WO2022244350A1 - Planar illumination device - Google Patents

Planar illumination device Download PDF

Info

Publication number
WO2022244350A1
WO2022244350A1 PCT/JP2022/006149 JP2022006149W WO2022244350A1 WO 2022244350 A1 WO2022244350 A1 WO 2022244350A1 JP 2022006149 W JP2022006149 W JP 2022006149W WO 2022244350 A1 WO2022244350 A1 WO 2022244350A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light
light source
lens
light sources
Prior art date
Application number
PCT/JP2022/006149
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 鈴木
銀河 伊藤
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2022244350A1 publication Critical patent/WO2022244350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a planar lighting device.
  • a planar lighting device used as a backlight for a head-up display (HUD) or the like is required to have a brightness that is about 100 times higher than a display such as a cluster or CID (Center Information Display) where the user directly sees the display screen. be.
  • HUD head-up display
  • CID Center Information Display
  • the direct type backlight for HUD disclosed in Patent Document 1 is a surface light source in which a plurality of LEDs (Light Emitting Diodes) are arranged two-dimensionally in order to realize a high-brightness planar illumination device. It comprises light condensing means for converting the light from the light into substantially parallel light.
  • the condensing means of Patent Document 1 is provided with Fresnel lenses at positions corresponding to the plurality of LEDs.
  • the direct type backlight disclosed in Patent Document 2 and Patent Document 3 includes a reflector formed with a reflective surface surrounding each of the plurality of LEDs in order to improve the output efficiency.
  • Patent Documents 2 and 3 also disclose a configuration in which a reflector is arranged away from a substrate on which the LED is arranged in order to improve ventilation and improve the heat dissipation effect of the LED. For example, in Patent Document 3, the reflector is separated from the substrate until the bottom surface of the reflector is at the same height as the light emitting surface of the LED.
  • the direct type backlight for HUD has a small effective area, so if multiple LEDs are arranged for local dimming (partial lighting), the pitch between the LEDs becomes narrow. In such a case, in the conventional configuration, the reflector and the LED may interfere with each other when they expand and contract.
  • the reflector when the reflector is created by injection molding, if the distance between the LEDs is narrow, the wall thickness of the reflector cannot be increased. For this reason, it is difficult to increase the height of the reflector wall from the viewpoint of the moldability of injection molding, and the luminous flux emitted from the LED is efficiently incident on the condensing lens arranged at the position corresponding to the LED. may not be possible. In such a case, there is a concern that the contrast may be lowered during local dimming, or that an unintended portion may be illuminated.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a planar lighting device capable of realizing high-luminance, high-contrast local dimming.
  • a planar lighting device provides a substrate on which a plurality of light sources are arranged two-dimensionally in a grid pattern, and a substrate corresponding to each of the plurality of light sources.
  • a reflector having a reflective surface defining an aperture for the light source; The reflector is arranged such that the opening is located on the emission side of the opposite surface of the light source, which is the surface opposite to the substrate-side surface.
  • a planar lighting device can achieve local dimming with high luminance and high contrast.
  • FIG. 1 is a diagram showing a configuration example of a head-up display system.
  • FIG. 2 is a front view of the planar lighting device according to the embodiment.
  • FIG. 3 is a cross-sectional view of the planar illumination device taken along the line AA in FIG. 4 is a front view of the reflector shown in FIG. 3.
  • FIG. 5 is a schematic diagram of grooves provided on both sides of a condenser lens.
  • FIG. 6 is a diagram showing an example of the cross-sectional configuration of the incident side of the condenser lens.
  • FIG. 7 is a diagram showing how light rays are refracted in the horizontal direction by a condenser lens.
  • FIG. 8 is a diagram showing how light rays are refracted in the vertical direction by a condenser lens.
  • FIG. 9 is a diagram showing an example of the cross-sectional configuration of the incident side of the field lens.
  • FIG. 10 is a diagram showing how a field lens refracts light rays in the horizontal direction.
  • FIG. 11 is an enlarged view showing dots provided on the other surface of the field lens.
  • FIG. 12 is a diagram showing an example of the configuration of the exit-side surface of the field lens.
  • FIG. 13 is a diagram for explaining a reflector of a comparative example;
  • FIG. 14 is a diagram showing light beams incident on a condenser lens in a reflector arrangement of a comparative example.
  • FIG. 15 is a diagram for explaining the size of the opening of the reflector that is possible in the embodiment.
  • FIG. 16 is a diagram showing the result of luminance measurement.
  • FIG. 17 is a diagram showing the result of luminance measurement.
  • a planar illumination device will be described below with reference to the drawings.
  • this invention is not limited by this embodiment.
  • the dimensional relationship of each element in the drawings, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included. In principle, the contents described in one embodiment and modification are similarly applied to other embodiments and modifications.
  • FIG. 1 is a diagram showing a configuration example of a head-up display system 100. As shown in FIG. In FIG. 1, in the case of a head-up display system 100 mounted on an automobile, the traveling direction of the automobile is the left direction (positive direction of the Y-axis) in the figure.
  • FIG. 2 is a front view of the planar lighting device 1 according to the embodiment.
  • the light-emitting surface of the planar illumination device 1 is in the XY plane
  • the thickness direction of the planar illumination device 1 is the Z direction.
  • the X-axis direction corresponds to the horizontal direction (H)
  • the Y-axis direction corresponds to the vertical direction (V).
  • the horizontal direction in the state of use that is reflected by the screen, etc. and visible to the user is simply referred to as the "horizontal direction”
  • the vertical direction in the state of use that is reflected by the screen, etc., and is visible to the user is simply referred to as the "vertical direction.” ” may be stated.
  • the planar illumination device 1 has a substantially rectangular plate-like outer shape, and light is emitted from the inside of the opening 7a of the frame 7. As shown in FIG.
  • the size of the opening 7a is, for example, 42 mm in the X-axis direction and 21 mm in the Y-axis direction.
  • the outer shape of the planar illumination device 1 is not limited to that illustrated. Also, the frame 7 may be omitted.
  • FIG. 3 is a cross-sectional view of the planar lighting device 1 taken along line AA in FIG. Note that the frame 7 is omitted in FIG.
  • a plurality of light sources 3 such as LEDs (Light Emitting Diodes) are arranged two-dimensionally in a grid pattern on a substrate 2 made of aluminum or the like, which has excellent heat dissipation properties. are placed in The individual light sources 3 are individually driven and can cope with so-called local dimming.
  • LEDs Light Emitting Diodes
  • a reflector 4 is arranged on the output side of the substrate 2 where the light source 3 is arranged.
  • 4 is a front view of the reflector 4 shown in FIG. 3.
  • FIG. 3 The reflector 4 is formed with a plurality of openings 4b in a grid pattern so as to correspond to the plurality of light sources 3 arranged in a grid pattern.
  • the reflector 4 has a reflecting surface 4a forming openings 4b corresponding to the plurality of light sources 3 respectively.
  • the reflector 4 has four reflective surfaces 4a surrounding an opening 4b.
  • the reflector 4 has an opening on the emission side and an opening on the substrate 2 side, the opening 4b is the opening on the substrate 2 side.
  • the reflector 4 has a wall portion 4c formed so that openings 4b corresponding to the plurality of light sources 3 are arranged in a lattice.
  • the wall portion 4c has a shape in which a plurality of substantially triangular prism-shaped wall portions extending in the X-axis direction and a plurality of substantially triangular prism-shaped wall portions extending in the Y-axis direction are assembled in a grid pattern.
  • the reflecting surface 4a is a wall surface of the wall portion 4c, and the two reflecting surfaces 4a facing each other in the X-axis direction are inclined so as to separate from each other in the Z-axis positive direction (exit side) from the opening 4b side.
  • the two reflective surfaces 4a facing each other in direction are slanted away from each other in the positive direction of the Z-axis from the opening 4b side.
  • the reflector 4 is made of, for example, white resin or the like in order to enhance the effect of reflection.
  • the reflector 4 of the embodiment is an injection-molded product.
  • the reflector 4 of the embodiment is arranged so that the opening 4b is located on the emission side of the light emitting surface of the light source 3, as shown in FIG.
  • the light emitting surface of the light source 3 corresponds to the upper surface 3a of the light source 3 shown in FIG.
  • the reflector 4 is arranged so that the opening 4b is located on the emission side of the upper surface 3a of the light source 3.
  • the upper surface 3a of the light source 3 is the opposite surface opposite to the surface of the light source 3 on the substrate 2 side.
  • the bottom surface 4d of the wall portion 4c of the reflector 4 is arranged in a state of floating from the substrate 2 so as to be higher than the light source 3, as shown in FIG.
  • a frame portion 4e that is thicker than the wall portion 4c is formed on the periphery of the reflector 4. As shown in FIG. The wall portion 4c is supported by the frame portion 4e at a position between the upper end and the lower end of the frame portion 4e, and spaces are provided above and below the wall portion 4c.
  • a flange portion 4f that protrudes outward is formed from the lower end portion of the frame portion 4e.
  • the flange portion 4f is formed in order to secure a sufficient contact surface with the substrate 2. As shown in FIG. It should be noted that only the lower surface of the frame portion 4e may be used as the ground surface with the substrate 2 without providing the flange portion 4f. The effect of the configuration in which the opening 4b of the reflector 4 is located on the emission side of the upper surface 3a of the light source 3 will be described later.
  • a condenser lens 5 is arranged on the output side of the reflector 4 .
  • the condenser lens 5 is provided with a condensing lens at a position corresponding to each of the plurality of light sources 3 .
  • the incident side surface 5a of the condenser lens 5 is formed with a first linear Fresnel lens in which grooves forming the uneven surface of the lens extend in one direction.
  • a second linear Fresnel lens is formed on the output-side surface 5b of the condenser lens 5 so that the grooves constituting the concave-convex surface of the lens extend in a direction orthogonal to one direction of the surface 5a.
  • a first linear Fresnel lens having grooves extending in the depth direction (Y-axis direction) of FIG. 3 is formed on the lower surface 5a of the condenser lens 5 in FIG.
  • a second linear Fresnel lens having grooves extending in the left-right direction (X-axis direction) in FIG. 3 is formed on the surface 5b.
  • the condenser lens 5 is installed on the upper end surface of the frame portion 4 e of the reflector 4 .
  • a field lens 6 that changes the light distribution and diffuses the light is arranged on the output side of the condenser lens 5 .
  • the field lens 6 shown in FIG. 3 is, for example, a lens for changing the light distribution in the horizontal direction.
  • a prism is formed from which the groove extends.
  • minute dots for diffusing light are formed over the entire surface.
  • a gap is provided between the condenser lens 5 and the field lens 6 . Such a gap is formed by making the peripheral edge of one of the condenser lens 5 or the field lens 6 thick and frame-shaped, or by providing a frame-shaped spacer between the condenser lens 5 and the field lens 6 .
  • FIG. 5 is a schematic diagram of grooves 5c and 5d provided on both surfaces of the condenser lens 5.
  • FIG. A groove 5c extending in the Y-axis direction and constituting a first linear Fresnel lens is formed in a surface 5a on the lower side (incident side) of the condenser lens 5.
  • An upper (outgoing side) surface 5b of the condenser lens 5 is formed with a groove 5d extending in the X-axis direction and constituting a second linear Fresnel lens.
  • FIG. 6 is a diagram showing an example of the cross-sectional configuration of the incident side of the condenser lens 5. As shown in FIG.
  • the entrance-side surface 5a of the condenser lens 5 has a prism structure in which a cylindrical convex lens is a Fresnel lens for each segment corresponding to the light source 3 (FIG. 3). ).
  • the angle of the prism is reversed at the segment boundary BL between adjacent segments.
  • the segment boundary BL shown in FIG. 6 is positioned directly above the ridgeline of the wall portion 4c extending in the Y-axis direction in FIG.
  • a similar prism structure is provided, although the extending directions of the grooves are perpendicular to each other.
  • the segment boundary between adjacent segments is positioned directly above the ridgeline of the wall portion 4c extending in the X-axis direction in FIG.
  • the first and second linear Fresnel lenses have a pitch of the light source 3 (FIG. 3) arranged directly below (the first linear Fresnel lens has a pitch in the X-axis direction, and the second linear Fresnel lens has a pitch in the Y-axis direction). ) are formed periodically.
  • the condenser lens 5 is arranged so that the center of the lens is positioned right above the light source 3 in each of the Y-axis direction and the X-axis direction.
  • linear linear Fresnel lenses can be formed in units of columns or rows according to the plurality of light sources arranged linearly. is relatively easy to form.
  • the intersection point between the center of one linear Fresnel lens and the center of the other linear Fresnel lens corresponds to the center of the light source. Acts as a Fresnel lens.
  • FIG. 7 is a diagram showing how light rays in the horizontal direction are refracted by the condenser lens 5.
  • FIG. 7 shows the behavior of light in a cross section along the horizontal direction (X, H) and the normal direction (Z) of the exit surface during use. Illustration of the field lens 6 is omitted.
  • the light emitted from the light source 3 and indicated by the dashed line is emitted by the first linear Fresnel lens, which has an uneven surface formed by grooves extending in the Y-axis direction provided on the lower surface 5a of the condenser lens 5, to form an X-ray.
  • the light is refracted in the -Z plane and becomes substantially parallel light.
  • the light is parallel light along the normal direction of the emission surface, it may be parallel light with a predetermined inclination with respect to the normal direction of the emission surface.
  • the second linear Fresnel lens which has an uneven surface formed by grooves extending in the X-axis direction provided on the upper surface 5b of the condenser lens 5, does not act in the horizontal direction. emitted.
  • FIG. 8 is a diagram showing how light rays in the vertical direction are refracted by the condenser lens 5.
  • FIG. 8 shows the behavior of light in a cross section along the vertical direction (Y, V) and the normal direction (Z) to the exit surface during use. Illustration of the field lens 6 is omitted.
  • the light emitted from the light source 3 indicated by the dashed line is not strongly refracted by the first linear Fresnel lens provided on the lower surface 5a of the condenser lens 5, and enters the condenser lens 5 as it is. move on.
  • the light is refracted in the YZ plane by a second linear Fresnel lens having an uneven surface formed from grooves extending in the X-axis direction provided on the upper surface 5b of the condenser lens 5, and emitted as substantially parallel light. be done.
  • the light is parallel light along the normal direction of the emission surface, it may be parallel light with a predetermined inclination with respect to the normal direction of the emission surface.
  • FIG. 9 is a diagram showing an example of the cross-sectional configuration of the incident side of the field lens 6.
  • one cross section of the incident side surface 6a of the field lens 6 has a prism structure equivalent to a Fresnel lens instead of a ring-shaped concave lens. Y-axis direction). The tilt angle of the prism becomes steeper as it moves away from the center.
  • FIG. 10 is a diagram showing how light rays are refracted in the horizontal direction by the field lens 6.
  • FIG. 10 shows the behavior of light in a cross section along the horizontal direction (X, H) and the normal direction (Z) of the exit surface during use.
  • a head-up display or the like as shown in FIG. 1 light from a planar illumination device 1 as a backlight for a liquid crystal panel 101 is reflected on a screen 104 via a mirror 102 or a concave mirror 103 and used. catch someone's eye.
  • the optical axis of the light reflected by the concave mirror 103 is tilted inward, in order to secure the angle range of the optical axis required for the light emitted from the concave mirror 103, the optical axis outside the center must be tilted outward. It is necessary to supply light from the planar illumination device 1 which is inclined at . Note that the optical axis is the axis along the direction of the highest intensity of light emitted from one light source or minute portion (regardless of whether it is parallel light or radiated light). Therefore, the optical axis is inclined outward in the horizontal direction according to the horizontal distance from the center of the planar lighting device 1 . As a result, it is possible to secure the angle range of the optical axis required for the light emitted from the concave mirror 103, and to prevent the end of the virtual image from disappearing.
  • the center may be inclined in a predetermined direction instead of the substantially parallel light, and both sides thereof may be inclined outward with respect to the inclination of the center.
  • FIG. 10 shows the cross-sectional configuration of the planar illumination device 1, similar to FIG.
  • the angle is changed to 2°, and the angle next to it is changed to 4°.
  • the numerical values of the tilt angles shown in the figure are only examples. Note that the inclination angle is determined by the shape of the prism that constitutes the field lens 6 .
  • the inclination angle is 0°, and light is emitted in the front direction (normal direction) of the field lens 6 as shown in the enlarged view on the upper side of the figure.
  • the angle of inclination is 6°, and as shown in the enlarged view on the upper side of the drawing, light is emitted that is inclined to the left with respect to the front direction of the field lens 6.
  • the angle of inclination is 6°, and as shown in the enlarged view on the upper side of the figure, light is emitted that is inclined to the right with respect to the front direction of the field lens 6.
  • the inclination angle may be changed for each area including a plurality of light sources 3 .
  • FIG. 11 is an enlarged view (enlarged view of region R in FIG. 11) for showing dots 6c provided on the other surface 6b of the field lens 6.
  • FIG. 12 is a diagram showing an example of the configuration of the surface of the field lens 6 on the output side. 11 and 12, minute dots 6c are formed on the upper surface 6b of the field lens 6 in the figures, which are formed from a mold or the like formed by laser processing or the like. The minute dots 6c diffuse the light passing therethrough to improve brightness uniformity.
  • a general diffusion sheet separate from the field lens 6 may be used.
  • the planar illumination device 1 having the above configuration is used as a backlight for a head-up display. As a result, the planar illumination device 1 can perform local dimming with high brightness and high contrast. This point will be described below.
  • FIG. 13 is a diagram for explaining a reflector of a comparative example. 13, the opening 4b of the reflector 4 shown in FIG. In FIGS. 4 and 13, the light sources 3 are arranged at narrow intervals for local dimming (partial lighting).
  • 220 openings 4b are provided in 10 rows and 22 columns, and 220 light sources 3 can be arranged. It is arranged in an effective area (the size of the opening 7a) whose axial direction is 21 mm. From this, it can be seen that the pitch of the light sources 3 is very narrow.
  • the bottom surface 4d of the reflector 4 and the light source 3 (LED package) are in close proximity, and when the reflector 4 and the light source 3 expand and contract, they may interfere with each other.
  • the opening 4b of the reflector 4 is arranged at a position higher than the upper surface 3a of the light source 3, so even if the reflector 4 and the light source 3 expand and contract, the reflector There is no possibility that the wall portion 4c of 4 and the light source 3 will come into contact with each other.
  • FIG. 14 is a diagram showing light beams incident on the condenser lens 5 in the reflector arrangement of the comparative example.
  • the shape of the wall portion 4c is the same. Since the space between the light sources 3 is narrow, the bottom surface 4d of the reflector 4 cannot be increased, and it is difficult to increase the height of the wall portion 4c of the reflector 4 from the viewpoint of moldability of injection molding. Therefore, the height of the wall portion 4c is lowered, and the luminous flux incident on the condenser lens 5 on the same segment is as low as 20% to 25% of the total luminous flux emitted from the light source 3, as shown in FIG. .
  • the opening 4b of the reflector 4 is smaller than the outer periphery of the upper surface 3a of the light source 3 when viewed from above.
  • the opening 4b of the reflector 4 is larger than the outer periphery of the light emitting surface 3b of the light source 3 in top view, it is made smaller than the outer periphery of the upper surface 3a of the light source 3. be able to.
  • FIG. 15 is a diagram for explaining the size of the opening 4b of the reflector 4 that is possible in the embodiment.
  • the opening 4b of the reflector 4 had to be made larger than the circumference of the upper surface 3a of the light source 3, whereas in the embodiment, the opening 4b can be made smaller.
  • the bottom surface 4d can be enlarged, and as a result, the walls 4c of the reflector 4, which are made by injection molding, can be raised. For this reason, in the embodiment, it is assumed that effects such as high contrast and elimination of unnecessary light distribution can be obtained.
  • FIG. 16 and 17 are diagrams showing the results of luminance measurement.
  • the center luminance (diameter 6 mm) of the lamp lighting luminance distribution is also substantially the same between the comparative example and the embodiment.
  • FIG. 17 is a cross-sectional profile when one lamp is lit.
  • FIG. 17 shows profiles of relative luminance normalized by setting the maximum luminance of the comparative example and the maximum luminance of the embodiment to "1,000,000 cd/m 2 ". It can be seen from FIG. 17 that the contrast is improved in the embodiment than in the comparative example.
  • FIG. 18 is a diagram showing the results of photometric measurements.
  • FIG. 18 shows the luminous intensity distribution from the light source 3 to the reflector 4 and the profile (vertical direction: 0°, horizontal direction: -90° to +90°) for each of the comparative example and the embodiment. From the results of FIG. 18, it is suggested that in the embodiment, the light is distributed in the front direction more than in the comparative example, and unnecessary light distribution is reduced. From such results shown in FIGS. 16 to 18, it can be seen that the planar illumination device 1 according to the embodiment can realize local dimming with high brightness and high contrast.
  • a condenser lens formed with the first linear Fresnel lens and a condenser lens formed with the second linear Fresnel lens may be used instead of the condenser lens 5.
  • the embodiment may use a concentric Fresnel lens instead of the condenser lens 5 .
  • a lens having an arbitrary configuration can be used as the field lens 6 as long as the required light distribution characteristics can be realized.
  • the light source 3 that emits light from the upper surface 3a has been described.
  • the opening 4b of the reflector 4 is located on the emission side of the upper surface 3a of the light source 3
  • the light source 3 emits light only from the side surface. Even a light source is applicable.
  • the present invention is not limited by the above embodiments.
  • the present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.
  • 1 Planar illumination device 2 substrate, 3 light source, 3a upper surface (opposite surface of light source 3 opposite substrate 2 side), 4 reflector, 4a reflective surface, 4b opening, 4c wall, 4d Bottom, 4e Frame, 4f Flange, 5 Condenser lens, 6 Field lens, 7 Frame

Abstract

A planar illumination device (1) according to an embodiment of the present invention comprises a substrate (2) on which a plurality of light sources (3) are arranged in a lattice shape in two dimensions, and a reflector (4) which has reflective surfaces (4a) that form openings (4b) corresponding to each of the plurality of light sources (3). The reflector (4) is disposed so that the openings (4b) are positioned closer to an emitting side than the top surfaces (3a) of the light sources (3), which are the surfaces on the opposite side to the surfaces on the substrate (2) side.

Description

面状照明装置Planar lighting device
 本発明は、面状照明装置に関する。 The present invention relates to a planar lighting device.
 ヘッドアップディスプレイ(HUD)等のバックライトとして用いられる面状照明装置では、表示画面をユーザが直接に見るクラスターやCID(Center Information Display)等のディスプレイに比べ、100倍程度の高い輝度が要求される。 A planar lighting device used as a backlight for a head-up display (HUD) or the like is required to have a brightness that is about 100 times higher than a display such as a cluster or CID (Center Information Display) where the user directly sees the display screen. be.
 例えば、特許文献1に開示されているHUD用の直下型のバックライトは、高輝度な面状照明装置を実現するために、複数のLED(Light Emitting Diode)を2次元状に配列した面光源からの光を、略平行光に変換する集光手段を備える。特許文献1の集光手段は、複数のLEDそれぞれに対応する位置にフレネルレンズが設けられている。 For example, the direct type backlight for HUD disclosed in Patent Document 1 is a surface light source in which a plurality of LEDs (Light Emitting Diodes) are arranged two-dimensionally in order to realize a high-brightness planar illumination device. It comprises light condensing means for converting the light from the light into substantially parallel light. The condensing means of Patent Document 1 is provided with Fresnel lenses at positions corresponding to the plurality of LEDs.
 また、特許文献2や特許文献3に開示されている直下型のバックライトは、出射効率を向上させるため、複数のLEDそれぞれを取り囲む反射面が形成されたリフレクタを備える。また、特許文献2や特許文献3には、通気を良くしてLEDの放熱効果を向上させるため、リフレクタを、LEDが配置される基板から離して配置する構成も開示されている。例えば、特許文献3では、リフレクタの底面が、LEDの発光面と同じ高さとなるまで、リフレクタを基板から離間させている。 In addition, the direct type backlight disclosed in Patent Document 2 and Patent Document 3 includes a reflector formed with a reflective surface surrounding each of the plurality of LEDs in order to improve the output efficiency. Patent Documents 2 and 3 also disclose a configuration in which a reflector is arranged away from a substrate on which the LED is arranged in order to improve ventilation and improve the heat dissipation effect of the LED. For example, in Patent Document 3, the reflector is separated from the substrate until the bottom surface of the reflector is at the same height as the light emitting surface of the LED.
特開2007-87792号公報JP 2007-87792 A 特開昭61-181002号公報JP-A-61-181002 特開2004-185972号公報JP-A-2004-185972
 しかしながら、HUD用の直下型のバックライトは、有効エリアが小さいため、ローカルディミング(部分点灯)のためにLEDを多灯並べると、LED間のピッチが狭くなる。かかる場合、従来の構成では、リフレクタとLEDとが膨張伸縮した際に干渉してしまう可能性がある。 However, the direct type backlight for HUD has a small effective area, so if multiple LEDs are arranged for local dimming (partial lighting), the pitch between the LEDs becomes narrow. In such a case, in the conventional configuration, the reflector and the LED may interfere with each other when they expand and contract.
 また、リフレクタを射出成型で作成する場合、LED間の間隔が狭いと、リフレクタの壁の肉厚を厚くすることができない。このため、射出成型の成形性の観点からリフレクタの壁を高くすることが困難となり、LEDから出射された光束を、当該LEDに対応する位置に配置された集光用のレンズに効率的に入射させることができない可能性がある。かかる場合、ローカルディミング時にコントラストが低下してしまうことや意図しない箇所が点灯してしまうことが懸念される。 Also, when the reflector is created by injection molding, if the distance between the LEDs is narrow, the wall thickness of the reflector cannot be increased. For this reason, it is difficult to increase the height of the reflector wall from the viewpoint of the moldability of injection molding, and the luminous flux emitted from the LED is efficiently incident on the condensing lens arranged at the position corresponding to the LED. may not be possible. In such a case, there is a concern that the contrast may be lowered during local dimming, or that an unintended portion may be illuminated.
 本発明は、上記に鑑みてなされたものであって、高輝度かつ高コントラストなローカルディミングを実現できる面状照明装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a planar lighting device capable of realizing high-luminance, high-contrast local dimming.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状照明装置は、複数の光源が格子状に2次元に配置された基板と、前記複数の光源それぞれに対応する開口を形成する反射面を有するリフレクタとを備える。前記リフレクタは、前記開口が前記光源の前記基板側の面とは反対側の面である反対面より出射側に位置するように配置されている。 In order to solve the above-described problems and achieve the object, a planar lighting device according to one aspect of the present invention provides a substrate on which a plurality of light sources are arranged two-dimensionally in a grid pattern, and a substrate corresponding to each of the plurality of light sources. a reflector having a reflective surface defining an aperture for the light source; The reflector is arranged such that the opening is located on the emission side of the opposite surface of the light source, which is the surface opposite to the substrate-side surface.
 本発明の一態様に係る面状照明装置は、高輝度かつ高コントラストなローカルディミングを実現することができる。 A planar lighting device according to one embodiment of the present invention can achieve local dimming with high luminance and high contrast.
図1は、ヘッドアップディスプレイシステムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a head-up display system. 図2は、実施形態に係る面状照明装置の正面図である。FIG. 2 is a front view of the planar lighting device according to the embodiment. 図3は、面状照明装置の図2におけるA-A断面図である。FIG. 3 is a cross-sectional view of the planar illumination device taken along the line AA in FIG. 図4は、図3に示すリフレクタの正面図である。4 is a front view of the reflector shown in FIG. 3. FIG. 図5は、コンデンサレンズの両面に施された溝の概略図である。FIG. 5 is a schematic diagram of grooves provided on both sides of a condenser lens. 図6は、コンデンサレンズの入射側の断面構成の例を示す図である。FIG. 6 is a diagram showing an example of the cross-sectional configuration of the incident side of the condenser lens. 図7は、コンデンサレンズによる水平方向の光線の屈折の様子を示す図である。FIG. 7 is a diagram showing how light rays are refracted in the horizontal direction by a condenser lens. 図8は、コンデンサレンズによる垂直方向の光線の屈折の様子を示す図である。FIG. 8 is a diagram showing how light rays are refracted in the vertical direction by a condenser lens. 図9は、フィールドレンズの入射側の断面構成の例を示す図である。FIG. 9 is a diagram showing an example of the cross-sectional configuration of the incident side of the field lens. 図10は、フィールドレンズによる水平方向の光線の屈折の様子を示す図である。FIG. 10 is a diagram showing how a field lens refracts light rays in the horizontal direction. 図11は、フィールドレンズの他方の面に設けられたドットを示すための拡大図である。FIG. 11 is an enlarged view showing dots provided on the other surface of the field lens. 図12は、フィールドレンズの出射側の表面構成の例を示す図である。FIG. 12 is a diagram showing an example of the configuration of the exit-side surface of the field lens. 図13は、比較例のリフレクタを説明するための図である。FIG. 13 is a diagram for explaining a reflector of a comparative example; 図14は、比較例のリフレクタ配置において、コンデンサレンズに入射する光束を示す図である。FIG. 14 is a diagram showing light beams incident on a condenser lens in a reflector arrangement of a comparative example. 図15は、実施形態で可能となるリフレクタの開口の大きさを説明するための図である。FIG. 15 is a diagram for explaining the size of the opening of the reflector that is possible in the embodiment. 図16は、輝度測定の結果を示す図である。FIG. 16 is a diagram showing the result of luminance measurement. 図17は、輝度測定の結果を示す図である。FIG. 17 is a diagram showing the result of luminance measurement. 図18は、光度測定の結果を示す図である。FIG. 18 shows the results of photometry.
 以下、実施形態に係る面状照明装置について図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。 A planar illumination device according to an embodiment will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, the dimensional relationship of each element in the drawings, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included. In principle, the contents described in one embodiment and modification are similarly applied to other embodiments and modifications.
 (システム構成)
 図1は、ヘッドアップディスプレイシステム100の構成例を示す図である。図1において、自動車に搭載されるヘッドアップディスプレイシステム100の場合、自動車の進行方向は図における左方向(Y軸の正方向)である。
(System configuration)
FIG. 1 is a diagram showing a configuration example of a head-up display system 100. As shown in FIG. In FIG. 1, in the case of a head-up display system 100 mounted on an automobile, the traveling direction of the automobile is the left direction (positive direction of the Y-axis) in the figure.
 図1において、面状照明装置1の出射光は液晶パネル101を通過した後(L1)、ミラー102により反射され(L2)、凹面鏡103に導かれる。凹面鏡103から反射された光(L3)は、自動車のフロントガラス等のスクリーン104に照射され、その反射光(L4)が運転者等のアイボックス(視点)EBに入り、液晶パネル101において描画された画像が虚像として認識される。なお、X軸方向に「H(水平方向)」、Y軸方向に「V(垂直方向)」が併記されているのは、後述するように、アイボックスEBから見た虚像の水平方向・垂直方向と面状照明装置1の出射面の方向との対応を示すためである。 In FIG. 1, light emitted from the planar lighting device 1 passes through the liquid crystal panel 101 (L1), is reflected by the mirror 102 (L2), and is guided to the concave mirror 103. The light (L3) reflected from the concave mirror 103 is projected onto a screen 104 such as a windshield of an automobile, and the reflected light (L4) enters the driver's eye box (viewpoint) EB and is drawn on the liquid crystal panel 101. The image is recognized as a virtual image. It should be noted that "H (horizontal direction)" in the X-axis direction and "V (vertical direction)" in the Y-axis direction are both horizontal and vertical directions of the virtual image viewed from the eyebox EB, as will be described later. This is to show the correspondence between the direction and the direction of the output surface of the planar illumination device 1 .
 (実施形態)
 図2は、実施形態に係る面状照明装置1の正面図である。便宜上、面状照明装置1の発光面がX-Y平面内にあり、面状照明装置1の厚み方向をZ方向としている。また、ヘッドアップディスプレイ用の照明としてスクリーン等に反射されて利用者から見える使用状態においては、既に図1において示されたように、X軸方向が水平方向(H)に対応し、Y軸方向が垂直方向(V)に対応する。なお、以下では、スクリーン等に反射されて利用者から見える使用状態における水平方向を単に「水平方向」と記載し、スクリーン等に反射されて利用者から見える使用状態における垂直方向を単に「垂直方向」と記載する場合がある。
(embodiment)
FIG. 2 is a front view of the planar lighting device 1 according to the embodiment. For convenience, the light-emitting surface of the planar illumination device 1 is in the XY plane, and the thickness direction of the planar illumination device 1 is the Z direction. In addition, in a usage state where the lighting for a head-up display is reflected by a screen or the like and visible to the user, the X-axis direction corresponds to the horizontal direction (H), and the Y-axis direction corresponds to the vertical direction (V). In addition, hereinafter, the horizontal direction in the state of use that is reflected by the screen, etc. and visible to the user is simply referred to as the "horizontal direction", and the vertical direction in the state of use that is reflected by the screen, etc., and is visible to the user is simply referred to as the "vertical direction." ” may be stated.
 図2において、面状照明装置1は、略長方形状の板状の外形を有しており、フレーム7の開口7aの内側から光が出射するようになっている。開口7aのサイズは、例えば、X軸方向が42mm、Y軸方向が21mmとなる。なお、面状照明装置1の外形は図示のものに限られない。また、フレーム7は省略される場合もある。 In FIG. 2, the planar illumination device 1 has a substantially rectangular plate-like outer shape, and light is emitted from the inside of the opening 7a of the frame 7. As shown in FIG. The size of the opening 7a is, for example, 42 mm in the X-axis direction and 21 mm in the Y-axis direction. It should be noted that the outer shape of the planar illumination device 1 is not limited to that illustrated. Also, the frame 7 may be omitted.
 図3は、面状照明装置1の図2におけるA-A断面図である。なお、図3では、フレーム7は省略している。図3において、放熱性に優れたアルミニウム等により形成される基板2の上には、適宜に絶縁が施された上で、LED(Light Emitting Diode)等による複数の光源3が格子状に2次元に配置されている。個々の光源3は個別に駆動が行われ、いわゆるローカルディミングに対応することができる。 FIG. 3 is a cross-sectional view of the planar lighting device 1 taken along line AA in FIG. Note that the frame 7 is omitted in FIG. In FIG. 3, a plurality of light sources 3 such as LEDs (Light Emitting Diodes) are arranged two-dimensionally in a grid pattern on a substrate 2 made of aluminum or the like, which has excellent heat dissipation properties. are placed in The individual light sources 3 are individually driven and can cope with so-called local dimming.
 基板2の光源3が配置される出射側には、リフレクタ4が配置されている。図4は、図3に示すリフレクタ4の正面図である。リフレクタ4には、格子状に配列された複数の光源3それぞれに対応するように、複数の開口4bが格子状に形成されている。リフレクタ4は、複数の光源3それぞれに対応する開口4bを形成する反射面4aを有する。図3及び図4に示す一例では、リフレクタ4は、開口4bを囲む4つの反射面4aを有する。なお、リフレクタ4は、出射側の開口と、基板2側の開口とを有するが、開口4bは、基板2側の開口である。 A reflector 4 is arranged on the output side of the substrate 2 where the light source 3 is arranged. 4 is a front view of the reflector 4 shown in FIG. 3. FIG. The reflector 4 is formed with a plurality of openings 4b in a grid pattern so as to correspond to the plurality of light sources 3 arranged in a grid pattern. The reflector 4 has a reflecting surface 4a forming openings 4b corresponding to the plurality of light sources 3 respectively. In one example shown in FIGS. 3 and 4, the reflector 4 has four reflective surfaces 4a surrounding an opening 4b. Although the reflector 4 has an opening on the emission side and an opening on the substrate 2 side, the opening 4b is the opening on the substrate 2 side.
 リフレクタ4は、複数の光源3それぞれに対応する開口4bが格子状に配列されるように形成された壁部4cを有する。壁部4cは、X軸方向に延在する複数の略三角柱形状の壁部と、Y軸方向に延在する複数の略三角柱形状の壁部とを格子状に組み立てた形状となる。反射面4aは、壁部4cの壁面であり、X軸方向で対向する2つの反射面4aは、開口4b側からZ軸正方向(出射側)に向かうにつれて互いに離れるように傾斜し、Y軸方向で対向する2つの反射面4aは、開口4b側からZ軸正方向に向かうにつれて互いに離れるように傾斜している。リフレクタ4は、反射の効果を高めるため、例えば、白色の樹脂等により形成される。実施形態のリフレクタ4は、射出成型による成形品である。 The reflector 4 has a wall portion 4c formed so that openings 4b corresponding to the plurality of light sources 3 are arranged in a lattice. The wall portion 4c has a shape in which a plurality of substantially triangular prism-shaped wall portions extending in the X-axis direction and a plurality of substantially triangular prism-shaped wall portions extending in the Y-axis direction are assembled in a grid pattern. The reflecting surface 4a is a wall surface of the wall portion 4c, and the two reflecting surfaces 4a facing each other in the X-axis direction are inclined so as to separate from each other in the Z-axis positive direction (exit side) from the opening 4b side. The two reflective surfaces 4a facing each other in direction are slanted away from each other in the positive direction of the Z-axis from the opening 4b side. The reflector 4 is made of, for example, white resin or the like in order to enhance the effect of reflection. The reflector 4 of the embodiment is an injection-molded product.
 そして、実施形態のリフレクタ4は、図3に示すように、開口4bが光源3の発光面より出射側に位置するように配置されている。光源3の発光面は、図3に示す光源3の上面3aに対応する。換言すると、リフレクタ4は、開口4bが光源3の上面3aより出射側に位置するように配置されている。光源3の上面3aは、光源3の基板2側の面とは反対側の面である反対面となる。また、リフレクタ4の壁部4cの底面4dは、図3に示すように、光源3より高い位置になるように、基板2から浮いた状態で配置される。このような配置とするため、リフレクタ4の周縁には、壁部4cの高さより厚い枠部4eが形成されている。壁部4cは、枠部4eの上端と下端との間の位置で枠部4eに支持され、壁部4cの上側及び下側それぞれに空間が設けられる。 The reflector 4 of the embodiment is arranged so that the opening 4b is located on the emission side of the light emitting surface of the light source 3, as shown in FIG. The light emitting surface of the light source 3 corresponds to the upper surface 3a of the light source 3 shown in FIG. In other words, the reflector 4 is arranged so that the opening 4b is located on the emission side of the upper surface 3a of the light source 3. As shown in FIG. The upper surface 3a of the light source 3 is the opposite surface opposite to the surface of the light source 3 on the substrate 2 side. Further, the bottom surface 4d of the wall portion 4c of the reflector 4 is arranged in a state of floating from the substrate 2 so as to be higher than the light source 3, as shown in FIG. For this arrangement, a frame portion 4e that is thicker than the wall portion 4c is formed on the periphery of the reflector 4. As shown in FIG. The wall portion 4c is supported by the frame portion 4e at a position between the upper end and the lower end of the frame portion 4e, and spaces are provided above and below the wall portion 4c.
 また、枠部4eの下端部からは外側に突出するフランジ部4fが形成されている。フランジ部4fは、基板2との接地面を十分に確保するために形成される。なお、フランジ部4fを設けずに、枠部4eの下面のみを基板2との接地面としても良い。リフレクタ4の開口4bを光源3の上面3aより出射側に位置するように配置する構成による効果等については、後述する。 A flange portion 4f that protrudes outward is formed from the lower end portion of the frame portion 4e. The flange portion 4f is formed in order to secure a sufficient contact surface with the substrate 2. As shown in FIG. It should be noted that only the lower surface of the frame portion 4e may be used as the ground surface with the substrate 2 without providing the flange portion 4f. The effect of the configuration in which the opening 4b of the reflector 4 is located on the emission side of the upper surface 3a of the light source 3 will be described later.
 リフレクタ4の出射側には、コンデンサレンズ5が配置されている。コンデンサレンズ5は、複数の光源3それぞれに対応する位置に集光用のレンズが設けられる。例えば、コンデンサレンズ5の入射側の面5aには、レンズの凹凸面を構成する溝が一の方向に延びる第1のリニアフレネルレンズが形成されている。また、コンデンサレンズ5の出射側の面5bには、レンズの凹凸面を構成する溝が面5aの一の方向と直交する方向に延びる第2のリニアフレネルレンズが形成されている。例えば、図3におけるコンデンサレンズ5の下側の面5aには、図3の奥行方向(Y軸方向)に溝が延びる第1のリニアフレネルレンズが形成され、図3におけるコンデンサレンズ5の上側の面5bには、図3の左右方向(X軸方向)に溝が延びる第2のリニアフレネルレンズが形成されている。図3に示す一例では、コンデンサレンズ5は、リフレクタ4の枠部4eの上端面に設置されている。 A condenser lens 5 is arranged on the output side of the reflector 4 . The condenser lens 5 is provided with a condensing lens at a position corresponding to each of the plurality of light sources 3 . For example, the incident side surface 5a of the condenser lens 5 is formed with a first linear Fresnel lens in which grooves forming the uneven surface of the lens extend in one direction. A second linear Fresnel lens is formed on the output-side surface 5b of the condenser lens 5 so that the grooves constituting the concave-convex surface of the lens extend in a direction orthogonal to one direction of the surface 5a. For example, a first linear Fresnel lens having grooves extending in the depth direction (Y-axis direction) of FIG. 3 is formed on the lower surface 5a of the condenser lens 5 in FIG. A second linear Fresnel lens having grooves extending in the left-right direction (X-axis direction) in FIG. 3 is formed on the surface 5b. In the example shown in FIG. 3 , the condenser lens 5 is installed on the upper end surface of the frame portion 4 e of the reflector 4 .
 コンデンサレンズ5の出射側には、配光を変えるとともに、光の拡散を行うフィールドレンズ6が配置されている。図3に示すフィールドレンズ6は、例えば、水平方向への配光を変えるためのレンズであり、図3におけるフィールドレンズ6の下側の面6aには、図の奥行方向(Y軸方向)に溝が延びるプリズムが形成されている。フィールドレンズ6の図3における上側の面6bには、光を拡散する微小なドットが全面にわたって形成されている。コンデンサレンズ5とフィールドレンズ6との間に隙間が設けられている。かかる隙間は、コンデンサレンズ5又はフィールドレンズ6の一方の周縁を厚みのある枠状としたり、コンデンサレンズ5とフィールドレンズ6との間に枠状のスペーサを設けたりすることで、形成される。 A field lens 6 that changes the light distribution and diffuses the light is arranged on the output side of the condenser lens 5 . The field lens 6 shown in FIG. 3 is, for example, a lens for changing the light distribution in the horizontal direction. A prism is formed from which the groove extends. On the upper surface 6b of the field lens 6 in FIG. 3, minute dots for diffusing light are formed over the entire surface. A gap is provided between the condenser lens 5 and the field lens 6 . Such a gap is formed by making the peripheral edge of one of the condenser lens 5 or the field lens 6 thick and frame-shaped, or by providing a frame-shaped spacer between the condenser lens 5 and the field lens 6 .
 図5は、コンデンサレンズ5の両面に施された溝5c、5dの概略図である。コンデンサレンズ5の下側(入射側)の面5aには、第1のリニアフレネルレンズを構成するY軸方向に延びる溝5cが形成されている。コンデンサレンズ5の上側(出射側)の面5bには、第2のリニアフレネルレンズを構成するX軸方向に延びる溝5dが形成されている。図6は、コンデンサレンズ5の入射側の断面構成の例を示す図である。コンデンサレンズ5の入射側の面5aは、光源3(図3)に対応するセグメント毎に、シリンダ状の凸レンズをフレネルレンズとしたプリズム構造を有しており、図3の奥行き方向(Y軸方向)に延びる溝を有している。隣り合うセグメント間のセグメント境界BLにおいて、プリズムの角度が反転している。図6に示すセグメント境界BLは、図4でY軸方向に延在する壁部4cの稜線の直上に位置する。また、コンデンサレンズ5の出射側においても、溝の延びる方向は直交するものとなるが、同様のプリズム構造が設けられている。コンデンサレンズ5の出射側のプリズム構造において、隣り合うセグメント間のセグメント境界は、図4でX軸方向に延在する壁部4cの稜線の直上に位置する。 FIG. 5 is a schematic diagram of grooves 5c and 5d provided on both surfaces of the condenser lens 5. FIG. A groove 5c extending in the Y-axis direction and constituting a first linear Fresnel lens is formed in a surface 5a on the lower side (incident side) of the condenser lens 5. As shown in FIG. An upper (outgoing side) surface 5b of the condenser lens 5 is formed with a groove 5d extending in the X-axis direction and constituting a second linear Fresnel lens. FIG. 6 is a diagram showing an example of the cross-sectional configuration of the incident side of the condenser lens 5. As shown in FIG. The entrance-side surface 5a of the condenser lens 5 has a prism structure in which a cylindrical convex lens is a Fresnel lens for each segment corresponding to the light source 3 (FIG. 3). ). The angle of the prism is reversed at the segment boundary BL between adjacent segments. The segment boundary BL shown in FIG. 6 is positioned directly above the ridgeline of the wall portion 4c extending in the Y-axis direction in FIG. Also, on the output side of the condenser lens 5, a similar prism structure is provided, although the extending directions of the grooves are perpendicular to each other. In the prism structure on the output side of the condenser lens 5, the segment boundary between adjacent segments is positioned directly above the ridgeline of the wall portion 4c extending in the X-axis direction in FIG.
 第1及び第2のリニアフレネルレンズは、直下に配置される光源3(図3)のピッチ(第1のリニアフレネルレンズはX軸方向のピッチ、第2のリニアフレネルレンズはY軸方向のピッチ)に合わせて溝が周期的に形成されている。そして、組立時において、Y軸方向とX軸方向とのそれぞれについて、光源3の真上にレンズの中心が位置するようにコンデンサレンズ5は配置される。個々の光源3の位置に合わせて、光源3の個数分の円環状のフレネルレンズを形成するのは難しいが、直線状に並ぶ複数の光源に合わせて列又は行単位で直線状のリニアフレネルレンズを形成するのは比較的容易である。リニアフレネルレンズを透明な基材の両面に直交するように形成することで、一方のリニアフレネルレンズのレンズの中心と他方のリニアフレネルレンズのレンズの中心との交点が、光源の中心に対応するフレネルレンズとして作用する。 The first and second linear Fresnel lenses have a pitch of the light source 3 (FIG. 3) arranged directly below (the first linear Fresnel lens has a pitch in the X-axis direction, and the second linear Fresnel lens has a pitch in the Y-axis direction). ) are formed periodically. During assembly, the condenser lens 5 is arranged so that the center of the lens is positioned right above the light source 3 in each of the Y-axis direction and the X-axis direction. Although it is difficult to form annular Fresnel lenses corresponding to the number of light sources 3 according to the position of each light source 3, linear linear Fresnel lenses can be formed in units of columns or rows according to the plurality of light sources arranged linearly. is relatively easy to form. By forming the linear Fresnel lenses perpendicular to both surfaces of the transparent substrate, the intersection point between the center of one linear Fresnel lens and the center of the other linear Fresnel lens corresponds to the center of the light source. Acts as a Fresnel lens.
 図7は、コンデンサレンズ5による水平方向の光線の屈折の様子を示す図である。すなわち、図7は使用時における水平方向(X、H)及び出射面の法線方向(Z)に沿った断面内における光の挙動を示している。フィールドレンズ6については図示が省略されている。図7において、光源3から出た破線で示される光は、コンデンサレンズ5の下側の面5aに設けられたY軸方向に延びる溝から凹凸面が形成される第1のリニアフレネルレンズによってX-Z面内で屈折し、略平行光となる。なお、出射面の法線方向に沿った平行光としているが、出射面の法線方向に対して所定の傾斜をもった平行光であってもよい。コンデンサレンズ5の上側の面5bに設けられたX軸方向に延びる溝から凹凸面が形成される第2のリニアフレネルレンズは、水平方向には作用しないため、略平行光となった光はそのまま出射される。 FIG. 7 is a diagram showing how light rays in the horizontal direction are refracted by the condenser lens 5. FIG. That is, FIG. 7 shows the behavior of light in a cross section along the horizontal direction (X, H) and the normal direction (Z) of the exit surface during use. Illustration of the field lens 6 is omitted. In FIG. 7, the light emitted from the light source 3 and indicated by the dashed line is emitted by the first linear Fresnel lens, which has an uneven surface formed by grooves extending in the Y-axis direction provided on the lower surface 5a of the condenser lens 5, to form an X-ray. The light is refracted in the -Z plane and becomes substantially parallel light. Although the light is parallel light along the normal direction of the emission surface, it may be parallel light with a predetermined inclination with respect to the normal direction of the emission surface. The second linear Fresnel lens, which has an uneven surface formed by grooves extending in the X-axis direction provided on the upper surface 5b of the condenser lens 5, does not act in the horizontal direction. emitted.
 図8は、コンデンサレンズ5による垂直方向の光線の屈折の様子を示す図である。すなわち、図8は使用時における垂直方向(Y、V)及び出射面の法線方向(Z)に沿った断面内における光の挙動を示している。フィールドレンズ6については図示が省略されている。図8において、光源3から出た破線で示される光は、コンデンサレンズ5の下側の面5aに設けられた第1のリニアフレネルレンズによっては強く屈折されず、略そのままコンデンサレンズ5の内部に進む。そして、コンデンサレンズ5の上側の面5bに設けられたX軸方向に延びる溝から凹凸面が形成される第2のリニアフレネルレンズによってY-Z面内で屈折し、略平行光となって出射される。なお、出射面の法線方向に沿った平行光としているが、出射面の法線方向に対して所定の傾斜をもった平行光であってもよい。 FIG. 8 is a diagram showing how light rays in the vertical direction are refracted by the condenser lens 5. FIG. That is, FIG. 8 shows the behavior of light in a cross section along the vertical direction (Y, V) and the normal direction (Z) to the exit surface during use. Illustration of the field lens 6 is omitted. In FIG. 8, the light emitted from the light source 3 indicated by the dashed line is not strongly refracted by the first linear Fresnel lens provided on the lower surface 5a of the condenser lens 5, and enters the condenser lens 5 as it is. move on. Then, the light is refracted in the YZ plane by a second linear Fresnel lens having an uneven surface formed from grooves extending in the X-axis direction provided on the upper surface 5b of the condenser lens 5, and emitted as substantially parallel light. be done. Although the light is parallel light along the normal direction of the emission surface, it may be parallel light with a predetermined inclination with respect to the normal direction of the emission surface.
 次に、図9は、フィールドレンズ6の入射側の断面構成の例を示す図である。図9において、フィールドレンズ6の入射側の面6aの一断面はリング状の凹レンズをフレネルレンズとしたのと同等のプリズム構造を有しており、これがリニアプリズムとなって、図の奥行き方向(Y軸方向)に延びる溝を有している。プリズムの傾斜角度は、中心から遠ざかるにつれて急になっていく。 Next, FIG. 9 is a diagram showing an example of the cross-sectional configuration of the incident side of the field lens 6. As shown in FIG. In FIG. 9, one cross section of the incident side surface 6a of the field lens 6 has a prism structure equivalent to a Fresnel lens instead of a ring-shaped concave lens. Y-axis direction). The tilt angle of the prism becomes steeper as it moves away from the center.
 図10は、フィールドレンズ6による水平方向の光線の屈折の様子を示す図である。すなわち、図10は使用時における水平方向(X、H)及び出射面の法線方向(Z)に沿った断面内における光の挙動を示している。図1に示されたようなヘッドアップディスプレイ等にあっては、液晶パネル101のバックライトとしての面状照明装置1からの光がミラー102や凹面鏡103を介してスクリーン104上で反射されて利用者の目に入る。凹面鏡103で反射された光は内側に光軸が傾けられるため、凹面鏡103からの出射光として必要とされる光軸の角度範囲を確保するためには、中心に対して外側の光軸が外側に傾斜された光を面状照明装置1から供給する必要がある。なお、光軸は、1つの光源や微小な部分から出る光(平行光であるか放射光であるかを問わない)のうち最も強度の高い方向に沿った軸である。そこで、面状照明装置1の中心からの水平方向の距離に応じて光軸を水平方向の外側に傾斜させるようにしている。これにより、凹面鏡103の出射光として必要とされる光軸の角度範囲を確保することができ、虚像の端部が見えなくなってしまうことを防止することができる。 FIG. 10 is a diagram showing how light rays are refracted in the horizontal direction by the field lens 6. FIG. That is, FIG. 10 shows the behavior of light in a cross section along the horizontal direction (X, H) and the normal direction (Z) of the exit surface during use. In a head-up display or the like as shown in FIG. 1, light from a planar illumination device 1 as a backlight for a liquid crystal panel 101 is reflected on a screen 104 via a mirror 102 or a concave mirror 103 and used. catch someone's eye. Since the optical axis of the light reflected by the concave mirror 103 is tilted inward, in order to secure the angle range of the optical axis required for the light emitted from the concave mirror 103, the optical axis outside the center must be tilted outward. It is necessary to supply light from the planar illumination device 1 which is inclined at . Note that the optical axis is the axis along the direction of the highest intensity of light emitted from one light source or minute portion (regardless of whether it is parallel light or radiated light). Therefore, the optical axis is inclined outward in the horizontal direction according to the horizontal distance from the center of the planar lighting device 1 . As a result, it is possible to secure the angle range of the optical axis required for the light emitted from the concave mirror 103, and to prevent the end of the virtual image from disappearing.
 なお、垂直方向についても凹面鏡103の曲率に応じて、外側の光軸を外側に傾斜させる必要があるが、一般に水平方向に対して垂直方向の光軸の傾斜は小さくてすむため、この実施形態では略平行光としている。垂直方向の光軸についても傾斜が必要となる場合には、垂直方向の光軸についても傾斜が行われる。なお、光軸の傾斜については、中心が略平行光でなく所定の方向に傾斜していてもよく、その両側では、中心の傾斜に対して外側に傾斜するようになっていればよい。 In the vertical direction as well, it is necessary to tilt the outer optical axis outward according to the curvature of the concave mirror 103. Generally, however, the tilt of the optical axis in the vertical direction with respect to the horizontal direction can be small. , the light is assumed to be approximately parallel light. If the vertical optical axis also needs to be tilted, then the vertical optical axis is also tilted. As for the inclination of the optical axis, the center may be inclined in a predetermined direction instead of the substantially parallel light, and both sides thereof may be inclined outward with respect to the inclination of the center.
 図10の下側は、図3と同様に面状照明装置1の断面構成を示しており、面状照明装置1の中心付近の2つの光源3については傾斜角度を0°、その隣から傾斜角度を2°、その隣は傾斜角度を4°というように変化させている。図示の傾斜角度の数値はあくまでも例示である。なお、傾斜角度は、フィールドレンズ6を構成するプリズムの形状によって決定される。 The lower side of FIG. 10 shows the cross-sectional configuration of the planar illumination device 1, similar to FIG. The angle is changed to 2°, and the angle next to it is changed to 4°. The numerical values of the tilt angles shown in the figure are only examples. Note that the inclination angle is determined by the shape of the prism that constitutes the field lens 6 .
 図10において、中心付近の領域R1では、傾斜角度が0°となっており、図の上側に拡大図で示されるように、フィールドレンズ6の正面方向(法線方向)に光が出射する。中心から左側に位置する領域R2では、傾斜角度が6°となっており、図の上側に拡大図で示されるように、フィールドレンズ6の正面方向に対して左側に傾斜した光が出射する。中心から右側に位置する領域R3では、傾斜角度が6°となっており、図の上側に拡大図で示されるように、フィールドレンズ6の正面方向に対して右側に傾斜した光が出射する。なお、図10では1個の光源3ごとに傾斜角度を変えているが、複数の光源3を含む領域ごとに傾斜角度を変えるようにしても良い。 In FIG. 10, in the region R1 near the center, the inclination angle is 0°, and light is emitted in the front direction (normal direction) of the field lens 6 as shown in the enlarged view on the upper side of the figure. In the area R2 located on the left side of the center, the angle of inclination is 6°, and as shown in the enlarged view on the upper side of the drawing, light is emitted that is inclined to the left with respect to the front direction of the field lens 6. In the region R3 located on the right side of the center, the angle of inclination is 6°, and as shown in the enlarged view on the upper side of the figure, light is emitted that is inclined to the right with respect to the front direction of the field lens 6. In addition, although the inclination angle is changed for each light source 3 in FIG. 10, the inclination angle may be changed for each area including a plurality of light sources 3 .
 次に、図11は、フィールドレンズ6の他方の面6bに設けられたドット6cを示すための拡大図(図11における領域Rの拡大図)である。図12は、フィールドレンズ6の出射側の表面構成の例を示す図である。図11及び図12において、フィールドレンズ6の図における上側の面6bには、レーザ加工等により形成された金型等から形成される微小なドット6cが形成されている。微小なドット6cにより、通過する光が拡散し、輝度均一性を高める。なお、フィールドレンズ6は、他方の面6bに設けられるドットの代わりに、フィールドレンズ6とは別体の一般的な拡散シートを用いても良い。 Next, FIG. 11 is an enlarged view (enlarged view of region R in FIG. 11) for showing dots 6c provided on the other surface 6b of the field lens 6. As shown in FIG. FIG. 12 is a diagram showing an example of the configuration of the surface of the field lens 6 on the output side. 11 and 12, minute dots 6c are formed on the upper surface 6b of the field lens 6 in the figures, which are formed from a mold or the like formed by laser processing or the like. The minute dots 6c diffuse the light passing therethrough to improve brightness uniformity. In place of the dots provided on the other surface 6b of the field lens 6, a general diffusion sheet separate from the field lens 6 may be used.
 上記構成の面状照明装置1は、ヘッドアップディスプレイ用のバックライトとして用いられるが、上述したように、リフレクタ4の開口4bを光源3の上面3aより出射側に位置するように配置する。これにより、面状照明装置1は、高輝度かつ高コントラストなローカルディミングが可能となる。この点について、以下、説明する。 The planar illumination device 1 having the above configuration is used as a backlight for a head-up display. As a result, the planar illumination device 1 can perform local dimming with high brightness and high contrast. This point will be described below.
 図13は、比較例のリフレクタを説明するための図である。図13では、図4に示すリフレクタ4の開口4b(すなわち、壁部4cの底面4d)が基板2上に位置するように配置されている。図4や図13では、ローカルディミング(部分点灯)のために光源3を狭い間隔で並べている。例えば、図4に示すリフレクタ4では、10行22列の220箇所に開口4bが設けられ、220個の光源3を配置可能であるが、220個の光源3は、X軸方向が42mmでY軸方向が21mmの有効エリア(開口7aのサイズ)に配置されることになる。このことから、光源3のピッチは、非常に狭いことがわかる。 FIG. 13 is a diagram for explaining a reflector of a comparative example. 13, the opening 4b of the reflector 4 shown in FIG. In FIGS. 4 and 13, the light sources 3 are arranged at narrow intervals for local dimming (partial lighting). For example, in the reflector 4 shown in FIG. 4, 220 openings 4b are provided in 10 rows and 22 columns, and 220 light sources 3 can be arranged. It is arranged in an effective area (the size of the opening 7a) whose axial direction is 21 mm. From this, it can be seen that the pitch of the light sources 3 is very narrow.
 このため、図13に示す比較例では、リフレクタ4の底面4dと光源3(LEDパッケージ)とが近接した状態となり、リフレクタ4と光源3とが膨張伸縮した際に、互いに干渉してしまう可能性がある。これに対して、図4に示す実施形態の配置では、リフレクタ4の開口4bを光源3の上面3aから高い位置に配置しているので、リフレクタ4と光源3とが膨張伸縮しても、リフレクタ4の壁部4cと光源3とが接触する可能性がない。 Therefore, in the comparative example shown in FIG. 13, the bottom surface 4d of the reflector 4 and the light source 3 (LED package) are in close proximity, and when the reflector 4 and the light source 3 expand and contract, they may interfere with each other. There is In contrast, in the arrangement of the embodiment shown in FIG. 4, the opening 4b of the reflector 4 is arranged at a position higher than the upper surface 3a of the light source 3, so even if the reflector 4 and the light source 3 expand and contract, the reflector There is no possibility that the wall portion 4c of 4 and the light source 3 will come into contact with each other.
 図14は、比較例のリフレクタ配置において、コンデンサレンズ5に入射する光束を示す図である。図13及び図14に示す比較例及び図3に示す実施形態では、壁部4cの形状は同じである。光源3の間が狭いことから、リフレクタ4では、底面4dを大きくすることができず、射出成型の成形性の観点からリフレクタ4の壁部4cを高くすることが困難である。このため、壁部4cの高さが低くなり、同一セグメント上のコンデンサレンズ5に入射する光束は、図14に示すように、光源3から出射される全光束のうち20%~25%と低い。 FIG. 14 is a diagram showing light beams incident on the condenser lens 5 in the reflector arrangement of the comparative example. In the comparative example shown in FIGS. 13 and 14 and the embodiment shown in FIG. 3, the shape of the wall portion 4c is the same. Since the space between the light sources 3 is narrow, the bottom surface 4d of the reflector 4 cannot be increased, and it is difficult to increase the height of the wall portion 4c of the reflector 4 from the viewpoint of moldability of injection molding. Therefore, the height of the wall portion 4c is lowered, and the luminous flux incident on the condenser lens 5 on the same segment is as low as 20% to 25% of the total luminous flux emitted from the light source 3, as shown in FIG. .
 また、セグメント境界を越えて該当するセグメント以外のセグメントのコンデンサレンズ5に入射した光線は、広角(例えば、40°~50°)に集光されてしまう。このため、ローカルディミング時にコントラストが低下してしまうことや意図しない箇所が点灯してしまうことが懸念される。なお、コンデンサレンズ5をリフレクタ4に近づけて、コンデンサレンズ5への入射効率を高くすることも考えられるが、焦点との位置関係から、コンデンサレンズ5に入射した光が集光されずに、発散する可能性が高い。 In addition, light beams that have crossed the segment boundary and entered the condenser lens 5 of a segment other than the corresponding segment are condensed at a wide angle (for example, 40° to 50°). For this reason, there is a concern that the contrast will be lowered during local dimming and that an unintended portion will be lit. It is conceivable to bring the condenser lens 5 closer to the reflector 4 to increase the efficiency of incidence on the condenser lens 5. likely to.
 これに対して、図4に示す実施形態のリフレクタ4のように、リフレクタ4の底面4dの位置を光源3より高い位置にすることで、壁部4cの上端面も高くなり、光源3から出射される全光束のうち、光源3に該当するセグメントのコンデンサレンズ5に入射する光束の割合を高くすることができる。このようなことから、実施形態では、有効に使える光束が増え、輝度向上が見込める。 On the other hand, like the reflector 4 of the embodiment shown in FIG. It is possible to increase the ratio of the light flux incident on the condenser lens 5 of the segment corresponding to the light source 3 out of the total light flux. For this reason, in the embodiment, the effectively usable luminous flux is increased, and an improvement in luminance can be expected.
 また、図3に示す実施形態では、リフレクタ4の開口4bは、上面視において、光源3の上面3aの外周よりも小さいものを説明した。しかし、実施形態では、図15に示すように、リフレクタ4の開口4bは、上面視において、光源3の発光面3bの外周よりも大きいのであれば、光源3の上面3aの外周よりも小さくすることができる。図15は、実施形態で可能となるリフレクタ4の開口4bの大きさを説明するための図である。すなわち、比較例では、リフレクタ4の開口4bは、光源3の上面3aの外周より大きくする必要があったのに対して、実施形態では、開口4bを小さくすることができる。換言すると、実施形態では、底面4dを大きくすることができ、その結果、射出成型で作成されるリフレクタ4の壁部4cを高くすることができる。このようなことから、実施形態では、高コントラスト化、不必要な配光の除去という効果が得られると想定される。 Also, in the embodiment shown in FIG. 3, the opening 4b of the reflector 4 is smaller than the outer periphery of the upper surface 3a of the light source 3 when viewed from above. However, in the embodiment, as shown in FIG. 15, if the opening 4b of the reflector 4 is larger than the outer periphery of the light emitting surface 3b of the light source 3 in top view, it is made smaller than the outer periphery of the upper surface 3a of the light source 3. be able to. FIG. 15 is a diagram for explaining the size of the opening 4b of the reflector 4 that is possible in the embodiment. That is, in the comparative example, the opening 4b of the reflector 4 had to be made larger than the circumference of the upper surface 3a of the light source 3, whereas in the embodiment, the opening 4b can be made smaller. In other words, in the embodiment, the bottom surface 4d can be enlarged, and as a result, the walls 4c of the reflector 4, which are made by injection molding, can be raised. For this reason, in the embodiment, it is assumed that effects such as high contrast and elimination of unnecessary light distribution can be obtained.
 図16及び図17は、輝度測定の結果を示す図である。図16では、10行22列の220箇所うち4隅以外の216箇所に光源3を配置した面光源に、比較例の配置でリフレクタ4を配置した装置と、実施形態の配置でリフレクタ4を配置した装置とを比較した結果を示す。図16に示すように、同一の全灯点灯条件(45mA×2.6V×216pcs=27.2W)での全灯点灯輝度分布は、比較例と実施形態とで略同じであり、また、全灯点灯輝度分布の中心輝度(径6mm)も、比較例と実施形態とで略同じである。 16 and 17 are diagrams showing the results of luminance measurement. In FIG. 16, a device in which the reflectors 4 are arranged in the arrangement of the comparative example and the reflectors 4 are arranged in the arrangement of the embodiment in the surface light source in which the light sources 3 are arranged in 216 positions other than the four corners out of 220 positions in 10 rows and 22 columns. It shows the results of comparison with the device with As shown in FIG. 16, the all-lamp lighting luminance distribution under the same all-lamp lighting conditions (45 mA×2.6 V×216 pcs=27.2 W) is substantially the same between the comparative example and the embodiment. The center luminance (diameter 6 mm) of the lamp lighting luminance distribution is also substantially the same between the comparative example and the embodiment.
 一方、図16に示す1灯点灯輝度分布では、同一の1灯点灯条件(45mA×2.6V×1pcs=0.13W)において、1灯点灯時の輝度は、比較例では710.821cd/mであったのに対して、実施形態では734.410cd/mと約3.3%上昇していた。図17は、1灯点灯時の断面プロファイルである。図17では、比較例の最大輝度と、実施形態の最大輝度とをそれぞれ「1,000,000cd/m2」として規格化した相対輝度のプロファイルを示している。図17では、比較例より実施形態の方が、コントラストが向上していることが分かる。 On the other hand, in the one-lamp lighting luminance distribution shown in FIG. 2 , the embodiment had an increase of about 3.3% to 734.410 cd/m 2 . FIG. 17 is a cross-sectional profile when one lamp is lit. FIG. 17 shows profiles of relative luminance normalized by setting the maximum luminance of the comparative example and the maximum luminance of the embodiment to "1,000,000 cd/m 2 ". It can be seen from FIG. 17 that the contrast is improved in the embodiment than in the comparative example.
 図18は、光度測定の結果を示す図である。図18では、比較例及び実施形態それぞれの光源3からリフレクタ4までの光度分布と、プロファイル(垂直方向:0°、水平方向:-90°~+90°)とを示している。図18の結果から、実施形態では、比較例より正面方向に配光されており、不要な配光が低減されていることが示唆される。図16~図18で示されるこのような結果から、実施形態に係る面状照明装置1は、高輝度かつ高コントラストなローカルディミングが実現できることが分かる。 FIG. 18 is a diagram showing the results of photometric measurements. FIG. 18 shows the luminous intensity distribution from the light source 3 to the reflector 4 and the profile (vertical direction: 0°, horizontal direction: -90° to +90°) for each of the comparative example and the embodiment. From the results of FIG. 18, it is suggested that in the embodiment, the light is distributed in the front direction more than in the comparative example, and unnecessary light distribution is reduced. From such results shown in FIGS. 16 to 18, it can be seen that the planar illumination device 1 according to the embodiment can realize local dimming with high brightness and high contrast.
 なお、実施形態は、コンデンサレンズ5の代わりに、第1のリニアフレネルレンズが形成されたコンデンサレンズと、第2のリニアフレネルレンズが形成されたコンデンサレンズとを用いても良い。また、実施形態は、コンデンサレンズ5の代わりに、同心円フレネルレンズを用いても良い。また、実施形態では、要求される配光特性を実現できるのであれば、任意の構成のレンズをフィールドレンズ6として用いることができる。 Note that in the embodiment, instead of the condenser lens 5, a condenser lens formed with the first linear Fresnel lens and a condenser lens formed with the second linear Fresnel lens may be used. Also, the embodiment may use a concentric Fresnel lens instead of the condenser lens 5 . Further, in the embodiment, a lens having an arbitrary configuration can be used as the field lens 6 as long as the required light distribution characteristics can be realized.
 また、上記実施形態では、上面3aから発光する光源3について説明した。しかし、リフレクタ4の開口4bを光源3の上面3aより出射側に位置するように配置する構成は、光源3が上面3aおよび側面から発光する光源であっても、光源3が側面のみから発光する光源であっても適用可能である。 Also, in the above embodiment, the light source 3 that emits light from the upper surface 3a has been described. However, in the configuration in which the opening 4b of the reflector 4 is located on the emission side of the upper surface 3a of the light source 3, even if the light source 3 emits light from the upper surface 3a and the side surface, the light source 3 emits light only from the side surface. Even a light source is applicable.
 また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Also, the present invention is not limited by the above embodiments. The present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.
 1 面状照明装置、2 基板、3 光源、3a 上面(光源3の基板2側の面とは反対側の面である反対面)、4 リフレクタ、4a 反射面、4b 開口、4c 壁部、4d 底面、4e 枠部、4f フランジ部、5 コンデンサレンズ、6 フィールドレンズ、7 フレーム 1 Planar illumination device, 2 substrate, 3 light source, 3a upper surface (opposite surface of light source 3 opposite substrate 2 side), 4 reflector, 4a reflective surface, 4b opening, 4c wall, 4d Bottom, 4e Frame, 4f Flange, 5 Condenser lens, 6 Field lens, 7 Frame

Claims (7)

  1.  複数の光源が格子状に2次元に配置された基板と、
     前記複数の光源それぞれに対応する開口を形成する反射面を有するリフレクタと、
     を備え、
     前記リフレクタは、前記開口が前記光源の前記基板側の面とは反対側の面である反対面より出射側に位置するように配置されている、面状照明装置。
    a substrate on which a plurality of light sources are arranged two-dimensionally in a grid pattern;
    a reflector having a reflective surface forming openings corresponding to each of the plurality of light sources;
    with
    The planar illumination device, wherein the reflector is arranged such that the opening is located on the emission side of the opposite surface of the light source, which is the surface opposite to the substrate-side surface.
  2.  前記リフレクタは、壁面が前記反射面となり、前記複数の光源それぞれに対応する前記開口が格子状に配列されるように形成された壁部を有し、
     前記壁部の底面は、前記光源の前記反対面より出射側に位置するように配置される、請求項1に記載の面状照明装置。
    The reflector has a wall portion formed so that the wall surface serves as the reflective surface, and the openings corresponding to the plurality of light sources are arranged in a grid pattern,
    2. The planar illumination device according to claim 1, wherein the bottom surface of said wall portion is arranged so as to be positioned closer to the emission side than said opposite surface of said light source.
  3.  前記リフレクタは、周縁に、前記壁部の高さより厚い枠部を有し、
     前記壁部は、前記枠部の上端と下端との間の位置で前記枠部に支持される、請求項2に記載の面状照明装置。
    The reflector has a frame on its periphery that is thicker than the height of the wall,
    3. The planar lighting device according to claim 2, wherein said wall portion is supported by said frame portion at a position between an upper end and a lower end of said frame portion.
  4.  前記リフレクタは、射出成型による成形品である、請求項1~3のいずれか1つに記載の面状照明装置。 The planar lighting device according to any one of claims 1 to 3, wherein the reflector is an injection-molded product.
  5.  上面視において、前記開口は、前記光源の発光面よりも大きく、前記光源の前記反対面の外周よりも小さい、請求項1~4のいずれか1つに記載の面状照明装置。 The planar lighting device according to any one of claims 1 to 4, wherein the opening is larger than the light emitting surface of the light source and smaller than the circumference of the opposite surface of the light source when viewed from above.
  6.  前記リフレクタの出射側に配置され、前記複数の光源それぞれに対応する位置に集光用のレンズが設けられたコンデンサレンズ、
     を備える、請求項1~5のいずれか1つに記載の面状照明装置。
    a condenser lens disposed on the output side of the reflector and provided with condensing lenses at positions corresponding to each of the plurality of light sources;
    The planar illumination device according to any one of claims 1 to 5, comprising
  7.  前記複数の光源それぞれは、ローカルディミングに対応できるように、個別に駆動される、請求項1~6のいずれか1つに記載の面状照明装置。 The planar illumination device according to any one of claims 1 to 6, wherein each of the plurality of light sources is individually driven so as to be compatible with local dimming.
PCT/JP2022/006149 2021-05-20 2022-02-16 Planar illumination device WO2022244350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085164 2021-05-20
JP2021085164 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244350A1 true WO2022244350A1 (en) 2022-11-24

Family

ID=84140534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006149 WO2022244350A1 (en) 2021-05-20 2022-02-16 Planar illumination device

Country Status (1)

Country Link
WO (1) WO2022244350A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311026A (en) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd Surface light source device
JP2012174370A (en) * 2011-02-17 2012-09-10 Sharp Corp Lighting apparatus, and liquid crystal display
JP2018138952A (en) * 2017-02-24 2018-09-06 株式会社Jvcケンウッド Display
JP2020118994A (en) * 2020-04-27 2020-08-06 株式会社ジャパンディスプレイ Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311026A (en) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd Surface light source device
JP2012174370A (en) * 2011-02-17 2012-09-10 Sharp Corp Lighting apparatus, and liquid crystal display
JP2018138952A (en) * 2017-02-24 2018-09-06 株式会社Jvcケンウッド Display
JP2020118994A (en) * 2020-04-27 2020-08-06 株式会社ジャパンディスプレイ Display device

Similar Documents

Publication Publication Date Title
JP6078798B2 (en) Head-up display, lighting device, and moving body equipped with the same
JP4960406B2 (en) Light emitting diode light source module
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP5380182B2 (en) Light emitting device, surface light source, and liquid crystal display device
KR100677551B1 (en) LED package, illumination system and projection system employing the LED package
JP2011014434A5 (en)
JPWO2015129251A1 (en) Lighting device and automobile equipped with the lighting device
US20060249742A1 (en) Light emitting device for achieving uniform light distribution and backlight unit employing the same
JP2013251105A (en) Lens for lighting, and lighting device
US11761608B2 (en) Planar illumination device
WO2022244350A1 (en) Planar illumination device
JPWO2016194798A1 (en) Surface light source device and liquid crystal display device
TW202036938A (en) Surface light source apparatus and liquid crystal display device
JP7406582B2 (en) Spread lighting device
JP7386205B2 (en) Spread lighting device
WO2023153510A1 (en) Optical member, light source device, and head-up display
WO2024034296A1 (en) Planar illuminating device
US20220302359A1 (en) Light emitting device, surface light source device, and display device
JP7320094B1 (en) Planar lighting device
JP2022086660A (en) Surface light source device and display device
JP2005259909A (en) Light emitting device
JP2022171284A (en) Surface light source device and display device
CN117396802A (en) Backlight unit
WO2014192194A1 (en) Light box
JP2018092859A (en) Surface light source device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE