WO2022244179A1 - ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 - Google Patents
ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2022244179A1 WO2022244179A1 PCT/JP2021/019149 JP2021019149W WO2022244179A1 WO 2022244179 A1 WO2022244179 A1 WO 2022244179A1 JP 2021019149 W JP2021019149 W JP 2021019149W WO 2022244179 A1 WO2022244179 A1 WO 2022244179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- policy
- score
- access
- data
- access control
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000009471 action Effects 0.000 claims description 52
- 230000008859 change Effects 0.000 claims description 33
- 241000282414 Homo sapiens Species 0.000 abstract description 8
- 230000015654 memory Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 21
- 238000012545 processing Methods 0.000 description 16
- 238000004422 calculation algorithm Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 10
- VEMKTZHHVJILDY-UHFFFAOYSA-N resmethrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UHFFFAOYSA-N 0.000 description 9
- 238000013475 authorization Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000012517 data analytics Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
Definitions
- the present invention relates to a policy generation device, a policy generation method, and a non-transitory computer-readable medium storing a program.
- Access control in the network is important for maintaining network security and necessary access.
- Cited Document 1 there is an access control system that generates an access control policy using the relationship between an object group and an object, etc., and generates a different access control list for each access control implementation means that controls access to an object. disclosed.
- this access control system even if objects with different combinations of actions, such as OSs (Operating Systems) with different file systems, coexist, and many types of access control enforcement means are connected at the same time, the same method and system as before can be used.
- the purpose is to describe access control policies in , and to enforce access control collectively.
- FIG. 1 is a block diagram showing an example of a policy generation device.
- the policy generation device 10 has an acquisition unit 11 and a policy generation unit 12 .
- Each part (each means) of the policy generation device 10 is controlled by a controller (not shown). Each part will be described below.
- Elements related to access control indicate arbitrary information related to access control. Specific examples of elements include arbitrary IDs and attributes can be included. Specific examples of the various data of the access source include the IP address of the access source, the user ID, the device ID, the application ID, the user location, and the OS used by the device of the access source. Not limited.
- elements related to access control include not only single elements but also arbitrarily combined different elements. Examples of combinations include a combination of elements having different attributes (user ID x user location x resource ID), and a combination of elements having the same IP address attribute such as (source IP address x destination IP address). is assumed, but the combination is not limited to this. Also, the number of elements to be combined may be any number equal to or greater than two. Hereinafter, such elements are also referred to as "entities”.
- Relational data indicating the relationship between multiple elements indicates the relationship between different single elements, the relationship between a combination of elements and a single element, or the relationship between combinations of different elements.
- Relational data is data in which, for example, inclusion relationships and logical relationships are defined in binary.
- “score data” is data with scores set as real numbers.
- the “score based on the access risk perspective” is the amount of loss and the likelihood of fraud if the access is fraudulent or erroneous.
- the "point-of-view score” is the amount of profit obtained by the access and the probability of obtaining the profit, that is, a parameter that acts in the direction of permitting access. Therefore, both parameters have opposite values as attributes. For example, a negative value may be set as the “score based on the viewpoint of access risk” and a positive value may be set as the “score based on the viewpoint of access needs”.
- 0 or a value close to 0 may be set as the “score based on the viewpoint of access risk”, and a value with a large absolute value may be set as the “score based on the viewpoint of access needs”.
- Specific examples of the "relationship data" and "score data” described above will be described later in the second embodiment.
- the policy generation unit 12 uses the relationship data and score data acquired by the acquisition unit 11 to create access control policies. By using this policy, access control becomes possible by automatically regenerating the policy even in dynamic cases such as changes in relational data or score data.
- FIG. 2 is a flowchart showing an example of typical processing of the policy generation device 10, and the processing of the policy generation device 10 will be explained with this flowchart.
- the acquisition unit 11 of the policy generation device 10 obtains relational data indicating the relationship between a plurality of elements related to access control, a score based on the viewpoint of access risk, and a score based on the viewpoint of access needs.
- Score data in which at least one score is defined is acquired (step S11; acquisition step).
- the policy generator 12 uses the relationship data and the score data to generate an access control policy (step S12; policy generation step).
- the policy generation device 10 can automatically generate a policy using score data and relationship data indicating the relationship between multiple elements. This eliminates the need for human beings to generate the policies themselves, making it possible to reduce human time and labor in policy generation. Moreover, by reflecting at least one of access risks and needs in the score, the policy generation device 10 can quantitatively evaluate the trade-off between profit and loss associated with each access. Therefore, the policy generation device 10 can maintain the security of the system by determining access control so as to reduce the loss if the access is illegal or erroneous while maintaining the profit obtained by the access. can.
- Embodiment 2 Embodiment 2 of the present disclosure will be described below with reference to the drawings.
- Embodiment 2 discloses a specific example of the policy generation device 10 described in Embodiment 1.
- FIG. 1 An illustration of the policy generation device 10 described in Embodiment 1.
- FIG. 3 is a block diagram showing an example of a policy generation system 20 on a Zero Trust network.
- the policy generation system 20 includes an input unit 21 , a data store 22 , a policy engine 23 , a policy presentation unit 24 and a policy enforcer 25 . The details of each unit will be described below.
- the input unit 21 is an interface such as a keyboard, buttons, and mouse for the administrator of the policy generation system 20 to input data.
- the data store 22 is a storage (storage unit) in which data is stored, and the policy generation system 20 stores automatically collected data in the data store 22 .
- the input unit 21 and the data store 22 correspond to the acquisition unit 11 of the first embodiment, and provide the policy engine 23 with relationship data indicating relationships between multiple elements, scores based on the risk of access, Outputs score data with defined scores based on access need perspectives. At this time, at least one of the relationship data and score data manually input by the administrator is input from the input unit 21, and the relationship data and score data automatically collected by the policy generation system 20 are input from the data store 22. At least one will be entered.
- the administrator can define and input needs or risk scores in the score data from the input unit 21 .
- the administrator can set the user's needs for accessing a specific resource (access needs).
- an administrator may classify users into groups and set access needs to specific resources for each group.
- the administrator classifies user IDs into either the "R&D” group or the "accounting" group. Then, for the "R&D” group, the access needs to the resource IDs of the experimental environment and experimental data files are set to "1", and the access needs to the resource IDs of the other files are set to "0".
- the administrator sets the access need to the resource ID of the settlement information file to "1", and sets the access need to the resource ID of the other files to "0".
- “1" indicates that there is an access need
- "0" indicates that no access need is defined.
- Access to resources with access needs is more preferably permitted by policy than access to resources with unspecified access needs. Therefore, the administrator sets the score when there is an access need higher than the score when the access need is not defined.
- the administrator can also input a score for a specific resource in terms of various data of other access sources in addition to the user ID or instead of the user ID.
- Examples of other access source data include IP address, device ID, application ID, user location, and OS used by the access source device.
- an administrator may set the need for a particular user to access a particular resource from a particular location in a similar manner as described above.
- the administrator can also set the need to access specific resources for any one or more entities related to access control. Specific examples of entities are as described in the first embodiment. For example, an administrator may set a risk score for a particular resource at a particular time of day (or time of day).
- the administrator may set a score as a risk to indicate the magnitude of the damage caused by inappropriate access to a specific resource. For example, the administrator can set the absolute value of the score higher as the importance of the resource increases.
- the policy generation system 20 automatically sets the score to a default value (eg, 0) for the score that the administrator did not enter. Even if the score becomes the default value, the policy generated by the policy engine 23 does not uniformly approve or deny access. This point will be described later.
- a default value eg, 0
- the data store 22 stores mechanically collected data regarding the policy generation system 20 .
- This data includes relationship data and score data.
- This data may also be used for threat intelligence, asset databases, inventory, operational needs, authorization, resource sensitivity, authentication servers, auditing software or sensors, IDS (Intrusion Detection System), CDM (Continuous Diagnostics and Mitigation), SIEM (Security Information and Event Management), NWDAF (Network Data Analytics Function), Activity Logs, Identity Management, PKI (Public Key Infrastructure), Industry Compliance, Risk Analysis Systems, and one or more of the various other sources available.
- IDS Intrusion Detection System
- CDM Continuous Diagnostics and Mitigation
- SIEM Security Information and Event Management
- NWDAF Network Data Analytics Function
- Activity Logs Identity Management
- PKI Public Key Infrastructure
- Industry Compliance Risk Analysis Systems
- the audit software is, for example, software for at least one of security and asset management.
- the sensor is, for example, at least one of a GPS (Global Positioning System) sensor, a motion sensor, and a temperature sensor, and may actually be installed in a building.
- GPS Global Positioning System
- Threat information provided by a security agency relates, for example, to suspected threat IP addresses, device IDs, applications, processes, signatures or sources of communications, user or network behavior, resource IDs, resource locations, and the like.
- the vulnerability information provided by the security agency relates to, for example, device information such as OS and manufacturer, application information such as protocol, encryption or authentication method, version, or any combination thereof.
- Vulnerability information discovered by system threat analysis relates to, for example, device IDs, IP addresses, applications, command IDs associated with specific operations, and communication paths.
- this vulnerability information is based on a combination of accessing a specific device with a specific port, a combination of using a specific application on a specific OS, or a specific operation history such as a change in access authority. , personal information, or combined information for accessing specific resources such as IoT (Internet of Things) devices. These pieces of information make a negative contribution to access authorization.
- IoT Internet of Things
- the authentication server as the authentication history, the authentication method of the user, device, application, etc., the number of authentication failures, the elapsed time since the previous authentication succeeded, the behavior and authentication time at the time of authentication, the location of the authenticated user etc. may be stored in the data store 22 . For example, a score is set indicating that the longer the elapsed time since the previous authentication was successful, the higher the risk. Further, from the IDS, data such as subnet addresses, IP addresses, ports, applications, devices, and suspicious behavior/signatures in the network may be stored in the data store 22 .
- Data on various risks may be stored in the data store 22 from the risk analysis system.
- the data store 22 may store access needs based on communication history between specific users as needs-related scores.
- the data store 22 may also store a trust score as a risk score that indicates the degree to which a user, device, application, IP address or other entity identity, or any combination thereof, can be trusted. This trust score is calculated using, for example, anomaly detection by an anomaly detection engine, authentication history of successful authentication by a secure authentication method, etc. It may be done in a way that does not If an entity's behavior is security questionable, that entity will be given a low trust score.
- (5) is the score for the source IP address and the destination IP address
- (6) is the score for the source user, time zone and resource. Note that (6) is a score for the same entity as (1) to (4), but is set as a different type of score to distinguish it from (1) to (4).
- the data store 22 may store the output value as it is. This is because the policy engine 23, which will be described later, can use the output value as it is as the score.
- the score value is a fixed binary value such as "-1" when there is a threat and "0" when there is no threat. It may be set as a value.
- the score indicating the threat level may be set as a value of three or more levels such as 0, -1, -2, -3, .
- the score may be normalized as necessary.
- the numerical value setting or normalization processing described above may be performed when storing in the data store 22, or may be performed by the policy engine 23 when generating a policy.
- the data store 22 stores mechanically collected relationship data indicating the current relationship.
- Related data includes, for example, which application or port accesses resources such as certain data, which device the user is using, which IP address is assigned to the device, topology between devices, and communication frequency. and the like.
- the data store 22 can obtain this related information from an authentication server, asset database, inventory, or the like.
- FIG. 4 is an image diagram showing an example of an algorithm by which the policy engine 23 generates a policy.
- the black circles in g in in the upper part of FIG. 4 indicate scores for each condition c, and the black circles in g out indicate each subject t.
- the former specifies that the score represents the risk of the device by a label ⁇ representing the meaning of the score, and the score is represented by a first-order tensor.
- FIG. 4 shows, as an example, an action score a 1′, 1′ for target (IP1, port 1) and an action score a 4′, 1′ for target (IP4, port 1).
- the action score a for the objects (IP1 to IPL) is expressed by the following formula.
- (14) (14) on the right side of equation (15) indicates that the input function g in is input with each component x i of the score represented by a tensor of dimension ⁇ .
- w ⁇ on the right side of equation (14) is a weight parameter in dimension ⁇ , which is determined by policy engine 23 learning.
- the dimension ⁇ indicates the type of score, as described above.
- the score in the score data is expressed in tensor format. This form is scalable to any dimension ⁇ , so it can represent combinations of any number of entities.
- the algorithm can set 0 as the score if the score is not defined for at least one of risk or need.
- the policy engine 23 outputs the generated policy to the policy presentation unit 24 and the policy enforcer 25 .
- the policy engine 23 may output the policy in the form of ACL (Access Control List) or access proxy, for example, but the output form is not limited to these.
- the policy presentation unit 24 is an interface that presents the policy generated by the policy engine 23 to the administrator, and has a display unit such as a display.
- the policy enforcer 25 actually controls access on the network according to the generated policy.
- Score (User), Score (Device), Score (Application), Score (IP), Score (Port), Score (Device, Application) are automatically updated by referring to the information source as the score. , Score(SrcIP, DstIP). These scores are generated by the data store 22 from authentication history, anomaly detection history, vulnerability information, communication history, and the like. A score defined by a person using the input unit 21 is Score(User, Resource). This score indicates the user's need to access the resource.
- the dimension ⁇ has values from 1 to 8 in this example, and the weight parameter w ⁇ of the policy generation algorithm is set as shown in Equation (18) below.
- the data store 22 acquires True/False for all entity combinations between user IDs and devices, between resources and devices, between devices and IP addresses, and between resources and ports as relationship data. However, the data store 22 may acquire True and define False for other data not acquired.
- Zero trust networks can be applied, for example, in local 5G (5th Generation) used by companies and local governments.
- a zero trust network calculates a security score for access from all devices and determines whether or not to allow that access. As a result, even if a threat invades the network, it is possible to prevent the threat from accessing important files and prevent the spread of damage. In addition, the zero trust network does not simply block access from outside the network, but allows reliable access by making a determination based on the above-described score calculation. Therefore, both network safety and availability can be achieved.
- the network's policy engine determines actions such as permission or denial of access by integrating various information based on the perspectives of risk, needs, trust, etc. In order to determine actions with high accuracy, it is necessary to generate detailed policies. In addition, even if the network environment (multiple elements related to access control) changes, it is preferable that the generated policy be dynamic so that the environmental change can be accurately reflected in the policy. Therefore, the policy to be generated becomes complicated, and the problem is how to define or generate such a policy.
- model function in the second embodiment may be set in multiple layers.
- An example of the model function in this case is as follows. (22) g 1 in equation (22) corresponds to g out in equation (14). Also, the weight parameter w in Equation (22) is a non-negative value.
- Embodiment 2 there are two types of thresholds th, but one type, or three or more types of thresholds th may be set.
- the policy engine 23 may use a model function different from that described above, in which case the policy engine 23 may learn a parameter different from the weight parameter w ⁇ .
- policy generation device 11 acquisition unit 12 policy generation units 20, 30 policy generation system 21 input unit 22 data store 23 policy engine 24 policy presentation unit 25 policy enforcer 31 change unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Storage Device Security (AREA)
Abstract
Description
以下、図面を参照してこの開示の実施の形態1について説明する。
図1は、ポリシー生成装置の一例を示すブロック図である。ポリシー生成装置10は、取得部11及びポリシー生成部12を備える。ポリシー生成装置10の各部(各手段)は、不図示の制御部(コントローラ)により制御される。以下、各部について説明する。
以下、図面を参照してこの開示の実施の形態2について説明する。実施の形態2では、実施の形態1にて説明したポリシー生成装置10の具体例を開示する。
Score(User=A, Time=12:00-15:00, Resource=α)=+1 ・・・(1)
また、ニーズを特に定めない場合は、スコアは次の通り設定される。
Score(User=A, Time=12:00-15:00, Resource=α)=0 ・・・(2)
ニーズが低い場合は、スコアは次の通り設定される。
Score(User=A, Time=12:00-15:00, Resource=α)=-1 ・・・(3)
逆に、ニーズが非常に高い場合は、管理者はスコアを次の通り設定する。
Score(User=A, Time=12:00-15:00, Resource=α)=10 ・・・(4)
このようにして、管理者は、特定のリソースの総合的なアクセスニーズを設定することができる。
Score(SrcIP=192.168.1.10, DstIP=192.168.1.1)=+0.5 ・・・(5)
Score_2(User=B, Time=12:00-15:00, Resource=β)=+1.5 ・・・(6)
(5)は、送信元のIPアドレスと送信先のIPアドレスに関するスコアであり、(6)は、送信元のユーザ、時間帯及びリソースに関するスコアである。なお、(6)は、(1)~(4)と同じエンティティに関するスコアであるが、(1)~(4)と区別するために、異なる種類のスコアとして設定されている。
Score(OS=***.ver.19.01, Application=***)=-1 ・・・(7)
さらに、ユーザに関するスコアとして、次のようなものが設定されても良い。
Score(User=C)=-2 ・・・(8)
relation((User=A),(Device=1))=True,
relation((User=A),(Device=2))=False ・・・(9)
また、リソースrにアクセスするために、ポート1000を使用し、ポート2000は使用されない場合、関係データは次の通りになる。
relation((Resource=r),(Port=1000))=True,
relation((Resource=r),(Port=2000))=False ・・・(10)
また、ユーザAと、ユーザA及びリソースαとの組に関する組み合わせの間の包含関係について、関係データの例は次の通りになる。
relation((User=A, Resource=α), (Resource=α))=True,
relation((User=A, Resource=α), (Resource=β))=False ・・・(11)
以上と同様に、True又はFalseにより、全ての関係性が表される。データストア22は、これらの関係情報を、認証サーバやアセットデータベース、インベントリ等から取得することができる。
relation((User=A, Resource=r),(SrcIP=192.168.1.10, DstIP=192.168.1.1))=True,
relation((User=A, Resource=r),(SrcIP=192.168.1.10, DstIP=192.168.1.2))=False
・・・(12)
fθ (t,c)=a ・・・(13)
条件cには、上述の通り、管理者が定義したスコアデータが含まれている。
(14)式の右辺における
は、入力関数ginに、次元γのテンソルで表されたスコアの各成分xiが入力されることを示す。また、(14)式右辺におけるrγは、次元γにおけるエンティティ同士の関係を示し、
のように設定される。r=0はエンティティ同士が無関係であることを示し、r=1はエンティティ同士が関係を有することを示す。さらに、(14)式の右辺におけるwγは、次元γにおける重みパラメータであり、ポリシーエンジン23が学習をすることにより決定される。次元γは、上述の通り、スコアの種類を示す。
(17)式において、認可と承認待ちとを分ける閾値thは2/3であり、承認待ちと否認とを分ける閾値thは1/3である。このように、ポリシーエンジン23は、アクションスコアが小さい値となるほど、アクセスを許可しない方向にアクションを決定する。
以上のポリシー生成システム20の説明に基づき、具体的な値を用いたポリシー生成のアルゴリズム計算例について以下で説明する。
Action Score = Score(User=A)* wγ=1 + Score(Device=1) * wγ=2+ …
+ Score(SrcIP=192.168.1.10, DstIP=192.168.1.1) * wγ=7
+ Score (User=A, Resource=r) * wγ=8
= (-1)* 1 - 1 * 2 + … +1 * 0.5 + 1 * 1 = -1.5 ・・・(19)
ここで、単調の関数goutとして
を用い、アクションの決定基準として式(17)を用いると、
gout (-1.5) < 1/3 ・・・(21)
となり、このアクセスは否認される。
式(22)におけるg1は、式(14)のgoutに相当する。また、式(22)における重みパラメータwは非負の値である。
以下、図面を参照してこの開示の実施の形態3について説明する。実施の形態3では、実施の形態2にて説明したポリシー生成システム20のさらなるバリエーションを開示する。
以上のポリシー生成システム30の説明に基づき、具体的な値を用いたポリシー生成のアルゴリズム計算例について説明する。この例では、実施の形態2の計算例において、アクションが承認、認証待ち、否認の場合にアクションスコアaがそれぞれ0.9、0.5、0.1となるように、管理者が教師データを入力部21から入力する。
11 取得部 12 ポリシー生成部
20、30 ポリシー生成システム
21 入力部 22 データストア
23 ポリシーエンジン 24 ポリシー提示部
25 ポリシーエンフォーサ
31 変更部
Claims (10)
- アクセス制御に関連する複数の要素について、前記複数の要素間の関係を示す関係データと、アクセスのリスクの観点に基づくスコア及びアクセスのニーズの観点に基づくスコアの少なくとも1つが定義されたスコアデータと、を取得する取得手段と、
前記関係データ及びスコアデータを用いて、アクセス制御のポリシーを生成するポリシー生成手段と、を備える
ポリシー生成装置。 - 前記取得手段は、人物が前記スコアデータを前記ポリシー生成装置に入力する入力手段を有する、
請求項1に記載のポリシー生成装置。 - 前記ポリシー生成手段は、一部のスコアが定義されていない前記スコアデータを用いて、前記ポリシーを生成する、
請求項1又は2に記載のポリシー生成装置。 - 前記ポリシー生成手段は、前記ポリシーが設定するアクションが全順序集合であり、実数値で定義される前記スコアデータの各スコアに対し、前記アクションが順序同型となるように前記ポリシーを生成する、
請求項1乃至3のいずれか1項に記載のポリシー生成装置。 - 前記ポリシー生成手段は、アクセス制御の対象以外の対象に関する前記スコアデータを用いて、アクセス制御の対象に関するアクションを設定するポリシーを生成する、
請求項1乃至4のいずれか1項に記載のポリシー生成装置。 - 前記ポリシー生成手段が生成した前記ポリシーを人物に提示する提示手段と、
前記ポリシーを人物が変更又は事前に固定するための入力を受け付けるポリシー設定入力手段と、をさらに備える
請求項1乃至5のいずれか1項に記載のポリシー生成装置。 - 前記ポリシー設定入力手段によって人物が変更しなかった前記ポリシーのパターンについても、前記変更の理由を推定することによって変更するポリシー変更手段をさらに備える
請求項6に記載のポリシー生成装置。 - 前記ポリシー設定入力手段によって人物が変更しなかった前記ポリシーのパターンについても、前記ポリシーを決定する重みを調整することによって変更するポリシー変更手段をさらに備える
請求項6に記載のポリシー生成装置。 - アクセス制御に関連する複数の要素について、前記複数の要素間の関係を示す関係データと、アクセスのリスクの観点に基づくスコア及びアクセスのニーズの観点に基づくスコアの少なくとも1つが定義されたスコアデータと、を取得し、
前記関係データ及びスコアデータを用いて、アクセス制御のポリシーを生成する、
コンピュータが実行するポリシー生成方法。 - アクセス制御に関連する複数の要素について、前記複数の要素間の関係を示す関係データと、アクセスのリスクの観点に基づくスコア及びアクセスのニーズの観点に基づくスコアの少なくとも1つが定義されたスコアデータと、を取得し、
前記関係データ及びスコアデータを用いて、アクセス制御のポリシーを生成する、
ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/290,363 US20240259375A1 (en) | 2021-05-20 | 2021-05-20 | Policy generation apparatus, policy generation method, and nontransitory computer readable medium storing program |
PCT/JP2021/019149 WO2022244179A1 (ja) | 2021-05-20 | 2021-05-20 | ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 |
JP2023522112A JPWO2022244179A5 (ja) | 2021-05-20 | ポリシー生成装置、ポリシー生成方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/019149 WO2022244179A1 (ja) | 2021-05-20 | 2021-05-20 | ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022244179A1 true WO2022244179A1 (ja) | 2022-11-24 |
Family
ID=84141525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/019149 WO2022244179A1 (ja) | 2021-05-20 | 2021-05-20 | ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240259375A1 (ja) |
WO (1) | WO2022244179A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140041A (ja) * | 2007-12-04 | 2009-06-25 | Nec Corp | セキュリティ運用管理システム、方法、及び、プログラム |
JP2009296036A (ja) * | 2008-06-02 | 2009-12-17 | Hitachi Ltd | P2p通信制御システム及び制御方法 |
-
2021
- 2021-05-20 WO PCT/JP2021/019149 patent/WO2022244179A1/ja active Application Filing
- 2021-05-20 US US18/290,363 patent/US20240259375A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140041A (ja) * | 2007-12-04 | 2009-06-25 | Nec Corp | セキュリティ運用管理システム、方法、及び、プログラム |
JP2009296036A (ja) * | 2008-06-02 | 2009-12-17 | Hitachi Ltd | P2p通信制御システム及び制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022244179A1 (ja) | 2022-11-24 |
US20240259375A1 (en) | 2024-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11995205B2 (en) | Centralized event detection | |
Balamurugan et al. | Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation | |
US10972461B2 (en) | Device aware network communication management | |
US20070157311A1 (en) | Security modeling and the application life cycle | |
Ghosh et al. | SoftAuthZ: a context-aware, behavior-based authorization framework for home IoT | |
US20070157156A1 (en) | Information models and the application life cycle | |
US11882147B2 (en) | Method and apparatus for determining a threat using distributed trust across a network | |
Papanikolaou et al. | An autoML network traffic analyzer for cyber threat detection | |
US20230336591A1 (en) | Centralized management of policies for network-accessible devices | |
US12010133B2 (en) | Security threat monitoring for network-accessible devices | |
US20240111904A1 (en) | Secure hashing of large data files to verify file identity | |
WO2022244179A1 (ja) | ポリシー生成装置、ポリシー生成方法及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
US20240283792A1 (en) | Analysis apparatus, analysis method, and non-transitory computer readable medium | |
WO2023144905A1 (ja) | 情報処理装置、情報処理方法及び非一時的なコンピュータ可読媒体 | |
WO2023144906A1 (ja) | 分析装置、分析方法及び非一時的なコンピュータ可読媒体 | |
US20230069924A1 (en) | Information Security | |
Banerjee et al. | Digital Communications and Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21940793 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023522112 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18290363 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21940793 Country of ref document: EP Kind code of ref document: A1 |