS) was transmitted e.g., the resource on which the desired beam was transmitted, the identifier of the reference signal corresponding to the desired beam (e.g., CRI)
  • CRI the reference signal corresponding to the desired beam
  • beam 1 For a beam (beam 1) transmitted from a base station to a specific terminal, information on a beam with a large amount of interference (beam 2) and information on a beam with a small amount of interference (beam 3) are acquired. is possible. If the transmission sources of beams 1 to 3 are included in a plurality of small base stations that can be controlled by this base station, the information on beams 1 to 3 can be obtained by the base station, Under control, it is possible to coordinate the use of beams 1-3. In other words, adjustment between beams is possible if it can be regarded as processing within the control of one base station.
  • the conventional method based on the 3GPP standard does not allow measuring the amount of beam interference between base stations operated by different operators or between base stations that belong to the same operator but are controlled differently. Coordinating the setting of resources between base stations itself is difficult.
  • a base station (assumed to be base station A) sets resources for channel measurement for determining a desired beam.
  • the two base stations coordinate the timing of sending signals from each resource. because it must. If the operators are the same, the hurdles for implementation will be lower, but whether or not base station B can set up such interlocking with base station A depends on the implementation of base station B. . Therefore, such interlocked setting is not always possible.
  • Beam coordination between base stations according to the present disclosure provides methods that effectively enable coordination of beam usage between base stations.
  • a beam coordinator which is a communication control device that controls multiple base stations, collects information on the amount of interference of other beams with respect to the beam used for the terminal (for example, information on beam groups with large amounts of interference),
  • a coordinator coordinates beam usage among base stations.
  • a base station may notify a beam coordinator of information about a beam that the base station wants to use, and for the beam coordinator to determine whether or not the beam can be used by the base station.
  • the beam coordinator refuses to use that beam. to protect the communication of a specific terminal.
  • a method of specifying a beam with a large amount of interference among the beams desired by the terminal can be considered, using an approach completely different from the method of having the coordinator acquire information on a beam group with a large amount of interference.
  • the coordinator acquires the location information of the base station and the terminal itself, but from this location information, the beam characteristics of the base station and the beam of the terminal (receiving beam) can be accurately determined. It is difficult to grasp.
  • the beam characteristics (beam width, gain, direction, etc.) on the base station side basically depend on the implementation, it is difficult to grasp the beam characteristics without actual measurements. .
  • the beam characteristics on the terminal side are related not only to the position of the terminal but also to the direction of the terminal, it is difficult to grasp the beam characteristics on the terminal side without actually performing measurements. Therefore, it is difficult to accurately calculate the amount of beam interference with respect to the desired beam of the terminal by virtual calculation from the location information of the base station and the terminal.
  • FIG. 10 is a diagram schematically illustrating an example of a communication system according to an embodiment of the present disclosure
  • the communication system in FIG. 10 includes base stations 101 and 102, a terminal 201 (communication device), and a beam coordinator 301 (communication control device).
  • a terminal 201 is a communication device within a cell (coverage) operated by the base station 101 .
  • the base stations 101 and 102 are connected to each other by wire or wirelessly, and can transmit and receive information using a predetermined interface such as the X2 interface.
  • Base stations 101 and 102 are connected to beam coordinator 301 .
  • Beam coordinator 301 controls a plurality of base stations including base stations 101 and 102 . Although two base stations are shown in FIG.
  • the beam coordinator 301 is connected to a core network (not shown), and is connected to a packet data network (PDN) (not shown) via the core network.
  • PDN packet data network
  • Base stations 101 and 102 may be directly connected to the core network without going through beam coordinator 301 .
  • the beam coordinator described above or later may be one of a plurality of core network nodes in the core network to which the base station is connected, or one of the plurality of core network nodes in the core network. , may be realized by a combination of several. Additionally or alternatively, the beam coordinator (or communication, control or processing by it) described above or below may be performed by one or more base stations. For example, another base station notified of information on a beam to be used may make the decision itself as to whether or not the beam can be used. Alternatively, the base station itself, which has information on the beam it wishes to use, may determine whether or not the beam can be used, and transmit to the other base stations a notification denying the use of the beam by other base stations. The communication of these information (notifications) may be over X2, Xn or F1 interfaces.
  • the communication system in FIG. 10 is, for example, a cellular communication system such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), LTE, and NR.
  • LTE shall include LTEA (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR shall include NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
  • the communication system is an NR cellular communication system.
  • the core network is NR's core network (5G Core (5GC)), which includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), PCF (Policy Control Function) and UDM (Unified Data Management).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • UDM Unified Data Management
  • NR is the radio access technology (RAT) of the next generation (5th generation) of LTE.
  • RAT radio access technology
  • NR is a radio access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • a communication system is not limited to a cellular communication system.
  • the communication system may be other wireless communication systems such as a wireless LAN (Local Area Network) system, a television broadcasting system, an aircraft radio system, a space radio communication system, and the like.
  • the base stations 101 and 102 are communication devices that operate cells and provide wireless services to one or more terminals located within the coverage of the cells.
  • a cell may be operated according to any radio communication scheme, such as NR.
  • a base station 101, 102 may be configured to manage multiple cells.
  • the base stations 101 and 102 are 5G base stations and correspond to gNBs.
  • the base stations 101 and 102 may be referred to as a combination of gNB CU (Central Unit) and gNB DU (Distributed Unit) or any of these.
  • the base stations 101 and 102 may be configured to be able to wirelessly communicate with other base stations.
  • the devices may be connected via an X2 interface.
  • the plurality of base stations 101 and 102 are eNBs or a combination of eNBs and gNBs
  • the devices may be connected by an Xn interface.
  • the devices may be connected via an F1 interface. All or at least some of the messages/information described below may be communicated between multiple base stations 101, 102 (eg, via X2, Xn, F1 interfaces).
  • the base stations 101 and 102 may consist of a set of multiple physical or logical devices.
  • the base stations 101 and 102 may be classified into a plurality of devices of BBU (Baseband Unit) and RU (Radio Unit), and interpreted as an aggregate of these plurality of devices.
  • the base stations 101, 102 may be either or both BBUs and RUs in embodiments of the present disclosure.
  • the BBU and RU may be connected by a predetermined interface (e.g. eCPRI).
  • the RU may be referred to as RRU (Remote Radio Unit) or RD (Radio DoT).
  • an RU may correspond to a gNB DU as described above or below.
  • a BBU may correspond to a gNB CU as described above or below.
  • the RU may be a unit integrally formed with the antenna.
  • the antennas possessed by the base stations 101 and 102 may adopt an Advanced Antenna System and support MIMO (for example, FD-MIMO) and beamforming.
  • the antennas of the base stations 101 and 102 (for example, antennas integrally formed with the RU) have, for example, 64 transmitting antenna ports and 64 receiving antenna ports. may be provided.
  • the base stations 101 and 102 When the base stations 101 and 102 support beamforming, the base stations 101 and 102 transmit signals by performing beam sweeping, for example, in the circumferential and radial directions of the cell.
  • the direction of beam sweeping is not limited to the horizontal direction, and may be any direction in the vertical direction or a combination of the horizontal and vertical directions. That is, when multiple antenna elements of an antenna that performs beamforming are arranged in the horizontal direction and the vertical direction with respect to the antenna plane, the antenna settings (e.g., antenna tilt angle, distance between antenna elements (elements), wavelength , phase offset, and reference transmission power), the beam can be directed and controlled in the horizontal and vertical directions.
  • the terminal 201 is a communication device that wirelessly communicates with other devices.
  • the terminal 201 is, for example, a sensor or camera device having a communication function, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal 201 may be a head-mounted display, VR goggles, or the like that has a function of wirelessly transmitting and receiving data.
  • a terminal 201 is a 5G terminal and corresponds to a UE.
  • the communication system of the present embodiment is an NR cellular communication system
  • the communication system may be applied not only to 5G NR Standalone, but also to 3GPP 5G NR Non-Standalone.
  • a cell provided by base stations 101 and 102 is called a serving cell.
  • Serving cells include PCell (Primary Cell) and SCell (Secondary Cell). Dual Connectivity (e.g. EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) to UE (e.g. Terminal 201)
  • the PCell and zero or more SCell(s) provided by the MN (Master Node) are called a Master Cell Group.
  • the Serving cell may include a PS Cell (Primary Secondary Cell or Primary SCG Cell).
  • the PSCell and zero or more SCell(s) provided by the SN are called a Secondary Cell Group (SCG).
  • SCG Secondary Cell Group
  • PUCCH physical uplink control channel
  • the physical uplink control channel (PUCCH) is transmitted on PCell and PSCell, but not on SCell. Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not have to be detected).
  • PUCCH Physical uplink control channel
  • SCells Special Cells
  • One cell may be associated with one Downlink Component Carrier and one Uplink Component Carrier.
  • the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (Bandwidth Parts).
  • Bandwidth Parts may be set for the UE, and one Bandwidth Part may be used for the UE as an Active BWP.
  • the radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration)
  • the terminal device 10 may differ for each cell, each component carrier, or each BWP.
  • the base stations 101 and 102 may be MN or SN of NR-NR DC as 3GPP 5G NR Standalone, ENDC as 3GPP 5G NR Non-Standalone, ENDC with 5GC, or gNB (en -gNB).
  • FIG. 11 is a block diagram illustrating an example of a base station 101 according to embodiments of the present disclosure.
  • Base station 101 includes antenna 110 , radio communication section 120 , network communication section 130 , storage section 140 and control section 150 .
  • the block diagram of base station 102 is also the same as that of base station 101 .
  • the wireless communication unit 120, the network communication unit 130, and the control unit 150 are, for example, a CPU (Central Processing Unit), a processor (hardware processor) such as an MPU (Micro-Processing Unit), an ASIC (Application Specific Integrated Circuit), or an FPGA. (Field-Programmable Gate Array) or other integrated circuits.
  • the storage unit 140 is realized by any recording medium such as memory, hard disk device, optical disk, or magnetic recording device.
  • the memory may be volatile memory or non-volatile memory.
  • the antenna 110 radiates the signal output by the wireless communication unit 120 into space as radio waves. Antenna 110 also converts radio waves in space into a signal and outputs the signal to wireless communication section 120 .
  • the antenna 110 has multiple antenna elements and is capable of forming a beam. Antenna 110 may be configured to form multiple beams simultaneously.
  • the wireless communication unit 120 transmits and receives signals.
  • a signal contains data or information.
  • the wireless communication unit 120 includes a signal transmission unit 121 that transmits signals and a signal reception unit 122 that receives signals.
  • the signal transmitter 121 transmits downlink signals to the terminal 201 and the signal receiver 122 receives uplink signals from the terminal 201 .
  • the radio communication unit 120 can form one or more beams (transmission beams) by the antenna 110 in sequence or simultaneously, and beam transmit a signal to the terminal 201 .
  • a transmit beam is formed based on a transmit beam filter, which is sometimes also called a transmit spatial filter (TX spatial filter).
  • TX spatial filter transmit spatial filter
  • Signal transmission by the signal transmission unit 121 includes both beam transmission and non-beam transmission (omni transmission).
  • the network communication unit 130 transmits and receives information by wire or wirelessly. For example, network communication unit 130 transmits information to other nodes and receives information from other nodes. Other nodes include, for example, at least one of other base stations (such as base station 102), beam coordinator 301, and core network nodes.
  • the network communication unit 130 may have one or more antennas if it is configured to perform wireless communication. This antenna may be shared with antenna 110 .
  • the storage unit 140 temporarily or permanently stores programs and data for operating the base station 101 .
  • the control unit 150 includes a receiving unit 152 and a transmitting unit 151.
  • the receiving section 152 receives data or information from the terminal 201 via the wireless communication section 120 or the signal receiving section 122 .
  • the transmitting section 151 transmits data or information to the terminal 201 via the wireless communication section 120 or the signal transmitting section 121 .
  • the receiver 152 also receives data or information from the beam coordinator 301 or the base station 102 via the network communication unit 130 .
  • the transmitter 151 transmits data or information to the beam coordinator 301 or base station 102 via the network communication unit 130 .
  • the control unit 150 controls the operation of the entire base station 101 and provides various functions of the base station 101 .
  • the control unit 150 transmits a beam use request (beam request) to the beam coordinator 301 (communication control device) that controls a plurality of base stations.
  • the control unit 150 includes identification information (beam ID) for identifying a target beam (target beam) in a beam use request (beam request).
  • the identification information (beam ID) that identifies the beam may be an identifier that can be globally identified by itself, or cell ID, base station ID, TRP (Transmission Reception Point) ID or BWP ID, A combination of at least one and a beam ID may be included in a beam use request (beam request).
  • the control unit 150 receives a response including information regarding whether or not the beam can be used, which is transmitted in response to the use request from the beam coordinator 301 . If use of the beam is permitted in the response, the control unit 150 determines that the requested beam can be used. If the response does not permit the use of the beam, the control unit 150 determines that the beam cannot be used. In this case, the control unit 150 may transmit a use request to the beam coordinator 301 with another beam as the target beam.
  • control unit 150 may include in the beam request a condition regarding at least one of the beam usage time and frequency (beam usage condition).
  • the beam usage conditions may include, by way of example, at least one of the following. ⁇ Conditions regarding the start time of beam use ⁇ Conditions regarding the length of time that beams are used ⁇ Conditions regarding the number of times beams are used ⁇ Conditions regarding the period of beam use ⁇ Conditions regarding subframes or slots in which beams are used conditions for channel quality
  • the beam request may include identification information for identifying each of the plurality of beams, and may further include usage conditions for each of the plurality of beams.
  • the response from the beam coordinator 301 includes information on whether or not each of the beams can be used.
  • the control unit 150 determines whether use is permitted for each of a plurality of beams, and determines that only the permitted beams can be used for transmission to the terminal.
  • the controller 150 may include identification information for identifying each of the multiple beams and information requesting simultaneous use of the multiple beams in the beam request. In this case, beam usage conditions may be common to a plurality of beams, or may be defined separately for each beam.
  • the response from the beam coordinator 301 includes information on whether or not multiple beams can be used simultaneously.
  • the control unit 150 can transmit downlink data to the terminal using multiple beams simultaneously if simultaneous use is permitted.
  • the control unit 150 may include information regarding the importance or priority of the beam in the beam request.
  • the beam coordinator 301 can flexibly determine whether or not to use a beam according to the importance or priority of the beam. For example, at least some of the conditions of use may be restricted to permit use of the beam if all of the conditions of use are not met.
  • the control unit 150 may transmit a cancel message for canceling the use request to the beam coordinator 301 .
  • This makes it possible to reliably inform the beam coordinator 301 that the requested beam is not being used by the base station, regardless of the reason why the response is not received. For example, when the response transmitted from the beam coordinator 301 is lost due to congestion in the network, the beam coordinator 301 can be notified that the permitted beam is not being used. After transmitting the cancel message, the control unit 150 may transmit the beam request again.
  • FIG. 12 is a block diagram illustrating an example beam coordinator 301 according to an embodiment of the present disclosure.
  • the beam coordinator 301 comprises a network communication section 330 , a storage section 340 and a control section 350 .
  • the beam coordinator 301, the network communication unit 330, and the control unit 350 include, for example, a CPU (Central Processing Unit), a processor (hardware processor) such as an MPU (Micro-Processing Unit), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field - Programmable Gate Array) and other integrated circuits.
  • the storage unit 340 is implemented by any recording medium such as a memory, hard disk device, optical disk, or magnetic recording device.
  • the memory may be volatile memory or non-volatile memory.
  • the network communication unit 330 transmits and receives information or data by wire or wirelessly.
  • the network communication unit 330 transmits information or data to other nodes and receives information or data from other nodes.
  • Other nodes include, for example, base station 101, base station 102, core network nodes.
  • the network communication unit 330 may be provided with one or more antennas if it is configured to communicate wirelessly.
  • the storage unit 340 temporarily or permanently stores programs and various data for the operation of the beam coordinator 301 .
  • the control unit 350 includes a receiving unit 352 and a transmitting unit 351.
  • the receiving unit 352 receives signals including data or information from the base stations 101 and 102 via the network communication unit 330 .
  • the transmission unit 351 transmits signals including data or information to the base stations 101 and 102 via the network communication unit 330 .
  • the receiver 352 also receives signals including data or information from the beam coordinator 301 , the base station 101 or the base station 102 via the network communication unit 330 .
  • the transmitter 351 transmits a signal including data or information to the beam coordinator 301, base station 101 or base station 102 via the network communication unit 130.
  • the control unit 350 controls the operation of the entire beam coordinator 301 and provides various functions of the beam coordinator 301 .
  • a control unit 350 controls a plurality of base stations (base stations 101 and 102). In particular, the controller 350 controls or manages beam usage by multiple base stations.
  • the control unit 350 receives a request to use the target beam (target beam) from the base station.
  • the usage request includes a beam ID that identifies the beam as identification information that identifies the beam.
  • the control unit 350 manages, in the storage unit 340 for each terminal, correspondence data (interference database) that holds information about interference given to the terminal (first communication device) by one or more beams in association with the beam ID. That is, the storage unit 340 stores correspondence data (interference database) for each terminal.
  • control unit 350 manages, in the storage unit 340, a usage management database that holds the usage conditions of the permitted beams in association with beam IDs when beam usage is permitted for each terminal. That is, the usage management database is stored in the storage unit 340.
  • the control unit 350 determines whether or not to use the beam (target beam) requested in the use request based on the interference database and use management database for each other terminal. Based on the determination result, the control unit 350 transmits a response including information regarding whether or not the beam can be used to the base station that transmitted the use request.
  • the usage request from the base station may include a condition (first condition) regarding at least one of the time and frequency at which the requested beam (target beam) is used.
  • first condition a condition regarding at least one of the time and frequency at which the requested beam (target beam) is used.
  • Specific examples of the conditions are as described above.
  • the control unit 350 checks whether there is another beam that uses the same resource (frequency/time resource) as the requested beam. If no such other beam exists, allow the beam to be used. That is, the control unit 350 determines that the frequency included in the first condition at least partially matches the frequency of the beam used by another terminal, and the time included in the first condition If the condition that the beam being used by the terminal at least partly coincides with the time it is used (second condition) is not met, then use of the beam is permitted. In other words, if the beam and frequency of another terminal are different, the use of the beam is permitted even if the usage time of the beam of the other terminal is the same, and even if the beam and frequency of the other terminal are the same. , the use of the beam may be permitted if the use time differs from that of other terminals.
  • the control unit 350 identifies information about the interference that the requested beam gives to the other terminal based on the interference database of the other terminal using the other beam. If the interference due to the identified information is acceptable (for example, if the amount of interference is low, or if the amount of interference is less than a threshold), use of the beam is allowed. If the interference is unacceptable, do not allow the beam to be used.
  • the control unit 350 instructs each of the plurality of base stations to measure the interference given to the terminal (first communication device) by one or more beams that can be transmitted from the base station. You may send instruction information to do. Terminals to be measured may be limited to specific terminals. Examples of specific terminals include terminals that have an important function or role, or fixedly installed terminals that do not move. Details will be described in a second embodiment or a third embodiment, which will be described later.
  • the control unit 350 acquires from the base station information about interference given to the terminal by a beam transmitted from the base station in association with identification information (beam ID, etc.) that identifies the beam.
  • the control unit 350 stores the acquired information on interference and the beam ID in the interference database of the terminal.
  • the instruction information instructing to measure the interference is, for example, information instructing the terminal to measure the received power of the beam (for example, RSRP).
  • the control unit 350 transmits instruction information for instructing one of the plurality of base stations to transmit a beam for measuring interference to the terminal, and a plurality of base stations other than the one base station. Indication information may be transmitted to the base stations instructing them not to transmit signals during at least a portion of the period of beam transmission by the one base station. Details will be described in a third embodiment described later.
  • the control unit 350 transmits instruction information for instructing transmission of beams for interference measurement to base stations other than the base station (first base station) to which the terminal belongs. Furthermore, the control unit 350 transmits instruction information instructing the base station (first base station) to which the terminal belongs to transmit a beam for quality measurement to the terminal. Furthermore, the control unit 350 performs the quality measurement when the terminal receives the beam for interference measurement from the other base station and the beam for quality measurement is received by the terminal using the same resource. and transmitting instruction information instructing acquisition of information on interference with the beam for use (information on quality of the beam for quality measurement). The control unit 350 acquires information on interference with the beam for quality measurement (information on quality of the beam for quality measurement) from the base station (first base station) to which the terminal belongs.
  • the control unit 350 acquires the acquired information as information on interference given to the terminal by beams from other base stations, associates the acquired information with identification information (beam ID) that identifies the beam, and stores it in the interference database.
  • the interference database is generated by associating the acquired information on interference with the identification information (beam ID) for identifying the beam.
  • the information on the interference with the beam for quality measurement includes, for example, SINR or CQI. The details of the description described in this paragraph will be described later in the second embodiment.
  • the beam request transmitted from the base station to the beam coordinator 301 includes a base station ID (Base station ID), a terminal ID (UE ID), a beam ID, and beam usage conditions (or usage requirements). Include. Information included in the beam request is not limited to this. As described above, in addition to or instead of the base station ID, at least one of a cell ID, a transmission reception point (TRP) ID, or a BWP ID may be included in the beam request together with the beam ID.
  • the beam coordinator 301 determines whether or not the base station identified by the base station ID can use the beam identified by the beam ID for transmission to the terminal identified by the terminal ID, based on the beam usage conditions. to decide.
  • the beam usage conditions include conditions related to the time (time resources) in which the beams are used, conditions related to frequencies (frequency resources) in which the beams are used, and the like.
  • Table 2 shows an example of usage conditions included in the beam request according to the specific example 1.
  • FIG. 13 shows an example in which the base station starts using resources for beam transmission (starts beam transmission) after k [ms] after transmitting a beam request to the beam coordinator 301 at time t.
  • the value of k may be fixed in the system.
  • the value of k may differ from system to system.
  • the value of k may depend on the time it takes beam coordinator 301 to process a beam resource availability decision.
  • the value of k is, for example, a value within the range of about 1ms to 1000ms.
  • FIG. 14 shows an example in which the base station periodically uses the beam after starting using the beam in the example of FIG.
  • a base station that starts using a beam uses the beam for a period of time T every period R. Since the repetition number N is 3, the base station can use the beam up to 3 times.
  • FIG. 15 shows an example in which the base station uses the beam only once in the example of FIG.
  • FIG. 16 is a sequence diagram showing an example of the overall procedure of the communication system according to this embodiment.
  • the base station 102 Under the control of the beam coordinator 301, the base station 102 transmits a beam (interference beam) including a reference signal for interference measurement using one or a plurality of resources (frequency/time resources) for the terminal 201 belonging to the base station 101. (S201).
  • a beam interference beam
  • resources frequency/time resources
  • the base station 102 receives report information (beam report) including information (for example, RSRP) on interference measured by the terminal 201 from the terminal 201 (S202).
  • report information including information (for example, RSRP) on interference measured by the terminal 201 from the terminal 201 (S202).
  • the base station 102 transmits to the beam coordinator 301 interference report information including information about the interference of the interference beams in association with information specifying the interference beams (eg, beam ID) (S303).
  • information specifying the interference beams eg, beam ID
  • the interference report information includes, for example, a base station ID (base station 101 ID), a terminal ID (terminal 201 ID), an interference beam ID (interference beam ID), and information about interference.
  • the base station 102 may detect interference beams with large interference (for example, RSRP is greater than a threshold) and transmit interference report information to the beam coordinator 301 only for the detected interference beams.
  • the beam coordinator 301 associates the base station ID, the interference beam ID, and information about interference with the interference database for the terminal corresponding to the terminal ID, and stores them in the interference database.
  • interference measurement example 1 Details of an example of the operations of S201 to S203 described above (referred to as interference measurement example 1) will be described in a third embodiment described later.
  • the beam coordinator 301 may determine in advance the resources for the base station 102 to transmit interference beams, and transmit information on the determined resources to the base station 102 .
  • the base station 102 can determine the resources on which to transmit the interfering beams.
  • the configuration (direction, width, gain, etc.) of the interference beams transmitted from the base station 102 may be determined arbitrarily by the base station 102, or the beam coordinator 301 determines and instructs the determined configuration.
  • the instructional information may be sent to base station 102 .
  • all or part of a plurality of transmittable beam candidates may be determined as interference beams by the base station 102, or interference beams may be randomly determined from these candidates.
  • the base station 102 may acquire the location information of the terminal 201 from the beam coordinator 301 or the base station 101, and determine one or more interference beams to be transmitted based on the acquired location information of the terminal 201. .
  • the method (S201 to S203) for the beam coordinator 301 to acquire information about the interference of interference beams is not limited to the above example (interference measurement example 1).
  • the following example referred to as Interference Measurement Example 2 may be used.
  • the base station 101 sequentially transmits a plurality of beams using a plurality of resources to the terminal 201 by beam sweeping, and causes the terminal 201 to select or determine a desired beam (see S101 in FIG. 1).
  • the base station 102 transmits a beam (interference beam) including a reference signal for interference measurement using one or a plurality of resources (frequency/time resources) for the terminal 201 belonging to the base station 101. (S201).
  • the terminal 201 uses the same reception beam as the reception beam used for receiving the above-described desired beam.
  • the reception beam for receiving the interference beam at the terminal 201 may be determined by other methods.
  • the terminal 201 selects a reception beam (reception filter) with the highest quality (for example, received power) for each interference beam from a plurality of candidate beams (candidate filters), and uses the selected reception beam (candidate filter). Interfering beams may be received. Terminal 201 measures the interference caused by the interference beam with respect to the desired beam, and obtains information about the interference (for example, SINP or CQI).
  • the base station 101 receives report information (beam report) including information (for example, SINP or CQI) on interference measured by the terminal 201 from the terminal 201 (S202).
  • the base station 101 transmits to the beam coordinator 301 interference report information including information about the interference of the interference beams in association with information identifying the interference beams (for example, beam ID) (S303).
  • the base station 101 may detect interference beams with large interference (for example, SINP or CQI is above a threshold) and transmit interference report information to the beam coordinator 301 only for the detected interference beams.
  • the interference report information includes, for example, a base station ID (base station 101 ID), a terminal ID (terminal 201 ID), an interference beam ID (interference beam ID), and information about interference.
  • the beam coordinator 301 associates a base station ID, an interference beam ID, and information about interference with an interference database for a terminal corresponding to the terminal ID, and stores them in the interference database. Details of an example of the operations of S201 to S203 (interference measurement example 2) will be described later in a second embodiment.
  • the information about the interference beam transmitted from the base station 102 is obtained in association with the information (beam ID, etc.) specifying the interference beam.
  • the beam coordinator 301 may acquire information about interference in association with information (beam ID) specifying the interference beams.
  • beam coordinator 301 associates information about interference in the terminal with information (beam ID) specifying the interference beam for interference beams transmitted from base stations 101 and 102, respectively. can be obtained.
  • the base station 101 determines the desired beam to be used for transmission to the terminal 201 . Therefore, the base station 101 configures a plurality of resources and transmits a plurality of beams including reference signals in each of the configured resources by beam sweeping (S204).
  • the terminal 201 measures the received power of a plurality of beams transmitted from the base station 101 and selects one or more desired beams (desired beams).
  • the terminal 201 transmits report information (beam report) including information specifying the selected beam and information indicating the received power of the selected beam, etc. to the base station 101 (S305).
  • the information that identifies the beam is, for example, CRI (CSI-RS Resource identification) that identifies a resource transmitted by the beam or a reference signal transmitted by the beam.
  • the received power of the beam is, for example, RSRP (Reference Signal Received Power).
  • the base station 101 selects one or more beams to be used for transmitting downlink data to the terminal 201 from among the beams reported in the beam report as desired beams. For example, the base station 101 selects a beam with the highest received power or a beam with received power greater than or equal to a threshold.
  • the base station 101 determines beam usage conditions (conditions regarding frequency and time for using the beam) for the selected beam. Any method for determining the conditions of use may be determined.
  • the base station 101 transmits a beam request (beam use request) including the beam ID of the selected beam, the terminal ID of the terminal 201, the base station ID of the base station 101, and beam use conditions to the beam coordinator 301 (S206). ). Beam coordinator 301 receives beam requests.
  • the beam coordinator 301 keeps track of the usage status of beams in multiple base stations (including the base stations 101 and 102) in the usage management database. That is, information on beams that have been permitted by the beam coordinator 301 in the past and are currently in use are held in the use management database.
  • the beam information includes beam IDs, base station IDs, terminal IDs, beam usage conditions (information on frequencies and times permitted to be used).
  • the beam coordinator 301 determines whether or not the beam requested to be used by the base station 101 (requested beam) can be used based on the beam usage conditions included in the beam request. That is, beam coordinator 301 first determines whether or not the beam is being used by another terminal at the frequency at which the use of the beam is requested and the time at which use of the beam is requested, based on the use management database. do.
  • the beam coordinator 301 selects beams in use by other terminals whose frequency is the same (or partially overlaps) and whose usage time at least partially overlaps with the requested beam in the usage management database. Determine if the beam ID is retained.
  • other terminals may belong to either the cell of base station 101 or the cell of base station 102 .
  • the beam coordinator 301 decides to allow the base station 101 to use the requested beam if the beam ID of the beam is not held in the usage management database.
  • the beam ID of the beam being used by the other terminal is held in the usage management database, it is determined whether the beam ID of the beam requested to be used is held in the interference database.
  • the beam ID of the beam requested to be used is held, further, whether the beam requested to be used is held as an interference beam that gives strong interference to the terminal 201 is determined based on information on interference related to the beam ID. to decide.
  • the beam coordinator 301 decides to permit the use of the requested beam if the beam ID of the requested beam is not held in the interference database.
  • the beam coordinator 301 decides to allow the use of the requested beam if the beam ID of the requested beam is held in the interference database and the interference of the beam is weak.
  • the beam coordinator 301 decides not to permit the use of the requested beam if the beam ID of the requested beam is held in the interference database and the interference of the beam is strong.
  • beam coordinator 301 does not allow the use of a requested beam when there is a beam in use that causes strong interference to other terminals.
  • the beam coordinator 301 When the beam coordinator 301 permits the use of the requested beam, the beam coordinator 301 transmits to the base station 101 a response including information indicating permission to use the requested beam (that is, OK to use the requested beam) (S307).
  • the information indicating permission to use the requested beam includes, for example, the beam ID of the requested beam and at least one of the ID of the base station 101 and the ID of the terminal 201 .
  • the beam coordinator 301 transmits a response including information indicating that the requested beam cannot be used (that is, the use of the requested beam is NG) to the base station 101 (S307).
  • the information indicating that the requested beam cannot be used includes, for example, the beam ID of the requested beam and at least one of the ID of the base station 101 and the ID of the terminal 201 .
  • the base station 101 When the base station 101 receives a response including information indicating permission to use the requested beam from the beam coordinator 301, the base station 101 transmits downlink data to the terminal 201 using the requested beam at the frequency and time requested in the beam request (S308). .
  • the base station 101 when the base station 101 receives a response including information indicating that the requested beam cannot be used from the beam coordinator 301, the base station 101 does not transmit downlink data using the requested beam. In this case, the base station 101 may select another beam as the requested beam based on the beam report received in step S305 and transmit the side beam request. Alternatively, the process may return to step S304 and start again from beam sweeping.
  • the beam request sent to the beam coordinator 301 includes IDs of multiple requested beams.
  • the beam request also includes information about whether or not each of the plurality of requested beams may be used simultaneously with other requested beams among the plurality of requested beams.
  • the beam request according to specific example 1 includes the IDs of the plurality of requested beams, and the possibility of using each of the plurality of requested beams at the same time as other requested beams among the plurality of requested beams. Include information about whether there is
  • Table 3 shows an example of information about multiple requested beams to include in a beam request.
  • Each requested beam is represented by a set of a base station ID (number uniquely assigned to the base station) and a number (beam ID) uniquely assigned to the beam in the base station.
  • the base station ID is 2 in all rows of Table 3. Since the (2,3) beam, the (2,15) beam, and the (2,31) beam can be used simultaneously, there is a possibility that these three beams will be used at the same time. Of these three beams, two or three beams can be used simultaneously. Of course, it is possible that only one of the three is used. A beam marked as "none" for simultaneous use will not be used at the same time as other beams, but may be switched over as time passes.
  • the beam coordinator 301 determines whether or not the simultaneous use "none" beam can be used alone. Also, for beams with simultaneous use "yes", it is determined whether or not they can be used simultaneously. For example, it is determined whether three beams (2,3), (2,15), and (2,31) can be used simultaneously. Whether or not a plurality of beams can be used simultaneously can be determined by determining whether all three beams can be used.
  • the beam coordinator 301 transmits to the base station 101 a response including information on whether or not each beam can be used simultaneously and information about whether or not each beam can be used simultaneously, and information about whether or not a plurality of beams can be used simultaneously. Just do it.
  • the base station 101 receives the response from the beam coordinator 301. Based on the information included in the received response, the base station 101 selects one or more beams to be used for transmission to the terminal 201, and transmits downlink data using the selected beams.
  • the base station 101 may switch beams to be used between beams determined to be usable over time. For example, the base station 101 may switch the beam to be used when the transmission data error rate or its average exceeds a threshold, or may switch the beam to be used at regular intervals.
  • the beam request sent to the beam coordinator 301 includes information about the importance or priority of the requested beam. This allows the beam coordinator 301 to more flexibly determine whether or not the requested beam can be used (adjust beam usage with other terminals).
  • the beam coordinator 301 needs to consider the interference relationship between the requested beam and other beams.
  • the requested beam interferes with a terminal belonging to another base station already using the beam, in other words, the requested beam interferes with the communication of a terminal belonging to another base station.
  • the requested beam corresponds to the beam causing interference to the other terminal
  • the other terminal corresponds to the terminal receiving the interference.
  • interference relationship 2 the beam already in use by another terminal interferes with the terminal using the requested beam when the use of the requested beam is permitted.
  • the beam already in use by another terminal corresponds to the interfering beam
  • the terminal that uses the requested beam when the use of the requested beam is permitted corresponds to the terminal receiving interference.
  • Table 4 shows the combination of the presence/absence of interference relationship 1 and the presence/absence of interference relationship 2.
  • the presence or absence of relationship 1 and the presence or absence of relationship 2 can be easily determined by comparing RSRP, SINR, or CQI with a threshold using the method described above.
  • Table 5 shows an example of information to be included in a beam request according to Specific Example 3.
  • the beam request includes a base station ID and a beam ID as information specifying the requested beam, and further includes information regarding priority or importance.
  • usage conditions regarding frequency and time may also be included in the beam request.
  • other indicators such as CQI or RSRP may be used instead of SINR.
  • the QoS Level ID may be set in the base station in advance by the operator in association with the terminal ID (IMSI, SUPI, etc.) of the terminal.
  • the base station may determine the QoS Level ID based on the QoS assigned when setting up a dedicated bearer for the terminal.
  • a dedicated bearer is a logical path for transmitting data.
  • the beam coordinator 301 determines whether the requested beam can be used will be shown below.
  • the usage conditions regarding frequency and time are satisfied, as in the first specific example.
  • the following determination example is just an example, and other determination examples are possible as long as priority or importance is used.
  • Interference relationship combination 1 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is SINR V or more, and the SINR of the terminal of the beam being used by another terminal is also SINR V or more. Note that the SINR V of both terminals may be the same value or different values.
  • beam coordinator 301 may authorize the use of the requested beam.
  • Interference relationship combination 2 corresponds to the case where the SINR of the terminal that uses (receives) the requested beam is less than the SINR V of the requested beam, but the SINR of the other terminals is SINR V or more.
  • the beam coordinator 301 may permit use of the requested beam when the priority (QoS Level ID) of the requested beam is equal to or greater than the threshold.
  • Interference relationship combination 3 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is SINR V or more, but the SINR of the terminals of other beams in use is also less than SINR V.
  • the beam coordinator 301 may permit use of the requested beam when the priority (QoS Level ID) of the requested beam is greater than or equal to the threshold.
  • the condition may be that the SINR of a terminal on another beam in use is equal to or greater than a threshold value (less than the SINR V of the beam in question).
  • it may additionally/alternatively require that the priority of the requested beam is higher or higher than the priority of other beams in use.
  • the SINR threshold may be changed according to priority. For example, the higher the priority, the smaller the threshold may be.
  • Interference relationship combination 4 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is less than SINR V, and the SINR of the terminals of the other beams in use is also less than SINR V.
  • beam coordinator 301 may not allow the requested beam to be used.
  • beam coordinator 301 compares the priority of the requested beam (assumed to be priority A1) and the priority of the beam being used by another base station (assumed to be priority A2), and priority A1 is given priority. Use of the request beam may be permitted if the degree is greater than A2.
  • At least one of the SINR of the terminal when using the requested beam and the SINR of the terminal using other beams in use may be a threshold value (less than SINR V) or more.
  • the threshold may be changed according to priority. For example, the higher the priority, the smaller the threshold may be.
  • the base station first receives information about the amount of interference (for example, RSRP, SINR, CQI, or presence or absence of interference) for one or more interference beams from each terminal. etc.). Then, based on the acquired information, the base station notifies the coordinator 301 of information on each detected interference beam for each terminal.
  • the amount of interference for example, RSRP, SINR, CQI, or presence or absence of interference
  • beam coordinator 301 lowers the priority of the beam requested in the beam request regardless of the value of QoS Level ID in Table 5. It may be considered a value (eg lowest value or predetermined value). If the requested beam is a beam that gives unacceptable (or large) interference to other terminals (for example, if the SINR of the other terminal is smaller than SINR V or a separately defined threshold), the beam coordinator 301 of the requested beam use should not be allowed.
  • the requested beam gives a large interference to the other terminal ( The requested beam may be permitted to be used unless the beam is obtained with an amount of interference equal to or greater than the threshold.
  • the beam request received from the base station by the beam coordinator 301 is permitted to use the beam by restricting at least part of the usage conditions.
  • the beam coordinator 301 restricts at least some of the usage conditions (with usage restrictions) so that the SINR becomes a low value or the number of iterations becomes 8, and the beam coordinator 301 responds to the request Allow use of beams.
  • the beam coordinator 301 transmits a response including information indicating permission to use the requested beam to the base station, including usage restriction information (restricted usage conditions).
  • Table 6 shows an example in which the beam request from the base station in the above-described specific example 1 is permitted with usage restrictions.
  • Table 7 shows an example of granting a beam request from the base station in specific example 3 described above with use restrictions.
  • Example 5 describes the operation of the base station when the beam request sent from the base station to the beam coordinator 301 does not receive a response including information on availability from the beam coordinator 301 .
  • the beam request includes a request to transmit the beam from time t+k as a usage condition.
  • a request is made to start using the beam k [ms] after the time t when the beam request is sent.
  • the base station will not be ready for transmission in time.
  • the base station does not receive a response including information on availability of use by time t-h (h is a positive real number), it transmits a message to the beam coordinator 301 notifying of cancellation of the beam request.
  • the base station then sends another beam request again.
  • the reason for transmitting the cancellation message is that the reason why the base station does not receive the response by time t-h is unknown, so it is clear to the beam coordinator 301 that the base station is not using the beam requested in the beam request. It is for example, when beam coordinator 301 transmits a response but the response does not reach the base station, beam coordinator 301 may erroneously recognize that the base station is using the requested beam.
  • this embodiment enables beam coordination across multiple base stations. Therefore, beam interference in the terminal can be suppressed, and communication throughput between the terminal and the base station can be improved.
  • the base station acquires information (SINR, CQI, etc.) on interference by interference beams from the terminal, and information on interference of each interference beam (for example, information on strong interference beams). ) to the beam coordinator 301 . Details and variations of this operation will be described in the second embodiment.
  • a beam coordinator 301 (control unit 350) synchronizes a plurality of base stations (base station 101 and base station 102 in the example of FIG. 10).
  • the function of beam coordinator 301 may be stored as base station control software in any one of a plurality of base stations. Especially between base stations with the same PLMN (Public Land Mobile Network), synchronization control is normally performed by the base station controller.
  • Beam coordinator 301 may be a device independent of multiple base stations.
  • FIG. 17 is a flowchart for explaining an example of operations of the beam coordinator 301, base station 101, and base station 102 according to the second embodiment.
  • the beam coordinator 301 selects a target terminal from a plurality of terminals belonging to each of a plurality of base stations (S301). A part or all of the plurality of terminals may be selected in turn, or a specific terminal may be selected as the target terminal.
  • specific terminals terminals that do not move (eg, terminals that are fixedly installed), terminals that have important functions or roles, terminals that do not move and have important functions or roles, etc. may be selected.
  • a specific example of a terminal having an important function or role is a terminal that performs important control such as stopping a production line in a factory when the communication quality of the terminal deteriorates due to beam interference. Another specific example is a terminal that controls medical equipment for surgery.
  • Selection of target terminals can be performed not only by the beam coordinator 301 but also by the base station.
  • the base station may notify the beam coordinator 301 of the selected terminal information (terminal ID, etc.).
  • terminal ID terminal ID, etc.
  • the base station 101 communicates with the terminal 201 using the desired beam.
  • the base station 101 sequentially transmits a plurality of beams using a plurality of resources to the terminal 201 by beam sweeping, and selects the beam with the highest quality as the desired beam.
  • the beam with the highest quality is, for example, the beam with the highest received power (RSRP) or above a threshold.
  • the terminal 201 uses, for example, a beam (reception filter) with the highest reception power of the desired beam as a reception beam (reception filter) for receiving the desired beam.
  • a plurality of reception beam (reception filter) candidates may be prepared, and a reception beam (reception filter) may be selected from among these plurality of candidates.
  • the beam coordinator 301 selects a base station as an interference source from a plurality of base stations (S302), and stops radio signal transmission operations by other base stations than the base station 101 and the selected base station.
  • S302 base stations included in a range of distance where the terminal can communicate may be selected in order.
  • base stations in the local area may be selected in order.
  • the base station 102 is selected as the base station that is the source of interference. It is also possible to select the base station 101 as an interference source.
  • the beam coordinator 301 determines multiple resources (resources defined by frequency and time) for transmitting multiple interference beams to the terminal 201 for the base station selected as the interference source (S302).
  • the frequencies of the plurality of resources are the same frequencies as the desired beam resources used between the base station 101 and the terminal 201 . It is possible to make the resource time for transmitting the interference beam different from or the same as the resource time for transmitting the desired beam.
  • the beam coordinator 301 transmits information specifying the determined plurality of resources to the base station 101 (S302).
  • the base station 101 transmits setting information for causing the terminal 201 to measure an interference beam transmitted from the base station 102 and report information on interference with the desired beam (S303). ).
  • the report configuration information may be included in RRC messages (e.g., RRCSetupmessage, RRCReconfigurationmessage) and transmitted from the base station 101 to the terminal 201 .
  • the configuration information may include information identifying resources on which interfering beams are transmitted. Information may be included that indicates the order of resources on which the interfering beams are transmitted. If the interfering beam is transmitted on different resources than the desired beam, terminal 201 may calculate the SINR or CQI assuming that the interfering beam is received at the same time as the desired beam.
  • the beam coordinator 301 transmits information instructing the base station 102 selected as the interference source to transmit one of the plurality of interference beams using one of the plurality of resources determined above. (S304). For example, the beam coordinator 301 selects a beam from a plurality of beam candidates (each beam ID is assigned) that can be transmitted from the base station 102, and instructs the base station 102 to transmit the selected beam using the beam ID. . Selection of interfering beams may be performed at the base station 102 . In this case, the base station 102 may notify the beam coordinator 301 of the beam ID of the interference beam to be transmitted using the designated resource.
  • the base station 102 Based on the information instructed by the beam coordinator 301, the base station 102 transmits interference beams using the resources instructed by the beam coordinator 301 (S304).
  • the base station 101 receives report information (beam report) including information (for example, SINR or CQI) on the interference amount of interference beams from the terminal 201 (S305).
  • a resource for uplink transmission of the beam report by the terminal 201 may be configured in the terminal 201 in advance by configuration information. Alternatively, other methods (e.g., DCI (Downlink Control Information), MAC Control Element) may be used to indicate the reporting resource to terminal 201 . Additionally or alternatively, the resource for transmitting the beam report from the terminal 201 is specified in advance by the base station 101 to the terminal 201 in the configuration information, and the report is triggered by other methods (e.g., DCI (Downlink Control Information), MAC (Control Element) to instruct the terminal 201.
  • DCI Downlink Control Information
  • MAC Control Element
  • the base station 101 transmits information about the received interference amount together with the ID (Base Station ID) of the base station 101 and the ID (UE ID) of the terminal 201 as interference report information to the beam coordinator 301 (S305).
  • the information about the interference transmitted from the terminal 201 may be associated with the ID of the resource on which the interfering beam was received.
  • the base station 101 includes the ID of the resource in the interference report information transmitted to the beam coordinator 301. you can
  • the beam coordinator 301 When the beam coordinator 301 receives the interference report information from the base station 101, the beam coordinator 301 associates the ID of the base station that transmitted the interference beam, the ID of the beam for which the interference was measured, and the information about the interference, and determines the interference for the terminal. Store in database. When the interference database is shared by a plurality of terminals, the IDs of the terminals are also stored in the interference database.
  • the information on interference stored in the interference database may be the SINR or CQI value itself reported from base station 101, or may be a class (for example, large, medium, or small) classified according to the value of information on interference.
  • the beam coordinator 301 determines whether all necessary interference beams have been transmitted from the interference source base station, that is, whether it has received interference report information on all interference beams transmitted from the base station 102 (S306). If all the interfering beams have not been transmitted yet, returning to step S304, the beam coordinator 301 transmits information to the base station 102 instructing to transmit another interfering beam on the next resource. Steps S304 and S305 are repeated until the beam coordinator 301 receives the interference report information for all the interference beams. An arbitrary method may be used to select the interference beam in step S304 for each iteration.
  • the beam coordinator 301 may sequentially select all of a plurality of candidate beams, may sequentially select beams at regular azimuth angle intervals, or may select beams randomly. When interference beams are selected not by beam coordinator 301 but by base station 102, beams may be selected in the same manner.
  • step S302 resources corresponding to the number of beams to be transmitted are determined. Alternatively, a method of determining the number of resources first and transmitting beams (interference beams) corresponding to the number of resources is also possible.
  • beam coordinator 301 When beam coordinator 301 receives interference report information about all interference beams transmitted from base station 102, it determines whether all base stations have been selected (S307). If there is a base station that has not been selected yet, the process returns to step S302 to select the next base station that will cause interference. The same processing (S302 to S306) is repeated for the selected base station 101, and the beam coordinator 301 receives interference report information on all interference beams transmitted from the base station 101. FIG.
  • beam coordinator 301 determines whether or not there are still terminals to be selected (S308). select. Steps S302 to S307 are performed for the selected terminal. If there is no terminal to be selected, the processing of this flowchart is terminated. Note that even a terminal that has already been selected may be selected again if a certain condition is satisfied, such as a certain period of time has elapsed or the terminal has moved.
  • SAS Spectrum Access System
  • stopping radio transmission operations of base stations other than the two base stations when performing beam interference measurement between base stations means that in this related art, these two base stations to the incumbent system.
  • One of the features of the present embodiment is that when the incumbent system (primary system) is in operation, all but the necessary base stations (two base stations) stop transmitting radio waves.
  • the operation example in FIG. 17 is an example, and various variations are possible for the content of the operation or the order of the operation.
  • base station 101 after stopping radio transmission operations of base stations other than the two base stations, base station 101 transmits setting information for interference measurement to terminal 201 . After transmitting the setting information for interference measurement to , the operations of the base stations other than the two base stations may be stopped. Also, in the operation example of FIG. 17, the transmission of the interference beams may be performed in the test mode. In this case, interference beams may be transmitted using as many resources as possible.
  • Table 8 shows an example of the interference database managed by the beam coordinator 301.
  • the interference database is provided for each terminal selected in step S301 of FIG. 17, as described above.
  • information about the amount of interference is classified into classes (large, medium, and small) indicating the strength of interference.
  • An interfering beam is identified by a base station ID (Base station ID) and a beam ID (beam ID).
  • Base station ID Base station ID
  • beam ID beam ID
  • at least one of a cell ID, a TRP (Transmission Reception Point) ID, or a BWP ID may be used to identify an interference beam.
  • the interference beam may be specified only by the beam ID.
  • both CQI without and with interference beams are compared to determine the strength of interference ( class) may be determined.
  • the second embodiment described above it was necessary to synchronize resources among multiple base stations. Although it is easy to synchronize multiple base stations belonging to the same operator, it may be difficult to synchronize between base stations belonging to different operators.
  • the third embodiment even if the base station to which the terminal that performs interference measurement belongs and the base station that transmits the interference beam belong to different operators (that is, different PLMNs), information about the amount of interference of the interference beam can be easily obtained. make it available to
  • FIG. 18 is a flowchart for explaining an example of operations of the beam coordinator 301, base station 101, and base station 102 according to the third embodiment.
  • the beam coordinator 301 selects a target terminal from a plurality of terminals belonging to a plurality of base stations (S401).
  • An example of terminal selection may be the same as in step S301 of FIG.
  • the beam coordinator 301 selects one of the plurality of base stations and sets only the selected base station to be able to transmit signals (S402).
  • the beam coordinator 301 stops signal transmission operations of all base stations other than the selected base station (S402).
  • the method of selecting the base station may be the same as in step S302 of FIG.
  • the selected base station determines multiple resources for interfering beam transmission (S403).
  • the selected base station causes the terminal selected in step S401 to measure the interference of the interference beam and report the information on the measured interference (interference amount) based on the determined information of the plurality of resources.
  • setting information is transmitted (at step S403).
  • the configuration information may include information identifying resources on which interfering beams are transmitted.
  • the selected base station transmits an interference beam including a reference signal (eg NZP CSI-RS) to the terminal on one of the determined resources (S404).
  • the selected base station receives, from the terminal, report information including information (eg, CRI) specifying the resource on which the reference signal was transmitted and received power (eg, RSRO) measured by the terminal (S405).
  • the base station transmits beams of the same configuration to the terminal using a plurality of resources, and reports information including the highest received power (RSRP) and the information (CRI) identifying the resource where the RSRP beam is transmitted to the base station. You can send it to the station.
  • the selected base station Based on the information obtained from the terminal, the selected base station has a PLMN ID (an operator ID), a corresponding base station ID (Base Station ID), a terminal ID (UE ID, such as IMSI, SUPI, etc.), a beam Generate interference report information including ID (Beam ID) and RSRP.
  • a beam ID is an ID given to each beam by the base station.
  • the beam ID may be, but is not limited to, an ID not defined in the 3GPP standard. For example, if the beam is a directional reference signal, the beam ID may be the ID of the reference signal. If the reference signal is CSI-RS, the beam ID may be CRI. If the reference signal is SSB, the beam ID may be SSB Index.
  • the base station transmits the generated interference report information to the beam coordinator 301 (at step S405).
  • the beam coordinator 301 determines whether all the necessary interference beams have been transmitted from the interference source base station, that is, whether the interference report information regarding all the interference beams transmitted from the selected base station has been received (S406). If all interference beams have not yet been transmitted, return to step S404. Steps S404 and S405 are repeated until all interference beams are transmitted and the beam coordinator 301 receives interference report information for all the interference beams.
  • the beam coordinator 301 determines whether all base stations have been selected (S407), and if there are base stations that have not been selected yet, similar processing is performed for other base stations (S402 to S406).
  • the beam coordinator 301 determines whether or not there are still terminals to be selected (S408). If there are still terminals remaining, the process returns to step S401, selects the next target terminal, and performs the step for the selected terminal. The processing of S402 to S407 is performed. If there is no terminal to be selected, the processing of this flowchart is terminated. Note that even a terminal that has already been selected may be selected again if a certain condition is satisfied, such as a certain period of time has elapsed or the terminal has moved.
  • the operation example in FIG. 18 is an example, and various variations are possible for the content of the operation or the order of the operation.
  • the selected base station after stopping radio transmission operations of base stations other than one selected base station, the selected base station transmits setting information for interference measurement to terminal 201 .
  • the operations of the base stations other than the selected base station may be stopped.
  • the transmission of the interference beams may be performed in the test mode. In this case, interference beams may be transmitted using as many resources as possible.
  • the beam coordinator 301 can grasp the information of the beams that can be the source of interference for the selected terminal for each base station.
  • Table 9 shows an example of the interference database managed by the coordinator 301. Table 9 happens to have the same content as Table 8, but it does not have to be the same.
  • An interference database is provided for each terminal selected in step S401 of FIG. 18, for example.
  • the received signal power (information about the amount of interference) is classified into classes (high, medium, low) indicating signal strength.
  • An interfering beam is identified by a base station ID (Base station ID) and a beam ID (beam ID).
  • Base station ID Base station ID
  • beam ID beam ID
  • at least one of a cell ID, a TRP (Transmission Reception Point) ID, or a BWP ID may be used to identify an interference beam.
  • the interference database in Table 9 uses the received power of the signal as information on the amount of interference, the interference database does not necessarily need to be used to grasp the amount of interference of the interference beams. It may be used to select a beam with high intensity (received power) as a desired beam.
  • the beam coordinator 301 provides information on the interference power (received power) at the terminal for multiple base stations belonging to different operators, can be obtained easily.
  • the network side does not acquire information on the amount of interference caused by interference beams for terminals other than the terminal for which information on the amount of interference is to be acquired. Therefore, in the first embodiment, which is the basis of this embodiment, the coordinator may not be able to adjust the use of beams so as not to interfere with the communication of other terminals. However, at least for the terminal selected in step S301 or S401, beam transmission that interferes with the terminal can be blocked, so that the function of the terminal controlling important equipment can be effectively protected. .
  • a method of not always using beams that interfere with the terminal is conceivable, but a method of not using beams that interfere with the terminal only while the important equipment to be controlled by the terminal is in use may be used. .
  • the beam may be a directional reference signal (e.g., CSI-RS, SSB) or simply a reference signal (e.g., CSI-RS, SSB) as described above.
  • the beam ID mentioned above may be the CRI or the SSB Index.
  • the processing performed by the beam coordinator described above may be performed by the base station itself or by a core network node.
  • this disclosure can also take the following configurations.
  • a transmission unit that transmits a request to use the target beam, including identification information that identifies the target beam; a receiving unit that receives a response including information about whether or not the target beam can be used, which is transmitted in response to the use request; base station with [Item 2] The base station according to item 1, wherein the use request includes conditions regarding at least one of time and frequency for using the target beam.
  • the condition includes a condition regarding start time of use of the target beam.
  • the condition includes a condition regarding a length of time for using the target beam.
  • [Item 5] The base station according to any one of items 2 to 4, wherein the condition includes a condition regarding the number of times the target beam is used.
  • [Item 6] The base station according to item 5, wherein the condition includes a condition regarding a period of using the target beam.
  • [Item 7] The base station according to any one of items 2 to 6, wherein the conditions include conditions regarding at least one of subframes and slots using the target beam.
  • [Item 8] The base station according to any one of items 2 to 7, wherein the conditions include conditions regarding quality required for the target beam.
  • base station [Item 10] The base according to any one of items 1 to 9, wherein the use request includes information requesting simultaneous use of the plurality of target beams, and the response includes information regarding whether or not the plurality of target beams can be used simultaneously. station. [Item 11] 11. The base station according to any one of items 1 to 10, wherein the usage request includes information about importance or priority of the target beam. [Item 12] 9.
  • the transmitting unit transmits a cancel message for canceling the usage request when the response is not received within a certain time after the usage request is transmitted.
  • the transmission unit transmits the usage request to a communication control device that controls a plurality of base stations, 14.
  • a receiving unit that receives a request to use the target beam, including identification information that identifies the target beam; a control unit that determines whether or not the target beam can be used based on correspondence data that holds information about interference given to the first communication device by each of the one or more beams in association with identification information that identifies the beam; a transmission unit configured to transmit a response including information regarding whether or not the target beam can be used based on the determination of the control unit;
  • a communication control device includes a first condition regarding at least one of time and frequency for using the target beam, the corresponding data includes information about at least one of the time and frequency at which the beam is used;
  • the controller controls the frequency included in the first condition to at least partially match the frequency used in the beam, and the time included in the first condition to at least the time in which the beam is used.
  • the communication control device according to item 16, wherein, when a second condition of partial matching is satisfied, interference given by the target beam to the first communication device is identified.
  • the control unit decides to permit use of the target beam when the second condition is not satisfied.
  • the control unit transmitting instruction information to the plurality of base stations for instructing measurement of interference inflicted on the first communication device by one or more beams transmittable from the plurality of base stations with the first communication device; , any one of items 15 to 18, obtaining from the plurality of base stations information about interference inflicted on the first communication device by the one or more beams in association with identification information that identifies the one or more beams 1.
  • the communication control device according to item 1.
  • the instruction information is information that instructs the first communication device to measure the received power of the beam.
  • the control unit transmits instruction information for instructing one of the plurality of base stations to transmit the beam for measuring the interference to the first communication device, 21.
  • the method according to any one of items 15 to 20, wherein instruction information is transmitted to a base station other than the one base station to instruct not to transmit a signal during a period in which the beam is transmitted by the one base station. communication controller.
  • the control unit transmitting instruction information for instructing transmission of the beam to a base station other than the first base station to which the first communication device belongs; transmitting instruction information to the first base station to instruct the first communication device to acquire information about interference of the beam received from the other base station; Obtaining information from the first base station about the interference that the beam imposes on the first communication device; 22.
  • the communication control device according to any one of items 15-21.
  • [Item 26] receiving a request to use the beam of interest, including identification information identifying the beam of interest; determining whether or not the target beam can be used based on corresponding data held in association with identification information for identifying the beam, information about interference given to the first communication device by each of the one or more beams; Transmitting a response including information about whether or not the target beam can be used based on the judgment of the control unit; Communication control method.
  • Base station 102 base station 110 antenna 120 radio communication unit 121 signal transmission unit 122 signal reception unit 130 network communication unit 140 storage unit 150 control unit 151 transmission unit 152 reception unit 201 terminal 301 beam coordinator 330 network communication unit 340 storage unit 350 control Unit 351 Transmitter 352 Receiver 1000 Base station 1000A Base station 1000B Base station 2000 Terminal 2000A Terminal 2000B Terminal

Abstract

[Problem] To realize high-quality communication between a base station and a communication device. [Solution] This base station comprises: a transmission unit for transmitting a request for use of a target beam, the request for use including identification information to identify the target beam; and a reception unit for receiving a response transmitted in response to the request for use, the response including information relating to whether the target beam can be used.

Description

基地局、通信制御装置、通信方法及び通信制御方法BASE STATION, COMMUNICATION CONTROL DEVICE, COMMUNICATION METHOD, AND COMMUNICATION CONTROL METHOD
 本開示は、基地局、通信制御装置、通信方法及び通信制御方法に関する。 The present disclosure relates to base stations, communication control devices, communication methods, and communication control methods.
 工場やオフィス、スタジオ、病院内、大学内など、限られたエリアで行うセルラー通信のサービスとしてローカル5G又はプライベート5Gと呼ばれるサービスが知られている。このサービスは、ノンパブリックネットワークと呼ばれることもある。サービスのエリアをローカルなエリアに限定することにより、カスタマイズされたセルラーサービスを提供できるメリットがある。多くのユースケースとして、そのローカルエリア内で、重要な守りたい通信が存在することがある。例えば、工場の場合には、工場の生産ラインのために通信障害を起こしてはいけない装置がある。病院の場合には、手術に用いている通信は、通信障害を起こしてはいけない。大学の場合には、授業をオンラインで配信している場合には、その通信は、その他の通信よりも優先して守られるべき通信である。このようにローカルエリアでの通信においては、特定の非常に重要な通信を守りたいという用途がある。 A service called local 5G or private 5G is known as a cellular communication service that is performed in limited areas such as factories, offices, studios, hospitals, and universities. This service is sometimes called a non-public network. By limiting the service area to a local area, there is an advantage that customized cellular service can be provided. As with many use cases, there may be important communications to protect within the local area. For example, in the case of a factory, there are devices that should not cause a communication failure due to the production line of the factory. In the case of hospitals, the communication used for surgery must not cause communication failure. In the case of a university, when classes are distributed online, the communication should be protected with priority over other communication. In this way, in communications in a local area, there is a use for wanting to protect specific very important communications.
 ローカルエリアでの通信として、これまで、Wi-Fi通信、802.11a,b,g,n,ac等の規格に基づいた通信が用いられてきた。Wi-Fi等の通信はパフォーマンスが良いメリットがあるが、異なるユーザ間でリソースを調整するスケジューラーがアクセスポイントに搭載されていないため、LBT(Listen Before Talk)というキャリアセンスに基づいたコンテンションベースの方法で、ユーザ間のトラフィックが多重される。ユーザのパケットが衝突することも頻繁に起きる。そのため、複数のユーザが存在する場合には、セルラー通信の方が品質を保持できるため、ローカルエリアでもセルラー通信を使用したいという要求がある。 Wi-Fi communication and communication based on standards such as 802.11a, b, g, n, and ac have been used for local area communication. Communication such as Wi-Fi has the advantage of good performance, but since the access point does not have a scheduler that adjusts resources among different users, LBT (Listen Before Talk) is a contention-based method based on carrier sense. In a way the traffic between users is multiplexed. User packets collide frequently. Therefore, when there are a plurality of users, there is a demand to use cellular communication even in local areas because cellular communication can maintain quality.
 5Gの基地局は、ビームフォーミングを行うことができる。ビームフォーミングでは、ビームマネジメントという手続きによって基地局と端末との間で望ましいビームを決定し、そのビームを使って、データを送信する。ビームフォーミングでは、隣接する基地局が提供するビーム同士が干渉を起こさないよう干渉制御がなされる。しかしながら、基地局と端末との位置関係、基地局が生成するビームの方向及びビーム幅等、様々な要因によって干渉制御が難しくなる場合もある。ローカルエリアの通信では、非常に重要な通信が存在しているため、ビームフォーミングを用いた場合にも、品質を維持した通信が要求される。  5G base stations can perform beamforming. In beamforming, a desired beam is determined between a base station and a terminal by a procedure called beam management, and data is transmitted using that beam. In beamforming, interference control is performed so that beams provided by adjacent base stations do not interfere with each other. However, interference control may become difficult due to various factors such as the positional relationship between the base station and the terminal, the direction and beam width of the beam generated by the base station, and the like. Since very important communications exist in local area communications, communications that maintain quality are required even when beamforming is used.
 本開示は、基地局と通信装置間で高品質な通信を実現する基地局、通信制御装置、通信方法及び通信制御方法を提供する。 The present disclosure provides a base station, a communication control device, a communication method, and a communication control method that realize high-quality communication between the base station and communication devices.
 本開示の基地局は、対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信する送信部と、前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する受信部と、を備える。 The base station of the present disclosure includes a transmission unit that transmits a request to use the target beam, including identification information that identifies the target beam, and information on whether or not to use the target beam, which is transmitted in response to the use request. and a receiving unit that receives a response including:
 本開示の通信制御装置は、対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信する受信部と、1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断する制御部と、前記制御部の判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する送信部と、を備える。 The communication control device of the present disclosure includes a receiving unit that receives a request to use the target beam, which includes identification information that identifies the target beam, and information about interference that each of the one or more beams gives to the first communication device, a controller for determining whether or not the target beam can be used based on corresponding data held in association with identification information for identifying the beam; and information about whether or not the target beam can be used based on the determination of the controller. and a transmission unit that transmits a response.
 本開示の通信方法は、対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信し、前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する。 The communication method of the present disclosure transmits a request for using the target beam, which includes identification information for identifying the target beam, and transmits a response including information regarding whether or not to use the target beam, which is transmitted in response to the use request. receive.
 本開示の通信制御方法は、対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信し、1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断し、前記制御部の判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する。 The communication control method of the present disclosure receives a request to use the target beam, which includes identification information that identifies the target beam, and transmits information about interference each of the one or more beams gives to the first communication device. Use of the target beam is determined based on the corresponding data held in association with the identified identification information, and a response including information on whether the target beam can be used is transmitted based on the determination of the control unit.
ビームマネジメントの手続きの例を示すシーケンス図。FIG. 4 is a sequence diagram showing an example of beam management procedures; ビームマネジメントの手続きで行われるビームスウィーピングを模式的に示す図。FIG. 4 is a diagram schematically showing beam sweeping performed in a beam management procedure; 基地局と端末とのチルティングが大きい例を示す図。FIG. 4 is a diagram showing an example in which tilting between a base station and a terminal is large; 基地局と端末とのチルティングが小さい例を示す図。FIG. 4 is a diagram showing an example in which tilting between a base station and a terminal is small; L1-SINR の測定を模式的に示す図。A diagram schematically showing the measurement of L1-SINR. 3GPP Rel16 38.214 Section 5.2.1の一部を抜粋した図。Partial figure from 3GPP Rel16 38.214 Section 5.2.1. L1-SINR の測定を模式的に示す図。A diagram schematically showing the measurement of L1-SINR. Rel16 TS38.331 Section 6.3.2におけるレポート・コンフィギュレーションを抜粋した図。An excerpt of the report configuration in Rel16 TS38.331 Section 6.3.2. Rel16 TS38.331 Section 6.3.2におけるリソース・コンフィギュレーションを抜粋した図。Diagram extracting resource configuration from Rel16 TS38.331 Section 6.3.2. 本開示の実施形態に係る通信システムの一例を概略的に示す図。1 is a diagram schematically showing an example of a communication system according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る基地局の一例を示すブロック図。1 is a block diagram showing an example of a base station according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係るビームコーディネータの一例を示すブロック図。1 is a block diagram showing an example of a beam coordinator according to an embodiment of the present disclosure; FIG. 基地局がビームリクエストで指定した開始時刻からビームの送信を行う例を示す図。FIG. 4 is a diagram showing an example of beam transmission from a start time specified by a base station in a beam request; 基地局がビームを周期的に使用する例を示す図。FIG. 4 is a diagram showing an example in which a base station uses beams periodically; 基地局がビームを1回だけ使用する例を示す図。FIG. 4 is a diagram showing an example in which a base station uses a beam only once; 本実施形態に係る通信システムの全体の手続きの例を示すシーケンス図。FIG. 2 is a sequence diagram showing an example of overall procedures of the communication system according to the embodiment; 第2の実施形態に係るビームコーディネータ及び複数の基地局の動作の一例を示すフローチャート。9 is a flowchart showing an example of operations of a beam coordinator and a plurality of base stations according to the second embodiment; 第3の実施形態に係るビームコーディネータ及び複数の基地局の動作の一例を示すフローチャート。10 is a flow chart showing an example of operations of a beam coordinator and a plurality of base stations according to the third embodiment;
 以下、図面を参照して、本開示の実施形態について説明する。本開示において示される1以上の実施形態において、各実施形態が含む要素を互いに組み合わせることができ、かつ、当該組み合わせられた結果物も本開示が示す実施形態の一部をなす。 Embodiments of the present disclosure will be described below with reference to the drawings. In one or more of the embodiments presented in this disclosure, the elements included in each embodiment may be combined with each other and the combined result also forms part of the embodiments presented in this disclosure.
 以下、本実施形態の技術的背景について説明する。
 まずローカル5Gで行われるビームフォーミングとその問題点について説明する。
The technical background of this embodiment will be described below.
First, we will explain the beamforming performed in local 5G and its problems.
 背景技術の欄で説明したように、5Gの基地局が端末とビームマネジメントという手続きを行うことで、ビーム(e.g., 指向性を持たせた参照信号(e.g., CSI-RS))を用いた通信を端末と行うことができる。以降、「ビーム」の用語は、指向性を持たせた参照信号(e.g., CSI-RS)、又は単に参照信号(e.g., CSI-RS)を意味してもよい。さらに又はこれに代えて、ビーム(指向性を持たせた参照信号)は、指向性を持たせたSSB(SS/PBCH block)又は単にSSBを意味していてもよい。SSBは、Synchronization Signal (Primary Synchronization Signal及びSecondary Synchronization Signal)とPhysical Broadcast Channelを含む情報ブロックである。 As explained in the background technology section, communication using beams (e.g., reference signals with directivity (e.g., CSI-RS)) can be achieved by performing a procedure called beam management between 5G base stations and terminals. can be done with the terminal. Hereinafter, the term "beam" may also mean a directional reference signal (e.g., CSI-RS) or simply a reference signal (e.g., CSI-RS). Additionally or alternatively, a beam (a directional reference signal) may refer to a directional SSB (SS/PBCH block) or simply SSB. SSB is an information block containing Synchronization Signal (Primary Synchronization Signal and Secondary Synchronization Signal) and Physical Broadcast Channel.
 図1は、ビームマネジメントの手続きの例を示すシーケンス図である。図2は、ビームマネジメントの手続きで行われるビームスウィーピング(ビーム掃引)を模式的に示す図である。 FIG. 1 is a sequence diagram showing an example of beam management procedures. FIG. 2 is a diagram schematically showing beam sweeping performed in a beam management procedure.
 図1において、基地局1000はビームスウィーピングによって複数のビームを順次送信して(S101)、端末2000からビームの測定結果のレポート(例えば使用を希望する所望ビームを含むMeasurement Report)を受信する(S102)。基地局1000は、端末2000に対して当該所望ビームで通信品質測定用の参照信号を送信する(S103)。基地局1000は、端末2000からビームのチャネル品質(通信品質)を示すレポートを受信する(S104)。基地局1000は、チャネル品質に基づいて変調方式及び符号化方式等のパラメータを決定し、端末2000に、決定したビームで、ダウンリンクのデータ(ユーザデータ)を送信する(S105)。 In FIG. 1, the base station 1000 sequentially transmits a plurality of beams by beam sweeping (S101), and receives a beam measurement result report (for example, a measurement report including a desired beam to be used) from the terminal 2000 (S102). ). The base station 1000 transmits a reference signal for communication quality measurement with the desired beam to the terminal 2000 (S103). The base station 1000 receives a report indicating beam channel quality (communication quality) from the terminal 2000 (S104). The base station 1000 determines parameters such as modulation scheme and coding scheme based on the channel quality, and transmits downlink data (user data) to the terminal 2000 using the determined beam (S105).
 屋外(Outdoor)におけるパブリックネットワークでは、セル(カバレッジ)が一部重複する、互いに隣接する基地局が提供するビームが互いに干渉を起こさないように制御される。パブリックネットワークでは、基地局が高い位置に設置され、基地局から端末を見下ろす角度(チルティング)が大きい。このため、隣のセルとの干渉を小さく制御できる。 In outdoor public networks, beams provided by adjacent base stations with partially overlapping cells (coverage) are controlled so that they do not interfere with each other. In a public network, a base station is installed at a high position, and the angle (tilting) at which a terminal is looked down from the base station is large. Therefore, interference with adjacent cells can be controlled to be small.
 図3は、基地局1000Aと端末2000Aとのチルティング、基地局1000Aに隣接する基地局1000Bと端末2000Bとのチルティングが大きい例を示す。 FIG. 3 shows an example in which the tilting between the base station 1000A and the terminal 2000A and the tilting between the base station 1000B adjacent to the base station 1000A and the terminal 2000B are large.
 一方、ローカルエリアにおけるネットワークでは、設置される基地局は、設置する高さを確保できない場合もある。 On the other hand, in networks in local areas, it may not be possible to secure the installation height for the base station to be installed.
 図4は、基地局1000Aと端末2000Aとのチルティング、基地局1000Aに隣接する基地局1000Bと端末2000Bとのチルティングが小さい例を示す。 FIG. 4 shows an example in which the tilting between the base station 1000A and the terminal 2000A and the tilting between the base station 1000B adjacent to the base station 1000A and the terminal 2000B are small.
 図4のようにチルティングが小さい場合、隣接するセル同士間で干渉が大きくなる場合がある。例えば、基地局と端末間の通信にビームを用いた場合、基地局と端末との距離のみならず、ビームの向きが端末への干渉量に影響する。狭いビーム幅のビームを用いると、エネルギーが分散しないため、ビームの信号が端末を超えて、遠くいる他の端末まで届く場合がある。基地局からの距離よりも、ビームの方向が、干渉が生じるか否かに大きく関係し、このことが干渉制御を困難なものにしている。このようなビームによる干渉を減らすことが重要となる。 When the tilting is small as in Fig. 4, interference between adjacent cells may increase. For example, when a beam is used for communication between a base station and a terminal, not only the distance between the base station and the terminal but also the direction of the beam affects the amount of interference to the terminal. When a narrow beam width beam is used, the energy is not dispersed, so the signal of the beam may reach other distant terminals beyond the terminal. The direction of the beam, rather than the distance from the base station, has a greater bearing on whether or not interference occurs, making interference control difficult. Reducing interference by such beams is important.
 従来、隣接する基地局間で、異なるリソース(周波数及び時間によって特定される周波数・時間リソース)を使い分けるため、X2(Xn)インターフェース経由で、どのリソースを使うかの情報をやりとりしていた。同じリソースであっても、干渉が起きないビームを使えば、隣接した基地局でそれぞれ同時にこれらのビームを使用して、各々のセル内の端末と通信可能である。したがって、基地局間のビームコーディネーション(ビーム調整)が重要になってくる。 Conventionally, in order to use different resources (frequency and time resources specified by frequency and time) between adjacent base stations, information on which resource to use was exchanged via the X2 (Xn) interface. Even with the same resources, if beams that do not cause interference are used, adjacent base stations can simultaneously use these beams to communicate with terminals in each cell. Therefore, beam coordination (beam adjustment) between base stations becomes important.
[基地局が端末から取得する情報、基地局が取得できるビームの情報]
 上述の図1に示したビームスウィーピング(S101)において、基地局が端末から報告として取得できる情報の例を以下に示す。基地局は表1に示す情報を選択的に端末から取得できる。所望ビームは、端末が使用を所望するビームである。
Figure JPOXMLDOC01-appb-T000001
[Information that the base station acquires from the terminal, information on beams that the base station can acquire]
An example of information that the base station can obtain as a report from the terminal in beam sweeping (S101) shown in FIG. 1 is shown below. The base station can selectively obtain the information shown in Table 1 from the terminal. A desired beam is a beam that the terminal desires to use.
Figure JPOXMLDOC01-appb-T000001
 以下、表1の各情報について説明する。 Each piece of information in Table 1 will be explained below.
 まず、L1-RSRP (Layer 1-Reference Signal Received Power)について説明する。
 図5は、L1- RSRPの測定を模式的に示す。基地局から端末に対して、チャネル測定用の複数のリソース(周波数・時間リソース)を設定する。設定したリソースは、図5のNZP(Non-Zero Power) CSI-RS resources for channel measurementに対応する。基地局は、設定した複数のリソースを用いて、参照信号をそれぞれ異なるビームで送信する。端末は、複数のリソースをモニターし、受信電力を測定することにより、受信電力が最も高いビームが送信されたリソースを検出する。端末は、検出したリソースを特定する情報を、当該ビームの受信電力とともに基地局に報告する。検出したリソースを特定する情報は例えばCRI(CSI-RS Reference Identification)であり、ビームの受信電力は、例えばRSRP(Reference Signal Received Power)である。CRIとRSRPは、どのビームが端末にとって望ましいビーム(所望ビーム)であるかを基地局へ通知するための情報である。L1-RSRPの報告は、所望ビームを基地局側で特定する仕組みであり、干渉ビームを特定する仕組みではない。
First, L1-RSRP (Layer 1-Reference Signal Received Power) will be explained.
FIG. 5 schematically shows the measurement of L1-RSRP. A plurality of resources (frequency/time resources) for channel measurement are set from the base station to the terminal. The configured resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG. The base station uses the set resources to transmit reference signals with different beams. The terminal monitors a plurality of resources and measures received power to detect the resource from which the beam with the highest received power is transmitted. The terminal reports information identifying the detected resource to the base station together with the received power of the beam. The information specifying the detected resource is, for example, CRI (CSI-RS Reference Identification), and the received power of the beam is, for example, RSRP (Reference Signal Received Power). CRI and RSRP are information for notifying the base station which beam is desirable for the terminal (desired beam). The L1-RSRP report is a mechanism for identifying a desired beam on the base station side, and is not a mechanism for identifying an interfering beam.
 次に、L1-SINRについて説明する。3GPP Rel16 MIMO work itemでは、端末にとって望ましいビームと、端末が望ましいビームを受信中に測定した干渉元からのビームとの干渉量を、L1-SINRという所望ビーム電力対干渉ビーム電力として、基地局に報告できるとされている。 Next, we will explain L1-SINR. In the 3GPP Rel16 MIMO work item, the amount of interference between the desired beam for the terminal and the beam from the interfering source measured while the terminal is receiving the desired beam is reported to the base station as desired beam power vs. interference beam power, called L1-SINR. reportedly can be reported.
 図6は、3GPP Rel16 38.214 Section 5.2.1の一部を抜粋したものである。L1-SINRの測定について記載されている。 Figure 6 is an excerpt from 3GPP Rel16 38.214 Section 5.2.1. A measurement of L1-SINR is described.
 図7は、L1-SINR の測定を模式的に示す。基地局はチャネル測定用のリソースで複数の異なるビームを送信する。チャネル測定用のリソースは、図7のNZP(Non-Zero Power) CSI-RS resources for channel measurementに対応する。端末は、一番受信電力が大きいビーム(所望ビーム)が送信されたリソースを特定する。端末は、所望ビームの受信に用いたビーム(受信ビーム)を用いて、基地局から干渉測定用のリソースで送信される複数の異なるビームを受信し、所望ビームとの干渉量(SINR)を測定する。干渉測定用のリソースは、図7のNZP CSI-RS resources for interference measurement又はInterference measurement resource(IMR)に対応する。IMRは、基地局が自局からの無信号を保証しているリソースであり、他の基地局からの干渉信号をモニターするための窓である。端末は、SINRを測定するとき、基地局からの所望のビームを受信する時と同じ受信ビームを使って、干渉測定用のリソースで送信されるビーム(干渉ビーム)を受信する。端末は、所望のビームの受信電力(所望電力)と干渉ビームの受信電力(干渉電力)とからSINR(Signal to Interference and Noise Ratio)を計算する。端末は、所望ビームが送信されたリソースを示すCRIを、計算したSINR(L1-SINR)とともに基地局に報告する。干渉測定用のリソースが複数存在する場合は、報告するSINRは、例えば測定されたSINRの代表値(最小値又は最大値等)である。 Fig. 7 schematically shows the measurement of L1-SINR. A base station transmits multiple different beams with resources for channel measurement. Channel measurement resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG. The terminal identifies the resource from which the beam (desired beam) with the highest received power is transmitted. The terminal uses the beam (receive beam) used to receive the desired beam to receive multiple different beams transmitted from the base station using resources for interference measurement, and measures the amount of interference with the desired beam (SINR). do. Resources for interference measurement correspond to NZP CSI-RS resources for interference measurement or interference measurement resource (IMR) in FIG. The IMR is a resource in which a base station guarantees no signals from its own station, and is a window for monitoring interference signals from other base stations. When measuring the SINR, the terminal uses the same receiving beam as when receiving the desired beam from the base station to receive the beam (interference beam) transmitted by the resource for interference measurement. The terminal calculates SINR (Signal to Interference and Noise Ratio) from the received power of the desired beam (desired power) and the received power of the interference beam (interference power). The terminal reports the CRI indicating the resource on which the desired beam is transmitted to the base station together with the calculated SINR (L1-SINR). If there are multiple interference measurement resources, the SINR to be reported is, for example, a representative value (minimum value, maximum value, etc.) of the measured SINRs.
 上述のL1-SINRの測定及び基地局へのL1-SINRの報告を実装の観点で考えると、基地局は、干渉測定用のリソースを1つ設定した場合、端末の使用ビーム(所望ビーム)にとって、干渉測定用のリソースで送信されたビームの干渉状況(例えば干渉量が高いか低いか、換言すれば、許容できない干渉があるか否か)を知ることができる。すなわち、基地局は、SINRが大きいことを示す報告を受信した時には、端末の使用ビーム(所望ビーム)にとって、干渉測定用のリソースで送信されたビームは、干渉量が低いことを知ることができる。また、基地局は、SINRが小さいことを示す報告を受信した時には、干渉測定用のリソースで送信されたビームは、干渉量が大きいことを知ることができる。つまり、3GPP Rel16に対応した基地局は、所望ビームに対して、干渉量が大きいビーム及び干渉量が小さいビームの情報を間接的に取得することが可能である。 Considering the above-described L1-SINR measurement and L1-SINR reporting to the base station from the viewpoint of implementation, when the base station sets one resource for interference measurement, for the beam used by the terminal (desired beam) , the interference situation of the beams transmitted on the resources for interference measurement (eg, whether the amount of interference is high or low, in other words, whether there is unacceptable interference). That is, when the base station receives a report indicating that the SINR is large, the base station can know that the amount of interference is low with respect to the beam used by the terminal (desired beam) with the beam transmitted using the resource for interference measurement. . Also, when the base station receives a report indicating that the SINR is small, it can know that the beam transmitted using the resources for interference measurement has a large amount of interference. In other words, a base station that supports 3GPP Rel16 can indirectly acquire information on beams with high and low interference with respect to a desired beam.
 次に、CQI(Channel Quality Indication)について、上述の図7を用いて説明する。基地局は、チャネル測定用のリソースを複数個設定することができる。チャネル測定用のリソースは、図7のNZP(Non-Zero Power) CSI-RS resources for channel measurementに対応する。また、干渉を測定(又は干渉量を測定)するためのリソースも複数個設定することが可能である。干渉測定用のリソースは、図7のNZP CSI-RS resources for interference measurement又はInterference measurement resourceに対応する。IMRは、基地局が自局からの無信号を保証しているリソースであり、他の基地局からの干渉信号をモニターするための窓である。以上のように設定されたリソースを使って、端末は、チャネル測定用のソースのうち最も受信電力の高いビーム(所望ビーム)が送信されたリソースをCRIで指定し、当該その所望ビームを用いる場合に端末側でのダウンリンクのデータの受信に必要な変調方式と符号化率(コードレート)とを、CQI(変調方式と符号化率との組に割り当てられた番号)で指定する。端末は、CRIとCQIとを基地局に報告する。CQIの値(番号)が大きくなるほど、チャネルの品質が高い時に用いる変調方式と符号化率の組になる。よって、基地局は、CQIの値を調べることにより、所望ビームに対する干渉状況(例えば干渉量が高いか低いか、換言すれば、許容できない干渉があるか否か)を知ることが可能となる。 Next, CQI (Channel Quality Indication) will be explained using FIG. 7 above. The base station can configure multiple resources for channel measurement. Channel measurement resources correspond to NZP (Non-Zero Power) CSI-RS resources for channel measurement in FIG. Also, it is possible to configure a plurality of resources for measuring interference (or measuring the amount of interference). The resource for interference measurement corresponds to NZP CSI-RS resources for interference measurement or interference measurement resource in FIG. The IMR is a resource in which a base station guarantees no signals from its own station, and is a window for monitoring interference signals from other base stations. Using the resources configured as described above, the terminal designates, by CRI, the resource that transmits the beam with the highest received power (desired beam) among the sources for channel measurement, and uses the desired beam. , the modulation scheme and coding rate (code rate) required for receiving downlink data on the terminal side are specified by CQI (number assigned to a combination of modulation scheme and coding rate). The terminal reports CRI and CQI to the base station. The higher the CQI value (number), the higher the quality of the channel and the higher the quality of the channel. Therefore, by checking the CQI value, the base station can know the state of interference with the desired beam (for example, whether the amount of interference is high or low, in other words, whether there is unacceptable interference).
 [従来のビームレポートのコンフィギュレーションについて]
 図8は、Rel16 TS38.331 Section 6.3.2におけるレポート・コンフィギュレーションを抜粋したものを示す。レポート・コンフィギュレーションに基づき、端末が周波数と時間とにより設定された複数のリソースをモニター(受信電力を測定)して、モニターの結果を報告するための設定が、基地局から端末に対して事前に行われる(i.e., 当該設定の情報要素を含むRRC messageが基地局から端末へ事前に送信されることにより、端末は当該設定の情報要素を使って自身を設定する)。より詳細には以下の通りである。
[Regarding the configuration of the conventional beam report]
Figure 8 shows an excerpt of the report configuration in Rel16 TS38.331 Section 6.3.2. Based on the report configuration, the terminal monitors (measures the received power) multiple resources set by frequency and time, and the settings for reporting the monitoring results are sent from the base station to the terminal in advance. (ie, the terminal configures itself using the configuration information element by sending an RRC message including the configuration information element from the base station to the terminal in advance). More details are as follows.
 Cell IDには、どの周波数帯域(Component Carrier)のリソース・コンフィギュレーション(Resource Configuration)をモニターするかが設定される。 In the Cell ID, which frequency band (Component Carrier) resource configuration (Resource Configuration) is to be monitored is set.
 Resource Configuration ID for channel measurementには、どのResource configuration をモニターして、端末との間で使用する候補となるビーム(候補ビーム)の受信電力を取得するのかが指示されている。 The Resource Configuration ID for channel measurement indicates which resource configuration to monitor to obtain the received power of the candidate beam (candidate beam) to be used with the terminal.
 Resource Configuration ID for interference measurementには どのResource configurationをモニターして、干渉ビームによる干渉に関する情報(RSRP、SINR又はCQI)を取得するのかが指示されている。 The Resource Configuration ID for interference measurement indicates which resource configuration to monitor to obtain information (RSRP, SINR or CQI) on interference by interference beams.
 Resource configuration for Reportには、どのアップリンク・リソース(Uplink Resource)を使って、基地局に報告を行うかが指示されている。  Resource configuration for Report indicates which Uplink Resource to use to report to the base station.
 Report Quantityには、基地局に報告する内容として、CRI-SINR (CRIとSINR)、CRI-SINR(CRIとSINR)、又は、CRI-CQI(CRIとCQI)が選択的に設定される。一例として、CRI-SINRは、候補ビームのうち端末が希望する所望ビームが送信されたリソースID、当該所望ビームと干渉ビームとの干渉量(SINR)とを報告することを意味する。複数の干渉ビームが送信された場合、複数のSINRの代表値(最小値、平均値、最大値等)又は、複数のSINRの全てを報告することが考えられる。 In Report Quantity, CRI-SINR (CRI and SINR), CRI-SINR (CRI and SINR), or CRI-CQI (CRI and CQI) is selectively set as the content to be reported to the base station. For example, CRI-SINR means reporting a resource ID in which a desired beam desired by a terminal among candidate beams is transmitted, and an amount of interference (SINR) between the desired beam and an interference beam. When multiple interfering beams are transmitted, it is conceivable to report representative values (minimum value, average value, maximum value, etc.) of multiple SINRs or all of multiple SINRs.
 Resource Configuration IDのフォーマットは、チャネル測定(Channel measurement)用も干渉測定(Interference measurement)用も同一であるが、両測定では、別々のリソースを指定する。 The format of the Resource Configuration ID is the same for channel measurement and interference measurement, but different resources are specified for both measurements.
 図9は、Rel16 TS38.331 Section 6.3.2におけるリソース・コンフィギュレーション(Resource configuration)の設定を抜粋したものを示す。上述のように、チャネル測定(Channel measurement)用も干渉測定(Interference measurement)用も同一のフォーマットが用いられる。 Fig. 9 shows an excerpt of the resource configuration settings in Rel16 TS38.331 Section 6.3.2. As mentioned above, the same format is used for both channel and interference measurements.
 Reference Signal Resource Set Listには、複数のDL RS(Downlink Reference Signal)のリソースで構成されたRS Resource Set(Reference Signal Resource Set)が複数含まれている。つまり、参照信号(Reference Signal)が送信されるリソースがセットになったものがリストとして含まれている。 The Reference Signal Resource Set List contains multiple RS Resource Sets (Reference Signal Resource Sets) composed of multiple DL RS (Downlink Reference Signal) resources. That is, the list includes a set of resources to which reference signals are transmitted.
 BWP IDには、どのBWP(Bandwidth Part)を用いるかが示されている。つまり上記のリソース又はリソースセットが、どのBWPに属するものかが示されている。BWPとは、周波数帯域であるコンポーネント・キャリア(Component Carrier)を部分的な周波数領域に区切った各部分のことである。 The BWP ID indicates which BWP (Bandwidth Part) to use. In other words, it indicates to which BWP the above resource or resource set belongs. A BWP is each part obtained by dividing a component carrier, which is a frequency band, into partial frequency domains.
 図8及び図9に示した設定に基づき、端末は、RSRP, SINR又はCQIを計算して、計算した値を、CRIとともに基地局へ報告する。なお本報告は、所望ビームに関する干渉ビームのRSRP, SINR又はCQIを報告するもので、干渉ビームを特定する情報を基地局へ報告するものではない。  Based on the settings shown in Figs. 8 and 9, the terminal calculates RSRP, SINR or CQI and reports the calculated value to the base station together with the CRI. Note that this report is intended to report the RSRP, SINR, or CQI of the interference beam for the desired beam, and is not intended to report information identifying the interference beam to the base station.
 なお、図8及び図9で説明したレポート・コンフィギュレーションでは、一つの周波数帯域(Component Carrier)における一つのBWP内に配置された複数の参照信号(Reference Signal)をモニターした後に、望ましい参照信号(RS)が送信されたリソースの情報(e.g., 所望ビームが送信されたリソース、望ましいビームに対応する参照信号の識別子(e.g., CRI))が、SINRとともに報告される。複数のセル(Component Carrier)や複数のBWPに配置される参照信号(RS)をモニターして行ったものではない。 In addition, in the report configuration described in FIGS. 8 and 9, after monitoring a plurality of reference signals (Reference Signals) arranged in one BWP in one frequency band (Component Carrier), the desired reference signal ( The information of the resource on which the RS) was transmitted (e.g., the resource on which the desired beam was transmitted, the identifier of the reference signal corresponding to the desired beam (e.g., CRI)) is reported along with the SINR. It was not done by monitoring reference signals (RS) placed in multiple cells (Component Carriers) or multiple BWPs.
[従来の3GPP規格で可能な実装]
 基地局が、特定の端末へ送信するビーム(ビーム1とする)にとって、干渉量が大きいビーム(ビーム2とする)の情報と干渉量が小さいビーム(ビーム3とする)の情報を取得することは可能である。ビーム1~3の送信源が、この基地局が制御可能な複数の小型基地局の中に含まれている場合には、ビーム1~3の情報を基地局が取得することで、基地局の制御の元、ビーム1~3の使用を調整することが可能である。すなわち、一つの基地局の制御内での処理と見なせる場合は、ビーム間の調整は、可能である。
[Possible implementation with conventional 3GPP standard]
For a beam (beam 1) transmitted from a base station to a specific terminal, information on a beam with a large amount of interference (beam 2) and information on a beam with a small amount of interference (beam 3) are acquired. is possible. If the transmission sources of beams 1 to 3 are included in a plurality of small base stations that can be controlled by this base station, the information on beams 1 to 3 can be obtained by the base station, Under control, it is possible to coordinate the use of beams 1-3. In other words, adjustment between beams is possible if it can be regarded as processing within the control of one base station.
 しかしながら、ビーム1~3の送信源が、独立した別々の基地局に属している場合には、上で述べた測定を基地局間で協調して実施することが困難である。つまり、従来の3GPPの規格に基づいた方法は、オペレータが異なる基地局間の場合や、同じオペレータに属していても制御が異なる基地局間の場合には、ビームの干渉量を測定するためのリソースの設定を基地局間で協調して行うこと自体が困難である。 However, if the transmission sources of beams 1 to 3 belong to independent and separate base stations, it is difficult to coordinate the measurements described above among the base stations. In other words, the conventional method based on the 3GPP standard does not allow measuring the amount of beam interference between base stations operated by different operators or between base stations that belong to the same operator but are controlled differently. Coordinating the setting of resources between base stations itself is difficult.
 例えば、上述の図7において、所望ビームを決定するためのチャネル測定 (channel measurement)用のリソースの設定を基地局(基地局Aとする)で行うとする。この場合に、干渉測定 (interference measurement)用のリソースの設定を、基地局Aと同じオペレータに属する他の基地局B、又は、別のオペレータに属する基地局Cで行うことは、困難である。2つの基地局(基地局Aと基地局B、又は基地局Aと基地局C)へのリソースの設定を連動させた上で、各リソースで信号を出すタイミングを2つの基地局間で連携しなければならないからである。オペレータが同一の場合には、実現のためのハードルが下がるが、基地局Bが、基地局Aとの間でこのような連動した設定が可能であるかは、基地局Bの実装に依存する。このため、このような連動した設定がいつも可能であるとは限らない。 For example, in FIG. 7 described above, assume that a base station (assumed to be base station A) sets resources for channel measurement for determining a desired beam. In this case, it is difficult to configure resources for interference measurement in another base station B belonging to the same operator as base station A or in base station C belonging to another operator. After coordinating resource settings for two base stations (base station A and base station B, or base station A and base station C), the two base stations coordinate the timing of sending signals from each resource. because it must. If the operators are the same, the hurdles for implementation will be lower, but whether or not base station B can set up such interlocking with base station A depends on the implementation of base station B. . Therefore, such interlocked setting is not always possible.
[本開示による基地局間のビームコーディネーション(ビーム調整)]
 本開示は、基地局間のビーム使用の調整を効果的に可能にする方法を提供する。端末へ使用するビームに対する他のビームの干渉量に関する情報(例えば干渉量が大きいビーム群の情報)を、複数の基地局を制御する通信制御装置であるビームコーディネータ(beam coordinator)に収集し、ビームコーディネータにおいて基地局間のビーム使用を調整(coordination)する。
[Beam coordination between base stations according to the present disclosure (beam adjustment)]
The present disclosure provides methods that effectively enable coordination of beam usage between base stations. A beam coordinator, which is a communication control device that controls multiple base stations, collects information on the amount of interference of other beams with respect to the beam used for the terminal (for example, information on beam groups with large amounts of interference), A coordinator coordinates beam usage among base stations.
 本開示により、例えば、基地局が使用したいビームの情報をビームコーディネータに通知し、ビームコーディネータにより基地局によりそのビームの使用可否を判断することが可能である。一例として、基地局が使用したいビームが、特定の端末(例えば他の基地局に属する他の端末)へ使用されているビームに影響を与える場合には、ビームコーディネータは、そのビームの使用を拒否することで、特定の端末の通信を保護する。 According to the present disclosure, for example, it is possible for a base station to notify a beam coordinator of information about a beam that the base station wants to use, and for the beam coordinator to determine whether or not the beam can be used by the base station. As an example, if a beam that a base station wants to use affects a beam used by a specific terminal (for example, another terminal belonging to another base station), the beam coordinator refuses to use that beam. to protect the communication of a specific terminal.
 なお、干渉量の大きいビーム群の情報をコーディネータに取得させる方法とは全く異なるアプローチにより、端末の所望ビームに干渉量が大きいビームを特定する方法が考えられる。具体的には、基地局及び端末の位置情報を用いて、基地局からビームを送信した場合に、そのビームが端末に干渉を与えるかどうかを、チャネルの伝搬特性を考慮して、仮想的に計算する。この場合、コーディネータが基地局及び端末の位置情報自体を取得することは可能であると考えられるが、これらの位置情報から、基地局のビーム特性と端末のビーム(受信ビーム)の特性を正確に把握することは困難である。すなわち、基地局側でのビームの特性(ビーム幅、利得、方向等)は、基本的には、実装依存であるため、実際の測定を行わずにビームの特性を把握することは困難である。また、端末側のビーム特性も、端末の位置のみならず、端末の向きが関係することから、実際に測定を行わずに端末側のビーム特性を把握することは困難である。したがって、端末の所望ビームに対するビーム干渉量を基地局及び端末の位置情報から仮想的な計算により高精度に算出することは困難である。 It should be noted that a method of specifying a beam with a large amount of interference among the beams desired by the terminal can be considered, using an approach completely different from the method of having the coordinator acquire information on a beam group with a large amount of interference. Specifically, when a beam is transmitted from a base station using the location information of the base station and the terminal, it is virtually determined whether the beam interferes with the terminal by considering the propagation characteristics of the channel. calculate. In this case, it is considered possible for the coordinator to acquire the location information of the base station and the terminal itself, but from this location information, the beam characteristics of the base station and the beam of the terminal (receiving beam) can be accurately determined. It is difficult to grasp. In other words, since the beam characteristics (beam width, gain, direction, etc.) on the base station side basically depend on the implementation, it is difficult to grasp the beam characteristics without actual measurements. . In addition, since the beam characteristics on the terminal side are related not only to the position of the terminal but also to the direction of the terminal, it is difficult to grasp the beam characteristics on the terminal side without actually performing measurements. Therefore, it is difficult to accurately calculate the amount of beam interference with respect to the desired beam of the terminal by virtual calculation from the location information of the base station and the terminal.
(第1の実施形態)
 図10は、本開示の実施形態に係る通信システムの一例を概略的に示す図である。図10の通信システムは、基地局101、102,端末201(通信装置)、ビームコーディネータ301(通信制御装置)を備えている。端末201は基地局101が運用するセル(カバレッジ)内の通信装置である。基地局101と基地局102は有線又は無線で互いに接続されており、X2インターフェースなど所定のインターフェースを用いて、情報を送受信することができる。基地局101、102はビームコーディネータ301に接続されている。ビームコーディネータ301は、基地局101、102を含む複数の基地局を制御する。図10には基地局が2台示されるが、3台以上の基地局が配置されて、相互に情報を送受信可能であってもよい。また図10には端末は1台示されるが、2台以上の端末(通信装置)が配置されていてもよい。ビームコーディネータ301は、図示しないコアネットワーク(Core Network)に接続され、コアネットワークを介して、図示しないパケットデータネットワーク(PDN:Packet Data Network)に接続されている。基地局101、102が直接、ビームコーディネータ301を介さずに、コアネットワークに直接、接続されていてもよい。
(First embodiment)
FIG. 10 is a diagram schematically illustrating an example of a communication system according to an embodiment of the present disclosure; The communication system in FIG. 10 includes base stations 101 and 102, a terminal 201 (communication device), and a beam coordinator 301 (communication control device). A terminal 201 is a communication device within a cell (coverage) operated by the base station 101 . The base stations 101 and 102 are connected to each other by wire or wirelessly, and can transmit and receive information using a predetermined interface such as the X2 interface. Base stations 101 and 102 are connected to beam coordinator 301 . Beam coordinator 301 controls a plurality of base stations including base stations 101 and 102 . Although two base stations are shown in FIG. 10, three or more base stations may be arranged so that information can be transmitted and received between them. Although one terminal is shown in FIG. 10, two or more terminals (communication devices) may be arranged. The beam coordinator 301 is connected to a core network (not shown), and is connected to a packet data network (PDN) (not shown) via the core network. Base stations 101 and 102 may be directly connected to the core network without going through beam coordinator 301 .
 なお、前述又は後述のビームコーディネータは、基地局が接続するコアネットワーク内の複数のコアネットワークノードのうちのいずれかであってもよいし、当該、コアネットワーク内の複数のコアネットワークノードのうちの、いくつかによる組合せにより実現されてもよい。さらにまたはこれに代えて、前述又は後述のビームコーディネータ(又はそれによる通信、制御、処理)は、1又は複数の基地局が担ってもよい。例えば使用したいビームの情報を通知された別の基地局がビームの使用可否の判断自体を行ってもよい。あるいは、使用したいビームの情報を有する基地局自身が、ビームの使用可否の判断を行い、当該ビームの他基地局による使用を拒否する通知を他の基地局へ送信してもよい。これらの情報(通知)の通信は、X2、Xn又はF1インタフェースを介して行われてもよい。 Note that the beam coordinator described above or later may be one of a plurality of core network nodes in the core network to which the base station is connected, or one of the plurality of core network nodes in the core network. , may be realized by a combination of several. Additionally or alternatively, the beam coordinator (or communication, control or processing by it) described above or below may be performed by one or more base stations. For example, another base station notified of information on a beam to be used may make the decision itself as to whether or not the beam can be used. Alternatively, the base station itself, which has information on the beam it wishes to use, may determine whether or not the beam can be used, and transmit to the other base stations a notification denying the use of the beam by other base stations. The communication of these information (notifications) may be over X2, Xn or F1 interfaces.
 図10の通信システムは、一例として、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)、LTE、NR等のセルラー通信システムである。「LTE」には、LTEA(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、「NR」には、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。本実施形態では、通信システムがNRのセルラー通信システムの場合を想定する。コアネットワークはNRのコアネットワーク(5G Core(5GC))であり、AMF (Access and Mobility Management Function)、SMF (Session Management Function)、UPF(User Plane Function)、PCF(Policy Control Function)及びUDM(Unified Data Management)を含み得る。 The communication system in FIG. 10 is, for example, a cellular communication system such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), LTE, and NR. "LTE" shall include LTEA (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access). "NR" shall include NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA). In this embodiment, it is assumed that the communication system is an NR cellular communication system. The core network is NR's core network (5G Core (5GC)), which includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), PCF (Policy Control Function) and UDM (Unified Data Management).
 NRは、LTEの次の世代(第5世代)の無線アクセス技術(RAT)である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。 NR is the radio access technology (RAT) of the next generation (5th generation) of LTE. NR is a radio access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications) and URLLC (Ultra-Reliable and Low Latency Communications).
 なお、本開示に係る通信システムは、セルラー通信システムに限られない。例えば、通信システムは、無線LAN(Local Area Network)システム、テレビジョン放送システム、航空無線システム、宇宙無線通信システム等の他の無線通信システムであってもよい。 A communication system according to the present disclosure is not limited to a cellular communication system. For example, the communication system may be other wireless communication systems such as a wireless LAN (Local Area Network) system, a television broadcasting system, an aircraft radio system, a space radio communication system, and the like.
 基地局101、102は、セルを運用し、セルのカバレッジ内部に位置する1つ以上の端末へ無線サービスを提供する通信装置である。セルは、例えばNR等の任意の無線通信方式に従って運用され得る。基地局101、102は、複数のセルを管理するように構成されていてもよい。本例では基地局101、102は5Gの基地局であり、gNBに対応する。 The base stations 101 and 102 are communication devices that operate cells and provide wireless services to one or more terminals located within the coverage of the cells. A cell may be operated according to any radio communication scheme, such as NR. A base station 101, 102 may be configured to manage multiple cells. In this example, the base stations 101 and 102 are 5G base stations and correspond to gNBs.
 また、基地局101、102はgNB CU(Central Unit)とgNB DU(Distributed Unit)との組み合わせ又はこれらのいずれかと称されてもよい。本実施形態において基地局101、102は、他の基地局と無線通信可能に構成されていてもよい。例えば、複数の基地局101、102がeNB同士又はeNBとgNBとの組み合わせである場合、当該装置間はX2インターフェースで接続されてもよい。また、複数の基地局101、102がeNB同士又はeNBとgNBとの組み合わせである場合、当該装置間はXnインターフェースで接続されてもよい。また、複数の基地局101、102がgNB CUとgNB DUとの組み合わせである場合、当該装置間はF1インターフェースで接続されてもよい。後述されるメッセージ・情報の全て又は少なくとも一部は複数の基地局101、102間で(例えばX2、Xn、F1インターフェースを介して)通信されてもよい。 Also, the base stations 101 and 102 may be referred to as a combination of gNB CU (Central Unit) and gNB DU (Distributed Unit) or any of these. In this embodiment, the base stations 101 and 102 may be configured to be able to wirelessly communicate with other base stations. For example, when a plurality of base stations 101 and 102 are eNBs or a combination of eNBs and gNBs, the devices may be connected via an X2 interface. Also, when the plurality of base stations 101 and 102 are eNBs or a combination of eNBs and gNBs, the devices may be connected by an Xn interface. Also, when a plurality of base stations 101 and 102 are a combination of gNB CU and gNB DU, the devices may be connected via an F1 interface. All or at least some of the messages/information described below may be communicated between multiple base stations 101, 102 (eg, via X2, Xn, F1 interfaces).
 さらに、基地局101、102は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本実施形態において基地局101、102は、BBU(Baseband Unit)及びRU(Radio Unit)の複数の装置に区別され、これら複数の装置の集合体として解釈されてもよい。さらに又はこれに代えて、本開示の実施形態において基地局101、102は、BBU及びRUのうちいずれか又は両方であってもよい。BBUとRUとは所定のインターフェース(例えば、eCPRI)で接続されていてもよい。さらに又はこれに代えて、RUはRRU(Remote Radio Unit)又はRD(Radio DoT)と称されていてもよい。さらに又はこれに代えて、RUは前述又は後述のgNB DUに対応していてもよい。さらに又はこれに代えてBBUは、前述又は後述のしたgNB CUに対応していてもよい。さらに又はこれに代えて、RUはアンテナと一体的に形成された装置であってもよい。基地局101、102が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(例えば、FD-MIMO)やビームフォーミングをサポートしていてもよい。アドバンスドアンテナシステム(Advanced Antenna System)では、基地局101、102が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)は、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。基地局101、102がビームフォーミングをサポートする場合、基地局101、102は、例えばビームをセルの円周方向や半径方向にビームスウィーピングさせて信号を送信する。なお、ビームスイーピングの方向は、水平方向のみ限られず、垂直方向又は水平方向と垂直方向との組み合わせによる任意の方向であってもよい。すなわち、ビームフォーミングを行うアンテナの複数アンテナ素子がアンテナ面に対して水平方向及び垂直方向に配列された場合、後述するアンテナに関する設定(e.g.,アンテナチルト角、アンテナ素子(エレメント)間の距離・波長や位相オフセット、基準送信電力)を調整することにより水平方向及び垂直方向でビームを指向制御することができる。 Furthermore, the base stations 101 and 102 may consist of a set of multiple physical or logical devices. For example, in this embodiment, the base stations 101 and 102 may be classified into a plurality of devices of BBU (Baseband Unit) and RU (Radio Unit), and interpreted as an aggregate of these plurality of devices. Additionally or alternatively, the base stations 101, 102 may be either or both BBUs and RUs in embodiments of the present disclosure. The BBU and RU may be connected by a predetermined interface (e.g. eCPRI). Additionally or alternatively, the RU may be referred to as RRU (Remote Radio Unit) or RD (Radio DoT). Additionally or alternatively, an RU may correspond to a gNB DU as described above or below. Additionally or alternatively, a BBU may correspond to a gNB CU as described above or below. Additionally or alternatively, the RU may be a unit integrally formed with the antenna. The antennas possessed by the base stations 101 and 102 (for example, antennas formed integrally with the RU) may adopt an Advanced Antenna System and support MIMO (for example, FD-MIMO) and beamforming. In the Advanced Antenna System, the antennas of the base stations 101 and 102 (for example, antennas integrally formed with the RU) have, for example, 64 transmitting antenna ports and 64 receiving antenna ports. may be provided. When the base stations 101 and 102 support beamforming, the base stations 101 and 102 transmit signals by performing beam sweeping, for example, in the circumferential and radial directions of the cell. The direction of beam sweeping is not limited to the horizontal direction, and may be any direction in the vertical direction or a combination of the horizontal and vertical directions. That is, when multiple antenna elements of an antenna that performs beamforming are arranged in the horizontal direction and the vertical direction with respect to the antenna plane, the antenna settings (e.g., antenna tilt angle, distance between antenna elements (elements), wavelength , phase offset, and reference transmission power), the beam can be directed and controlled in the horizontal and vertical directions.
 端末201は、他の装置と無線通信する通信装置である。端末201は、例えば、通信機能を有するセンサーやカメラデバイス、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。端末201は、無線を介してデータを送受信する機能を有するヘッドマウントディスプレイ(Head Mounted Display)やVRゴーグル等であってもよい。端末201は5Gの端末であり、UEに対応する。 The terminal 201 is a communication device that wirelessly communicates with other devices. The terminal 201 is, for example, a sensor or camera device having a communication function, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer. The terminal 201 may be a head-mounted display, VR goggles, or the like that has a function of wirelessly transmitting and receiving data. A terminal 201 is a 5G terminal and corresponds to a UE.
 なお、本実施形態の通信システムがNRのセルラー通信システムの場合、当該通信システムは、5G NR Standaloneだけでなく、3GPP 5G NR Non-Standaloneにも適用されてもよい。 Note that if the communication system of the present embodiment is an NR cellular communication system, the communication system may be applied not only to 5G NR Standalone, but also to 3GPP 5G NR Non-Standalone.
 基地局101、102により提供されるセルはServing cellと呼ばれる。Serving cellはPCell(Primary Cell)及びSCell(Secondary Cell)を含む。Dual Connectivity (e.g.EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivity)がUE(e.g. 端末201)に提供される場合、MN(Master Node)によって提供されるPCell及びゼロ又は1以上のSCell(s)はMaster Cell Groupと呼ばれる。さらに、Serving cellはPSCell(Primary Secondary Cell又はPrimary SCG Cell)を含んでもよい。すなわち、Dual Connectivity がUEに提供される場合、SN(Secondary Node)によって提供されるPSCell及びゼロ又は1以上のSCell(s)はSecondary Cell Group(SCG)と呼ばれる。特別な設定(e.g.,PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、Radio Link FailureもPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、Serving Cell(s)の中で特別な役割を持つため、Special Cell(SpCell)とも呼ばれる。1つのセルには、1つのDownlink Component Carrierと1つのUplink Component Carrier が対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域幅部分(Bandwidth Part)に分割されてもよい。この場合、1又は複数のBandwidth PartがUEに設定され、1つのBandwidth PartがActive BWPとして、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWP毎に、端末装置10が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration))が異なっていてもよい。 A cell provided by base stations 101 and 102 is called a serving cell. Serving cells include PCell (Primary Cell) and SCell (Secondary Cell). Dual Connectivity (e.g. EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity) to UE (e.g. Terminal 201) If provided, the PCell and zero or more SCell(s) provided by the MN (Master Node) are called a Master Cell Group. Furthermore, the Serving cell may include a PS Cell (Primary Secondary Cell or Primary SCG Cell). That is, when Dual Connectivity is provided to the UE, the PSCell and zero or more SCell(s) provided by the SN (Secondary Node) are called a Secondary Cell Group (SCG). Unless a special setting (e.g., PUCCH on SCell) is made, the physical uplink control channel (PUCCH) is transmitted on PCell and PSCell, but not on SCell. Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not have to be detected). In this way, PCell and PSCell have special roles in Serving Cell(s), so they are also called Special Cells (SpCells). One cell may be associated with one Downlink Component Carrier and one Uplink Component Carrier. Also, the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (Bandwidth Parts). In this case, one or more Bandwidth Parts may be set for the UE, and one Bandwidth Part may be used for the UE as an Active BWP. Also, the radio resources (for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration)) that can be used by the terminal device 10 may differ for each cell, each component carrier, or each BWP.
 すなわち、基地局101、102は、3GPP 5G NR StandaloneとしてのNR-NR DCのMNまたはSNであってもよいし、3GPP 5G NR Non-StandaloneとしてのENDC、ENDC with 5GC、又はNEDCにおけるgNB (en-gNB)であってもよい。 That is, the base stations 101 and 102 may be MN or SN of NR-NR DC as 3GPP 5G NR Standalone, ENDC as 3GPP 5G NR Non-Standalone, ENDC with 5GC, or gNB (en -gNB).
<基地局の構成>
 図11は、本開示の実施形態に係る基地局101の一例を示すブロック図である。基地局101は、アンテナ110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を備える。基地局102のブロック図も基地局101と同じである。
<Configuration of base station>
FIG. 11 is a block diagram illustrating an example of a base station 101 according to embodiments of the present disclosure. Base station 101 includes antenna 110 , radio communication section 120 , network communication section 130 , storage section 140 and control section 150 . The block diagram of base station 102 is also the same as that of base station 101 .
 無線通信部120、ネットワーク通信部130、及び制御部150は、例えば、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)等のプロセッサ(ハードウェアプロセッサ)、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の集積回路により実現される。記憶部140は、メモリ、ハードディスク装置、光ディスク又は磁気記録装置など、任意の記録媒体により実現される。メモリは、揮発性メモリでも、不揮発性メモリでもよい。 The wireless communication unit 120, the network communication unit 130, and the control unit 150 are, for example, a CPU (Central Processing Unit), a processor (hardware processor) such as an MPU (Micro-Processing Unit), an ASIC (Application Specific Integrated Circuit), or an FPGA. (Field-Programmable Gate Array) or other integrated circuits. The storage unit 140 is realized by any recording medium such as memory, hard disk device, optical disk, or magnetic recording device. The memory may be volatile memory or non-volatile memory.
 アンテナ110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。アンテナ110は、複数のアンテナ素子を有し、ビームを形成することができる。アンテナ110は、複数のビームを同時に形成することが可能な構成であってもよい。 The antenna 110 radiates the signal output by the wireless communication unit 120 into space as radio waves. Antenna 110 also converts radio waves in space into a signal and outputs the signal to wireless communication section 120 . The antenna 110 has multiple antenna elements and is capable of forming a beam. Antenna 110 may be configured to form multiple beams simultaneously.
 無線通信部120は、信号を送受信する。信号はデータ又は情報を含む。無線通信部120は信号を送信する信号送信部121と、信号を受信する信号受信部122を備える。例えば、信号送信部121は、端末201へのダウンリンク信号を送信し、信号受信部122は、端末201からのアップリンク信号を受信する。無線通信部120は、アンテナ110により1つ以上のビーム(送信ビーム)を順番に又は同時に形成して、端末201に信号をビーム送信することが可能である。送信用のビームはビーム送信用のフィルタに基づき形成され、このフィルタは、送信空間フィルタ(TX spatial filter)も呼ばれることもある。信号送信部121による信号の送信は、ビーム送信又は非ビーム送信(オムニ送信)のいずれも含むものとする。 The wireless communication unit 120 transmits and receives signals. A signal contains data or information. The wireless communication unit 120 includes a signal transmission unit 121 that transmits signals and a signal reception unit 122 that receives signals. For example, the signal transmitter 121 transmits downlink signals to the terminal 201 and the signal receiver 122 receives uplink signals from the terminal 201 . The radio communication unit 120 can form one or more beams (transmission beams) by the antenna 110 in sequence or simultaneously, and beam transmit a signal to the terminal 201 . A transmit beam is formed based on a transmit beam filter, which is sometimes also called a transmit spatial filter (TX spatial filter). Signal transmission by the signal transmission unit 121 includes both beam transmission and non-beam transmission (omni transmission).
 ネットワーク通信部130は、有線又は無線で情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。他のノードは、例えば、他の基地局(基地局102等)、ビームコーディネータ301、及びコアネットワークノードの少なくとも1つを含む。ネットワーク通信部130は無線で通信を行う構成の場合は、1つ以上のアンテナを備えていてもよい。このアンテナをアンテナ110と共用してもよい。 The network communication unit 130 transmits and receives information by wire or wirelessly. For example, network communication unit 130 transmits information to other nodes and receives information from other nodes. Other nodes include, for example, at least one of other base stations (such as base station 102), beam coordinator 301, and core network nodes. The network communication unit 130 may have one or more antennas if it is configured to perform wireless communication. This antenna may be shared with antenna 110 .
 記憶部140は、基地局101の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。 The storage unit 140 temporarily or permanently stores programs and data for operating the base station 101 .
 制御部150は、受信部152と送信部151とを備える。受信部152は、端末201からデータ又は情報を、無線通信部120又は信号受信部122を介して受信する。送信部151は、端末201にデータ又は情報を、無線通信部120又は信号送信部121を介して送信する。また受信部152は、データ又は情報を、ネットワーク通信部130を介して、ビームコーディネータ301又は基地局102から受信する。送信部151は、データ又は情報を、ネットワーク通信部130を介して、ビームコーディネータ301又は基地局102に送信する。 The control unit 150 includes a receiving unit 152 and a transmitting unit 151. The receiving section 152 receives data or information from the terminal 201 via the wireless communication section 120 or the signal receiving section 122 . The transmitting section 151 transmits data or information to the terminal 201 via the wireless communication section 120 or the signal transmitting section 121 . The receiver 152 also receives data or information from the beam coordinator 301 or the base station 102 via the network communication unit 130 . The transmitter 151 transmits data or information to the beam coordinator 301 or base station 102 via the network communication unit 130 .
 制御部150は、基地局101全体の動作を制御して、基地局101の様々な機能を提供する。 The control unit 150 controls the operation of the entire base station 101 and provides various functions of the base station 101 .
 制御部150は、端末への送信にビームを使用する場合、当該ビームの使用リクエスト(ビームリクエスト)を、複数の基地局を制御するビームコーディネータ301(通信制御装置)に送信する。制御部150は、ビームの使用リクエスト(ビームリクエスト)に、対象となるビーム(対象ビーム)を識別する識別情報(ビームID)を含める。なお、当該ビームを識別する識別情報(ビームID)は、それ自体でグローバルに識別できる識別子であってもよいし、セルID、基地局ID、TRP(Transmission Reception Point)ID又はBWP IDのうち、少なくとも1つとビームIDとを組み合わせて、ビームの使用リクエスト(ビームリクエスト)に含めてもよい。制御部150は、ビームコーディネータ301から使用リクエストに応答して送信される、ビームの使用可否に関する情報を含むレスポンスを受信する。制御部150は、レスポンスでビームの使用が許可された場合は、要求したビームを使用できると決定する。制御部150は、レスポンスでビームの使用が許可されていない場合は、ビームの使用はできないと決定する。この場合、制御部150は、他のビームを対象ビームとして、使用リクエストをビームコーディネータ301に送信してもよい。 When using a beam for transmission to a terminal, the control unit 150 transmits a beam use request (beam request) to the beam coordinator 301 (communication control device) that controls a plurality of base stations. The control unit 150 includes identification information (beam ID) for identifying a target beam (target beam) in a beam use request (beam request). The identification information (beam ID) that identifies the beam may be an identifier that can be globally identified by itself, or cell ID, base station ID, TRP (Transmission Reception Point) ID or BWP ID, A combination of at least one and a beam ID may be included in a beam use request (beam request). The control unit 150 receives a response including information regarding whether or not the beam can be used, which is transmitted in response to the use request from the beam coordinator 301 . If use of the beam is permitted in the response, the control unit 150 determines that the requested beam can be used. If the response does not permit the use of the beam, the control unit 150 determines that the beam cannot be used. In this case, the control unit 150 may transmit a use request to the beam coordinator 301 with another beam as the target beam.
 ここで、制御部150は、ビームリクエストに、ビームを使用する時間及び周波数の少なくとも一方に関する条件(ビームの使用条件)を含めてもよい。 Here, the control unit 150 may include in the beam request a condition regarding at least one of the beam usage time and frequency (beam usage condition).
 ビームの使用条件は、一例として、以下の少なくとも1つを含んでよい。
・ビームの使用の開始時刻に関する条件
・ビームを使用する時間長に関する条件
・ビームを使用する回数に関する条件
・ビームを使用する周期に関する条件
・ビームを使用するサブフレーム又はスロットに関する条件
・ビームに要求されるチャネル品質に関する条件
The beam usage conditions may include, by way of example, at least one of the following.
・Conditions regarding the start time of beam use ・Conditions regarding the length of time that beams are used ・Conditions regarding the number of times beams are used ・Conditions regarding the period of beam use ・Conditions regarding subframes or slots in which beams are used conditions for channel quality
 制御部150は複数のビームの使用を要求するため、ビームリクエストに、複数のビームのそれぞれを識別する識別情報を含めよく、さらに、複数のビームのそれぞれの使用条件を含めてもよい。この場合、ビームコーディネータ301からのレスポンスには、複数のビームのそれぞれの使用可否に関する情報が含まれる。制御部150は、複数のビームごとに使用が許可されたかを判断し、使用が許可されたビームのみ端末への送信に使用できると判断する。 Since the control unit 150 requests the use of a plurality of beams, the beam request may include identification information for identifying each of the plurality of beams, and may further include usage conditions for each of the plurality of beams. In this case, the response from the beam coordinator 301 includes information on whether or not each of the beams can be used. The control unit 150 determines whether use is permitted for each of a plurality of beams, and determines that only the permitted beams can be used for transmission to the terminal.
 制御部150は、複数のビームの同時使用を希望する場合、複数のビームのそれぞれを識別する識別情報と、複数のビームの同時使用を要求する情報をビームリクエストに含めてもよい。この場合、ビームの使用条件は、複数のビームで共通でよいし、それぞれ別々に定義されてもよい。ビームコーディネータ301からのレスポンスには、複数のビームの同時使用の可否に関する情報が含まれる。制御部150は同時使用が認められた場合は、複数のビームを同時に用いて端末にダウンリンクデータを送信することができる。 If the controller 150 wishes to use multiple beams simultaneously, it may include identification information for identifying each of the multiple beams and information requesting simultaneous use of the multiple beams in the beam request. In this case, beam usage conditions may be common to a plurality of beams, or may be defined separately for each beam. The response from the beam coordinator 301 includes information on whether or not multiple beams can be used simultaneously. The control unit 150 can transmit downlink data to the terminal using multiple beams simultaneously if simultaneous use is permitted.
 制御部150は、ビームリクエストに、ビームの重要度又は優先度に関する情報を含めてもよい。これにより、例えばビームコーディネータ301にビームの重要度又は優先度に応じた柔軟なビーム使用の可否判断を行わせることができる。例えば、使用条件の全部が満たされない場合に、使用条件の少なくとも一部が制限されて、ビームの使用の許可を得ることも可能である。 The control unit 150 may include information regarding the importance or priority of the beam in the beam request. As a result, for example, the beam coordinator 301 can flexibly determine whether or not to use a beam according to the importance or priority of the beam. For example, at least some of the conditions of use may be restricted to permit use of the beam if all of the conditions of use are not met.
 制御部150は、ビームリクエストの送信後、一定時間以内にビームコーディネータ301からレスポンスが受信されない場合は、使用リクエストをキャンセルするキャンセルメッセージをビームコーディネータ301に送信してもよい。これによりレスポンスが受信されない原因に関わらず、使用要求されたビームが当該基地局により使用されていないことをビームコーディネータ301に確実に知らせることができる。例えばビームコーディネータ301から送信されたレスポンスがネットワーク内で輻湊等により消失した場合に、ビームコーディネータ301に、使用許可されたビームが使用されていないことを通知できる。キャンセルメッセージを送信した場合、制御部150は、再度、ビームリクエストを送信してもよい。 If the control unit 150 does not receive a response from the beam coordinator 301 within a certain period of time after transmitting the beam request, the control unit 150 may transmit a cancel message for canceling the use request to the beam coordinator 301 . This makes it possible to reliably inform the beam coordinator 301 that the requested beam is not being used by the base station, regardless of the reason why the response is not received. For example, when the response transmitted from the beam coordinator 301 is lost due to congestion in the network, the beam coordinator 301 can be notified that the permitted beam is not being used. After transmitting the cancel message, the control unit 150 may transmit the beam request again.
 <ビームコーディネータ301(通信制御装置)の構成>
 図12は、本開示の実施形態に係るビームコーディネータ301の一例を示すブロック図である。ビームコーディネータ301は、ネットワーク通信部330、記憶部340及び制御部350を備える。ビームコーディネータ301,ネットワーク通信部330及び制御部350は、例えば、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)等のプロセッサ(ハードウェアプロセッサ)、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の集積回路により実現される。記憶部340は、メモリ、ハードディスク装置、光ディスク又は磁気記録装置など、任意の記録媒体により実現される。メモリは、揮発性メモリでも、不揮発性メモリでもよい。
<Configuration of Beam Coordinator 301 (Communication Control Device)>
FIG. 12 is a block diagram illustrating an example beam coordinator 301 according to an embodiment of the present disclosure. The beam coordinator 301 comprises a network communication section 330 , a storage section 340 and a control section 350 . The beam coordinator 301, the network communication unit 330, and the control unit 350 include, for example, a CPU (Central Processing Unit), a processor (hardware processor) such as an MPU (Micro-Processing Unit), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field - Programmable Gate Array) and other integrated circuits. The storage unit 340 is implemented by any recording medium such as a memory, hard disk device, optical disk, or magnetic recording device. The memory may be volatile memory or non-volatile memory.
 ネットワーク通信部330は、有線又は無線で情報又はデータを送受信する。例えば、ネットワーク通信部330は、他のノードへの情報又はデータを送信し、他のノードからの情報又はデータを受信する。他のノードは、例えば、基地局101、基地局102、コアネットワークノードを含む。ネットワーク通信部330は、無線で通信を行う構成の場合、1つ以上のアンテナを備えていてもよい。 The network communication unit 330 transmits and receives information or data by wire or wirelessly. For example, the network communication unit 330 transmits information or data to other nodes and receives information or data from other nodes. Other nodes include, for example, base station 101, base station 102, core network nodes. The network communication unit 330 may be provided with one or more antennas if it is configured to communicate wirelessly.
 記憶部340は、ビームコーディネータ301の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。 The storage unit 340 temporarily or permanently stores programs and various data for the operation of the beam coordinator 301 .
 制御部350は、受信部352と送信部351とを備える。受信部352は、基地局101、102からデータ又は情報を含む信号を、ネットワーク通信部330を介して受信する。送信部351は、基地局101、102に、データ又は情報を含む信号を、ネットワーク通信部330を介して送信する。また受信部352は、データ又は情報を含む信号を、ネットワーク通信部330を介して、ビームコーディネータ301、基地局101又は基地局102から受信する。送信部351は、データ又は情報を含む信号を、ネットワーク通信部130を介して、ビームコーディネータ301、基地局101又は基地局102に送信する。 The control unit 350 includes a receiving unit 352 and a transmitting unit 351. The receiving unit 352 receives signals including data or information from the base stations 101 and 102 via the network communication unit 330 . The transmission unit 351 transmits signals including data or information to the base stations 101 and 102 via the network communication unit 330 . The receiver 352 also receives signals including data or information from the beam coordinator 301 , the base station 101 or the base station 102 via the network communication unit 330 . The transmitter 351 transmits a signal including data or information to the beam coordinator 301, base station 101 or base station 102 via the network communication unit 130. FIG.
 制御部350は、ビームコーディネータ301全体の動作を制御して、ビームコーディネータ301の様々な機能を提供する。制御部350は複数の基地局(基地局101、102)を制御する。特に、制御部350は、複数の基地局によるビームの使用を制御又は管理する。 The control unit 350 controls the operation of the entire beam coordinator 301 and provides various functions of the beam coordinator 301 . A control unit 350 controls a plurality of base stations (base stations 101 and 102). In particular, the controller 350 controls or manages beam usage by multiple base stations.
 制御部350は、基地局から対象となるビーム(対象ビーム)の使用リクエストを受信する。使用リクエストは、ビームを識別する識別情報として、ビームを識別するビームIDを含む。 The control unit 350 receives a request to use the target beam (target beam) from the base station. The usage request includes a beam ID that identifies the beam as identification information that identifies the beam.
 制御部350は、1つ以上のビームが端末(第1通信装置)に与える干渉に関する情報を、ビームIDに関連付けて保持した対応データ(干渉データベース)を、端末ごとに記憶部340において管理する。すなわち、端末ごとの対応データ(干渉データベース)が記憶部340に記憶されている。 The control unit 350 manages, in the storage unit 340 for each terminal, correspondence data (interference database) that holds information about interference given to the terminal (first communication device) by one or more beams in association with the beam ID. That is, the storage unit 340 stores correspondence data (interference database) for each terminal.
 また制御部350は、端末ごとに、ビームの使用を許可している場合に、許可されたビームの使用条件をビームIDに関連付けて保持した使用管理データベースを記憶部340において管理する。すなわち、使用管理データベースが、記憶部340に記憶されている。 In addition, the control unit 350 manages, in the storage unit 340, a usage management database that holds the usage conditions of the permitted beams in association with beam IDs when beam usage is permitted for each terminal. That is, the usage management database is stored in the storage unit 340. FIG.
 制御部350は、使用リクエストで要求されたビーム(対象ビーム)の使用可否を、他の端末ごとの干渉データベース及び使用管理データベースに基づき判断する。制御部350は、判断の結果に基づいて、ビームの使用可否を関する情報を含むレスポンスを、使用リクエストの送信元の基地局に送信する。 The control unit 350 determines whether or not to use the beam (target beam) requested in the use request based on the interference database and use management database for each other terminal. Based on the determination result, the control unit 350 transmits a response including information regarding whether or not the beam can be used to the base station that transmitted the use request.
 ここで、基地局からの使用リクエストは、要求されるビーム(対象ビーム)が使用される時間及び周波数の少なくとも一方に関する条件(第1条件)が含まれていてもよい。当該条件の具体例は前述した通りである。 Here, the usage request from the base station may include a condition (first condition) regarding at least one of the time and frequency at which the requested beam (target beam) is used. Specific examples of the conditions are as described above.
 制御部350は、使用管理データベースに基づき、使用要求されたビームのリソース(周波数・時間リソース)と同じリソースを使っている他のビームが存在するかを調べる。そのような他のビームが存在しない場合は、ビームの使用を許可する。すなわち、制御部350は、上記の第1条件に含まれる周波数が他の端末により使用されているビームの周波数に少なくとも部分的に一致し、かつ当該第1条件に含まれる時間が、当該他の端末により使用されているビームが使用される時間に少なくとも部分的に一致するとの条件(第2条件)が満たされない場合は、ビームの使用を許可する。換言すれば、他の端末のビームと周波数が異なれば、他の端末のビームと使用時間が一致していても、ビームの使用を許可し、他の端末のビームと周波数が同じであっても、他の端末のビームと使用時間が異なっていれば、ビームの使用を許可してよい。 Based on the usage management database, the control unit 350 checks whether there is another beam that uses the same resource (frequency/time resource) as the requested beam. If no such other beam exists, allow the beam to be used. That is, the control unit 350 determines that the frequency included in the first condition at least partially matches the frequency of the beam used by another terminal, and the time included in the first condition If the condition that the beam being used by the terminal at least partly coincides with the time it is used (second condition) is not met, then use of the beam is permitted. In other words, if the beam and frequency of another terminal are different, the use of the beam is permitted even if the usage time of the beam of the other terminal is the same, and even if the beam and frequency of the other terminal are the same. , the use of the beam may be permitted if the use time differs from that of other terminals.
 一方、当該第2条件が満たされる場合は、使用要求されたビームが、上記他の端末に与える干渉に関する情報を特定する。具体的には、制御部350は、当該他のビームを使用している他の端末の干渉データベースに基づき、要求されたビームが、当該他の端末に与える干渉に関する情報を特定する。特定した情報による干渉が許容可能な場合(例えば干渉量が低い場合、又は干渉量が閾値未満の場合など)、当該ビームの使用を許可する。干渉が許容不能な場合は、ビームの使用を許可しない。 On the other hand, when the second condition is satisfied, the information about the interference that the requested beam gives to the other terminal is specified. Specifically, the control unit 350 identifies information about the interference that the requested beam gives to the other terminal based on the interference database of the other terminal using the other beam. If the interference due to the identified information is acceptable (for example, if the amount of interference is low, or if the amount of interference is less than a threshold), use of the beam is allowed. If the interference is unacceptable, do not allow the beam to be used.
 制御部350は、複数の基地局のそれぞれに対して、当該基地局から送信可能な1つ以上のビームにより端末(第1通信装置)に与える干渉を当該端末との間で測定することを指示する指示情報を送信してもよい。測定の対象となる端末は特定の端末に限定してもよい。特定の端末の例として、重要な機能又は役割を有する端末、又は移動しない固定設置された端末などがある。詳細は、後述する第2の実施形態又は第3の実施形態で記載する。 The control unit 350 instructs each of the plurality of base stations to measure the interference given to the terminal (first communication device) by one or more beams that can be transmitted from the base station. You may send instruction information to do. Terminals to be measured may be limited to specific terminals. Examples of specific terminals include terminals that have an important function or role, or fixedly installed terminals that do not move. Details will be described in a second embodiment or a third embodiment, which will be described later.
 制御部350は、基地局から送信されるビームにより端末に与えられる干渉に関する情報を、当該ビームを識別する識別情報(ビームID等)に関連付けて、基地局から取得する。制御部350は、取得した干渉に関する情報及びビームIDを、当該端末の干渉データベースに格納する。上記の干渉を測定することを指示する指示情報は、一例として端末における当該ビームの受信電力(例えば、RSRP)を測定することを指示する情報である。 The control unit 350 acquires from the base station information about interference given to the terminal by a beam transmitted from the base station in association with identification information (beam ID, etc.) that identifies the beam. The control unit 350 stores the acquired information on interference and the beam ID in the interference database of the terminal. The instruction information instructing to measure the interference is, for example, information instructing the terminal to measure the received power of the beam (for example, RSRP).
 制御部350は、複数の基地局のうちの1つに干渉を測定するためのビームを端末に送信することを指示する指示情報を送信し、複数の基地局のうち当該1つの基地局以外の基地局に、当該1つの基地局によるビームを送信する期間の少なくとも一部の間、信号送信を行わないことを指示する指示情報を送信してもよい。詳細は後述する第3の実施形態に記載する。 The control unit 350 transmits instruction information for instructing one of the plurality of base stations to transmit a beam for measuring interference to the terminal, and a plurality of base stations other than the one base station. Indication information may be transmitted to the base stations instructing them not to transmit signals during at least a portion of the period of beam transmission by the one base station. Details will be described in a third embodiment described later.
 制御部350は、端末が属する基地局(第1基地局)以外の他の基地局に、干渉測定用のビームの送信を指示する指示情報を送信する。さらに、制御部350は、端末が属する基地局(第1基地局)に、端末に品質測定用のビームを送信することを指示する指示情報を送信する。さらに制御部350は、上記他の基地局から当該端末で干渉測定用のビームが受信されている場合に当該端末で当該品質測定用のビームが同じリソースで受信されたとした場合に、当該品質測定用のビームに対する干渉に関する情報(品質測定用のビームの品質に関する情報)を取得することを指示する指示情報を送信する。制御部350は、端末が属する基地局(第1基地局)から、当該品質測定用のビームに対する干渉に関する情報(品質測定用のビームの品質に関する情報)を取得する。制御部350は、取得した情報を、他の基地局からのビームが端末に与える干渉に関する情報として取得し、取得した情報を、ビームを識別する識別情報(ビームID)と関連付けて、干渉データベースに格納する。すなわち、取得した干渉に関する情報を、ビームを識別する識別情報(ビームID)と関連付けることにより、干渉データベースを生成する。当該品質測定用のビームに対する干渉に関する情報(品質測定用のビームの品質に関する情報)は、例えば、SINR又はCQIを含む。本段落で記載した説明の詳細は、後述する第2の実施形態で記載する。 The control unit 350 transmits instruction information for instructing transmission of beams for interference measurement to base stations other than the base station (first base station) to which the terminal belongs. Furthermore, the control unit 350 transmits instruction information instructing the base station (first base station) to which the terminal belongs to transmit a beam for quality measurement to the terminal. Furthermore, the control unit 350 performs the quality measurement when the terminal receives the beam for interference measurement from the other base station and the beam for quality measurement is received by the terminal using the same resource. and transmitting instruction information instructing acquisition of information on interference with the beam for use (information on quality of the beam for quality measurement). The control unit 350 acquires information on interference with the beam for quality measurement (information on quality of the beam for quality measurement) from the base station (first base station) to which the terminal belongs. The control unit 350 acquires the acquired information as information on interference given to the terminal by beams from other base stations, associates the acquired information with identification information (beam ID) that identifies the beam, and stores it in the interference database. Store. That is, the interference database is generated by associating the acquired information on interference with the identification information (beam ID) for identifying the beam. The information on the interference with the beam for quality measurement (information on the quality of the beam for quality measurement) includes, for example, SINR or CQI. The details of the description described in this paragraph will be described later in the second embodiment.
 以下、具体例を用いて、本実施形態についてさらに詳細に説明する。 The present embodiment will be described in more detail below using specific examples.
[具体例1]
 具体例1では、基地局がビームコーディネータ301に送信するビームリクエストに、基地局ID(Base station ID)と、端末ID(UE ID)と、ビームIDと、ビームの使用条件(又は使用要件)とを含める。なお、ビームリクエストに含められる情報はこれには限られない。前述の通り、基地局IDに加えて、又はこれの代わりに、セルID、TRP(Transmission Reception Point)ID又はBWP IDのうち、少なくとも1つがビームID共にビームリクエストに含められてもよい。ビームコーディネータ301は、ビームの使用条件に基づき、当該基地局IDにより特定される基地局が、端末IDにより特定される端末への送信に当該ビームIDにより特定されるビームを使用することの可否を判断する。ビームの使用条件は、ビームを使用する時間(時間リソース)に関する条件、ビームを使用する周波数(周波数リソース)に関する条件等を含む。
[Example 1]
In specific example 1, the beam request transmitted from the base station to the beam coordinator 301 includes a base station ID (Base station ID), a terminal ID (UE ID), a beam ID, and beam usage conditions (or usage requirements). Include. Information included in the beam request is not limited to this. As described above, in addition to or instead of the base station ID, at least one of a cell ID, a transmission reception point (TRP) ID, or a BWP ID may be included in the beam request together with the beam ID. The beam coordinator 301 determines whether or not the base station identified by the base station ID can use the beam identified by the beam ID for transmission to the terminal identified by the terminal ID, based on the beam usage conditions. to decide. The beam usage conditions include conditions related to the time (time resources) in which the beams are used, conditions related to frequencies (frequency resources) in which the beams are used, and the like.
 表2に、具体例1に係るビームリクエストに含まれる使用条件の例を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows an example of usage conditions included in the beam request according to the specific example 1.
Figure JPOXMLDOC01-appb-T000002
 図13は、基地局がビームリクエストを時刻tでビームコーディネータ301に送信してから、k[ms]後にビーム送信用のリソースの使用を開始(ビーム送信を開始)する例を示している。kの値は、システムで固定されていてもよい。システムごとにkの値が異なっていてもよい。kの値は、ビームコーディネータ301がビームのリソースの使用可否の判断の処理に要する時間に依存し得る。kの値は、一例として1msから1000ms程度の範囲内の値である。 FIG. 13 shows an example in which the base station starts using resources for beam transmission (starts beam transmission) after k [ms] after transmitting a beam request to the beam coordinator 301 at time t. The value of k may be fixed in the system. The value of k may differ from system to system. The value of k may depend on the time it takes beam coordinator 301 to process a beam resource availability decision. The value of k is, for example, a value within the range of about 1ms to 1000ms.
 図14は、図13の例でビームの使用を開始した後、基地局がビームを周期的に使用する例を示している。ビームの使用を開始した基地局は、周期Rごとに、時間Tの間、ビームを使用する。繰り返し数Nが3であるため、基地局は、3回を上限としてビームを使用できる。 FIG. 14 shows an example in which the base station periodically uses the beam after starting using the beam in the example of FIG. A base station that starts using a beam uses the beam for a period of time T every period R. Since the repetition number N is 3, the base station can use the beam up to 3 times.
 図15は、図13の例で、基地局がビームを1回だけ使用する例を示している。 FIG. 15 shows an example in which the base station uses the beam only once in the example of FIG.
 図16は、本実施形態に係る通信システムの全体の手続きの例を示すシーケンス図である。ビームコーディネータ301の制御の元、基地局101に属する端末201に関して、基地局102は、1つ又は複数のリソース(周波数・時間リソース)で干渉測定用の参照信号を含むビーム(干渉ビーム)を送信する(S201)。 FIG. 16 is a sequence diagram showing an example of the overall procedure of the communication system according to this embodiment. Under the control of the beam coordinator 301, the base station 102 transmits a beam (interference beam) including a reference signal for interference measurement using one or a plurality of resources (frequency/time resources) for the terminal 201 belonging to the base station 101. (S201).
 基地局102は、端末201で測定された干渉に関する情報(例えばRSRP)を含む報告情報(ビームレポート)を端末201から受信する(S202)。 The base station 102 receives report information (beam report) including information (for example, RSRP) on interference measured by the terminal 201 from the terminal 201 (S202).
 基地局102は、干渉ビームの干渉に関する情報を、干渉ビームを特定する情報(例えばビームID)と関連付けて含む干渉報告情報をビームコーディネータ301に送信する(S303)。 The base station 102 transmits to the beam coordinator 301 interference report information including information about the interference of the interference beams in association with information specifying the interference beams (eg, beam ID) (S303).
 干渉報告情報は、例えば、基地局ID(基地局101のID)と、端末ID(端末201のID)と、干渉ビームのID(干渉ビームID)及び干渉に関する情報とを含む。なお基地局102は、干渉が大きい(例えばRSRPが閾値以上)干渉ビームを検出し、検出した干渉ビームについてのみ、ビームコーディネータ301に干渉報告情報を送信してもよい。 The interference report information includes, for example, a base station ID (base station 101 ID), a terminal ID (terminal 201 ID), an interference beam ID (interference beam ID), and information about interference. Note that the base station 102 may detect interference beams with large interference (for example, RSRP is greater than a threshold) and transmit interference report information to the beam coordinator 301 only for the detected interference beams.
 ビームコーディネータ301は、端末IDに対応する端末用の干渉データベースに、基地局IDと干渉ビームIDと干渉に関する情報を対応づけて、干渉データベースに記憶する。 The beam coordinator 301 associates the base station ID, the interference beam ID, and information about interference with the interference database for the terminal corresponding to the terminal ID, and stores them in the interference database.
 上述したS201~S203の動作の例(干渉測定例1と呼ぶ)の詳細については、後述する第3の実施形態で説明する。 Details of an example of the operations of S201 to S203 described above (referred to as interference measurement example 1) will be described in a third embodiment described later.
 基地局102が干渉ビームを送信するリソース等は、ビームコーディネータ301が、予め決定して、決定したリソースの情報を基地局102に送信してもよい。あるいは、干渉ビームを送信するリソースを基地局102が決定することも可能である。 The beam coordinator 301 may determine in advance the resources for the base station 102 to transmit interference beams, and transmit information on the determined resources to the base station 102 . Alternatively, the base station 102 can determine the resources on which to transmit the interfering beams.
 基地局102から送信する干渉ビームの構成(ビームの方向、幅、利得等)については、基地局102が任意に決定してもよいし、ビームコーディネータ301が決定して、決定した構成を指示する指示情報を、基地局102に送信してもよい。例えば基地局102により複数の送信可能なビームの候補の全て又は一部を干渉ビームとして決定してもよいし、これらの候補から干渉ビームをランダムに決定してもよい。あるいは、基地局102は、ビームコーディネータ301又は基地局101から、端末201の位置情報を取得し、取得した端末201の位置情報に基づき、送信する1つ又は複数の干渉ビームを決定してもよい。 The configuration (direction, width, gain, etc.) of the interference beams transmitted from the base station 102 may be determined arbitrarily by the base station 102, or the beam coordinator 301 determines and instructs the determined configuration. The instructional information may be sent to base station 102 . For example, all or part of a plurality of transmittable beam candidates may be determined as interference beams by the base station 102, or interference beams may be randomly determined from these candidates. Alternatively, the base station 102 may acquire the location information of the terminal 201 from the beam coordinator 301 or the base station 101, and determine one or more interference beams to be transmitted based on the acquired location information of the terminal 201. .
 ビームコーディネータ301が干渉ビームの干渉に関する情報を取得する方法(S201~S203)は、上述した例(干渉測定例1)に限定されない。例えば、以下の例(干渉測定例2と呼ぶ)を用いてもよい。 The method (S201 to S203) for the beam coordinator 301 to acquire information about the interference of interference beams is not limited to the above example (interference measurement example 1). For example, the following example (referred to as Interference Measurement Example 2) may be used.
 基地局101は端末201にビームスウィーピングによって複数のリソースでそれぞれ複数のビームを順次送信して、端末201に所望ビームを選択又は決定させる(図1のS101参照)。ビームコーディネータ301の制御の元、基地局102は、基地局101に属する端末201に関して、1つ又は複数のリソース(周波数・時間リソース)で干渉測定用の参照信号を含むビーム(干渉ビーム)を送信する(S201)。端末201は干渉ビームを受信するビーム(受信ビーム)として、上述の所望ビームの受信に用いた受信ビームと同じビームを用いる。但し、端末201において干渉ビームを受信する受信ビームは、その他の方法で決めてもよい。例えば端末201は、干渉ビームごとに最も品質(例えば受信電力)が大きくなる受信ビーム(受信フィルタ)を複数の候補ビーム(候補フィルタ)から選択し、選択した受信ビーム(候補フィルタ)を用いて当該干渉ビームを受信してもよい。端末201では所望ビームに対する干渉ビームによる干渉を測定し、干渉に関する情報(例えばSINP又はCQI)を取得する。 The base station 101 sequentially transmits a plurality of beams using a plurality of resources to the terminal 201 by beam sweeping, and causes the terminal 201 to select or determine a desired beam (see S101 in FIG. 1). Under the control of the beam coordinator 301, the base station 102 transmits a beam (interference beam) including a reference signal for interference measurement using one or a plurality of resources (frequency/time resources) for the terminal 201 belonging to the base station 101. (S201). As a beam (reception beam) for receiving the interference beam, the terminal 201 uses the same reception beam as the reception beam used for receiving the above-described desired beam. However, the reception beam for receiving the interference beam at the terminal 201 may be determined by other methods. For example, the terminal 201 selects a reception beam (reception filter) with the highest quality (for example, received power) for each interference beam from a plurality of candidate beams (candidate filters), and uses the selected reception beam (candidate filter). Interfering beams may be received. Terminal 201 measures the interference caused by the interference beam with respect to the desired beam, and obtains information about the interference (for example, SINP or CQI).
 基地局101は、端末201で測定された干渉に関する情報(例えばSINP又はCQI)を含む報告情報(ビームレポート)を端末201から受信する(S202)。基地局101は、干渉ビームの干渉に関する情報を、干渉ビームを特定する情報(例えばビームID)と関連付けて含む干渉報告情報をビームコーディネータ301に送信する(S303)。なお基地局101は、干渉が大きい(例えばSINP又はCQIが閾値以上)干渉ビームを検出し、検出した干渉ビームについてのみ、ビームコーディネータ301に干渉報告情報を送信してもよい。 The base station 101 receives report information (beam report) including information (for example, SINP or CQI) on interference measured by the terminal 201 from the terminal 201 (S202). The base station 101 transmits to the beam coordinator 301 interference report information including information about the interference of the interference beams in association with information identifying the interference beams (for example, beam ID) (S303). Note that the base station 101 may detect interference beams with large interference (for example, SINP or CQI is above a threshold) and transmit interference report information to the beam coordinator 301 only for the detected interference beams.
 干渉報告情報は、例えば、基地局ID(基地局101のID)と、端末ID(端末201のID)と、干渉ビームのID(干渉ビームID)及び干渉に関する情報とを含む。ビームコーディネータ301は、端末IDに対応する端末用の干渉データベースに、基地局IDと干渉ビームIDと干渉に関する情報を対応づけて、干渉データベースに記憶する。上述したS201~S203の動作の例(干渉測定例2)の詳細については、後述する第2の実施形態で説明する。 The interference report information includes, for example, a base station ID (base station 101 ID), a terminal ID (terminal 201 ID), an interference beam ID (interference beam ID), and information about interference. The beam coordinator 301 associates a base station ID, an interference beam ID, and information about interference with an interference database for a terminal corresponding to the terminal ID, and stores them in the interference database. Details of an example of the operations of S201 to S203 (interference measurement example 2) will be described later in a second embodiment.
 上述したS201~S203の説明では、基地局102から送信する干渉ビームについて干渉に関する情報を、干渉ビームを特定する情報(ビームID等)に関連付けて取得した。同様にして基地局101から送信する干渉ビームについても、干渉に関する情報を、干渉ビームを特定する情報(ビームID)に関連付けて、ビームコーディネータ301は取得してよい。また端末201以外の端末についても同様にして、基地局101、102のそれぞれから送信する干渉ビームについて、当該端末における干渉に関する情報を、干渉ビームを特定する情報(ビームID)に関連付けてビームコーディネータ301は取得してよい。 In the above description of S201 to S203, the information about the interference beam transmitted from the base station 102 is obtained in association with the information (beam ID, etc.) specifying the interference beam. Similarly, for the interference beams transmitted from the base station 101 as well, the beam coordinator 301 may acquire information about interference in association with information (beam ID) specifying the interference beams. Similarly, for terminals other than terminal 201, beam coordinator 301 associates information about interference in the terminal with information (beam ID) specifying the interference beam for interference beams transmitted from base stations 101 and 102, respectively. can be obtained.
 その後、基地局101が、端末201からビームによる通信のリクエストを受信した場合、基地局101は、端末201への送信に使用する所望ビームを決定する。このため基地局101は、複数のリソースを設定し、ビームスウィーピングにより、設定された複数のリソースのそれぞれで参照信号を含む複数のビームを送信する(S204)。端末201は、基地局101から送信される複数のビームの受信電力等を測定し、望ましいビーム(所望ビーム)を1つ又は複数、選択する。 After that, when the base station 101 receives a beam communication request from the terminal 201 , the base station 101 determines the desired beam to be used for transmission to the terminal 201 . Therefore, the base station 101 configures a plurality of resources and transmits a plurality of beams including reference signals in each of the configured resources by beam sweeping (S204). The terminal 201 measures the received power of a plurality of beams transmitted from the base station 101 and selects one or more desired beams (desired beams).
 端末201は、選択したビームを特定する情報と、選択したビームの受信電力等を示す情報とを含む報告情報(ビームレポート)を基地局101へ送信する(S305)。ビームを特定する情報は、例えば、ビームが送信されたリソース又はビームで送信された参照信号を識別するCRI(CSI-RS Resource identification)である。また、ビームの受信電力は、例えば、RSRP(Reference Signal Received Power)である。 The terminal 201 transmits report information (beam report) including information specifying the selected beam and information indicating the received power of the selected beam, etc. to the base station 101 (S305). The information that identifies the beam is, for example, CRI (CSI-RS Resource identification) that identifies a resource transmitted by the beam or a reference signal transmitted by the beam. Also, the received power of the beam is, for example, RSRP (Reference Signal Received Power).
 基地局101は、ビームレポートで報告されたビームの中から端末201へのダウンリンクデータの送信に使用するビームを1つ又は複数、所望ビームとして、選択する。例えば基地局101は、最も受信電力が高いビーム、又は受信電力が閾値以上のビームを選択する。基地局101は、選択したビームについて、ビームの使用条件(ビームを使用する周波数と時間に関する条件)を決定する。使用条件を決定する方法は任意に決定してよい。基地局101は、選択したビームのビームIDと端末201の端末IDと基地局101の基地局IDとビームの使用条件とを含むビームリクエスト(ビームの使用リクエスト)をビームコーディネータ301に送信する(S206)。ビームコーディネータ301はビームリクエストを受信する。 The base station 101 selects one or more beams to be used for transmitting downlink data to the terminal 201 from among the beams reported in the beam report as desired beams. For example, the base station 101 selects a beam with the highest received power or a beam with received power greater than or equal to a threshold. The base station 101 determines beam usage conditions (conditions regarding frequency and time for using the beam) for the selected beam. Any method for determining the conditions of use may be determined. The base station 101 transmits a beam request (beam use request) including the beam ID of the selected beam, the terminal ID of the terminal 201, the base station ID of the base station 101, and beam use conditions to the beam coordinator 301 (S206). ). Beam coordinator 301 receives beam requests.
 ビームコーディネータ301は、複数の基地局(基地局101、102を含む)におけるビームの使用状況を使用管理データベースにおいて把握している。すなわちビームコーディネータ301が過去に許可して、現在も使用中のビームの情報が使用管理データベースに保持されている。ビームの情報は、ビームID、基地局ID、端末ID、ビームの使用条件(使用が許可されている周波数及び時間に関する情報)を含む。 The beam coordinator 301 keeps track of the usage status of beams in multiple base stations (including the base stations 101 and 102) in the usage management database. That is, information on beams that have been permitted by the beam coordinator 301 in the past and are currently in use are held in the use management database. The beam information includes beam IDs, base station IDs, terminal IDs, beam usage conditions (information on frequencies and times permitted to be used).
 ビームコーディネータ301は、ビームリクエストに含まれるビームの使用条件に基づき、基地局101により使用することを要求しているビーム(要求ビーム)の使用可否を判断する。すなわち、ビームコーディネータ301は、まずビームの使用が要求されている周波数かつ、ビームの使用が要求されている時間において、他の端末によりビームが使用されているか否かを、使用管理データベースに基づき判断する。 The beam coordinator 301 determines whether or not the beam requested to be used by the base station 101 (requested beam) can be used based on the beam usage conditions included in the beam request. That is, beam coordinator 301 first determines whether or not the beam is being used by another terminal at the frequency at which the use of the beam is requested and the time at which use of the beam is requested, based on the use management database. do.
 具体的には、例えば、ビームコーディネータ301は、使用管理データベースにおいて要求ビームと周波数が同じ(もしくは部分的に重複し)かつ使用時間が少なくとも部分的に重複する、他の端末により使用中のビームのビームIDが保持されているかを判断する。なお、他の端末は基地局101のセルに属する場合、及び基地局102のセルに属する場合のいずれもあり得る。 Specifically, for example, the beam coordinator 301 selects beams in use by other terminals whose frequency is the same (or partially overlaps) and whose usage time at least partially overlaps with the requested beam in the usage management database. Determine if the beam ID is retained. Note that other terminals may belong to either the cell of base station 101 or the cell of base station 102 .
 ビームコーディネータ301は、当該ビームのビームIDが使用管理データベースに保持されていない場合は、基地局101に対して要求ビームの使用を許可することを決定する。 The beam coordinator 301 decides to allow the base station 101 to use the requested beam if the beam ID of the beam is not held in the usage management database.
 一方、当該他の端末により使用中のビームのビームIDが使用管理データベースに保持されている場合は、使用要求されたビームのビームIDが干渉データベースに保持されているかを判断する。使用要求されたビームのビームIDが保持されている場合、さらに、当該使用要求されたビームが端末201に対する強い干渉を与える干渉ビームとして保持されているかを、ビームIDに関連する干渉に関する情報に基づき判断する。 On the other hand, if the beam ID of the beam being used by the other terminal is held in the usage management database, it is determined whether the beam ID of the beam requested to be used is held in the interference database. When the beam ID of the beam requested to be used is held, further, whether the beam requested to be used is held as an interference beam that gives strong interference to the terminal 201 is determined based on information on interference related to the beam ID. to decide.
 ビームコーディネータ301は、当該使用要求されたビームのビームIDが干渉データベースに保持されていない場合は、要求ビームの使用を許可することを決定する。ビームコーディネータ301は、当該使用要求されたビームのビームIDが干渉データベースに保持されており、かつ当該ビームの干渉が弱い場合は要求ビームの使用を許可することを決定する。ビームコーディネータ301は、当該使用要求されたビームのビームIDが干渉データベースに保持されており、かつ当該ビームの干渉が強い場合は要求ビームの使用を許可しないことを決定する。このように、ビームコーディネータ301は、他の端末に対して強い干渉となる使用中のビームが存在する場合は、要求ビームの使用を許可しない。 The beam coordinator 301 decides to permit the use of the requested beam if the beam ID of the requested beam is not held in the interference database. The beam coordinator 301 decides to allow the use of the requested beam if the beam ID of the requested beam is held in the interference database and the interference of the beam is weak. The beam coordinator 301 decides not to permit the use of the requested beam if the beam ID of the requested beam is held in the interference database and the interference of the beam is strong. Thus, beam coordinator 301 does not allow the use of a requested beam when there is a beam in use that causes strong interference to other terminals.
 ビームコーディネータ301は、要求ビームの使用を許可する場合は、要求ビームの使用許可(すなわち要求ビームの使用のOK)を示す情報を含むレスポンスを基地局101に送信する(S307)。要求ビームの使用許可を示す情報は、例えば要求ビームのビームIDを含み、さらに基地局101のID及び端末201のIDの少なくとも一方を含む。 When the beam coordinator 301 permits the use of the requested beam, the beam coordinator 301 transmits to the base station 101 a response including information indicating permission to use the requested beam (that is, OK to use the requested beam) (S307). The information indicating permission to use the requested beam includes, for example, the beam ID of the requested beam and at least one of the ID of the base station 101 and the ID of the terminal 201 .
 一方、ビームコーディネータ301は、要求ビームの使用を許可しない場合は、要求ビームの使用不可(すなわち要求ビームの使用のNG)を示す情報を含むレスポンスを基地局101に送信する(同S307)。要求ビームの使用不可を示す情報は、例えば要求ビームのビームIDを含み、さらに基地局101のID及び端末201のIDの少なくとも一方を含む。 On the other hand, if the beam coordinator 301 does not permit the use of the requested beam, it transmits a response including information indicating that the requested beam cannot be used (that is, the use of the requested beam is NG) to the base station 101 (S307). The information indicating that the requested beam cannot be used includes, for example, the beam ID of the requested beam and at least one of the ID of the base station 101 and the ID of the terminal 201 .
 基地局101はビームコーディネータ301から要求ビームの使用許可を示す情報を含むレスポンスを受信した場合は、ビームリクエストで要求した周波数及び時間において、要求ビームで端末201にダウンリンクデータを送信する(S308)。一方、基地局101はビームコーディネータ301から要求ビームの使用不可を示す情報を含むレスポンスを受信した場合は、要求ビームでのダウンリンクデータの送信を行わない。この場合、基地局101は、ステップS305で受信したビームレポートに基づき他のビームを要求ビームとして選択して、サイド、ビームリクエストを送信してもよい。あるいは、ステップS304に戻って、ビームスィーピングからやり直してもよい。 When the base station 101 receives a response including information indicating permission to use the requested beam from the beam coordinator 301, the base station 101 transmits downlink data to the terminal 201 using the requested beam at the frequency and time requested in the beam request (S308). . On the other hand, when the base station 101 receives a response including information indicating that the requested beam cannot be used from the beam coordinator 301, the base station 101 does not transmit downlink data using the requested beam. In this case, the base station 101 may select another beam as the requested beam based on the beam report received in step S305 and transmit the side beam request. Alternatively, the process may return to step S304 and start again from beam sweeping.
[具体例2]
 具体例2では、ビームコーディネータ301に送信するビームリクエストに、複数の要求ビームのIDを含める。また、ビームリクエストに、複数の要求ビームのそれぞれについて、複数の要求ビームのうちの他の要求ビームと同時に使用する可能性がある否かの情報を含める。
[Example 2]
In specific example 2, the beam request sent to the beam coordinator 301 includes IDs of multiple requested beams. The beam request also includes information about whether or not each of the plurality of requested beams may be used simultaneously with other requested beams among the plurality of requested beams.
 基地局と1台の端末との間では、1つのビームで通信を行う場合もあれば、同時に2つ以上のビームを使って通信を行う場合もある。また1つのビームで通信を行う場合であっても、3つのビームの中から、1つのビームを選択して使用し、時間の経過に応じて、別のビームに切り替える場合もあり得る。これは、他の端末のビーム使用のスケジューリングにより、他の端末と同時に使用可能なビーム(同一の周波数・時間のリソースで使用できるビーム)が変わるためである。1つの端末が使用する可能性があるビームは複数ある場合、ビームコーディネータ301に、1つのビームの使用許可を要求するだけでは、ビームの切り替えに対応できない。本具体例2では、具体例1に係るビームリクエストに、複数の要求ビームのIDを含め、かつ複数の要求ビームのそれぞれについて、複数の要求ビームのうちの他の要求ビームと同時に使用する可能性がある否かの情報を含める。 Between the base station and one terminal, communication may be performed using one beam, or two or more beams may be used at the same time. Even when one beam is used for communication, one beam may be selected from three beams and switched to another beam as time passes. This is because beams that can be used simultaneously with other terminals (beams that can be used with resources of the same frequency and time) change according to beam use scheduling of other terminals. If there are a plurality of beams that one terminal may use, simply requesting beam coordinator 301 for permission to use one beam cannot handle beam switching. In this specific example 2, the beam request according to specific example 1 includes the IDs of the plurality of requested beams, and the possibility of using each of the plurality of requested beams at the same time as other requested beams among the plurality of requested beams. Include information about whether there is
 表3に、ビームリクエストに含める複数の要求ビームに関する情報の例を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows an example of information about multiple requested beams to include in a beam request.
Figure JPOXMLDOC01-appb-T000003
 表3の例では、1台の端末に対して6つの要求ビームが選択され、ビームリクエストに6つの要求ビームに関する情報が含められる。各要求ビームは、基地局ID(基地局に固有に割り当てられた番号)と、基地局においてビームに固有に割り当てられた番号(ビームID)との組で表す。 In the example of Table 3, 6 requested beams are selected for one terminal, and information about the 6 requested beams is included in the beam request. Each requested beam is represented by a set of a base station ID (number uniquely assigned to the base station) and a number (beam ID) uniquely assigned to the beam in the base station.
 表3のすべての行で、基地局IDは2である。(2,3)のビームと、(2,15)のビームと、 (2,31)のビームは、同時使用“あり”のため、これら3つのビームが同時に使用される可能性がある。これら3つのビームのうち、2つ又は3つのビームが同時に使用され得る。当然ながら、3つのうちの1つのみが使用される場合もあり得る。同時使用“なし”となっているビームは、他のビームと同時に使用されることはないが、時間の経過に応じて、切り替えられる可能性がある。 The base station ID is 2 in all rows of Table 3. Since the (2,3) beam, the (2,15) beam, and the (2,31) beam can be used simultaneously, there is a possibility that these three beams will be used at the same time. Of these three beams, two or three beams can be used simultaneously. Of course, it is possible that only one of the three is used. A beam marked as "none" for simultaneous use will not be used at the same time as other beams, but may be switched over as time passes.
 ビームコーディネータ301は、表3の情報に基づき、同時使用“なし”のビームについて単独使用の場合の使用可否を判断する。また同時使用“あり”のビームについては、同時使用の可否を判断する。例えば(2,3)、(2,15)、(2,31)の3つのビームの同時使用の可否を判断する。複数のビームの同時使用が可能か否かは、3つのビームがいずれも使用可能と判断される場合に、使用可を決定すればよい。ビームコーディネータ301は、同時使用“なし”の各ビームの使用可否の情報と、同時使用“あり”の複数のビームの同時使用の可否の情報を含むレスポンスを、ステップS107で基地局101に送信すればよい。 Based on the information in Table 3, the beam coordinator 301 determines whether or not the simultaneous use "none" beam can be used alone. Also, for beams with simultaneous use "yes", it is determined whether or not they can be used simultaneously. For example, it is determined whether three beams (2,3), (2,15), and (2,31) can be used simultaneously. Whether or not a plurality of beams can be used simultaneously can be determined by determining whether all three beams can be used. In step S107, the beam coordinator 301 transmits to the base station 101 a response including information on whether or not each beam can be used simultaneously and information about whether or not each beam can be used simultaneously, and information about whether or not a plurality of beams can be used simultaneously. Just do it.
 基地局101は、ビームコーディネータ301からのレスポンスを受信する。基地局101は、受信したレスポンスに含まれる情報に基づき、端末201への送信に使用するビームを1つ又は複数選択し、選択したビームでダウンリンクデータを送信する。基地局101は、時間の経過に応じて、使用可能と判断されたビーム間で、使用するビームを切り替えてもよい。例えば基地局101は、送信データの誤り率又はその平均等が閾値以上になった場合に、使用するビームを切り替えてもよいし、一定時間ごとに使用するビームを切り替えてもよい。 The base station 101 receives the response from the beam coordinator 301. Based on the information included in the received response, the base station 101 selects one or more beams to be used for transmission to the terminal 201, and transmits downlink data using the selected beams. The base station 101 may switch beams to be used between beams determined to be usable over time. For example, the base station 101 may switch the beam to be used when the transmission data error rate or its average exceeds a threshold, or may switch the beam to be used at regular intervals.
[具体例3]
 具体例3では、ビームコーディネータ301に送信するビームリクエストに、要求ビームの重要度又は優先度に関する情報を含める。これによりビームコーディネータ301で要求ビームの使用可否の判断(他の端末との間でのビーム使用の調整)をより柔軟に行うことができる。
[Example 3]
In specific example 3, the beam request sent to the beam coordinator 301 includes information about the importance or priority of the requested beam. This allows the beam coordinator 301 to more flexibly determine whether or not the requested beam can be used (adjust beam usage with other terminals).
 基地局がビームコーディネータ301に端末との間で使用を要求するビームについて使用可否を判断する際、ビームコーディネータ301は、要求ビームについて他のビームとの間で干渉の関係を考慮する必要がある。 When the base station determines whether or not to use the beam that the base station requests the beam coordinator 301 to use with the terminal, the beam coordinator 301 needs to consider the interference relationship between the requested beam and other beams.
 具体的には、干渉の関係1として、要求ビームが既にビームを使用中の他の基地局に属する端末に干渉を与える関係、換言すれば、要求ビームが他の基地局に属する端末の通信の品質の低下を引き起こし得る関係がある。この場合、要求ビームは他の端末に干渉を与えるビームに相当し、他の端末は、干渉を受ける端末に相当する。 Specifically, as interference relation 1, the requested beam interferes with a terminal belonging to another base station already using the beam, in other words, the requested beam interferes with the communication of a terminal belonging to another base station. There is a relationship that can cause quality loss. In this case, the requested beam corresponds to the beam causing interference to the other terminal, and the other terminal corresponds to the terminal receiving the interference.
 干渉の関係2として,他の端末が既に使用中のビームが、要求ビームの使用が許可された場合に要求ビームを利用する端末に干渉を与える関係、換言すれば、既に使用中のビームが要求ビームを用いる端末の通信の低下を引き起こし得る関係がある。この場合、他の端末が既に使用中のビームが干渉を与えるビームに相当し、要求ビームの使用が許可された場合に要求ビームを利用する端末が、干渉を受ける端末に相当する。 As interference relationship 2, the beam already in use by another terminal interferes with the terminal using the requested beam when the use of the requested beam is permitted. There is a relationship that can cause degradation of communications for terminals using beams. In this case, the beam already in use by another terminal corresponds to the interfering beam, and the terminal that uses the requested beam when the use of the requested beam is permitted corresponds to the terminal receiving interference.
 表4に、干渉の関係1の有無及び干渉の関係2の有無の組み合わせの説明を示す。関係1の有無及び関係2の有無は、前述した手法により、RSRP、SINR又はCQIを閾値と比較すること等により、容易に判断できる。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the combination of the presence/absence of interference relationship 1 and the presence/absence of interference relationship 2. The presence or absence of relationship 1 and the presence or absence of relationship 2 can be easily determined by comparing RSRP, SINR, or CQI with a threshold using the method described above.
Figure JPOXMLDOC01-appb-T000004
 表5に、具体例3に係るビームリクエストに含める情報の例を示す。ビームリクエストには、要求ビームを特定する情報として基地局ID及びビームIDを含み、さらに優先度又は重要度に関する情報を含む。具体例1と同様、周波数及び時間に関する使用条件もビームリクエストにさらに含めてよい。また、SINRの代わりに、CQI又はRSRPなど他の指標を用いてもよい。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows an example of information to be included in a beam request according to Specific Example 3. The beam request includes a base station ID and a beam ID as information specifying the requested beam, and further includes information regarding priority or importance. As in Example 1, usage conditions regarding frequency and time may also be included in the beam request. Also, other indicators such as CQI or RSRP may be used instead of SINR.
Figure JPOXMLDOC01-appb-T000005
 QoS Level IDは、事前にオペレータが、端末の端末ID(IMSI又はSUPI等)と関連付けて、基地局に設定しておいてもよい。あるいは、端末に対して専用ベアラ(Dedicated bearer)を設定するときに付与されるQoSに基づいて、基地局がQoS Level IDを決定してもよい。専用ベアラは、データを伝送するための論理的なパスである。 The QoS Level ID may be set in the base station in advance by the operator in association with the terminal ID (IMSI, SUPI, etc.) of the terminal. Alternatively, the base station may determine the QoS Level ID based on the QoS assigned when setting up a dedicated bearer for the terminal. A dedicated bearer is a logical path for transmitting data.
 以下、ビームコーディネータ301による要求ビームの使用可否を判断する具体例を示す。なお、要求ビームの使用を許可する場合、具体例1と同様に、周波数及び時間に関する使用条件を満たしているものとする。以下の判断の例は一例であり、優先度又は重要度を用いる限り、その他の判断例も可能である。 A specific example in which the beam coordinator 301 determines whether the requested beam can be used will be shown below. When permitting the use of the requested beam, it is assumed that the usage conditions regarding frequency and time are satisfied, as in the first specific example. The following determination example is just an example, and other determination examples are possible as long as priority or importance is used.
 干渉関係の組み合わせ1の場合の判断例を示す。干渉関係の組み合わせ1の場合は、要求ビームを使用(受信)する端末のSINRがSINR V以上であり、他の端末の使用中のビームの端末のSINRもSINR V以上の場合に対応する。なお、両端末のSINR Vは同じ値であっても、異なる値であってもよい。この場合、ビームコーディネータ301は、要求ビームの使用を許可してもよい。 An example of determination in the case of combination 1 of the interference relationship is shown. Interference relationship combination 1 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is SINR V or more, and the SINR of the terminal of the beam being used by another terminal is also SINR V or more. Note that the SINR V of both terminals may be the same value or different values. In this case, beam coordinator 301 may authorize the use of the requested beam.
 干渉関係の組み合わせ2の場合の判断例を示す。干渉関係の組み合わせ2の場合は、要求ビームを使用(受信)する端末のSINRが要求ビームのSINR V未満であるが、他の端末のSINRはSINR V以上の場合に対応する。この場合、ビームコーディネータ301は、要求ビームの優先度(QoS Level ID)が閾値以上のときは、要求ビームの使用を許可してもよい。 An example of determination in the case of combination 2 of the interference relationship is shown. Interference relationship combination 2 corresponds to the case where the SINR of the terminal that uses (receives) the requested beam is less than the SINR V of the requested beam, but the SINR of the other terminals is SINR V or more. In this case, the beam coordinator 301 may permit use of the requested beam when the priority (QoS Level ID) of the requested beam is equal to or greater than the threshold.
 干渉関係の組み合わせ3の場合の判断例を示す。干渉関係の組み合わせ3の場合は、要求ビームを使用(受信)する端末のSINRがSINR V以上であるが、他の使用中のビームの端末のSINRもSINR V未満の場合に対応する。この場合、ビームコーディネータ301は、要求ビームの優先度(QoS Level ID)が閾値以上であるときは、要求ビームの使用を許可してもよい。但し、他の使用中のビームの端末のSINRが閾値(当該ビームのSINR Vより小さい)以上であることを条件としてもよい。あるいは、要求ビームの優先度が、他の使用中のビームの優先度より高い又は以上であることを、さらに/代わりに要件としてもよい。SINRの閾値を優先度に応じて変更してもよい。例えば優先度が大きいほど、閾値を小さくしてもよい。 An example of judgment in the case of combination 3 of the interference relationship is shown. Interference relationship combination 3 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is SINR V or more, but the SINR of the terminals of other beams in use is also less than SINR V. In this case, the beam coordinator 301 may permit use of the requested beam when the priority (QoS Level ID) of the requested beam is greater than or equal to the threshold. However, the condition may be that the SINR of a terminal on another beam in use is equal to or greater than a threshold value (less than the SINR V of the beam in question). Alternatively, it may additionally/alternatively require that the priority of the requested beam is higher or higher than the priority of other beams in use. The SINR threshold may be changed according to priority. For example, the higher the priority, the smaller the threshold may be.
 干渉関係の組み合わせ4の場合の判断例を示す。干渉関係の組み合わせ4の場合は、要求ビームを使用(受信)する端末のSINRがSINR V未満であり、他の使用中のビームの端末のSINRもSINR V未満である場合に対応する。この場合、ビームコーディネータ301は、要求ビームの使用を許可しなくてもよい。あるいは、ビームコーディネータ301は、要求ビームの優先度(優先度A1とする)と、他の基地局が使用中のビームの優先度(優先度A2とする)とを比較し、優先度A1が優先度A2より大きい場合に、要求ビームの使用を許可してもよい。但し、要求ビームを使用した場合の端末のSINR及び他の使用中のビームの端末のSINRの少なくとも一方が、閾値(SINR Vより小さい)以上であることを条件としてもよい。閾値を優先度に応じて変更してもよい。例えば優先度が大きいほど、閾値を小さくしてもよい。 An example of judgment in the case of interference relationship combination 4 is shown. Interference relationship combination 4 corresponds to the case where the SINR of the terminal using (receiving) the requested beam is less than SINR V, and the SINR of the terminals of the other beams in use is also less than SINR V. In this case, beam coordinator 301 may not allow the requested beam to be used. Alternatively, beam coordinator 301 compares the priority of the requested beam (assumed to be priority A1) and the priority of the beam being used by another base station (assumed to be priority A2), and priority A1 is given priority. Use of the request beam may be permitted if the degree is greater than A2. However, at least one of the SINR of the terminal when using the requested beam and the SINR of the terminal using other beams in use may be a threshold value (less than SINR V) or more. The threshold may be changed according to priority. For example, the higher the priority, the smaller the threshold may be.
[ビームの干渉に関する情報を事前に伝えていない端末に関するビームの取り扱い]
 前述の図16のステップS201~S203の説明で記載したように、基地局は、最初に、各端末から1つ又は複数の干渉ビームについて干渉量に関する情報(例えばRSRP、SINR、CQI又は干渉の有無等)を取得する。そして、基地局は、取得した情報に基づき、端末ごとに、検出した各干渉ビームに関する情報をコーディネータ301に通知する。
[Handling of beams for terminals that do not convey information about beam interference in advance]
As described in the description of steps S201 to S203 in FIG. 16 above, the base station first receives information about the amount of interference (for example, RSRP, SINR, CQI, or presence or absence of interference) for one or more interference beams from each terminal. etc.). Then, based on the acquired information, the base station notifies the coordinator 301 of information on each detected interference beam for each terminal.
 しかしながら、この手続を行わない端末が存在する場合もあり得る。例えば、移動速度が速い端末は、干渉状況の変動が速いため、干渉に関する情報をネットワーク側(基地局)へ報告しない場合がある。そのような端末に関するビームの使用を要求するビームリクエストを基地局から受信した場合、ビームコーディネータ301は、表5のQoS Level IDの値に関わらず、ビームリクエストで要求されたビームの優先度を低い値(例えば最も低い値又は予め定めた値)とみなしてよい。要求ビームが他の端末への許容できない(又は大きな)干渉を与えるビームの場合(例えば、他の端末のSINRがSINR V又は別途定めた閾値より小さくなる場合)、ビームコーディネータ301は、要求ビームの使用を許可しなくてよい。要求ビームに係る端末へ大きな干渉を与える他のビームが存在しとしても、当該他のビームによる干渉に関する情報が当該端末に対して存在しない場合は、要求ビームが他の端末へ大きな干渉を与える(干渉量が閾値以上の)ビームとならない限り、要求ビームの使用を許可してもよい。 However, there may be terminals that do not perform this procedure. For example, a terminal moving at high speed may not report information on interference to the network side (base station) because the interference situation fluctuates rapidly. When receiving a beam request from a base station requesting use of a beam for such a terminal, beam coordinator 301 lowers the priority of the beam requested in the beam request regardless of the value of QoS Level ID in Table 5. It may be considered a value (eg lowest value or predetermined value). If the requested beam is a beam that gives unacceptable (or large) interference to other terminals (for example, if the SINR of the other terminal is smaller than SINR V or a separately defined threshold), the beam coordinator 301 of the requested beam use should not be allowed. Even if there is another beam that gives a large interference to the terminal related to the requested beam, if the information about the interference by the other beam does not exist for the terminal, the requested beam gives a large interference to the other terminal ( The requested beam may be permitted to be used unless the beam is obtained with an amount of interference equal to or greater than the threshold.
[具体例4]
 具体例4では、ビームコーディネータ301が基地局から受信したビームリクエストに対して、使用条件の少なくとも一部を制限して、ビームの使用を許可する。
[Example 4]
In specific example 4, the beam request received from the base station by the beam coordinator 301 is permitted to use the beam by restricting at least part of the usage conditions.
 ビームコーディネータ301は、基地局から要求された要求ビームに関して、ビームリクエストに含まれる使用条件が満たされない場合であっても、条件付きで(使用条件の少なくとも一部を制限して)、要求ビームの使用を許可できる場合がある。要求ビームの使用条件が満たされない場合に、一律に使用不可を決定すると、システム的に効率的とは言えない。例えば、上述した具体例3では、要求ビームに期待されるSINRの値(=V)がビームリクエストに含まれる、Vよりも低いSINRでもよいのであれば、要求ビームの使用を許可できる場合もあり得る。また上述した具体例1において、周期の繰り返し数10が要求された場合に、繰り返し数8ならば要求ビームの使用を許可できる場合もあり得る。このような場合に、SINRが低い値になること又は繰り返し数が8になることを条件とするよう使用条件の少なくとも一部を制限して(使用制限を付けて)、ビームコーディネータ301は、要求ビームの使用を許可する。ビームコーディネータ301は、要求ビームの使用許可を示す情報を含むレスポンスを、使用制限の情報(制限された使用条件)を含めて、基地局に送信する。 The beam coordinator 301 conditionally (restricts at least part of the usage conditions) of the requested beams requested by the base station even if the usage conditions included in the beam request are not satisfied. use may be permitted. It cannot be said that it is efficient in terms of the system if it is determined uniformly that the beam cannot be used when the conditions for using the requested beam are not satisfied. For example, in the specific example 3 described above, if the SINR value (=V) expected for the requested beam is included in the beam request, and if the SINR lower than V is acceptable, the use of the requested beam may be permitted. obtain. Further, in the above-described specific example 1, if the number of repetitions of the period is 10, the use of the requested beam may be permitted if the number of repetitions is 8. In such a case, the beam coordinator 301 restricts at least some of the usage conditions (with usage restrictions) so that the SINR becomes a low value or the number of iterations becomes 8, and the beam coordinator 301 responds to the request Allow use of beams. The beam coordinator 301 transmits a response including information indicating permission to use the requested beam to the base station, including usage restriction information (restricted usage conditions).
 表6に、上述した具体例1における基地局からのビームリクエストに使用制限付きの許可を行う例を示す。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows an example in which the beam request from the base station in the above-described specific example 1 is permitted with usage restrictions.
Figure JPOXMLDOC01-appb-T000006
 表7に、上述した具体例3における基地局からのビームリクエストに対して使用制限付きの許可を行う例を示す。
Figure JPOXMLDOC01-appb-T000007
Table 7 shows an example of granting a beam request from the base station in specific example 3 described above with use restrictions.
Figure JPOXMLDOC01-appb-T000007
[具体例5]
 具体例5では、基地局がビームコーディネータ301に送信したビームリクエストに対して、ビームコーディネータ301から使用可否の情報を含むレスポンス(応答)が返ってこない場合の基地局の動作について記載する。
[Example 5]
Specific example 5 describes the operation of the base station when the beam request sent from the base station to the beam coordinator 301 does not receive a response including information on availability from the beam coordinator 301 .
 基地局からビームコーディネータ301に対してビームリクエストを送信しても、ネットワーク障害(例えば輻輳)などで、ビームリクエストに対する使用可否の応答が即時に戻らない場合があり得る。 Even if a beam request is sent from the base station to the beam coordinator 301, there may be cases where a response regarding whether or not the beam request can be used is not immediately returned due to network failure (eg, congestion).
 例えばビームリクエストに、時間する使用条件として、時刻t+kからビームの送信を行うことの要求を含めたとする。つまり、ビームリクエストを送信した時刻tから k [ms]後にビームの使用を開始することを要求したとする。この場合、時刻t+kを過ぎて、又は時刻t+kの直前に使用許可の情報を含むレスポンスが届いた場合、基地局の送信準備が間に合わない。 For example, suppose that the beam request includes a request to transmit the beam from time t+k as a usage condition. In other words, suppose that a request is made to start using the beam k [ms] after the time t when the beam request is sent. In this case, if a response including usage permission information arrives after time t+k or just before time t+k, the base station will not be ready for transmission in time.
 そこで基地局は、時刻t-h(hは正の実数) までに使用可否の情報を含むレスポンスを受信しない場合、ビームリクエストのキャンセルを通知するメッセージをビームコーディネータ301に送信する。その後、基地局は、もう一度、別のビームリクエストを送信する。キャンセルのメッセージを送信する理由は、時刻t-hまでに応答を基地局が受信しない原因が不明であるため、ビームリクエストで要求されたビームを基地局が使っていないことをビームコーディネータ301に対して明確にするためである。例えば、ビームコーディネータ301がレスポンスを送信したにも関わらずレスポンスが基地局に届いていない場合、ビームコーディネータ301は基地局が要求ビームを使用していると誤認識する可能性がある。 Therefore, if the base station does not receive a response including information on availability of use by time t-h (h is a positive real number), it transmits a message to the beam coordinator 301 notifying of cancellation of the beam request. The base station then sends another beam request again. The reason for transmitting the cancellation message is that the reason why the base station does not receive the response by time t-h is unknown, so it is clear to the beam coordinator 301 that the base station is not using the beam requested in the beam request. It is for For example, when beam coordinator 301 transmits a response but the response does not reach the base station, beam coordinator 301 may erroneously recognize that the base station is using the requested beam.
 以上、本実施形態により、複数の基地局間にまたがったビームコーディネーションが可能になる。よって、端末におけるビームの干渉が抑えられ、端末及び基地局間の通信のスループットを向上させることができる。 As described above, this embodiment enables beam coordination across multiple base stations. Therefore, beam interference in the terminal can be suppressed, and communication throughput between the terminal and the base station can be improved.
 (第2の実施形態)
 第1の実施形態における図16のステップS201~S203では、基地局が端末から干渉ビームによる干渉に関する情報(SINR、CQI等)を取得し、各干渉ビームの干渉に関する情報(例えば強い干渉ビームに関する情報)をビームコーディネータ301に報告した。第2の実施形態ではこの動作の詳細及びバリエーションについて説明する。
(Second embodiment)
In steps S201 to S203 in FIG. 16 in the first embodiment, the base station acquires information (SINR, CQI, etc.) on interference by interference beams from the terminal, and information on interference of each interference beam (for example, information on strong interference beams). ) to the beam coordinator 301 . Details and variations of this operation will be described in the second embodiment.
 ビームコーディネータ301(制御部350)が、複数の基地局(図10の例では基地局101と基地局102)を同期させる。ビームコーディネータ301の機能が複数の基地局のいずれかに基地局制御ソフトウェアとして格納されていてもよい。特に、PLMN(Public Land Mobile Network)が同一の基地局間は、通常は、基地局コントローラにより同期制御がなされる。ビームコーディネータ301が複数の基地局とは独立した装置であってもよい。 A beam coordinator 301 (control unit 350) synchronizes a plurality of base stations (base station 101 and base station 102 in the example of FIG. 10). The function of beam coordinator 301 may be stored as base station control software in any one of a plurality of base stations. Especially between base stations with the same PLMN (Public Land Mobile Network), synchronization control is normally performed by the base station controller. Beam coordinator 301 may be a device independent of multiple base stations.
 図17は、第2の実施形態に係るビームコーディネータ301、基地局101及び基地局102の動作の一例を説明するためのフローチャートである。 FIG. 17 is a flowchart for explaining an example of operations of the beam coordinator 301, base station 101, and base station 102 according to the second embodiment.
 ビームコーディネータ301は複数の基地局のそれぞれに属している複数の端末の中から対象となる端末を選択する(S301)。対象となる端末は、当該複数の端末の一部又は全部を順番に選択してもよいし、特定の端末を選択してもよい。特定の端末の例として、移動しない端末(例えば固定設置された端末)、重要な機能又は役割を有する端末、移動せずかつ重要な機能又は役割を有する端末などを選択してもよい。重要な機能又は役割を有する端末の具体例として、工場においてビーム干渉により端末の通信品質が劣化すると生産ラインが停止してしまうような重要な制御を行う端末がある。また、別の具体例として、手術のための医療機器を制御する端末がある。対象となる端末の選択は、ビームコーディネータ301が行う以外に、基地局が行うことも可能である。この場合、基地局が、選択した端末の情報(端末ID等)をビームコーディネータ301に通知してもよい。以下の説明では、基地局101のセルに属する端末201(図10参照)を選択した場合を想定する。 The beam coordinator 301 selects a target terminal from a plurality of terminals belonging to each of a plurality of base stations (S301). A part or all of the plurality of terminals may be selected in turn, or a specific terminal may be selected as the target terminal. As examples of specific terminals, terminals that do not move (eg, terminals that are fixedly installed), terminals that have important functions or roles, terminals that do not move and have important functions or roles, etc. may be selected. A specific example of a terminal having an important function or role is a terminal that performs important control such as stopping a production line in a factory when the communication quality of the terminal deteriorates due to beam interference. Another specific example is a terminal that controls medical equipment for surgery. Selection of target terminals can be performed not only by the beam coordinator 301 but also by the base station. In this case, the base station may notify the beam coordinator 301 of the selected terminal information (terminal ID, etc.). In the following description, it is assumed that terminal 201 (see FIG. 10) belonging to the cell of base station 101 is selected.
 基地局101は、端末201と所望ビームを用いて通信を行っている。所望ビームの決め方の一例として、基地局101が端末201にビームスウィーピングによって複数のリソースでそれぞれ複数のビームを順次送信して、最も品質が高いビームを所望ビームとして選択する方法がある。最も品質が高いビームは、例えば受信電力(RSRP)が最も高い又は閾値以上のビームである。端末201は所望ビームを受信する受信ビーム(受信フィルタ)として、例えば所望ビームの受信電力が最も高くなるビーム(受信フィルタ)を用いる。その他の方法として、受信ビーム(受信フィルタ)の複数の候補を用意しておき、これら複数の候補の中から受信ビーム(受信フィルタ)を選択してもよい。 The base station 101 communicates with the terminal 201 using the desired beam. As an example of how to determine the desired beam, there is a method in which the base station 101 sequentially transmits a plurality of beams using a plurality of resources to the terminal 201 by beam sweeping, and selects the beam with the highest quality as the desired beam. The beam with the highest quality is, for example, the beam with the highest received power (RSRP) or above a threshold. The terminal 201 uses, for example, a beam (reception filter) with the highest reception power of the desired beam as a reception beam (reception filter) for receiving the desired beam. As another method, a plurality of reception beam (reception filter) candidates may be prepared, and a reception beam (reception filter) may be selected from among these plurality of candidates.
 ビームコーディネータ301は、複数の基地局から干渉元となる基地局として選択し(S302)、基地局101と選択した基地局とを除く他の基地局による無線信号送信の動作を停止させる。干渉元となる基地局を選択する方法として、例えば、端末が通信可能な距離の範囲に含まれる基地局を順番に選択してもよい。または、ローカルエリアにある基地局を順番に選択してもよい。ここでは干渉元となる基地局として基地局102を選択したとする。なお、干渉元として基地局101を選択することも可能である。 The beam coordinator 301 selects a base station as an interference source from a plurality of base stations (S302), and stops radio signal transmission operations by other base stations than the base station 101 and the selected base station. As a method of selecting the base station that is the source of interference, for example, base stations included in a range of distance where the terminal can communicate may be selected in order. Alternatively, base stations in the local area may be selected in order. Assume here that the base station 102 is selected as the base station that is the source of interference. It is also possible to select the base station 101 as an interference source.
 ビームコーディネータ301は、干渉元として選択した基地局に対して、端末201に複数の干渉ビームを送信するための複数のリソース(周波数と時間とによって規定されるリソース)を決定する(同S302)。複数のリソースの周波数は、基地局101及び端末201間で使用している所望ビームのリソースと同じ周波数である。干渉ビームを送信するリソースの時間は、所望ビームが送信されるリソースの時間と異ならせる方法、同じにする方法のいずれも可能である。ビームコーディネータ301は、決定した複数のリソースを特定する情報を基地局101に送信する(同S302)。 The beam coordinator 301 determines multiple resources (resources defined by frequency and time) for transmitting multiple interference beams to the terminal 201 for the base station selected as the interference source (S302). The frequencies of the plurality of resources are the same frequencies as the desired beam resources used between the base station 101 and the terminal 201 . It is possible to make the resource time for transmitting the interference beam different from or the same as the resource time for transmitting the desired beam. The beam coordinator 301 transmits information specifying the determined plurality of resources to the base station 101 (S302).
 基地局101は、ビームコーディネータ301の制御の元、端末201に対して基地局102から送信される干渉ビームを測定させ、かつ所望ビームに対する干渉に関する情報を報告させるための設定情報を送信する(S303)。レポート設定情報は、RRCメッセージ(e.g., RRCSetup message, RRCReconfiguration message)に含まれて基地局101から端末201へ送信されてもよい。設定情報には、干渉ビームが送信されるリソースを特定する情報が含まれていてもよい。干渉ビームが送信されるリソースの順番を示す情報が含まれていてもよい。干渉ビームが所望ビームと異なるリソースで送信される場合、端末201は、干渉ビームが所望ビームと同じ時間で受信されたと仮定して、SINR又はCQIを算出してもよい。 Under the control of the beam coordinator 301, the base station 101 transmits setting information for causing the terminal 201 to measure an interference beam transmitted from the base station 102 and report information on interference with the desired beam (S303). ). The report configuration information may be included in RRC messages (e.g., RRCSetupmessage, RRCReconfigurationmessage) and transmitted from the base station 101 to the terminal 201 . The configuration information may include information identifying resources on which interfering beams are transmitted. Information may be included that indicates the order of resources on which the interfering beams are transmitted. If the interfering beam is transmitted on different resources than the desired beam, terminal 201 may calculate the SINR or CQI assuming that the interfering beam is received at the same time as the desired beam.
 ビームコーディネータ301は、干渉元として選択した基地局102に対して、上記決定した複数のリソースのうちの1つで、複数の干渉ビームのうちの1つを送信することを指示する情報を送信する(S304)。例えばビームコーディネータ301が、基地局102から送信可能な複数のビーム候補(それぞれビームIDが付与されている)の中からビームを選択し、選択したビームの送信をビームIDによって基地局102に指示する。干渉ビームの選択は基地局102で行ってもよい。この場合、基地局102は指定されたリソースで送信する干渉ビームのビームIDをビームコーディネータ301に通知してもよい。 The beam coordinator 301 transmits information instructing the base station 102 selected as the interference source to transmit one of the plurality of interference beams using one of the plurality of resources determined above. (S304). For example, the beam coordinator 301 selects a beam from a plurality of beam candidates (each beam ID is assigned) that can be transmitted from the base station 102, and instructs the base station 102 to transmit the selected beam using the beam ID. . Selection of interfering beams may be performed at the base station 102 . In this case, the base station 102 may notify the beam coordinator 301 of the beam ID of the interference beam to be transmitted using the designated resource.
 基地局102はビームコーディネータ301から指示された情報に基づき、ビームコーディネータ301から指示されたリソースで干渉ビームを送信する(同S304)。 Based on the information instructed by the beam coordinator 301, the base station 102 transmits interference beams using the resources instructed by the beam coordinator 301 (S304).
 基地局101は、端末201から干渉ビームの干渉量に関する情報(例えばSINR又はCQI)を含む報告情報(ビームレポート)を受信する(S305)。端末201がビームレポートをアップリンク送信するリソースは予め設定情報で端末201に設定されてもよい。あるいは、その他の方法(e.g., DCI(Downlink Control Information), MAC Control Element)で報告用のリソースを端末201へ指示してもよい。さらに又はこれに代えて、端末201からビームレポートを送信するリソースは、予め基地局101が端末201に設定情報で指定し、報告のトリガをその他の方法(e.g., DCI(Downlink Control Information), MAC Control Element)で端末201へ指示してもよい。これらの測定方法、及び報告方法は前述又は後述の他の実施形態にも適用されてもよい。基地局101は、受信した干渉量に関する情報を基地局101のID(Base Station ID)と端末201のID(UE ID)とともに、干渉報告情報としてビームコーディネータ301に送信する(S305)。端末201から送信する干渉に関する情報に、干渉ビームが受信されたリソースのIDが関連付けられていてもよく、この場合、基地局101は、ビームコーディネータ301に送信する干渉報告情報にリソースのIDを含めてよい。 The base station 101 receives report information (beam report) including information (for example, SINR or CQI) on the interference amount of interference beams from the terminal 201 (S305). A resource for uplink transmission of the beam report by the terminal 201 may be configured in the terminal 201 in advance by configuration information. Alternatively, other methods (e.g., DCI (Downlink Control Information), MAC Control Element) may be used to indicate the reporting resource to terminal 201 . Additionally or alternatively, the resource for transmitting the beam report from the terminal 201 is specified in advance by the base station 101 to the terminal 201 in the configuration information, and the report is triggered by other methods (e.g., DCI (Downlink Control Information), MAC (Control Element) to instruct the terminal 201. These measurement methods and reporting methods may also be applied to other embodiments described above or below. The base station 101 transmits information about the received interference amount together with the ID (Base Station ID) of the base station 101 and the ID (UE ID) of the terminal 201 as interference report information to the beam coordinator 301 (S305). The information about the interference transmitted from the terminal 201 may be associated with the ID of the resource on which the interfering beam was received. In this case, the base station 101 includes the ID of the resource in the interference report information transmitted to the beam coordinator 301. you can
 ビームコーディネータ301は、基地局101から干渉報告情報を受信すると、干渉ビームを送信した基地局のIDと、干渉が測定されたビームのIDと、干渉に関する情報とを関連付けて、当該端末用の干渉データベースに格納する。なお、干渉データベースを複数の端末で共通に用いる場合は、干渉データベースに端末のIDも格納する。干渉データベースに格納する干渉に関する情報は、基地局101から報告されたSINR又はCQIの値そのものでもよいし、干渉に関する情報を値に応じて分類したクラス(例えば大、中、小)でもよい。 When the beam coordinator 301 receives the interference report information from the base station 101, the beam coordinator 301 associates the ID of the base station that transmitted the interference beam, the ID of the beam for which the interference was measured, and the information about the interference, and determines the interference for the terminal. Store in database. When the interference database is shared by a plurality of terminals, the IDs of the terminals are also stored in the interference database. The information on interference stored in the interference database may be the SINR or CQI value itself reported from base station 101, or may be a class (for example, large, medium, or small) classified according to the value of information on interference.
 ビームコーディネータ301は、干渉元の基地局から必要な干渉ビームを全て送信されたか、すなわち、基地局102から送信する全ての干渉ビームに関する干渉報告情報を受信したかを判断する(S306)。まだ全ての干渉ビームが送信されていない場合は、ステップS304に戻り、ビームコーディネータ301は、他の干渉ビームを次の1つのリソースで送信することを指示する情報を基地局102に送信する。当該全ての干渉ビームに関する干渉報告情報をビームコーディネータ301が受信するまで、ステップS304,S305を繰り返す。繰り返しごとにステップS304で行う干渉ビームの選択は任意の方法で行えばよい。例えばビームコーディネータ301は、候補となる複数のビームすべてを順番に選択してもいし、一定の方位角間隔でビームを順番に選択してもよいし、ランダムにビームを選択してもよい。ビームコーディネータ301ではなく基地局102が干渉ビームの選択を行う場合も、同様にしてビームを選択すればよい。なお、送信すべきビームの個数の分だけステップS302ではリソースを決定しておく。あるいは、リソースの個数を先に決定し、リソースの個数分だけ、ビーム(干渉ビーム)を送信する方法も可能である。 The beam coordinator 301 determines whether all necessary interference beams have been transmitted from the interference source base station, that is, whether it has received interference report information on all interference beams transmitted from the base station 102 (S306). If all the interfering beams have not been transmitted yet, returning to step S304, the beam coordinator 301 transmits information to the base station 102 instructing to transmit another interfering beam on the next resource. Steps S304 and S305 are repeated until the beam coordinator 301 receives the interference report information for all the interference beams. An arbitrary method may be used to select the interference beam in step S304 for each iteration. For example, the beam coordinator 301 may sequentially select all of a plurality of candidate beams, may sequentially select beams at regular azimuth angle intervals, or may select beams randomly. When interference beams are selected not by beam coordinator 301 but by base station 102, beams may be selected in the same manner. In step S302, resources corresponding to the number of beams to be transmitted are determined. Alternatively, a method of determining the number of resources first and transmitting beams (interference beams) corresponding to the number of resources is also possible.
 ビームコーディネータ301は基地局102から送信する全ての干渉ビームに関する干渉報告情報を受信したら、すべての基地局を選択したかを判断する(S307)。まだ選択していない基地局が存在する場合は、ステップS302に戻り、干渉元となる次の基地局を選択する。選択した基地局101に対して同様の処理(S302~S306)を繰り返し、ビームコーディネータ301は、基地局101から送信させる全ての干渉ビームに関する干渉報告情報を受信する。 When beam coordinator 301 receives interference report information about all interference beams transmitted from base station 102, it determines whether all base stations have been selected (S307). If there is a base station that has not been selected yet, the process returns to step S302 to select the next base station that will cause interference. The same processing (S302 to S306) is repeated for the selected base station 101, and the beam coordinator 301 receives interference report information on all interference beams transmitted from the base station 101. FIG.
 すべての基地局について処理が完了したら、ビームコーディネータ301は、選択すべき端末がまだ残っているかを判断し(S308)、まだ残っている場合は、ステップS301に戻り、次の対象となる端末を選択する。選択した端末に対してステップS302~S307の処理を行う。選択すべき端末が存在しない場合は、本フローチャートの処理を終了する。なお、選択済みの端末であっても、一定時間が経過又は端末が移動したなど一定の条件が満たされた場合は、再度、当該端末を選択の対象としてもよい。 When the processing for all base stations is completed, beam coordinator 301 determines whether or not there are still terminals to be selected (S308). select. Steps S302 to S307 are performed for the selected terminal. If there is no terminal to be selected, the processing of this flowchart is terminated. Note that even a terminal that has already been selected may be selected again if a certain condition is satisfied, such as a certain period of time has elapsed or the terminal has moved.
 図17の手続きにより、基地局から送信するビームの干渉量に関する情報を各ビームについて個別に把握することができる。また基地局から送信するビームにビームIDを付与することで、異なる基地局間のビームを区別することが可能になる。 By the procedure in FIG. 17, information on the amount of interference of beams transmitted from the base station can be individually grasped for each beam. Also, by assigning a beam ID to a beam transmitted from a base station, it becomes possible to distinguish beams between different base stations.
 図17の手続きでは、上述したように、2つの基地局だけを動作させ、他の基地局による無線送信の動作を停止させる。関連技術として、SAS(Spectrum Access System)がincumbent system(軍用レーダーなど保護すべき1次システム) を干渉から守るために、軍用レーダーを使う軍艦が基地局の近くにいないときだけ、基地局に送信許可を行うシステムがある。本実施形態に係る通信システムにおいて基地局間のビーム干渉測定を行うときに2つの基地局以外の他の基地局の無線送信の動作を停止させることは、この関連技術において、これら2つの基地局をincumbent system(1次システム)に設定することに相当する。incumbent system(1次システム)が動作中であるときは、必要な基地局(2つの基地局以外は、電波の送信を停止するということが、本実施形態の特徴の一つである。  In the procedure of FIG. 17, as described above, only two base stations are operated, and radio transmission operations by other base stations are stopped. As a related technology, SAS (Spectrum Access System) transmits to the base station only when the warship using military radar is not near the base station in order to protect the incumbent system (the primary system to be protected such as military radar) from interference There is a system for permitting. In the communication system according to the present embodiment, stopping radio transmission operations of base stations other than the two base stations when performing beam interference measurement between base stations means that in this related art, these two base stations to the incumbent system. One of the features of the present embodiment is that when the incumbent system (primary system) is in operation, all but the necessary base stations (two base stations) stop transmitting radio waves.
 図17の動作例は一例であり、動作の内容又は動作の順序について、様々なバリエーションが可能である。図17の動作例では、2つの基地局以外の基地局の無線送信の動作を停止させた後、基地局101が端末201に干渉測定用の設定情報を送信したが、基地局101が端末201に干渉測定用の設定情報を送信した後に、2つの基地局以外の動作を停止させてもよい。また、図17の動作例において、干渉ビームの送信はテストモードで行ってもよい。この場合、可能な限り、多くのリソースを用いて干渉ビームを送信してもよい。 The operation example in FIG. 17 is an example, and various variations are possible for the content of the operation or the order of the operation. In the operation example of FIG. 17 , after stopping radio transmission operations of base stations other than the two base stations, base station 101 transmits setting information for interference measurement to terminal 201 . After transmitting the setting information for interference measurement to , the operations of the base stations other than the two base stations may be stopped. Also, in the operation example of FIG. 17, the transmission of the interference beams may be performed in the test mode. In this case, interference beams may be transmitted using as many resources as possible.
 表8は、ビームコーディネータ301で管理する干渉データベースの一例を示す。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows an example of the interference database managed by the beam coordinator 301.
Figure JPOXMLDOC01-appb-T000008
 干渉データベースは、前述したように、図17のステップS301で選択する端末ごとに設けられる。表8の例では、干渉量に関する情報が、干渉の強さを示すクラス(大、中、小)に分類されている。干渉ビームは、基地局のID(Base station ID)とビームID(beam ID)とによって特定される。なお、基地局IDに加えて、又はこれの代わりに、セルID、TRP(Transmission Reception Point)ID又はBWP IDのうち、少なくとも1つが干渉ビームを特定するために用いられてもよい。例えば(1,10)は、基地局ID=1の基地局から送信された、ビームID=10の干渉ビームを表す。干渉データベースにより、端末毎に、どのビームがどの程度の干渉を端末に与えるかを把握できる。基地局ごとにビームIDの唯一性が保障されている場合は、ビームIDのみで干渉ビームを特定してもよい。干渉量に関する情報としてCQIを用いる場合に干渉の強さ(クラス)を決定する場合、干渉ビームがない場合のCQIと干渉ビームがある場合のCQIとの両方を比較して、干渉の強さ(クラス)を決定してもよい。 The interference database is provided for each terminal selected in step S301 of FIG. 17, as described above. In the example of Table 8, information about the amount of interference is classified into classes (large, medium, and small) indicating the strength of interference. An interfering beam is identified by a base station ID (Base station ID) and a beam ID (beam ID). In addition to or instead of the base station ID, at least one of a cell ID, a TRP (Transmission Reception Point) ID, or a BWP ID may be used to identify an interference beam. For example, (1,10) represents the interfering beam with beam ID=10 transmitted from the base station with base station ID=1. From the interference database, it is possible to grasp for each terminal which beam gives what degree of interference to the terminal. If the uniqueness of the beam ID is guaranteed for each base station, the interference beam may be specified only by the beam ID. When determining the strength (class) of interference when CQI is used as information about the amount of interference, both CQI without and with interference beams are compared to determine the strength of interference ( class) may be determined.
(第3の実施形態)
 第3の実施形態では、第2の実施形態と同様に、図16のステップS201~S203の詳細な動作例及びバリエーションについて説明する。第2の実施形態と同じ説明は適宜省略する。
(Third embodiment)
In the third embodiment, as in the second embodiment, detailed operation examples and variations of steps S201 to S203 in FIG. 16 will be described. Descriptions that are the same as those of the second embodiment will be omitted as appropriate.
 前述した第2の実施形態では、複数の基地局間でリソースを同期させる必要があった。同じオペレータに属する複数の基地局を同期させることは容易であるが、異なるオペレータに属する基地局間を同期させることは難しい場合がある。第3の実施形態では干渉測定を行う端末が属する基地局と、干渉ビームを送信する基地局とが異なるオペレータ(つまり異なるPLMN)に属する場合であっても、干渉ビームの干渉量に関する情報を容易に取得可能にする。 In the second embodiment described above, it was necessary to synchronize resources among multiple base stations. Although it is easy to synchronize multiple base stations belonging to the same operator, it may be difficult to synchronize between base stations belonging to different operators. In the third embodiment, even if the base station to which the terminal that performs interference measurement belongs and the base station that transmits the interference beam belong to different operators (that is, different PLMNs), information about the amount of interference of the interference beam can be easily obtained. make it available to
 図18は、第3の実施形態に係るビームコーディネータ301、基地局101及び基地局102の動作の一例を説明するためのフローチャートである。 FIG. 18 is a flowchart for explaining an example of operations of the beam coordinator 301, base station 101, and base station 102 according to the third embodiment.
 ビームコーディネータ301は、複数の基地局に属する複数の端末のうち対象となる端末を選択する(S401)。端末の選択例は、図17のステップS301と同様でよい。 The beam coordinator 301 selects a target terminal from a plurality of terminals belonging to a plurality of base stations (S401). An example of terminal selection may be the same as in step S301 of FIG.
 ビームコーディネータ301は、複数の基地局のうちの1つを選択し、選択した基地局だけが信号を送信可能に設定する(S402)。ビームコーディネータ301は、選択した基地局以外の他の全ての基地局の信号送信の動作を停止させる(同S402)。基地局を選択する方法は、図17のステップS302と同様でよい。 The beam coordinator 301 selects one of the plurality of base stations and sets only the selected base station to be able to transmit signals (S402). The beam coordinator 301 stops signal transmission operations of all base stations other than the selected base station (S402). The method of selecting the base station may be the same as in step S302 of FIG.
 選択された基地局(又はビームコーディネータ301)は、干渉ビーム送信用の複数のリソースを決定する(S403)。選択された基地局は、決定した複数のリソースの情報に基づき、ステップS401で選択された端末に対して、干渉ビームの干渉を測定させ、かつ測定した干渉(干渉量)に関する情報を報告させるための設定情報を送信する(同S403)。設定情報には、干渉ビームが送信されるリソースを特定する情報が含まれてもよい。 The selected base station (or beam coordinator 301) determines multiple resources for interfering beam transmission (S403). The selected base station causes the terminal selected in step S401 to measure the interference of the interference beam and report the information on the measured interference (interference amount) based on the determined information of the plurality of resources. setting information is transmitted (at step S403). The configuration information may include information identifying resources on which interfering beams are transmitted.
 選択された基地局は、決定したリソースのうちの1つで参照信号(例えばNZP CSI-RS)を含む干渉ビームを端末に送信する(S404)。選択された基地局は、端末から、参照信号が送信されたリソースを特定する情報(例えばCRI)と、端末で測定された受信電力(例えばRSRO)を含む報告情報を受信する(S405)。なお、基地局から複数のリソースで同じ構成のビームを端末に送信し、最も高かった受信電力(RSRP)とRSRPのビームが送信されたリソースを特定する情報(CRI)とを含む報告情報を基地局に送信してもよい。 The selected base station transmits an interference beam including a reference signal (eg NZP CSI-RS) to the terminal on one of the determined resources (S404). The selected base station receives, from the terminal, report information including information (eg, CRI) specifying the resource on which the reference signal was transmitted and received power (eg, RSRO) measured by the terminal (S405). In addition, the base station transmits beams of the same configuration to the terminal using a plurality of resources, and reports information including the highest received power (RSRP) and the information (CRI) identifying the resource where the RSRP beam is transmitted to the base station. You can send it to the station.
 選択された基地局は、端末から取得した情報に基づき、PLMN ID(オペレータを示すID),当該基地局のID(Base Station ID)、端末のID(UE ID,例えばIMSI, SUPI等)、ビームID(Beam ID)及びRSRPを含む干渉報告情報を生成する。ビームIDは、基地局が各ビームに付与するIDである。ビームIDは、3GPP 規格では定義されていないIDであってもよいがこれには限られない。例えば、ビームが、指向性を持たせた参照信号である場合、ビームIDは参照信号のIDであってもよい。参照信号がCSI-RSである場合、ビームIDはCRIであってもよい。参照信号がSSBである場合、ビームIDはSSB Indexであってもよい。基地局は、生成した干渉報告情報をビームコーディネータ301に送信する(同S405)。 Based on the information obtained from the terminal, the selected base station has a PLMN ID (an operator ID), a corresponding base station ID (Base Station ID), a terminal ID (UE ID, such as IMSI, SUPI, etc.), a beam Generate interference report information including ID (Beam ID) and RSRP. A beam ID is an ID given to each beam by the base station. The beam ID may be, but is not limited to, an ID not defined in the 3GPP standard. For example, if the beam is a directional reference signal, the beam ID may be the ID of the reference signal. If the reference signal is CSI-RS, the beam ID may be CRI. If the reference signal is SSB, the beam ID may be SSB Index. The base station transmits the generated interference report information to the beam coordinator 301 (at step S405).
 ビームコーディネータ301は、干渉元の基地局から必要な干渉ビームを全て送信されたか、すなわち、選択された基地局から送信する全ての干渉ビームに関する干渉報告情報を受信したかを判断する(S406)。まだ全ての干渉ビームが送信されていない場合は、ステップS404に戻る。全てで干渉ビームの送信が行われ、当該全ての干渉ビームに関する干渉報告情報をビームコーディネータ301が受信するまで、ステップS404,S405を繰り返す。 The beam coordinator 301 determines whether all the necessary interference beams have been transmitted from the interference source base station, that is, whether the interference report information regarding all the interference beams transmitted from the selected base station has been received (S406). If all interference beams have not yet been transmitted, return to step S404. Steps S404 and S405 are repeated until all interference beams are transmitted and the beam coordinator 301 receives interference report information for all the interference beams.
 ビームコーディネータ301は、基地局を全て選択したかを判断し(S407)、まだ選択していない基地局が存在する場合は、他の基地局についても同様の処理を行う(S402~S406)。 The beam coordinator 301 determines whether all base stations have been selected (S407), and if there are base stations that have not been selected yet, similar processing is performed for other base stations (S402 to S406).
 ビームコーディネータ301は、選択すべき端末がまだ残っているかを判断し(S408)、まだ残っている場合は、ステップS401に戻り、次の対象となる端末を選択し、選択した端末に対してステップS402~S407の処理を行う。選択すべき端末が存在しない場合は、本フローチャートの処理を終了する。なお、選択済みの端末であっても、一定時間が経過又は端末が移動したなど一定の条件が満たされた場合は、再度、当該端末を選択の対象としてもよい。 The beam coordinator 301 determines whether or not there are still terminals to be selected (S408). If there are still terminals remaining, the process returns to step S401, selects the next target terminal, and performs the step for the selected terminal. The processing of S402 to S407 is performed. If there is no terminal to be selected, the processing of this flowchart is terminated. Note that even a terminal that has already been selected may be selected again if a certain condition is satisfied, such as a certain period of time has elapsed or the terminal has moved.
 図18の動作例は一例であり、動作の内容又は動作の順序について、様々なバリエーションが可能である。図18の動作例では、選択された1つの基地局以外の基地局の無線送信の動作を停止させた後、選択された基地局が端末201に干渉測定用の設定情報を送信したが、選択された基地局が端末201に干渉測定用の設定情報を送信した後に、選択された基地局以外の動作を停止させてもよい。また、図18の動作例において、干渉ビームの送信はテストモードで行ってもよい。この場合、可能な限り、多くのリソースを用いて干渉ビームを送信してもよい。 The operation example in FIG. 18 is an example, and various variations are possible for the content of the operation or the order of the operation. In the operation example of FIG. 18 , after stopping radio transmission operations of base stations other than one selected base station, the selected base station transmits setting information for interference measurement to terminal 201 . After the selected base station transmits interference measurement configuration information to terminal 201, the operations of the base stations other than the selected base station may be stopped. Also, in the operation example of FIG. 18, the transmission of the interference beams may be performed in the test mode. In this case, interference beams may be transmitted using as many resources as possible.
 図18の手続において、選択した基地局のオペレータが、選択前の基地局のオペレータから変更される場合、端末のSIM(Subscriber Identity Module Card)をオペレータ毎に変更することで、異なるオペレータの基地局に端末を接続することが可能である。SIMを変更し、端末のSUPI又はIMSIが他の値になったとしても、ビームコーディネータ301では、変更前後の端末を同一の端末として把握していれば、異なるオペレータに属する基地局からのビームが当該端末に与える干渉量の情報を端末ごとに管理することができる。同じSIMを使いつつ、異なるオペレータに属する基地局が接続されている加入者ファイルを書き換えることで、端末が同じSIMで、異なるオペレータに接続できるようにしてもよい。 In the procedure of FIG. 18, when the operator of the selected base station is changed from the operator of the base station before selection, by changing the SIM (Subscriber Identity Module Card) of the terminal for each operator, the base station of a different operator It is possible to connect the terminal to Even if the SIM is changed and the SUPI or IMSI of the terminal becomes a different value, if the beam coordinator 301 recognizes the terminal before and after the change as the same terminal, the beams from the base stations belonging to different operators will be different. Information on the amount of interference given to the terminal can be managed for each terminal. While using the same SIM, by rewriting the subscriber file to which base stations belonging to different operators are connected, terminals may be able to connect to different operators with the same SIM.
 以上の手続によって、ビームコーディネータ301、選択した端末に対して、干渉元となりうるビームの情報を基地局毎に把握することができる。 By the above procedure, the beam coordinator 301 can grasp the information of the beams that can be the source of interference for the selected terminal for each base station.
 図18の手続きでは、上述したように、1つの基地局だけを動作させる。1つの基地局以外の他の基地局は無線送信の動作を停止する。このことは、第2の実施形態で記載した関連技術において、当該1つの基地局をincumbent system(1次システム)に設定することに相当する。incumbent system(1次システム)が動作中であるときは、必要な基地局(選択した1つの基地局)以外は、電波の送信を停止するということが本実施形態の特徴の一つである。  In the procedure of FIG. 18, only one base station is operated as described above. Other base stations than one base station cease operation of radio transmission. This corresponds to setting the one base station as an incumbent system (primary system) in the related technology described in the second embodiment. One of the features of this embodiment is that when the incumbent system (primary system) is in operation, radio wave transmission is stopped except for the necessary base stations (one selected base station).
 表9は、コーディネータ301で管理する干渉データベースの一例を示す。表9はたまたま表8と同じ内容になっているが、必ずしも同じになる必要はない。
Figure JPOXMLDOC01-appb-T000009
Table 9 shows an example of the interference database managed by the coordinator 301. Table 9 happens to have the same content as Table 8, but it does not have to be the same.
Figure JPOXMLDOC01-appb-T000009
 干渉データベースは、一例として図18のステップS401で選択する端末ごとに設けられる。表9の例では、信号の受信電力(干渉量に関する情報)が、信号の強さを示すクラス(大、中、小)に分類されている。干渉ビームは、基地局のID(Base station ID)とビームID(beam ID)とによって特定される。なお、基地局IDに加えて、又はこれの代わりに、セルID、TRP(Transmission Reception Point)ID又はBWP IDのうち、少なくとも1つが干渉ビームを特定するために用いられてもよい。例えば(1,10)は、基地局ID=1の基地局から送信された、ビームID=10の干渉ビームを表す。干渉データベースにより、端末毎に、どのビームがどの程度の干渉を端末に与えるかを把握できる。表9の干渉データベースでは信号の受信電力を干渉量の情報として用いているため、干渉データベースは必ずしも干渉ビームの干渉量を把握するために用いる必要はなく、基地局から送信するビームのうち信号の強度(受信電力)が高いビームを所望ビームとして選択するために用いられてもよい。 An interference database is provided for each terminal selected in step S401 of FIG. 18, for example. In the example of Table 9, the received signal power (information about the amount of interference) is classified into classes (high, medium, low) indicating signal strength. An interfering beam is identified by a base station ID (Base station ID) and a beam ID (beam ID). In addition to or instead of the base station ID, at least one of a cell ID, a TRP (Transmission Reception Point) ID, or a BWP ID may be used to identify an interference beam. For example, (1,10) represents the interfering beam with beam ID=10 transmitted from the base station with base station ID=1. From the interference database, it is possible to grasp for each terminal which beam gives what degree of interference to the terminal. Since the interference database in Table 9 uses the received power of the signal as information on the amount of interference, the interference database does not necessarily need to be used to grasp the amount of interference of the interference beams. It may be used to select a beam with high intensity (received power) as a desired beam.
 本実施形態では1つ基地局だけを選択的に動作させるため、複数の基地局を連携させる動作が必要ない。1つの基地局からビームを送信させ、端末でビームの受信電力を測定すればよいため、ビームコーディネータ301は、異なるオペレータに属する複数の基地局について、端末における干渉電力(受信電力)に関する情報を、容易に取得することができる。 In this embodiment, only one base station is selectively operated, so there is no need to operate multiple base stations in cooperation. Since it is sufficient to transmit a beam from one base station and measure the received power of the beam at the terminal, the beam coordinator 301 provides information on the interference power (received power) at the terminal for multiple base stations belonging to different operators, can be obtained easily.
 なお、干渉量に関する情報を取得する対象となる端末以外の他の端末に関しては、干渉ビームによる干渉量の情報をネットワーク側(基地局及びビームコーディネータ)では取得されない。このため、本実施形態のベースとなる第1の実施形態において、他の端末については通信を妨害しないようなビームの使用の調整をコーディネータは行うことができない場合もあり得る。しかしながら、少なくともステップS301又はS401で選択した端末に対しては、当該端末にとって干渉となるビーム送信を阻止することができるため、当該端末が重要な機器を制御する機能を有効に保護することができる。当該端末に対して干渉となるビームは常に使用しない方法も考えられるが、端末が制御する対象となる重要な機器の使用中の間に限り、干渉となるビームの使用を行わない方法を用いてもよい。 Note that the network side (base station and beam coordinator) does not acquire information on the amount of interference caused by interference beams for terminals other than the terminal for which information on the amount of interference is to be acquired. Therefore, in the first embodiment, which is the basis of this embodiment, the coordinator may not be able to adjust the use of beams so as not to interfere with the communication of other terminals. However, at least for the terminal selected in step S301 or S401, beam transmission that interferes with the terminal can be blocked, so that the function of the terminal controlling important equipment can be effectively protected. . A method of not always using beams that interfere with the terminal is conceivable, but a method of not using beams that interfere with the terminal only while the important equipment to be controlled by the terminal is in use may be used. .
 以上、本実施形態によれば、異なるオペレータに属する複数の基地局間のビームの協調制御が可能になるため、基地局及び端末間の通信のスループットを向上させることが可能になる。 As described above, according to the present embodiment, it is possible to perform cooperative control of beams among a plurality of base stations belonging to different operators, so it is possible to improve the throughput of communication between base stations and terminals.
 なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in this specification or other effects that can be grasped from this specification can be obtained in addition to or instead of the above effects. may be
 なお、上述の実施形態は本開示を具現化するための一例を示したものであり、その他の様々な形態で本開示を実施することが可能である。例えば、本開示では、上述のいくつかの実施形態のうちの少なくとも一部と、他の一部とを組み合わせて実施されてもよい。例えば、本開示の要旨を逸脱しない範囲で、種々の変形、置換、省略又はこれらの組み合わせが可能である。そのような変形、置換、省略等を行った形態も、本開示の範囲に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 It should be noted that the above-described embodiment shows an example for embodying the present disclosure, and the present disclosure can be implemented in various other forms. For example, the present disclosure may be practiced by combining at least some of the above-described several embodiments with other parts. For example, various modifications, substitutions, omissions, or combinations thereof are possible without departing from the gist of the present disclosure. Forms with such modifications, substitutions, omissions, etc. are also included in the scope of the invention described in the claims and their equivalents, as well as being included in the scope of the present disclosure.
 例えば、上述のいくつかの実施形態のうち、ビームは前述の通り、指向性を持たせた参照信号(e.g., CSI-RS, SSB)又は単に参照信号(e.g., CSI-RS, SSB)であってもよい。上述のビームIDは、CRI又はSSB Indexであってもよい。上述のビームコーディネータが行う処理は、基地局自身又はコアネットワークノードが行ってもよい。 For example, in some of the embodiments described above, the beam may be a directional reference signal (e.g., CSI-RS, SSB) or simply a reference signal (e.g., CSI-RS, SSB) as described above. may The beam ID mentioned above may be the CRI or the SSB Index. The processing performed by the beam coordinator described above may be performed by the base station itself or by a core network node.
 また、本明細書に記載された本開示の効果は例示に過ぎず、その他の効果があってもよい。 Also, the effects of the present disclosure described in this specification are merely examples, and other effects may be obtained.
 なお、本開示は以下のような構成を取ることもできる。
[項目1]
 対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信する送信部と、
 前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する受信部と、
 を備えた基地局。
[項目2]
 前記使用リクエストは、前記対象ビームを使用する時間及び周波数の少なくとも一方に関する条件を含む
 項目1に記載の基地局。
[項目3]
 前記条件は、前記対象ビームの使用開始時刻に関する条件を含む
 項目2に記載の基地局。
[項目4]
 前記条件は、前記対象ビームを使用する時間長に関する条件を含む
 項目2又は3に記載の基地局。
[項目5]
 前記条件は、前記対象ビームを使用する回数に関する条件を含む
 項目2~4のいずれか一項に記載の基地局。
[項目6]
 前記条件は、前記対象ビームを使用する周期に関する条件を含む
 項目5に記載の基地局。
[項目7]
 前記条件は、前記対象ビームを使用するサブフレーム及びスロットの少なくとも一方に関する条件を含む
 項目2~6のいずれか一項に記載の基地局。
[項目8]
 前記条件は、前記対象ビームに要求される品質に関する条件を含む
 項目2~7のいずれか一項に記載の基地局。
[項目9]
 前記使用リクエストは、複数の前記対象ビームのそれぞれを識別する識別情報を含み、 前記レスポンスは、複数の前記対象ビームのそれぞれの使用可否に関する情報を含む
 項目1~8のいずれか一項に記載の基地局。
[項目10]
 前記使用リクエストは、複数の前記対象ビームの同時使用を要求する情報を含む
 前記レスポンスは、複数の前記対象ビームの同時使用の可否に関する情報を含む
 項目1~9のいずれか一項に記載の基地局。
[項目11]
 前記使用リクエストは、前記対象ビームの重要度又は優先度に関する情報を含む
 項目1~10のいずれか一項に記載の基地局。
[項目12]
 前記レスポンスは、前記条件の少なくとも一部が制限されて前記対象ビームの使用を許可することを示す情報を含む
 項目2~8のいずれか一項に記載の基地局。
[項目13]
 前記送信部は、前記使用リクエストが送信されてから一定時間以内に前記レスポンスが受信されない場合は、前記使用リクエストをキャンセルするキャンセルメッセージを送信する
 項目1~12のいずれか一項に記載の基地局。
[項目14]
 前記送信部は、前記使用リクエストを、複数の基地局を制御する通信制御装置に送信し、
 前記受信部は、前記レスポンスを前記通信制御装置から受信する
 項目1~13のいずれか一項に記載の基地局。
[項目15]
 対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信する受信部と、
 1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断する制御部と、
 前記制御部の判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する送信部と、
 を備えた通信制御装置。
[項目16]
 前記制御部は、前記対応データに基づき前記対象ビームが前記第1通信装置に与える干渉を特定し、前記干渉が許容可能な場合は前記対象ビームの使用を許可することを決定し、前記干渉が許容不能な場合は前記対象ビームの使用を許可しないことを決定し、
 項目15に記載の通信制御装置。
[項目17]
 前記使用リクエストは、前記対象ビームを使用する時間及び周波数の少なくとも一方に関する第1条件を含み、
 前記対応データは、前記ビームが使用される時間及び周波数の少なくとも一方に関する情報を含み、
 前記制御部は、前記第1条件に含まれる前記周波数が前記ビームで使用される周波数に少なくとも部分的に一致し、かつ前記第1条件に含まれる前記時間が前記ビームの使用される時間に少なくとも部分的に一致するとの第2条件が満たされる場合に、前記対象ビームが前記第1通信装置に与える干渉を特定する
 項目16に記載の通信制御装置。
[項目18]
 前記制御部は、前記第2条件が満たされない場合、前記対象ビームの使用を許可することを決定する
 項目17に記載の通信制御装置。
[項目19]
 前記制御部は、
 複数の基地局から送信可能な1つ以上のビームにより前記第1通信装置に与えられる干渉を前記第1通信装置との間で測定することを指示する指示情報を前記複数の基地局に送信し、
 前記複数の基地局から、前記1つ以上のビームにより前記第1通信装置に与えられる干渉に関する情報を、前記1つ以上のビームを識別する識別情報に関連付けて取得する
 項目15~18のいずれか一項に記載の通信制御装置。
[項目20]
 前記指示情報は、前記第1通信装置における前記ビームの受信電力を測定することを指示する情報である
 項目19に記載の通信制御装置。
[項目21]
 前記制御部は、前記複数の基地局のうちの1つに前記干渉を測定するための前記ビームを前記第1通信装置に送信することを指示する指示情報を送信し、前記複数の基地局のうち前記1つの基地局以外の基地局に、前記1つの基地局により前記ビームが送信される期間、信号を送信しないことを指示する指示情報を送信する
 項目15~20のいずれか一項に記載の通信制御装置。
[項目22]
 前記制御部は、
 前記第1通信装置が属する第1基地局以外の他の基地局に、前記ビームの送信を指示する指示情報を送信し、
 前記第1基地局に前記第1通信装置が前記他の基地局から受信する前記ビームの干渉に関する情報を取得することを指示する指示情報を送信し、
 前記第1基地局から前記ビームが前記第1通信装置に与える干渉に関する情報を取得する、
 項目15~21のいずれか一項に記載の通信制御装置。
[項目23]
 前記制御部は、取得した前記干渉に関する情報を、前記ビームを識別する識別情報と関連付けることにより、前記対応データを生成する
 項目22に記載の通信制御装置。
[項目24]
 前記ビームの干渉に関する情報は、SINR又はCQIを含む
 項目22又は23に記載の通信制御装置。
[項目25]
 対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信し、
 前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する
 通信方法。
[項目26]
 対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信し、
 1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断し、
 前記制御部の判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する、
 通信制御方法。
In addition, this disclosure can also take the following configurations.
[Item 1]
a transmission unit that transmits a request to use the target beam, including identification information that identifies the target beam;
a receiving unit that receives a response including information about whether or not the target beam can be used, which is transmitted in response to the use request;
base station with
[Item 2]
The base station according to item 1, wherein the use request includes conditions regarding at least one of time and frequency for using the target beam.
[Item 3]
3. The base station according to item 2, wherein the condition includes a condition regarding start time of use of the target beam.
[Item 4]
4. The base station according to item 2 or 3, wherein the condition includes a condition regarding a length of time for using the target beam.
[Item 5]
The base station according to any one of items 2 to 4, wherein the condition includes a condition regarding the number of times the target beam is used.
[Item 6]
The base station according to item 5, wherein the condition includes a condition regarding a period of using the target beam.
[Item 7]
The base station according to any one of items 2 to 6, wherein the conditions include conditions regarding at least one of subframes and slots using the target beam.
[Item 8]
The base station according to any one of items 2 to 7, wherein the conditions include conditions regarding quality required for the target beam.
[Item 9]
9. The use request according to any one of items 1 to 8, wherein the use request includes identification information for identifying each of the plurality of target beams, and the response includes information regarding whether or not each of the plurality of target beams can be used. base station.
[Item 10]
The base according to any one of items 1 to 9, wherein the use request includes information requesting simultaneous use of the plurality of target beams, and the response includes information regarding whether or not the plurality of target beams can be used simultaneously. station.
[Item 11]
11. The base station according to any one of items 1 to 10, wherein the usage request includes information about importance or priority of the target beam.
[Item 12]
9. The base station according to any one of items 2 to 8, wherein the response includes information indicating that at least part of the conditions are restricted to permit use of the target beam.
[Item 13]
13. The base station according to any one of items 1 to 12, wherein the transmitting unit transmits a cancel message for canceling the usage request when the response is not received within a certain time after the usage request is transmitted. .
[Item 14]
The transmission unit transmits the usage request to a communication control device that controls a plurality of base stations,
14. The base station according to any one of items 1 to 13, wherein the receiving unit receives the response from the communication control device.
[Item 15]
a receiving unit that receives a request to use the target beam, including identification information that identifies the target beam;
a control unit that determines whether or not the target beam can be used based on correspondence data that holds information about interference given to the first communication device by each of the one or more beams in association with identification information that identifies the beam;
a transmission unit configured to transmit a response including information regarding whether or not the target beam can be used based on the determination of the control unit;
A communication controller with
[Item 16]
The control unit specifies interference that the target beam gives to the first communication device based on the corresponding data, determines to permit use of the target beam when the interference is permissible, and determines that the interference is deciding not to authorize the use of said beam of interest if it is unacceptable;
16. A communication control device according to item 15.
[Item 17]
The usage request includes a first condition regarding at least one of time and frequency for using the target beam,
the corresponding data includes information about at least one of the time and frequency at which the beam is used;
The controller controls the frequency included in the first condition to at least partially match the frequency used in the beam, and the time included in the first condition to at least the time in which the beam is used. 17. The communication control device according to item 16, wherein, when a second condition of partial matching is satisfied, interference given by the target beam to the first communication device is identified.
[Item 18]
18. The communication control device according to item 17, wherein the control unit decides to permit use of the target beam when the second condition is not satisfied.
[Item 19]
The control unit
transmitting instruction information to the plurality of base stations for instructing measurement of interference inflicted on the first communication device by one or more beams transmittable from the plurality of base stations with the first communication device; ,
any one of items 15 to 18, obtaining from the plurality of base stations information about interference inflicted on the first communication device by the one or more beams in association with identification information that identifies the one or more beams 1. The communication control device according to item 1.
[Item 20]
20. The communication control device according to item 19, wherein the instruction information is information that instructs the first communication device to measure the received power of the beam.
[Item 21]
The control unit transmits instruction information for instructing one of the plurality of base stations to transmit the beam for measuring the interference to the first communication device, 21. The method according to any one of items 15 to 20, wherein instruction information is transmitted to a base station other than the one base station to instruct not to transmit a signal during a period in which the beam is transmitted by the one base station. communication controller.
[Item 22]
The control unit
transmitting instruction information for instructing transmission of the beam to a base station other than the first base station to which the first communication device belongs;
transmitting instruction information to the first base station to instruct the first communication device to acquire information about interference of the beam received from the other base station;
Obtaining information from the first base station about the interference that the beam imposes on the first communication device;
22. The communication control device according to any one of items 15-21.
[Item 23]
23. The communication control apparatus according to Item 22, wherein the control unit generates the correspondence data by associating the acquired information about the interference with identification information for identifying the beam.
[Item 24]
24. The communication control apparatus according to Item 22 or 23, wherein the information about beam interference includes SINR or CQI.
[Item 25]
transmitting a request to use the target beam, including identification information identifying the target beam;
A communication method for receiving a response including information about whether or not the target beam can be used, which is transmitted in response to the use request.
[Item 26]
receiving a request to use the beam of interest, including identification information identifying the beam of interest;
determining whether or not the target beam can be used based on corresponding data held in association with identification information for identifying the beam, information about interference given to the first communication device by each of the one or more beams;
Transmitting a response including information about whether or not the target beam can be used based on the judgment of the control unit;
Communication control method.
101 基地局
102 基地局
110 アンテナ
120 無線通信部
121 信号送信部
122 信号受信部
130 ネットワーク通信部
140 記憶部
150 制御部
151 送信部
152 受信部
201 端末
301 ビームコーディネータ
330 ネットワーク通信部
340 記憶部
350 制御部
351 送信部
352 受信部
1000 基地局
1000A 基地局
1000B 基地局
2000 端末
2000A 端末
2000B 端末
101 base station 102 base station 110 antenna 120 radio communication unit 121 signal transmission unit 122 signal reception unit 130 network communication unit 140 storage unit 150 control unit 151 transmission unit 152 reception unit 201 terminal 301 beam coordinator 330 network communication unit 340 storage unit 350 control Unit 351 Transmitter 352 Receiver 1000 Base station 1000A Base station 1000B Base station 2000 Terminal 2000A Terminal 2000B Terminal

Claims (26)

  1.  対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信する送信部と、
     前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する受信部と、
     を備えた基地局。
    a transmission unit that transmits a request to use the target beam, including identification information that identifies the target beam;
    a receiving unit that receives a response including information about whether or not the target beam can be used, which is transmitted in response to the use request;
    base station with
  2.  前記使用リクエストは、前記対象ビームを使用する時間及び周波数の少なくとも一方に関する条件を含む
     請求項1に記載の基地局。
    The base station according to claim 1, wherein the use request includes conditions regarding at least one of time and frequency for using the target beam.
  3.  前記条件は、前記対象ビームの使用開始時刻に関する条件を含む
     請求項2に記載の基地局。
    The base station according to claim 2, wherein the conditions include a condition regarding start time of use of the target beam.
  4.  前記条件は、前記対象ビームを使用する時間長に関する条件を含む
     請求項2に記載の基地局。
    3. The base station according to claim 2, wherein the condition includes a condition regarding a length of time for using the target beam.
  5.  前記条件は、前記対象ビームを使用する回数に関する条件を含む
     請求項2に記載の基地局。
    The base station according to Claim 2, wherein the condition includes a condition regarding the number of times the target beam is used.
  6.  前記条件は、前記対象ビームを使用する周期に関する条件を含む
     請求項5に記載の基地局。
    The base station according to Claim 5, wherein the condition includes a condition regarding a period of using the target beam.
  7.  前記条件は、前記対象ビームを使用するサブフレーム及びスロットの少なくとも一方に関する条件を含む
     請求項2に記載の基地局。
    The base station according to Claim 2, wherein the conditions include conditions regarding at least one of subframes and slots using the target beam.
  8.  前記条件は、前記対象ビームに要求される品質に関する条件を含む
     請求項2に記載の基地局。
    The base station according to claim 2, wherein the conditions include conditions regarding quality required for the target beam.
  9.  前記使用リクエストは、複数の前記対象ビームのそれぞれを識別する識別情報を含み、 前記レスポンスは、複数の前記対象ビームのそれぞれの使用可否に関する情報を含む
     請求項1に記載の基地局。
    The base station according to Claim 1, wherein the use request includes identification information for identifying each of the plurality of target beams, and wherein the response includes information regarding whether or not each of the plurality of target beams can be used.
  10.  前記使用リクエストは、複数の前記対象ビームの同時使用を要求する情報を含み
     前記レスポンスは、複数の前記対象ビームの同時使用の可否に関する情報を含む
     請求項1に記載の基地局。
    The base station according to claim 1, wherein the use request includes information requesting simultaneous use of the plurality of target beams, and wherein the response includes information regarding whether or not the plurality of target beams can be used simultaneously.
  11.  前記使用リクエストは、前記対象ビームの重要度又は優先度に関する情報を含む
     請求項1に記載の基地局。
    The base station according to Claim 1, wherein the usage request includes information about importance or priority of the target beam.
  12.  前記レスポンスは、前記条件の少なくとも一部が制限されて前記対象ビームの使用を許可することを示す情報を含む
     請求項2に記載の基地局。
    3. The base station according to claim 2, wherein the response includes information indicating that at least part of the condition is restricted to permit use of the target beam.
  13.  前記送信部は、前記使用リクエストが送信されてから一定時間以内に前記レスポンスが受信されない場合は、前記使用リクエストをキャンセルするキャンセルメッセージを送信する
     請求項1に記載の基地局。
    The base station according to Claim 1, wherein, if the response is not received within a certain period of time after the transmission of the usage request, the transmission unit transmits a cancel message for canceling the usage request.
  14.  前記送信部は、前記使用リクエストを、複数の基地局を制御する通信制御装置に送信し、
     前記受信部は、前記レスポンスを前記通信制御装置から受信する
     請求項1に記載の基地局。
    The transmission unit transmits the usage request to a communication control device that controls a plurality of base stations,
    The base station according to claim 1, wherein the receiving section receives the response from the communication control device.
  15.  対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信する受信部と、
     1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断する制御部と、
     前記制御部の判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する送信部と、
     を備えた通信制御装置。
    a receiving unit that receives a request to use the target beam, including identification information that identifies the target beam;
    a control unit that determines whether or not the target beam can be used based on correspondence data that holds information about interference given to the first communication device by each of the one or more beams in association with identification information that identifies the beam;
    a transmission unit configured to transmit a response including information regarding whether or not the target beam can be used based on the determination of the control unit;
    A communication controller with
  16.  前記制御部は、前記対応データに基づき前記対象ビームが前記第1通信装置に与える干渉を特定し、前記干渉が許容可能な場合は前記対象ビームの使用を許可することを決定し、前記干渉が許容不能な場合は前記対象ビームの使用を許可しないことを決定し、
     請求項15に記載の通信制御装置。
    The control unit specifies interference that the target beam gives to the first communication device based on the corresponding data, determines to permit use of the target beam when the interference is permissible, and determines that the interference is deciding not to authorize the use of said beam of interest if it is unacceptable;
    The communication control device according to claim 15.
  17.  前記使用リクエストは、前記対象ビームを使用する時間及び周波数の少なくとも一方に関する第1条件を含み、
     前記対応データは、前記ビームが使用される時間及び周波数の少なくとも一方に関する情報を含み、
     前記制御部は、前記第1条件に含まれる前記周波数が前記ビームで使用される周波数に少なくとも部分的に一致し、かつ前記第1条件に含まれる前記時間が前記ビームの使用される時間に少なくとも部分的に一致するとの第2条件が満たされる場合に、前記対象ビームが前記第1通信装置に与える干渉を特定する
     請求項16に記載の通信制御装置。
    The usage request includes a first condition regarding at least one of time and frequency for using the target beam,
    the corresponding data includes information about at least one of the time and frequency at which the beam is used;
    The controller controls the frequency included in the first condition to at least partially match the frequency used in the beam, and the time included in the first condition to at least the time in which the beam is used. 17. The communication control device according to claim 16, wherein if a second condition of partial coincidence is satisfied, the interference caused by the target beam to the first communication device is identified.
  18.  前記制御部は、前記第2条件が満たされない場合、前記対象ビームの使用を許可することを決定する
     請求項17に記載の通信制御装置。
    The communication control apparatus according to claim 17, wherein the control unit determines to permit use of the target beam when the second condition is not satisfied.
  19.  前記制御部は、
     複数の基地局から送信可能な1つ以上のビームにより前記第1通信装置に与えられる干渉を前記第1通信装置との間で測定することを指示する指示情報を前記複数の基地局に送信し、
     前記複数の基地局から、前記1つ以上のビームにより前記第1通信装置に与えられる干渉に関する情報を、前記1つ以上のビームを識別する識別情報に関連付けて取得する
     請求項15に記載の通信制御装置。
    The control unit
    transmitting instruction information to the plurality of base stations for instructing measurement of interference inflicted on the first communication device by one or more beams transmittable from the plurality of base stations with the first communication device; ,
    16. The communication according to claim 15, wherein information about interference given to the first communication device by the one or more beams is obtained from the plurality of base stations in association with identification information that identifies the one or more beams. Control device.
  20.  前記指示情報は、前記第1通信装置における前記ビームの受信電力を測定することを指示する情報である
     請求項19に記載の通信制御装置。
    The communication control apparatus according to claim 19, wherein the instruction information is information instructing measurement of the received power of the beam in the first communication apparatus.
  21.  前記制御部は、
     複数の基地局のうちの1つに前記干渉を測定するための前記ビームを前記第1通信装置に送信することを指示する指示情報を送信し、
     前記制御部は、前記複数の基地局のうち前記1つの基地局以外の基地局に、前記1つの基地局により前記ビームが送信される期間、信号を送信しないことを指示する指示情報を送信する
     請求項15に記載の通信制御装置。
    The control unit
    transmitting instruction information instructing one of a plurality of base stations to transmit the beam for measuring the interference to the first communication device;
    The control unit transmits, to base stations other than the one base station among the plurality of base stations, instruction information instructing not to transmit a signal during a period in which the beam is transmitted by the one base station. The communication control device according to claim 15.
  22.  前記制御部は、
     前記第1通信装置が属する第1基地局以外の他の基地局に、前記ビームの送信を指示する指示情報を送信し、
     前記第1基地局に前記第1通信装置が前記他の基地局から受信する前記ビームの干渉に関する情報を取得することを指示する指示情報を送信し、
     前記第1基地局から前記ビームが前記第1通信装置に与える干渉に関する情報を取得する、
     請求項15に記載の通信制御装置。
    The control unit
    transmitting instruction information for instructing transmission of the beam to a base station other than the first base station to which the first communication device belongs;
    transmitting instruction information to the first base station to instruct the first communication device to acquire information about interference of the beam received from the other base station;
    Obtaining information from the first base station about the interference that the beam imposes on the first communication device;
    The communication control device according to claim 15.
  23.  前記制御部は、取得した前記干渉に関する情報を、前記ビームを識別する識別情報と関連付けることにより、前記対応データを生成する
     請求項22に記載の通信制御装置。
    The communication control apparatus according to claim 22, wherein the control unit generates the correspondence data by associating the acquired information about the interference with identification information for identifying the beam.
  24.  前記ビームの干渉に関する情報は、SINR又はCQIを含む
     請求項22に記載の通信制御装置。
    The communication control apparatus according to Claim 22, wherein the information on beam interference includes SINR or CQI.
  25.  対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを送信し、
     前記使用リクエストに応答して送信される、前記対象ビームの使用可否に関する情報を含むレスポンスを受信する
     通信方法。
    transmitting a request to use the target beam, including identification information identifying the target beam;
    A communication method for receiving a response including information about whether or not the target beam can be used, which is transmitted in response to the use request.
  26.  対象ビームを識別する識別情報を含む、前記対象ビームの使用リクエストを受信し、
     1つ以上のビームのそれぞれが第1通信装置に与える干渉に関する情報を、前記ビームを識別する識別情報に関連付けて保持した対応データに基づき、前記対象ビームの使用可否を判断し、
     前記対象ビームの使用可否を判断に基づいて、前記対象ビームの使用可否を関する情報を含むレスポンスを送信する、
     通信制御方法。
    receiving a request to use the beam of interest, including identification information identifying the beam of interest;
    determining whether or not the target beam can be used based on corresponding data held in association with identification information for identifying the beam, information about interference given to the first communication device by each of the one or more beams;
    Transmitting a response including information regarding whether or not the target beam can be used based on the determination of whether or not the target beam can be used;
    Communication control method.
PCT/JP2022/008484 2021-05-20 2022-03-01 Base station, communication control device, communication method, and communication control method WO2022244373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085569 2021-05-20
JP2021085569 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244373A1 true WO2022244373A1 (en) 2022-11-24

Family

ID=84140881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008484 WO2022244373A1 (en) 2021-05-20 2022-03-01 Base station, communication control device, communication method, and communication control method

Country Status (1)

Country Link
WO (1) WO2022244373A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125131A1 (en) * 2010-04-09 2011-10-13 株式会社日立製作所 Wireless communication system
JP2017028570A (en) * 2015-07-24 2017-02-02 富士通株式会社 Radio communication system, radio communication device, and search beam determination method
JP2020123949A (en) * 2019-01-23 2020-08-13 トヨタ自動車株式会社 Modification of millimeter wave radio device based on beam alignment feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125131A1 (en) * 2010-04-09 2011-10-13 株式会社日立製作所 Wireless communication system
JP2017028570A (en) * 2015-07-24 2017-02-02 富士通株式会社 Radio communication system, radio communication device, and search beam determination method
JP2020123949A (en) * 2019-01-23 2020-08-13 トヨタ自動車株式会社 Modification of millimeter wave radio device based on beam alignment feedback

Similar Documents

Publication Publication Date Title
US11909704B2 (en) Device, network, and method for communications with spatial-specific sensing
US11265817B2 (en) Method of power control for uplink transmission
CN110476396B (en) System and method for beam management in spatial quasi co-located high frequency multi-carrier operation
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US10498508B2 (en) Device, network, and method for communications with fast adaptive transmission and reception
US11296762B2 (en) Method and apparatus for providing user equipment access to millimeter wave stations through a microwave station
EP3427519B1 (en) System and method for millimeter wave communications
CN108900224B (en) Communication system, network node in communication system, user equipment and method
WO2019028850A1 (en) Methods of multiple ss block transmissions and rrm measurement in a wideband carrier
CN113347719A (en) Information transmission method, device and system
US11616544B2 (en) Antenna management in dual connectivity
WO2017157190A1 (en) System and method for managing connections in a wireless communications system
AU2017316607B2 (en) Systems and methods for mitigating interference within actively used spectrum
WO2021230021A1 (en) Communication device, communication method, and program
US20240057159A1 (en) Initial Channel Access in Unlicensed Spectrum with Directional Sensing and Communication
EP3300439B1 (en) Data transmission method and device
WO2022244373A1 (en) Base station, communication control device, communication method, and communication control method
WO2023086722A1 (en) Techniques for inter-base station messaging for inter-base station cross-link interference mitigation
CN116980904A (en) Information processing method, network side equipment and terminal
WO2022239362A1 (en) Base station, communication device, and communication method
WO2023197107A1 (en) Reference signal configurations for multiplexing user equipment on same sidelink resources
Kawamura et al. Coordinated scheduling of 802.11 ax wireless LAN systems using hierarchical clustering
JP2023504539A (en) Method and apparatus for adjacent channel interference mitigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE