WO2022244190A1 - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
WO2022244190A1
WO2022244190A1 PCT/JP2021/019172 JP2021019172W WO2022244190A1 WO 2022244190 A1 WO2022244190 A1 WO 2022244190A1 JP 2021019172 W JP2021019172 W JP 2021019172W WO 2022244190 A1 WO2022244190 A1 WO 2022244190A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
moc
cutting tool
group
less
Prior art date
Application number
PCT/JP2021/019172
Other languages
French (fr)
Japanese (ja)
Inventor
治世 福井
大二 田林
桃子 飯田
大勢 田中
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to PCT/JP2021/019172 priority Critical patent/WO2022244190A1/en
Priority to EP22804264.4A priority patent/EP4306246A1/en
Priority to JP2022542762A priority patent/JP7305054B2/en
Priority to PCT/JP2022/005116 priority patent/WO2022244342A1/en
Publication of WO2022244190A1 publication Critical patent/WO2022244190A1/en
Priority to JP2023103471A priority patent/JP2023118793A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material

Definitions

  • the present disclosure relates to cutting tools.
  • Patent Document 1 discloses a cutting tool having a coating comprising a WC 1-x layer disposed on a substrate.
  • a cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
  • the coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
  • the x is 0.40 or more and 0.60 or less
  • the compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
  • FIG. 1 is a perspective view illustrating one mode of a cutting tool.
  • FIG. 2 is a schematic cross-sectional view of a cutting tool in one aspect of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment.
  • FIG. 4 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment.
  • a cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
  • the coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
  • the x is 0.40 or more and 0.60 or less
  • the compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
  • the MoC 1-x layer preferably does not contain free carbon. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the MoC 1-x layer preferably has a film hardness of 2700 mgf/ ⁇ m 2 or more and 4200 mgf/ ⁇ m 2 or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the cutting tool can have excellent fracture resistance and wear resistance.
  • the coating further comprises a hard coating layer disposed between the substrate and the MoC 1-x layer;
  • the hard coating layer includes a first unit layer,
  • the composition of the first unit layer is different from the composition of the MoC 1-x layer,
  • the first unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, It is preferably composed of a compound consisting of at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • the chipping resistance and wear resistance of the cutting tool are improved.
  • the hard coating layer is composed of the first unit layer;
  • the thickness of the first unit layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the chipping resistance and wear resistance of the cutting tool are improved.
  • the hard coating layer further includes a second unit layer,
  • the composition of the second unit layer is different from the composition of the MoC 1-x layer and the composition of the first unit layer,
  • the second unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, A compound consisting of at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron, It is preferable that the first unit layer and the second unit layer each form a multi-layer structure in which one or more layers are alternately laminated.
  • the chipping resistance and wear resistance of the cutting tool are improved.
  • the first unit layer has a thickness of 1 nm or more and 100 nm or less;
  • the thickness of the second unit layer is preferably 1 nm or more and 100 nm or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the MoC 1-x layer has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less;
  • the thickness of the hard coating layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the thickness of the coating is preferably 0.2 ⁇ m or more and 20 ⁇ m or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the base material preferably contains at least one selected from the group consisting of cemented carbide, cermet, high-speed steel, ceramics, cBN sintered bodies and diamond sintered bodies. According to this, the cutting tool can have excellent hardness and strength even at high temperatures.
  • a compound or the like when represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range.
  • TiAlN when “TiAlN" is described, the ratio of the number of atoms constituting TiAlN includes all conventionally known atomic ratios.
  • a cutting tool includes a substrate and a coating disposed on the substrate,
  • the coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
  • the x is 0.40 or more and 0.60 or less
  • the compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
  • the cutting tool of the present embodiment (hereinafter sometimes simply referred to as "cutting tool") includes a base material and a coating disposed on the base material.
  • the cutting tools include drills, end mills, indexable cutting inserts for drills, indexable cutting inserts for end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, and gear cutting tools. , reamers, taps, and the like.
  • FIG. 1 is a perspective view illustrating one aspect of a cutting tool.
  • a cutting tool having such a shape is used, for example, as an indexable cutting tip.
  • the cutting tool 10 has a rake face 1, a flank face 2, and a cutting edge ridge 3 where the rake face 1 and the flank face 2 intersect. That is, the rake face 1 and the flank face 2 are surfaces connected with the cutting edge ridge 3 interposed therebetween.
  • the cutting edge ridge 3 constitutes the cutting edge of the cutting tool 10 .
  • Such a shape of the cutting tool 10 can also be grasped as the shape of the base material of the cutting tool. That is, the substrate has a rake face, a flank face, and a cutting edge ridge connecting the rake face and the flank face.
  • the base material is a cemented carbide (for example, a tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, a carbonitride such as Cr, Ti, Ta, Nb in addition to TaC).
  • a cemented carbide for example, a tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, a carbonitride such as Cr, Ti, Ta, Nb in addition to TaC).
  • cemented carbide, etc. cermet (mainly composed of TiC, TiN, TiCN, etc.), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic It preferably contains at least one selected from the group consisting of type boron nitride sintered bodies (cBN sintered bodies) and diamond sintered bodies, and at least one selected from the group consisting of cemented carbide, cermet and cBN sintered bodies It is more preferred to contain seeds.
  • cBN sintered bodies type boron nitride sintered bodies
  • diamond sintered bodies at least one selected from the group consisting of cemented carbide, cermet and cBN sintered bodies It is more preferred to contain seeds.
  • the effect of the present embodiment is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or ⁇ phase in the structure.
  • the base material used in this embodiment may have a modified surface.
  • a ⁇ -free layer may be formed on the surface, and in the case of cermet, a surface-hardened layer may be formed. The effect of is shown.
  • the substrate may or may not have a chip breaker.
  • the shape of the ridge line of the cutting edge is sharp edge (the ridge where the rake face and the flank face intersect), honing (sharp edge rounded shape), negative land (chamfered shape), and a combination of honing and negative land. any shape is included.
  • the "coating” according to the present embodiment covers at least a portion of the surface of the base material, thereby improving various properties of the cutting tool such as chipping resistance and wear resistance.
  • “at least a portion of the surface of the base material” includes a portion that comes into contact with the work material during cutting.
  • the portion in contact with the work material can be, for example, a region within 2 mm from the ridgeline of the cutting edge on the surface of the base material. It should be noted that even if a part of the base material is not covered with the coating or the composition of the coating is partially different, this does not depart from the scope of the present embodiment.
  • coating 4 may consist of MoC 1-x layer 12 .
  • the coating 4 can include a MoC 1-x layer 12 and a hard coating layer 13 disposed between the MoC 1-x layer 12 and the substrate 11.
  • Coating 4 may include other layers in addition to MoC 1-x layer 12 .
  • Other layers include, for example, an underlayer (not shown) placed between the MoC 1-x layer and the substrate, an intermediate layer (not shown) placed between the MoC 1-x layer and the hard coating layer ( (not shown), a surface layer (not shown) disposed over the MoC 1-x layer, and the like.
  • the thickness of the coating is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.2 ⁇ m or more and 20 ⁇ m or less, preferably 0.2 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 10 ⁇ m or less. It is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, even more preferably 1 ⁇ m or more and 6 ⁇ m or less, and particularly preferably 1.5 ⁇ m or more and 4 ⁇ m or less. When the thickness is 0.1 ⁇ m or more, the wear resistance of the cutting tool is improved.
  • the thickness of the coating means the sum of the thicknesses of the layers constituting the coating such as the MoC 1-x layer, the hard coating layer and the base layer.
  • the thickness of the coating is measured using a transmission electron microscope (TEM) at any three points in a cross-sectional sample parallel to the normal direction of the surface of the substrate, and the average thickness of the three measured points. Find by taking the value. The same is true when measuring the thickness of each of the MoC 1-x layer, the hard coating layer (first unit layer, second unit layer) and the underlying layer, which will be described later.
  • transmission electron microscopes include JEM-2100F (trademark), a spherical aberration corrector manufactured by JEOL Ltd.
  • the coating includes a MoC 1 -x layer consisting of a compound denoted MoC 1-x.
  • the “compound represented by MoC 1-x ” (hereinafter sometimes referred to as “MoC 1-x ”) means that when the element ratio of molybdenum element (Mo) is 1, the amount of carbon element (C) It means molybdenum carbide with an elemental ratio of 1-x.
  • the MoC 1-x layer may contain unavoidable impurities within a range that does not impair the effects of the cutting tool according to the present embodiment.
  • the content of the inevitable impurities is preferably 0% by mass or more and 0.2% by mass or less with respect to the total mass of the MoC 1-x layer.
  • the terms "hard coating layer” and “other layers” described later may also contain unavoidable impurities within a range that does not impair the effects of the cutting tool according to the present embodiment.
  • x is 0.40 or more and 0.60 or less, preferably 0.45 or more and 0.55 or less, and more preferably 0.50 or more and 0.55 or less.
  • x is less than 0.40, free carbon tends to precipitate at grain boundaries of MoC 1-x and the strength tends to decrease.
  • x exceeds 0.60, the strength of the grain boundary tends to decrease. Therefore, when x is outside the range of 0.40 or more and 0.60 or less, crack growth cannot be suppressed, and the toughness tends to be low. The present inventors presume that such a tendency is caused by an inappropriate balance between crystal homogeneity and strain.
  • the above x obtains a cross-sectional sample parallel to the normal direction of the surface of the substrate in the MoC 1-x layer, and scans the grains appearing in this cross-sectional sample with a scanning electron microscope (SEM) or TEM. It can be determined by analysis using an energy dispersive X-ray spectroscopy (EDX) device. Specifically, the value of x is obtained by measuring each of arbitrary three points in the MoC 1-x layer of the cross-sectional sample, and the average value of the values of the three points obtained is the MoC 1-x of the cross-sectional sample. Let x be in the layer. Here, for the “arbitrary three points”, three arbitrary 30 nm ⁇ 30 nm regions in the MoC 1-x layer are selected. Examples of the EDX apparatus include JED-2200 (trademark), a silicon drift detector manufactured by JEOL Ltd. The measurement conditions are as follows.
  • the compound represented by MoC 1-x has a hexagonal crystal structure.
  • the compound represented by MoC 1-x has a hexagonal crystal structure, which means that the percentage of the hexagonal crystal structure in the compound represented by MoC 1-x is 100% by mass, and other does not contain a crystal structure of the crystal form of
  • the compound represented by MoC 1-x has a hexagonal crystal structure, for example, by performing X-ray diffraction measurement (XRD measurement) on any three points in the MoC 1-x layer. is confirmed by When the compound represented by MoC 1-x has a hexagonal crystal structure, in XRD measurement, (100), (002), (101), (102), (111) ) and other crystal planes are observed.
  • Examples of the apparatus used for the X-ray diffraction measurement include "SmartLab” (trade name) manufactured by Rigaku Corporation and "X'pert” (trade name) manufactured by PANalytical. The measurement conditions are as follows.
  • FIG. 2 is a schematic cross-sectional view of a cutting tool in one aspect of the present embodiment.
  • the MoC 1-x layer 12 is in contact with the substrate 11, as shown in FIG.
  • the MoC 1-x layer 12 is preferably provided directly on the substrate 11 .
  • the MoC 1-x layer preferably contains no free carbon.
  • free carbon free includes not only the MoC 1-x layer containing no free carbon, but also the case where the free carbon is below the detection limit.
  • free carbon is meant carbon that exists as an element without being a constituent element of MoC 1-x .
  • XPS method X-ray photoelectron spectroscopy
  • the measurement is performed after removing the natural oxide layer by Ar 2 + sputtering or the like. If the MoC 1-x layer is not the outermost surface, the MoC 1-x layer is exposed by Ar 2 + sputtering or the like before measurement.
  • an apparatus used for the XPS method for example, Versa Probe III (trade name) manufactured by ULVAC-Phi, Inc. can be mentioned.
  • the measurement conditions are as follows.
  • the film hardness of the MoC 1-x layer is preferably 2700 mgf/ ⁇ m 2 or more and 4200 mgf/ ⁇ m 2 or less, more preferably 2700 mgf/ ⁇ m 2 or more and 4100 mgf/ ⁇ m 2 or less, and 2800 mgf/ ⁇ m 2 or more and 4000 mgf/ ⁇ m 2 or more. It is more preferably ⁇ m 2 or less.
  • the film hardness is measured with a nanoindenter. Specifically, first, arbitrary 10 points on the surface of the MoC 1-x layer are measured to obtain the film hardness. Thereafter, the average value of 10 points of film hardness obtained is defined as the film hardness of the MoC 1-x layer of the cross-sectional sample.
  • the MoC 1-x layer is not the outermost surface, the MoC 1-x layer is exposed by mechanical polishing or the like, and then the nanoindenter is used for measurement.
  • the nanoindenter include ENT1100 (trade name) manufactured by Elionix Co., Ltd. The measurement conditions are as follows.
  • the thickness of the MoC 1-x layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.1 ⁇ m or more and 7.0 ⁇ m or less, and still more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the coating further comprises a hard coating layer positioned between the substrate and the MoC 1-x layer.
  • the hard coating layer preferably includes a first unit layer.
  • the composition of the first unit layer is preferably different from the composition of the MoC 1-x layer.
  • "disposed between the substrate and the MoC 1-x layer” means that the hard coating layer is disposed between the substrate and the MoC 1-x layer, and the hard coating layer is It need not be in contact with the substrate and the MoC 1-x layer.
  • Other layers may be arranged between the substrate and the hardcoat layer, and other layers may be arranged between the hardcoat layer and the MoC 1-x layer.
  • the hard coating layer may be the outermost layer (surface layer).
  • the first unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, 6 It is preferably composed of a compound consisting of at least one element selected from the group consisting of group elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • the first unit layer contains at least one element selected from the group consisting of chromium, aluminum, titanium and silicon, or at least one element selected from the group consisting of chromium, aluminum, titanium and silicon, carbon and nitrogen. , and at least one element selected from the group consisting of oxygen and boron.
  • Group 4 elements of the periodic table include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. Vanadium (V), niobium (Nb), tantalum (Ta), etc. are mentioned as a periodic table V group element.
  • Group 6 elements of the periodic table include chromium (Cr), molybdenum (Mo), tungsten (W), and the like.
  • Examples of compounds contained in the first unit layer include TiAlN, TiAlSiCN, TiAlSiON, TiAlSiN, TiCrSiN, TiAlCrSiN, AlCrN, AlCrO, AlCrSiN, TiZrN, TiAlMoN, TiAlNbN, TiSiN, AlCrTaN, AlTiVN, TiB 2 , TiCrHfN, CrSiWN, TiAlCN, TiSiCN, AlZrON, AlCrCN, AlHfN, CrSiBON, CrAlBN, TiAlWN, AlCrMoCN, TiAlBN, TiAlCrSiBCNO, ZrN, ZrB 2 , ZrCN, CrSiBN, AlCrBN, and the like.
  • the thickness of the first unit layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. , 0.5 ⁇ m or more and 7 ⁇ m or less.
  • the hard coating layer further includes a second unit layer.
  • the composition of the second unit layer is preferably different from the composition of the MoC 1-x layer and the composition of the first unit layer.
  • the second unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, 6 It is preferably composed of a compound consisting of at least one element selected from the group consisting of group elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • the second unit layer contains at least one element selected from the group consisting of chromium, aluminum, titanium, and silicon, or at least one element selected from the group consisting of chromium, aluminum, titanium, and silicon, carbon, and nitrogen. , and at least one element selected from the group consisting of oxygen and boron.
  • Specific examples of the Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table include the elements described above.
  • Examples of the compound contained in the second unit layer include the above compounds exemplified as the compound contained in the first unit layer.
  • the first unit layer and the second unit layer form a multilayer structure in which one or more layers are alternately laminated. That is, as shown in FIG. 4, the hard coating layer 13 preferably includes a multi-layer structure consisting of a first unit layer 131 and a second unit layer 132. As shown in FIG. Here, lamination of the multilayer structure may start from either the first unit layer or the second unit layer. That is, the interface on the MoC 1-x layer side in the multilayer structure may be composed of either the first unit layer or the second unit layer. Further, the interface on the side opposite to the MoC 1-x layer side in the multilayer structure may be composed of either the first unit layer or the second unit layer.
  • the thickness of the hard coating layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 7 ⁇ m or less.
  • the thickness of the MoC 1-x layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and the thickness of the hard coating layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
  • the thickness of the first unit layer is preferably 1 nm or more and 100 nm or less, more preferably 2 nm or more and 25 nm or less.
  • the thickness of the second unit layer is preferably 1 nm or more and 100 nm or less, more preferably 2 nm or more and 25 nm or less.
  • the thickness of the first unit layer is 1 nm or more and 100 nm or less
  • the thickness of the second unit layer is 1 nm or more and 100 nm or less. preferable.
  • the "thickness of the first unit layer” means the thickness of one of the first unit layers.
  • the “thickness of the second unit layer” means the thickness of one of the second unit layers.
  • the number of laminated layers in the multilayer structure includes a mode in which one layer each of the first unit layer and the second unit layer is laminated, and preferably both layers are laminated. 20 to 2500 layers can be laminated.
  • the film may further include other layers as long as the effects of the present embodiment are not impaired.
  • the other layer may be different or the same in composition as the MoC 1-x layer and the hard coat layer.
  • the positions of other layers in the coating are also not particularly limited.
  • other layers include a base layer provided between the base material and the MoC 1-x layer, and an intermediate layer provided between the MoC 1-x layer and the hard coating layer. , a surface layer provided on the hard MoC 1-x layer, and the like.
  • Other layers include, for example, a TiN layer, a TiWCN layer, a TiCN layer, a ZrB2 layer, a TiSiN phase, an AlCrN layer, and the like.
  • the thickness of other layers is not particularly limited as long as it does not impair the effects of the present embodiment.
  • 0.002 ⁇ m or more and 1 ⁇ m or less can be mentioned.
  • it is 0.003 ⁇ m or more and 0.01 ⁇ m or less.
  • the manufacturing method of the cutting tool according to this embodiment includes a substrate preparation step and a MoC 1-x layer coating step. Each step will be described below.
  • the base material is prepared.
  • any base material can be used as long as it is conventionally known as this type of base material, as described above.
  • the base material is made of a cemented carbide
  • raw material powders having a predetermined composition % by mass
  • this mixed powder is pressure-molded into a predetermined shape (eg, SEET13T3AGSN, CNMG120408N-EG, etc.).
  • a predetermined shape eg, SEET13T3AGSN, CNMG120408N-EG, etc.
  • the substrate made of cemented carbide can be obtained.
  • a commercially available product may be used as it is for the base material.
  • Commercially available products include EH520 (trademark) manufactured by Sumitomo Electric Hardmetal Co., Ltd., for example.
  • ⁇ MoC 1-x layer coating step In the MoC 1-x layer coating step, at least part of the surface of the substrate is coated with a MoC 1-x layer (0.40 ⁇ x ⁇ 0.60) to obtain a cutting tool.
  • a MoC 1-x layer (0.40 ⁇ x ⁇ 0.60)
  • “at least a portion of the surface of the base material” includes a portion that comes into contact with the work material during cutting. The portion in contact with the work material can be, for example, a region within 2 mm from the ridgeline of the cutting edge on the surface of the base material.
  • the method for coating at least part of the base material with the MoC 1-x layer is not particularly limited.
  • a MoC 1-x layer may be formed by physical vapor deposition (PVD).
  • the physical vapor deposition method conventionally known physical vapor deposition methods can be used without particular limitation.
  • Examples of such a physical vapor deposition method include a sputtering method, an ion plating method, an arc ion plating method, an electron ion beam vapor deposition method, and the like.
  • metal bombardment treatment and/or gas ion bombardment treatment can be performed on the substrate surface before forming the coating. , is preferable because the adhesion between the coating and the substrate is remarkably improved.
  • Mo has a high melting point and is difficult to melt. Therefore, a stable discharge could not be maintained in the physical vapor deposition method, and a MoC layer composed of hexagonal MoC and having good film quality could not be formed.
  • the present inventors have found a method for stably producing a MoC layer of hexagonal MoC having good film quality. As an example of the method, the case of forming a MoC 1-x layer (0.40 ⁇ x ⁇ 0.60) having a hexagonal crystal structure by arc ion plating will be described below.
  • the MoC target is set in the arc-type evaporation source in the apparatus, the substrate (base material) temperature is set to 450 to 600° C., and the apparatus is evacuated. Subsequently, for example, one or both of argon gas and krypton gas are introduced to set the gas pressure in the apparatus to 1.0-3.0 Pa. Then, a negative bias voltage of 200 to 1000 V is applied to the substrate via a DC power supply to clean the surface of the substrate for 40 minutes. After that, an arc current of 80 to 200 A is supplied to the cathode electrode to generate metal ions and the like from the arc evaporation source, thereby forming a hexagonal MoC 1-x layer (0.40 ⁇ x ⁇ 0.60). can do.
  • the substrate temperature is set to 400 to 450° C.
  • the substrate bias is set to ⁇ 50 V
  • the temperature is gradually raised to 450 toward the end of the formation.
  • °C to 550 °C the substrate bias is increased to -60 to -75V.
  • An apparatus used for the arc ion plating method includes, for example, AIP (trade name) manufactured by Kobe Steel, Ltd.
  • the cutting tool manufacturing method according to the present embodiment preferably further includes a hard coating layer coating step before the MoC 1-x layer coating step.
  • the method for forming the hard coating layer is not particularly limited, and conventional methods can be used. Specifically, for example, the hard coating layer is formed by the PVD method described above.
  • the manufacturing method according to the present embodiment includes a base layer coating step of forming a base layer between the base material and the MoC 1-x layer, the MoC 1-x layer and the hard coating and a surface layer coating step of forming a surface layer on the MoC 1-x layer.
  • the other layers may be formed by conventional methods. Specifically, for example, the other layer may be formed by the PVD method described above.
  • the manufacturing method according to the present embodiment can appropriately include steps such as metal bombardment treatment, peening treatment, and surface treatment.
  • the metal bombardment treatment includes, for example, a method of subjecting Ti to cathode evaporation in an argon gas atmosphere and mixing the substrate surface to form a mixing layer.
  • Examples of surface treatment include polishing with abrasive grains and brush polishing. More specifically, there is a method of using a medium in which diamond powder is supported on an elastic material.
  • Sirius Z manufactured by Fuji Seisakusho Co., Ltd., etc. can be cited.
  • the MoC 1-x layer preferably has a thickness of 0.1 ⁇ m or more and 10.0 ⁇ m or less. In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.1 ⁇ m or more and 7.0 ⁇ m or less. In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.6 ⁇ m or more and 6.5 ⁇ m or less. In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.3 ⁇ m or more and 10 ⁇ m or less.
  • the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the coating consists of only the MoC 1-x layer, and the thickness of the coating is preferably 1 ⁇ m or more and 6 ⁇ m or less.
  • the coating consists of only the MoC 1-x layer, and the thickness of the coating is preferably 1.5 ⁇ m or more and 4 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 ⁇ m or more and 17 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 ⁇ m or more and 12 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 ⁇ m or more and 20 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 ⁇ m or more and 17 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 ⁇ m or more and 12 ⁇ m or less.
  • the coating includes a MoC 1-x layer and a hard coating layer, the MoC 1-x layer has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, and the hard coating layer has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less. It is 1 ⁇ m or more and 10 ⁇ m or less, and the thickness of the coating is preferably 0.2 ⁇ m or more and 20 ⁇ m or less.
  • a MoC 1-x layer was formed on the substrate by an arc ion plating method.
  • the method is as follows. First, the MoC target is set in the arc-type evaporation source in the apparatus, the substrate (base material) temperature is set to 450 to 600° C., and the apparatus is evacuated. Subsequently, for example, one or both of argon gas and krypton gas are introduced to set the gas pressure in the apparatus to 1.0-3.0 Pa. Then, a negative bias voltage of 200 to 1000 V is applied to the substrate via a DC power supply to clean the surface of the substrate for 40 minutes.
  • an arc current of 80 to 200 A is supplied to the cathode electrode to generate metal ions and the like from the arc evaporation source, thereby forming a MoC 1-x layer (0.40 ⁇ x ⁇ 0.60).
  • the substrate temperature is set to 400 to 450° C.
  • the substrate bias is set to ⁇ 50 V
  • the temperature is gradually raised to 450 toward the end of the formation.
  • °C to 550 °C the substrate bias is increased to -60 to -75V.
  • the MoC 1-x layer was formed to the thickness described in the "thickness" column of "MoC 1-x layer” in Tables 1 and 2 by the above method.
  • AIP (trade name) manufactured by Kobe Steel, Ltd. was used as an apparatus used for the arc ion plating method.
  • ⁇ Base layer coating step> For samples (Samples 5 and 6) in which an underlayer was formed between the substrate and the MoC 1-x layer, the following procedure was performed on the substrate before the MoC 1-x layer coating step. A base layer was formed. First, a target containing the metal composition in the column of composition of the underlayer shown in Table 1 was set in the arc-type evaporation source of the arc ion plating apparatus. Next, the substrate temperature was set to 600° C. and the gas pressure in the apparatus was set to 1 Pa. In the case of the nitride underlayer (Sample 5), a mixed gas of nitrogen gas and argon gas was introduced.
  • ⁇ Hard coating layer coating step> For the samples (Samples 7 to 13, Samples 16 to 22, Samples 25, and 26) having a hard coating layer between the substrate and the MoC 1-x layer, the MoC 1-x layer coating step is performed.
  • a hard coating layer was previously formed on the substrate by the following procedure. First, a target containing the metal composition in the composition column of the hard coating layer shown in Tables 1 and 2 was set in the arc-type evaporation source of the arc ion plating apparatus. Next, the substrate temperature was set to 550° C. and the gas pressure in the apparatus was set to 4.0 Pa. As a reaction gas, nitrogen gas was introduced in the case of a nitride hard coating layer.
  • a mixed gas of nitrogen gas and methane gas was introduced as the reaction gas.
  • a mixed gas of oxygen gas and nitrogen gas was introduced as the reaction gas.
  • an arc current of 150 A was supplied to the cathode electrode.
  • the first unit layer and the second unit layer are laminated in order from the left side in Tables 1 and 2 until the desired thickness is obtained. to form a multi-layered structure.
  • a first unit layer made of TiAlBN with a thickness of 5 nm and a second unit layer made of TiSiN with a thickness of 5 nm are alternately laminated to form a multilayer structure with a thickness of 1.0 ⁇ m. did.
  • ⁇ Surface layer coating step> For the samples having a surface layer on the MoC 1-x layer (Sample 5, Sample 7, Sample 8, Sample 11, and Sample 12), MoC 1-x was coated in the following procedure after the MoC 1 -x layer coating step. A surface layer was formed on the layer. First, a target containing the metal composition in the surface layer composition column shown in Table 1 was set in an arc-type evaporation source of an arc ion plating apparatus. Next, the substrate temperature was set to 550° C. and the gas pressure in the apparatus was set to 4.0 Pa. As a reaction gas, a mixed gas of nitrogen gas and argon gas was introduced in the case of a nitride surface layer.
  • an arc current of 150 A was supplied to the cathode electrode.
  • a surface layer was formed up to the thickness shown in parentheses under "Surface layer" in Table 1 by generating metal ions and the like from an arc evaporation source by supplying an arc current.
  • Example 1-1 As a base material, the same base material as sample 1 was prepared. A MoC 1-x layer was formed on the substrate by an arc ion plating method. Specifically, the following method was used. First, the MoC target was set in the arc-type evaporation source of the arc ion plating device. Next, the substrate temperature was set to 390° C. and the gas pressure in the apparatus was set to 2 Pa. Argon gas was introduced as the gas. Then, while maintaining the substrate bias voltage at -50V, an arc current of 120A was supplied to the cathode electrode. A cutting tool was obtained by forming a MoC 1-x layer by generating metal ions and the like from an arc evaporation source by supplying an arc current.
  • Example 1-2 As a base material, the same base material as sample 1 was prepared. A MoC 1-x layer was formed on the substrate by an arc ion plating method. Specifically, the following method was used. First, the MoC target was set in the arc-type evaporation source of the arc ion plating device. Next, the substrate temperature was set to 620° C. and the gas pressure in the apparatus was set to 0.5 Pa. Argon gas was introduced as the gas. Then, while maintaining the substrate bias voltage at -40V, an arc current of 130A was supplied to the cathode electrode. A cutting tool was obtained by forming a MoC 1-x layer by generating metal ions and the like from an arc evaporation source by supplying an arc current.
  • sample 1-3 As a base material, the same base material as sample 1 was prepared. A cutting tool was obtained by forming a WC 0.56 layer on the substrate by the method described in Patent Document 1.
  • sample 1-4 As a base material, the same base material as sample 1 was prepared. A TiN layer (base layer) and an AlTiN layer were formed on the substrate in the above order. The TiN layer was formed by the same method as sample 5. The AlTiN layer was formed in the same manner as the first unit layer of Sample 12.
  • notations such as “TiAlBN (5 nm) / TiSiN (5 nm) multilayer structure (1.0 ⁇ m)” in “hard coating layer” mean that the hard coating layer is a 5 nm thick TiAlBN layer (first unit layer) and a thick It shows that it is formed of a multilayer structure (total thickness of 1.0 ⁇ m) in which TiSiN layers (second unit layers) with a thickness of 5 nm are alternately laminated.
  • the cutting tools of Samples 1 to 26 corresponding to Examples are compared to the cutting tools of Samples 1-1 to 1-4 corresponding to Comparative Examples, even in high-speed and high-efficiency machining. It was confirmed that the chipping resistance and wear resistance are excellent, and that the tool life is long. From this, the cutting tools of Samples 1 to 24 corresponding to the examples are suitable for high-load, high-speed, high-efficiency machining applications, especially those requiring chipping resistance and wear resistance. It was suggested.

