WO2022242662A1 - 一种资源分配方法、通信节点及存储介质 - Google Patents
一种资源分配方法、通信节点及存储介质 Download PDFInfo
- Publication number
- WO2022242662A1 WO2022242662A1 PCT/CN2022/093447 CN2022093447W WO2022242662A1 WO 2022242662 A1 WO2022242662 A1 WO 2022242662A1 CN 2022093447 W CN2022093447 W CN 2022093447W WO 2022242662 A1 WO2022242662 A1 WO 2022242662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- beam area
- positions
- areas
- area
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013468 resource allocation Methods 0.000 title claims abstract description 27
- 238000004891 communication Methods 0.000 title claims abstract description 25
- 238000004590 computer program Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
Definitions
- the present application relates to the technical field of communication, for example, to a resource allocation method, a communication node and a storage medium.
- the fifth-generation mobile communication network (5th-Generation, 5G) has gradually entered the field of vision of users with its fast transmission speed and excellent user experience.
- 5G fifth-generation mobile communication network
- One of the key technologies of 5G is the introduction of large-scale antennas. Large-scale antennas make the beams from the base station to the UE (User Equipment, User Equipment) narrower, and the gain brought by beamforming is greater.
- the interference between cells is also very serious. How to solve the interference between cells under the large-scale antenna is a technical difficulty that must be considered in the 5G network.
- This application proposes a resource allocation method, a communication node, and a storage medium.
- a resource allocation method By utilizing multiple beams formed by a large-scale antenna base station, planning is performed during resource allocation, thereby reducing interference between cells and improving throughput of a communication system.
- the embodiment of the present application proposes a resource allocation method, which is applied to a communication node, where the communication node includes at least two cells, and the method includes:
- N is an integer greater than or equal to 2;
- the N beam areas of each cell set the priority order of the beam areas of each cell when allocating resource block RB positions, wherein the preferentially scheduled beam areas of different cells are staggered when allocating RB positions;
- RB positions are allocated to each user equipment UE of each cell.
- the embodiment of the present application also provides a communication node, including: a processor; the processor is configured to implement the method described in the first aspect when executing a computer program.
- the present application provides a computer-readable storage medium storing a computer program, and implementing the method described in the first aspect when the computer program is executed by a processor.
- FIG. 1 is a schematic flowchart of a resource allocation method provided by an embodiment
- Fig. 2 is a schematic flowchart of another resource allocation method provided by an embodiment
- Fig. 3 is a schematic flowchart of another resource allocation method provided by an embodiment
- Fig. 4 is a schematic structural diagram of a resource allocation device provided by an embodiment
- Fig. 5 is a schematic structural diagram of a base station provided by an embodiment.
- the embodiment of the present application provides a mobile communication network (including but not limited to 5G), the network architecture of which may include terminal devices and network side devices (also referred to as network devices or access network devices).
- the terminal equipment is connected to the network side equipment in a wireless manner, and the terminal equipment may be fixed or mobile.
- a resource allocation method, a communication node, and a storage medium that can operate on the above-mentioned network architecture are provided.
- planning is performed during resource allocation, thereby reducing the number of cells The interference between them improves the throughput of the communication system.
- the network side device is the access device for the terminal device to access the mobile communication system through wireless means, which can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), an integrated access backhaul (Integrated Access and Backhaul) , IAB) node, relay node (relay node, RN), transmission and reception point (transmission reception point, TRP), access point (Access Point, AP), next generation base station (next generation NodeB, gNB), the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed Distributed unit (DU), or IAB-mobile terminal (Mobile-Termination, MT), IAB-DU.
- the embodiments of the present application do not limit the technologies and equipment forms adopted by the network side equipment.
- a terminal device may also be called a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
- Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, smart grids Wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, IAB-MT, etc.
- the embodiment of the present application does not limit the technology and device form adopted by the terminal device.
- Fig. 1 shows a schematic flowchart of a resource allocation method provided by an embodiment. As shown in Fig. 1, the method provided by this embodiment is applicable to network side equipment (such as a base station, etc.), and the base station includes at least two cells. The method includes the following steps.
- the base station acquires N beam areas of each cell.
- N is an integer greater than or equal to 2, and the numbers of the N beam areas are 0, 1, ..., N-1.
- the base station divides one of the cells into N beam areas, and also divides the other cell into N beam areas; if a base station includes three cells, then the base station divides these The three cells are equally divided into N beam areas.
- N may be set according to actual requirements, which is not limited in this embodiment of the present application.
- the method of "the base station obtains N beam areas of each cell” in step S110 may be: the base station configures the Synchronization Signal block/Physical Broadcast CHannel block (SS/PBCH block), each cell is divided into N beam areas. That is, several SS/PBCH block beams correspond to one beam area.
- SS/PBCH block Synchronization Signal block/Physical Broadcast CHannel block
- the base station sets the priority sequence of beam areas for each cell when allocating resource block RB positions according to the N beam areas of each cell, wherein the preferentially scheduled beam areas of different cells are staggered when allocating RB positions.
- the base station may set the priority order of beam areas of each cell when allocating resource block RB positions based on a physical-layer Cell Identity (PCI).
- PCI physical-layer Cell Identity
- step S120 the method of "the base station sets the priority order of the beam area when each cell allocates a resource block (Resource Block, RB) position" can be implemented through the following two steps:
- Step a1 the base station obtains the PCI of each cell.
- Step a2 The base station calculates the result j of mod N of the PCI of each cell, and sets the priority order of the beam areas of each cell when assigning RB positions according to j.
- the PCI of each cell is different, and at the same time, the result of mod N of the PCI of each cell can be different by planning the PCI, so that the set beam area of each cell when assigning RB positions
- the priority order satisfies the condition that beam areas that are scheduled preferentially by different cells when allocating RB positions are staggered from each other.
- mod N is the remainder operation of modulo N.
- the beam area whose beam area number is equal to j is the first scheduled beam area of the cell when the RB position is allocated, and the beam area whose beam area number is equal to j-1 is the last scheduled beam area of the cell when the RB position is allocated .
- the base station includes two cells, and the results of the mod N of PCI of the two cells are 0 and 1 respectively, then for the cell whose mod N result of PCI is equal to 0, the priority order of the beam areas is 0, 1, ..., N-1; for a cell whose mod N result of PCI is equal to 1, the priority order of its beam area is 1, 2, ..., N-1, 0.
- the beam area whose beam area number is equal to j is the last scheduled beam area of the cell when the RB position is allocated, and the beam area whose beam area number is equal to j-1 is the first scheduled beam area of the cell when the RB position is allocated area.
- the base station includes two cells, and the results of the mod N of PCI of the two cells are 0 and 1 respectively, then for the cell whose mod N result of PCI is equal to 0, the priority order of the beam areas is N-1, N-2, ..., 0; for a cell whose mod N result of PCI is equal to 1, the priority order of its beam area is 0, N-1, N-2, ..., 1.
- the base station allocates RB positions to each user equipment UE in each cell according to the priority order of beam areas of each cell when allocating RB positions.
- step S130 may be performed by a cell scheduler in the base station.
- the cell scheduler allocates RB positions for each user equipment UE in each cell, it first obtains the number of RBs required by the UE to be scheduled, and then according to the priority of the beam areas of each cell when assigning RB positions, respectively
- Each user equipment UE in each cell is allocated RB positions corresponding to the number of RBs.
- step S130 For each UE in any cell, the method of "the base station allocates RB positions for each UE in the cell" in step S130 can be implemented through the following two steps:
- Step b1 the base station determines the beam area to which each UE belongs, wherein one UE corresponds to one beam area of the cell.
- each UE can only belong to one beam area.
- a beam area may have no home UE, may have only one home UE, or may have multiple home UEs.
- the base station may use the beam area corresponding to the SS/PBCH block beam to which each UE belongs as the beam area to which each UE belongs.
- the present application may also determine the beam area to which each UE belongs according to other principles.
- Step b2 the base station allocates RB positions to each UE in the cell according to the priority order of the beam areas to which each UE belongs.
- the base station will first prioritize the at least two UEs belonging to the same beam area, and assign UEs belonging to the same beam area according to the priority ranking results. At least two UEs are allocated RB positions.
- At least two UEs belonging to the same beam area are prioritized according to the round-robin principle.
- the present application may also prioritize at least two UEs belonging to the same beam area according to other principles.
- FIG. 2 shows a schematic flowchart of another resource allocation method provided by an embodiment.
- this exemplary implementation is applicable to a 5G system, and in a 5G system Take a base station as an example, the base station includes two cells (denoted as Cell1 and Cell2 respectively), and each cell is divided into two beam areas.
- the method includes the following steps.
- the base station divides Cell1 and Cell2 into two beam areas.
- Cell1 is numbered 0 and Cell2 is numbered 1.
- the division of the beam area is based on the division of multiple SS/PBCH blocks configured by the 5G base station. For example, assuming that the 5G base station is configured with four SS/PBCH blocks (marked as 0, 1, 2, and 3 respectively), then the SS/PBCH block beams 0 and 1 correspond to the first beam area (that is, the beam area number is 0), SS/PBCH block beams 2 and 3 correspond to the second beam area (that is, the beam area number is 1).
- the result of calculating the mod N of the PCI of Cell1 is equal to 0, and the result of mod N of the PCI of Cell2 is equal to 1, and setting the priority order of the beam areas of Cell1 and Cell2 when allocating RB positions.
- the mod N result of the PCI of Cell1 is equal to 0, and the priority order of its beam area when assigning RB positions is 0, 1; the mod N of the PCI of Cell2 is The result is equal to 1, and the priority order of the beam areas when allocating RB positions is 1, 0.
- Cell1 has two UEs (UE1 and UE2 respectively), it is determined that UE1 belongs to SS/PBCH block 0 and UE2 belongs to SS/PBCH block 2, then UE1 belongs to the first beam area of Cell1, and UE2 belongs to Cell1 The second beam area; if Cell2 has two UEs (UE3 and UE4 respectively), it is determined that UE3 belongs to SS/PBCH block 0, UE4 belongs to SS/PBCH block 2, then UE3 belongs to the first beam area of Cell2, UE4 belongs to the second beam area of Cell2.
- the scheduler of Cell1 allocates the number of RBs to UE1 and UE2, and the scheduler of Cell2 allocates the number of RBs to UE3 and UE4.
- the scheduler of Cell1 can also prioritize the UEs to be scheduled, assuming that the ranking result is that UE1 has a higher priority than UE2, and the scheduler of Cell2 can also prioritize the UEs to be scheduled, assuming that the ranking result is that UE3 has a higher priority than UE2 UE4.
- the scheduler of Cell1 sorts UE1 and UE2 according to the priority order of the beam areas of Cell1 when allocating RB positions, the sorting order is UE1 and UE2, and allocates RBs corresponding to the number of RBs to the two UEs according to the order of UE1 and UE2 Position;
- the scheduler of Cell2 sorts UE3 and UE4 according to the priority of the beam area of Cell2 when allocating RB positions, the sorting order is UE4, UE3, and allocates RBs corresponding to the number of RBs for the two UEs in the order of UE4 and UE3 Location.
- FIG. 3 shows a schematic flowchart of another resource allocation method provided by an embodiment.
- this exemplary embodiment is applicable to the 5G system, and the Take a base station of , as an example, the base station includes three cells (denoted as Cell1, Cell2 and Cell3 respectively), and each cell is divided into three beam areas.
- the method includes the following steps.
- the base station divides Cell1, Cell2 and Cell3 into three beam areas.
- the division of the beam area is based on the division of multiple SS/PBCH blocks configured by the 5G base station. For example, assuming that the 5G base station is configured with 5 SS/PBCH blocks (marked as 0, 1, 2, 3, 4 respectively), then SS/PBCH block beams 0 and 1 correspond to the first beam area (that is, the beam area number is 0 ), SS/PBCH block beams 2 and 3 correspond to the second beam area (ie, the beam area number is 1), and SS/PBCH block beam 4 corresponds to the third beam area (ie, the beam area number is 2).
- the result of calculating the mod N of the PCI of Cell1 is equal to 0, the result of the mod N of the PCI of Cell2 is equal to 1, the result of the mod N of the PCI of Cell3 is equal to 2, and setting the beams of Cell1, Cell2 and Cell3 when assigning RB positions The priority order of the regions.
- the mod N result of the PCI of Cell1 is equal to 0, and the priority order of the beam area when assigning RB positions is 0, 1, 2 ;
- the result of the mod N of the PCI of Cell2 is equal to 1, and the priority order of the beam area when assigning the RB position is 1, 2, 0;
- the result of the mod N of the PCI of Cell3 is equal to 2, and the beam area when the RB position is assigned
- the priority order of the regions is 2, 0, 1.
- Cell1 has three UEs (respectively UE1, UE2 and UE3), it is determined that UE1 belongs to SS/PBCH block 0, UE2 belongs to SS/PBCH block 2, and UE3 belongs to SS/PBCH block 4, then UE1 belongs to Cell1 In the first beam area, UE2 belongs to the second beam area of Cell1, and UE3 belongs to the third beam area of Cell1; if Cell2 has three UEs (UE4, UE5, and UE6), determine that UE4 belongs to SS/PBCH block 1 , UE5 belongs to SS/PBCH block 3, UE6 belongs to SS/PBCH block 4, then UE4 belongs to the first beam area of Cell2, UE5 belongs to the second beam area of Cell2, UE6 belongs to the third beam area of Cell2; If Cell3 has three UEs (UE7, UE8 and UE9 respectively), it is determined that UE7 belongs to SS/PBCH block 0, UE8 belongs to SS/PBCH block 1, and
- the scheduler of Cell1 allocates the number of RBs to UE1, UE2 and UE3, the scheduler of Cell2 allocates the number of RBs to UE4, UE5 and UE6, and the scheduler of Cell3 allocates the number of RBs to UE7, UE8 and UE9.
- the scheduler of Cell1 can also prioritize the UEs to be scheduled, assuming that the ranking result is that the priority of UE1 is higher than that of UE2, and the priority of UE2 is higher than that of UE3; the scheduler of Cell2 can also prioritize the UEs to be scheduled, assuming the ranking The result is that UE4 has a higher priority than UE5, and UE5 has a higher priority than UE6; the scheduler of Cell3 can also prioritize the UEs to be scheduled, assuming that the sorting result is that UE7 has a higher priority than UE8, and UE8 has a higher priority than UE9.
- the scheduler of Cell1 sorts UE1, UE2, and UE3 according to the priority order of the beam areas of Cell1 when allocating RB positions.
- the sorting order is UE1, UE2, and UE3, and the three UEs are in the order of UE1, UE2, and UE3.
- the scheduler of Cell2 sorts UE4, UE5, and UE6 according to the priority order of the beam areas of Cell2 when allocating RB positions, the sorting order is UE5, UE6, UE4, and according to UE5, UE6, UE4 Allocate RB positions corresponding to the number of RBs to three UEs;
- the scheduler of Cell3 sorts UE7, UE8, and UE9 according to the priority order of the beam areas of Cell3 when allocating RB positions, and the sorting order is UE9, UE7/UE8 (UE7
- the priority order of the beam area of UE8 is the same), and referring to the priority order of UE, the priority of UE7 is higher than that of UE8, and the final order of UE9, UE7, and UE8 is obtained, and RB positions corresponding to the number of RBs are allocated to the three UEs.
- the embodiment of the present application provides a resource allocation method, which is applied to a communication node, and the communication node includes at least two cells.
- the method includes: obtaining N beam areas of each cell, where N is an integer greater than or equal to 2; according to each For the N beam areas of each cell, set the priority order of the beam areas for each cell when allocating resource block RB positions, wherein the beam areas that are preferentially scheduled for different cells when allocating RB positions are staggered from each other; according to the allocation of each cell
- the priority order of the beam areas in the RB position is to allocate the RB position for each user equipment UE in each cell respectively.
- This application sets the priority order of beam areas when allocating RB positions for multiple beam areas formed by large-scale antenna base stations, and assigns each UE in each cell according to the priority order of beam areas when allocating RB positions. RB position, so as to realize the planning of resource allocation. In this way, the interference between cells can be reduced, and the throughput of the communication system can be improved.
- FIG. 4 shows a schematic structural diagram of a resource allocation device provided by an embodiment.
- the resource allocation device includes at least two cells, and the resource allocation device includes an area division module 10, an order determination module 11 and a position allocation module. Module 12.
- the area division module 10 is configured to obtain N beam areas of each cell, where N is an integer greater than or equal to 2;
- the order determination module 11 is configured to set the priority order of the beam areas of each cell when allocating resource block RB positions according to the N beam areas of each cell, wherein different cells preferentially schedule beam areas when allocating RB positions stagger each other;
- the position allocating module 12 is configured to allocate RB positions to each user equipment UE of each cell according to the priority order of beam areas of each cell when allocating RB positions.
- the resource allocation device provided in this embodiment can implement the resource allocation method in the foregoing embodiments, and the realization principle of the resource allocation device provided in this embodiment is similar to that of the foregoing embodiments, which will not be repeated here.
- the area division module 10 is configured to divide each cell into N beam areas according to the synchronization signal/physical broadcast channel block SS/PBCH block.
- the sequence determination module 11 is configured to obtain the physical cell identity PCI of each cell; calculate the result j of the modulo N remainder operation mod N of the PCI of each cell, and set each cell in accordance with j Priority order of beam areas when assigning RB positions.
- the beam area with the beam area number equal to j is the first scheduled beam area when the cell allocates the RB position, and the beam area with the beam area number equal to j-1 is the last scheduled beam area when the cell allocates the RB position Beam area;
- the beam area whose beam area number is equal to j is the last beam area scheduled by the cell when the RB position is allocated, and the beam area whose beam area number is equal to j-1 is the first beam area scheduled by the cell when the RB position is allocated.
- the location allocation module 12 is configured to determine the beam area to which each UE belongs, wherein one UE corresponds to one beam area of the cell; The priority order of the beam areas of the cell is used to allocate RB positions for each UE of the cell.
- the location allocation module 12 is further configured to prioritize at least two UEs belonging to the same beam area, and The sorting result allocates RB positions for at least two UEs belonging to the same beam area.
- At least two UEs belonging to the same beam area are prioritized according to a round-robin principle.
- the location allocation module 12 is configured to use the beam area corresponding to the SS/PBCH block beam to which each UE belongs as the beam area to which each UE belongs.
- An embodiment of the present application further provides a communication node, including: a processor configured to implement the method provided in any embodiment of the present application when executing a computer program.
- a communication node is a base station.
- FIG. 5 shows a schematic structural diagram of a base station provided by an embodiment.
- the base station includes a processor 60, a memory 61, and a communication interface 62; the number of processors 60 in the base station may be at least one, as shown in FIG. 5 takes one processor 60 as an example; the processor 60, memory 61, and communication interface 62 in the base station can be connected through a bus or in other ways, and in FIG. 5 the connection through a bus is taken as an example.
- Bus refers to at least one of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
- the memory 61 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
- the processor 60 executes at least one function application and data processing of the base station by running the software programs, instructions and modules stored in the memory 61, that is, implements the above method.
- the memory 61 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
- the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
- the memory 61 may include memory located remotely relative to the processor 60, and these remote memories may be connected to the base station through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, networks, mobile communication networks, and combinations thereof.
- the communication interface 62 can be configured to receive and send data.
- the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method provided in any embodiment of the present application is implemented.
- the computer storage medium in the embodiments of the present application may use any combination of at least one computer-readable medium.
- the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
- a computer-readable storage medium may be, for example but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof.
- Computer-readable storage media include (non-exhaustive list): electrical connections having at least one lead, portable computer disks, hard disks, Random Access Memory (RAM), Read-Only Memory (ROM) ), erasable programmable read-only memory (electrically erasable, programmable Read-Only Memory, EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices, A magnetic storage device, or any suitable combination of the above.
- a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
- a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
- a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
- Program code contained on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
- any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
- Computer program code for performing the operations of the present disclosure may be written in at least one programming language or a combination of programming languages, including object-oriented programming languages (such as Java, Smalltalk, C++, Ruby, Go) , also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
- the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
- the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer such as use an Internet service provider to connect via the Internet).
- LAN Local Area Network
- WAN Wide Area Network
- user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
- the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
- some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
- Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
- ISA Instruction Set Architecture
- Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
- Computer programs can be stored on memory.
- the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read-only memory (ROM), random-access memory (RAM), optical memory devices and systems (digital versatile disc DVD or CD), etc.
- Computer readable media may include non-transitory storage media.
- Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architectures.
- DSP Digital Signal Processing
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- processors based on multi-core processor architectures.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种资源分配方法、通信节点及存储介质。该方法应用于通信节点,通信节点包括至少两个小区,该方法包括:获取每个小区的N个波束区域,N为大于或者等于2的整数;根据每个小区的N个波束区域,设定每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开;按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配RB位置。
Description
本申请要求在2021年5月19日提交中国专利局、申请号为202110547162.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,例如涉及一种资源分配方法、通信节点及存储介质。
随着无线通信技术的飞速发展,第五代移动通信网络(5th-Generation,5G)以其快速的传输速度、优良的用户体验逐渐进入用户的视野。5G的关键技术之一就是引入了大规模天线,大规模天线使得基站到达UE(用户设备,User Equipment)的波束更窄,波束赋形带来的增益越大。然而,在5G网络中,小区之间的干扰也很严重,在大规模天线下如何解决小区间的干扰是5G网络必须考虑的技术难点。
发明内容
本申请提出一种资源分配方法、通信节点及存储介质,通过利用大规模天线基站形成的多个波束,在资源分配时进行规划,从而降低小区之间的干扰,提升通信系统的吞吐量。
第一方面,本申请实施例提出了一种资源分配方法,应用于通信节点,通信节点包括至少两个小区,方法包括:
获取每个小区的N个波束区域,N为大于或者等于2的整数;
根据每个小区的N个波束区域,设定每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开;
按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配RB位置。
第二方面,本申请实施例还提出了一种通信节点,包括:处理器;处理器设置为在执行计算机程序时实现第一方面所述的方法。
第三方面,本申请提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现第一方面所述的方法。
图1是一实施例提供的一种资源分配方法的流程示意图;
图2是一实施例提供的另一种资源分配方法的流程示意图;
图3是一实施例提供的又一种资源分配方法的流程示意图;
图4是一实施例提供的一种资源分配装置的结构示意图;
图5是一实施例提供的一种基站的结构示意图。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
5G的关键技术之一就是引入了大规模天线,大规模天线使得基站到达UE的波束更窄,波束赋形带来的增益越大。然而,在5G网络中,小区之间的干扰也很严重,在大规模天线下如何解决小区间的干扰是5G网络必须考虑的技术难点。本申请实施例提供了一种移动通信网络(包括但不限于5G),该网络的网络架构可以包括终端设备和网络侧设备(也可以称为网络设备或者接入网设备)。终端设备通过无线的方式与网络侧设备连接,终端设备可以是固定位置的,也可以是可移动的。在本申请实施例中,提供一种可运行于上述网络架构上的资源分配方法、通信节点及存储介质,通过利用大规模天线基站形成的多个波束, 在资源分配时进行规划,从而降低小区之间的干扰,提升通信系统的吞吐量。
网络侧设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、集成接入回传(Integrated Access and Backhaul,IAB)节点、中继节点(relay node,RN)、发送接收点(transmission reception point,TRP)、接入点(Access Point,AP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU),或者IAB-移动终端(Mobile-Termination,MT)、IAB-DU。本申请的实施例对网络侧设备所采用的技术和设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、IAB-MT等等。本申请的实施例对终端设备所采用的技术和设备形态不做限定。
下面,结合网络侧设备和终端设备描述本申请实施例提供的方案。在本申请的描述中,术语“系统”和“网络”在本申请中常被可互换使用。“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请下述各个实施例可以单独执行,各个实施例之间也可以相互结合执行,本申请实施例对此不作限制。
图1示出了一实施例提供的一种资源分配方法的流程示意图,如图1所示,本实施例提供的方法适用于网络侧设备(如基站等),基站包括至少两个小区,该方法包括如下步骤。
S110、基站获取每个小区的N个波束区域。
N为大于或者等于2的整数,N个波束区域的编号为0,1,…,N-1。
例如,若一个基站包括两个小区,该基站将其中一个小区分为N个波束区域,同时也会将另一个小区分为N个波束区域;若一个基站包括三个小区,那么该基站将这三个小区均分为N个波束区域。
其中,N的取值可以根据实际需求进行设定,本申请实施例对此不作限制。
在一实施例中,步骤S110中“基站获取每个小区的N个波束区域”的方法可以为:基站根据配置的同步信号/物理广播信道块(Synchronization Signal block/Physical Broadcast CHannel block,SS/PBCH block),将每个小区分为N个波束区域。即若干个SS/PBCH block波束对应一个波束区域。
当然,除上述“根据SS/PBCH block,将每个小区分为N个波束区域”的方法外,本申请也可以根据其他原则将每个小区分为N个波束区域。
S120、基站根据每个小区的N个波束区域,设定每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开。
在一实施例中,基站可以基于物理小区标识(Physical-layer Cell Identity,PCI),设定每个小区在分配资源块RB位置时的波束区域的优先顺序。
示例性的,步骤S120中“基站设定每个小区在分配资源块(Resource Block,RB)位置时的波束区域的优先顺序”的方法可以通过如下两个步骤实现:
步骤a1:基站获取每个小区的PCI。
步骤a2:基站计算每个小区的PCI的mod N的结果j,并根据j设定每个小区在分配RB位置时的波束区域的优先顺序。
对于一个基站,每个小区的PCI均不相同,同时可以通过规划PCI使得每个小区的PCI的mod N的结果也不相同,从而使得设定的每个小区在分配RB位置时的波束区域的优先顺序满足不同小区在分配RB位置时优先调度的波束区域相互错开的条件。其中,mod N为模N取余运算。
可选的,波束区域编号等于j的波束区域为该小区在分配RB位置时最先调 度的波束区域,波束区域编号等于j-1的波束区域为该小区在分配RB位置时最后调度的波束区域。
以一个基站为例,若该基站包括两个小区,两个小区的PCI的mod N的结果分别为0和1,那么对于PCI的mod N的结果等于0的小区,其波束区域的优先顺序为0,1,…,N-1;对于PCI的mod N的结果等于1的小区,其波束区域的优先顺序为1,2,…,N-1,0。
又可选的,波束区域编号等于j的波束区域为该小区在分配RB位置时最后调度的波束区域,波束区域编号等于j-1的波束区域为该小区在分配RB位置时最先调度的波束区域。
以一个基站为例,若该基站包括两个小区,两个小区的PCI的mod N的结果分别为0和1,那么对于PCI的mod N的结果等于0的小区,其波束区域的优先顺序为N-1,N-2,…,0;对于PCI的mod N的结果等于1的小区,其波束区域的优先顺序为0,N-1,N-2,…,1。
S130、基站按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配RB位置。
在一实施例中,步骤S130可以由基站中的小区调度器来执行。小区调度器在为每个小区的每个用户设备UE分配RB位置时,首先会获取待调度的UE所需的RB数量,然后按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配相应RB数量的RB位置。
对于任一小区的每个UE,步骤S130中“基站为该小区的每个UE分配RB位置”的方法可以通过如下两个步骤实现:
步骤b1:基站确定每个UE所归属的波束区域,其中,一个UE对应该小区的一个波束区域。
示例性的,每个UE只能归属于一个波束区域。一个波束区域可以没有归属的UE,也可以有且仅有一个归属的UE,还可以有多个归属的UE。
在一实施例中,基站可以将每个UE所归属的SS/PBCH block波束对应的波 束区域,作为每个UE所归属的波束区域。当然,本申请也可以根据其他原则确定每个UE所归属的波束区域。
步骤b2:基站按照每个UE所归属的波束区域的优先顺序,为该小区的每个UE分配RB位置。
若归属于同一个波束区域的UE数量为至少两个,那么基站首先会对归属于同一个波束区域的至少两个UE进行优先级排序,并按照优先级排序结果为归属于同一个波束区域的至少两个UE分配RB位置。
示例性的,归属于同一个波束区域的至少两个UE按照轮询原则进行优先级排序。当然,本申请也可以根据其他原则对归属于同一个波束区域的至少两个UE进行优先级排序。
下面罗列一些示例性实施方式,用于说明本申请实施例提供的资源分配方法。下述示例性实施方式可以单一执行,也可以组合执行。
在第一个示例性实施方式中,图2示出了一实施例提供的另一种资源分配方法的流程示意图,如图2所示,该示例性实施方式适用于5G系统,以5G系统中的一个基站为例,该基站包括两个小区(分别记为Cell1和Cell2),每个小区分为2个波束区域。该方法包括如下步骤。
S210、基站将Cell1和Cell2分为2个波束区域。
Cell1的编号为0,Cell2的编号为1。波束区域的划分根据5G基站配置的多个SS/PBCH block划分。例如,假设5G基站配置了4个SS/PBCH block(分别记为0,1,2,3),则SS/PBCH block波束0,1对应第一个波束区域(即波束区域编号为0),SS/PBCH block波束2,3对应第二个波束区域(即波束区域编号为1)。
S220、获取Cell1的PCI和Cell2的PCI。
S230、计算Cell1的PCI的mod N的结果等于0、Cell2的PCI的mod N的结果等于1,设定Cell1和Cell2在分配RB位置时的波束区域的优先顺序。
假设Cell1的PCI等于168,Cell2的PCI等于169,那么,Cell1的PCI的 mod N的结果等于0,其在分配RB位置时的波束区域的优先顺序为0,1;Cell2的PCI的mod N的结果等于1,其在分配RB位置时的波束区域的优先顺序为1,0。
S240、若Cell1有两个UE(分别为UE1和UE2),确定UE1归属于SS/PBCH block 0,UE2归属于SS/PBCH block 2,则UE1归属Cell1的第一个波束区域,UE2归属Cell1的第二个波束区域;若Cell2有两个UE(分别为UE3和UE4),确定UE3归属于SS/PBCH block 0,UE4归属于SS/PBCH block 2,则UE3归属Cell2的第一个波束区域,UE4归属Cell2的第二个波束区域。
S250、Cell1的调度器给UE1和UE2分配RB数量,Cell2的调度器给UE3和UE4分配RB数量。
Cell1的调度器还可以对待调度的UE进行优先级排序,假设排序结果为UE1优先级高于UE2,Cell2的调度器还可以对待调度的UE进行优先级排序,假设排序结果为UE3优先级高于UE4。
S260、Cell1的调度器对UE1和UE2按照Cell1在分配RB位置时的波束区域的优先顺序进行排序,排序顺序为UE1、UE2,并按照UE1、UE2的顺序为两个UE分配相应RB数量的RB位置;Cell2的调度器对UE3和UE4按照Cell2在分配RB位置时的波束区域的优先顺序进行排序,排序顺序为UE4、UE3,并按照UE4、UE3的顺序为两个UE分配相应RB数量的RB位置。
在第二个示例性实施方式中,图3示出了一实施例提供的又一种资源分配方法的流程示意图,如图3所示,该示例性实施方式适用于5G系统,以5G系统中的一个基站为例,该基站包括三个小区(分别记为Cell1、Cell2和Cell3),每个小区分为3个波束区域。该方法包括如下步骤。
S310、基站将Cell1、Cell2和Cell3分为3个波束区域。
Cell1的编号为0,Cell2的编号为1,Cell3的编号为2。波束区域的划分根据5G基站配置的多个SS/PBCH block划分。例如,假设5G基站配置了5个SS/PBCH block(分别记为0,1,2,3,4),则SS/PBCH block波束0,1对应第一个波 束区域(即波束区域编号为0),SS/PBCH block波束2,3对应第二个波束区域(即波束区域编号为1),SS/PBCH block波束4对应第三个波束区域(即波束区域编号为2)。
S320、获取Cell1的PCI、Cell2的PCI和Cell3的PCI。
S330、计算Cell1的PCI的mod N的结果等于0、Cell2的PCI的mod N的结果等于1、Cell3的PCI的mod N的结果等于2,设定Cell1、Cell2和Cell3在分配RB位置时的波束区域的优先顺序。
假设Cell1的PCI等于66,Cell2的PCI等于67,Cell3的PCI等于68,那么,Cell1的PCI的mod N的结果等于0,其在分配RB位置时的波束区域的优先顺序为0,1,2;Cell2的PCI的mod N的结果等于1,其在分配RB位置时的波束区域的优先顺序为1,2,0;Cell3的PCI的mod N的结果等于2,其在分配RB位置时的波束区域的优先顺序为2,0,1。
S340、若Cell1有三个UE(分别为UE1、UE2和UE3),确定UE1归属于SS/PBCH block 0,UE2归属于SS/PBCH block 2,UE3归属于SS/PBCH block 4,则UE1归属Cell1的第一个波束区域,UE2归属Cell1的第二个波束区域,UE3归属Cell1的第三个波束区域;若Cell2有三个UE(分别为UE4、UE5和UE6),确定UE4归属于SS/PBCH block 1,UE5归属于SS/PBCH block 3,UE6归属于SS/PBCH block 4,则UE4归属Cell2的第一个波束区域,UE5归属Cell2的第二个波束区域,UE6归属Cell2的第三个波束区域;若Cell3有三个UE(分别为UE7、UE8和UE9),确定UE7归属于SS/PBCH block 0,UE8归属于SS/PBCH block 1,UE9归属于SS/PBCH block 4,则UE7和UE8归属Cell3的第一个波束区域,UE9归属Cell3的第三个波束区域。
S350、Cell1的调度器给UE1、UE2和UE3分配RB数量,Cell2的调度器给UE4、UE5和UE6分配RB数量,Cell3的调度器给UE7、UE8和UE9分配RB数量。
Cell1的调度器还可以对待调度的UE进行优先级排序,假设排序结果为UE1 优先级高于UE2、UE2优先级高于UE3;Cell2的调度器还可以对待调度的UE进行优先级排序,假设排序结果为UE4优先级高于UE5、UE5优先级高于UE6;Cell3的调度器还可以对待调度的UE进行优先级排序,假设排序结果为UE7优先级高于UE8、UE8优先级高于UE9。
S360、Cell1的调度器对UE1、UE2和UE3按照Cell1在分配RB位置时的波束区域的优先顺序进行排序,排序顺序为UE1、UE2、UE3,并按照UE1、UE2、UE3的顺序为三个UE分配相应RB数量的RB位置;Cell2的调度器对UE4、UE5和UE6按照Cell2在分配RB位置时的波束区域的优先顺序进行排序,排序顺序为UE5、UE6、UE4,并按照UE5、UE6、UE4的顺序为三个UE分配相应RB数量的RB位置;Cell3的调度器对UE7、UE8和UE9按照Cell3在分配RB位置时的波束区域的优先顺序进行排序,排序顺序为UE9、UE7/UE8(UE7和UE8的波束区域的优先顺序相同),再参考UE的优先级排序UE7优先级高于UE8,得到最终UE9、UE7、UE8的顺序为三个UE分配相应RB数量的RB位置。
本申请实施例提供了一种资源分配方法,应用于通信节点,通信节点包括至少两个小区,该方法包括:获取每个小区的N个波束区域,N为大于或者等于2的整数;根据每个小区的N个波束区域,设定每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开;按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配RB位置。本申请通过为大规模天线基站形成的多个波束区域设定分配RB位置时的波束区域的优先顺序,并按照在分配RB位置时的波束区域的优先顺序分别为每个小区的每个UE分配RB位置,从而实现了资源分配的规划。这样一来,能够降低小区之间的干扰,提升通信系统的吞吐量。
图4示出了一实施例提供的一种资源分配装置的结构示意图,如图4所示, 资源分配装置包括至少两个小区,资源分配装置包括区域划分模块10、顺序确定模块11和位置分配模块12。
区域划分模块10,设置为获取每个小区的N个波束区域,N为大于或者等于2的整数;
顺序确定模块11,设置为根据每个小区的N个波束区域,设定每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开;
位置分配模块12,设置为按照每个小区在分配RB位置时的波束区域的优先顺序,分别为每个小区的每个用户设备UE分配RB位置。
本实施例提供的资源分配装置能够实现上述实施例的资源分配方法,本实施例提供的资源分配装置实现原理与上述实施例类似,此处不再赘述。
在一实施例中,区域划分模块10,设置为根据同步信号/物理广播信道块SS/PBCH block,将每个小区分为N个波束区域。
在一实施例中,顺序确定模块11,设置为获取每个小区的物理小区标识PCI;计算每个小区的PCI的模N取余运算mod N的结果j,并根据j设定每个小区在分配RB位置时的波束区域的优先顺序。
在一实施例中,波束区域编号等于j的波束区域为该小区在分配RB位置时最先调度的波束区域,波束区域编号等于j-1的波束区域为该小区在分配RB位置时最后调度的波束区域;
或者,
波束区域编号等于j的波束区域为该小区在分配RB位置时最后调度的波束区域,波束区域编号等于j-1的波束区域为该小区在分配RB位置时最先调度的波束区域。
在一实施例中,对于任一小区的每个UE,位置分配模块12,设置为确定每个UE所归属的波束区域,其中,一个UE对应该小区的一个波束区域;按照每个UE所归属的波束区域的优先顺序,为该小区的每个UE分配RB位置。
在一实施例中,若归属于同一个波束区域的UE数量为至少两个,位置分配模块12,还设置为对归属于同一个波束区域的至少两个UE进行优先级排序,并按照优先级排序结果为归属于同一个波束区域的至少两个UE分配RB位置。
在一实施例中,归属于同一个波束区域的至少两个UE按照轮询原则进行优先级排序。
在一实施例中,位置分配模块12,设置为将每个UE所归属的SS/PBCH block波束对应的波束区域,作为每个UE所归属的波束区域。
本申请实施例还提供了一种通信节点,包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的方法。
示例性的,下述实施例提供一种通信节点为基站的结构示意图。
图5示出了一实施例提供的一种基站的结构示意图,如图5所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是至少一个,图5中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图5中以通过总线连接为例。总线表示几类总线结构中的至少一种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器, 这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用至少一个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不 限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以至少一种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本 地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。
Claims (10)
- 一种资源分配方法,应用于通信节点,所述通信节点包括至少两个小区,所述方法包括:获取每个小区的N个波束区域,N为大于或者等于2的整数;根据所述每个小区的N个波束区域,设定所述每个小区在分配资源块RB位置时的波束区域的优先顺序,其中,不同小区在分配RB位置时优先调度的波束区域相互错开;按照所述每个小区在分配RB位置时的波束区域的优先顺序,分别为所述每个小区的每个用户设备UE分配RB位置。
- 根据权利要求1所述的方法,其中,所述获取每个小区的N个波束区域,包括:根据同步信号/物理广播信道块SS/PBCH block,将每个小区分为N个波束区域。
- 根据权利要求1所述的方法,其中,所述设定所述每个小区在分配RB位置时的波束区域的优先顺序,包括:获取所述每个小区的物理小区标识PCI;计算所述每个小区的PCI的模N取余运算PCI mod N的结果j,并根据j设定所述每个小区在分配RB位置时的N个波束区域的优先顺序。
- 根据权利要求3所述的方法,其中,波束区域编号等于j的波束区域为所述每个小区在分配RB位置时最先调度的波束区域,波束区域编号等于j-1的波束区域为所述每个小区在分配RB位置时最后调度的波束区域;或者,波束区域编号等于j的波束区域为所述每个小区在分配RB位置时最后调度的波束区域,波束区域编号等于j-1的波束区域为所述每个小区在分配RB位置时最先调度的波束区域。
- 根据权利要求1所述的方法,其中,对于任一小区的每个UE,所述为 所述每个小区的每个UE分配RB位置,包括:确定每个UE所归属的波束区域,其中,一个UE对应所述每个小区的一个波束区域;按照每个UE所归属的波束区域的优先顺序,为所述每个小区的每个UE分配RB位置。
- 根据权利要求5所述的方法,响应于归属于同一个波束区域的UE数量为至少两个,所述方法还包括:对归属于同一个波束区域的至少两个UE进行优先级排序,并按照优先级排序结果为归属于同一个波束区域的至少两个UE分配RB位置。
- 根据权利要求6所述的方法,其中,所述归属于同一个波束区域的至少两个UE按照轮询原则进行优先级排序。
- 根据权利要求5所述的方法,其中,所述确定每个UE所归属的波束区域,包括:将每个UE所归属的SS/PBCH block波束对应的波束区域,作为每个UE所归属的波束区域。
- 一种通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求1-8中任一所述的资源分配方法。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-8中任一所述的资源分配方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110547162.7A CN115379457A (zh) | 2021-05-19 | 2021-05-19 | 一种资源分配方法、通信节点及存储介质 |
CN202110547162.7 | 2021-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022242662A1 true WO2022242662A1 (zh) | 2022-11-24 |
Family
ID=84058459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093447 WO2022242662A1 (zh) | 2021-05-19 | 2022-05-18 | 一种资源分配方法、通信节点及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115379457A (zh) |
WO (1) | WO2022242662A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101507342A (zh) * | 2006-08-15 | 2009-08-12 | 艾利森电话股份有限公司 | 用于多蜂窝无线通信系统中调度资源与避免干扰的方法及设备 |
CN101854638A (zh) * | 2009-03-30 | 2010-10-06 | 中兴通讯股份有限公司 | 一种资源块分组波束赋形的方法和装置 |
CN103634798A (zh) * | 2012-08-22 | 2014-03-12 | 中兴通讯股份有限公司 | 一种对下行业务信道资源进行分配的方法和系统 |
US20160241328A1 (en) * | 2015-02-17 | 2016-08-18 | Electronics And Telecommunications Research Institute | Apparatus and method for uplink power control of satellite and terrestrial integrated communication system |
-
2021
- 2021-05-19 CN CN202110547162.7A patent/CN115379457A/zh active Pending
-
2022
- 2022-05-18 WO PCT/CN2022/093447 patent/WO2022242662A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101507342A (zh) * | 2006-08-15 | 2009-08-12 | 艾利森电话股份有限公司 | 用于多蜂窝无线通信系统中调度资源与避免干扰的方法及设备 |
CN101854638A (zh) * | 2009-03-30 | 2010-10-06 | 中兴通讯股份有限公司 | 一种资源块分组波束赋形的方法和装置 |
CN103634798A (zh) * | 2012-08-22 | 2014-03-12 | 中兴通讯股份有限公司 | 一种对下行业务信道资源进行分配的方法和系统 |
US20160241328A1 (en) * | 2015-02-17 | 2016-08-18 | Electronics And Telecommunications Research Institute | Apparatus and method for uplink power control of satellite and terrestrial integrated communication system |
Also Published As
Publication number | Publication date |
---|---|
CN115379457A (zh) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11388644B2 (en) | Apparatus and method for load balancing in wireless communication system | |
US20200267557A1 (en) | Method, apparatus, and computer readable storage medium for resource allocation among network slices | |
KR101813822B1 (ko) | D2d 발견 신호의 송신 방법과 송신 장치 | |
US10708943B2 (en) | Methods for configuring and receiving scheduling signaling and related devices | |
WO2013127294A1 (en) | Implementing interference coordination in wireless network cloud | |
TWI596962B (zh) | 裝置對裝置探索資源分配技術 | |
EP4203368A1 (en) | Data transmission method and device, communication node, and storage medium | |
CN105794299A (zh) | 分配资源的方法和用户设备 | |
WO2020029300A1 (zh) | 一种tdd系统中的资源分配方法和设备 | |
CN113453298B (zh) | 一种条件切换方法及条件切换装置 | |
JP2019504549A (ja) | ジョイントデータ送信方法及び装置 | |
JP6147934B2 (ja) | デバイス間近接サービスにおいて信号を伝送する方法、基地局およびユーザーイクイップメント | |
WO2015149639A1 (zh) | 调度无线资源的方法、控制节点和系统 | |
WO2019076370A1 (zh) | 波束赋形方法、装置及计算机存储介质 | |
JP7199551B2 (ja) | リソース予約方法および関連デバイス | |
JP2014531835A (ja) | マルチポイント協調システムにおけるスケジューリング割当方法及び装置 | |
WO2022242662A1 (zh) | 一种资源分配方法、通信节点及存储介质 | |
US20220183020A1 (en) | Dynamic resource allocation method for coexistence of radio technologies | |
WO2019095705A1 (zh) | 一种小区间干扰协调方法及网络设备 | |
EP3764688A1 (en) | Communication method and device | |
WO2021023294A1 (zh) | 信息传输方法及电子设备 | |
WO2019191993A1 (zh) | 一种信息传输的方法和设备 | |
WO2019191995A1 (zh) | 一种信息处理方法和设备 | |
CN112399573B (zh) | 一种波束分配方法及装置 | |
CN104837203B (zh) | 基于异构网络的无线通信方法、基站及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22803982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22803982 Country of ref document: EP Kind code of ref document: A1 |