WO2022244337A1 - Capacitor and inverter device - Google Patents

Capacitor and inverter device Download PDF

Info

Publication number
WO2022244337A1
WO2022244337A1 PCT/JP2022/004790 JP2022004790W WO2022244337A1 WO 2022244337 A1 WO2022244337 A1 WO 2022244337A1 JP 2022004790 W JP2022004790 W JP 2022004790W WO 2022244337 A1 WO2022244337 A1 WO 2022244337A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
mounting groove
capacitor
opening
housing
Prior art date
Application number
PCT/JP2022/004790
Other languages
French (fr)
Japanese (ja)
Inventor
裕加 山本
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202280035761.3A priority Critical patent/CN117321712A/en
Publication of WO2022244337A1 publication Critical patent/WO2022244337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a capacitor, particularly a capacitor that requires cooling, in an inverter device used in electric vehicles, hybrid vehicles, etc., and also to an inverter device equipped with this capacitor.
  • a capacitor is one of the parts that occupy a relatively large volume.
  • it is necessary to reduce the size of the parts, including the capacitor. Must be well cooled.
  • some positive cooling is required.
  • Patent Document 1 is a publication relating to a capacitor previously proposed by the applicant of the present invention.
  • a configuration is disclosed in which a capacitor element is arranged and a potting material having thermal conductivity is filled. Pipes serving as a cooling water inlet and a cooling water outlet are connected to both ends of the outer case.
  • the above capacitor Since the above capacitor has an independent outer case with a cooling water inlet and a cooling water outlet, it is necessary to run cooling water piping from the inverter unit housing, and the number of parts such as piping and connectors is increased. become more. In terms of space, since an independent capacitor is arranged outside the housing of the inverter device, there is still room for improvement in miniaturization of the entire inverter device.
  • the capacitor according to the present invention is a box-shaped case with an opening on one side and a mounting flange extending outward around the opening; a capacitor element disposed in the case through the opening surface and having a terminal positioned on the opening surface; a thermally conductive potting material filled in the case so that the capacitor element is buried leaving the terminals; configured with It is used by fitting the box-shaped portion of the case into a mounting groove provided in the housing of the inverter device through which the coolant flows.
  • the capacitor of the present invention does not have an outer case for forming a refrigerant flow path, and the outer surface of the case is formed by fitting the box-shaped portion of the case into the mounting groove of the housing of the inverter device. It is in a state of being exposed to the coolant flowing in the mounting groove. Therefore, no external piping is required, and the overall configuration is simple and compact.
  • the housing of the inverter device has a refrigerant passage inside for cooling the semiconductor switching element, and the mounting groove for the capacitor is incorporated in a part of the circuit of this refrigerant passage.
  • the dimensions of the case are set so that a gap that serves as a coolant flow path remains between the outer surface of the case and the inner surface of the mounting groove, Fins extending in the direction of flow of the coolant are formed on at least one outer surface of the case.
  • the mounting flange is screwed to the periphery of the opening of the mounting groove via a sealing material.
  • the inverter device of the present invention is a mounting groove that is formed in a part of the housing of the inverter device so that the coolant flows through the interior and that is open to the surface of the housing; It has a box-like shape with an opening on one side, and is provided with a mounting flange extending outward around the opening, and is fitted into the mounting groove with a gap serving as a flow path.
  • a second mounting groove is formed in the housing so that the refrigerant flows in series with the mounting groove for the capacitor element, A semiconductor element unit is fitted in the second mounting groove so that a coolant flows around it.
  • the housing of the inverter device is used to form a flow path for the coolant flowing outside the case, so external pipes and accompanying connectors are not necessary.
  • the case of the capacitor into the housing, it is possible to reduce the size of the entire inverter device.
  • FIG. 2 is a perspective view showing the capacitor of one embodiment together with the mounting groove portion of the housing; (a) A plan view, (b) a front view, and (c) a side view of a capacitor.
  • 3 is an exploded perspective view of a capacitor;
  • FIG. FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 showing the flow of coolant;
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4 showing the flow of coolant;
  • the perspective view of the inverter apparatus of 1st Example. 1 is an exploded perspective view of an inverter device according to a first embodiment;
  • FIG. The perspective view which shows the back surface of a semiconductor element unit. Sectional drawing along the longitudinal direction of a 2nd attachment groove part.
  • FIG. 10 is a cross-sectional view similar to FIG. 9 with the semiconductor element unit attached;
  • FIG. 1 is a perspective view showing an embodiment of a capacitor 1 used as a component of an inverter device in, for example, an electric vehicle or a hybrid vehicle.
  • FIG. 2 shows a plan view, a front view and a side view of the capacitor 1 of this embodiment.
  • 3 is an exploded perspective view of the capacitor 1.
  • FIG. This capacitor 1 comprises a rectangular parallelepiped case 2, a capacitor element 3 arranged in the case 2, and a solidified potting material 4 filled in the case 2 so as to embed the capacitor element 3. I have.
  • FIG. 3 shows the case 2 and the capacitor element 3 in an exploded manner.
  • the ambient temperature in the engine room where the capacitor 1 is arranged is relatively high (100° or more in one example).
  • forced cooling using a refrigerant is required.
  • the refrigerant for example, liquid-phase refrigerant such as cooling water containing water as a main component or mineral oil is used.
  • the case 2 is made of metal, preferably metal with excellent heat conductivity, and is integrally formed, for example, by cutting an aluminum alloy base material or by aluminum die casting.
  • the case 2 has a box shape with one main surface (largest surface) of six surfaces forming a rectangular parallelepiped being open. That is, the case 2 includes a pair of end walls 11 forming end surfaces at both ends in the longitudinal direction, a pair of side walls 12 forming side surfaces along the longitudinal direction, and a bottom surface which is one of the main surfaces. It has a bottom wall 13 and an opening surface 14 facing the bottom wall 13 .
  • a mounting flange 15 extending outward along the same plane as the opening surface 14 is integrally formed around the opening surface 14 .
  • the mounting flange 15 is continuous along the four sides of the opening surface 14 and has a rectangular outer peripheral edge that is similar to the opening surface 14 .
  • the mounting flange 15 also has a plurality of through holes 16 (see FIG. 2(a)) through which mounting screws (not shown) pass.
  • the case 2 having the mounting flange 15 in this way has a rectangular deep dish shape with a rectangular parallelepiped concave portion 17 .
  • the portion of the case 2 excluding the mounting flange 15 is hereinafter referred to as a "box-shaped portion".
  • the concave portion 17 formed inside the box-shaped portion has a flattened rectangular parallelepiped shape whose depth is smaller than the width dimension along the direction orthogonal to the longitudinal direction.
  • the mounting flange 15 may be a frame-shaped member formed from a plate material and mounted on the box-shaped portion of the case 2 by welding, brazing, or the like.
  • a large number of cooling fins 18 linearly extending along the longitudinal direction of the case 2 are formed on the surfaces of the pair of side walls 12 and the bottom wall 13 .
  • a large number of cooling fins 18 are formed side by side on the entire surfaces of the side wall 12 and the bottom wall 13 at equal pitches.
  • the capacitor element 3 accommodated in the recess 17 of the case 2 is, as shown in FIG.
  • a film capacitor having a general configuration in which a resin film such as polypropylene or polyethylene terephthalate is used as a dielectric, and a metal layer formed by coating a metal foil or resin film is used as an electrode, and the film capacitor is wound in a flat roll shape.
  • two film capacitors are integrated in advance in a row, and terminals 5a and 5b are provided at both ends thereof. That is, the two terminals 5a and 5b are located apart from each other at both ends in the longitudinal direction of the capacitor element 3, which is formed in an elongated shape as a whole, and extend parallel to each other.
  • the capacitor element 3 does not have a general cylindrical case in order to improve heat dissipation.
  • the film capacitor with the terminals 5a, 5b and the like wound around the film is housed in the case 2 without being housed in the cylindrical case.
  • the central axis of winding of the film in the film capacitor extends along the longitudinal direction of the case 2 .
  • the capacitor element 3 is arranged in the recess 17 of the case 2 with the pair of terminals 5 a and 5 b projecting from the opening surface 14 .
  • the recess 17 of the case 2 is filled with a potting material 4 having thermal conductivity and insulation so that the capacitor element 3 is filled with the terminals 5a and 5b.
  • the potting material 4 fills substantially the entire internal volume of the case 2 , and the surface of the potting material 4 filled in the recess 17 is substantially flush with the mounting flange 15 of the case 2 .
  • the capacitor element 3 is surrounded by a potting material 4 and is not in direct contact with the inner wall surface of the case 2 .
  • the potting material 4 for example, an epoxy-based potting material that is generally commercially available as a potting material for circuit boards can be used.
  • the potting material 4 is in a liquid state having appropriate fluidity when not cured, and is cured by heating in a heating furnace or the like after being filled or injected.
  • the potting material 4 may be of a two-liquid mixing type that uses a mixture of a main agent and a curing agent.
  • the capacitor 1 configured as described above is used by being directly attached to the attachment groove 22 formed in the housing 21 of the inverter device, as shown in FIG.
  • the housing 21 accommodates at least some of the other components of the inverter device, and can be made of metal, hard synthetic resin, or the like. Consists of die-cast.
  • a coolant passage 23 through which a coolant such as cooling water or mineral oil flows is formed inside the housing 21, and a rectangular attachment groove 22 is formed in the middle of the coolant passage 23 in the shape of a so-called water collecting trough. ing.
  • the mounting groove portion 22 is a recess having a rectangular parallelepiped shape with one of the main surfaces being an opening surface, and has a pair of end surfaces 22a, a pair of side surfaces 22b, and a bottom surface 22c.
  • a seal groove 24 for accommodating an O-ring (not shown) serving as a sealing material is formed around the opening surface in the upper part of the figure, and corresponds to the through hole 16 of the mounting flange 15 described above.
  • a screw hole 25 is provided at each position.
  • the mounting groove portion 22 has a shape substantially similar to the box-shaped portion of the case 2 and has relatively larger dimensions than the box-shaped portion of the case 2 .
  • the tip of the coolant passage 23 is opened as a circular port.
  • One of the pair of ports facing each other serves as an inlet for the coolant to the mounting groove portion 22 and the other serves as an outlet for the coolant from the mounting groove portion 22 .
  • the capacitor 1 is mounted on the housing 21 in such a manner that the box-shaped portion of the case 2 is positioned within the mounting groove 22 and the mounting flange 15 overlaps the upper surface of the opening edge of the mounting groove 22 . That is, the box-shaped portion of the case 2 is fitted into the mounting groove portion 22 through the opening surface of the mounting groove portion 22 so as to be placed in a predetermined position, and the mounting flange 15 is fixed to the housing 21 by a plurality of screws (not shown). be.
  • An O-ring (not shown) arranged in a seal groove 24 seals between the mounting flange 15 and the housing 21 .
  • a liquid-phase refrigerant is forced to flow through the refrigerant passage 23 of the housing 21 by a pump (not shown).
  • 4 and 5 are cross-sectional views along the longitudinal direction of the condenser 1 in a state in which the condenser 1 is mounted in the mounting groove 22, and arrows indicate the flow of the refrigerant.
  • the outer dimensions of the box-shaped portion of the case 2 are relatively smaller than the inner dimensions of the mounting groove 22 , so that the coolant is not trapped between the outer surface of the case 2 and the inner surface of the mounting groove 22 .
  • gaps or flow paths 29 are formed, respectively, and the coolant flows from one port indicated by reference numeral 23a to the other port indicated by reference numeral 23b. That is, the coolant flows along the five surfaces excluding the opening surface 14 side where the terminals 5 a and 5 b are located, effectively cooling the capacitor element 3 surrounded by these five surfaces together with the potting material 4 .
  • the potting material 4 with excellent thermal conductivity is in close contact with the surface of the capacitor element 3 and the inner wall surface of the case 2, respectively, and the heat is reliably transferred to the refrigerant through the case 2, thus effectively recovering the heat. is done. Furthermore, since the case 2 is provided with the cooling fins 18, the heat exchange area between the case 2 and the refrigerant is increased, and the heat transfer from the case 2 to the refrigerant is improved.
  • the potting material 4 contributes to insulation between the capacitor element 3 and the case 2 in addition to heat conduction. In other words, thermal conductivity is improved while insulation is provided between the capacitor element 3 and the case 2 .
  • Capacitor element 3 made of a film capacitor is accommodated in case 2 without a cylindrical case as described above, and is insulated and protected by potting material 4 . Therefore, the number of intermediate members that become thermal resistance with the refrigerant is minimized, and the heat of the capacitor element 3, which is a film capacitor whose heat resistance is a problem, can be effectively recovered to the refrigerant.
  • the capacitor 1 of the above-described embodiment is used by fitting the box-shaped portion of the case 2 into the mounting groove 22 provided in the housing 21 of the inverter device through which the refrigerant flows. , the capacitor element 3 can be reliably cooled while maintaining a simple structure with a small number of parts.
  • the mounting flange 15, which is a part of the case 2 also functions as a cover or a seal for covering the mounting groove 22, while supporting the housing 21 of the capacitor 1. As shown in FIG. In other words, there is no need for a separate cover or the like to cover the mounting groove portion 22 , and the mounting groove portion 22 can be sealed simply by mounting the capacitor 1 in the mounting groove portion 22 .
  • FIG. 6 and 7 show a first embodiment of an inverter device including the capacitor 1 of the above embodiment together with semiconductor switching elements.
  • the housing 21 of the inverter device has two mounting grooves through which the liquid-phase refrigerant flows in series. That is, the mounting groove portion 22 for the capacitor 1 described above (hereinafter referred to as the first mounting groove portion 22 for convenience) and the second mounting groove portion 31 for the semiconductor switching element are formed adjacent to each other in parallel.
  • the refrigerant passage 23 an inlet refrigerant passage 23A, an outlet refrigerant passage 23B, and an intermediate refrigerant passage 23C are provided.
  • the inlet coolant passage 23A is connected to one longitudinal end of the second mounting groove portion 31 .
  • the outlet coolant passage 23B is connected to one longitudinal end of the first mounting groove portion 22 .
  • An intermediate refrigerant passage 23 ⁇ /b>C is provided between the other end of the second mounting groove portion 31 and the other end of the first mounting groove portion 22 . Therefore, the refrigerant sent by the pump (not shown) passes through the second mounting groove portion 31, is guided to the first mounting groove portion 22 via the intermediate refrigerant passage 23C, and passes through the first mounting groove portion 22.
  • part of the passage length of each of the refrigerant passages 23A, 23B, and 23C is drawn as external pipes, but it is also possible to construct all of them as internal passages passing through the interior of the housing 21.
  • an IGBT module is used as a semiconductor switching element.
  • a rectangular semiconductor element unit 33 is configured by a so-called "6 in 1" type IGBT module in which a total of six arms of U, V, and W phases are configured in one package.
  • FIG. 8 shows the configuration of the back surface of the semiconductor element unit 33.
  • the semiconductor element unit 33 made up of a "6 in 1" type IGBT module has a bottom plate portion 34 having a rectangular plate shape.
  • a large number of pin-shaped fins 35 are formed on the bottom plate portion 34 to promote heat exchange with the refrigerant.
  • a plurality of through holes 36 through which mounting screws (not shown) pass are provided around the bottom plate portion 34 .
  • the second mounting groove portion 31 to which the semiconductor element unit 33 is mounted is basically configured in the same manner as the first mounting groove portion 22, and is aligned parallel to the first mounting groove portion 22 on the upper surface of the housing 21 of the inverter device. It has a rectangular opening.
  • the semiconductor element unit 33 is mounted so that the bottom plate part 34 covers the opening of the second mounting groove part 31 , and is fixed to the housing 21 by mounting screws (not shown) passing through the through holes 36 .
  • a seal groove 37 for accommodating an O-ring (not shown) serving as a sealing material is formed around the opening of the second mounting groove portion 31 over the entire circumference. The space between the second mounting groove portion 31 and the semiconductor element unit 33 is sealed by an O-ring.
  • FIG. 9 shows a cross section along the longitudinal direction of the second mounting groove 31 of the housing 21, and FIG. 10 shows a similar cross section with the semiconductor element unit 33 mounted.
  • the semiconductor element unit 33 unlike the capacitor 1 , in the semiconductor element unit 33 , only the pin-shaped fins 35 are fitted into the second mounting grooves 31 , and most of the IGBT module extends from the bottom plate 34 . exposed upwards.
  • the second mounting groove portion 31 is provided with a pedestal portion 31b so that the bottom surface 31a is shallow except for both ends in the longitudinal direction.
  • both ends of the coolant passages 23A and 23C in the longitudinal direction opening as circular ports are partially deepened.
  • the height of the bottom surface 31a substantially corresponds to the tip position of the pin-type fin 35. As shown in FIG.
  • Such shallowness guides the coolant to flow along the bottom surface of the semiconductor element unit 33, and the coolant flow collides with the pin-type fins 35, thereby performing good heat exchange.
  • Figs. 11 and 12 show a second embodiment of an inverter device comprising a capacitor 1 and a semiconductor element unit 33.
  • the first mounting groove 22 and the capacitor 1 are arranged relatively upstream with respect to the flow of the coolant, and the second mounting groove 31 and the semiconductor element unit 33 are arranged relatively downstream. be. That is, the refrigerant sent by a pump (not shown) is guided from the inlet refrigerant passage 23A to the second mounting groove portion 31, cools the condenser 1, and is guided through the intermediate refrigerant passage 23C to the first mounting groove portion 22, whereupon the semiconductor element unit 33 is cooled.
  • the condenser 1 is preferentially cooled. Whether to use the flow path configuration like the first embodiment or the flow path configuration like the second embodiment is selected in consideration of the calorific value and heat resistance of each of the capacitor 1 and the semiconductor element unit 33. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A capacitor (1) used in an inverter device of an electric car, etc., comprises: a case (2) having a cuboid shape; a capacitor element (3) that is disposed in the case (2); and a potting material (4) that is filled into the case (2) and hardened so as to embed the capacitor element (3). The case (2) has a box shape with a mounting flange (15) at the edge of an opening therein. The case (2) is attached in a form fitted into a mounting groove (22) through which refrigerant flows that is formed in a housing (21) of the inverter device. Refrigerant sent by a pump flows through a flow path formed by a gap between the case (2) and an inner surface of the mounting groove (22).

Description

コンデンサおよびインバータ装置Capacitor and inverter device
 この発明は、電気自動車やハイブリッド型自動車等に用いられるインバータ装置におけるコンデンサ、特に冷却が必要なコンデンサに関し、さらにこのコンデンサを備えたインバータ装置に関する。 The present invention relates to a capacitor, particularly a capacitor that requires cooling, in an inverter device used in electric vehicles, hybrid vehicles, etc., and also to an inverter device equipped with this capacitor.
 例えば電気自動車等に用いられるインバータ装置を構成する部品の中で、比較的大きさ容積を占める部品の一つとして、コンデンサがある。車両に搭載されるインバータ装置を小型化するためには、コンデンサを含めた部品を小型化する必要があるが、コンデンサの小型化のためには、比較的耐熱性が低い部品であるコンデンサを効率よく冷却しなければならない。特に、コンデンサが使用される環境下で、周囲の雰囲気温度がコンデンサの耐熱温度を越えてしまうような場合には、何らかの積極的な冷却が必要となる。 For example, among the parts that make up the inverter device used in electric vehicles, etc., a capacitor is one of the parts that occupy a relatively large volume. In order to reduce the size of the inverter device installed in the vehicle, it is necessary to reduce the size of the parts, including the capacitor. Must be well cooled. In particular, in the environment in which the capacitor is used, if the ambient ambient temperature exceeds the heat-resistant temperature of the capacitor, some positive cooling is required.
 特許文献1は、本出願人が先に提案したコンデンサに関する公報であって、それぞれ直方体形状をなす内側ケースと外側ケースとの間に冷却水が流れる流路を形成するとともに、内側ケースの中にコンデンサ素子を配置し、かつ熱伝導性を有するポッティング材を充填した構成を開示している。外側ケースの両端部には、冷却水入口および冷却水出口となる配管がそれぞれ接続されている。 Patent Document 1 is a publication relating to a capacitor previously proposed by the applicant of the present invention. A configuration is disclosed in which a capacitor element is arranged and a potting material having thermal conductivity is filled. Pipes serving as a cooling water inlet and a cooling water outlet are connected to both ends of the outer case.
 上記のコンデンサにおいては、冷却水入口および冷却水出口を備えた独立した外側ケースを具備するため、インバータ装置の筐体から冷却水用の配管を引き回す必要があり、配管やコネクタ等の部品点数が多くなる。またスペース的にも、インバータ装置の筐体の外部に独立したコンデンサが配置されるので、インバータ装置全体の小型化の上でなお改善の余地があった。 Since the above capacitor has an independent outer case with a cooling water inlet and a cooling water outlet, it is necessary to run cooling water piping from the inverter unit housing, and the number of parts such as piping and connectors is increased. become more. In terms of space, since an independent capacitor is arranged outside the housing of the inverter device, there is still room for improvement in miniaturization of the entire inverter device.
特開2020-058214号公報JP 2020-058214 A
 この発明に係るコンデンサは、
 一つの面が開口面となった箱状をなし、かつ開口面の周囲に、外側へ延びた取付フランジを備えたケースと、
 上記開口面を通して上記ケースの中に配置され、端子が上記開口面に位置するコンデンサ素子と、
 上記コンデンサ素子が上記端子を残して埋まるように上記ケースの中に充填された熱伝導性ポッティング材と、
 を備えて構成され、
 インバータ装置の筐体に設けられた冷媒が流れる取付溝部内に上記ケースの箱状部分を嵌め込んで用いられる。
The capacitor according to the present invention is
a box-shaped case with an opening on one side and a mounting flange extending outward around the opening;
a capacitor element disposed in the case through the opening surface and having a terminal positioned on the opening surface;
a thermally conductive potting material filled in the case so that the capacitor element is buried leaving the terminals;
configured with
It is used by fitting the box-shaped portion of the case into a mounting groove provided in the housing of the inverter device through which the coolant flows.
 すなわち、この発明のコンデンサは、冷媒流路を構成するための外側ケースを具備しておらず、インバータ装置の筐体における取付溝部にケースの箱状部分を嵌め込むことによって、ケースの外側面が取付溝部内を流れる冷媒に露出した状態となる。従って、外部配管が不要であり、全体的な構成が簡単かつ小型となる。 That is, the capacitor of the present invention does not have an outer case for forming a refrigerant flow path, and the outer surface of the case is formed by fitting the box-shaped portion of the case into the mounting groove of the housing of the inverter device. It is in a state of being exposed to the coolant flowing in the mounting groove. Therefore, no external piping is required, and the overall configuration is simple and compact.
 なお、一般に、インバータ装置の筐体は半導体スイッチング素子の冷却のために内部に冷媒通路を備えており、この冷媒通路の回路の一部にコンデンサ用の取付溝部が組み込まれることとなる。 In addition, generally, the housing of the inverter device has a refrigerant passage inside for cooling the semiconductor switching element, and the mounting groove for the capacitor is incorporated in a part of the circuit of this refrigerant passage.
 この発明の好ましい一つの態様では、
 上記ケースは、当該ケースの外側面と上記取付溝部の内側面との間に冷媒の流路となる隙間が残存するように寸法が設定されており、
 このケースの外側の少なくとも一つの面には、冷媒の流れの方向に沿ったフィンが形成されている。
In one preferred embodiment of the invention,
The dimensions of the case are set so that a gap that serves as a coolant flow path remains between the outer surface of the case and the inner surface of the mounting groove,
Fins extending in the direction of flow of the coolant are formed on at least one outer surface of the case.
 このようにフィンを備えることで、ケースと冷媒との間の熱交換面積が拡大する。 By providing fins in this way, the heat exchange area between the case and the refrigerant is expanded.
 また、この発明の好ましい一つの態様では、
 上記取付フランジは、シール材を介して上記取付溝部の開口周縁部にネジ止めされる。
Also, in a preferred embodiment of the present invention,
The mounting flange is screwed to the periphery of the opening of the mounting groove via a sealing material.
 さらに、この発明のインバータ装置は、
 内部を冷媒が流れるようにインバータ装置の筐体の一部に形成され、かつ該筐体の表面に開口した取付溝部と、
 一つの面が開口面となった箱状をなし、かつ上記開口面の周囲に、外側へ延びた取付フランジを備え、流路となる隙間を残して上記取付溝部内に嵌め込まれているとともに上記取付フランジが上記筐体に固定されたケースと、
 上記開口面を通して上記ケースの中に配置されており、端子が上記開口面に位置するコンデンサ素子と、
 上記コンデンサ素子が上記端子を残して埋まるように上記ケースの中に充填された熱伝導性ポッティング材と、
 を備えている。
Furthermore, the inverter device of the present invention is
a mounting groove that is formed in a part of the housing of the inverter device so that the coolant flows through the interior and that is open to the surface of the housing;
It has a box-like shape with an opening on one side, and is provided with a mounting flange extending outward around the opening, and is fitted into the mounting groove with a gap serving as a flow path. a case in which a mounting flange is fixed to the housing;
a capacitor element disposed in the case through the opening surface and having a terminal located in the opening surface;
a thermally conductive potting material filled in the case so that the capacitor element is buried leaving the terminals;
It has
 好ましい一つの態様においては、
 上記筐体に、上記のコンデンサ素子用の取付溝部と直列に冷媒が流れるように第2の取付溝部が形成されており、
 半導体素子ユニットがその周囲に冷媒が流れるように上記第2の取付溝部に嵌め込まれている。
In one preferred embodiment,
A second mounting groove is formed in the housing so that the refrigerant flows in series with the mounting groove for the capacitor element,
A semiconductor element unit is fitted in the second mounting groove so that a coolant flows around it.
 この発明によれば、インバータ装置の筐体を利用してケースの外側を流れる冷媒の流路が形成されるので、外部配管やこれに付随するコネクタ等が不要となる。また、コンデンサのケースが筐体に組み込まれることで、インバータ装置全体の小型化が図れる。 According to this invention, the housing of the inverter device is used to form a flow path for the coolant flowing outside the case, so external pipes and accompanying connectors are not necessary. In addition, by incorporating the case of the capacitor into the housing, it is possible to reduce the size of the entire inverter device.
一実施例のコンデンサを筐体の取付溝部とともに示す斜視図。FIG. 2 is a perspective view showing the capacitor of one embodiment together with the mounting groove portion of the housing; コンデンサの(a)平面図、(b)正面図、(c)側面図。(a) A plan view, (b) a front view, and (c) a side view of a capacitor. コンデンサの分解斜視図。3 is an exploded perspective view of a capacitor; FIG. 冷媒の流れを示す図1のA-A線に沿った断面図。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 showing the flow of coolant; 冷媒の流れを示す図4のB-B線に沿った断面図。FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4 showing the flow of coolant; 第1実施例のインバータ装置の斜視図。The perspective view of the inverter apparatus of 1st Example. 第1実施例のインバータ装置の分解斜視図。1 is an exploded perspective view of an inverter device according to a first embodiment; FIG. 半導体素子ユニットの裏面を示す斜視図。The perspective view which shows the back surface of a semiconductor element unit. 第2取付溝部の長手方向に沿った断面図。Sectional drawing along the longitudinal direction of a 2nd attachment groove part. 半導体素子ユニットを取り付けた状態での図9と同様の断面図。FIG. 10 is a cross-sectional view similar to FIG. 9 with the semiconductor element unit attached; 第2実施例のインバータ装置の斜視図。The perspective view of the inverter apparatus of 2nd Example. 第2実施例のインバータ装置の分解斜視図。The exploded perspective view of the inverter apparatus of 2nd Example.
 以下、この発明の一実施例を図面に基づいて詳細に説明する。図1は、例えば電気自動車やハイブリッド型自動車におけるインバータ装置の構成部品として用いられるコンデンサ1の一実施例を示す斜視図である。図2はこの実施例のコンデンサ1の平面図、正面図および側面図を示している。また図3は、コンデンサ1の分解斜視図である。このコンデンサ1は、直方体形状をなすケース2と、ケース2の中に配置されたコンデンサ素子3と、このコンデンサ素子3を埋め込むようにケース2の中に充填されて固化したポッティング材4と、を備えている。図3は、ケース2とコンデンサ素子3とを分解して示している。このように車両に搭載されるコンデンサ1にあっては、コンデンサ素子3が発熱することに加えて、コンデンサ1が配置されるエンジンルーム内等の雰囲気温度が比較的に高温(一例では100°以上)となり得ることから、冷媒を用いた強制的な冷却が必要である。冷媒として、例えば、水を主たる成分とする冷却水や鉱油等の液相の冷媒が用いられる。 An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a capacitor 1 used as a component of an inverter device in, for example, an electric vehicle or a hybrid vehicle. FIG. 2 shows a plan view, a front view and a side view of the capacitor 1 of this embodiment. 3 is an exploded perspective view of the capacitor 1. FIG. This capacitor 1 comprises a rectangular parallelepiped case 2, a capacitor element 3 arranged in the case 2, and a solidified potting material 4 filled in the case 2 so as to embed the capacitor element 3. I have. FIG. 3 shows the case 2 and the capacitor element 3 in an exploded manner. As described above, in the capacitor 1 mounted on the vehicle, in addition to the heat generation of the capacitor element 3, the ambient temperature in the engine room where the capacitor 1 is arranged is relatively high (100° or more in one example). ), forced cooling using a refrigerant is required. As the refrigerant, for example, liquid-phase refrigerant such as cooling water containing water as a main component or mineral oil is used.
 ケース2は、金属好ましくは熱伝導に優れた金属から形成されており、例えば、アルミニウム合金母材の切削加工あるいはアルミニウムダイキャストによって一体に形成されている。ケース2は、直方体を構成する6面の中の主面(最も大きな面)の一つが開口した箱状をなす。すなわち、ケース2は、長手方向の両端の端面を構成する一対の端部壁11と、長手方向に沿った側面を構成する一対の側壁12と、主面の一つである底面を構成する一つの底壁13と、この底壁13に対向する開口面14と、を備えている。 The case 2 is made of metal, preferably metal with excellent heat conductivity, and is integrally formed, for example, by cutting an aluminum alloy base material or by aluminum die casting. The case 2 has a box shape with one main surface (largest surface) of six surfaces forming a rectangular parallelepiped being open. That is, the case 2 includes a pair of end walls 11 forming end surfaces at both ends in the longitudinal direction, a pair of side walls 12 forming side surfaces along the longitudinal direction, and a bottom surface which is one of the main surfaces. It has a bottom wall 13 and an opening surface 14 facing the bottom wall 13 .
 上記開口面14の周囲には、該開口面14と同一の平面に沿って外側へ延びた取付フランジ15が一体に形成されている。取付フランジ15は開口面14の四辺に沿って連続しており、その外周縁は開口面14と相似形となる長方形をなしている。また取付フランジ15は、図示せぬ取付ネジが貫通する複数の貫通孔16(図2(a)参照)を備えている。このように取付フランジ15を有するケース2は、図3に示すように、直方体形状の凹部17を有する矩形の深皿状をなす。以下では、取付フランジ15を除いたケース2の部分を「箱状部分」と呼ぶ。箱状部分の内側に構成された凹部17は、長手方向に直交する方向に沿った幅寸法に比較して深さが小さい扁平な直方体形状をなす。 A mounting flange 15 extending outward along the same plane as the opening surface 14 is integrally formed around the opening surface 14 . The mounting flange 15 is continuous along the four sides of the opening surface 14 and has a rectangular outer peripheral edge that is similar to the opening surface 14 . The mounting flange 15 also has a plurality of through holes 16 (see FIG. 2(a)) through which mounting screws (not shown) pass. As shown in FIG. 3, the case 2 having the mounting flange 15 in this way has a rectangular deep dish shape with a rectangular parallelepiped concave portion 17 . The portion of the case 2 excluding the mounting flange 15 is hereinafter referred to as a "box-shaped portion". The concave portion 17 formed inside the box-shaped portion has a flattened rectangular parallelepiped shape whose depth is smaller than the width dimension along the direction orthogonal to the longitudinal direction.
 なお、取付フランジ15は、板材から枠状に形成した部材をケース2の箱状部分に溶接ないしろう付け等によって取り付けるようにしてもよい。 The mounting flange 15 may be a frame-shaped member formed from a plate material and mounted on the box-shaped portion of the case 2 by welding, brazing, or the like.
 一対の側壁12および底壁13の表面には、ケース2の長手方向に沿って直線状に延びた冷却フィン18が多数形成されている。例えば、側壁12および底壁13の全面に、等ピッチで多数の冷却フィン18が並んで形成されている。 A large number of cooling fins 18 linearly extending along the longitudinal direction of the case 2 are formed on the surfaces of the pair of side walls 12 and the bottom wall 13 . For example, a large number of cooling fins 18 are formed side by side on the entire surfaces of the side wall 12 and the bottom wall 13 at equal pitches.
 ケース2の凹部17内に収容されるコンデンサ素子3は、図3に示すように、ケース2の横断面形状に対応して長円形に扁平化した巻回型のフィルムコンデンサからなる。例えば、ポリプロピレンやポリエチレンテレフタレート等の樹脂フィルムを誘電体とし、金属箔ないし樹脂フィルムにコーティングにより形成される金属層を電極として、偏平なロール状に巻回した一般的な構成のフィルムコンデンサが用いられる。図示例では、2個のフィルムコンデンサが一列に並んだ形に予め一体化されており、その両端に端子5a,5bを備えている。つまり、2つの端子5a,5bは、全体として細長い形に構成されたコンデンサ素子3の長手方向両端部に互いに離れて位置しており、かつ互いに平行に延びている。 The capacitor element 3 accommodated in the recess 17 of the case 2 is, as shown in FIG. For example, a film capacitor having a general configuration is used, in which a resin film such as polypropylene or polyethylene terephthalate is used as a dielectric, and a metal layer formed by coating a metal foil or resin film is used as an electrode, and the film capacitor is wound in a flat roll shape. . In the illustrated example, two film capacitors are integrated in advance in a row, and terminals 5a and 5b are provided at both ends thereof. That is, the two terminals 5a and 5b are located apart from each other at both ends in the longitudinal direction of the capacitor element 3, which is formed in an elongated shape as a whole, and extend parallel to each other.
 上記コンデンサ素子3は、放熱性を高めるために、一般的な円筒形ケースを具備していない。つまり、フィルムを巻回して端子5a,5b等を付加したフィルムコンデンサが、円筒形ケース内に収容されることなくケース2の中に格納されている。なお、フィルムコンデンサにおけるフィルムの巻回の中心軸線は、ケース2の長手方向に沿っている。 The capacitor element 3 does not have a general cylindrical case in order to improve heat dissipation. In other words, the film capacitor with the terminals 5a, 5b and the like wound around the film is housed in the case 2 without being housed in the cylindrical case. The central axis of winding of the film in the film capacitor extends along the longitudinal direction of the case 2 .
 上記コンデンサ素子3は、一対の端子5a,5bが開口面14から突出した姿勢でもってケース2の凹部17の中に配置されている。そして、ケース2の凹部17の中には、上記コンデンサ素子3が端子5a,5bを残して埋まるように熱伝導性ならびに絶縁性を有するポッティング材4が充填されている。このポッティング材4は、ケース2の内容積のほぼ全体に充填されており、凹部17に充填されたポッティング材4の表面がケース2の取付フランジ15とほぼ同一面をなしている。なお、後述の図4,図5に示すように、コンデンサ素子3は周囲がポッティング材4によって囲まれており、ケース2の内壁面には直接には接していない。 The capacitor element 3 is arranged in the recess 17 of the case 2 with the pair of terminals 5 a and 5 b projecting from the opening surface 14 . The recess 17 of the case 2 is filled with a potting material 4 having thermal conductivity and insulation so that the capacitor element 3 is filled with the terminals 5a and 5b. The potting material 4 fills substantially the entire internal volume of the case 2 , and the surface of the potting material 4 filled in the recess 17 is substantially flush with the mounting flange 15 of the case 2 . As shown in FIGS. 4 and 5 described later, the capacitor element 3 is surrounded by a potting material 4 and is not in direct contact with the inner wall surface of the case 2 .
 ポッティング材4としては、例えば回路基板用ポッティング材として一般に市販されているエポキシ系ポッティング材等を用いることができる。このポッティング材4は、未硬化時に適宜な流動性を有する液状をなし、充填ないし注入後に加熱炉等で加熱することにより硬化する。ポッティング材4として、主剤と硬化剤とを混合して用いる二液混合型のものであってもよい。 As the potting material 4, for example, an epoxy-based potting material that is generally commercially available as a potting material for circuit boards can be used. The potting material 4 is in a liquid state having appropriate fluidity when not cured, and is cured by heating in a heating furnace or the like after being filled or injected. The potting material 4 may be of a two-liquid mixing type that uses a mixture of a main agent and a curing agent.
 上記のように構成されたコンデンサ1は、図1に示すように、インバータ装置の筐体21に形成された取付溝部22に直接に取り付けられて用いられる。筐体21は、インバータ装置の他の構成要素の少なくともいくつかを収容するものであって、金属あるいは硬質合成樹脂等から構成することができ、好ましい実施例では、放熱性に優れたアルミニウム合金のダイキャストからなる。筐体21の内部には、冷却水や鉱油等の冷媒が通流する冷媒通路23が形成されており、この冷媒通路23の通路途中にいわゆる集水枡状に矩形の取付溝部22が形成されている。すなわち、取付溝部22は、主面の1つが開口面となった直方体形状をなす凹部であり、一対の端面22aと一対の側面22bと底面22cとを有する。図上方の開口面の周囲には、シール材となるOリング(図示せず)を収容するシール溝24が全周に亘って形成されているとともに、前述した取付フランジ15の貫通孔16に対応する位置にそれぞれネジ孔25が設けられている。 The capacitor 1 configured as described above is used by being directly attached to the attachment groove 22 formed in the housing 21 of the inverter device, as shown in FIG. The housing 21 accommodates at least some of the other components of the inverter device, and can be made of metal, hard synthetic resin, or the like. Consists of die-cast. A coolant passage 23 through which a coolant such as cooling water or mineral oil flows is formed inside the housing 21, and a rectangular attachment groove 22 is formed in the middle of the coolant passage 23 in the shape of a so-called water collecting trough. ing. That is, the mounting groove portion 22 is a recess having a rectangular parallelepiped shape with one of the main surfaces being an opening surface, and has a pair of end surfaces 22a, a pair of side surfaces 22b, and a bottom surface 22c. A seal groove 24 for accommodating an O-ring (not shown) serving as a sealing material is formed around the opening surface in the upper part of the figure, and corresponds to the through hole 16 of the mounting flange 15 described above. A screw hole 25 is provided at each position.
 取付溝部22は、ケース2の箱状部分とほぼ相似形をなし、かつケース2の箱状部分よりも相対的に大きな寸法を有している。また、取付溝部22の長手方向両端の各々の端面22aの中央には、それぞれ冷媒通路23の先端が円形のポートとして開口している。互いに対向する一対のポートの一方が取付溝部22に対する冷媒の入口となり、他方が取付溝部22からの冷媒の出口となる。 The mounting groove portion 22 has a shape substantially similar to the box-shaped portion of the case 2 and has relatively larger dimensions than the box-shaped portion of the case 2 . At the center of each end surface 22a at both ends of the mounting groove 22 in the longitudinal direction, the tip of the coolant passage 23 is opened as a circular port. One of the pair of ports facing each other serves as an inlet for the coolant to the mounting groove portion 22 and the other serves as an outlet for the coolant from the mounting groove portion 22 .
 コンデンサ1は、ケース2の箱状部分が取付溝部22内に位置し、かつ取付フランジ15が取付溝部22の開口縁上面に重なった形で筐体21に取り付けられる。すなわち、ケース2の箱状部分を取付溝部22の開口面を通して取付溝部22内に嵌め込むことによって所定位置に配置され、取付フランジ15が複数のネジ(図示せず)によって筐体21に固定される。取付フランジ15と筐体21との間は、シール溝24に配置されるOリング(図示せず)によってシールされる。 The capacitor 1 is mounted on the housing 21 in such a manner that the box-shaped portion of the case 2 is positioned within the mounting groove 22 and the mounting flange 15 overlaps the upper surface of the opening edge of the mounting groove 22 . That is, the box-shaped portion of the case 2 is fitted into the mounting groove portion 22 through the opening surface of the mounting groove portion 22 so as to be placed in a predetermined position, and the mounting flange 15 is fixed to the housing 21 by a plurality of screws (not shown). be. An O-ring (not shown) arranged in a seal groove 24 seals between the mounting flange 15 and the housing 21 .
 筐体21の冷媒通路23には、図外のポンプにより液相冷媒が強制的に通流する。図4,図5は、取付溝部22内にコンデンサ1を取り付けた状態でのコンデンサ1の長手方向に沿った断面図であり、冷媒の流れを矢印で示してある。図示するように、ケース2の箱状部分の外形寸法が取付溝部22内の内側寸法に比較して相対的に小さいことから、ケース2の外側面と取付溝部22の内側面との間に冷媒の流路となる隙間が残存する。詳しくは、ケース2の端部壁11と取付溝部22の端面22aとの間、ケース2の側壁12と取付溝部22の側面22bとの間、および、ケース2の底壁13と取付溝部22の底面22cとの間、にそれぞれ隙間つまり流路29が形成され、符号23aで示す一方のポートから符号23bで示す他方のポートへと冷媒が流れる。つまり、冷媒は、端子5a,5bが位置する開口面14側を除いた5面に沿って流れ、これら5面に囲まれたコンデンサ素子3をポッティング材4とともに効果的に冷却する。熱伝導性に優れたポッティング材4がコンデンサ素子3の表面およびケース2の内壁面にそれぞれ密着しており、ケース2を介して冷媒に確実に熱が伝達されるので、効果的な熱の回収がなされる。さらにケース2が冷却フィン18を備えることでケース2と冷媒との間の熱交換面積が大きくなり、ケース2から冷媒への熱伝達が向上する。 A liquid-phase refrigerant is forced to flow through the refrigerant passage 23 of the housing 21 by a pump (not shown). 4 and 5 are cross-sectional views along the longitudinal direction of the condenser 1 in a state in which the condenser 1 is mounted in the mounting groove 22, and arrows indicate the flow of the refrigerant. As shown in the figure, the outer dimensions of the box-shaped portion of the case 2 are relatively smaller than the inner dimensions of the mounting groove 22 , so that the coolant is not trapped between the outer surface of the case 2 and the inner surface of the mounting groove 22 . There remains a gap that serves as a flow path for Specifically, between the end wall 11 of the case 2 and the end surface 22a of the mounting groove 22, between the side wall 12 of the case 2 and the side surface 22b of the mounting groove 22, and between the bottom wall 13 of the case 2 and the mounting groove 22 Between them and the bottom surface 22c, gaps or flow paths 29 are formed, respectively, and the coolant flows from one port indicated by reference numeral 23a to the other port indicated by reference numeral 23b. That is, the coolant flows along the five surfaces excluding the opening surface 14 side where the terminals 5 a and 5 b are located, effectively cooling the capacitor element 3 surrounded by these five surfaces together with the potting material 4 . The potting material 4 with excellent thermal conductivity is in close contact with the surface of the capacitor element 3 and the inner wall surface of the case 2, respectively, and the heat is reliably transferred to the refrigerant through the case 2, thus effectively recovering the heat. is done. Furthermore, since the case 2 is provided with the cooling fins 18, the heat exchange area between the case 2 and the refrigerant is increased, and the heat transfer from the case 2 to the refrigerant is improved.
 ポッティング材4は、熱伝導に加えて、コンデンサ素子3とケース2との間の絶縁にも寄与する。換言すれば、コンデンサ素子3とケース2との間を絶縁しつつ熱伝導性が向上する。フィルムコンデンサからなるコンデンサ素子3は、上述したように円筒形ケースを具備することなくケース2の中に収容されており、ポッティング材4によって絶縁され、かつ保護されている。従って、冷媒との間で熱抵抗となる中間の部材が最小限であり、耐熱性が問題となるフィルムコンデンサからなるコンデンサ素子3の熱を冷媒に効果的に回収できる。 The potting material 4 contributes to insulation between the capacitor element 3 and the case 2 in addition to heat conduction. In other words, thermal conductivity is improved while insulation is provided between the capacitor element 3 and the case 2 . Capacitor element 3 made of a film capacitor is accommodated in case 2 without a cylindrical case as described above, and is insulated and protected by potting material 4 . Therefore, the number of intermediate members that become thermal resistance with the refrigerant is minimized, and the heat of the capacitor element 3, which is a film capacitor whose heat resistance is a problem, can be effectively recovered to the refrigerant.
 一方、筐体21がコンデンサ素子3よりも高温となった場合においては、コンデンサ素子3のほぼ全体が冷媒の流路29によって囲まれていることから、コンデンサ素子3に対する熱的影響が少なくなる。つまり、筐体21とケース2との間が冷媒の流路29によって実質的に断熱されることとなり、ケース2の温度ひいてはコンデンサ素子3の温度が低く維持される。 On the other hand, when the temperature of the housing 21 becomes higher than that of the capacitor element 3, almost the entire capacitor element 3 is surrounded by the coolant channel 29, so the thermal effect on the capacitor element 3 is reduced. In other words, the space between the housing 21 and the case 2 is substantially insulated by the refrigerant flow path 29, and the temperature of the case 2, and thus the temperature of the capacitor element 3, is kept low.
 このように上記実施例のコンデンサ1は、インバータ装置の筐体21に設けた冷媒が流れる取付溝部22にケース2の箱状部分を嵌め込んで用いるようにしたので、強制冷却が必要なコンデンサ1を部品点数の少ない簡単な構成としつつコンデンサ素子3の確実な冷却が図れる。またケース2の一部となる取付フランジ15がコンデンサ1の筐体21に対する支持機能を果たすと同時に、取付溝部22を覆うカバーないしシール部としても機能する。つまり、取付溝部22を覆う別体のカバー等が不要であり、コンデンサ1を取付溝部22に装着するだけで取付溝部22を封止状態とすることができる。 As described above, the capacitor 1 of the above-described embodiment is used by fitting the box-shaped portion of the case 2 into the mounting groove 22 provided in the housing 21 of the inverter device through which the refrigerant flows. , the capacitor element 3 can be reliably cooled while maintaining a simple structure with a small number of parts. The mounting flange 15, which is a part of the case 2, also functions as a cover or a seal for covering the mounting groove 22, while supporting the housing 21 of the capacitor 1. As shown in FIG. In other words, there is no need for a separate cover or the like to cover the mounting groove portion 22 , and the mounting groove portion 22 can be sealed simply by mounting the capacitor 1 in the mounting groove portion 22 .
 図6および図7は、上記実施例のコンデンサ1を半導体スイッチング素子とともに備えたインバータ装置の第1実施例を示している。この実施例においては、インバータ装置の筐体21は、直列に液相冷媒が流れる2つの取付溝部を備えている。すなわち、上述したコンデンサ1用の取付溝部22(以下、これを便宜上、第1取付溝部22と呼ぶ)と、半導体スイッチング素子用の第2取付溝部31と、が互いに並行するように隣接して形成されている。そして、冷媒通路23として、入口冷媒通路23Aと、出口冷媒通路23Bと、中間冷媒通路23Cと、を備えている。入口冷媒通路23Aは、第2取付溝部31の長手方向の一端に接続されている。出口冷媒通路23Bは、第1取付溝部22の長手方向の一端に接続されている。そして、第2取付溝部31の他端と第1取付溝部22の他端との間に中間冷媒通路23Cが設けられている。従って、図外のポンプにより送られる冷媒は、第2取付溝部31を通過した後に中間冷媒通路23Cを介して第1取付溝部22へ案内され、該第1取付溝部22を通過する。つまり第2取付溝部31から第1取付溝部22へと直列に冷媒が流れる。 6 and 7 show a first embodiment of an inverter device including the capacitor 1 of the above embodiment together with semiconductor switching elements. In this embodiment, the housing 21 of the inverter device has two mounting grooves through which the liquid-phase refrigerant flows in series. That is, the mounting groove portion 22 for the capacitor 1 described above (hereinafter referred to as the first mounting groove portion 22 for convenience) and the second mounting groove portion 31 for the semiconductor switching element are formed adjacent to each other in parallel. It is As the refrigerant passage 23, an inlet refrigerant passage 23A, an outlet refrigerant passage 23B, and an intermediate refrigerant passage 23C are provided. The inlet coolant passage 23A is connected to one longitudinal end of the second mounting groove portion 31 . The outlet coolant passage 23B is connected to one longitudinal end of the first mounting groove portion 22 . An intermediate refrigerant passage 23</b>C is provided between the other end of the second mounting groove portion 31 and the other end of the first mounting groove portion 22 . Therefore, the refrigerant sent by the pump (not shown) passes through the second mounting groove portion 31, is guided to the first mounting groove portion 22 via the intermediate refrigerant passage 23C, and passes through the first mounting groove portion 22. FIG. That is, the coolant flows in series from the second mounting groove portion 31 to the first mounting groove portion 22 .
 図示例では、各冷媒通路23A,23B,23Cの通路長の一部が外部配管として描かれているが、いずれも筐体21の内部を通る内部通路として構成することも可能である。 In the illustrated example, part of the passage length of each of the refrigerant passages 23A, 23B, and 23C is drawn as external pipes, but it is also possible to construct all of them as internal passages passing through the interior of the housing 21.
 半導体スイッチング素子としては、例えば、IGBTモジュールが用いられている。詳しくは、U,V,W各相の計6個のアームを1個のパッケージ内に構成したいわゆる「6in1」型のIGBTモジュールによって、矩形状の半導体素子ユニット33が構成されている。図8は、半導体素子ユニット33の裏面の構成を示しており、この図8に示すように、「6in1」型のIGBTモジュールからなる半導体素子ユニット33は、矩形の板状をなす底板部34を有し、この底板部34には冷媒との熱交換を促進するために多数のピン型フィン35が形成されている。また底板部34の周囲に、図示しない取付ネジが貫通する複数の貫通孔36が設けられている。 For example, an IGBT module is used as a semiconductor switching element. Specifically, a rectangular semiconductor element unit 33 is configured by a so-called "6 in 1" type IGBT module in which a total of six arms of U, V, and W phases are configured in one package. FIG. 8 shows the configuration of the back surface of the semiconductor element unit 33. As shown in FIG. 8, the semiconductor element unit 33 made up of a "6 in 1" type IGBT module has a bottom plate portion 34 having a rectangular plate shape. A large number of pin-shaped fins 35 are formed on the bottom plate portion 34 to promote heat exchange with the refrigerant. A plurality of through holes 36 through which mounting screws (not shown) pass are provided around the bottom plate portion 34 .
 半導体素子ユニット33が取り付けられる第2取付溝部31は、基本的には第1取付溝部22と同様に構成されており、インバータ装置の筐体21の上面において第1取付溝部22と平行に並ぶようにして矩形に開口している。半導体素子ユニット33は、この第2取付溝部31の開口を底板部34が覆うように取り付けられ、貫通孔36を通る図示しない取付ネジによって筐体21に固定されている。図7に示すように、第2取付溝部31の開口の周囲にはシール材となるOリング(図示せず)を収容するシール溝37が全周に亘って形成されており、ここに配置されるOリングによって第2取付溝部31と半導体素子ユニット33との間がシールされている。 The second mounting groove portion 31 to which the semiconductor element unit 33 is mounted is basically configured in the same manner as the first mounting groove portion 22, and is aligned parallel to the first mounting groove portion 22 on the upper surface of the housing 21 of the inverter device. It has a rectangular opening. The semiconductor element unit 33 is mounted so that the bottom plate part 34 covers the opening of the second mounting groove part 31 , and is fixed to the housing 21 by mounting screws (not shown) passing through the through holes 36 . As shown in FIG. 7, a seal groove 37 for accommodating an O-ring (not shown) serving as a sealing material is formed around the opening of the second mounting groove portion 31 over the entire circumference. The space between the second mounting groove portion 31 and the semiconductor element unit 33 is sealed by an O-ring.
 図9は、筐体21の第2取付溝部31の長手方向に沿った断面を示し、図10は、半導体素子ユニット33を取り付けた状態での同様の断面を示している。これらの断面図に示すように、コンデンサ1とは異なり、半導体素子ユニット33は、ピン型フィン35のみが第2取付溝部31の中に嵌め込まれており、IGBTモジュールの大部分は底板部34から上方へ露出している。そのため、第2取付溝部31は、長手方向両端部を除き、底面31aの位置が浅くなるように台状部31bを備えている。換言すれば、冷媒通路23A,23Cの先端が円形のポートとして開口する長手方向両端部が部分的に深くなった構成となっている。底面31aの高さは、ピン型フィン35の先端位置にほぼ対応している。このように浅くなっていることで、半導体素子ユニット33の底面に沿って流れるように冷媒が案内され、冷媒の流れがピン型フィン35と衝突することで、良好な熱交換がなされる。 9 shows a cross section along the longitudinal direction of the second mounting groove 31 of the housing 21, and FIG. 10 shows a similar cross section with the semiconductor element unit 33 mounted. As shown in these cross-sectional views, unlike the capacitor 1 , in the semiconductor element unit 33 , only the pin-shaped fins 35 are fitted into the second mounting grooves 31 , and most of the IGBT module extends from the bottom plate 34 . exposed upwards. For this reason, the second mounting groove portion 31 is provided with a pedestal portion 31b so that the bottom surface 31a is shallow except for both ends in the longitudinal direction. In other words, both ends of the coolant passages 23A and 23C in the longitudinal direction opening as circular ports are partially deepened. The height of the bottom surface 31a substantially corresponds to the tip position of the pin-type fin 35. As shown in FIG. Such shallowness guides the coolant to flow along the bottom surface of the semiconductor element unit 33, and the coolant flow collides with the pin-type fins 35, thereby performing good heat exchange.
 このように、上記実施例のコンデンサ1を用いることで、インバータ装置の筐体21に半導体素子ユニット33とともに並べて配置することが可能となり、コンデンサ1および半導体素子ユニット33を含むインバータ装置全体を小型に構成することができる。 In this way, by using the capacitor 1 of the above-described embodiment, it becomes possible to arrange it side by side with the semiconductor element unit 33 in the housing 21 of the inverter device. Can be configured.
 次に、図11および図12は、コンデンサ1と半導体素子ユニット33とを備えたインバータ装置の第2実施例を示している。この第2実施例は、冷媒の流れに関して相対的に上流側に第1取付溝部22ならびにコンデンサ1を配置し、相対的に下流側に第2取付溝部31ならびに半導体素子ユニット33を配置したものである。すなわち、図外のポンプにより送られる冷媒は、入口冷媒通路23Aから第2取付溝部31へ案内され、コンデンサ1を冷却した後に、中間冷媒通路23Cを通して第1取付溝部22へ案内され、半導体素子ユニット33を冷却する。  Next, Figs. 11 and 12 show a second embodiment of an inverter device comprising a capacitor 1 and a semiconductor element unit 33. Figs. In this second embodiment, the first mounting groove 22 and the capacitor 1 are arranged relatively upstream with respect to the flow of the coolant, and the second mounting groove 31 and the semiconductor element unit 33 are arranged relatively downstream. be. That is, the refrigerant sent by a pump (not shown) is guided from the inlet refrigerant passage 23A to the second mounting groove portion 31, cools the condenser 1, and is guided through the intermediate refrigerant passage 23C to the first mounting groove portion 22, whereupon the semiconductor element unit 33 is cooled.
 他の構成は、前述した第1実施例と特に変わりがないので、その説明は省略する。この第2実施例では、コンデンサ1が優先的に冷却されることとなる。第1実施例のような流路構成とするか第2実施例のような流路構成とするかは、コンデンサ1および半導体素子ユニット33の各々の発熱量や耐熱性等を考慮して選択することができる。 Other configurations are not particularly different from the first embodiment described above, so description thereof will be omitted. In this second embodiment, the condenser 1 is preferentially cooled. Whether to use the flow path configuration like the first embodiment or the flow path configuration like the second embodiment is selected in consideration of the calorific value and heat resistance of each of the capacitor 1 and the semiconductor element unit 33. be able to.

Claims (5)

  1.  一つの面が開口面となった箱状をなし、かつ上記開口面の周囲に、外側へ延びた取付フランジを備えたケースと、
     上記開口面を通して上記ケースの中に配置され、端子が上記開口面に位置するコンデンサ素子と、
     上記コンデンサ素子が上記端子を残して埋まるように上記ケースの中に充填された熱伝導性ポッティング材と、
     を備えて構成され、
     インバータ装置の筐体に設けられた冷媒が流れる取付溝部内に上記ケースの箱状部分を嵌め込んで用いられるコンデンサ。
    a box-shaped case having an opening on one side and a mounting flange extending outward around the opening;
    a capacitor element disposed in the case through the opening surface and having a terminal positioned on the opening surface;
    a thermally conductive potting material filled in the case so that the capacitor element is buried leaving the terminals;
    configured with
    A capacitor used by fitting the box-shaped portion of the case into a mounting groove provided in a housing of an inverter device through which a coolant flows.
  2.  上記ケースは、当該ケースの外側面と上記取付溝部の内側面との間に冷媒の流路となる隙間が残存するように寸法が設定されており、
     このケースの外側の少なくとも一つの面には、冷媒の流れの方向に沿ったフィンが形成されている、請求項1に記載のコンデンサ。
    The dimensions of the case are set so that a gap that serves as a coolant flow path remains between the outer surface of the case and the inner surface of the mounting groove,
    2. The condenser according to claim 1, wherein at least one outer surface of the case is formed with fins along the direction of coolant flow.
  3.  上記取付フランジは、シール材を介して上記取付溝部の開口周縁部にネジ止めされる、請求項1または2に記載のコンデンサ。 The capacitor according to claim 1 or 2, wherein the mounting flange is screwed to the peripheral edge of the opening of the mounting groove via a sealing material.
  4.  内部を冷媒が流れるようにインバータ装置の筐体の一部に形成され、かつ該筐体の表面に開口した取付溝部と、
     一つの面が開口面となった箱状をなし、かつ上記開口面の周囲に、外側へ延びた取付フランジを備え、流路となる隙間を残して上記取付溝部内に嵌め込まれているとともに上記取付フランジが上記筐体に固定されたケースと、
     上記開口面を通して上記ケースの中に配置されており、端子が上記開口面に位置するコンデンサ素子と、
     上記コンデンサ素子が上記端子を残して埋まるように上記ケースの中に充填された熱伝導性ポッティング材と、
     を備えたインバータ装置。
    a mounting groove that is formed in a part of the housing of the inverter device so that the coolant flows through the interior and that is open to the surface of the housing;
    It has a box-like shape with an opening on one side, and is provided with a mounting flange extending outward around the opening, and is fitted into the mounting groove with a gap serving as a flow path. a case in which a mounting flange is fixed to the housing;
    a capacitor element disposed in the case through the opening surface and having a terminal located in the opening surface;
    a thermally conductive potting material filled in the case so that the capacitor element is buried leaving the terminals;
    Inverter device with
  5.  上記筐体に、上記のコンデンサ素子用の取付溝部と直列に冷媒が流れるように第2の取付溝部が形成されており、
     半導体素子ユニットがその周囲に冷媒が流れるように上記第2の取付溝部に嵌め込まれている、
     請求項4に記載のインバータ装置。
    A second mounting groove is formed in the housing so that the refrigerant flows in series with the mounting groove for the capacitor element,
    The semiconductor element unit is fitted in the second mounting groove so that the coolant flows around it.
    The inverter device according to claim 4.
PCT/JP2022/004790 2021-05-20 2022-02-08 Capacitor and inverter device WO2022244337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280035761.3A CN117321712A (en) 2021-05-20 2022-02-08 Capacitor and inverter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085170 2021-05-20
JP2021085170A JP7124929B1 (en) 2021-05-20 2021-05-20 Inverter device

Publications (1)

Publication Number Publication Date
WO2022244337A1 true WO2022244337A1 (en) 2022-11-24

Family

ID=83004351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004790 WO2022244337A1 (en) 2021-05-20 2022-02-08 Capacitor and inverter device

Country Status (3)

Country Link
JP (1) JP7124929B1 (en)
CN (1) CN117321712A (en)
WO (1) WO2022244337A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082822A (en) * 2012-10-15 2014-05-08 Hitachi Automotive Systems Ltd Power conversion apparatus
JP2015183525A (en) * 2014-03-20 2015-10-22 三菱重工オートモーティブサーマルシステムズ株式会社 Inverter integrated type electric compressor
JP2020058214A (en) * 2018-09-28 2020-04-09 株式会社明電舎 Capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338432B1 (en) * 2011-08-10 2013-12-10 현대자동차주식회사 Inverter for vehicle
JP2017017862A (en) * 2015-07-01 2017-01-19 日立オートモティブシステムズ株式会社 Electric power converter
JP2020124071A (en) * 2019-01-31 2020-08-13 株式会社明電舎 Power conversion device
JP2021044861A (en) * 2019-09-06 2021-03-18 本田技研工業株式会社 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082822A (en) * 2012-10-15 2014-05-08 Hitachi Automotive Systems Ltd Power conversion apparatus
JP2015183525A (en) * 2014-03-20 2015-10-22 三菱重工オートモーティブサーマルシステムズ株式会社 Inverter integrated type electric compressor
JP2020058214A (en) * 2018-09-28 2020-04-09 株式会社明電舎 Capacitor

Also Published As

Publication number Publication date
JP2022178397A (en) 2022-12-02
CN117321712A (en) 2023-12-29
JP7124929B1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
US11158461B2 (en) Capacitor
JP6384609B2 (en) Power semiconductor module and cooler
JP5737275B2 (en) Inverter device
JP6710283B2 (en) Power converter
US11839068B2 (en) Electric power converter
JP2007165620A (en) Semiconductor cooling structure
JP5664472B2 (en) Power converter
JP6324457B2 (en) Electrical equipment
JP5267238B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2022244337A1 (en) Capacitor and inverter device
US11652019B2 (en) Heat dissipation structure
CN108569125B (en) Electric drive system and motor vehicle comprising said electric drive system
US10607919B2 (en) Semiconductor package having junction cooling pipes embedded in substrates
US11195650B2 (en) Reactor
JP6190914B1 (en) Electric equipment with refrigerant flow path
JP2005197562A (en) Power conversion apparatus
JP7366077B2 (en) power converter
WO2023032844A1 (en) Power conversion device and drive device
WO2022215358A1 (en) Casing and power conversion device
WO2023228417A1 (en) Heat dissipation structure for semiconductor device
US20230309275A1 (en) Power conversion device
JP6724613B2 (en) Semiconductor device
CN116157917A (en) Power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035761.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804259

Country of ref document: EP

Kind code of ref document: A1