Abstract

A cutting tool provided with a base material and a coating that is disposed on the base material, wherein the coating includes a MoC1-x layer formed from a compound represented by MoC1-x, x is between 0.40 and 0.60 inclusive, and the compound represented by MoC1-x is formed from a hexagonal crystal structure.

Description

切削工具Cutting tools
 本開示は、切削工具に関する。 The present disclosure relates to cutting tools.
 従来より、切削工具の長寿命化を目的として、種々の検討がなされている。例えば、特許文献1には、基材上に、WC1-x層を含む被膜が配置された切削工具が開示されている。 Conventionally, various studies have been made for the purpose of prolonging the life of cutting tools. For example, Patent Document 1 discloses a cutting tool having a coating comprising a WC 1-x layer disposed on a substrate.
国際公開第2019/181742号WO2019/181742
 本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
 前記被膜は、MoC1-xで示される化合物からなるMoC1-x層を含み、
 前記xは、0.40以上0.60以下であり、
 前記MoC1-xで示される化合物は、六方晶型の結晶構造からなる、切削工具である。
A cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
The coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
The x is 0.40 or more and 0.60 or less,
The compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
図1は、切削工具の一態様を例示する斜視図である。FIG. 1 is a perspective view illustrating one mode of a cutting tool. 図2は、本実施形態の一態様における切削工具の模式断面図である。FIG. 2 is a schematic cross-sectional view of a cutting tool in one aspect of the present embodiment. 図3は、本実施形態の他の態様における切削工具の模式断面図である。FIG. 3 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment. 図4は、本実施形態の別の他の態様における切削工具の模式断面図である。FIG. 4 is a schematic cross-sectional view of a cutting tool in another aspect of this embodiment.
 [本開示が解決しようとする課題]
 近年、負荷の高い高速、高能率加工の要求がますます高まっており、高速高能率可能においても長い工具寿命を有することのできる切削工具が求められている。
[Problems to be Solved by the Present Disclosure]
In recent years, the demand for high-load, high-speed, and high-efficiency machining has been increasing, and there is a demand for cutting tools that can have a long tool life even when high-speed, high-efficiency machining is possible.
 [本開示の効果]
 本開示によれば、負荷の高い高速、高能率加工においても長い工具寿命を有する切削工具を提供することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a cutting tool having a long tool life even in high-load, high-speed, high-efficiency machining.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
 前記被膜は、MoC1-xで示される化合物からなるMoC1-x層を含み、
 前記xは、0.40以上0.60以下であり、
 前記MoC1-xで示される化合物は、六方晶型の結晶構造からなる、切削工具である。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
(1) A cutting tool of the present disclosure comprises a substrate and a coating disposed on the substrate,
The coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
The x is 0.40 or more and 0.60 or less,
The compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
 本開示によれば、高速高能率加工においても長い工具寿命を有する切削工具を提供することができる。 According to the present disclosure, it is possible to provide a cutting tool having a long tool life even in high-speed, high-efficiency machining.
 (2)前記MoC1-x層は、遊離炭素を含まないことが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 (2) The MoC 1-x layer preferably does not contain free carbon. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (3)前記MoC1-x層の膜硬度は、2700mgf/μm以上4200mgf/μm以下であることが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 (3) The MoC 1-x layer preferably has a film hardness of 2700 mgf/μm 2 or more and 4200 mgf/μm 2 or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (4)前記MoC1-x層は、前記基材に接することができる。これによると、切削工具は優れた耐欠損性及び耐摩耗性を有することができる。 (4) the MoC 1-x layer may contact the substrate; According to this, the cutting tool can have excellent fracture resistance and wear resistance.
 (5)前記被膜は、前記基材と前記MoC1-x層との間に配置された硬質被膜層を更に含み、
 前記硬質被膜層は、第一単位層を含み、
 前記第一単位層の組成は、前記MoC1-x層の組成と異なり、
 前記第一単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることが好ましい。
(5) the coating further comprises a hard coating layer disposed between the substrate and the MoC 1-x layer;
The hard coating layer includes a first unit layer,
The composition of the first unit layer is different from the composition of the MoC 1-x layer,
The first unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, It is preferably composed of a compound consisting of at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron.
 これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (6)前記硬質被膜層は、前記第一単位層からなり、
 前記第一単位層の厚さは、0.1μm以上10μm以下であることが好ましい。
(6) the hard coating layer is composed of the first unit layer;
The thickness of the first unit layer is preferably 0.1 μm or more and 10 μm or less.
 これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (7)前記硬質被膜層は、更に第二単位層を含み、
 前記第二単位層の組成は、前記MoC1-x層の組成及び前記第一単位層の組成と異なり、
 前記第二単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなり、
 前記第一単位層及び前記第二単位層は、それぞれが交互に1層以上積層された多層構造を形成していることが好ましい。
(7) The hard coating layer further includes a second unit layer,
The composition of the second unit layer is different from the composition of the MoC 1-x layer and the composition of the first unit layer,
The second unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, A compound consisting of at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron,
It is preferable that the first unit layer and the second unit layer each form a multi-layer structure in which one or more layers are alternately laminated.
 これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (8)前記第一単位層の厚さは、1nm以上100nm以下であり、
 前記第二単位層の厚さは、1nm以上100nm以下であることが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。
(8) the first unit layer has a thickness of 1 nm or more and 100 nm or less;
The thickness of the second unit layer is preferably 1 nm or more and 100 nm or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (9)前記MoC1-x層の厚さは、0.1μm以上10μm以下であり、
 前記硬質被膜層の厚さは、0.1μm以上10μm以下であることが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。
(9) the MoC 1-x layer has a thickness of 0.1 μm or more and 10 μm or less;
The thickness of the hard coating layer is preferably 0.1 μm or more and 10 μm or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (10)前記被膜の厚さは、0.2μm以上20μm以下であることが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 (10) The thickness of the coating is preferably 0.2 µm or more and 20 µm or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 (11)前記基材は、超硬合金、サーメット、高速度鋼、セラミックス、cBN焼結体及びダイヤモンド焼結体からなる群より選ばれる少なくとも1種を含むことが好ましい。これによると、切削工具は高温においても優れた硬度及び強度を有することができる。 (11) The base material preferably contains at least one selected from the group consisting of cemented carbide, cermet, high-speed steel, ceramics, cBN sintered bodies and diamond sintered bodies. According to this, the cutting tool can have excellent hardness and strength even at high temperatures.
 [本開示の実施形態の詳細]
 本開示の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
[Details of the embodiment of the present disclosure]
A specific example of the cutting tool of the present disclosure will be described below with reference to the drawings. In the drawings of this disclosure, the same reference numerals represent the same or equivalent parts. Also, dimensional relationships such as length, width, thickness, and depth are appropriately changed for clarity and simplification of the drawings, and do not necessarily represent actual dimensional relationships.
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 In this specification, the notation of the form "A to B" means the upper and lower limits of the range (that is, from A to B). and the unit of B are the same.
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiAlN」と記載されている場合、TiAlNを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。 In the present specification, when a compound or the like is represented by a chemical formula, it shall include any conventionally known atomic ratio unless the atomic ratio is particularly limited, and should not necessarily be limited only to those within the stoichiometric range. For example, when "TiAlN" is described, the ratio of the number of atoms constituting TiAlN includes all conventionally known atomic ratios.
 [実施形態1:切削工具]
 本開示に係る切削工具は、基材と、該基材上に配置された被膜と、を備える切削工具であって、
 該被膜は、MoC1-xで示される化合物からなるMoC1-x層を含み、
 該xは、0.40以上0.60以下であり、
 該MoC1-xで示される化合物は、六方晶型の結晶構造からなる、切削工具である。
[Embodiment 1: Cutting tool]
A cutting tool according to the present disclosure includes a substrate and a coating disposed on the substrate,
The coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
The x is 0.40 or more and 0.60 or less,
The compound represented by MoC 1-x is a cutting tool having a hexagonal crystal structure.
 本実施形態の切削工具(以下、単に「切削工具」という場合がある。)は、基材と、該基材上に配置された被膜と、を備える。上記切削工具は、例えば、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等であり得る。 The cutting tool of the present embodiment (hereinafter sometimes simply referred to as "cutting tool") includes a base material and a coating disposed on the base material. Examples of the cutting tools include drills, end mills, indexable cutting inserts for drills, indexable cutting inserts for end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, and gear cutting tools. , reamers, taps, and the like.
 図1は、切削工具の一態様を例示する斜視図である。このような形状の切削工具は、例えば、刃先交換型切削チップとして用いられる。上記切削工具10は、すくい面1と、逃げ面2と、すくい面1と逃げ面2とが交差する刃先稜線部3とを有する。すなわち、すくい面1と逃げ面2とは、刃先稜線部3を挟んで繋がる面である。刃先稜線部3は、切削工具10の切刃先端部を構成する。このような切削工具10の形状は、上記切削工具の基材の形状と把握することもできる。すなわち、上記基材は、すくい面と、逃げ面と、すくい面及び逃げ面を繋ぐ刃先稜線部とを有する。 FIG. 1 is a perspective view illustrating one aspect of a cutting tool. A cutting tool having such a shape is used, for example, as an indexable cutting tip. The cutting tool 10 has a rake face 1, a flank face 2, and a cutting edge ridge 3 where the rake face 1 and the flank face 2 intersect. That is, the rake face 1 and the flank face 2 are surfaces connected with the cutting edge ridge 3 interposed therebetween. The cutting edge ridge 3 constitutes the cutting edge of the cutting tool 10 . Such a shape of the cutting tool 10 can also be grasped as the shape of the base material of the cutting tool. That is, the substrate has a rake face, a flank face, and a cutting edge ridge connecting the rake face and the flank face.
 <基材>
 本実施形態の基材は、この種の基材として従来公知のものであればいずれのものも使用することができる。例えば、上記基材は、超硬合金(例えば、炭化タングステン(WC)基超硬合金、WCの他にCoを含む超硬合金、TaCの他にCr、Ti、Ta、Nb等の炭窒化物を添加した超硬合金等)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)、立方晶型窒化硼素焼結体(cBN焼結体)及びダイヤモンド焼結体からなる群より選ばれる少なくとも1種を含むことが好ましく、超硬合金、サーメット及びcBN焼結体からなる群より選ばれる少なくとも1種を含むことがより好ましい。
<Base material>
Any conventionally known base material of this type can be used as the base material of the present embodiment. For example, the base material is a cemented carbide (for example, a tungsten carbide (WC)-based cemented carbide, a cemented carbide containing Co in addition to WC, a carbonitride such as Cr, Ti, Ta, Nb in addition to TaC). cemented carbide, etc.), cermet (mainly composed of TiC, TiN, TiCN, etc.), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic It preferably contains at least one selected from the group consisting of type boron nitride sintered bodies (cBN sintered bodies) and diamond sintered bodies, and at least one selected from the group consisting of cemented carbide, cermet and cBN sintered bodies It is more preferred to contain seeds.
 なお、基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素又はη相と呼ばれる異常相を含んでいても本実施形態の効果は示される。なお、本実施形態で用いる基材は、その表面が改質されたものであっても差し支えない。たとえば、超硬合金の場合はその表面に脱β層が形成されていたり、サーメットの場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本実施形態の効果は示される。 When a cemented carbide is used as the base material, the effect of the present embodiment is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or η phase in the structure. In addition, the base material used in this embodiment may have a modified surface. For example, in the case of cemented carbide, a β-free layer may be formed on the surface, and in the case of cermet, a surface-hardened layer may be formed. The effect of is shown.
 切削工具が、刃先交換型切削チップ(フライス加工用刃先交換型切削チップ等)である場合、基材は、チップブレーカーを有するものも、有さないものも含まれる。刃先の稜線部分の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与した形状)、ネガランド(面取りをした形状)、ホーニングとネガランドを組み合わせた形状の中で、いずれの形状も含まれる。 When the cutting tool is an indexable cutting insert (such as an indexable cutting insert for milling), the substrate may or may not have a chip breaker. The shape of the ridge line of the cutting edge is sharp edge (the ridge where the rake face and the flank face intersect), honing (sharp edge rounded shape), negative land (chamfered shape), and a combination of honing and negative land. any shape is included.
 <被膜>
 本実施形態に係る「被膜」は、上記基材の表面の少なくとも一部を被覆することで、切削工具における耐欠損性、耐摩耗性等の諸特性を向上させる作用を有するものである。ここで、「基材の表面の少なくとも一部」には、切削加工時に被削材と接する部分が含まれる。該被削材と接する部分とは、例えば、基材の表面において、刃先稜線からの距離が2mm以内の領域とすることができる。なお、上記基材の一部が上記被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても本実施形態の範囲を逸脱するものではない。
<Coating>
The "coating" according to the present embodiment covers at least a portion of the surface of the base material, thereby improving various properties of the cutting tool such as chipping resistance and wear resistance. Here, "at least a portion of the surface of the base material" includes a portion that comes into contact with the work material during cutting. The portion in contact with the work material can be, for example, a region within 2 mm from the ridgeline of the cutting edge on the surface of the base material. It should be noted that even if a part of the base material is not covered with the coating or the composition of the coating is partially different, this does not depart from the scope of the present embodiment.
 図2に示されるように、被膜4は、MoC1-x層12からなることができる。図3及び図4に示されるように、被膜4は、MoC1-x層12及び該MoC1-x層12と基材11との間に配置された硬質被膜層13とを含むことができる。被膜4は、MoC1-x層12に加えて、他の層を含むことができる。他の層としては、例えば、MoC1-x層と基材との間に配置された下地層(図示せず)、MoC1-x層と硬質被膜層との間に配置された中間層(図示せず)、MoC1-x層の上に配置された表面層(図示せず)等が挙げられる。 As shown in FIG. 2, coating 4 may consist of MoC 1-x layer 12 . As shown in FIGS. 3 and 4, the coating 4 can include a MoC 1-x layer 12 and a hard coating layer 13 disposed between the MoC 1-x layer 12 and the substrate 11. . Coating 4 may include other layers in addition to MoC 1-x layer 12 . Other layers include, for example, an underlayer (not shown) placed between the MoC 1-x layer and the substrate, an intermediate layer (not shown) placed between the MoC 1-x layer and the hard coating layer ( (not shown), a surface layer (not shown) disposed over the MoC 1-x layer, and the like.
 上記被膜の厚さは0.1μm以上20μm以下が好ましく、0.1μm以上10μm以下が好ましく、0.2μm以上20μm以下が好ましく、0.2μm以上10μm以下が好ましく、0.3μm以上10μm以下がより好ましく、0.5μm以上10μm以下が更に好ましく、1μm以上6μm以下が更により好ましく、1.5μm以上4μm以下が特に好ましい。上記厚さが0.1μm以上である場合、切削工具の耐摩耗性が向上する。上記厚さが20μm以下であると、断続加工において被膜と基材との間に大きな応力が加わった際の被膜の剥離又は破壊を抑制しやすい。ここで、被膜の厚さとは、MoC1-x層、硬質被膜層及び下地層等の被膜を構成する層それぞれの厚さの総和を意味する。上記被膜の厚さは、透過型電子顕微鏡(TEM)を用いて、基材の表面の法線方向に平行な断面サンプルにおける任意の3点を測定し、測定された3点の厚さの平均値をとることで求める。後述するMoC1-x層、硬質被膜層(第一単位層、第二単位層)及び下地層それぞれの厚さを測定する場合も同様である。透過型電子顕微鏡としては、例えば、日本電子株式会社製の球面収差補正装置、JEM-2100F(商標)が挙げられる。 The thickness of the coating is preferably 0.1 μm or more and 20 μm or less, preferably 0.1 μm or more and 10 μm or less, preferably 0.2 μm or more and 20 μm or less, preferably 0.2 μm or more and 10 μm or less, and more preferably 0.3 μm or more and 10 μm or less. It is preferably 0.5 μm or more and 10 μm or less, even more preferably 1 μm or more and 6 μm or less, and particularly preferably 1.5 μm or more and 4 μm or less. When the thickness is 0.1 μm or more, the wear resistance of the cutting tool is improved. When the thickness is 20 μm or less, it is easy to suppress peeling or breakage of the coating when a large stress is applied between the coating and the substrate during intermittent machining. Here, the thickness of the coating means the sum of the thicknesses of the layers constituting the coating such as the MoC 1-x layer, the hard coating layer and the base layer. The thickness of the coating is measured using a transmission electron microscope (TEM) at any three points in a cross-sectional sample parallel to the normal direction of the surface of the substrate, and the average thickness of the three measured points. Find by taking the value. The same is true when measuring the thickness of each of the MoC 1-x layer, the hard coating layer (first unit layer, second unit layer) and the underlying layer, which will be described later. Examples of transmission electron microscopes include JEM-2100F (trademark), a spherical aberration corrector manufactured by JEOL Ltd.
 なお、同一の試料において測定する限りにおいては、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認された。 As long as the measurement is performed on the same sample, there is almost no variation in the measurement results even if the measurement area is changed and repeated multiple times. was confirmed.
 <MoC1-x層>
 上記被膜は、MoC1-xで示される化合物からなるMoC1-x層を含む。「MoC1-xで示される化合物」(以下、「MoC1-x」と表記する場合がある。)とは、モリブデン元素(Mo)の元素比を1とした場合、炭素元素(C)の元素比が1-xである炭化モリブデンを意味する。上記MoC1-x層は、本実施形態に係る切削工具が奏する効果を損なわない範囲において、不可避不純物が含まれていてもよい。上記不可避不純物の含有割合は、MoC1-x層の全質量に対して0質量%以上0.2質量%以下であることが好ましい。後述する「硬質被膜層」及び「他の層」の表記についても同様に、本実施形態に係る切削工具が奏する効果を損なわない範囲において、不可避不純物が含まれていてもよい。
<MoC 1-x layer>
The coating includes a MoC 1 -x layer consisting of a compound denoted MoC 1-x. The “compound represented by MoC 1-x ” (hereinafter sometimes referred to as “MoC 1-x ”) means that when the element ratio of molybdenum element (Mo) is 1, the amount of carbon element (C) It means molybdenum carbide with an elemental ratio of 1-x. The MoC 1-x layer may contain unavoidable impurities within a range that does not impair the effects of the cutting tool according to the present embodiment. The content of the inevitable impurities is preferably 0% by mass or more and 0.2% by mass or less with respect to the total mass of the MoC 1-x layer. Similarly, the terms "hard coating layer" and "other layers" described later may also contain unavoidable impurities within a range that does not impair the effects of the cutting tool according to the present embodiment.
 上記xは、0.40以上0.60以下であり、0.45以上0.55以下であることが好ましく、0.50以上0.55以下であることがより好ましい。上記xが0.40未満であると、MoC1-xの結晶粒界に遊離炭素が析出し強度が低下する傾向がある。また上記xが0.60を超えると、当該結晶粒界の強度が低下する傾向がある。そのため、xが0.40以上0.60以下の範囲外であると亀裂進展を抑制できず靱性が低くなる傾向がある。このような傾向は、結晶の均質性と歪みのバランスが適切ではないために起こると本発明者らは推測している。 The above x is 0.40 or more and 0.60 or less, preferably 0.45 or more and 0.55 or less, and more preferably 0.50 or more and 0.55 or less. When x is less than 0.40, free carbon tends to precipitate at grain boundaries of MoC 1-x and the strength tends to decrease. Moreover, when x exceeds 0.60, the strength of the grain boundary tends to decrease. Therefore, when x is outside the range of 0.40 or more and 0.60 or less, crack growth cannot be suppressed, and the toughness tends to be low. The present inventors presume that such a tendency is caused by an inappropriate balance between crystal homogeneity and strain.
 上記xは、MoC1-x層において基材の表面の法線方向に平行な断面サンプルを得て、この断面サンプルに現われた結晶粒に対して走査型電子顕微鏡(SEM)又はTEMに付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置を用いて分析することにより、求めることが可能である。具体的には、上記断面サンプルのMoC1-x層における任意の3点それぞれを測定して上記xの値を求め、求められた3点の値の平均値を上記断面サンプルのMoC1-x層におけるxとする。ここで当該「任意の3点」は、MoC1-x層中の任意の30nm×30nmの領域を3か所選択するものとする。上記EDX装置としては、例えば、日本電子株式会社製のシリコンドリフト検出器、JED-2200(商標)が挙げられる。測定条件は以下の通りである。 The above x obtains a cross-sectional sample parallel to the normal direction of the surface of the substrate in the MoC 1-x layer, and scans the grains appearing in this cross-sectional sample with a scanning electron microscope (SEM) or TEM. It can be determined by analysis using an energy dispersive X-ray spectroscopy (EDX) device. Specifically, the value of x is obtained by measuring each of arbitrary three points in the MoC 1-x layer of the cross-sectional sample, and the average value of the values of the three points obtained is the MoC 1-x of the cross-sectional sample. Let x be in the layer. Here, for the “arbitrary three points”, three arbitrary 30 nm×30 nm regions in the MoC 1-x layer are selected. Examples of the EDX apparatus include JED-2200 (trademark), a silicon drift detector manufactured by JEOL Ltd. The measurement conditions are as follows.
EDX法の測定条件
加速電圧:200kV
プローブ電流:0.29nA
プローブサイズ:0.2nm
EDX method measurement conditions Accelerating voltage: 200 kV
Probe current: 0.29nA
Probe size: 0.2 nm
 なお、同一の試料において測定する限りにおいては、測定領域の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定領域を設定しても恣意的にはならないことが確認された。 As long as the measurement is performed on the same sample, there is almost no variation in the measurement results even if the measurement area is changed and repeated multiple times. was confirmed.
 上記MoC1-xで示される化合物は、六方晶型の結晶構造からなる。ここで、上記MoC1-xで示される化合物は、六方晶型の結晶構造からなるとは、上記MoC1-xで示される化合物における六方晶型の結晶構造の百分率が100質量%であり、他の結晶型の結晶構造を含まないことを意味する。上記MoC1-xで示される化合物が六方晶型の結晶構造からなることは、例えば、上述のMoC1-x層における任意の3点に対してX線回折測定(XRD測定)を行い分析することで確認される。上記MoC1-xで示される化合物が六方晶型の結晶構造からなる場合、XRD測定において、3点の測定点全てにおいて、(100)、(002)、(101)、(102)、(111)面等の結晶面に由来するピークが観測される。上記X線回折測定に用いる装置としては、たとえば、株式会社リガク製の「SmartLab」(商品名)、パナリティカル製の「X’pert」(商品名)等が挙げられる。測定条件は以下の通りである。 The compound represented by MoC 1-x has a hexagonal crystal structure. Here, the compound represented by MoC 1-x has a hexagonal crystal structure, which means that the percentage of the hexagonal crystal structure in the compound represented by MoC 1-x is 100% by mass, and other does not contain a crystal structure of the crystal form of The compound represented by MoC 1-x has a hexagonal crystal structure, for example, by performing X-ray diffraction measurement (XRD measurement) on any three points in the MoC 1-x layer. is confirmed by When the compound represented by MoC 1-x has a hexagonal crystal structure, in XRD measurement, (100), (002), (101), (102), (111) ) and other crystal planes are observed. Examples of the apparatus used for the X-ray diffraction measurement include "SmartLab" (trade name) manufactured by Rigaku Corporation and "X'pert" (trade name) manufactured by PANalytical. The measurement conditions are as follows.
XRD法の測定条件
走査軸:2θ-θ
X線源:Cu-Kα線(1.541862Å)
検出器:0次元検出器(シンチレーションカウンタ)
管電圧:45kV
管電流:40mA
入射光学系:ミラーの利用
受光光学系:アナライザ結晶(PW3098/27)の利用
ステップ:0.03°
積算時間:2秒
スキャン範囲(2θ):10°~120°
XRD method measurement conditions Scanning axis: 2θ-θ
X-ray source: Cu-Kα ray (1.541862 Å)
Detector: Zero-dimensional detector (scintillation counter)
Tube voltage: 45kV
Tube current: 40mA
Incident optical system: use of mirrors Receiving optical system: use of analyzer crystal (PW3098/27) Step: 0.03°
Accumulation time: 2 seconds Scan range (2θ): 10° to 120°
 なお、同一の試料において測定する限りにおいては、測定点の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定点を設定しても恣意的にはならないことが確認された。 As long as the measurement is performed on the same sample, there is almost no variation in the measurement results even if the measurement points are changed and repeated multiple times. was confirmed.
 図2は、本実施形態の一態様における切削工具の模式断面図である。図2に示されるように、上記MoC1-x層12は、上記基材11に接していることが好ましい。言い換えると、上記MoC1-x層12は、上記基材11の直上に設けられていることが好ましい。 FIG. 2 is a schematic cross-sectional view of a cutting tool in one aspect of the present embodiment. Preferably, the MoC 1-x layer 12 is in contact with the substrate 11, as shown in FIG. In other words, the MoC 1-x layer 12 is preferably provided directly on the substrate 11 .
 上記MoC1-x層は、遊離炭素を含まないことが好ましい。ここで「遊離炭素を含まない」との記載には、上記MoC1-x層に遊離炭素が一切含まないものだけでなく、遊離炭素が検出限界未満となるものも含まれる。「遊離炭素」とは、MoC1-xの構成元素にならずに単体として存在する炭素を意味する。遊離炭素としては、例えば、グラファイト、煤等の炭素-炭素二重結合を含む炭素の単体が挙げられる。遊離炭素の有無は、X線光電子分光法(XPS法)を用いてMoC1-x層の表面の任意の3点における炭素-炭素二重結合の有無(XPS C1sにおけるC=Cピークの有無)を調べることで確認される。ここで、上記MoC1-x層が最表面に設けられている場合、自然酸化層をArスパッタ等で除去してから測定を行うものとする。上記MoC1-x層が最表面でない場合は、Arスパッタ等で上記MoC1-x層を露出させてから測定を行うものとする。XPS法に用いられる装置としては、例えば、アルバック・ファイ株式会社製のVersa Probe III(商品名)が挙げられる。測定条件は以下の通りである。 The MoC 1-x layer preferably contains no free carbon. Here, the description "free carbon free" includes not only the MoC 1-x layer containing no free carbon, but also the case where the free carbon is below the detection limit. By "free carbon" is meant carbon that exists as an element without being a constituent element of MoC 1-x . Examples of free carbon include simple substances of carbon containing carbon-carbon double bonds such as graphite and soot. The presence or absence of free carbon is determined by the presence or absence of carbon-carbon double bonds at any three points on the surface of the MoC 1-x layer using X-ray photoelectron spectroscopy (XPS method) (presence or absence of C=C peak in XPS C1s). This is confirmed by examining the Here, when the MoC 1-x layer is provided on the outermost surface, the measurement is performed after removing the natural oxide layer by Ar 2 + sputtering or the like. If the MoC 1-x layer is not the outermost surface, the MoC 1-x layer is exposed by Ar 2 + sputtering or the like before measurement. As an apparatus used for the XPS method, for example, Versa Probe III (trade name) manufactured by ULVAC-Phi, Inc. can be mentioned. The measurement conditions are as follows.
XPS法の測定条件
使用X線源:mono-AlKα線 (hν=1486.6eV)
検出深さ:1nm~10nm
X線ビーム径:約100μmφ
中和銃:デュアルタイプ使用
Ar:加速電圧 4kV
ラスターサイズ:1×1mm
スパッタ速度(Ar):SiOスパッタ換算値 28.3nm/min
XPS method measurement conditions X-ray source used: mono-AlKα ray (hν = 1486.6 eV)
Detection depth: 1 nm to 10 nm
X-ray beam diameter: about 100 μmφ
Neutralization gun: Dual type used Ar + : Accelerating voltage 4 kV
Raster size: 1 x 1 mm
Sputtering speed (Ar + ): SiO 2 sputter conversion value 28.3 nm/min
 なお、同一の試料において測定する限りにおいては、測定点の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定点を設定しても恣意的にはならないことが確認された。 As long as the measurement is performed on the same sample, there is almost no variation in the measurement results even if the measurement points are changed and repeated multiple times. was confirmed.
 上記MoC1-x層の膜硬度は2700mgf/μm以上4200mgf/μm以下であることが好ましく、2700mgf/μm以上4100mgf/μm以下であることがより好ましく、2800mgf/μm以上4000mgf/μm以下であることがより好ましい。上記膜硬度は、ナノインデンターで測定される。具体的には、まず上記MoC1-x層の表面における任意の10点それぞれを測定して上記膜硬度を求める。その後、求められた10点の膜硬度の平均値を上記断面サンプルのMoC1-x層における膜硬度とする。ここで、上記MoC1-x層が最表面でない場合は、機械研磨等で上記MoC1-x層を露出させてからナノインデンターで測定を行うものとする。ナノインデンターとしては、例えば、株式会社エリオニクス製のENT1100(商品名)が挙げられる。測定条件は以下の通りである。 The film hardness of the MoC 1-x layer is preferably 2700 mgf/μm 2 or more and 4200 mgf/μm 2 or less, more preferably 2700 mgf/μm 2 or more and 4100 mgf/μm 2 or less, and 2800 mgf/μm 2 or more and 4000 mgf/μm 2 or more. It is more preferably μm 2 or less. The film hardness is measured with a nanoindenter. Specifically, first, arbitrary 10 points on the surface of the MoC 1-x layer are measured to obtain the film hardness. Thereafter, the average value of 10 points of film hardness obtained is defined as the film hardness of the MoC 1-x layer of the cross-sectional sample. If the MoC 1-x layer is not the outermost surface, the MoC 1-x layer is exposed by mechanical polishing or the like, and then the nanoindenter is used for measurement. Examples of the nanoindenter include ENT1100 (trade name) manufactured by Elionix Co., Ltd. The measurement conditions are as follows.
ナノインデンターの測定条件
圧子: バーコビッチ
荷重: 1gf
負荷時間: 10sec
保持時間: 2sec
除荷時間: 10sec
Nanoindenter measurement conditions Indenter: Berkovich load: 1 gf
Load time: 10sec
Holding time: 2 sec
Unloading time: 10sec
 なお、同一の試料において測定する限りにおいては、測定点の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定点を設定しても恣意的にはならないことが確認された。 As long as the measurement is performed on the same sample, there is almost no variation in the measurement results even if the measurement points are changed and repeated multiple times. was confirmed.
 上記MoC1-x層の厚さは0.1μm以上10μm以下が好ましく、0.1μm以上7.0μm以下がより好ましく、0.5μm以上3μm以下が更に好ましい。 The thickness of the MoC 1-x layer is preferably 0.1 μm or more and 10 μm or less, more preferably 0.1 μm or more and 7.0 μm or less, and still more preferably 0.5 μm or more and 3 μm or less.
 <硬質被膜層>
 上記被膜は、上記基材とMoC1-x層との間に配置された硬質被膜層を更に含むことが好ましい。該硬質被膜層は、第一単位層を含むことが好ましい。該第一単位層の組成は、MoC1-x層の組成と異なることが好ましい。ここで「基材とMoC1-x層との間に配置された」とは、基材とMoC1-x層との間に硬質被膜層が配置されていればよく、硬質被膜層が、基材及びMoC1-x層に接触していることを要しない。基材と硬質被膜層との間に他の層が配置されていてもよいし、硬質被膜層とMoC1-x層との間に他の層が配置されていてもよい。上記硬質被膜層は、最外層(表面層)であってもよい。
<Hard coating layer>
Preferably, the coating further comprises a hard coating layer positioned between the substrate and the MoC 1-x layer. The hard coating layer preferably includes a first unit layer. The composition of the first unit layer is preferably different from the composition of the MoC 1-x layer. Here, "disposed between the substrate and the MoC 1-x layer" means that the hard coating layer is disposed between the substrate and the MoC 1-x layer, and the hard coating layer is It need not be in contact with the substrate and the MoC 1-x layer. Other layers may be arranged between the substrate and the hardcoat layer, and other layers may be arranged between the hardcoat layer and the MoC 1-x layer. The hard coating layer may be the outermost layer (surface layer).
 <第一単位層>
 第一単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることが好ましい。第一単位層は、クロム、アルミニウム、チタン及び珪素からなる群より選ばれる少なくとも1種の元素、又は、クロム、アルミニウム、チタン及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることがより好ましい。周期表4族元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等が挙げられる。周期表5族元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等が挙げられる。周期表6族元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)等が挙げられる。
<First unit layer>
The first unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, 6 It is preferably composed of a compound consisting of at least one element selected from the group consisting of group elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron. The first unit layer contains at least one element selected from the group consisting of chromium, aluminum, titanium and silicon, or at least one element selected from the group consisting of chromium, aluminum, titanium and silicon, carbon and nitrogen. , and at least one element selected from the group consisting of oxygen and boron. Examples of Group 4 elements of the periodic table include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. Vanadium (V), niobium (Nb), tantalum (Ta), etc. are mentioned as a periodic table V group element. Examples of Group 6 elements of the periodic table include chromium (Cr), molybdenum (Mo), tungsten (W), and the like.
 第一単位層に含まれる化合物としては、例えば、TiAlN、TiAlSiCN、TiAlSiON、TiAlSiN、TiCrSiN、TiAlCrSiN、AlCrN、AlCrO、AlCrSiN、TiZrN、TiAlMoN、TiAlNbN、TiSiN、AlCrTaN、AlTiVN、TiB、TiCrHfN、CrSiWN、TiAlCN、TiSiCN、AlZrON、AlCrCN、AlHfN、CrSiBON、CrAlBN、TiAlWN、AlCrMoCN、TiAlBN、TiAlCrSiBCNO、ZrN、ZrB、ZrCN、CrSiBN、AlCrBN、等が挙げられる。 Examples of compounds contained in the first unit layer include TiAlN, TiAlSiCN, TiAlSiON, TiAlSiN, TiCrSiN, TiAlCrSiN, AlCrN, AlCrO, AlCrSiN, TiZrN, TiAlMoN, TiAlNbN, TiSiN, AlCrTaN, AlTiVN, TiB 2 , TiCrHfN, CrSiWN, TiAlCN, TiSiCN, AlZrON, AlCrCN, AlHfN, CrSiBON, CrAlBN, TiAlWN, AlCrMoCN, TiAlBN, TiAlCrSiBCNO, ZrN, ZrB 2 , ZrCN, CrSiBN, AlCrBN, and the like.
 硬質被膜層が上記第一単位層のみからなる場合(例えば、図3の場合)、上記第一単位層(すなわち、上記硬質被膜層)の厚さは0.1μm以上10μm以下であることが好ましく、0.5μm以上7μm以下であることがより好ましい。 When the hard coating layer consists only of the first unit layer (for example, in the case of FIG. 3), the thickness of the first unit layer (that is, the hard coating layer) is preferably 0.1 μm or more and 10 μm or less. , 0.5 μm or more and 7 μm or less.
 <第二単位層>
 硬質被膜層は、更に第二単位層を含むことが好ましい。第二単位層の組成は、MoC1-x層の組成及び第一単位層の組成と異なることが好ましい。第二単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることが好ましい。第二単位層は、クロム、アルミニウム、チタン及び珪素からなる群より選ばれる少なくとも1種の元素、又は、クロム、アルミニウム、チタン及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることがより好ましい。周期表4族元素、5族元素及び6族元素それぞれの具体例としては、上述した各元素が挙げられる。
<Second unit layer>
Preferably, the hard coating layer further includes a second unit layer. The composition of the second unit layer is preferably different from the composition of the MoC 1-x layer and the composition of the first unit layer. The second unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, 6 It is preferably composed of a compound consisting of at least one element selected from the group consisting of group elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron. The second unit layer contains at least one element selected from the group consisting of chromium, aluminum, titanium, and silicon, or at least one element selected from the group consisting of chromium, aluminum, titanium, and silicon, carbon, and nitrogen. , and at least one element selected from the group consisting of oxygen and boron. Specific examples of the Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table include the elements described above.
 第二単位層に含まれる化合物としては、例えば、第一単位層に含まれる化合物として例示した上記化合物等が挙げられる。 Examples of the compound contained in the second unit layer include the above compounds exemplified as the compound contained in the first unit layer.
 第一単位層及び第二単位層は、それぞれが交互に1層以上積層された多層構造を形成していることが好ましい。すなわち、図4に示されるように、硬質被膜層13は、第一単位層131及び第二単位層132からなる多層構造を含むことが好ましい。ここで該多層構造は、第一単位層又は第二単位層のいずれの層から積層を開始してもよい。すなわち、多層構造におけるMoC1-x層側の界面は、第一単位層又は第二単位層のどちらで構成されていてもよい。また、多層構造におけるMoC1-x層側と反対側の界面は、第一単位層又は第二単位層のどちらで構成されていてもよい。 It is preferable that the first unit layer and the second unit layer form a multilayer structure in which one or more layers are alternately laminated. That is, as shown in FIG. 4, the hard coating layer 13 preferably includes a multi-layer structure consisting of a first unit layer 131 and a second unit layer 132. As shown in FIG. Here, lamination of the multilayer structure may start from either the first unit layer or the second unit layer. That is, the interface on the MoC 1-x layer side in the multilayer structure may be composed of either the first unit layer or the second unit layer. Further, the interface on the side opposite to the MoC 1-x layer side in the multilayer structure may be composed of either the first unit layer or the second unit layer.
 硬質被膜層が多層構造を含む場合、硬質被膜層の厚さは0.1μm以上10μm以下であることが好ましく、0.5μm以上7μm以下であることがより好ましい。硬質被膜層が多層構造を含む場合、上記MoC1-x層の厚さは、0.1μm以上10μm以下であり、硬質被膜層の厚さは0.1μm以上10μm以下であることが好ましい。これによると、切削工具の耐欠損性及び耐摩耗性が向上する。 When the hard coating layer has a multilayer structure, the thickness of the hard coating layer is preferably 0.1 μm or more and 10 μm or less, more preferably 0.5 μm or more and 7 μm or less. When the hard coating layer includes a multilayer structure, the thickness of the MoC 1-x layer is preferably 0.1 μm or more and 10 μm or less, and the thickness of the hard coating layer is preferably 0.1 μm or more and 10 μm or less. According to this, the chipping resistance and wear resistance of the cutting tool are improved.
 硬質被膜層が多層構造を含む場合、第一単位層の厚さは1nm以上100nm以下であることが好ましく、2nm以上25nm以下であることがより好ましい。さらに第二単位層の厚さは1nm以上100nm以下であることが好ましく、2nm以上25nm以下であることがより好ましい。本実施形態の一態様において、硬質被膜層が多層構造を含む場合、第一単位層の厚さは1nm以上100nm以下であり、且つ第二単位層の厚さは1nm以上100nm以下であることが好ましい。ここで、「第一単位層の厚さ」とは、上記第一単位層の1層あたりの厚さを意味する。「第二単位層の厚さ」とは、上記第二単位層の1層あたりの厚さを意味する。 When the hard coating layer includes a multilayer structure, the thickness of the first unit layer is preferably 1 nm or more and 100 nm or less, more preferably 2 nm or more and 25 nm or less. Further, the thickness of the second unit layer is preferably 1 nm or more and 100 nm or less, more preferably 2 nm or more and 25 nm or less. In one aspect of the present embodiment, when the hard coating layer includes a multilayer structure, the thickness of the first unit layer is 1 nm or more and 100 nm or less, and the thickness of the second unit layer is 1 nm or more and 100 nm or less. preferable. Here, the "thickness of the first unit layer" means the thickness of one of the first unit layers. The "thickness of the second unit layer" means the thickness of one of the second unit layers.
 多層構造の積層数は、硬質被膜層全体の厚さが上記範囲内となる限り、第一単位層及び第二単位層をそれぞれ1層ずつ積層させる態様が含まれるとともに、好ましくは両層をそれぞれ20~2500層ずつ積層させたものとすることができる。 As long as the thickness of the entire hard coating layer is within the above range, the number of laminated layers in the multilayer structure includes a mode in which one layer each of the first unit layer and the second unit layer is laminated, and preferably both layers are laminated. 20 to 2500 layers can be laminated.
 <他の層>
 本実施形態の効果を損なわない範囲において、上記被膜は、他の層を更に含んでいてもよい。上記他の層は、上記MoC1-x層及び上記硬質被膜層とは組成が異なっていてもよいし、同じであってもよい。被膜における他の層の位置も特に限定されない。例えば、他の層としては、上記基材と上記MoC1-x層との間に設けられている下地層、上記MoC1-x層と上記硬質被膜層との間に設けられている中間層、上記硬MoC1-x層の上に設けられている表面層等が挙げられる。他の層としては、例えば、TiN層、TiWCN層、TiCN層、ZrB層、TiSiN相、AlCrN層等を挙げることができる。
<Other layers>
The film may further include other layers as long as the effects of the present embodiment are not impaired. The other layer may be different or the same in composition as the MoC 1-x layer and the hard coat layer. The positions of other layers in the coating are also not particularly limited. For example, other layers include a base layer provided between the base material and the MoC 1-x layer, and an intermediate layer provided between the MoC 1-x layer and the hard coating layer. , a surface layer provided on the hard MoC 1-x layer, and the like. Other layers include, for example, a TiN layer, a TiWCN layer, a TiCN layer, a ZrB2 layer, a TiSiN phase, an AlCrN layer, and the like.
 他の層の厚さは、本実施形態の効果を損なわない範囲において、特に制限はない。例えば、0.002μm以上1μm以下が挙げられる。好ましくは、0.003μm以上0.01μm以下である。 The thickness of other layers is not particularly limited as long as it does not impair the effects of the present embodiment. For example, 0.002 μm or more and 1 μm or less can be mentioned. Preferably, it is 0.003 μm or more and 0.01 μm or less.
 [実施形態2:切削工具の製造方法]
 本実施形態に係る切削工具の製造方法は、基材準備工程と、MoC1-x層被覆工程とを含む。以下、各工程について説明する。
[Embodiment 2: Manufacturing method of cutting tool]
The manufacturing method of the cutting tool according to this embodiment includes a substrate preparation step and a MoC 1-x layer coating step. Each step will be described below.
 <基材準備工程>
 基材準備工程では、上記基材を準備する。上記基材としては、上述したようにこの種の基材として従来公知のものであればいずれの基材も使用することができる。例えば、上記基材が超硬合金からなる場合、まず所定の配合組成(質量%)からなる原料粉末を市販のアトライターを用いて均一に混合する。続いてこの混合粉末を所定の形状(例えば、SEET13T3AGSN、CNMG120408N-EG等)に加圧成形する。その後、所定の焼結炉において1300~1500℃以下で、上述の加圧成形した混合粉末を1~2時間焼結することにより、超硬合金からなる上記基材を得ることができる。また、基材は、市販品をそのまま用いてもよい。市販品としては、例えば、住友電工ハードメタル株式会社製のEH520(商標)が挙げられる。
<Base material preparation process>
In the base material preparation step, the base material is prepared. As the base material, any base material can be used as long as it is conventionally known as this type of base material, as described above. For example, when the base material is made of a cemented carbide, first, raw material powders having a predetermined composition (% by mass) are uniformly mixed using a commercially available attritor. Subsequently, this mixed powder is pressure-molded into a predetermined shape (eg, SEET13T3AGSN, CNMG120408N-EG, etc.). Thereafter, by sintering the pressure-molded mixed powder for 1 to 2 hours in a predetermined sintering furnace at 1300 to 1500° C. or less, the substrate made of cemented carbide can be obtained. Moreover, a commercially available product may be used as it is for the base material. Commercially available products include EH520 (trademark) manufactured by Sumitomo Electric Hardmetal Co., Ltd., for example.
 <MoC1-x層被覆工程>
 MoC1-x層被覆工程では、上記基材の表面の少なくとも一部をMoC1-x層(0.40≦x≦0.60)で被覆して切削工具を得る。ここで、「基材の表面の少なくとも一部」には、切削加工時に被削材と接する部分が含まれる。該被削材と接する部分とは、例えば、基材の表面において、刃先稜線からの距離が2mm以内の領域とすることができる。
<MoC 1-x layer coating step>
In the MoC 1-x layer coating step, at least part of the surface of the substrate is coated with a MoC 1-x layer (0.40≦x≦0.60) to obtain a cutting tool. Here, "at least a portion of the surface of the base material" includes a portion that comes into contact with the work material during cutting. The portion in contact with the work material can be, for example, a region within 2 mm from the ridgeline of the cutting edge on the surface of the base material.
 上記基材の少なくとも一部をMoC1-x層で被覆する方法としては、特に制限されない。例えば、物理蒸着法(PVD法)によってMoC1-x層を形成することが挙げられる。 The method for coating at least part of the base material with the MoC 1-x layer is not particularly limited. For example, a MoC 1-x layer may be formed by physical vapor deposition (PVD).
 上記物理蒸着法としては、従来公知の物理蒸着法を特に限定することなく用いることができる。このような物理蒸着法としては、例えばスパッタリング法、イオンプレーティング法、アークイオンプレーティング法、電子イオンビーム蒸着法等を挙げることができる。特に原料元素のイオン率が高いカソードアークイオンプレーティング法又はスパッタリング法を用いると、被膜を形成する前に基材表面に対してメタルボンバードメント処理及び/又はガスイオンボンバードメント処理が可能となるため、被膜と基材との密着性が格段に向上するので好ましい。 As the physical vapor deposition method, conventionally known physical vapor deposition methods can be used without particular limitation. Examples of such a physical vapor deposition method include a sputtering method, an ion plating method, an arc ion plating method, an electron ion beam vapor deposition method, and the like. In particular, when the cathodic arc ion plating method or sputtering method, which has a high ion rate of the raw material element, is used, metal bombardment treatment and/or gas ion bombardment treatment can be performed on the substrate surface before forming the coating. , is preferable because the adhesion between the coating and the substrate is remarkably improved.
 Moは融点が高く、溶かしにくい。よって、物理的蒸着法において安定した放電を維持できず、六方晶型のMoCからなり、良好な膜質を有するMoC層を形成することができなかった。本発明者らは鋭意検討の結果、六方晶型のMoCからなる良好な膜質を有するMoC層を安定して作製できる方法を見出した。その方法の一例として、アークイオンプレーティング法により六方晶型の結晶構造からなるMoC1-x層(0.40≦x≦0.60)を形成する場合について以下に説明する。 Mo has a high melting point and is difficult to melt. Therefore, a stable discharge could not be maintained in the physical vapor deposition method, and a MoC layer composed of hexagonal MoC and having good film quality could not be formed. As a result of intensive studies, the present inventors have found a method for stably producing a MoC layer of hexagonal MoC having good film quality. As an example of the method, the case of forming a MoC 1-x layer (0.40≦x≦0.60) having a hexagonal crystal structure by arc ion plating will be described below.
 まずMoCターゲットを装置内のアーク式蒸発源にセットし、基板(基材)温度を450~600℃に設定し、真空排気を行う。続いて、例えばアルゴンガス及びクリプトンガスの一方又は両方を導入し該装置内のガス圧を1.0~3.0Paに設定する。そして、DC電源を介し基板に負のバイアス電圧を200~1000V印可して基材の表面を40分間クリーニングする。その後、カソード電極に80~200Aのアーク電流を供給し、アーク式蒸発源から金属イオン等を発生させることにより六方晶型のMoC1-x層(0.40≦x≦0.60)を形成することができる。このとき、MoC1-x層の形成初期(膜厚が0.1μm以下の範囲)では基材温度を400~450℃とし、基板バイアスを-50Vとし、形成終了に向けて徐々に温度を450℃~550℃、基板バイアスを-60~-75Vまで上昇させる。アークイオンプレーティング法に用いる装置としては、例えば、株式会社神戸製鋼所製のAIP(商品名)が挙げられる。 First, the MoC target is set in the arc-type evaporation source in the apparatus, the substrate (base material) temperature is set to 450 to 600° C., and the apparatus is evacuated. Subsequently, for example, one or both of argon gas and krypton gas are introduced to set the gas pressure in the apparatus to 1.0-3.0 Pa. Then, a negative bias voltage of 200 to 1000 V is applied to the substrate via a DC power supply to clean the surface of the substrate for 40 minutes. After that, an arc current of 80 to 200 A is supplied to the cathode electrode to generate metal ions and the like from the arc evaporation source, thereby forming a hexagonal MoC 1-x layer (0.40 ≤ x ≤ 0.60). can do. At this time, at the beginning of the formation of the MoC 1-x layer (thickness range of 0.1 μm or less), the substrate temperature is set to 400 to 450° C., the substrate bias is set to −50 V, and the temperature is gradually raised to 450 toward the end of the formation. °C to 550 °C, the substrate bias is increased to -60 to -75V. An apparatus used for the arc ion plating method includes, for example, AIP (trade name) manufactured by Kobe Steel, Ltd.
 <硬質被膜層被覆工程>
 本実施形態に係る切削工具の製造方法は、上記MoC1-x層被覆工程の前に硬質被膜層被覆工程を更に含むことが好ましい。硬質被膜層の形成方法は、特に制限なく、従来の方法を用いることが可能である。具体的には、例えば、上述したPVD法によって硬質被膜層を形成することが挙げられる。
<Hard coating layer coating step>
The cutting tool manufacturing method according to the present embodiment preferably further includes a hard coating layer coating step before the MoC 1-x layer coating step. The method for forming the hard coating layer is not particularly limited, and conventional methods can be used. Specifically, for example, the hard coating layer is formed by the PVD method described above.
 <その他の工程>
 本実施形態に係る製造方法は、上述した工程の他にも、基材と上記MoC1-x層との間に下地層を形成する下地層被覆工程、上記MoC1-x層と上記硬質被膜層との間に中間層を形成する中間層被覆工程及び上記MoC1-x層の上に表面層を形成する表面層被覆工程を含むことができる。上述の下地層、中間層及び表面層等の他の層を形成する場合、従来の方法によって他の層を形成してもよい。具体的には、例えば、上述したPVD法によって上記他の層を形成することが挙げられる。
<Other processes>
In addition to the above-described steps, the manufacturing method according to the present embodiment includes a base layer coating step of forming a base layer between the base material and the MoC 1-x layer, the MoC 1-x layer and the hard coating and a surface layer coating step of forming a surface layer on the MoC 1-x layer. When forming other layers such as the underlayer, intermediate layer and surface layer described above, the other layers may be formed by conventional methods. Specifically, for example, the other layer may be formed by the PVD method described above.
 更に、本実施形態に係る製造方法は、メタルボンバード処理、ピーニング処理、及び、表面処理を行う工程等を適宜含むことができる。メタルボンバード処理としては、例えば、アルゴンガス雰囲気中でTiカソード蒸発させ、基材表面をミキシングしてミキシング層を形成する方法が挙げられる。表面処理としては、砥粒による研磨やブラシ磨きなどが挙げられる。より具体的には、弾性材にダイヤモンド粉末を担持させたメディアを用いる方法が挙げられる。上記表面処理を行う装置としては、例えば、株式会社不二製作所製のシリウスZ等が挙げられる。 Furthermore, the manufacturing method according to the present embodiment can appropriately include steps such as metal bombardment treatment, peening treatment, and surface treatment. The metal bombardment treatment includes, for example, a method of subjecting Ti to cathode evaporation in an argon gas atmosphere and mixing the substrate surface to form a mixing layer. Examples of surface treatment include polishing with abrasive grains and brush polishing. More specifically, there is a method of using a medium in which diamond powder is supported on an elastic material. As an apparatus for performing the surface treatment, for example, Sirius Z manufactured by Fuji Seisakusho Co., Ltd., etc. can be cited.
 [付記1]
 本開示の切削工具において、MoC1-x層の厚さは0.1μm以上10.0μm以下であることが好ましい。
 本開示の切削工具において、MoC1-x層の厚さは0.1μm以上7.0μm以下であることが好ましい。
 本開示の切削工具において、MoC1-x層の厚さは0.6μm以上6.5μm以下であることが好ましい。
 本開示の切削工具において、MoC1-x層の厚さは、0.5μm以上3μm以下であることが好ましい。
[Appendix 1]
In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.1 μm or more and 10.0 μm or less.
In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.1 μm or more and 7.0 μm or less.
In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.6 μm or more and 6.5 μm or less.
In the cutting tool of the present disclosure, the MoC 1-x layer preferably has a thickness of 0.5 μm or more and 3 μm or less.
 [付記2]
 本開示の切削工具において、被膜はMoC1-x層のみからなり、該被膜の厚さは、0.1μm以上10μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層のみからなり、該被膜の厚さは、0.3μm以上10μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層のみからなり、該被膜の厚さは、0.5μm以上10μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層のみからなり、該被膜の厚さは、1μm以上6μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層のみからなり、該被膜の厚さは、1.5μm以上4μm以下が好ましい。
[Appendix 2]
In the cutting tool of the present disclosure, the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.1 μm or more and 10 μm or less.
In the cutting tool of the present disclosure, the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.3 μm or more and 10 μm or less.
In the cutting tool of the present disclosure, the coating consists only of the MoC 1-x layer, and the thickness of the coating is preferably 0.5 μm or more and 10 μm or less.
In the cutting tool of the present disclosure, the coating consists of only the MoC 1-x layer, and the thickness of the coating is preferably 1 μm or more and 6 μm or less.
In the cutting tool of the present disclosure, the coating consists of only the MoC 1-x layer, and the thickness of the coating is preferably 1.5 μm or more and 4 μm or less.
 [付記3]
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.1μm以上20μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.1μm以上17μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.1μm以上12μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.2μm以上20μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.2μm以上17μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該被膜の厚さは、0.2μm以上12μm以下が好ましい。
 本開示の切削工具において、被膜はMoC1-x層及び硬質被膜層を含み、該MoC1-x層の厚さは0.1μm以上10μm以下であり、該硬質被膜層の厚さは0.1μm以上10μm以下であり、該被膜の厚さは、0.2μm以上20μm以下が好ましい。
[Appendix 3]
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 μm or more and 20 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 μm or more and 17 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.1 μm or more and 12 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 μm or more and 20 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 μm or more and 17 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, and the thickness of the coating is preferably 0.2 μm or more and 12 μm or less.
In the cutting tool of the present disclosure, the coating includes a MoC 1-x layer and a hard coating layer, the MoC 1-x layer has a thickness of 0.1 μm or more and 10 μm or less, and the hard coating layer has a thickness of 0.1 μm or more and 10 μm or less. It is 1 μm or more and 10 μm or less, and the thickness of the coating is preferably 0.2 μm or more and 20 μm or less.
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。 The present embodiment will be described more specifically with examples. However, this embodiment is not limited by these examples.
 ≪切削工具の作製≫
 [試料1~試料26]
 <基材準備工程>
 基材として、JIS規格K10超硬(形状:JIS規格SEET13T3AGSN-L、CNMG120408N-EG)を準備した。次に、上記基材をアークイオンプレーティング装置(株式会社神戸製鋼所製、商品名:AIP)の所定の位置にセットする。
≪Manufacturing cutting tools≫
[Samples 1 to 26]
<Base material preparation process>
As a base material, JIS standard K10 cemented carbide (shape: JIS standard SEET13T3AGSN-L, CNMG120408N-EG) was prepared. Next, the base material is set at a predetermined position of an arc ion plating apparatus (manufactured by Kobe Steel, Ltd., trade name: AIP).
 <MoC1-x層被覆工程>
 アークイオンプレーティング法により上記基材の上にMoC1-x層を形成した。具体的には以下の方法で行う。まずMoCターゲットを装置内のアーク式蒸発源にセットし、基板(基材)温度を450~600℃に設定し、真空排気を行う。続いて、例えばアルゴンガス及びクリプトンガスの一方又は両方を導入し該装置内のガス圧を1.0~3.0Paに設定する。そして、DC電源を介し基板に負のバイアス電圧を200~1000V印可して基材の表面を40分間クリーニングする。その後、カソード電極に80~200Aのアーク電流を供給し、アーク式蒸発源から金属イオン等を発生させることによりMoC1-x層(0.40≦x≦0.60)を形成する。このとき、MoC1-x層の形成初期(膜厚が0.1μm以下の範囲)では基材温度を400~450℃とし、基板バイアスを-50Vとし、形成終了に向けて徐々に温度を450℃~550℃、基板バイアスを-60~-75Vまで上昇させる。上記の方法で、表1及び表2の「MoC1-x層」の「厚さ」欄に記載の厚さまでMoC1-x層を形成した。アークイオンプレーティング法に用いる装置としては、株式会社神戸製鋼所製のAIP(商品名)を用いた。
<MoC 1-x layer coating step>
A MoC 1-x layer was formed on the substrate by an arc ion plating method. Specifically, the method is as follows. First, the MoC target is set in the arc-type evaporation source in the apparatus, the substrate (base material) temperature is set to 450 to 600° C., and the apparatus is evacuated. Subsequently, for example, one or both of argon gas and krypton gas are introduced to set the gas pressure in the apparatus to 1.0-3.0 Pa. Then, a negative bias voltage of 200 to 1000 V is applied to the substrate via a DC power supply to clean the surface of the substrate for 40 minutes. After that, an arc current of 80 to 200 A is supplied to the cathode electrode to generate metal ions and the like from the arc evaporation source, thereby forming a MoC 1-x layer (0.40≦x≦0.60). At this time, at the beginning of the formation of the MoC 1-x layer (thickness range of 0.1 μm or less), the substrate temperature is set to 400 to 450° C., the substrate bias is set to −50 V, and the temperature is gradually raised to 450 toward the end of the formation. °C to 550 °C, the substrate bias is increased to -60 to -75V. The MoC 1-x layer was formed to the thickness described in the "thickness" column of "MoC 1-x layer" in Tables 1 and 2 by the above method. As an apparatus used for the arc ion plating method, AIP (trade name) manufactured by Kobe Steel, Ltd. was used.
 <下地層被覆工程>
 基材とMoC1-x層との間に下地層を形成した試料(試料5、試料6)については、MoC1-x層被覆工程を行う前に以下の手順にて、基材の上に下地層を形成した。まず表1に記載の下地層の組成の欄における金属組成を含むターゲットをアークイオンプレーティング装置のアーク式蒸発源にセットした。次に、基材温度を600℃及び該装置内のガス圧を1Paに設定した。窒化物の下地層(試料5)の場合は、窒素ガスとアルゴンガスとの混合ガスを導入した。炭窒化物の下地層(試料6)の場合は、反応ガスとしては窒素ガスとメタンガスとアルゴンガスとの混合ガスを導入した。その後、カソード電極に150Aのアーク電流を供給した。アーク電流の供給でアーク式蒸発源から金属イオン等を発生させることによって、表1の「下地層」の括弧内に記載の厚さまで下地層を形成した。
<Base layer coating step>
For samples (Samples 5 and 6) in which an underlayer was formed between the substrate and the MoC 1-x layer, the following procedure was performed on the substrate before the MoC 1-x layer coating step. A base layer was formed. First, a target containing the metal composition in the column of composition of the underlayer shown in Table 1 was set in the arc-type evaporation source of the arc ion plating apparatus. Next, the substrate temperature was set to 600° C. and the gas pressure in the apparatus was set to 1 Pa. In the case of the nitride underlayer (Sample 5), a mixed gas of nitrogen gas and argon gas was introduced. In the case of the underlayer of carbonitride (Sample 6), a mixed gas of nitrogen gas, methane gas and argon gas was introduced as the reaction gas. After that, an arc current of 150 A was supplied to the cathode electrode. By supplying an arc current to generate metal ions and the like from an arc-type evaporation source, an underlayer was formed to a thickness described in parentheses under "Underlayer" in Table 1.
 <硬質被膜層被覆工程>
 基材とMoC1-x層との間に硬質被膜層を設けた試料(試料7~試料13、試料16~試料22、試料25、試料26)については、MoC1-x層被覆工程を行う前に以下の手順にて、基材の上に硬質被膜層を形成した。まず表1及び表2に記載の硬質被膜層の組成の欄における金属組成を含むターゲットをアークイオンプレーティング装置のアーク式蒸発源にセットした。次に、基材温度を550℃及び該装置内のガス圧を4.0Paに設定した。反応ガスとしては、窒化物の硬質被膜層の場合は窒素ガスを導入した。炭窒化物の硬質被膜層の場合は、反応ガスとしては窒素ガスとメタンガスとの混合ガスを導入した。酸窒化物の硬質被膜層の場合は、反応ガスとしては酸素ガスと窒素ガスとの混合ガスを導入した。その後、カソード電極に150Aのアーク電流を供給した。アーク電流の供給でアーク式蒸発源から金属イオン等を発生させることによって、表1及び表2の「硬質被膜層」の括弧内に記載の厚さまで硬質被膜層を形成した。
<Hard coating layer coating step>
For the samples (Samples 7 to 13, Samples 16 to 22, Samples 25, and 26) having a hard coating layer between the substrate and the MoC 1-x layer, the MoC 1-x layer coating step is performed. A hard coating layer was previously formed on the substrate by the following procedure. First, a target containing the metal composition in the composition column of the hard coating layer shown in Tables 1 and 2 was set in the arc-type evaporation source of the arc ion plating apparatus. Next, the substrate temperature was set to 550° C. and the gas pressure in the apparatus was set to 4.0 Pa. As a reaction gas, nitrogen gas was introduced in the case of a nitride hard coating layer. In the case of the carbonitride hard coating layer, a mixed gas of nitrogen gas and methane gas was introduced as the reaction gas. In the case of the oxynitride hard film layer, a mixed gas of oxygen gas and nitrogen gas was introduced as the reaction gas. After that, an arc current of 150 A was supplied to the cathode electrode. By supplying an arc current to generate metal ions and the like from an arc-type evaporation source, a hard coating layer was formed to a thickness described in parentheses of "Hard coating layer" in Tables 1 and 2.
 なお、多層構造の硬質被膜層を形成する場合は、表1及び表2において左側に記載されているものから順に第一単位層、第二単位層として目的の厚さになるまで繰り返して積層して多層構造を形成した。例えば、試料11では、TiAlBNからなる厚さ5nmの第一単位層と、TiSiNからなる厚さ5nmの第二単位層とを交互に繰り返して積層して、厚さ1.0μmの多層構造を形成した。 In addition, when forming a hard coating layer with a multilayer structure, the first unit layer and the second unit layer are laminated in order from the left side in Tables 1 and 2 until the desired thickness is obtained. to form a multi-layered structure. For example, in sample 11, a first unit layer made of TiAlBN with a thickness of 5 nm and a second unit layer made of TiSiN with a thickness of 5 nm are alternately laminated to form a multilayer structure with a thickness of 1.0 μm. did.
 <表面層被覆工程>
 MoC1-x層上に表面層を設けた試料(試料5、試料7、試料8、試料11、試料12)については、MoC1-x層被覆工程後に以下の手順にて、MoC1-x層の上に表面層を形成した。まず表1に記載の表面層の組成の欄における金属組成を含むターゲットをアークイオンプレーティング装置のアーク式蒸発源にセットした。次に、基材温度を550℃及び該装置内のガス圧を4.0Paに設定した。反応ガスとしては、窒化物の表面層の場合は窒素ガスとアルゴンガスとの混合ガスを導入した。その後、カソード電極に150Aのアーク電流を供給した。アーク電流の供給でアーク式蒸発源から金属イオン等を発生させることによって、表1の「表面層」の括弧内に記載の厚さまで表面層を形成した。
<Surface layer coating step>
For the samples having a surface layer on the MoC 1-x layer (Sample 5, Sample 7, Sample 8, Sample 11, and Sample 12), MoC 1-x was coated in the following procedure after the MoC 1 -x layer coating step. A surface layer was formed on the layer. First, a target containing the metal composition in the surface layer composition column shown in Table 1 was set in an arc-type evaporation source of an arc ion plating apparatus. Next, the substrate temperature was set to 550° C. and the gas pressure in the apparatus was set to 4.0 Pa. As a reaction gas, a mixed gas of nitrogen gas and argon gas was introduced in the case of a nitride surface layer. After that, an arc current of 150 A was supplied to the cathode electrode. A surface layer was formed up to the thickness shown in parentheses under "Surface layer" in Table 1 by generating metal ions and the like from an arc evaporation source by supplying an arc current.
 [試料1-1]
 基材として、試料1と同一の基材を準備した。該基材上に、アークイオンプレーティング法により上記基材の上にMoC1-x層を形成した。具体的には以下の方法で行った。まずMoCターゲットをアークイオンプレーティング装置のアーク式蒸発源にセットした。次に、基材温度を390℃及び該装置内のガス圧を2Paに設定した。上記ガスとしては、アルゴンガスを導入した。そして、基板バイアス電圧を-50Vに維持したまま、カソード電極に120Aのアーク電流を供給した。アーク電流の供給でアーク式蒸発源から金属イオン等を発生させることにより、MoC1-x層を形成して切削工具を得た。
[Sample 1-1]
As a base material, the same base material as sample 1 was prepared. A MoC 1-x layer was formed on the substrate by an arc ion plating method. Specifically, the following method was used. First, the MoC target was set in the arc-type evaporation source of the arc ion plating device. Next, the substrate temperature was set to 390° C. and the gas pressure in the apparatus was set to 2 Pa. Argon gas was introduced as the gas. Then, while maintaining the substrate bias voltage at -50V, an arc current of 120A was supplied to the cathode electrode. A cutting tool was obtained by forming a MoC 1-x layer by generating metal ions and the like from an arc evaporation source by supplying an arc current.
 [試料1-2]
 基材として、試料1と同一の基材を準備した。該基材上に、アークイオンプレーティング法により上記基材の上にMoC1-x層を形成した。具体的には以下の方法で行った。まずMoCターゲットをアークイオンプレーティング装置のアーク式蒸発源にセットした。次に、基材温度を620℃及び該装置内のガス圧を0.5Paに設定した。上記ガスとしては、アルゴンガスを導入した。そして、基板バイアス電圧を-40Vに維持したまま、カソード電極に130Aのアーク電流を供給した。アーク電流の供給でアーク式蒸発源から金属イオン等を発生させることにより、MoC1-x層を形成して切削工具を得た。
[Sample 1-2]
As a base material, the same base material as sample 1 was prepared. A MoC 1-x layer was formed on the substrate by an arc ion plating method. Specifically, the following method was used. First, the MoC target was set in the arc-type evaporation source of the arc ion plating device. Next, the substrate temperature was set to 620° C. and the gas pressure in the apparatus was set to 0.5 Pa. Argon gas was introduced as the gas. Then, while maintaining the substrate bias voltage at -40V, an arc current of 130A was supplied to the cathode electrode. A cutting tool was obtained by forming a MoC 1-x layer by generating metal ions and the like from an arc evaporation source by supplying an arc current.
 [試料1-3]
 基材として、試料1と同一の基材を準備した。該基材上に、特許文献1に記載の方法でWC0.56層を形成して切削工具を得た。
[Sample 1-3]
As a base material, the same base material as sample 1 was prepared. A cutting tool was obtained by forming a WC 0.56 layer on the substrate by the method described in Patent Document 1.
 [試料1-4]
 基材として、試料1と同一の基材を準備した。該基材上に、TiN層(下地層)及びAlTiN層を前記の順で形成した。TiN層は試料5と同一の方法で形成した。AlTiN層は試料12の第一単位層と同一の方法で形成した。
[Sample 1-4]
As a base material, the same base material as sample 1 was prepared. A TiN layer (base layer) and an AlTiN layer were formed on the substrate in the above order. The TiN layer was formed by the same method as sample 5. The AlTiN layer was formed in the same manner as the first unit layer of Sample 12.
 ≪切削工具の特性評価≫
 上述のようにして作製した各試料のMoC1-x層について、組成x、結晶構造及び該結晶構造の含有率、遊離炭素の有無、及び、硬度を測定した。硬度に関して、試料1-3及び試料1-4では、硬質被膜層の硬度を測定した。具体的な測定方法は実施形態1に記載されているため、その説明は繰り返さない。結果を表1及び表2の「MoC1-x層」の「組成x」、「結晶構造」、「含有率(質量%)」、「遊離炭素」及び「硬度(mgf/μm)」欄に示す。表1及び表2中、「遊離炭素」の欄における「無」との表記は、MoC1-x層中に遊離炭素が含まれていないことを示し、「有」との表記は、MoC1-x層中に遊離炭素が含まれていること示す。試料1~試料24、試料1-1及び試料1-2では、MoC1-x層は100質量%の六方晶型の結晶構造からなることが確認された。
≪Characteristic evaluation of cutting tools≫
For the MoC 1-x layer of each sample produced as described above, the composition x, the crystal structure, the content of the crystal structure, the presence or absence of free carbon, and the hardness were measured. Regarding hardness, the hardness of the hard coating layer was measured for Samples 1-3 and 1-4. Since a specific measuring method is described in Embodiment 1, the description thereof will not be repeated. The results are shown in Tables 1 and 2 in the "Composition x", "Crystal structure", "Content rate (% by mass)", "Free carbon" and "Hardness (mgf/μm 2 )" columns of the "MoC 1-x layer". shown in In Tables 1 and 2, the notation "no" in the "free carbon" column indicates that the MoC 1-x layer does not contain free carbon, and the notation "present" indicates that MoC 1 - Indicates that the x layer contains free carbon. In samples 1 to 24, samples 1-1 and 1-2, it was confirmed that the MoC 1-x layer consisted of 100% by mass of a hexagonal crystal structure.
 MoC1-x層、下地層、硬質被膜層(第一単位層、第二単位層)及び被膜の厚さを測定した。具体的な測定方法は実施形態1に記載されているため、その説明は繰り返さない。結果を表1及び表2に示す。表1及び表2中、「下地層」及び「硬質被膜層」における「-」との表記は、該当する層が被膜中に存在しないことを示す。また、「硬質被膜層」における「TiAlBN(5nm)/TiSiN(5nm)多層構造(1.0μm)」等の表記は、硬質被膜層が、厚さ5nmのTiAlBN層(第一単位層)と厚さ5nmのTiSiN層(第二単位層)とを交互に積層した多層構造(合計厚み1.0μm)により形成されていることを示している。 The thicknesses of the MoC 1-x layer, underlayer, hard coating layer (first unit layer, second unit layer) and coating were measured. Since a specific measuring method is described in Embodiment 1, the description thereof will not be repeated. The results are shown in Tables 1 and 2. In Tables 1 and 2, the notation "-" in the "base layer" and "hard coating layer" indicates that the corresponding layer does not exist in the coating. In addition, notations such as “TiAlBN (5 nm) / TiSiN (5 nm) multilayer structure (1.0 μm)” in “hard coating layer” mean that the hard coating layer is a 5 nm thick TiAlBN layer (first unit layer) and a thick It shows that it is formed of a multilayer structure (total thickness of 1.0 μm) in which TiSiN layers (second unit layers) with a thickness of 5 nm are alternately laminated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ≪切削試験1≫
 上述のようにして作製した各試料の切削工具を用いて、以下の切削条件により切削工具が欠損するまでの切削時間を測定し、当該切削工具の耐欠損性を評価した。以下の切削条件は、高速高能率加工に該当する。結果を表1及び表2に示す。切削時間が長いほど耐欠損性が優れていることを示す。
≪Cutting test 1≫
Using the cutting tool of each sample prepared as described above, the cutting time until chipping of the cutting tool was measured under the following cutting conditions, and chipping resistance of the cutting tool was evaluated. The following cutting conditions correspond to high-speed, high-efficiency machining. The results are shown in Tables 1 and 2. Longer cutting time indicates better chipping resistance.
(耐欠損性試験(正面フライス加工試験)の切削条件)
インサート:SEET13T3AGSN-L
被削材(材質):Ti-6Al-4V
速度     :70m/min
送り     :0.1mm/刃
切り込み   :切込み深さ:5mm、径方向切込み:10mm
(Cutting conditions for fracture resistance test (face milling test))
Insert: SEET13T3AGSN-L
Work material (material): Ti-6Al-4V
Speed: 70m/min
Feed: 0.1 mm/blade depth of cut: depth of cut: 5 mm, depth of cut in radial direction: 10 mm
 ≪切削試験2≫
 上述のようにして作製した各試料の切削工具を用いて、以下の切削条件により切削試験を行い、当該切削工具の耐摩耗性を評価した。以下の切削条件は、高速高能率加工に該当する。結果を表1及び表2に示す。切削時間が長いほど耐摩耗性が優れていることを示す。
≪Cutting test 2≫
Using the cutting tool of each sample prepared as described above, a cutting test was conducted under the following cutting conditions to evaluate the wear resistance of the cutting tool. The following cutting conditions correspond to high-speed, high-efficiency machining. The results are shown in Tables 1 and 2. A longer cutting time indicates better wear resistance.
(耐摩耗性試験(外径旋削試験)の切削条件)
インサート:CNMG120408N-EG
被削材(材質):Ti-6Al-4V
速度     :140m/min
送り     :0.15mm/刃
切り込み   :切込み深さ:0.8mm
寿命判定基準:逃げ面摩耗が0.2mmを超える時間
(Cutting conditions for wear resistance test (outer diameter turning test))
Insert: CNMG120408N-EG
Work material (material): Ti-6Al-4V
Speed: 140m/min
Feed: 0.15mm/blade depth: depth of cut: 0.8mm
Criteria for life judgment: Time when flank wear exceeds 0.2 mm
 上記切削試験の結果から、実施例に該当する試料1~試料26の切削工具は、比較例に該当する試料1-1~試料1-4の切削工具に比べて、高速高能率加工においても、耐欠損性及び耐摩耗性に優れており、工具寿命も長いことが確認された。このことから、実施例に該当する試料1~試料24の切削工具は、負荷の高い高速、高能率加工の用途、特に耐欠損性及び耐摩耗性が必要とされる用途に向いていることが示唆された。 From the results of the above cutting test, the cutting tools of Samples 1 to 26 corresponding to Examples are compared to the cutting tools of Samples 1-1 to 1-4 corresponding to Comparative Examples, even in high-speed and high-efficiency machining. It was confirmed that the chipping resistance and wear resistance are excellent, and that the tool life is long. From this, the cutting tools of Samples 1 to 24 corresponding to the examples are suitable for high-load, high-speed, high-efficiency machining applications, especially those requiring chipping resistance and wear resistance. It was suggested.
 以上のように本発明の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described as above, it is planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments and examples, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 すくい面、2 逃げ面、3 刃先稜線部、4 被膜、10 切削工具、11 基材、12 MoC1-x層、13 硬質被膜層、131 第一単位層、132 第二単位層 1 rake face, 2 flank face, 3 cutting edge ridge, 4 coating, 10 cutting tool, 11 base material, 12 MoC 1-x layer, 13 hard coating layer, 131 first unit layer, 132 second unit layer

Claims (11)

  1.  基材と、前記基材上に配置された被膜と、を備える切削工具であって、
     前記被膜は、MoC1-xで示される化合物からなるMoC1-x層を含み、
     前記xは、0.40以上0.60以下であり、
     前記MoC1-xで示される化合物は、六方晶型の結晶構造からなる、切削工具。
    A cutting tool comprising a substrate and a coating disposed on the substrate,
    The coating comprises a MoC 1 -x layer made of a compound represented by MoC 1-x,
    The x is 0.40 or more and 0.60 or less,
    A cutting tool, wherein the compound represented by MoC 1-x has a hexagonal crystal structure.
  2.  前記MoC1-x層は、遊離炭素を含まない、請求項1に記載の切削工具。 2. The cutting tool of claim 1, wherein the MoC 1-x layer does not contain free carbon.
  3.  前記MoC1-x層の膜硬度は、2700mgf/μm以上4200mgf/μm以下である、請求項1又は請求項2に記載の切削工具。 3. The cutting tool according to claim 1, wherein the MoC 1-x layer has a film hardness of 2700 mgf/μm 2 or more and 4200 mgf/μm 2 or less.
  4.  前記MoC1-x層は、前記基材に接している、請求項1から請求項3のいずれか1項に記載の切削工具。 A cutting tool according to any preceding claim, wherein the MoC 1-x layer is in contact with the substrate.
  5.  前記被膜は、前記基材と前記MoC1-x層との間に配置された硬質被膜層を更に含み、
     前記硬質被膜層は、第一単位層を含み、
     前記第一単位層の組成は、前記MoC1-x層の組成と異なり、
     前記第一単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる、請求項1から請求項3のいずれか1項に記載の切削工具。
    the coating further comprises a hard coating layer disposed between the substrate and the MoC 1-x layer;
    The hard coating layer includes a first unit layer,
    The composition of the first unit layer is different from the composition of the MoC 1-x layer,
    The first unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, A compound comprising at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron. Item 3. The cutting tool according to any one of items 3.
  6.  前記硬質被膜層は、前記第一単位層からなり、
     前記第一単位層の厚さは、0.1μm以上10μm以下である、請求項5に記載の切削工具。
    The hard coating layer consists of the first unit layer,
    The cutting tool according to claim 5, wherein the thickness of the first unit layer is 0.1 µm or more and 10 µm or less.
  7.  前記硬質被膜層は、更に第二単位層を含み、
     前記第二単位層の組成は、前記MoC1-x層の組成及び前記第一単位層の組成と異なり、
     前記第二単位層は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素からなる、又は、周期表4族元素、5族元素、6族元素、アルミニウム及び珪素からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなり、
     前記第一単位層及び前記第二単位層は、それぞれが交互に1層以上積層された多層構造を形成している、請求項5に記載の切削工具。
    The hard coating layer further includes a second unit layer,
    The composition of the second unit layer is different from the composition of the MoC 1-x layer and the composition of the first unit layer,
    The second unit layer is composed of at least one element selected from the group consisting of periodic table 4 group elements, 5 group elements, 6 group elements, aluminum and silicon, or periodic table 4 group elements, 5 group elements, A compound consisting of at least one element selected from the group consisting of Group 6 elements, aluminum and silicon, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron,
    The cutting tool according to claim 5, wherein the first unit layer and the second unit layer each form a multilayer structure in which one or more layers are alternately laminated.
  8.  前記第一単位層の厚さは、1nm以上100nm以下であり、
     前記第二単位層の厚さは、1nm以上100nm以下である、請求項7に記載の切削工具。
    the first unit layer has a thickness of 1 nm or more and 100 nm or less;
    The cutting tool according to claim 7, wherein the second unit layer has a thickness of 1 nm or more and 100 nm or less.
  9.  前記MoC1-x層の厚さは、0.1μm以上10μm以下であり、
     前記硬質被膜層の厚さは、0.1μm以上10μm以下である、請求項7又は請求項8に記載の切削工具。
    The MoC 1-x layer has a thickness of 0.1 μm or more and 10 μm or less,
    The cutting tool according to claim 7 or 8, wherein the hard coating layer has a thickness of 0.1 µm or more and 10 µm or less.
  10.  前記被膜の厚さは、0.2μm以上20μm以下である、請求項9に記載の切削工具。 The cutting tool according to claim 9, wherein the coating has a thickness of 0.2 µm or more and 20 µm or less.
  11.  前記基材は、超硬合金、サーメット、高速度鋼、セラミックス、cBN焼結体及びダイヤモンド焼結体からなる群より選ばれる少なくとも1種を含む、請求項1から請求項10のいずれか1項に記載の切削工具。 11. Any one of claims 1 to 10, wherein the substrate comprises at least one selected from the group consisting of cemented carbide, cermet, high-speed steel, ceramics, cBN sintered bodies and diamond sintered bodies. The cutting tool described in .
PCT/JP2021/019172 2021-05-20 2021-05-20 Cutting tool WO2022244190A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/019172 WO2022244190A1 (en) 2021-05-20 2021-05-20 Cutting tool
EP22804264.4A EP4306246A1 (en) 2021-05-20 2022-02-09 Cutting tool
JP2022542762A JP7305054B2 (en) 2021-05-20 2022-02-09 Cutting tools
PCT/JP2022/005116 WO2022244342A1 (en) 2021-05-20 2022-02-09 Cutting tool
JP2023103471A JP2023118793A (en) 2021-05-20 2023-06-23 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019172 WO2022244190A1 (en) 2021-05-20 2021-05-20 Cutting tool

Publications (1)

Publication Number Publication Date
WO2022244190A1 true WO2022244190A1 (en) 2022-11-24

Family

ID=84141543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019172 WO2022244190A1 (en) 2021-05-20 2021-05-20 Cutting tool

Country Status (1)

Country Link
WO (1) WO2022244190A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2016530399A (en) * 2013-07-19 2016-09-29 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン Coating for forming tools
WO2019181740A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2016530399A (en) * 2013-07-19 2016-09-29 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン Coating for forming tools
WO2019181740A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SRISATTAYAKUL, PARINYA ET AL.: "Reciprocating two-body abrasive wear behavior of DC magnetron sputtered Mo-based coatings on hard-chrome plated AISI 316 stainless steel", WEAR, vol. 378-379, 2017, pages 96 - 105, XP029955212 *

Similar Documents

Publication Publication Date Title
JP6798627B2 (en) Surface coating cutting tool
JPWO2018216256A1 (en) Coatings and cutting tools
JP7354933B2 (en) Cutting tools
US11117196B2 (en) Surface-coated cutting tool
JP2024022661A (en) Cutting tools
JP7119279B1 (en) Cutting tools
JP7251347B2 (en) surface coated cutting tools
JP6798626B2 (en) Surface coating cutting tool
WO2022244190A1 (en) Cutting tool
WO2022244191A1 (en) Cutting tool
JP7305054B2 (en) Cutting tools
JP7443655B2 (en) Cutting tools
JP7251348B2 (en) surface coated cutting tools
JP7226688B2 (en) Cutting tools
WO2022176058A1 (en) Cutting tool
CN117580664A (en) Cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE