WO2022242323A1 - 一种热量控制方法、装置及车辆 - Google Patents

一种热量控制方法、装置及车辆 Download PDF

Info

Publication number
WO2022242323A1
WO2022242323A1 PCT/CN2022/083814 CN2022083814W WO2022242323A1 WO 2022242323 A1 WO2022242323 A1 WO 2022242323A1 CN 2022083814 W CN2022083814 W CN 2022083814W WO 2022242323 A1 WO2022242323 A1 WO 2022242323A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature difference
battery
heat
threshold
Prior art date
Application number
PCT/CN2022/083814
Other languages
English (en)
French (fr)
Inventor
胡康
孙明
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022242323A1 publication Critical patent/WO2022242323A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/06Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant directly from main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature

Definitions

  • the present disclosure relates to the technical field of new energy vehicles, in particular to a heat control method, device and vehicle.
  • the present disclosure aims to propose a superheat control method, device, and vehicle to solve the problem that the existing electric vehicles with heat pump systems do not use the waste heat reasonably and sufficiently, resulting in low energy utilization of the vehicle, which in turn affects The problem of vehicle endurance.
  • a heat control method which is applied to a controller of a vehicle, the vehicle includes a heat pump system, a motor, and a battery, and the method includes:
  • the heat pump system When the heat pump system is turned on, the first temperature difference inside the battery, the first temperature of the battery body, the second temperature of the first cooling circuit of the electric motor, the target temperature of the passenger compartment of the vehicle and a second temperature difference between the actual temperatures;
  • the first temperature difference According to the first temperature difference, the second temperature difference, the first temperature and the second temperature, control the heat pump system to recover the waste heat of the first cooling circuit, or control the first cooling circuit to The temperature of the battery is adjusted.
  • the heat pump system is controlled to recover the first cooling circuit waste heat, or control the first cooling circuit to regulate the temperature of the battery, including:
  • the first temperature difference is greater than the first temperature difference threshold, if the second temperature satisfies a preset temperature condition, then control the first cooling circuit to cool down the battery; the preset temperature condition is to cool down the battery The required inlet water temperature conditions;
  • the heat pump system is controlled to recover the waste heat of the first cooling circuit.
  • the heat pump system is controlled to recover the first cooling circuit waste heat, or controlling the first cooling circuit to regulate the temperature of the battery, further comprising:
  • the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference threshold, and the second When the difference between the temperature and the first temperature is greater than a third temperature difference threshold, controlling the first cooling circuit to heat the battery;
  • first temperature difference is less than or equal to a first temperature difference threshold, and the first temperature is less than or equal to a first temperature threshold, and the second temperature difference is greater than the second temperature difference threshold, controlling the heat pump system recovering waste heat from said first cooling circuit;
  • the heat pump system is controlled to recover waste heat of the first cooling circuit.
  • the heat control method also includes:
  • the heat control method also includes:
  • the heat pump system is controlled to recover the waste heat of the battery; wherein the second temperature The threshold is greater than the first temperature threshold.
  • the heat control method also includes:
  • the second cooling circuit of the battery When the first temperature difference is greater than the first temperature difference threshold and if the second temperature does not meet the preset temperature condition, controlling the second cooling circuit of the battery to perform temperature equalization treatment on the battery, or The air conditioning system of the vehicle is controlled to cool down the battery.
  • Another object of the embodiments of the present disclosure is to provide a thermal control device, which is applied to a controller of a vehicle, the vehicle includes a heat pump system, a motor, and a battery, and the device includes:
  • An acquisition module configured to acquire a first temperature difference inside the battery, a first temperature of the battery body, a second temperature of the first cooling circuit of the motor, and occupants of the vehicle when the heat pump system is turned on. a second temperature difference between the target temperature of the cabin and the actual temperature;
  • the first control module is configured to control the heat pump system to recover the waste heat of the first cooling circuit according to the first temperature difference, the second temperature difference, the first temperature and the second temperature, or control the The first cooling circuit regulates the temperature of the battery.
  • the first control module includes:
  • a first control unit configured to control the first cooling circuit to cool down the battery if the second temperature satisfies a preset temperature condition when the first temperature difference is greater than a first temperature difference threshold;
  • the preset temperature condition is the inlet water temperature condition required when the battery cools down;
  • the second control unit is configured to control the heat pump system to recover the first temperature difference if the second temperature does not meet the preset temperature condition when the first temperature difference is greater than the first temperature difference threshold. Waste heat from the cooling circuit.
  • the first control module further includes:
  • a third control unit for when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference threshold In the case of , and the difference between the second temperature and the first temperature is greater than a third temperature difference threshold, control the first cooling circuit to heat the battery;
  • a fourth control unit configured to be used when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is greater than the second temperature difference In the case of a temperature difference threshold, controlling the heat pump system to recover the waste heat of the first cooling circuit;
  • a fifth control unit configured to control the heat pump system to recover the first temperature difference when the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than the first temperature threshold Waste heat from the cooling circuit.
  • the device also includes:
  • the second control module is used for when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference temperature difference threshold, and when the difference between the second temperature and the first temperature is less than or equal to the third temperature difference threshold, control the heat pump system to stop recovering the waste heat of the first cooling circuit, so as to Putting the first cooling circuit into thermal storage mode.
  • the device also includes:
  • a third control module configured to control the heat pump system to recycle the battery when the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than or equal to a second temperature threshold waste heat; wherein the second temperature threshold is greater than the first temperature threshold.
  • the device also includes:
  • a fourth control module configured to control the second cooling circuit of the battery to The battery is subjected to temperature equalization treatment, or the air conditioning system of the vehicle is controlled to cool down the battery.
  • Another object of the present disclosure is to provide a vehicle, which includes a heat pump system, a motor, and a battery, wherein the vehicle further includes the thermal control device as described above.
  • the heat control method, device and vehicle described in the present disclosure have the following advantages:
  • the heat pump system When the heat pump system is turned on, obtain the first temperature difference inside the battery, the first temperature on the surface of the battery, the second temperature of the first cooling circuit of the electric motor, the target temperature of the passenger compartment of the vehicle and the actual The second temperature difference between the temperatures; according to the first temperature difference, the second temperature difference, the first temperature and the second temperature, control the heat pump system to recover the waste heat of the first cooling circuit, or control The first cooling circuit regulates the temperature of the battery. Because it is when the heat pump system is working, the heat pump system is controlled according to the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the battery cooling circuit, and the second temperature difference between the target temperature and the actual temperature of the passenger compartment.
  • the waste heat of the first cooling circuit or control the first cooling circuit to adjust the temperature of the battery, better combine the three functions of the heat pump to recover heat from the air, the heat pump system to recover the waste heat of the motor, and the waste heat of the motor to heat the battery, so that the heat pump
  • the system exerts higher energy efficiency and increases the pure electric cruising range of the vehicle at low temperature.
  • FIG. 1 is a schematic flow chart of a heat control method proposed in an embodiment of the present disclosure
  • FIG. 2 is an execution strategy diagram of a heat control method in an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a heat control device proposed by an embodiment of the present disclosure.
  • FIG. 4 is a structural block diagram of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 1 shows a schematic flow chart of a heat control method provided by an embodiment of the present disclosure.
  • the heat control method provided by an embodiment of the present disclosure is applied to a controller of a vehicle, and the vehicle includes a heat pump system, a motor And a battery, wherein the method includes steps S100-S200.
  • the heat control method provided by the embodiments of the present disclosure is applied to an electric vehicle with a heat pump system, which has a motor and a battery, and the motor is driven by the battery to run; the controller of the vehicle is electrically connected to the heat pump system, the motor and the battery.
  • Step S100 when the heat pump system is turned on, obtain the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the first cooling circuit of the motor, and the passenger compartment target of the vehicle The second temperature difference between the temperature and the actual temperature.
  • the heat pump system executes a normal working mode, that is, recovers heat from the environment through the outdoor heat exchanger, and uses it for heating the passenger compartment;
  • the temperature difference can be obtained through the battery management system;
  • the above-mentioned first temperature is the surface temperature of the battery, which can be monitored and obtained through a temperature sensor;
  • the above-mentioned first cooling circuit is a cooling circuit for cooling the motor, and the above-mentioned second temperature is specifically It is expressed as the cooling water temperature in the first cooling circuit;
  • the target temperature is the passenger compartment temperature set by the driver, and the actual temperature is the current temperature in the passenger compartment.
  • step S100 when the heat pump system is used to heat the passenger compartment, the first temperature difference, the first temperature, the second temperature, and the second temperature difference are obtained in real time, so as to facilitate the subsequent control of the heat pump system to recover the waste heat of the first cooling circuit, Or control the first cooling circuit to directly adjust the temperature of the battery.
  • Step S200 according to the first temperature difference, the second temperature difference, the first temperature and the second temperature, control the heat pump system to recover the waste heat of the first cooling circuit, or control the first cooling circuit A loop temperature-regulates the battery.
  • step S200 that is, according to the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the first cooling circuit of the motor, and the first temperature difference between the target temperature and the actual temperature of the passenger compartment obtained in step S100
  • the second temperature difference is to determine whether the condition of using the first cooling circuit to regulate the temperature of the battery is reached; when the condition of using the first cooling circuit to regulate the temperature of the battery is reached, directly control the first cooling circuit to regulate the temperature of the battery;
  • the heat pump system is controlled to recover the waste heat of the first cooling circuit when the first cooling circuit is used to adjust the temperature of the battery; thus, the heat pump recovers heat from the air, the heat pump system recovers the waste heat of the motor, and the waste heat of the motor heats the battery. Item functions are combined.
  • the heat pump system when the heat pump system recovers the waste heat of the motor, it specifically recovers the waste heat of the first cooling circuit of the motor through the plate heat exchanger in the structure, and the water pump of the first cooling circuit sends the hot water after passing through the motor into the plate heat exchanger , the waste heat is taken away by the refrigerant side of the heat pump system.
  • the heat control method described in the present disclosure has the following advantages:
  • the heat pump system When the heat pump system is turned on, obtain the first temperature difference inside the battery, the first temperature on the surface of the battery, the second temperature of the first cooling circuit of the electric motor, the target temperature of the passenger compartment of the vehicle and the actual The second temperature difference between the temperatures; according to the first temperature difference, the second temperature difference, the first temperature and the second temperature, control the heat pump system to recover the waste heat of the first cooling circuit, or control The first cooling circuit regulates the temperature of the battery. Because it is when the heat pump system is working, the heat pump system is controlled according to the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the battery cooling circuit, and the second temperature difference between the target temperature and the actual temperature of the passenger compartment.
  • the waste heat of the first cooling circuit or control the first cooling circuit to adjust the temperature of the battery, better combine the three functions of the heat pump to recover heat from the air, the heat pump system to recover the waste heat of the motor, and the waste heat of the motor to heat the battery, so that the heat pump
  • the system exerts higher energy efficiency, increases the pure electric cruising range of the whole vehicle at low temperature, and solves the problem that the existing electric vehicles with heat pump systems use waste heat unreasonably and adequately, resulting in low energy utilization of the vehicle, which in turn affects The problem of vehicle endurance.
  • step S200 includes steps S201-S202:
  • Step S201 if the first temperature difference is greater than the first temperature difference threshold, if the second temperature satisfies a preset temperature condition, control the first cooling circuit to cool down the battery; the preset temperature condition Inlet water temperature condition required for battery cooling.
  • the above-mentioned first temperature threshold is the temperature difference threshold for determining whether the internal temperature difference of the battery has reached the temperature difference threshold that causes internal damage to the battery. Damage inside the battery and unbalanced discharge power of the battery, to ensure the health of the battery, it is necessary to cool down the battery so that the internal temperature difference of the battery is adjusted to be lower than the above-mentioned first temperature difference threshold.
  • the above inlet water temperature condition is the inlet water temperature required when the battery cools down; when the second temperature meets the above inlet water temperature adjustment, it means that the cooling water in the first cooling circuit is suitable for cooling the battery; when the second temperature does not meet the above inlet water temperature When adjusting, it means that the temperature of the cooling water in the first cooling circuit is low or high, which is not suitable for cooling the battery.
  • step S201 if the first temperature difference is greater than the first temperature difference threshold and the second temperature satisfies the preset temperature condition, it means that the battery needs cooling treatment, and the cooling water in the first cooling liquid circuit is suitable for cooling the battery, Therefore, the first cooling circuit is controlled to cool down the battery, specifically, the first cooling circuit is controlled to carry out the second cooling circuit of the battery to perform temperature equalization treatment on the battery and reduce the internal temperature difference of the battery so that the discharge power of the battery is balanced and maintained The battery is healthy.
  • the heat pump system does not recover waste heat of the first coolant, that is, does not recover waste heat of the motor, but only recovers environmental energy.
  • the first temperature difference threshold may be 5°C
  • the preset temperature condition is that the outlet water temperature of the first cooling circuit is greater than 0°C and less than 20°C.
  • Step S202 if the first temperature difference is greater than the first temperature difference threshold, if the second temperature does not meet the preset temperature condition, then control the heat pump system to recover the waste heat of the first cooling circuit .
  • step S202 if the first temperature difference is greater than the first temperature difference threshold and the second temperature does not meet the preset temperature condition, it means that the internal temperature difference of the battery is large and cooling treatment is required, but the cooling water in the first cooling liquid circuit It is not suitable to cool down the battery, so the control heat pump system recovers the waste heat of the first cooling circuit, that is, recovers the waste heat of the motor, and cools down the battery by other means.
  • the first cooling circuit of the motor when the internal temperature difference of the battery is large, only when the temperature of the first cooling circuit of the motor satisfies the preset temperature condition, the first cooling circuit of the motor is used to cool down the battery; while in the first cooling circuit When the temperature does not meet the preset temperature adjustment, the heat pump system is used to recover the waste heat of the first cooling circuit to heat and heat the passenger compartment, thereby effectively improving the waste heat utilization rate of the motor.
  • the waste heat of the motor is preferentially controlled for temperature equalization of the battery, and then the heat pump is controlled to recover the waste heat of the motor for heating the passenger compartment. That is, when the internal temperature difference of the battery is large, the waste heat recovery of the heat pump is compared with the internal temperature difference of the battery.
  • the temperature difference inside the battery has a higher priority, because the waste heat of the motor is not used to heat the battery with a low temperature, and the impact on the battery is discharge.
  • the power is small and the discharge capacity is small, but the large temperature difference may cause damage to the inside of the battery and unbalance the discharge power of the battery, which is not conducive to the health of the battery. Therefore, for waste heat recovery and battery temperature difference, measures are taken first for the battery temperature difference. When other temperature difference measures cannot solve the problem, choose to suspend the heat pump to recover the waste heat of the motor, and give way to the battery temperature difference strategy.
  • the heat control method provided in the embodiment of the present application further includes step S300:
  • Step S300 when the first temperature difference is greater than the first temperature difference threshold, and if the second temperature does not meet the preset temperature condition, control the second cooling circuit of the battery to equalize the temperature of the battery process, or control the air conditioning system of the vehicle to cool down the battery.
  • the second cooling circuit is a cooling circuit for cooling the battery.
  • the first temperature difference is greater than the first temperature difference threshold and the second temperature does not meet the preset temperature condition, it means that the internal temperature difference of the battery is large and cooling treatment is required, but the cooling water in the first cooling liquid circuit It is not suitable to cool down the battery, and use the second cooling circuit of the battery to carry out self-circulation temperature equalization, or use the air conditioner to cool down the battery to reduce the internal temperature difference of the battery, so as to balance the discharge power of the battery, keep the battery healthy, and prevent the battery from Damage due to excessive internal temperature differences.
  • the water pump of the second cooling circuit of the battery is controlled to turn on, and the self-circulation equalization is performed.
  • temperature mode if the temperature equalization mode does not have a good effect on the temperature uniformity of the battery, and the internal temperature difference of the battery continues to increase to greater than or equal to the fourth temperature difference threshold, you need to turn on the air conditioner and use the refrigerant side to cool the battery, where the fourth temperature difference threshold greater than the second temperature difference threshold.
  • the fourth temperature difference threshold is set to 7°C.
  • step S200 further includes steps S203-S205.
  • Step S203 when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference threshold, and the When the difference between the second temperature and the first temperature is greater than a third temperature difference threshold, the first cooling circuit is controlled to heat the battery.
  • the first temperature threshold is the lower limit value for determining whether the temperature of the battery body reaches the temperature range suitable for battery discharge; for example, the first temperature threshold may be set to 10°C.
  • the second temperature difference threshold is the temperature difference threshold for determining that the temperature of the passenger compartment is about to reach the set temperature or has already reached the set temperature.
  • the third temperature difference threshold is Determine the temperature difference threshold that can be used to heat the battery by the first cooling circuit, and if the difference between the second temperature of the first cooling circuit and the first temperature of the battery body is greater than the third temperature difference threshold, the first cooling circuit is explained
  • the temperature is high enough to heat the battery.
  • the second temperature difference threshold may be set to 3°C
  • the third temperature difference threshold may be set to 2°C.
  • step S203 that is, the temperature difference inside the battery is small, it will not cause damage inside the battery and the discharge power of the battery is unbalanced, and the temperature of the battery body is too low and needs to be heated, and the current actual temperature of the passenger compartment is close to the target temperature, And when the cooling circuit of the motor can heat the battery, the heat pump system is stopped to recover the waste heat of the first cooling circuit, and the first cooling circuit is directly controlled to heat the battery.
  • Step S204 when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is greater than the second temperature difference threshold
  • the heat pump system is controlled to recover the waste heat of the first cooling circuit.
  • step S204 when the temperature difference inside the battery is small, it will not cause damage inside the battery and the discharge power of the battery is unbalanced, and the temperature of the battery body is too low and needs to be heated, and the current actual temperature of the passenger compartment does not reach the target temperature
  • the waste heat of the motor is preferentially used to increase the temperature of the passenger compartment, so the heat pump system is controlled to recover the waste heat of the first cooling circuit for heating the passenger compartment.
  • Step S205 When the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than the first temperature threshold, control the heat pump system to recover the waste heat of the first cooling circuit .
  • step S205 when the first temperature of the battery body is greater than the first temperature threshold, that is, the temperature of the battery body is higher than the lower limit of the temperature range suitable for battery discharge, it means that the battery temperature is high and heating treatment is not required.
  • step S205 that is, when the internal temperature difference of the battery is small, the internal damage of the battery will not be caused and the discharge power of the battery is unbalanced, and the battery does not need to be heated, the heat pump system is directly controlled to recover the waste heat of the first cooling circuit for use For heating the passenger compartment.
  • the heat pump when the temperature of the passenger compartment needs to be increased and the battery needs to be heated, the heat pump is given priority to recover the waste heat of the motor to heat the passenger compartment, and then the waste heat of the motor is controlled to heat the battery, that is, the heat pump does not monitor whether the battery needs Heating is required, because if the battery needs to be heated, the waste heat of the motor will enter the battery, and the temperature rise of the battery may be slow.
  • the heat pump is used to recover the waste heat of the motor to heat the passenger compartment, the heating effect of the passenger compartment will be improved. It will be faster and more intuitive.
  • the cooling circuit has a second priority for heating the battery.
  • the heat control method provided in the embodiment of the present application further includes step S400:
  • Step S400 when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference threshold, and the second When the difference between the temperature and the first temperature is less than or equal to the third temperature difference threshold, the heat pump system is controlled to stop recovering the waste heat of the first cooling circuit, so that the first cooling circuit enters heat storage model.
  • step S400 the temperature difference inside the battery is small, it will not cause damage inside the battery and the discharge power of the battery is unbalanced, and the temperature of the battery body is too low and needs to be heated, and the current actual temperature of the passenger compartment is close to the target temperature, and
  • stop the heat pump system to recover the waste heat of the first cooling circuit, so as to use the waste heat of the motor to continuously increase the temperature of the first cooling circuit, thereby facilitating the temperature increase of the first cooling circuit
  • the temperature difference from the temperature of the battery body reaches the above-mentioned third temperature difference threshold, the battery is heated by the first cooling circuit.
  • heating PTC is always on when the heat pump is working or on when the heat pump is stopped depends on the definition of heat pump performance matching and performance calibration; among them, if the PTC is not always on, then when the heat pump is stopped, the PTC needs to be controlled Then turn it on; if the PTC is always working, it is necessary to increase the power when the heat pump stops, so as to effectively compensate for the heating loss of the passenger compartment caused by the recovery of waste heat from the heat pump that is about to stop.
  • the heat control method provided in the embodiment of the present application further includes step S500:
  • Step S500 when the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than or equal to the second temperature threshold, control the heat pump system to recover the waste heat of the battery; wherein, the The second temperature threshold is greater than the first temperature threshold.
  • the above-mentioned second temperature threshold is the temperature threshold for determining whether the battery needs to be cooled; if the first temperature is greater than the above-mentioned second temperature threshold, it means that the battery temperature is too high.
  • the heat pump system can be controlled to recover the waste heat of the battery, specifically, the heat pump system can be used to recover the waste heat of the second cooling circuit of the battery , so as to improve the utilization rate of waste heat of the vehicle, thereby increasing the cruising range of the battery.
  • the above-mentioned second temperature threshold is smaller than an upper limit value of a temperature range suitable for battery discharge.
  • the temperature threshold of the battery body when the heat pump is triggered to recover waste heat from the battery (that is, the above-mentioned second temperature threshold) is lower than the temperature threshold of the battery body that triggers the air-conditioning system to cool down the battery (that is, the above-mentioned upper limit value).
  • the temperature threshold of the battery body when the heat pump recovers battery waste heat requires specific calibration. For example, if the upper limit of the temperature range suitable for battery discharge is 35°C, the second temperature threshold may be set to 25°C.
  • FIG. 2 shows an execution strategy diagram of the heat control method provided in the embodiment of the present application.
  • step S211 after the vehicle is started, the controller first judges whether the heat pump is turned on, if not turned on, then this strategy is not executed; if the heat pump is turned on, then enter step S212;
  • step S212 the heat pump system is normally executed, and the heat of the environment is recovered through the outdoor heat exchanger to be used for heating the passenger compartment;
  • step S213 while the heat pump performs the normal mode of recovering ambient heat, the heat pump recovers the waste heat of the motor circuit through the plate heat exchanger in the structure, and the water pump of the motor circuit sends the hot water after passing through the motor into the plate heat exchanger , taken away by the refrigerant side of the heat pump system;
  • step S214 while the heat pump system recovers waste heat, the controller monitors whether the temperature difference inside the battery is > 5°C, and if it is true, enter step S215; if not, enter step S216;
  • step S215 the controller determines whether 0°C ⁇ motor cooling circuit outlet water temperature ⁇ 20°C is true; if not, it proves that the motor outlet water temperature is low or high, which does not meet the battery inlet water temperature requirement, so the battery circuit water pump is turned on , execute the self-circulation temperature equalization mode, if the effect of the temperature equalization mode is not good, and the temperature difference of the battery pack continues to increase to ⁇ 7°C, you need to turn on the air conditioner, use the refrigerant side to cool the battery, and use the vehicle's air conditioning system to cool the battery to reduce the temperature.
  • step S216 it is judged whether the body temperature of the battery ⁇ 25°C is established, if yes, go to step S217, otherwise go to step S218;
  • step S217 since the body temperature of the battery is ⁇ 25°C, it means that the battery needs to be cooled. At this time, the heat pump circuit recovers the waste heat of the battery cooling circuit through the plate heat exchanger; during the recovery process, the controller continues to determine the temperature of the battery body Whether the temperature ⁇ 10 °C is true, if not, the heat pump needs to continue to recover the heat of the battery cooling circuit, if it is true, the heat pump will stop recovering the waste heat of the battery circuit through the plate heat exchanger;
  • step S218 the controller further determines whether the temperature of the battery body is ⁇ 10°C. If not, it proves that the battery does not need to be heated or cooled, and the battery has no heating and cooling request, and the water pump in the battery circuit will not run; if the battery If the body temperature ⁇ 10°C is established, enter step SS219;
  • step S219 the controller determines whether the difference between the actual heating temperature of the passenger compartment and the set temperature of the air conditioner is within -3°C, and if so, proceeds to step S220 and step S221;
  • step S220 since the difference between the actual heating temperature of the passenger compartment and the set temperature of the air conditioner is within -3°C, it means that the temperature of the passenger compartment is about to reach the set temperature or has already reached the set temperature, indicating that the heat pump system is currently increasing rapidly.
  • the task of air conditioning and heating has been completed, and it is necessary to redefine the priority of the heat pump to recover the waste heat of the motor and heat the battery, and change it to the priority of battery waste heat heating.
  • the passenger compartment heating PTC is turned on or the working power is increased to compensate for the upcoming Heating loss in the passenger compartment caused by stopping the heat pump to recover waste heat;
  • step S219 if the controller determines that the difference between the actual heating temperature of the passenger compartment and the set temperature of the air conditioner is not within -3°C, it proves that the mission of the heat pump to heat the passenger compartment has not been completed, and the heat pump needs to continue to recover the waste heat of the motor function, thus re-entering in step S213;
  • step S221 the heat pump is controlled to stop recovering waste heat from the motor circuit, and the cooling circuit of the motor performs self-circulation, that is, the cooling circuit of the motor enters the heat storage mode of the motor.
  • the reason why the motor enters the heat storage mode is to increase the temperature of the water in the motor cooling circuit to avoid damage to the battery caused by entering the battery cooling circuit when the temperature is too low;
  • step S222 the controller judges whether the outlet water temperature of the motor cooling circuit minus the temperature of the battery body is greater than 2°C. If yes, it proves that the current temperature of the motor cooling circuit can heat the battery, and the motor cooling water enters the battery for heating; otherwise, continue Execute motor thermal storage mode.
  • Another object of the present disclosure is to provide a heat control device, which is applied to a controller of a vehicle, and the vehicle includes a heat pump system, a motor, and a battery.
  • FIG. 3 shows the A structural schematic diagram of a heat control device, said device comprising:
  • An acquisition module 31 configured to acquire a first temperature difference inside the battery, a first temperature of the battery body, a second temperature of the first cooling circuit of the motor, and a temperature of the vehicle when the heat pump system is turned on. a second temperature difference between the target temperature of the passenger compartment and the actual temperature;
  • the first control module 32 is configured to control the heat pump system to recover the waste heat of the first cooling circuit according to the first temperature difference, the second temperature difference, the first temperature and the second temperature, or control The first cooling circuit regulates the temperature of the battery.
  • the acquisition module 31 first acquires the first temperature difference inside the battery, the first temperature of the battery surface, and the temperature of the first cooling circuit of the motor.
  • the second temperature, the second temperature difference between the passenger compartment target temperature and the actual temperature of the vehicle; and then the first control module 32 according to the first temperature difference, the second temperature difference, the first temperature and the The second temperature is to control the heat pump system to recover the waste heat of the first cooling circuit, or to control the first cooling circuit to adjust the temperature of the battery.
  • the heat pump system is controlled according to the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the battery cooling circuit, and the second temperature difference between the target temperature and the actual temperature of the passenger compartment.
  • the waste heat of the first cooling circuit, or control the first cooling circuit to adjust the temperature of the battery better combine the three functions of the heat pump to recover heat from the air, the heat pump system to recover the waste heat of the motor, and the waste heat of the motor to heat the battery, so that the heat pump The system exerts higher energy efficiency and increases the pure electric cruising range of the vehicle at low temperature.
  • the first control module 32 includes:
  • a first control unit configured to control the first cooling circuit to cool down the battery if the second temperature satisfies a preset temperature condition when the first temperature difference is greater than a first temperature difference threshold;
  • the preset temperature condition is the inlet water temperature condition required when the battery cools down;
  • the second control unit is configured to control the heat pump system to recover the first temperature difference if the second temperature does not meet the preset temperature condition when the first temperature difference is greater than the first temperature difference threshold. Waste heat from the cooling circuit.
  • the first control module 32 further includes:
  • a third control unit for when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference threshold In the case of , and the difference between the second temperature and the first temperature is greater than a third temperature difference threshold, control the first cooling circuit to heat the battery;
  • a fourth control unit configured to be used when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is greater than the second temperature difference In the case of a temperature difference threshold, controlling the heat pump system to recover the waste heat of the first cooling circuit;
  • a fifth control unit configured to control the heat pump system to recover the first temperature difference when the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than the first temperature threshold Waste heat from the cooling circuit.
  • the device further includes:
  • the second control module is used for when the first temperature difference is less than or equal to the first temperature difference threshold, and the first temperature is less than or equal to the first temperature threshold, and the second temperature difference is less than or equal to the second temperature difference temperature difference threshold, and when the difference between the second temperature and the first temperature is less than or equal to the third temperature difference threshold, control the heat pump system to stop recovering the waste heat of the first cooling circuit, so as to Putting the first cooling circuit into thermal storage mode.
  • the device further includes:
  • a third control module configured to control the heat pump system to recycle the battery when the first temperature difference is less than or equal to the first temperature difference threshold and the first temperature is greater than or equal to a second temperature threshold waste heat; wherein the second temperature threshold is greater than the first temperature threshold.
  • the device further includes:
  • a fourth control module configured to control the second cooling circuit of the battery to The battery is subjected to temperature equalization treatment, or the air conditioning system of the vehicle is controlled to cool down the battery.
  • Another object of the present disclosure is to provide a vehicle, which includes a heat pump system, a motor, and a battery, wherein the vehicle further includes the thermal control device as described above.
  • thermal control device the vehicle and the above-mentioned thermal control method have the same advantages over the prior art, and will not be repeated here.
  • the heat control method, device, and vehicle acquire the first temperature difference inside the battery, the first temperature of the battery surface, and the first temperature of the motor when the heat pump system is turned on. a second temperature of the cooling circuit, a second temperature difference between the target temperature and the actual temperature of the passenger compartment of the vehicle; based on the first temperature difference, the second temperature difference, the first temperature and the second temperature, The heat pump system is controlled to recover the waste heat of the first cooling circuit, or the first cooling circuit is controlled to regulate the temperature of the battery.
  • the heat pump system is controlled according to the first temperature difference inside the battery, the first temperature of the battery surface, the second temperature of the battery cooling circuit, and the second temperature difference between the target temperature and the actual temperature of the passenger compartment.
  • the waste heat of the first cooling circuit, or control the first cooling circuit to adjust the temperature of the battery better combine the three functions of the heat pump to recover heat from the air, the heat pump system to recover the waste heat of the motor, and the waste heat of the motor to heat the battery, so that the heat pump The system exerts higher energy efficiency and increases the pure electric cruising range of the vehicle at low temperature.
  • embodiments of the present disclosure may be provided as methods, apparatuses, or computer program products. Accordingly, embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present disclosure. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.
  • the various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing a part or all of the methods described herein.
  • Such a program realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.
  • FIG. 4 illustrates a computing processing device that may implement methods according to the present disclosure.
  • the computing processing device conventionally includes a processor 1010 and a computer program product or computer readable medium in the form of memory 1020 .
  • Memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for program code 1031 for performing any method steps in the methods described above.
  • the storage space 1030 for program codes may include respective program codes 1031 for respectively implementing various steps in the above methods. These program codes can be read from or written into one or more computer program products.
  • These computer program products comprise program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is typically a portable or fixed storage unit as described with reference to FIG. 5 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4 .
  • the program code can eg be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', i.e. code readable by, for example, a processor such as 1010, which code, when executed by a computing processing device, causes the computing processing device to perform the above-described methods. each step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供了热量控制方法、装置及车辆,应用于车辆的控制器,车辆包括热泵系统、电机及电池,方法包括:在热泵系统开启时,获取电池内部的第一温差、电池本体的第一温度、电机的第一冷却回路的第二温度、车辆的乘员舱目标温度与实际温度之间的第二温差(S100);根据第一温差、第二温差、第一温度及第二温度,控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路对电池进行温度调节(S200)。将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来,从而使热泵系统发挥出更高的能效,增加整车在低温下的纯电续航里程。

Description

一种热量控制方法、装置及车辆
相关申请的交叉引用
本申请要求在2021年05月20日提交中国专利局、申请号为202110554427.6、名称为“一种热量控制方法、装置及车辆”的中国专利公开的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及新能源汽车技术领域,特别涉及一种热量控制方法、装置及车辆。
背景技术
当前,随着全球环保问题的日益严重,作为新能源汽车的电动汽车得以快速发展。
对于新能源汽车来说,其能耗会显著影响整车的续航能力。现阶段,热泵技术被应用于新能源汽车的冬季采暖和电池包加热之中,以利用热泵较高的循环性能系数(coefficient of performance,COP),为了降低车辆能耗、提升续航能力。
但是,现有具有热泵系统的电动汽车对废热的利用不够合理、充分,导致整车能量利用率不高,进而影响整车续航能力。
概述
有鉴于此,本公开旨在提出一种过热度控制方法、装置及车辆,以解决现有具有热泵系统的电动汽车对废热的利用不够合理、充分,导致整车能量利用率不高,进而影响整车续航能力的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种热量控制方法,其中,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,所述方法包括:
在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池本体的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱的目 标温度与实际温度之间的第二温差;
根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
进一步地,所述的热量控制方法中,所述根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节,包括:
在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件;
在所述第一温差大于所述第一温差阈值的情况下,若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
进一步地,所述的热量控制方法中,所述根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节,还包括:
在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热;
在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差大于所述第二温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热;
在所述第一温差小于或等于第一温差阈值,且所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
进一步地,所述的热量控制方法,还包括:
在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于所述第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回路进入蓄热模式。
进一步地,所述的热量控制方法,还包括:
在所述第一温差小于或等于第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
进一步地,所述的热量控制方法,还包括:
在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
本公开实施例的另一目的还在于提出一种热量控制装置,其中,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,所述装置包括:
获取模块,用于在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池本体的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱的目标温度与实际温度之间的第二温差;
第一控制模块,用于根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
进一步地,所述的热量控制装置中,所述第一控制模块包括:
第一控制单元,用于在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件;
第二控制单元,用于在所述第一温差大于所述第一温差阈值的情况下,若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
进一步地,所述的热量控制装置中,所述第一控制模块还包括:
第三控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热;
第四控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差大于所述第二 温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热;
第五控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
进一步地,所述的热量控制装置中,所述装置还包括:
第二控制模块,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于所述第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回路进入蓄热模式。
进一步地,所述的热量控制装置中,所述装置还包括:
第三控制模块,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
进一步地,所述的热量控制装置中,所述装置还包括:
第四控制模块,用于在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
本公开的再一目的在于提出一种车辆,所述车辆包括热泵系统、电机及电池,其中,所述车辆还包括如上所述的热量控制装置。
相对于在先技术,本公开所述的热量控制方法、装置及车辆具有以下优势:
在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池表面的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱目标温度与实际温度之间的第二温差;根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。因为是在热泵系统工作时,根据电池内部的第一温差、电池表面的第一温度、电池冷却回路的第二温度及乘员舱的目标温度与实际温度之间的第二温差,控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路对电池进行温度调节,更好地 将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来,从而使热泵系统发挥出更高的能效,增加整车在低温下的纯电续航里程。
附图简述
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所提出的热量控制方法的流程示意图;
图2为本公开实施例中的热量控制方法的执行策略图;
图3为本公开实施例所提出的热量控制装置的结构示意图;
图4为本公开实施例提供的一种电子设备的结构框图;并且
图5为本公开实施例提供的一种电子设备的硬件结构示意图。
详细描述
下面将参考附图更详细地描述本公开的实施例。虽然附图中显示了本公开的实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种热量控制方法的流程示意图,本公开实施例所提供的热量控制方法,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,其中,所述方法包括步骤S100~S200。
本公开实施例所提供的热量控制方法,应用于具有热泵系统的电动汽车,其具有电机及电池,该电机受电池驱动运行;车辆的控制器与上述热泵系统、电机及电池电性连接。
步骤S100、在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池表面的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的 乘员舱目标温度与实际温度之间的第二温差。
上述步骤S100中,在述热泵系统开启时,热泵系统执行正常的工作模式,即通过室外换热器回收环境的热量,并用于乘员舱的采暖;上述第一温差为电池内部电芯之间的温差,具体可以通过电池管理系统获取;上述第一温度为电池表面温度,具体可以通过温度传感器监测、获取;上述第一冷却回路为用于给电机进行冷却降温的冷却回路,上述第二温度具体表现为上述第一冷却回路内的冷却水温度;上述目标温度为驾驶员设置的乘员舱温度,上述实际温度则为乘员舱内当前温度。其中,热泵系统的工作原理具体可参照现有技术的描述。
上述步骤S100中,即在利用热泵系统对乘员舱进行采暖时,实时获取上述第一温差、第一温度、第二温度及第二温差,以便于后续控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路直接对电池进行温度调节。
步骤S200、根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
在上述步骤S200中,即根据步骤S100所获取到的电池内部的第一温差、电池表面的第一温度、电机的第一冷却回路的第二温度、乘员舱目标温度与实际温度之间的第二温差,确定是否达到利用第一冷却回路对电池进行温度调节的条件;在达到利用第一冷却回路对电池进行温度调节的条件时,直接控制第一冷却回路对电池进行温度调节;在未达到利用第一冷却回路对电池进行温度调节的条件时,才控制热泵系统回收第一冷却回路的废热;从而较好地将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来。
其中,热泵系统回收电机废热时,具体地通过架构中的片式换热器回收电机的第一冷却回路的废热,第一冷却回路的水泵将通过电机之后的热水送入片式换热器,由热泵系统制冷剂侧将废热带走。
相对于现有技术,本公开所述的热量控制方法具有以下优势:
在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池表面的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱目标温度与实际温度之间的第二温差;根据所述第一温差、所述第二温差、所述 第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。因为是在热泵系统工作时,根据电池内部的第一温差、电池表面的第一温度、电池冷却回路的第二温度及乘员舱的目标温度与实际温度之间的第二温差,控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路对电池进行温度调节,更好地将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来,从而使热泵系统发挥出更高的能效,增加整车在低温下的纯电续航里程,解决了现有具有热泵系统的电动汽车对废热的利用不够合理、充分,导致整车能量利用率不高,进而影响整车续航能力的问题。
可选地,在一种实施方式中,上述步骤S200包括步骤S201~S202:
步骤S201、在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件。
在上述步骤S201中,上述第一温度阈值为确定电池内部温差是否达到引起电池内部损坏的温差阈值,在第一温差大于上述第一温差阈值的情况下,说明电池内部温差过大,为了避免引起电池内部的损坏以及电池的放电功率不均衡,保证电池健康,需要对电池进行降温处理,以使电池内部温差调节至低于上述第一温差阈值。上述入口水温条件为电池降温时要求入口水温;在第二温度满足上述入口水温调节时,说明第一冷却回路内的冷却水适宜对电池进行降温的水温条件;在第二温度不满足上述入口水温调节时,说明第一冷却回路内的冷却水温度较低或较高,不适宜对电池进行降温。
在上述步骤S201中,在第一温差大于第一温差阈值,且第二温度满足预设温度条件的情况下,说明电池需要降温处理,且第一冷却液回路的冷却水适宜对电池进行降温,因而控制第一冷却回路对所述电池降温,具体是控制第一冷却回路进行电池的第二冷却回路,以给电池进行均温处理,减小电池内部温差,以使电池的放电功率均衡,保持电池健康。其中,在上述情况下,热泵系统不回收第一冷却液的废热,也即不回收电机的废热,而仅回收环境能量。
在实际应用中,上述第一温差阈值可以为5℃,上述预设温度条件为第一冷却回路的出水温度大于0℃且小于20℃。
步骤S202、在所述第一温差大于所述第一温差阈值的情况下,若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
在上述步骤S202中,在第一温差大于第一温差阈值,且第二温度未满足预设温度条件的情况下,说明电池内部温差较大,需要降温处理,但第一冷却液回路的冷却水不适宜对电池进行降温,因而控制热泵系统回收第一冷却回路的废热,也即回收电机的废热,并由其他方式对电池进行降温处理。
上述实施方式中,在电池内部温差较大的情况下,仅在电机的第一冷却回路的温度满足预设温度条件时,利用电机的第一冷却回路对电池进行降温;而在第一冷却回路的温度未满足预设温度调节时,利用热泵系统回收该第一冷却回路的废热,用以对乘员舱进行采暖、加热,从而有效提高电机的废热利用率。
上述实施方式中,在电池的内部温差较大需要降温时,优先控制电机的废热用于对电池进行均温处理,然后控制热泵回收电机废热,用以对乘员舱加热。就是电池的内部温差较大时,热泵废热回收和电池的内部温差相比,电池内部的温差优先级较高,因为不利用电机废热对温度低的电池进行加热,对电池造成的影响也就是放电功率小、放电量少,但是温差较大可能会引起电池内部的损坏以及使电池的放电功率不均衡,不利于电池的健康,因而对于废热回收和电池温差,优先对电池温差采取了措施,在其他温差措施无法解决的时候,选择暂停热泵回收电机废热,给电池温差策略让步。
可选地,在一种实施方式中,本申请实施例所提供的热量控制方法,还包括步骤S300:
步骤S300、在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
上述步骤S300中,第二冷却回路为用于对电池进行冷却降温的冷却回路。
在上述实施方式中,在第一温差大于第一温差阈值,且第二温度未满足预设温度条件的情况下,说明电池内部温差较大,需要降温处理,但第一冷却液回路的冷却水不适宜对电池进行降温,并由电池的第二冷却回路进行自循环均温,或者利用空调对电池进行降温处理,减小电池内部温差,以使电 池的放电功率均衡,保持电池健康,防止电池因内部温差过大造成损坏。
可选地,在一种具体实施方式中,在第一温差大于第一温差阈值,且第二温度未满足预设温度条件的情况下,控制电池的第二冷却回路水泵开启,执行自循环均温模式,如果均温度模式对电池的均温效果不佳,电池内部温差继续增加至大于或等于第四温差阈值,则需要开启空调,使用制冷剂侧给电池降温,其中,该第四温差阈值大于第二温差阈值。示例地,该第四温差阈值设置为7℃。
可选地,在一种实施方式中,上述步骤S200还包括步骤S203~S205。
步骤S203、在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热。
上述步骤S203中,第一温度阈值为确定电池本体温度是否达到适于电池放电的温度区间的下限值;示例地,可以设置第一温度阈值为10℃。
在第一温度小于上述第一温度阈值的情况下,说明电池温度过低,为了保证电池的放电功率,需要对电池进行加热处理,以使电池温度调节至大于或等于上述第一温度阈值;上述第二温差阈值为确定乘员舱的温度即将到达设定温度或者已经达到设定温度的温差阈值,在乘员舱目标温度与实际温度之间的温差小于或等于上述第二温差阈值的情况下,说明当前热泵系统快速提高乘员舱采暖温度的任务已经完成,就需要对热泵回收电机废热和废热给电池进行加热的优先级进行重新的定义,更改为利用电机废热给电池加热优先;第三温差阈值为确定可以利用第一冷却回路对电池进行加热的温差阈值,在第一冷却回路的第二温度与电池本体的第一温度之间的差值大于第三温差阈值的情况下,说明第一冷却回路的温度足够高,可以对电池进行加热。示例地,,可以设置第二温差阈值为3℃,设置第三温差阈值为2℃。
上述步骤S203中,即在电池内部温差较小、不会造成电池内部的损坏以及电池的放电功率不均衡,且电池本体温度过低、需要加热,且乘员舱的当前实际温度已接近目标温度,且电机的冷却回路可以对电池进行加热的情况下,停止热泵系统回收第一冷却回路的废热,而直接控制第一冷却回路对所述电池加热。
步骤S204、在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差大于所述第二温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
上述步骤S204中,在电池内部温差较小、不会造成电池内部的损坏以及电池的放电功率不均衡,且电池本体温度过低、需要加热,且乘员舱的当前实际温度未达目标温度的情况下,优先利用电机废热提升乘员舱温度,因而控制热泵系统回收第一冷却回路的废热,以用于对乘员舱加热。
步骤S205、在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
上述步骤S205中,电池本体的第一温度大于上述第一温度阈值时,即电池本体温度高于适于电池放电的温度区间的下限值,说明电池温度较高而无需加热处理。
上述步骤S205中,即在电池内部温差较小、不会造成电池内部的损坏以及电池的放电功率不均衡,且电池无需加热的情况下,直接控制热泵系统回收第一冷却回路的废热,以用于对乘员舱采暖。
在本实施方式中,在乘员舱需要提升温度且电池需要加热时,优先控制热泵回收电机废热,用以对乘员舱加热,然后再控制电机废热对电池进行加热,即热泵并没有监测电池需不需要进行加热,因为如果电池需要进行加热,电机废热进入电池,可能电池的温升会缓慢,但若废热不用于给电池加热,而是控制热泵回收电机废热给乘员舱加热,乘员舱的采暖效果会更加的快且直观,等乘员舱的温度提升至目标温度状态之后再给电池废热加热,也即控制电机废热通过热泵系统回收给乘员舱采暖的优先级较高,而控制电机废热通过第一冷却回路给电池加热的优先级次之。
可选地,在一种具体实施方式中,本申请实施例所提供的热量控制方法,还包括步骤S400:
步骤S400、在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回 路进入蓄热模式。
上述步骤S400中,在电池内部温差较小、不会造成电池内部的损坏以及电池的放电功率不均衡,且电池本体温度过低、需要加热,且乘员舱的当前实际温度已接近目标温度,且电机的冷却回路无法以对电池进行有效加热的情况下,停止热泵系统回收第一冷却回路的废热,以利用电机的废热持续提升第一冷却回路的温度,进而便于在第一冷却回路的温度提升至与电池本体温度之间的温差达到上述第三温差阈值的情况下,再利用第一冷却回路对电池进行加热。
上述实施方式中,在控制热泵系统停止回收第一冷却回路的废热的情况下,还需控制乘员舱采暖发热元件(Positive Temperature Coefficient,PTC)开启或者工作功率提升,以弥补即将停止热泵回收废热带来的乘员舱采暖损失。其中,采暖PTC是在热泵工作的时候一直开启还是在热泵停止的时候再开启,需要依据热泵性能匹配定义及性能标定定义;其中,如果PTC不是一直开启的,那么热泵停止的时候,需要控制PTC紧接着开启;如果PTC是一直工作的,需要在热泵停止时提升功率,以有效弥补即将停止热泵回收废热带来的乘员舱采暖损失。
可选地,在一种具体实施方式中,本申请实施例所提供的热量控制方法,还包括步骤S500:
步骤S500、在所述第一温差小于或等于第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
上述步骤S500中,上述第二温度阈值为确定电池是否需要进行降温处理的温度阈值;在第一温度大于上述第二温度阈值的情况下,说明电池温度过高,为了保证电池的放电功率、防止电池损坏,需要对电池进行降温处理,以使电池温度调节至小于或等于上述第二温度阈值,因而可以控制热泵系统回收电池的废热,具体可以是通过热泵系统回收电池的第二冷却回路的废热,从而提升整车的废热利用率,进而提升电池的续航里程。
可选地,上述第二温度阈值小于适于电池放电的温度区间的上限值。
其中,因为电池在本体超过上述上限值时需要降温,但是对于热泵来说,如果电池到达上限值在开始降温的话,直接由热泵回路回收热量切换到电池 回路回收热量,对热泵的热冲击很大,容易造成系统损害。因而在热泵模式下,触发热泵回收电池废热时的电池本体温度阈值(即上述第二温度阈值),要比触发空调系统给电池降温的电池本体温度阈值(即上述上限值)要低,触发热泵回收电池废热时的电池本体温度阈值需要具体的标定。示例地,若适于电池放电的温度区间的上限值为35℃,则可以设置第二温度阈值为25℃。
具体地,请参阅图2,图2示出了本申请实施例中所提供的热量控制方法执行策略图。
如图2所示,在步骤S211中,车辆启动之后,控制器首先判断热泵是否开启,如果没有开启,则不执行此策略;如果热泵开启,则进入步骤S212中;
在步骤S212中,热泵系统正常执行,通过室外换热器回收环境的热量用于乘员舱的采暖;
在步骤S213中,热泵执行回收环境热量的正常模式的同时,热泵通过架构中的片式换热器回收电机回路的废热,电机回路的水泵将通过电机之后的热水送入片式换热器,由热泵系统制冷剂侧带走;
在步骤S214中,在热泵系统回收废热的同时,控制器监测电池内部的温差>5℃是否成立,成立则进入步骤S215中,不成立则进入步骤S216中;
在步骤S215中,控制器判定0℃<电机冷却回路的出水温度<20℃是否成立;如果不成立,证明电机的出水温度较低或者较高,不满足电池的入口水温要求,所以电池回路水泵开启,执行自循环均温模式,如果均温度模式效果不佳,电池包温差继续增加至≥7℃,则需要开启空调,使用制冷剂侧给电池降温,用车辆的空调系统给电池进行降温,减小电池内部温差;如果电机冷却回路的出水温度满足上述条件,证明电机冷却回路的水适合进入电池的冷却回路,需要停止热泵回收电机回路的废热,并保留热泵回收环境能量的功能,使用电机回路的水给电池进行降温,以减小电池内部温差;
在步骤S216中,判断电池的本体温度≥25℃是否成立,是则进入步骤S217中,否则进入步骤S218中;
在步骤S217中,因电池的本体温度≥25℃成立,说明电池需要进行降温,此时热泵回路通过片式换热器回收电池冷却回路的废热;回收的过程中,控制器持续判定电池的本体温度≤10℃是否成立,如果不成立,则热泵需要继续回收电池冷却回路的热量,如果成立,则热泵将停止通过片式换热器回收 电池回路的废热;
在步骤S218中,控制器进一步判定电池本体温度≤10℃是否成立,如果不成立,证明电池不需要进行加热或者冷却,则电池无加热和冷却请求,且电池回路的水泵都不会运行;若电池本体温度≤10℃成立,则进入步骤SS219中;
在步骤S219中,控制器判定乘员舱的采暖实际温度与空调设置温度之间的差值是否在-3℃以内,如果成立,则进入步骤S220及步骤S221中;
在步骤S220中,因乘员舱的采暖实际温度与空调设置温度之间的差值在-3℃以内,说明乘员舱的温度即将到达设定温度或者已经达到设定温度,说明热泵系统当前快速提高空调采暖的任务已经完成,就需要对热泵回收电机废热和废热给电池进行加热的优先级进行重新的定义,更改为电池废热加热优先,此时乘员舱采暖PTC开启或者工作功率提升,以弥补即将停止热泵回收废热带来的乘员舱采暖损失;
在步骤S219中,若控制器判定乘员舱的采暖实际温度与空调设置温度之间的差值不在-3℃以内,则证明热泵对乘员舱加热的使命还没有完成,需要继续执行热泵回收电机废热功能,因而重新进入步骤S213中;
在步骤S221中,控制热泵停止回收电机回路废热,且电机的冷却回路进行自循环即电机的冷却回路进入电机蓄热模式。电机进入蓄热模式的原因是将电机冷却回路的水温度提升,避免温度过低进入电池冷却回路对电池造成损坏;
在步骤S222中,控制器判断电机冷却回路的出水温度减去电池本体温度是否大于2℃,是则证明当前电机的冷却回路的温度可以给电池加热,则电机冷却水进入电池进行加热;否则继续执行电机蓄热模式。
本公开的另一目标在于提出一种热量控制装置,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,其中,请参阅图3,图3示出了本公开实施例所提出的一种热量控制装置的结构示意图,所述装置包括:
获取模块31,用于在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池本体的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱目标温度与实际温度之间的第二温差;
第一控制模块32,用于根据所述第一温差、所述第二温差、所述第一温 度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
本公开实施例所述的系统,在所述热泵系统开启时,先由获取模块31获取所述电池内部的第一温差、所述电池表面的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱目标温度与实际温度之间的第二温差;再由第一控制模块32根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。因为是在热泵系统工作时,根据电池内部的第一温差、电池表面的第一温度、电池冷却回路的第二温度及乘员舱的目标温度与实际温度之间的第二温差,控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路对电池进行温度调节,更好地将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来,从而使热泵系统发挥出更高的能效,增加整车在低温下的纯电续航里程。
可选地,所述的热量控制装置中,所述第一控制模块32包括:
第一控制单元,用于在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件;
第二控制单元,用于在所述第一温差大于所述第一温差阈值的情况下,若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
可选地,所述的热量控制装置中,所述第一控制模块32还包括:
第三控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热;
第四控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差大于所述第二温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热;
第五控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且 所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
可选地,所述的热量控制装置中,所述装置还包括:
第二控制模块,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于所述第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回路进入蓄热模式。
可选地,所述的热量控制装置中,所述装置还包括:
第三控制模块,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
可选地,所述的热量控制装置中,所述装置还包括:
第四控制模块,用于在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
本公开的再一目的在于提出一种车辆,所述车辆包括热泵系统、电机及电池,其中,所述车辆还包括如上所述的热量控制装置。
所述热量控制装置、车辆与上述热量控制方法相对于现有技术所具有的优势相同,在此不再赘述
综上所述,本公开提供的热量控制方法、装置及车辆,在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池表面的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱目标温度与实际温度之间的第二温差;根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。因为是在热泵系统工作时,根据电池内部的第一温差、电池表面的第一温度、电池冷却回路的第二温度及乘员舱的目标温度与实际温度之间的第二温差,控制热泵系统回收第一冷却回路的废热,或者控制第一冷却回路对电池进行温度调节,更好地将热泵从空气中回收热量、热泵系统回收电机废热以及电机废热加热电池这三项功能结合起来, 从而使热泵系统发挥出更高的能效,增加整车在低温下的纯电续航里程。
本领域内的技术人员应明白,本公开实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
尽管已描述了本公开实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开实施例范围的所有 变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本公开所提供的技术方案进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本公开的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本公开的限制。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种热量控制方法,其特征在于,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,所述方法包括:
    在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池本体的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱的目标温度与实际温度之间的第二温差;
    根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
  2. 根据权利要求1所述的热量控制方法,其特征在于,所述根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节,包括:
    在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件;
    在所述第一温差大于所述第一温差阈值的情况下,若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
  3. 根据权利要求1所述的热量控制方法,其特征在于,所述根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节,还包括:
    在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热;
    在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差大于所述第二温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热;
    在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
  4. 根据权利要求1所述的热量控制方法,其特征在于,所述方法还包括:
    在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回路进入蓄热模式。
  5. 根据权利要求3所述的热量控制方法,其特征在于,所述方法还包括:
    在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
  6. 根据权利要求2所述的热量控制方法,其特征在于,所述方法还包括:
    在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
  7. 一种热量控制装置,其特征在于,应用于车辆的控制器,所述车辆包括热泵系统、电机及电池,所述装置包括:
    获取模块,用于在所述热泵系统开启时,获取所述电池内部的第一温差、所述电池本体的第一温度、所述电机的第一冷却回路的第二温度、所述车辆的乘员舱的目标温度与实际温度之间的第二温差;
    第一控制模块,用于根据所述第一温差、所述第二温差、所述第一温度及所述第二温度,控制所述热泵系统回收所述第一冷却回路的废热,或者控制所述第一冷却回路对所述电池进行温度调节。
  8. 根据权利要求7所述的热量控制装置,其特征在于,所述第一控制模块包括:
    第一控制单元,用于在所述第一温差大于第一温差阈值的情况下,若所述第二温度满足预设温度条件,则控制所述第一冷却回路对所述电池降温;所述预设温度条件为电池降温时要求的入口水温条件;
    第二控制单元,用于在所述第一温差大于所述第一温差阈值的情况下, 若所述第二温度未满足所述预设温度条件,则控制所述热泵系统回收所述第一冷却回路的废热。
  9. 根据权利要求7所述的热量控制装置,其特征在于,所述第一控制模块还包括:
    第三控制单元,用于在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值的情况下,且所述第二温度与所述第一温度之间的差值大于第三温差阈值的情况下,控制所述第一冷却回路对所述电池加热;
    第四控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度小于或等于所述第一温度阈值,且所述第二温差大于所述第二温差阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热;
    第五控制单元,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于所述第一温度阈值的情况下,控制所述热泵系统回收所述第一冷却回路的废热。
  10. 根据权利要求7所述的热量控制装置,其特征在于,所述装置还包括:
    第二控制模块,用于在所述第一温差小于或等于第一温差阈值,且所述第一温度小于或等于第一温度阈值,且所述第二温差小于或等于第二温差阈值,且所述第二温度与所述第一温度之间的差值小于或等于第三温差阈值的情况下,控制所述热泵系统停止回收所述第一冷却回路的废热,以使所述第一冷却回路进入蓄热模式。
  11. 根据权利要求9所述的热量控制装置,其特征在于,所述装置还包括:
    第三控制模块,用于在所述第一温差小于或等于所述第一温差阈值,且所述第一温度大于或等于第二温度阈值的情况下,控制所述热泵系统回收所述电池的废热;其中,所述第二温度阈值大于所述第一温度阈值。
  12. 根据权利要求8所述的热量控制装置,其特征在于,所述装置还包括:
    第四控制模块,用于在所述第一温差大于所述第一温差阈值,且若所述第二温度未满足所述预设温度条件,则控制所述电池的第二冷却回路对所述 电池进行均温处理,或者控制所述车辆的空调系统对所述电池进行降温。
  13. 一种车辆,其特征在于,所述车辆包括热泵系统、电机及电池,所述车辆还包括如权利要求7~12任一所述的热量控制装置。
  14. 一种电子设备,其特征在于,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-6任一项所述的热量控制方法的步骤。
  15. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-6任一项所述的热量控制方法的步骤。
PCT/CN2022/083814 2021-05-20 2022-03-29 一种热量控制方法、装置及车辆 WO2022242323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110554427.6 2021-05-20
CN202110554427.6A CN115384356A (zh) 2021-05-20 2021-05-20 一种热量控制方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2022242323A1 true WO2022242323A1 (zh) 2022-11-24

Family

ID=84114333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083814 WO2022242323A1 (zh) 2021-05-20 2022-03-29 一种热量控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN115384356A (zh)
WO (1) WO2022242323A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理系统
US20180215231A1 (en) * 2017-01-27 2018-08-02 Ford Global Technologies, Llc Method to control battery cooling using the battery coolant pump in electrified vehicles
CN109532563A (zh) * 2018-09-21 2019-03-29 江苏敏安电动汽车有限公司 一种电动汽车低功耗热管理系统
JP2020055345A (ja) * 2018-09-28 2020-04-09 株式会社Subaru 車両の熱管理システム
WO2020133681A1 (zh) * 2018-12-24 2020-07-02 北京宝沃汽车有限公司 动力电池包的加热控制方法、控制系统及汽车
CN111806196A (zh) * 2020-07-11 2020-10-23 的卢技术有限公司 一种汽车热泵系统及控制方法
CN111916865A (zh) * 2020-07-23 2020-11-10 柳州市智甲金属科技有限公司 一种电池包的温度控制系统及控制方法
CN112124151A (zh) * 2020-09-29 2020-12-25 北京车和家信息技术有限公司 基于四通阀的热管理方法、装置、控制器和电动车辆
CN112406632A (zh) * 2020-11-04 2021-02-26 东风汽车集团有限公司 一种电动汽车热管理方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180215231A1 (en) * 2017-01-27 2018-08-02 Ford Global Technologies, Llc Method to control battery cooling using the battery coolant pump in electrified vehicles
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理系统
CN109532563A (zh) * 2018-09-21 2019-03-29 江苏敏安电动汽车有限公司 一种电动汽车低功耗热管理系统
JP2020055345A (ja) * 2018-09-28 2020-04-09 株式会社Subaru 車両の熱管理システム
WO2020133681A1 (zh) * 2018-12-24 2020-07-02 北京宝沃汽车有限公司 动力电池包的加热控制方法、控制系统及汽车
CN111806196A (zh) * 2020-07-11 2020-10-23 的卢技术有限公司 一种汽车热泵系统及控制方法
CN111916865A (zh) * 2020-07-23 2020-11-10 柳州市智甲金属科技有限公司 一种电池包的温度控制系统及控制方法
CN112124151A (zh) * 2020-09-29 2020-12-25 北京车和家信息技术有限公司 基于四通阀的热管理方法、装置、控制器和电动车辆
CN112406632A (zh) * 2020-11-04 2021-02-26 东风汽车集团有限公司 一种电动汽车热管理方法及系统

Also Published As

Publication number Publication date
CN115384356A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN110048189B (zh) 一种液冷电池热管理系统及其控制方法
JP5325259B2 (ja) デュアルモードの冷却材ループを備えた熱管理システム
EP3869930B1 (en) Thermal reduction system for an autonomous vehicle
CN110816207A (zh) 一种电动汽车集成式综合热管理系统
CN108515875A (zh) 一种电动汽车动力电池热管理系统及方法
US9376031B2 (en) Rechargeable energy storage system (RESS) thermal conditioning based on RESS state of charge threshold
US8589024B2 (en) Thermal conditioning of rechargeable energy storage systems of vehicles
US20140174707A1 (en) Method and system for thermal storage in a vehicle
US10562367B2 (en) Heating, ventilation, and air conditioning system for vehicle
CN110816208A (zh) 一种多回路电动汽车热管理系统
US11358435B2 (en) Thermal management system for vehicle
US11413929B2 (en) Thermal management for vehicle
US20140196485A1 (en) Method for controlling a thermal storage heat pump system
US20210309069A1 (en) Thermal management system for vehicle
CN106229574A (zh) 电池包的冷却方法及系统
CN113895310A (zh) 一种动力电池智能温度控制方法、系统、车辆及存储介质
CN109484132A (zh) 一种电动汽车空调制冷的控制系统及方法
KR20180121245A (ko) 이차전지의 냉각 및 히팅 시스템
US10815869B2 (en) Vehicular coolant flow system and method for controlling same
CN208889808U (zh) 一种bms热管理系统
WO2022242323A1 (zh) 一种热量控制方法、装置及车辆
CN111532104B (zh) 一种车辆热交换系统、控制方法、装置及车辆
CN110949089B (zh) 汽车的热管理装置的控制方法、控制装置、存储介质
US11390135B2 (en) Thermal management system for vehicle
CN115946496A (zh) 新能源汽车电池热管理控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803649

Country of ref document: EP

Kind code of ref document: A1