WO2022242283A1 - 确定上行载波的方法和通信装置 - Google Patents

确定上行载波的方法和通信装置 Download PDF

Info

Publication number
WO2022242283A1
WO2022242283A1 PCT/CN2022/081173 CN2022081173W WO2022242283A1 WO 2022242283 A1 WO2022242283 A1 WO 2022242283A1 CN 2022081173 W CN2022081173 W CN 2022081173W WO 2022242283 A1 WO2022242283 A1 WO 2022242283A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink carrier
parameter
carrier
uplink
terminal device
Prior art date
Application number
PCT/CN2022/081173
Other languages
English (en)
French (fr)
Inventor
张莉莉
戴喜增
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22803612.5A priority Critical patent/EP4333495A1/en
Priority to CN202280012794.6A priority patent/CN116783932A/zh
Publication of WO2022242283A1 publication Critical patent/WO2022242283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution

Definitions

  • the present application relates to the communication field, and in particular to a method and a communication device for determining an uplink carrier.
  • CA carrier aggregation
  • a cell may include a primary cell (Pcell) and a secondary cell (Scell). Wherein, both the primary cell and the secondary cell include an uplink component carrier (UL CC) and a downlink component carrier (DL CC).
  • UL CC uplink component carrier
  • DL CC downlink component carrier
  • a cell may contain one downlink carrier and multiple uplink carriers. Terminal equipment can flexibly select uplink carriers in the cell according to service requirements.
  • the terminal device may access a corresponding uplink carrier according to the downlink carrier it resides on.
  • the terminal device can compare with a threshold value when accessing according to the downlink carrier it resides on, and if the signal strength corresponding to the uplink carrier is lower than the threshold value, then start from the supplementary uplink (supplementary uplink (SUL) access; if the signal strength corresponding to the uplink carrier is higher than the threshold value, access from the normal uplink (NUL).
  • SUL supplementary uplink
  • NUL normal uplink
  • a terminal device when a terminal device camps on a certain cell through a downlink carrier, it can access the corresponding uplink carrier.
  • the downlink carrier has only one low-frequency carrier for measurement as the resident downlink carrier, and the uplink carrier is in the high-frequency band, or the uplink carrier and the downlink carrier are distributed in different sites, it is impossible to directly measure based on the resident downlink carrier The result is used as the basis for uplink carrier selection.
  • how to select an uplink access carrier from multiple uplink carriers and consider the loads of the multiple uplink carriers, so as to avoid load imbalance on the uplink carriers has not been solved in the prior art.
  • the present application provides a method and a communication device for determining an uplink carrier, which can enable a terminal device to access a matched uplink carrier and balance loads.
  • a method for determining an uplink carrier comprising: receiving a first parameter of at least one first uplink carrier from a network device, the first parameter being related to the following of the at least one first uplink carrier At least one of the items is associated with: load, subcarrier spacing SCS; according to the first parameter of the at least one first uplink carrier, determine the second uplink carrier from the at least one first uplink carrier, and the second uplink
  • the carrier is an uplink carrier used for access.
  • the second uplink carrier is an uplink carrier used for access, which can be understood as: the terminal device performs random access on the second uplink carrier.
  • the terminal device may determine the second uplink carrier from the at least one first uplink carrier according to the received first parameter of the at least one first uplink carrier. Since the terminal device determines the second uplink carrier for access based on the first parameter of at least one first uplink carrier, the terminal device can access the matching uplink carrier and balance the load, thereby improving system performance .
  • the second uplink carrier is an uplink carrier with the largest first parameter among the at least one first uplink carrier; or, the second uplink carrier is the at least one first uplink carrier An uplink carrier with the smallest first parameter among the first uplink carriers.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the largest or smallest first parameter among the at least one first uplink carrier, because the first parameter and at least one of the following items of the first uplink carrier At least one item is associated with: load and SCS, so that the terminal device can access the matching uplink carrier based on the first parameter, reduce the access delay, balance the load, and improve the system performance.
  • the method further includes: determining the first value; wherein the second uplink carrier is an uplink carrier with the largest sequence number among at least one third uplink carrier; or, the The second uplink carrier is an uplink carrier with the smallest sequence number among at least one third uplink carrier; wherein, the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier carrier; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the largest or smallest sequence number among at least one third uplink carrier, and the third uplink carrier is the first parameter greater than the first parameter among at least one first uplink carrier An uplink carrier of a certain value, or, the third uplink carrier is an uplink carrier of at least one first uplink carrier whose first parameter is smaller than the first value. Since the terminal device determines the second uplink carrier for access from at least one third uplink carrier after screening, it is equivalent to narrowing the selection range, and further, the access delay can be reduced, thereby improving system performance.
  • the method further includes: determining the first value; wherein the second uplink carrier is an uplink carrier with the highest signal strength among at least one third uplink carrier; or, The second uplink carrier is an uplink carrier with the highest signal strength of a downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier; wherein, the at least one third uplink carrier is the The at least one first uplink carrier is an uplink carrier whose first parameter is greater than the first value; or, the at least one third uplink carrier is the at least one first uplink carrier whose first parameter is smaller than the first value uplink carrier.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the highest signal strength among the at least one third uplink carrier, or the second uplink carrier may be the at least one third uplink carrier that is the same as the at least one third uplink carrier
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: Quality of Service QoS level, buffer status report BSR level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the first value can be any value from 0 to the third threshold, and the third threshold is associated with at least one of the following items: QoS level, BSR level, type of terminal equipment, time Delay requirements, service types of terminal equipment. That is: the third threshold may be different with at least one of the above items, and then the first value may be changed with the third threshold, and at least one third uplink carrier that meets the conditions may be adjusted, thereby improving The terminal equipment has the flexibility to select the second uplink carrier.
  • the third threshold is configured by the network device through RRC signaling; or, the third threshold is predefined.
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to a first threshold among at least one uplink carrier configured by the network device; or, the The at least one first uplink carrier is an uplink carrier whose signal strength of a downlink carrier associated with the at least one uplink carrier is greater than or equal to a second threshold among the at least one uplink carrier configured by the network device.
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to the first threshold among at least one uplink carrier configured by the network device, or at least one of the at least one uplink carrier configured for the network device, and at least one The signal strength of the downlink carrier associated with the uplink carrier is greater than or equal to the uplink carrier of the second threshold. Since the at least one first uplink carrier is selected by the network device from multiple uplink carriers, determining the second uplink carrier for the terminal device narrows the selection range, and further, access delay can be reduced, thereby improving system performance.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a method for accessing an uplink carrier includes: a network device determines a first parameter, and a parameter is associated with at least one of the following items of at least one first uplink carrier: load, sub- Carrier spacing SCS: the network device sends the first parameter to the terminal device.
  • the network device can send the first parameter of at least one first uplink carrier to the terminal device, so that the terminal device can determine the second uplink carrier from the at least one first uplink carrier, and the device enables the terminal device to access the matching
  • the uplink carrier balances the load, thereby improving system performance.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a method for accessing an uplink carrier comprising: a terminal device receiving first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier; The terminal device determines a second uplink carrier from the at least one first uplink carrier according to the first information, and the second uplink carrier is an uplink carrier used for access in the first cell; wherein the at least one first The uplink carrier and the second downlink carrier are located in the second cell, and the at least one first uplink carrier is located in the first cell; or, the at least one first uplink carrier and the first downlink carrier are located in the first cell .
  • the terminal device may determine the second uplink carrier from the at least one first uplink carrier according to the received corresponding information of the at least one first uplink carrier and the at least one second downlink carrier. Since the terminal device determines the second uplink carrier for access based on the corresponding information of at least one first uplink carrier and at least one second downlink carrier, the terminal device can access the matching uplink carrier, ensuring Overlay performance, thereby improving system throughput.
  • the method further includes: the terminal device determining the signal strength of the at least one second downlink carrier; the second uplink carrier being the at least one second The corresponding uplink carrier with the highest signal strength among the downlink carriers.
  • the second uplink carrier determined by the terminal device may be the uplink carrier corresponding to the highest signal strength among at least one second downlink carrier. Since the higher the signal strength is, the better the coverage is, so the terminal device based on this The signal strength is connected to the matching uplink carrier, increasing the access probability and reducing the access delay, thereby improving system performance.
  • the method further includes: the terminal device receives a first parameter of the at least one first uplink carrier, the first parameter is consistent with the at least one first uplink carrier.
  • At least one of the following items of the uplink carrier is associated: load, subcarrier spacing SCS; determine the first value; the second uplink carrier is the uplink carrier with the largest sequence number among at least one third uplink carrier; or, the The second uplink carrier is the uplink carrier with the smallest sequence number among the at least one third uplink carrier; wherein, the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first threshold among the at least one first uplink carrier ; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the largest or smallest sequence number among at least one third uplink carrier, and the third uplink carrier is the first parameter greater than the first parameter among at least one first uplink carrier An uplink carrier of a certain value, or, the third uplink carrier is an uplink carrier of at least one first uplink carrier whose first parameter is smaller than the first value. Since the terminal device determines the second uplink carrier for access from at least one third uplink carrier after screening, it is equivalent to narrowing the selection range, and further, the access delay can be reduced, thereby improving system performance.
  • the method further includes: the terminal device receives a first parameter of the at least one first uplink carrier, the first parameter is consistent with the at least one first uplink carrier.
  • At least one of the following items of the uplink carrier is associated: load, subcarrier spacing SCS; determine the first value; wherein, the second uplink carrier is at least one third uplink carrier, and the at least one third uplink carrier The uplink carrier with the highest signal strength of the at least one second downlink carrier associated with the uplink carrier; or, wherein the at least one third uplink carrier is that the first parameter of the at least one first uplink carrier is greater than the first parameter an uplink carrier of a certain value; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the highest signal strength among the at least one third uplink carrier, or the second uplink carrier may be the at least one third uplink carrier that is the same as the at least one third uplink carrier
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: Quality of Service QoS level, buffer status report BSR level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the first value can be any value from 0 to the third threshold, and the third threshold is associated with at least one of the following items: QoS level, BSR level, type of terminal equipment, time Delay requirements, service types of terminal equipment. That is: the third threshold may be different with at least one of the above items, and then the first value may be changed with the third threshold, and at least one third uplink carrier that meets the conditions may be adjusted, thereby improving The terminal equipment has the flexibility to select the second uplink carrier.
  • the third threshold is configured by the network device through RRC signaling; or, the third threshold is predefined.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • an uplink carrier access method comprising: a network device determining first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier; the The network device sends the first information to the terminal device.
  • the network device can send the corresponding information of at least one first uplink carrier and at least one second downlink carrier to the terminal device, so that the terminal device can determine the second uplink carrier from the at least one first uplink carrier, so that the terminal The device is connected to the matching uplink carrier to ensure coverage performance and improve system throughput.
  • the method further includes: the network device sending a first parameter of at least one first uplink carrier to the terminal device, where the first parameter is related to the at least one At least one of the following items of a first uplink carrier is associated: load, subcarrier spacing SCS.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a measurement method comprising: a terminal device receiving system information, the system information including configuration information of reference signals used for measuring carriers for other terminal devices; the terminal device according to the system The information is measured on the reference signal.
  • the terminal device can set its own reference signal according to the configuration information of the reference signal used to measure the carrier for other terminal devices Taking measurements saves resources.
  • a communication device which includes: a communication module, configured to receive a first parameter of at least one first uplink carrier from a network device, the first parameter and the at least one first uplink carrier At least one of the following items is associated: load, subcarrier spacing SCS; the processing module determines the second uplink carrier from the at least one first uplink carrier according to the first parameter of the at least one first uplink carrier, The second uplink carrier is an uplink carrier used for access.
  • the second uplink carrier is an uplink carrier with the largest first parameter among the at least one first uplink carrier; or, the second uplink carrier is the at least one first uplink carrier An uplink carrier with the smallest first parameter among the first uplink carriers.
  • the processing module is further configured to: determine the first value; wherein the second uplink carrier is an uplink carrier with the largest sequence number among at least one third uplink carrier; or , the second uplink carrier is the uplink carrier with the smallest sequence number among the at least one third uplink carrier; wherein, the at least one third uplink carrier is that the first parameter of the at least one first uplink carrier is greater than the first value or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the processing module is further configured to: determine the first value; wherein the second uplink carrier is an uplink carrier with the highest signal strength among at least one third uplink carrier; Alternatively, the second uplink carrier is an uplink carrier with the highest signal strength of a downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier; wherein, the at least one third uplink carrier is The at least one first uplink carrier has a first parameter greater than the first value; or, the at least one third uplink carrier is the at least one first uplink carrier whose first parameter is smaller than the first value Numeric uplink carrier.
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: Quality of Service QoS level, buffer status report BSR level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the third threshold is configured by the network device through radio resource control RRC signaling; or, the third threshold is predefined.
  • the at least one first uplink carrier is an uplink carrier with a signal strength greater than or equal to a first threshold among at least one uplink carrier configured by the network device; or, the The at least one first uplink carrier is an uplink carrier whose signal strength of a downlink carrier associated with the at least one uplink carrier is greater than or equal to a second threshold among the at least one uplink carrier configured by the network device.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a communication device which includes: a processing module, configured for a network device to determine a first parameter, where the first parameter is associated with at least one of the following items of at least one first uplink carrier: load . Subcarrier spacing SCS; a communication module, configured to send the first parameter to the terminal device.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a communication device which includes: a communication module configured to receive first information, the first information including corresponding information of at least one first uplink carrier and at least one second downlink carrier; a processing module , used to determine a second uplink carrier from the at least one first uplink carrier according to the first information, and the second uplink carrier is an uplink carrier used for access in the first cell; wherein the at least one first The uplink carrier and the second downlink carrier are located in the second cell, and the at least one first uplink carrier is located in the first cell; or, the at least one first uplink carrier and the first downlink carrier are located in the first cell .
  • the processing module is further configured to: determine the signal strength of the at least one second downlink carrier; the second uplink carrier is the at least one second downlink carrier The uplink carrier corresponding to the highest signal strength in .
  • the communication module is further configured to: receive a first parameter of the at least one first uplink carrier, the first parameter and the at least one first uplink carrier Associated with at least one of the following items: load, subcarrier spacing SCS; the processing module is also used to: determine the first value; the second uplink carrier is the uplink with the largest sequence number among at least one third uplink carrier Carrier; or, the second uplink carrier is the uplink carrier with the smallest sequence number among the at least one third uplink carrier; wherein, the at least one third uplink carrier is the first parameter of the at least one first uplink carrier is greater than An uplink carrier of the first value; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the communication module is further configured to: receive a first parameter of the at least one first uplink carrier, the first parameter and the at least one first uplink carrier Associated with at least one of the following items: load, subcarrier spacing SCS; the processing module is also used to: determine the first value; wherein, the second uplink carrier is at least one third uplink carrier, and The at least one second uplink carrier associated with the at least one third uplink carrier has the highest signal strength uplink carrier; or, wherein the at least one third uplink carrier is the first uplink carrier among the at least one first uplink carrier An uplink carrier whose parameter is greater than the first value; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: Quality of Service QoS level, buffer status report BSR level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the third threshold is configured by the network device through radio resource control RRC signaling; or, the third threshold is predefined.
  • the larger at least one of the following items, the smaller the first parameter: the load, the SCS; or, at least one of the following items the larger the terms, the larger the first parameter: the load, the SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a communication device which includes: a processing module configured to determine first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier; a communication module , configured to send the first information to the terminal device.
  • the communication module is further configured to: send a first parameter of at least one first uplink carrier to the terminal device, the first parameter is related to the at least one first uplink carrier At least one of the following items of the carrier is associated: load, subcarrier spacing SCS.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • a communication device which includes: a communication module, configured to receive system information, where the system information includes configuration information for other terminal devices used to measure carrier reference signals; a processing module, configured to The reference signal is measured according to the system information.
  • a communication device is provided, and the communication device may be the terminal device in the above method embodiment, or a chip provided in the terminal device.
  • the communication device includes a transceiver and a processor, and optionally also includes a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the transceiver.
  • the communication device executes the method performed by the terminal device in the above method embodiments.
  • a communication device is provided, and the communication device may be the network device in the above method embodiment, or a chip set in the network device.
  • the communication device includes a transceiver and a processor, and optionally also includes a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the transceiver.
  • the communication device executes the method performed by the network device in the above method embodiments.
  • the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to implement functions of a terminal device or a network device in the methods of the foregoing aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the discrete device may be an interface or an interface circuit.
  • the foregoing processor may also be a processing circuit.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is run, the method performed by the terminal device or network device in the above aspects is implemented .
  • a fifteenth aspect provides a computer program product, the computer program product including: computer program code, when the computer program code is executed, the method performed by the terminal device or network device in the above aspects is executed .
  • FIG. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for determining an uplink carrier provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a carrier position provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another method for determining an uplink carrier provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a measurement method provided in the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation mobile communication system
  • new radio new radio, NR
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices, for example, the network device 10 shown in FIG. 1 .
  • the wireless communication system 100 may further include one or more terminal devices, for example, the terminal device 20, the terminal device 30, the terminal device 40, etc. shown in FIG. 1 .
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as core network devices, wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal device 20, the terminal device 30, and the terminal device 40 in the embodiment of the present application may also be referred to as a terminal, a terminal device, a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT) Wait.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, or it may be applied to virtual reality (virtual reality, VR), augmented reality (augmented reality, AR) ), industrial control, self driving, remote medical, smart grid, transportation safety, smart city and smart home ) and other wireless terminals in scenarios.
  • virtual reality virtual reality
  • AR augmented reality
  • industrial control self driving
  • remote medical smart grid
  • transportation safety smart city and smart home
  • the network device 10 in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a base station, an evolved base station (evolved node B, eNB), a home base station, a wireless fidelity (wireless fidelity, WIFI)
  • the access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP) in the system can also be the NR system
  • the gNB in the BS or it can also be a component or a part of equipment constituting a base station, such as a central unit (CU), a distributed unit (DU), or a baseband unit (BBU).
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable storage media may include, but are not limited to: magnetic storage devices (such as hard disks, floppy disks, or tapes, etc.), optical disks (such as compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs, etc.) ), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • EPROM erasable programmable read-only memory
  • various storage media described herein can represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • first, second and third in the embodiments of the present application are only for distinction and shall not constitute any limitation to the present application.
  • first information and second information in this embodiment of the present application refer to information transmitted between a network device and a terminal device.
  • sequence numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • pre-set can be indicated by pre-saving corresponding codes, tables or other instructions in devices (including terminal devices and network devices, for example) related information
  • the present application does not limit its specific implementation, such as the preset rules and preset constants in the embodiments of the present application.
  • a cell may include a primary cell and a secondary cell. Wherein, both the primary cell and the secondary cell include an uplink component carrier and a downlink component carrier.
  • a cell may contain one downlink carrier and multiple uplink carriers. The UE can flexibly select uplink carriers in the cell according to service requirements.
  • the terminal device may access a corresponding uplink carrier according to the downlink carrier it resides on.
  • the UE can compare with a threshold value when accessing based on the downlink carrier it resides on. If the signal strength corresponding to the uplink carrier is lower than the threshold value, it will access from the SUL; if the downlink If the signal strength corresponding to the carrier is higher than the threshold value, access from the NUL.
  • a terminal device when a terminal device camps on a certain cell through a downlink carrier, it can access the corresponding uplink carrier.
  • the downlink carrier has only one low-frequency carrier for measurement as the resident downlink carrier, and the uplink carrier is in the high-frequency band, or the uplink carrier and the downlink carrier are distributed in different sites, it is impossible to directly measure based on the resident downlink carrier The result is used as the basis for uplink carrier selection.
  • how to select an uplink access carrier from multiple uplink carriers and consider the loads of the multiple uplink carriers, so as to avoid load imbalance on the uplink carriers has not been solved in the prior art.
  • the present application provides a method for determining an uplink carrier, which can enable a terminal device to access a matched uplink carrier and balance loads.
  • FIG. 2 it is a schematic diagram of a method 200 for determining an uplink carrier provided by an embodiment of the present application.
  • the method 200 can be executed by a terminal device and a network device, or can also be performed by a chip in the terminal device and a chip in the network device. chip implementation.
  • the method 200 may include steps S210-S240.
  • the processing performed by a single execution subject (for example, a network device, a terminal device) shown in the embodiment of the present application may also be divided into execution by multiple execution subjects, and these execution subjects are logically and/or physically separated,
  • the processing performed by the network device may be divided into being performed by at least one of a CU, a DU, and a radio unit (radio unit, RU).
  • the network device determines a first parameter of at least one first uplink carrier, where the first parameter is associated with at least one of the following items of the at least one first uplink carrier: load and SCS.
  • the network device sends the first parameter of the at least one first uplink carrier to the terminal device.
  • steps S210-S220 may be performed by the network device 10 in FIG. 1 .
  • S230 Receive a first parameter of at least one first uplink carrier from a network device.
  • S240 Determine a second uplink carrier from the at least one first uplink carrier according to the first parameter of the at least one first uplink carrier, where the second uplink carrier is an uplink carrier used for access.
  • the steps 230-240 may be performed by any terminal device in the terminal device 20-terminal device 40 in FIG. 1 .
  • the at least one first uplink carrier may include one or more uplink carriers, and if the at least one first uplink carrier includes one uplink carrier, then the second uplink carrier is the one uplink carrier; If the at least one first uplink carrier includes multiple uplink carriers, the second uplink carrier is one of the multiple uplink carriers.
  • the carrier in this application is only an example, and it can also be a part of bandwidth, frequency band, or beam. It can be understood that it is still applicable after replacing the "carrier" in the embodiment of this application with "part of bandwidth", “frequency band” or “beam”. In the technical scheme of this application.
  • the second uplink carrier is an uplink carrier used for access, which can be understood as: the terminal device performs random access on the second uplink carrier.
  • the first parameter may also be called a state value, which is not limited.
  • the terminal device may determine the second uplink carrier from the at least one first uplink carrier according to the received first parameter of the at least one first uplink carrier. Since the terminal device determines the second uplink carrier for access based on the first parameter of at least one first uplink carrier, the terminal device can access the matching uplink carrier and balance the load, thereby improving system performance .
  • the terminal device can determine the second uplink carrier from the at least one first uplink carrier according to the first parameter of the at least one first uplink carrier, and the following will introduce several possible ways for the terminal device to determine the second uplink carrier .
  • the second uplink carrier is an uplink carrier with the largest first parameter among the at least one first uplink carrier; or, the second uplink carrier is an uplink carrier with the smallest first parameter among the at least one first uplink carrier.
  • the second uplink carrier may be the uplink carrier with the largest first parameter among at least one first uplink carrier, or the uplink carrier with the smallest first parameter among at least one first uplink carrier, mainly related to the first parameter Depends on its associated load and/or SCS.
  • the first parameter can be negatively correlated with load and/or SCS (ie, the larger the load and/or SCS, the smaller the first parameter), or it can be positively correlated with load and/or SCS (ie, the load and/or SCS The larger the value, the larger the first parameter).
  • the second uplink carrier may be an uplink carrier with the largest first parameter among at least one first uplink carrier; if the first parameter is positively correlated with load and/or SCS, then the second uplink carrier The second uplink carrier may be an uplink carrier with the smallest first parameter among the at least one first uplink carrier.
  • the second uplink carrier is the uplink carrier with the largest first parameter among at least one first uplink carrier
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are uplink carrier 1, uplink carrier 2, uplink carrier 3, and uplink carrier 4 and uplink carrier 5, the terminal device may determine the second uplink carrier for access according to the first parameter of each uplink carrier.
  • the first parameter may be determined based on the load or SCS associated with the uplink carrier. That is, the larger the load associated with the uplink carrier, the smaller the first parameter; the smaller the load associated with the uplink carrier, the larger the first parameter. Similarly, the larger the SCS of the uplink carrier, the smaller the first parameter; the smaller the SCS of the uplink carrier, the larger the first parameter.
  • the terminal device may select uplink carrier 4 as the second uplink carrier for access carrier.
  • the terminal device may select uplink carrier 4 as the second uplink carrier for access carrier.
  • the second uplink carrier is the uplink carrier with the smallest first parameter among at least one first uplink carrier
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are uplink carrier 1, uplink carrier 2, uplink carrier 3, and uplink carrier 4 and uplink carrier 5, the terminal device may determine the second uplink carrier for access according to the first parameter of each uplink carrier.
  • the first parameter may be determined based on the load or SCS associated with the uplink carrier. That is, the greater the load associated with the uplink carrier, the greater the first parameter; the smaller the load associated with the uplink carrier, the smaller the first parameter. Similarly, the larger the SCS of the uplink carrier, the larger the first parameter; the smaller the SCS of the uplink carrier, the smaller the first parameter.
  • the terminal device can select the uplink carrier 4 as the second uplink carrier for access carrier.
  • the terminal device may select the uplink carrier 4 as the second uplink carrier for access carrier.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the largest or smallest first parameter among the at least one first uplink carrier, because the first parameter and at least one of the following items of the first uplink carrier At least one item is associated with: load and SCS, so that the terminal device can access the matching uplink carrier based on the first parameter, reduce the access delay, balance the load, and improve the system performance.
  • the method 200 may also include: determining the first value; wherein, the second uplink carrier is the uplink carrier with the largest sequence number among the at least one third uplink carrier; or, the second uplink carrier is the smallest sequence number among the at least one third uplink carrier the uplink carrier; wherein, the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier; or, the at least one third uplink carrier is the at least one first uplink carrier Among the carriers, the uplink carriers whose first parameter is smaller than the first value.
  • the second uplink carrier may be the uplink carrier with the largest sequence number among the at least one third uplink carrier, or the uplink carrier with the smallest sequence number among the at least one third uplink carrier;
  • the three uplink carriers may be at least one first uplink carrier whose first parameter is greater than the first value, or at least one first uplink carrier whose first parameter is smaller than the first value; not limited.
  • At least one third uplink carrier in this embodiment of the present application may be an uplink carrier whose first parameter is greater than or equal to (or not less than) the first value in at least one first uplink carrier, It may also be an uplink carrier of at least one first uplink carrier whose first parameter is less than or equal to (or called not greater than) the first value; it is not limited.
  • At least one third uplink carrier may be an uplink carrier whose first parameter in at least one first uplink carrier is greater than the first value, or an uplink carrier whose first parameter in at least one first uplink carrier is smaller than the first value
  • the uplink carrier is mainly related to the first parameter and its associated load and/or SCS.
  • the first parameter can be negatively correlated with load and/or SCS (ie, the larger the load and/or SCS, the smaller the first parameter), or it can be positively correlated with load and/or SCS (ie, the load and/or SCS The larger the value, the larger the first parameter).
  • At least one third uplink carrier may be an uplink carrier whose first parameter is greater than the first value among at least one first uplink carrier; if the first parameter is negatively correlated with load and/or SCS positive correlation, the at least one third uplink carrier may be an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • At least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among at least one first uplink carrier
  • the second uplink carrier is the uplink carrier with the largest sequence number among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in descending order according to the serial number, that is, arrange the at least one first uplink carrier in descending order of the serial number. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in sequence, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in descending order of sequence numbers.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is greater than the first value For the uplink carrier with the largest sequence number, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are respectively uplink carrier 1 (serial number is “0") and uplink carrier 2 (serial number is “1"), uplink carrier 3 (serial number is “2”), uplink carrier 4 (serial number is “3”) and uplink carrier 5 (serial number is "4"), and their loads are 5, 4, 7 .
  • the terminal device may select uplink carrier 5 as the second uplink carrier for access.
  • the second uplink carrier is the uplink carrier with the smallest sequence number among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in ascending order of sequence number, that is, arrange the at least one first uplink carrier in ascending order of sequence number. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in sequence, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in an ascending order of serial numbers.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is greater than the first value For the uplink carrier with the smallest serial number, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are respectively uplink carrier 1 (serial number is “0") and uplink carrier 2 (serial number is “1"), uplink carrier 3 (serial number is “2”), uplink carrier 4 (serial number is “3”) and uplink carrier 5 (serial number is "4"), and their loads are 5, 4, 7 . Since 0.5 ⁇ 0.6, the terminal device can compare the first parameter 0.8 of the uplink carrier 2 with the second smallest sequence number with this value, and since 0.8>0.6, the terminal device can select the uplink carrier 2 as the first parameter for access Two uplink carriers.
  • At least one third uplink carrier is an uplink carrier whose first parameter is less than the first value in at least one first uplink carrier
  • the second uplink carrier is the uplink carrier with the largest sequence number among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in descending order according to the serial number, that is, arrange the at least one first uplink carrier in descending order of the serial number. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in turn, and if the first parameter of a certain uplink carrier is smaller than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in descending order of sequence numbers.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is smaller than the first value For the uplink carrier with the largest sequence number, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are respectively uplink carrier 1 (serial number is “0") and uplink carrier 2 (serial number is “1"), uplink carrier 3 (serial number is “2”), uplink carrier 4 (serial number is “3”) and uplink carrier 5 (serial number is "4"), and their loads are 5, 4, 7 .
  • the terminal device continues to compare the first parameter 0.9 of the uplink carrier 4 with the second largest sequence number with the first value.
  • the first parameter 0.3 of is compared with the first value, and since 0.3 ⁇ 0.6, the terminal device may select uplink carrier 3 as the second uplink carrier for access.
  • the second uplink carrier is the uplink carrier with the smallest sequence number among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in ascending order of sequence number, that is, arrange the at least one first uplink carrier in ascending order of sequence number. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in turn, and if the first parameter of a certain uplink carrier is smaller than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in an ascending order of serial numbers.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is smaller than the first value For the uplink carrier with the smallest serial number, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are respectively uplink carrier 1 (serial number is “0") and uplink carrier 2 (serial number is “1"), uplink carrier 3 (serial number is “2”), uplink carrier 4 (serial number is “3”) and uplink carrier 5 (serial number is "4"), and their loads are 5, 4, 7 .
  • the terminal device can compare the first parameter 0.8 of the uplink carrier 2 with the second smallest sequence number with the first value, and since 0.8>0.6, the terminal device can continue to compare the first parameter 0.8 of the uplink carrier 2 with the second smallest sequence number.
  • the first parameter 0.3 of the uplink carrier 3 is compared with the first value, and since 0.3 ⁇ 0.6, the terminal device may select the uplink carrier 3 as the second uplink carrier for access.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the largest or smallest sequence number among at least one third uplink carrier, and the third uplink carrier is the first parameter greater than the first parameter among at least one first uplink carrier An uplink carrier of a certain value, or, the third uplink carrier is an uplink carrier of at least one first uplink carrier whose first parameter is smaller than the first value. Since the terminal device determines the second uplink carrier for access from at least one third uplink carrier after screening, it is equivalent to narrowing the selection range, and further, the access delay can be reduced, thereby improving system performance.
  • the method 200 may also include: determining the first value; wherein, the second uplink carrier is an uplink carrier with the highest signal strength among at least one third uplink carrier; or, the second uplink carrier is at least one third uplink carrier, The uplink carrier with the highest signal strength of the downlink carrier associated with the at least one third uplink carrier; wherein the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier ; or, the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • At least one third uplink carrier may be an uplink carrier whose first parameter in at least one first uplink carrier is greater than the first value, or an uplink carrier whose first parameter in at least one first uplink carrier is smaller than the first value
  • the uplink carrier; the second uplink carrier may be the uplink carrier with the highest signal strength among the at least one third uplink carrier, or may be the signal strength of the downlink carrier associated with the at least one third uplink carrier among the at least one third uplink carrier Highest uplink carrier; no limit.
  • the downlink carrier associated with the first uplink carrier can be understood as a downlink carrier that has a correlation with the first uplink carrier in signal strength, that is, the signal strength of the downlink carrier can be used to infer the signal strength of the first uplink carrier.
  • the downlink carrier associated with the first uplink carrier may be a downlink carrier in the carrier aggregation cell described in the first uplink carrier, or may be a downlink carrier associated with the first uplink carrier configured by the network device to the terminal device .
  • the downlink carrier associated with the first uplink carrier may belong to the same frequency band as the first uplink carrier, or may be located in a frequency band higher than the first uplink carrier.
  • the downlink carriers associated with each first uplink carrier may be the same or different.
  • the signal strength of the carrier may be replaced by other parameters such as channel quality and coverage performance of the carrier that can reflect whether the carrier is suitable for terminal equipment to access.
  • At least one third uplink carrier in this embodiment of the present application may be an uplink carrier whose first parameter is greater than or equal to (or not less than) the first value in at least one first uplink carrier, It may also be an uplink carrier of at least one first uplink carrier whose first parameter is less than or equal to (or called not greater than) the first value; it is not limited.
  • At least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among at least one first uplink carrier
  • the second uplink carrier is the uplink carrier with the highest signal strength among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in descending order according to signal strength, that is, arrange the at least one first uplink carrier in descending order of signal strength. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in sequence, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in order of signal strength from large to small.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is greater than the first value For the uplink carrier with the highest signal strength, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are uplink carrier 1, uplink carrier 2, uplink carrier 3, and uplink carrier 4 and uplink carrier 5, their signal strengths are respectively -80dBm, -70dBm, -60dBm, -110dBm, -100dBm, the first parameters are respectively 0.5, 0.4, 0.7, 0.2, 0.4, if the first value is 0.5, The terminal device may first compare the first parameter 0.7 of the uplink carrier 3 with the highest signal strength with the first value, and since 0.7>0.5, the terminal device may select the uplink carrier 3 as the second uplink carrier for access.
  • the terminal device may first compare the first parameter 0.7 of the uplink carrier 3 with the highest signal strength with the first value, and since 0.7>0.5, the terminal device may select the uplink carrier 3 as the second uplink carrier for access.
  • the second uplink carrier is the uplink carrier with the highest signal strength of the downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the downlink carriers associated with the at least one first uplink carrier in descending order according to signal strength, that is, arrange the at least one first uplink carrier in descending order of signal strength Associated downlink carriers are aligned. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in sequence, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in order of signal strength from large to small.
  • the way for the terminal device to determine the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be an uplink carrier whose first parameter is greater than the first value among at least one first uplink carrier
  • Other implementation manners are also applicable to the uplink carrier corresponding to the highest signal strength among the associated downlink carriers in this embodiment.
  • FIG. 3 it is a schematic diagram of a carrier position provided by the embodiment of the present application.
  • the terminal equipment resides on the downlink carrier of a certain cell (that is, cell 1 in Fig.
  • uplink carrier 3 uplink carrier 4
  • uplink carrier 5 the first parameters are respectively 0.5, 0.4, 0.7, 0.2, and 0.4, and these 5 uplink carriers are in other cells (such as cell 2 shown in Figure 3).
  • cell 3, cell 4, cell 5, and cell 6) are respectively downlink carrier 1', downlink carrier 2', downlink carrier 3', downlink carrier 4' and downlink carrier 5', and their signal strengths are respectively is -80dBm, -70dBm, -60dBm, -110dBm, -100dBm, if the first value is 0.5, the terminal device can first compare the first parameter 0.7 of the uplink carrier 3 corresponding to the downlink carrier with the highest signal strength with the first value In comparison, since 0.7>0.5, the terminal device may select uplink carrier 3 as the second uplink carrier for access.
  • At least one third uplink carrier is an uplink carrier whose first parameter is less than the first value in at least one first uplink carrier
  • the second uplink carrier is the uplink carrier with the highest signal strength among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the at least one first uplink carrier in descending order according to signal strength, that is, arrange the at least one first uplink carrier in descending order of signal strength. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in turn, and if the first parameter of a certain uplink carrier is smaller than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in order of signal strength from large to small.
  • the way the terminal device determines the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be at least one of the first uplink carriers whose first parameter is smaller than the first value For the uplink carrier with the highest signal strength, other implementation manners are also applicable to this embodiment.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are uplink carrier 1, uplink carrier 2, uplink carrier 3, and uplink carrier 4 and uplink carrier 5, their signal strengths are respectively -80dBm, -70dBm, -60dBm, -110dBm, -100dBm, the first parameters are respectively 0.5, 0.4, 0.7, 0.2, 0.4, if the first value is 0.5, The terminal device may first compare the first parameter 0.7 of the uplink carrier 3 with the highest signal strength with the first value.
  • the terminal device may compare the first parameter 0.4 of the uplink carrier 2 with the second highest signal strength with the first value. A numerical value is compared, and since 0.4 ⁇ 0.5, the terminal device may select uplink carrier 2 as the second uplink carrier for access.
  • the second uplink carrier is the uplink carrier with the highest signal strength of the downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier
  • the terminal device may first determine at least one third uplink carrier that meets the conditions, and then select a second uplink carrier for access from the at least one third uplink carrier.
  • the terminal device may arrange the downlink carriers associated with the at least one first uplink carrier in descending order according to signal strength, that is, arrange the at least one first uplink carrier in descending order of signal strength Associated downlink carriers are aligned. Then, the terminal device can compare the first parameter of each uplink carrier in the at least one first uplink carrier with the first value in turn, and if the first parameter of a certain uplink carrier is smaller than the value, the terminal device can select the uplink The carrier is the second uplink carrier, that is to say, the first qualified uplink carrier among the arranged at least one first uplink carrier is the second uplink carrier. In this implementation manner, at least one first uplink carrier may not be arranged, and the first parameter of the first uplink carrier is directly compared with the first value in order of signal strength from large to small.
  • the method for the terminal device to determine the second uplink carrier is not limited to the above implementation, as long as the determined second uplink carrier can be the uplink carrier whose first parameter is smaller than the first value among at least one first uplink carrier
  • Other implementation manners are also applicable to the uplink carrier corresponding to the highest signal strength among the associated downlink carriers in this embodiment.
  • the terminal equipment resides on a downlink carrier of a certain cell (that is, cell 1 in FIG. 3 ), and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, respectively
  • the first parameters are respectively 0.5, 0.4, 0.7, 0.2, and 0.4, and these 5 uplink carriers are located in other cells (as shown in Figure 3).
  • the downlink carriers associated with the shown cell 2, cell 3, cell 4, cell 5, and cell 6) are respectively downlink carrier 1', downlink carrier 2', downlink carrier 3', downlink carrier 4' and downlink carrier 5',
  • the signal strengths are respectively -80dBm, -70dBm, -60dBm, -110dBm, -100dBm in sequence.
  • the terminal device can first set the first uplink carrier 3 associated with the downlink carrier 3' with the highest signal strength.
  • the parameter 0.7 is compared with the first numerical value. Since 0.7>0.5, the terminal device can compare the first parameter 0.4 of the uplink carrier 2 associated with the second largest signal strength downlink carrier 2' with the first numerical value. Since 0.4 ⁇ 0.5 , therefore, the terminal device may select uplink carrier 3 as the second uplink carrier for access.
  • the second uplink carrier determined by the terminal device may be the uplink carrier with the highest signal strength among the at least one third uplink carrier, or the second uplink carrier may be the at least one third uplink carrier that is the same as the at least one third uplink carrier
  • the terminal device may determine at least one third uplink carrier based on the first value, and determine the second uplink carrier used for access from the at least one third uplink carrier.
  • the first value may be determined based on the following manner.
  • the first value is greater than or equal to 0 and less than or equal to the third threshold.
  • the third threshold is associated with at least one of the following items: quality of service (quality of service, QoS) level, buffer status report (buffer status report, BSR) level, type of terminal equipment, delay requirement, terminal equipment business type.
  • the third threshold in the embodiment of the present application is different based on at least one of the above items, and the first value may be any value from 0 to the third threshold.
  • the terminal equipment can be a terminal equipment supporting ultra-reliable and low latency communication (ultra-relaible and low latency communication, URLLC), supporting enhanced mobile broadband (eMBB) Any terminal device among terminal devices supporting massive machine type communication (mMTC).
  • URLLC ultra-reliable and low latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • the third threshold may be 1; if the terminal device is a terminal device supporting eMBB, the third threshold may be 2; if the terminal device is a terminal device supporting mMTC, the third threshold may be Threshold can be 3.
  • the third threshold in the case of a terminal device supporting URLLC ⁇ the third threshold in the case of a terminal device supporting eMBB ⁇ the third threshold in the case of a terminal device supporting mMTC.
  • the first values may be the same or different, which is not limited.
  • the first value may be 0.5; if the third threshold value is 2, the first value may be 0.5 or 0.6; of course, when the third threshold value is 1, the first value A value can be 0.5 or 0.6; it is not limited.
  • the number of at least one third uplink carrier in the above manner three may be different.
  • the first parameters of the above five uplink carriers are 0.5, 0.4, 0.7, 0.2, 0.4 respectively, and The first value is 0.5. Since the first parameters of uplink carrier 1 and uplink carrier 3 are greater than the first value 0.5, the third uplink carrier in the embodiment of the present application may include uplink carrier 1 and uplink carrier 3, and at this time, the terminal device can use these two uplink carriers
  • the second uplink carrier used for access is determined according to the signal strengths of the two uplink carriers.
  • the third uplink carrier in the embodiment of the present application may include the uplink carrier 3, and the terminal device may select the uplink carrier 3 as The second uplink carrier used for access.
  • At least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value in at least one first uplink carrier, it is possible that the first value is too large, and there is no The first parameter of the uplink carrier is greater than the first value, that is, there is no at least one third uplink carrier that meets the condition.
  • the third threshold may be scaled, and the first value and at least one third uplink carrier may be determined according to the scaled third threshold.
  • the first parameters of the above five uplink carriers are 0.5, 0.4, 0.7, 0.2, 0.4 respectively, and
  • the third threshold value is 1, and the first value is 0.8.
  • the third threshold can be scaled, for example, the third threshold can be scaled to 0.5, and the first value can be 0.4, because the uplink The first parameter of carrier 1, uplink carrier 2, uplink carrier 3 and uplink carrier 5 is greater than the first value 0.4, then the third uplink carrier in the embodiment of this application may include uplink carrier 1, uplink carrier 2, uplink carrier 3 and uplink carrier Carrier 5, at this time, the terminal device may determine a second uplink carrier for access from among the four uplink carriers according to the signal strengths of the four uplink carriers.
  • the at least one third uplink carrier being the uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value, it is similar to the above situation, and for the sake of brevity, details are not repeated here.
  • the terminal device when it determines the first value, it may also be randomly generated within a range.
  • the range can be generated according to a function with the third threshold as a parameter. It can also be generated based on self-identification information.
  • the generation according to the self-identification information may be generated according to a function that takes the self-identification information as a parameter.
  • the function can be a linear function or a nonlinear function.
  • ID an identity
  • the function may be ID mod N, where N is a parameter in the function.
  • N can be a positive integer.
  • the function may be IMSI mod N, where N is a parameter in the function.
  • N can be a positive integer.
  • the third threshold is configured by the network device through radio resource control (radio resource control, RRC) signaling; or, the third threshold is predefined.
  • RRC radio resource control
  • the first value can be any value from 0 to the third threshold, and the third threshold is associated with at least one of the following items: QoS level, BSR level, type of terminal equipment, time Delay requirements, service types of terminal equipment. That is: the third threshold may be different with at least one of the above items, and then the first value may be changed with the third threshold, and at least one third uplink carrier that meets the conditions may be adjusted, thereby improving The terminal equipment has the flexibility to select the second uplink carrier.
  • the network device when the third threshold is configured by the network device through radio resource control RRC signaling, the network device configures multiple optional third thresholds through radio resource control RRC signaling.
  • the multiple optional third thresholds correspond to different service types or levels.
  • the third threshold is associated with at least one of the following items: QoS level, BSR level, terminal equipment type, delay requirement, and terminal equipment service type.
  • the terminal device may also choose to determine the third threshold according to at least one of the following options of itself, where the following options include: QoS level, BSR level, type of terminal device, delay requirement, terminal device's business type.
  • the second uplink carrier is determined from at least one first uplink carrier.
  • at least one first uplink carrier See below for a description of .
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to a first threshold among at least one uplink carrier configured by the network device; or,
  • the at least one first uplink carrier is an uplink carrier whose signal strength of a downlink carrier associated with the at least one uplink carrier is greater than or equal to a second threshold among at least one uplink carrier configured by the network device.
  • the content of the at least one first uplink carrier will be introduced in a case-by-case basis below.
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to a first threshold among at least one uplink carrier configured by the network device.
  • the system includes 10 uplink carriers, respectively uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, uplink carrier 5, uplink carrier 6, uplink carrier 7, uplink carrier 8, uplink carrier 9 and uplink carrier 10, the signal strengths of these 10 uplink carriers are respectively -80dBm, -70dBm, -60dBm, -110dBm, -100dBm, -180dBm, -170dBm, -160dBm, -190dBm, -200dBm, if the first threshold is -120dBm, then the at least one first uplink carrier in this application may include uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, and uplink carrier 5. In other words, the network device can configure the five uplink carriers in the cell.
  • the at least one first uplink carrier is an uplink carrier whose signal strength of a downlink carrier associated with the at least one uplink carrier is greater than or equal to a second threshold among at least one uplink carrier configured by the network device.
  • the system includes 10 uplink carriers, respectively uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, uplink carrier 5, uplink carrier 6, uplink carrier 7, uplink carrier 8, uplink carrier 9 and uplink carrier 10, the signal strengths of the downlink carriers associated with these 10 uplink carriers are -80dBm, -70dBm, -60dBm, -110dBm, -100dBm, -180dBm, -170dBm, -160dBm, -190dBm, - 200dBm, if the first threshold is -120dBm, then at least one first uplink carrier in this application may include uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, and uplink carrier 5. In other words, the network device can configure the five uplink carriers in the cell.
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to the first threshold among at least one uplink carrier configured by the network device, or at least one of the at least one uplink carrier configured for the network device, and at least one The signal strength of the downlink carrier associated with the uplink carrier is greater than or equal to the uplink carrier of the second threshold. Since the at least one first uplink carrier is selected by the network device from multiple uplink carriers, determining the second uplink carrier for the terminal device narrows the selection range, and further, access delay can be reduced, thereby improving system performance.
  • the first parameter can be negatively correlated with load and/or SCS (ie, the larger the load and/or SCS, the smaller the first parameter), or it can be positively correlated with load and/or SCS (ie, the load and/or SCS The larger the value, the larger the first parameter).
  • the second uplink carrier may be an uplink carrier with the largest first parameter among at least one first uplink carrier; if the first parameter is positively correlated with load and/or SCS, then the second uplink carrier The second uplink carrier may be an uplink carrier with the smallest first parameter among the at least one first uplink carrier, which will be described with examples below.
  • a terminal device resides on a downlink carrier of a certain cell, and the downlink carrier corresponds to multiple uplink carriers, such as five uplink carriers, which are uplink carrier 1, uplink carrier 2, uplink carrier 3, and uplink carrier 4 and uplink carrier 5, at this time, the terminal device can determine its first parameter according to the loads or SCSs associated with these five uplink carriers, and determine the second uplink carrier for access according to the first parameter (assuming that the above-mentioned method one as an example).
  • the first parameter may be determined based on the load or SCS associated with the uplink carrier. That is, the larger the load associated with the uplink carrier, the smaller the first parameter; the smaller the load associated with the uplink carrier, the larger the first parameter. Similarly, the larger the SCS of the uplink carrier, the smaller the first parameter; the smaller the SCS of the uplink carrier, the larger the first parameter.
  • the terminal device may select uplink carrier 2 or uplink carrier 5 as the second uplink carrier for access.
  • the SCSs associated with the above five uplink carriers are 50KHz, 40KHz, 70KHz, 60KHz, 40KHz in sequence
  • the SCSs of uplink carrier 5 and uplink carrier 2 among the five uplink carriers are tied for the smallest, correspondingly, the first parameters of uplink carrier 5 and uplink carrier 2 are tied for the largest, if based on the above method 1, then The terminal device may select uplink carrier 5 or uplink carrier 2 as the second uplink carrier for access.
  • the terminal device may not be the uplink carrier with the largest or smallest first parameter in the at least one first uplink carrier, and the terminal device may also use the first parameter of each uplink carrier in the at least one first uplink carrier It is compared with a certain value in turn, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device may select the uplink carrier as the second uplink carrier.
  • the loads associated with the above five uplink carriers are 5, 4, 7, 6, 4 in sequence
  • the first parameter can be 0.5, 0.8, 0.3, 0.4, 0.8 in sequence
  • the terminal device can first Compare the first parameter 0.5 of the uplink carrier 1 with the value. Since 0.5 ⁇ 0.6, the terminal device can select the first parameter 0.8 of the uplink carrier 2 to compare with the value. Since 0.8>0.6, the terminal device can choose the uplink Carrier 2 serves as the second uplink carrier for access.
  • the terminal device can determine its first parameter according to the loads or SCSs associated with the above five uplink carriers, and determine the second uplink carrier for access according to the first parameter (assuming that the above method 1 is still taken as an example) .
  • the first parameter may be determined based on the load or SCS associated with the uplink carrier. That is, the greater the load associated with the uplink carrier, the greater the first parameter; the smaller the load associated with the uplink carrier, the smaller the first parameter. Similarly, the larger the SCS of the uplink carrier, the larger the first parameter; the smaller the SCS of the uplink carrier, the smaller the first parameter.
  • uplink carrier 1 uplink carrier 2, uplink carrier 3, uplink carrier 4, and uplink carrier 5
  • uplink carrier 2 uplink carrier 1
  • uplink carrier 2 uplink carrier 2
  • uplink carrier 3 uplink carrier 4
  • the terminal device can select uplink carrier 2 or uplink carrier 5 at this time.
  • the uplink carrier 5 serves as a second uplink carrier for access.
  • the SCSs associated with the above five uplink carriers are 50KHz, 40KHz, 70KHz, 60KHz, 40KHz in sequence
  • the SCSs of uplink carrier 2 and uplink carrier 5 are the smallest among the five uplink carriers, correspondingly, the first parameters of uplink carrier 2 and uplink carrier 5 are the smallest, and the terminal device can select uplink carrier 2 or The uplink carrier 5 serves as a second uplink carrier for access.
  • the terminal device may not be the uplink carrier with the largest or smallest first parameter in the at least one first uplink carrier, and the terminal device may also use the first parameter of each uplink carrier in the at least one first uplink carrier It is compared with a certain value in turn, and if the first parameter of a certain uplink carrier is greater than the value, the terminal device may select the uplink carrier as the second uplink carrier.
  • the first parameter can be 0.5, 0.4, 0.7, 0.6, 0.4, if the value is 0.6, the terminal device can first compare the first parameter 0.5 of the uplink carrier 1 with the value, and since 0.5 ⁇ 0.6, the terminal device can compare the first parameter of the uplink carrier 2 0.4 is compared with this value. Since 0.4 ⁇ 0.6, the terminal device can continue to compare the first parameter 0.7 of the uplink carrier 3 with this value. Since 0.7>0.6, the terminal device can use the uplink carrier 3 as a parameter for receiving The incoming second uplink carrier.
  • first threshold and/or the second threshold in this embodiment of the present application may be pre-configured, configured by the network device through signaling, or specified by a protocol, or configured by the terminal device according to Its own performance is determined.
  • the first threshold and/or the second threshold may be a fixed value or a dynamic value; they are not limited.
  • the terminal device determines according to its own performance, which may be determined according to its own characteristics in the threshold configured by the network device.
  • FIG. 4 it is a schematic diagram of another method 400 for determining an uplink carrier provided by the embodiment of the present application.
  • the method 400 can be performed by a terminal device and a network device, or can also be implemented by a chip in a terminal device and a network device. chip implementation.
  • the method 400 may include steps S410-S440.
  • the network device determines first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier.
  • the network device sends the first information to the terminal device.
  • steps S410-S420 may be performed by the network device 10 in FIG. 1 .
  • the terminal device receives first information.
  • the terminal device determines a second uplink carrier from the at least one first uplink carrier according to the first information, where the second uplink carrier is an uplink carrier used for access in the first cell.
  • the at least one first uplink carrier and the second downlink carrier are located in the second cell, and the at least one first uplink carrier is located in the first cell; or, the at least one first uplink carrier and the first downlink carrier are located in the First district.
  • the steps 430-440 may be performed by any terminal device in the terminal device 20-terminal device 40 in FIG. 1 .
  • the at least one first uplink carrier may include one or more uplink carriers, and if the at least one first uplink carrier includes one uplink carrier, then the second uplink carrier is the one uplink carrier; If the at least one first uplink carrier includes multiple uplink carriers, the second uplink carrier is one of the multiple uplink carriers.
  • the second uplink carrier is an uplink carrier used for access, which can be understood as: the terminal device performs random access on the second uplink carrier.
  • the terminal device may determine the second uplink carrier from the at least one first uplink carrier according to the received corresponding information of the at least one first uplink carrier and the at least one second downlink carrier. Since the terminal device determines the second uplink carrier for access based on the corresponding information of at least one first uplink carrier and at least one second downlink carrier, the terminal device can access the matching uplink carrier, ensuring Overlay performance, thereby improving system throughput.
  • the terminal device determines the second uplink carrier from the at least one first uplink carrier according to the first information.
  • the following will introduce several possible ways for the terminal device to determine the second uplink carrier.
  • the method 400 further includes: the terminal device determining the signal strength of the at least one second downlink carrier; the second uplink carrier is the corresponding uplink carrier with the highest signal strength among the at least one second downlink carrier.
  • the terminal device may first determine the signal strength of the at least one second downlink carrier, and from at least one The uplink carrier corresponding to the downlink carrier with the highest signal strength among the second downlink carriers is determined as the second uplink carrier for access.
  • At least one first uplink carrier of the present application includes five uplink carriers, namely uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4 and uplink carrier 5, and at least one second downlink carrier Including 5 downlink carriers, respectively downlink carrier 1', downlink carrier 2', downlink carrier 3', downlink carrier 4' and downlink carrier 5'
  • the terminal device can first determine the signal strength of these 5 downlink carriers, For example, the signal strengths of the five downlink carriers are -80dBm, -70dBm, -60dBm, -110dBm, and -100dBm respectively. Since the signal strength of the downlink carrier 3' is the highest, the terminal device can select the corresponding downlink carrier 3'.
  • Uplink carrier 3 is a second uplink carrier used for access.
  • the second uplink carrier determined by the terminal device may be the uplink carrier corresponding to the highest signal strength among at least one second downlink carrier. Since the higher the signal strength is, the better the coverage is, so the terminal device based on this The signal strength is connected to the matching uplink carrier, increasing the access probability and reducing the access delay, thereby improving system performance.
  • the method 400 further includes: the terminal device receiving a first parameter of the at least one first uplink carrier, where the first parameter is associated with at least one of the following items of the at least one first uplink carrier: load, subcarrier Interval SCS; determine the first value; the second uplink carrier is the uplink carrier with the largest sequence number among at least one third uplink carrier; or, the second uplink carrier is the uplink carrier with the smallest sequence number among the at least one third uplink carrier; where , the at least one third uplink carrier is an uplink carrier whose first parameter in the at least one first uplink carrier is greater than the first value; or, the at least one third uplink carrier is an uplink carrier in which the first parameter in the at least one first uplink carrier is less than The uplink carrier of the first value.
  • the terminal device receives a first parameter of the at least one first uplink carrier, and the first parameter is associated with at least one of the following items of the at least one first uplink carrier: load, SCS; determining a first value; wherein , the second uplink carrier is the uplink carrier with the highest signal strength of the at least one second downlink carrier associated with the at least one third uplink carrier among the at least one third uplink carrier; or, wherein the at least one third uplink carrier
  • the uplink carrier is an uplink carrier whose first parameter in the at least one first uplink carrier is greater than the first value; or, the at least one third uplink carrier is an uplink carrier whose first parameter in the at least one first uplink carrier is smaller than the first value uplink carrier.
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: QoS level, BSR level, terminal device type, delay requirement, and service type of terminal equipment.
  • the third threshold is configured by the network device through RRC signaling; or, the third threshold is predefined.
  • FIG. 5 it is a schematic diagram of a measurement method 500 provided by the embodiment of the present application.
  • the method 500 may be executed by a terminal device, or may also be executed by a chip in the terminal device.
  • the method 500 may include steps S510-S520.
  • the terminal device receives system information, where the system information includes configuration information of reference signals used for measuring carriers for other terminal devices.
  • the terminal device measures the reference signal according to the system information.
  • the terminal device in this embodiment of the present application may be in an idle state, and after receiving system information, the terminal device may measure its reference signal.
  • the carrier measured in the configuration information of other terminal devices in the embodiment of the present application may be a carrier on a higher frequency band, so that the reference signal on the carrier on the higher frequency band can be sent as required.
  • the reference signal on the carrier in the higher frequency band is triggered to be sent based on any one of scheduling request (scheduling request, SR), BSR, uplink reference signal or reported information of other terminal devices.
  • the report information can be transmitted through RRC signaling; or, the report information is carried in uplink control information (uplink control information, UCI); or, the report information is included in the SR.
  • the report information may be included in the first field in UCI, the first field is an existing field in UCI, or the report information is included in the second field in UCI , the second field is a newly added field in UCI.
  • the fact that the first field is an existing field in the UCI can be understood as the first field is multiplexed in the reported information.
  • the higher frequency band may be a millimeter wave band or any frequency band greater than or equal to 4.9 GHz or higher.
  • the terminal device can set its own reference signal according to the configuration information of the reference signal used to measure the carrier for other terminal devices Taking measurements saves resources.
  • FIG. 6 shows a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the device 600 may correspond to the terminal device described in the above-mentioned method 200, and each module in the device 600 is respectively used to execute the terminal device in the above-mentioned method 200.
  • the actions or processing procedures performed, as shown in FIG. 6, the communication device 600 may include:
  • a communication module 610 configured to receive a first parameter of at least one first uplink carrier from a network device, where the first parameter is associated with at least one of the following items of the at least one first uplink carrier: load, subcarrier spacing SCS;
  • the processing module 620 determines a second uplink carrier from the at least one first uplink carrier according to the first parameter of the at least one first uplink carrier, where the second uplink carrier is an uplink carrier used for access.
  • the second uplink carrier is an uplink carrier with the largest first parameter among the at least one first uplink carrier; or,
  • the second uplink carrier is an uplink carrier with the smallest first parameter among the at least one first uplink carrier.
  • the processing module 620 is further configured to: determine the first value
  • the second uplink carrier is the uplink carrier with the largest sequence number among the at least one third uplink carrier; or,
  • the second uplink carrier is an uplink carrier with the smallest sequence number among the at least one third uplink carrier
  • the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier;
  • the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter of a downlink carrier associated with the at least one first uplink carrier is smaller than the first value.
  • the processing module 620 is also used to:
  • the second uplink carrier is an uplink carrier with the highest signal strength among at least one third uplink carrier;
  • the second uplink carrier is an uplink carrier with the highest signal strength of a downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier;
  • the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier;
  • the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: quality of service QoS level, buffer status report BSR Level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the third threshold is configured by the network device through radio resource control RRC signaling; or,
  • the third threshold is predefined.
  • the at least one first uplink carrier is an uplink carrier whose signal strength is greater than or equal to a first threshold among at least one uplink carrier configured by the network device; or,
  • the at least one first uplink carrier is an uplink carrier whose signal strength of a downlink carrier associated with the at least one uplink carrier is greater than or equal to a second threshold among at least one uplink carrier configured by the network device.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • FIG. 7 shows a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • the device 700 may correspond to the network device described in the above-mentioned method 200, and each module in the device 700 is respectively used to execute the network device described in the above-mentioned method 200.
  • the actions or processing procedures performed, as shown in FIG. 7, the communication device 700 may include:
  • a processing module 710 configured for the network device to determine a first parameter, where the first parameter is associated with at least one of the following items of at least one first uplink carrier: load, subcarrier spacing SCS;
  • the communication module 720 is configured to send the first parameter to the terminal device.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • FIG. 8 shows a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the device 800 may correspond to the terminal device described in the above-mentioned method 400, and each module in the device 800 is respectively used to execute the terminal device described in the above-mentioned method 400.
  • the communication device 800 may include:
  • a communication module 810 configured to receive first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier;
  • a processing module 820 configured to determine a second uplink carrier from the at least one first uplink carrier according to the first information, where the second uplink carrier is an uplink carrier used for access in the first cell;
  • the at least one first uplink carrier and the second downlink carrier are located in the second cell, and the at least one first uplink carrier is located in the first cell; or,
  • the at least one first uplink carrier and the first downlink carrier are located in the first cell.
  • the processing module 820 is also used to:
  • the second uplink carrier is the corresponding uplink carrier with the highest signal strength among the at least one second downlink carrier.
  • the communication module 810 is also used to:
  • the processing module 820 is also used to: determine the first value
  • the second uplink carrier is an uplink carrier with the largest sequence number among at least one third uplink carrier; or,
  • the second uplink carrier is an uplink carrier with the smallest sequence number among the at least one third uplink carrier
  • the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier;
  • the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the communication module 810 is also used to:
  • the processing module 820 is also used for:
  • the second uplink carrier is an uplink carrier with the highest signal strength of the at least one second downlink carrier associated with the at least one third uplink carrier among at least one third uplink carrier; or,
  • the at least one third uplink carrier is an uplink carrier whose first parameter is greater than the first value among the at least one first uplink carrier;
  • the at least one third uplink carrier is an uplink carrier of the at least one first uplink carrier whose first parameter is smaller than the first value.
  • the first value is greater than or equal to 0 and less than or equal to a third threshold
  • the third threshold is associated with at least one of the following items: quality of service QoS level, buffer status report BSR Level, type of terminal equipment, delay requirement, service type of terminal equipment.
  • the third threshold is configured by the network device through radio resource control RRC signaling; or,
  • the third threshold is predefined.
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • FIG. 9 shows a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • the device 900 may correspond to the network device described in the above-mentioned method 400, and each module in the device 900 is respectively used to execute the network device described in the above-mentioned method 400.
  • Various actions or processing procedures performed, as shown in FIG. 9, the communication device 900 may include:
  • a processing module 910 configured to determine first information, where the first information includes corresponding information of at least one first uplink carrier and at least one second downlink carrier;
  • the communication module 920 is configured to send the first information to the terminal device.
  • the communication module 920 is also used for:
  • the number of the at least one first uplink carrier is a positive integer greater than 1.
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the device 1000 may correspond to the terminal device described in the above-mentioned method 500, and each module in the device 1000 is respectively used to execute the terminal device described in the above-mentioned method 500.
  • the actions or processing procedures performed, as shown in FIG. 10 the communication device 1000 may include:
  • the communication module 1010 is configured to receive system information, where the system information includes configuration information of reference signals used to measure carriers for other terminal devices;
  • the processing module 1020 is configured to measure the reference signal according to the system information.
  • FIG. 11 is a schematic structural diagram of a communication apparatus 1200 provided by an embodiment of the present application, which may be, for example, the terminal device in the foregoing embodiment.
  • the communication device 1200 includes a processor 1210 and a transceiver 1220 .
  • the communication device 1200 further includes a memory 1230 .
  • the processor 1210, the transceiver 1220, and the memory 1230 communicate with each other through an internal connection path to transmit control and/or data signals, the memory 1230 is used to store computer programs, and the processor 1210 is used to call from the memory 1230 And run the computer program to control the transceiver 1220 to send and receive signals.
  • the foregoing processor 1210 and memory 1230 may be combined into a processing device, and the processor 1210 is configured to execute program codes stored in the memory 1230 to implement functions of the terminal device in the foregoing method embodiments.
  • the memory 1230 may also be integrated in the processor 1210 , or be independent of the processor 1210 .
  • the transceiver 1220 may be implemented by means of a transceiver circuit.
  • the above-mentioned communication device may further include an antenna 1240 for transmitting the uplink data or uplink control signaling output by the transceiver 1220 through wireless signals, or receiving downlink data or downlink control signaling and sending them to the transceiver 1220 for further processing.
  • the apparatus 1200 may correspond to the terminal device in the method 200, the method 400, and the method 500 according to the embodiment of the present application, and the apparatus 1200 may also be a chip or a component applied to the terminal device. Moreover, each device in the apparatus 1200 implements the corresponding processes in the method 200, the method 400, and the method 500.
  • the memory 1230 is used to store program codes, so that the processor 1210 controls the transceiver when executing the program codes.
  • Fig. 12 is a schematic structural diagram of a communication device 1300 provided by an embodiment of the present application, for example, it may be the network device in the foregoing embodiments.
  • the communication device 1300 (such as a base station) includes a processor 1310 and a transceiver 1320 .
  • the communication device 1300 further includes a memory 1330 .
  • the processor 1310, the transceiver 1320, and the memory 1330 communicate with each other through an internal connection path to transmit control and/or data signals, the memory 1330 is used to store computer programs, and the processor 1310 is used to call from the memory 1330 And run the computer program to control the transceiver 1320 to send and receive signals.
  • the foregoing processor 1310 and memory 1330 may be combined into a processing device, and the processor 1310 is configured to execute program codes stored in the memory 1330 to realize the functions of the network device in the foregoing method embodiments.
  • the memory 1330 may also be integrated in the processor 1310 , or be independent of the processor 1310 .
  • the transceiver 1320 may be implemented by means of a transceiver circuit.
  • the above-mentioned communication device 1300 may further include an antenna 1340, configured to transmit the downlink data or downlink control signaling output by the transceiver 1320 through wireless signals, or send the received uplink data or uplink control signaling to the transceiver 1320 for further processing.
  • an antenna 1340 configured to transmit the downlink data or downlink control signaling output by the transceiver 1320 through wireless signals, or send the received uplink data or uplink control signaling to the transceiver 1320 for further processing.
  • the apparatus 1300 may correspond to the network device in the method 200 or 400 according to the embodiment of the present application, and the apparatus 1300 may also be a chip or a component applied to the network device. Moreover, each device in the apparatus 1300 implements the corresponding process in the method 200 in FIG. 2 or the method 400 in FIG. Execute the process of S220 in the method 200; or, the processor 1310 is used to execute the process of S410 in the method 400, and the transceiver 1320 is used to execute the process of S420 in the method 400; each device performs the specific process of the above-mentioned corresponding steps
  • the method 200 and the method 400 have been described in detail, and for the sake of brevity, details are not repeated here.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the chip 1400 shown in FIG. 13 includes a processor 1410, and the processor 1410 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1400 may further include a memory 1420 .
  • the processor 1410 can call and run a computer program from the memory 1420 to execute the steps of the method 200 or the method 700 in the embodiment of the present application.
  • the memory 1420 may be an independent device independent of the processor 1410 , or may be integrated in the processor 1410 .
  • the chip 1400 may also include an input interface 1430 .
  • the processor 1410 can control the input interface 1430 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1400 may also include an output interface 1440 .
  • the processor 1410 can control the output interface 1440 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device or network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device or network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the terminal device or network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the terminal device or network device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device or the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device or the network device in the methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device or the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device or the network device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device or the network device in the embodiments of the present application.
  • the computer program executes the functions implemented by the terminal device or the network device in the various methods of the embodiments of the present application. For the sake of brevity, the corresponding process is not repeated here.
  • An embodiment of the present application further provides a communication system, including the terminal device and the network device in the foregoing embodiments, so as to realize mutual cooperation between devices.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative, and the division of the modules is only a logical function division. In actual implementation, there may be other division methods, for example, multiple modules or components may be combined.
  • the mutual coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or modules.
  • each functional module in each embodiment of the present application may be integrated into one physical entity, or each module may correspond to one physical entity, or two or more modules may be integrated into one physical entity.
  • this function is realized in the form of a software function module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定上行载波的方法和通信装置,该方法包括:从网络设备接收至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;根据该至少一个第一上行载波的第一参数,从该至少一个第一上行载波确定第二上行载波,该第二上行载波为用于接入的上行载波。本申请提供的方案,终端设备可以根据接收到的至少一个第一上行载波的第一参数,从该至少一个第一上行载波中确定第二上行载波,由于终端设备在确定用于接入的第二上行载波时,是基于至少一个第一上行载波的第一参数确定的,可以使终端设备接入到匹配的上行载波,均衡负载,从而提升系统性能。

Description

确定上行载波的方法和通信装置
本申请要求于2021年5月17日提交中国专利局、申请号为202110534705.1、申请名称为“确定上行载波的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种确定上行载波的方法和通信装置。
背景技术
目前,载波聚合(carrier aggregation,CA)是一项比较关键的技术。在CA中,小区(cell)可以包括主小区(primary cell,Pcell)和辅小区(secondary cell,Scell)。其中,主小区和辅小区均包含一个上行链路分量载波(uplink component carrier,UL CC)和一个下行链路分量载波(downlink component carrier,DL CC)。在灵活接入技术中,不受限于CA的要求,小区内可以包含一个下行载波,多个上行载波。终端设备可以根据业务需求,在小区内灵活选择上行载波。
目前,一种实现方式下,终端设备可以根据驻留的下行载波接入对应的上行载波。另一种实现方式下,终端设备可以根据驻留的下行载波,在接入时与一个门限值进行比较,若上行载波对应的信号强度低于该门限值,则从增补上行链路(supplementary uplink,SUL)接入;若上行载波对应的信号强度高于该门限值,则从常规上行链路(normal uplink,NUL)接入。
换句话说,当终端设备通过下行载波驻留在某一小区时,可以接入对应的上行载波。然而,当下行载波只有一个用于测量的低频载波作为驻留下行载波,而上行载波处于高频频段,或者上行载波与下行载波分布于不同的站址时,无法直接基于驻留下行载波的测量所得作为上行载波选择的依据。此外,如何从多个上行载波中选择上行接入载波,并考虑所述多个上行载波的负载,从而避免上行载波上的负载失衡,现有技术中也未解决。
发明内容
本申请提供一种确定上行载波的方法和通信装置,可以使得终端设备接入到匹配的上行载波上,均衡负载。
第一方面,提供了一种确定上行载波的方法,该方法包括:从网络设备接收至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;根据所述至少一个第一上行载波的第一参数,从所述至少一个第一上行载波确定第二上行载波,所述第二上行载波为用于接入的上行载波。
本申请实施例中,所述第二上行载波为用于接入的上行载波,可以理解为:终端设备在该第二上行载波上进行随机接入。
本申请提供的方案,终端设备可以根据接收到的至少一个第一上行载波的第一参数, 从该至少一个第一上行载波中确定第二上行载波。由于终端设备在确定用于接入的第二上行载波时,是基于至少一个第一上行载波的第一参数确定的,可以使终端设备接入到匹配的上行载波,均衡负载,从而提升系统性能。
结合第一方面,在某些可能的实现方式中,所述第二上行载波为所述至少一个第一上行载波中第一参数最大的上行载波;或者,所述第二上行载波为所述至少一个第一上行载波中第一参数最小的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第一上行载波中第一参数最大或最小的上行载波,由于第一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、SCS,从而终端设备基于该第一参数接入到匹配的上行载波,减少接入时延,均衡负载,从而提升系统性能。
结合第一方面,在某些可能的实现方式中,所述方法还包括:确定第一数值;其中,所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,所述第二上行载波为至少一个第三上行载波中序号最小的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中序号最大或最小的上行载波,且该第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波,或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
结合第一方面,在某些可能的实现方式中,所述方法还包括:确定第一数值;其中,所述第二上行载波为至少一个第三上行载波中信号强度最高的上行载波;或者,所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中信号强度最高的上行载波,或者,第二上行载波可以为至少一个第三上行载波中,与至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;且该第三上行载波为至少一个第一上行载波中第一参数大于或等于第一数值的上行载波;或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
结合第一方面,在某些可能的实现方式中,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
本申请提供的方案,第一数值可以为0至第三阈值中的任一数值,而该第三阈值关联于下述项中的至少一项:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的 业务类型。即:第三阈值随着上述项中的至少一项的不同而可能不同,进而第一数值可以随着第三阈值的不同而改变,可以调整符合条件的至少一个第三上行载波,从而可以提升终端设备选择第二上行载波的灵活性。
结合第一方面,在某些可能的实现方式中,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,所述第三阈值为预定义的。
结合第一方面,在某些可能的实现方式中,所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波;或者,所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中,与所述至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
本申请提供的方案,至少一个第一上行载波为网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波,或者,为网络设备配置的至少一个上行载波中,与至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。由于该至少一个第一上行载波是网络设备从多个上行载波中选择的,为终端设备确定第二上行载波缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
结合第一方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第一方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第二方面,提供了一种上行载波的接入方法,该方法包括:网络设备确定第一参数,一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;所述网络设备向终端设备发送所述第一参数。
本申请提供的方案,网络设备可以向终端设备发送至少一个第一上行载波的第一参数,以便终端设备从该至少一个第一上行载波中确定第二上行载波,仪器使终端设备接入到匹配的上行载波,均衡负载,从而提升系统性能。
结合第二方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第二方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第三方面,提供了一种上行载波的接入方法,该方法包括:终端设备接收第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;所述终端设备根据第一信息从所述至少一个第一上行载波中确定第二上行载波,所述第二上行载波为第一小区中用于接入的上行载波;其中,所述至少一个第一上行载波与第二下行载波位于第二小区,且所述至少一个第一上行载波位于所述第一小区;或者,所述至少一个第一上行载波与第一下行载波位于所述第一小区。
本申请提供的方案,终端设备可以根据接收到的至少一个第一上行载波与至少一个第二下行载波的对应信息从该至少一个第一上行载波中确定第二上行载波。由于终端设备在确定用于接入的第二上行载波时,是基于至少一个第一上行载波与至少一个第二下行载波 的对应信息确定的,可以使终端设备接入到匹配的上行载波,保证覆盖性能,从而提升系统吞吐量。
结合第三方面,在某些可能的实现方式中,所述方法还包括:所述终端设备确定所述至少一个第二下行载波的信号强度;所述第二上行载波为所述至少一个第二下行载波中的信号强度最高的所对应的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第二下行载波中的信号强度最高的所对应的上行载波,由于信号强度越高,覆盖程度越好,从而终端设备基于该信号强度接入到匹配的上行载波,增大接入概率,减少接入时延,从而提升系统性能。
结合第三方面,在某些可能的实现方式中,所述方法还包括:所述终端设备接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;确定第一数值;所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,所述第二上行载波为所述至少一个第三上行载波中序号最小的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于第一阈值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中序号最大或最小的上行载波,且该第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波,或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
结合第三方面,在某些可能的实现方式中,所述方法还包括:所述终端设备接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;确定第一数值;其中,所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的所述至少一个第二下行载波的信号强度最高的上行载波;或者,其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中信号强度最高的上行载波,或者,第二上行载波可以为至少一个第三上行载波中,与至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;且该第三上行载波为至少一个第一上行载波中第一参数大于或等于第一数值的上行载波;或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
结合第三方面,在某些可能的实现方式中,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
本申请提供的方案,第一数值可以为0至第三阈值中的任一数值,而该第三阈值关联于下述项中的至少一项:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的 业务类型。即:第三阈值随着上述项中的至少一项的不同而可能不同,进而第一数值可以随着第三阈值的不同而改变,可以调整符合条件的至少一个第三上行载波,从而可以提升终端设备选择第二上行载波的灵活性。
结合第三方面,在某些可能的实现方式中,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,所述第三阈值为预定义的。
结合第三方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第三方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第四方面,提供了一种上行载波接入方法,该方法包括:网络设备确定第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;所述网络设备向终端设备发送所述第一信息。
本申请提供的方案,网络设备可以向终端设备发送至少一个第一上行载波与至少一个第二下行载波的对应信息,以便终端设备从该至少一个第一上行载波中确定第二上行载波,使得终端设备接入到匹配的上行载波,以保证覆盖性能,从而提升系统吞吐量。
结合第四方面,在某些可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS。
结合第四方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第四方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第五方面,提供了一种测量方法,该方法包括:终端设备接收系统信息,所述系统信息包括针对其它终端设备的用于测量载波的参考信号的配置信息;所述终端设备根据所述系统信息对所述参考信号进行测量。
本申请中的终端设备所测量的载波与其它终端设备的配置信息中所测量的载波相同时,终端设备可以根据针对其它终端设备的用于测量载波的参考信号的配置信息对其自身的参考信号进行测量,可以节省资源。
第六方面,提供了一种通信装置,该装置包括:通信模块,用于从网络设备接收至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;处理模块,根据所述至少一个第一上行载波的第一参数,从所述至少一个第一上行载波确定第二上行载波,所述第二上行载波为用于接入的上行载波。
结合第六方面,在某些可能的实现方式中,所述第二上行载波为所述至少一个第一上行载波中第一参数最大的上行载波;或者,所述第二上行载波为所述至少一个第一上行载波中第一参数最小的上行载波。
结合第六方面,在某些可能的实现方式中,所述处理模块还用于:确定第一数值;其 中,所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,所述第二上行载波为至少一个第三上行载波中序号最小的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
结合第六方面,在某些可能的实现方式中,所述处理模块还用于:确定第一数值;其中,所述第二上行载波为至少一个第三上行载波中信号强度最高的上行载波;或者,所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
结合第六方面,在某些可能的实现方式中,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
结合第六方面,在某些可能的实现方式中,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,所述第三阈值为预定义的。
结合第六方面,在某些可能的实现方式中,所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波;或者,所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中,与所述至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
结合第六方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第六方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第六方面的有益效果可以参考第一方面的有益效果,在此不再赘述。
第七方面,提供了一种通信装置,该装置包括:处理模块,用于网络设备确定第一参数,第一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;通信模块,用于向终端设备发送所述第一参数。
结合第七方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第七方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第七方面的有益效果可以参考第二方面的有益效果,在此不再赘述。
第八方面,提供了一种通信装置,该装置包括:通信模块,用于接收第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;处理模块,用于根据第一信息从所述至少一个第一上行载波中确定第二上行载波,所述第二上行载波为第一小区中用于接入的上行载波;其中,所述至少一个第一上行载波与第二下行载波位于 第二小区,且所述至少一个第一上行载波位于所述第一小区;或者,所述至少一个第一上行载波与第一下行载波位于所述第一小区。
结合第八方面,在某些可能的实现方式中,所述处理模块还用于:确定所述至少一个第二下行载波的信号强度;所述第二上行载波为所述至少一个第二下行载波中的信号强度最高的所对应的上行载波。
结合第八方面,在某些可能的实现方式中,所述通信模块还用于:接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;所述处理模块还用于:确定第一数值;所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,所述第二上行载波为所述至少一个第三上行载波中序号最小的上行载波;其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
结合第八方面,在某些可能的实现方式中,所述通信模块还用于:接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;所述处理模块还用于:确定第一数值;其中,所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的所述至少一个第二下行载波的信号强度最高的上行载波;或者,其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
结合第八方面,在某些可能的实现方式中,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
结合第八方面,在某些可能的实现方式中,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,所述第三阈值为预定义的。
结合第八方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
结合第八方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第八方面的有益效果可以参考第三方面的有益效果,在此不再赘述。
第九方面,提供了一种通信装置,该装置包括:处理模块,用于确定第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;通信模块,用于向终端设备发送所述第一信息。
结合第九方面,在某些可能的实现方式中,通信模块还用于:向所述终端设备发送至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS。
结合第九方面,在某些可能的实现方式中,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,下述项中的至少一项越大,所述第一参数越大:所述 负载、所述SCS。
结合第九方面,在某些可能的实现方式中,所述至少一个第一上行载波的数量为大于1的正整数。
第九方面的有益效果可以参考第四方面的有益效果,在此不再赘述。
第十方面,提供了一种通信装置,该装置包括:通信模块,用于接收系统信息,所述系统信息包括针对其它终端设备的用于测量载波的参考信号的配置信息;处理模块,用于根据所述系统信息对所述参考信号进行测量。
第十方面的有益效果可以参考第五方面的有益效果,在此不再赘述。
第十一方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备的芯片。该通信装置包括收发器以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、收发器耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十二方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括收发器以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、收发器耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备或网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
可选地,该分立器件可以为接口或接口电路。
可选地,上述处理器也可以为处理电路。
第十四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备或网络设备执行的方法。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由终端设备或网络设备执行的方法被执行。
附图说明
图1为适用于本申请实施例的无线通信系统的示意图。
图2为本申请实施例提供的一种确定上行载波的方法的示意图。
图3为本申请实施例提供的一种载波位置的示意图。
图4为本申请实施例提供的另一种确定上行载波的方法的示意图。
图5为本申请实施例提供的一种测量方法的示意图。
图6为本申请实施例的一种通信装置的示意性框图。
图7为本申请实施例提供的另一种通信装置的示意性框图。
图8为本申请实施例提供的又一种通信装置的示意性框图。
图9为本申请实施例提供的再一种通信装置的示意性框图。
图10为本申请实施例提供的再一种通信装置的示意性框图。
图11为本申请实施例提供的再一种通信装置的示意性框图。
图12为本申请实施例提供的再一种通信装置的示意性框图。
图13为本申请实施例提供的芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)通信系统以及未来的移动通信系统等。
图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备10。该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备20、终端设备30、终端设备40等。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备、无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
在移动通信系统100中,本申请实施例中的终端设备20、终端设备30、终端设备40也可以称为终端、终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备10可以是用于与终端设备通信的设备,该网络设备可以是基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
应理解,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的 操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,本申请实施例中的“第一”、“第二”以及“第三”仅为了区分,不应对本申请构成任何限定。例如,本申请实施例中的“第一信息”和“第二信息”,表示网络设备和终端设备之间传输的信息。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还需要说明的是,本申请实施例中,“预先设定”、“预先定义”等可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定,例如本申请实施例中预设的规则、预设的常数等。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。此外,类似于“A、B和C中的至少一项”或“A、B或C中的至少一项”表述,通常用于表示如下中任一项:至少一个A;至少一个B;至少一个C;至少一个A和至少一个B;至少一个A和至少一个C;至少一个B和至少一个C;至少一个A、至少一个B和至少一个C。以上是以A、B和C共三个元素进行举例来说明该项目的可选用条目,当表述中具有更多元素时,该表述的含义可以按照前述规则获得。
如上所述,本申请的技术方案可以应用于各种通信系统中,其中,应用于上述通信系统中的CA是一项比较关键的技术。在CA中,小区可以包括主小区和辅小区。其中,主小区和辅小区均包含一个上行链路分量载波和一个下行链路分量载波。在灵活接入技术中,不受限于CA的要求,小区内可以包含一个下行载波,多个上行载波。UE可以根据业务需求,在小区内灵活选择上行载波。
目前,一种实现方式下,终端设备可以根据驻留的下行载波接入对应的上行载波。另一种实现方式下,UE可以根据驻留的下行载波,在接入时与一个门限值进行比较,若上行载波对应的信号强度低于该门限值,则从SUL接入;若下行载波对应的信号强度高于该门限值,则从NUL接入。
换句话说,当终端设备通过下行载波驻留在某一小区时,可以接入对应的上行载波。然而,当下行载波只有一个用于测量的低频载波作为驻留下行载波,而上行载波处于高频频段,或者上行载波与下行载波分布于不同的站址时,无法直接基于驻留下行载波的测量所得作为上行载波选择的依据。此外,如何从多个上行载波中选择上行接入载波,并考虑所述多个上行载波的负载,从而避免上行载波上的负载失衡,现有技术中也未解决。
本申请提供一种确定上行载波的方法,可以使得终端设备接入到匹配的上行载波上,均衡负载。
如图2所示,为本申请实施例提供的一种确定上行载波的方法200的示意图,该方法200可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。该方法200可以包括步骤S210-S240。本申请实施例中示出的单个执行主体(例如,网络设备、终端设备)所执行的处理也可以被划分为由多个执行主体执行,这些执行主体在逻辑上和/或在物理上分离,例如,网络设备所执行的处理可以被划分为由CU、DU和无线电单元(radio unit,RU)中的至少一个执行。
S210,网络设备确定至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、SCS。
S220,该网络设备向终端设备发送该至少一个第一上行载波的第一参数。
其中,该步骤S210-S220可以由图1中的网络设备10执行。
S230,从网络设备接收至少一个第一上行载波的第一参数。
S240,根据该至少一个第一上行载波的第一参数,从该至少一个第一上行载波确定第二上行载波,该第二上行载波为用于接入的上行载波。
其中,该步骤230-240可以由图1中的终端设备20-终端设备40中的任意终端设备执行。
本申请实施例中,该至少一个第一上行载波可以包括1个或多个上行载波,若该至少一个第一上行载波包括1个上行载波,则第二上行载波即为该1个上行载波;若该至少一个第一上行载波包括多个上行载波,则第二上行载波为这多个上行载波的其中1个上行载波。本申请中的载波仅仅是示例,还可以是部分带宽、频带、或波束,可以理解为将本申请实施例中的“载波”替换为“部分带宽”、“频段”或“波束”后依然适用于本申请中的技术方案。
需要说明的是,本申请实施例中,该第二上行载波为用于接入的上行载波,可以理解为:终端设备在该第二上行载波上进行随机接入。
还需要说明的是,在一些实施例中,第一参数也可以为称为状态值,不予限制。
本申请提供的方案,终端设备可以根据接收到的至少一个第一上行载波的第一参数,从该至少一个第一上行载波中确定第二上行载波。由于终端设备在确定用于接入的第二上行载波时,是基于至少一个第一上行载波的第一参数确定的,可以使终端设备接入到匹配的上行载波,均衡负载,从而提升系统性能。
上文指出,终端设备可以根据该至少一个第一上行载波的第一参数,从该至少一个第一上行载波确定第二上行载波,下文将介绍终端设备确定第二上行载波的可能的几种方式。
方式一:
该第二上行载波为该至少一个第一上行载波中第一参数最大的上行载波;或者,该第二上行载波为该至少一个第一上行载波中第一参数最小的上行载波。
本申请实施例中,第二上行载波可以为至少一个第一上行载波中第一参数最大的上行载波,也可以为至少一个第一上行载波中第一参数最小的上行载波,主要与第一参数和其所关联的负载和/或SCS有关。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
换句话说,第一参数可以与负载和/或SCS负相关(即负载和/或SCS越大,第一参数越小),也可以与负载和/或SCS正相关(即负载和/或SCS越大,第一参数越大)。
若第一参数与负载和/或SCS负相关,则第二上行载波可以为至少一个第一上行载波中第一参数最大的上行载波;若第一参数与负载和/或SCS正相关,则第二上行载波可以为至少一个第一上行载波中第一参数最小的上行载波。
下文将分情况介绍确定第二上行载波的具体实现过程。
情况一:第二上行载波为至少一个第一上行载波中第一参数最大的上行载波
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,终端设备可以根据每一个上行载波的第一参数确定用于接入的第二上行载波。
该第一参数可以基于上行载波所关联的负载或SCS确定。即:上行载波所关联的负载越大,其第一参数越小;上行载波所关联的负载越小,其第一参数越大。类似地,上行载波的SCS越大,其第一参数越小;上行载波的SCS越小,其第一参数越大。
以负载为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的负载依次为5、4、7、2、4,在一种实现方式中,由于这5个上行载波中上行载波4的负载最小,相应地,上行载波4的第一参数最大,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波4>上行载波5=上行载波2>上行载波1>上行载波3。由于上行载波4的第一参数最大,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
以SCS为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上 行载波4和上行载波5)所关联的SCS依次为50KHz、40KHz、70KHz、20KHz、40KHz,在一种实现方式中,由于这5个上行载波中上行载波4的SCS最小,相应地,上行载波4的第一参数最大,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波4>上行载5=上行载波2>上行载波1>上行载波3。由于上行载波4的第一参数最大,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
情况二:第二上行载波为至少一个第一上行载波中第一参数最小的上行载波
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,终端设备可以根据每一个上行载波的第一参数确定用于接入的第二上行载波。
该第一参数可以基于上行载波所关联的负载或SCS确定。即:上行载波所关联的负载越大,其第一参数越大;上行载波所关联的负载越小,其第一参数越小。类似地,上行载波的SCS越大,其第一参数越大;上行载波的SCS越小,其第一参数越小。
以负载为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的负载依次为5、4、7、2、4,在一种实现方式中,由于这5个上行载波中上行载波4的负载最小,相应地,上行载波4的第一参数最小,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4。由于上行载波4的第一参数最小,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
以SCS为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的SCS依次为50KHz、40KHz、70KHz、20KHz、40KHz,在一种实现方式中,由于这5个上行载波中上行载波4的SCS最小,相应地,上行载波4的第一参数最小,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的SCS的大小进行排序,排列后的顺序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波3>上行载波1>上行载波2=上行载波5>上行载波4。由于上行载波4的第一参数最小,此时终端设备可以选择上行载波4作为用于接入的第二上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第一上行载波中第一参数最大或最小的上行载波,由于第一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、SCS,从而终端设备基于该第一参数接入到匹配的上行载波,减少接入时延,均衡负载,从而提升系统性能。
方式二:
该方法200还可以包括:确定第一数值;其中,该第二上行载波为至少一个第三上行 载波中序号最大的上行载波;或者,该第二上行载波为至少一个第三上行载波中序号最小的上行载波;其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于该第一数值的上行载波;或者,该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
本申请实施例中,第二上行载波可以为至少一个第三上行载波中序号最大的上行载波,也可以为至少一个第三上行载波中序号最小的上行载波;本申请实施例中的至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于第一数值的上行载波,也可以为至少一个第一上行载波中第一参数小于第一数值的上行载波;不予限制。
应理解,在一些实施例中,本申请实施例中的至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于或等于(或者称为不小于)第一数值的上行载波,也可以为至少一个第一上行载波中第一参数小于或等于(或者称为不大于)第一数值的上行载波;不予限制。
本申请实施例中,至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于第一数值的上行载波,也可以为至少一个第一上行载波中第一参数小于第一数值的上行载波,主要与第一参数和其所关联的负载和/或SCS有关。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
换句话说,第一参数可以与负载和/或SCS负相关(即负载和/或SCS越大,第一参数越小),也可以与负载和/或SCS正相关(即负载和/或SCS越大,第一参数越大)。
若第一参数与负载和/或SCS负相关,则至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于第一数值的上行载波;若第一参数与负载和/或SCS正相关,则至少一个第三上行载波可以为至少一个第一上行载波中第一参数小于第一数值的上行载波。
下文将分情况介绍确定第二上行载波的具体实现过程。
情况一:至少一个第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波
(1)第二上行载波为至少一个第三上行载波中序号最大的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照序号进行降序排列,即,按照序号从大到小的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照序号从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波中序号最大的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1(序号为“0”)、上行载波2(序号为“1”)、上行载波3(序号为“2”)、上行载波4(序号为“3”)和上行载波5(序号为“4”),其负载依次为5、4、7、2、4,则第一参数可以依次为0.5、0.8、0.3、0.9、0.8,若第一数值为0.6,则终端设备可以先将序号最大的上行载波5的第一参数0.8与第一数值进行比较,由于0.8>0.6,因此,终端设备可以选择上行载波5作为用于接入的第二上行载波。
(2)第二上行载波为至少一个第三上行载波中序号最小的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照序号进行升序排列,即,按照序号从小到大的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照序号从小到大的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波中序号最小的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1(序号为“0”)、上行载波2(序号为“1”)、上行载波3(序号为“2”)、上行载波4(序号为“3”)和上行载波5(序号为“4”),其负载依次为5、4、7、2、4,则第一参数可以依次为0.5、0.8、0.3、0.9、0.8,若第一数值为0.6,则终端设备可以先将序号最小上行载波1的第一参数0.5与数值进行比较,由于0.5<0.6,因此,终端设备可以将序号次小的上行载波2的第一参数0.8与该数值进行比较,由于0.8>0.6,因此,终端设备可以选择上行载波2作为用于接入的第二上行载波。
情况二:至少一个第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波
(1)第二上行载波为至少一个第三上行载波中序号最大的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照序号进行降序排列,即,按照序号从大到小的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数小于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照序号从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使 得确定出的第二上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波中序号最大的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1(序号为“0”)、上行载波2(序号为“1”)、上行载波3(序号为“2”)、上行载波4(序号为“3”)和上行载波5(序号为“4”),其负载依次为5、4、7、2、4,则第一参数可以依次为0.5、0.8、0.3、0.9、0.8,若第一数值为0.6,则终端设备可以先将序号最大的上行载波5的第一参数0.8与第一数值进行比较,由于0.8>0.6,终端设备继续将序号次大的上行载波4的第一参数0.9与第一数值进行比较,同样地,由于0.9>0.6,终端设备继续将序号次大的上行载波3的第一参数0.3与第一数值进行比较,由于0.3<0.6,因此,终端设备可以选择上行载波3作为用于接入的第二上行载波。
(2)第二上行载波为至少一个第三上行载波中序号最小的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照序号进行升序排列,即,按照序号从小到大的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数小于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照序号从小到大的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波中序号最小的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1(序号为“0”)、上行载波2(序号为“1”)、上行载波3(序号为“2”)、上行载波4(序号为“3”)和上行载波5(序号为“4”),其负载依次为5、4、7、2、4,则第一参数可以依次为0.5、0.8、0.3、0.9、0.8,若第一数值为0.6,则终端设备可以先将序号最小的上行载波1的第一参数0.5与第一数值进行比较,由于0.5=0.5,因此,终端设备可以将序号次小的上行载波2的第一参数0.8与该第一数值进行比较,由于0.8>0.6,因此,终端设备可以继续将序号次小的上行载波3的第一参数0.3与该第一数值进行比较,由于0.3<0.6因此,终端设备可以选择上行载波3作为用于接入的第二上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中序号最大或最小的上行载波,且该第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波,或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
方式三:
该方法200还可以包括:确定第一数值;其中,该第二上行载波为至少一个第三上行载波中信号强度最高的上行载波;或者,该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于该第一数值的上行载波;或者,该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
本申请实施例中,至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于第一数值的上行载波,也可以为至少一个第一上行载波中第一参数小于第一数值的上行载波;第二上行载波可以为至少一个第三上行载波中信号强度最高的上行载波,也可以为至少一个第三上行载波中,与该至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;不予限制。与第一上行载波相关联的下行载波可以被理解为在信号强度上与第一上行载波具有相关性的下行载波,即,该下行载波的信号强度可以用于推断第一上行载波的信号强度。例如,与第一上行载波相关联的下行载波可以是第一上行载波所述的载波聚合小区中的下行载波,也可以是网络设备配置给终端设备的与第一上行载波有关联关系的下行载波。与第一上行载波相关联的下行载波可以与第一上行载波属于同一个频段,也可以位于高于第一上行载波的频段。与每个第一上行载波相关联的下行载波可以相同也可以不同。此外,载波的信号强度可以被替换为载波的信道质量、覆盖性能等其他能体现载波是否适合终端设备接入的参数。
应理解,在一些实施例中,本申请实施例中的至少一个第三上行载波可以为至少一个第一上行载波中第一参数大于或等于(或者称为不小于)第一数值的上行载波,也可以为至少一个第一上行载波中第一参数小于或等于(或者称为不大于)第一数值的上行载波;不予限制。
下文将分情况介绍确定第二上行载波的具体实现过程。
情况一:至少一个第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波
(1)第二上行载波为至少一个第三上行载波中信号强度最高的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照信号强度进行降序排列,即,按照信号强度从大到小的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照信号强度从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波中信号强度最大的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行 载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,其信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm,第一参数依次分别为0.5、0.4、0.7、0.2、0.4,若第一数值为0.5,终端设备可以先将信号强度最大的上行载波3的第一参数0.7与第一数值进行比较,由于0.7>0.5,因此,终端设备可以选择上行载波3作为用于接入的第二上行载波。
(2)该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将与至少一个第一上行载波相关联的下行载波按照信号强度进行降序排列,即,按照信号强度从大到小的顺序对与至少一个第一上行载波相关联的下行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照信号强度从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数大于第一数值的与上行载波相关联的下行载波中信号强度最大的所对应的上行载波,其他的实现方式同样适用于本实施例。
示例性地,如图3所示,为本申请实施例提供的一种载波位置的示意图。参考图3,假设终端设备驻留在某一小区(即图3中的小区1)的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,第一参数依次分别为0.5、0.4、0.7、0.2、0.4,且这5个上行载波在其它小区(如图3中所示的小区2、小区3、小区4、小区5、小区6)所关联的下行载波分别为下行载波1’、下行载波2’、下行载波3’、下行载波4’和下行载波5’,其信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm,若第一数值为0.5,终端设备可以先将信号强度最大的下行载波所对应的上行载波3的第一参数0.7与第一数值进行比较,由于0.7>0.5,因此,终端设备可以选择上行载波3作为用于接入的第二上行载波。
情况二:至少一个第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波
(1)第二上行载波为至少一个第三上行载波中信号强度最高的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将至少一个第一上行载波按照信号强度进行降序排列,即,按照信号强度从大到小的顺序对至少一个第一上行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数小于该数值,则终端设备可以选择该上行载波为第二上 行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照信号强度从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波中信号强度最大的上行载波,其他的实现方式同样适用于本实施例。
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,其信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm,第一参数依次分别为0.5、0.4、0.7、0.2、0.4,若第一数值为0.5,终端设备可以先将信号强度最大的上行载波3的第一参数0.7与第一数值进行比较,由于0.7>0.5,因此,终端设备可以将信号强度次大的上行载波2的第一参数0.4与第一数值进行比较,由于0.4<0.5,因此,终端设备可以选择上行载波2作为用于接入的第二上行载波。
(2)该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波
在一种实现方式中,终端设备可以先确定符合条件的至少一个第三上行载波,再从这至少一个第三上行载波中选择用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将与至少一个第一上行载波相关联的下行载波按照信号强度进行降序排列,即,按照信号强度从大到小的顺序对与至少一个第一上行载波相关联的下行载波进行排列。然后,终端设备可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与第一数值进行比较,若某一上行载波的第一参数小于该数值,则终端设备可以选择该上行载波为第二上行载波,也就是说,排列后的至少一个第一上行载波中第一个符合条件的上行载波为第二上行载波。在这种实现方式中,也可以不对至少一个第一上行载波进行排列,直接按照信号强度从大到小的顺序将第一上行载波的第一参数与第一数值进行比较。
应理解的是,终端设备确定第二上行载波的方式并不限于上述实现方式,只要能够使得确定出的第二上行载波为至少一个第一上行载波中第一参数小于第一数值的与上行载波相关联的下行载波中信号强度最大的所对应的上行载波,其他的实现方式同样适用于本实施例。
示例性地,参考上述图3,假设终端设备驻留在某一小区(即图3中的小区1)的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,第一参数依次分别为0.5、0.4、0.7、0.2、0.4,且这5个上行载波在其它小区(如图3中所示的小区2、小区3、小区4、小区5、小区6)所关联的下行载波分别为下行载波1’、下行载波2’、下行载波3’、下行载波4’和下行载波5’,其信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm,若第一数值为0.5,终端设备可以先将信号强度最大的下行载波3’所关联的上行载波3的第一参数0.7与第一数值进行比较,由于0.7>0.5,因此,终端设备可以将信号强度次大下行载波2’所关联的上行载波2的第一参数0.4与第一数值进行比较,由于0.4<0.5,因此,终端设备可以选择上行载波3作为用于接入的第二上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第三上行载波中信号强度最高的上行载波,或者,第二上行载波可以为至少一个第三上行载波中,与至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;且该第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波;或者,该第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波。由于终端设备从筛选后的至少一个第三上行载波中确定用于接入的第二上行载波,相当于缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
在上述方式三中,终端设备可以基于第一数值确定至少一个第三上行载波,并从至少一个第三上行载波中确定用于接入的第二上行载波。其中,该第一数值可以基于以下方式确定。
可选地,在一些实施例中,该第一数值大于或等于0且小于或等于第三阈值。该第三阈值关联于下述项中的至少一项:服务质量(quality of service,QoS)级别、缓冲状态报告(buffer status report,BSR)级别、终端设备的类型、时延要求、终端设备的业务类型。
本申请实施例中的第三阈值基于上述至少一项的不同而不同,第一数值可以为0至第三阈值的任一数值。
本申请以关联终端设备的类型为例,终端设备可以为支持超高可靠超低时延通信(ultra-relaible and low latency communication,URLLC)的终端设备、支持增强移动宽带(enhanced mobile broadband,eMBB)的终端设备、支持大规模机器类型通信(massive machine type communication,mMTC)的终端设备中的任意终端设备。
示例性地,若终端设备为支持URLLC的终端设备,第三阈值可以为1;若终端设备为支持eMBB的终端设备,第三阈值可以为2;若终端设备为支持mMTC的终端设备,第三阈值可以为3。换句话说,支持URLLC的终端设备情况下的第三阈值<支持eMBB的终端设备情况下的第三阈值<支持mMTC的终端设备情况下的第三阈值。
需要说明的是,在第三阈值取值不同时,第一数值可以相同,也可以不同,不予限制。
示例性地,若第三阈值为1,第一数值可以为0.5,若第三阈值为2,第一数值可以为0.5,也可以为0.6;当然,在第三阈值为1的情况下,第一数值可以为0.5,也可以为0.6;不予限制。
可以理解的是,在第一数值取值不同的情况下,上述方式三中至少一个第三上行载波的数量可能不同。
在方式三中,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)的第一参数分别为0.5、0.4、0.7、0.2、0.4,且第一数值为0.5。由于上行载波1和上行载波3的第一参数大于第一数值0.5,则本申请实施例中的第三上行载波可以包括上行载波1和上行载波3,此时终端设备可以从这2个上行载波中根据这2个上行载波的信号强度确定用于接入的第二上行载波。
若第一数值为0.6,此时由于上行载波3的第一参数大于第一数值0.6,则本申请实施例中的第三上行载波可以包括上行载波3,此时终端设备可以选择上行载波3为用于接入的第二上行载波。
当然,在一些实施例中,若至少一个第三上行载波为至少一个第一上行载波中第一参数大于第一数值的上行载波,有可能第一数值过大,至少一个第一上行载波中没有上行载 波的第一参数大于第一数值,即:没有满足条件的至少一个第三上行载波。此时,可以将第三阈值进行缩放,并根据缩放后的第三阈值确定第一数值,以及确定至少一个第三上行载波。
示例性地,仍然假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)的第一参数分别为0.5、0.4、0.7、0.2、0.4,第三阈值为1,且第一数值为0.8。由于这5个上行载波中没有上行载波的第一参数大于第一数值0.8,此时,可以将第三阈值进行缩放,如将该第三阈值缩放为0.5,第一数值可以为0.4,由于上行载波1、上行载波2、上行载波3和上行载波5的第一参数大于第一数值0.4,则本申请实施例中的第三上行载波可以包括上行载波1、上行载波2、上行载波3和上行载波5,此时终端设备可以从这4上行载波中根据这4个上行载波的信号强度确定用于接入的第二上行载波。
对于至少一个第三上行载波为至少一个第一上行载波中第一参数小于第一数值的上行载波,与上述情况类似,为了简洁,这里不再赘述。
此外,在一些实施例中,终端设备确定第一数值时,也可以在一个范围内随机生成。可选地,该范围可以根据以第三阈值为参数的一个函数生成。还可以根据自身标识信息生成的。可选地,根据自身标识信息生成可以根据以自身标识信息为参数的一个函数生成。该函数可以为线性函数或者非线性函数。作为示例,当标识信息用标识(identity,ID)表示时,该函数可以为ID mod N,其中N为函数中的参数。可选地,N可以为正整数。其中,ID mod N标识ID除以N后的余数。如,ID为10,N为3,则ID mod N=10 mod 3=1。
作为示例,当标识信息用国际移动用户识别码(international mobile subscriber identification,IMSI)表示时,该函数可以为IMSI mod N,其中N为函数中的参数。可选地,N可以为正整数。
可选地,在一些实施例中,该第三阈值为网络设备通过无线资源控制(radio resource control,RRC)信令配置的;或者,该第三阈值为预定义的。
本申请提供的方案,第一数值可以为0至第三阈值中的任一数值,而该第三阈值关联于下述项中的至少一项:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的业务类型。即:第三阈值随着上述项中的至少一项的不同而可能不同,进而第一数值可以随着第三阈值的不同而改变,可以调整符合条件的至少一个第三上行载波,从而可以提升终端设备选择第二上行载波的灵活性。
本申请实施例中,当该第三阈值为网络设备通过无线资源控制RRC信令配置的时,网络设备通过无线资源控制RRC信令配置多个可选的第三阈值。该多个可选的第三阈值对应不同的业务类型或级别。具体来说,该第三阈值关联于下述项中的至少一项:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
在一些实施例中,终端设备也可以根据自身的下述选项中至少一项选择确定第三阈值,其中下述选项包括:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
上文介绍了确定第二上行载波的三种方式,从本质上来说,这三种方式中,均是从至少一个第一上行载波中确定该第二上行载波的,关于至少一个第一上行载波的描述请参见下文。
该至少一个第一上行载波为该网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波;或者,
该至少一个第一上行载波为该网络设备配置的至少一个上行载波中,与该至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
下文将分情况介绍至少一个第一上行载波的内容。
情况一:至少一个第一上行载波为该网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波。
示例性地,假设系统中包括10个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4、上行载波5、上行载波6、上行载波7、上行载波8、上行载波9和上行载波10,这10个上行载波的信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm、-180dBm、-170dBm、-160dBm、-190dBm、-200dBm,若第一阈值为-120dBm,则本申请中的至少一个第一上行载波可以包括上行载波1、上行载波2、上行载波3、上行载波4、上行载波5。换句话说,网络设备可以将这5个上行载波配置于小区。
情况二:至少一个第一上行载波为该网络设备配置的至少一个上行载波中,与该至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
示例性地,假设系统中包括10个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4、上行载波5、上行载波6、上行载波7、上行载波8、上行载波9和上行载波10,与这10个上行载波相关联的下行载波的信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm、-180dBm、-170dBm、-160dBm、-190dBm、-200dBm,若第一阈值为-120dBm,则本申请中的至少一个第一上行载波可以包括上行载波1、上行载波2、上行载波3、上行载波4、上行载波5。换句话说,网络设备可以将这5个上行载波配置于小区。
本申请提供的方案,至少一个第一上行载波为网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波,或者,为网络设备配置的至少一个上行载波中,与至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。由于该至少一个第一上行载波是网络设备从多个上行载波中选择的,为终端设备确定第二上行载波缩小了选择范围,进一步地,可以减少接入时延,从而提升系统性能。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
换句话说,第一参数可以与负载和/或SCS负相关(即负载和/或SCS越大,第一参数越小),也可以与负载和/或SCS正相关(即负载和/或SCS越大,第一参数越大)。
若第一参数与负载和/或SCS负相关,则第二上行载波可以为至少一个第一上行载波中第一参数最大的上行载波;若第一参数与负载和/或SCS正相关,则第二上行载波可以为至少一个第一上行载波中第一参数最小的上行载波,下文将分别举例说明。
(1)负载和/或SCS越大,第一参数越小
示例性地,假设终端设备驻留在某一小区的下行载波上,该下行载波对应有多个上行载波,如5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,此时终端设备可以根据这5个上行载波所关联的负载或SCS确定其第一参数,并根据该第一参数确定用于接入的第二上行载波(假设以上述方式一为例)。
该第一参数可以基于上行载波所关联的负载或SCS确定。即:上行载波所关联的负载越大,其第一参数越小;上行载波所关联的负载越小,其第一参数越大。类似地,上行载波的SCS越大,其第一参数越小;上行载波的SCS越小,其第一参数越大。
以负载为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的负载依次为5、4、7、6、4,在一种实现方式中,由于这4个上行载波中上行载波2和上行载波5的负载最小且均为4,相应地,上行载波2和上行载波5的第一参数并列最大,若基于上述方式一,此时终端设备可以选择上行载波2或上行载波5作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波5=上行载波2>上行载波1>上行载波4>上行载波3。由于上行载波5和上行载波2的第一参数并列最大,若基于上述方式一,此时终端设备可以选择上行载波5或上行载波2作为用于接入的第二上行载波。
以SCS为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的SCS依次为50KHz、40KHz、70KHz、60KHz、40KHz,在一种实现方式中,由于这5个上行载波中上行载波5和上行载波2的SCS并列最小,相应地,上行载波5和上行载波2的第一参数并列最大,若基于上述方式一,此时终端设备可以选择上行载波5或上行载波2作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波5=上行载波2>上行载波1>上行载波4>上行载波3。由于上行载波5和上行载波2的第一参数并列最大,若基于上述方式一,此时终端设备可以选择上行载波5或上行载波2作为用于接入的第二上行载波。
在一些实施例中,终端设备也可以不为至少一个第一上行载波中第一参数最大或最小的上行载波,终端设备也可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与某一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波。如,上述5个上行载波所关联的负载依次为5、4、7、6、4,则第一参数可以依次为0.5、0.8、0.3、0.4、0.8,若数值为0.6,则终端设备可以先将上行载波1的第一参数0.5与数值进行比较,由于0.5<0.6,因此,终端设备可以选择上行载波2的第一参数0.8与该数值进行比较,由于0.8>0.6,则终端设备可以选择上行载波2作为用于接入的第二上行载波。
(2)负载和/或SCS越大,第一参数越大
同样地,终端设备可以根据上述5个上行载波所关联的负载或SCS确定其第一参数,并根据该第一参数确定用于接入的第二上行载波(假设仍然以上述方式一为例)。
该第一参数可以基于上行载波所关联的负载或SCS确定。即:上行载波所关联的负载越大,其第一参数越大;上行载波所关联的负载越小,其第一参数越小。类似地,上行载波的SCS越大,其第一参数越大;上行载波的SCS越小,其第一参数越小。
以负载为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的负载依次为5、4、7、6、4,在一种实现方式中,由于 这5个上行载波中上行载波2和上行载波5的负载最小,相应地,上行载波2和上行载波5的第一参数最小,此时终端设备可以选择上行载波2或上行载波5作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的负载的大小进行排序,排列后的顺序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5,按照该排序,则这5个上行载波按照第一参数的排序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5。由于上行载波2和上行载波5的第一参数最小,此时终端设备可以选择上行载波2或上行载波5作为用于接入的第二上行载波。
以SCS为例,假设上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)所关联的SCS依次为50KHz、40KHz、70KHz、60KHz、40KHz,在一种实现方式中,由于这5个上行载波中上行载波2和上行载波5的SCS最小,相应地,上行载波2和上行载波5的第一参数最小,此时终端设备可以选择上行载波2或上行载波5作为用于接入的第二上行载波。
在另一种实现方式中,终端设备可以将这5个上行载波按照所关联的SCS的大小进行排序,排列后的顺序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5,按照该排序,则这4个上行载波按照第一参数的排序为:上行载波3>上行载波4>上行载波1>上行载波2=上行载波5。由于上行载波2和上行载波5的第一参数最小,此时终端设备可以选择上行载波2或上行载波5作为用于接入的第二上行载波。
在一些实施例中,终端设备也可以不为至少一个第一上行载波中第一参数最大或最小的上行载波,终端设备也可以将至少一个第一上行载波中的每一个上行载波的第一参数依次与某一数值进行比较,若某一上行载波的第一参数大于该数值,则终端设备可以选择该上行载波为第二上行载波。如,上述5个上行载波(即上行载波1、上行载波2、上行载波3、上行载波4和上行载波5)依次为5、4、7、6、4,则第一参数可以依次为0.5、0.4、0.7、0.6、0.4,若数值为0.6,则终端设备可以先将上行载波1的第一参数0.5与数值进行比较,由于0.5<0.6,因此,终端设备可以将上行载波2的第一参数0.4与该数值进行比较,由于0.4<0.6,则终端设备可以继续将上行载波3的第一参数0.7与该数值进行比较,由于0.7>0.6,因此,终端设备可以将上行载波3作为用于接入的第二上行载波。
需要说明的是,本申请实施例中的第一阈值和/或第二阈值可以为预配置的,也可以是网络设备通过信令配置的,也可以为协议规定的,还可以是终端设备根据自身的性能确定的。该第一阈值和/或第二阈值可以为固定值,也可以为动态值;不予限制。终端设备根据自身的性能确定,可以是在网络设备配置的阈值中根据自身的特性确定的。
应理解,上述各实施例中所示出的数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
如图4所示,为本申请实施例提供的另一种确定上行载波的方法400的示意图,该方法400可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。该方法400可以包括步骤S410-S440。
S410,网络设备确定第一信息,该第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息。
S420,该网络设备向终端设备发送该第一信息。
其中,该步骤S410-S420可以由图1中的网络设备10执行。
S430,终端设备接收第一信息。
S440,该终端设备根据第一信息从该至少一个第一上行载波中确定第二上行载波,该第二上行载波为第一小区中用于接入的上行载波。
其中,该至少一个第一上行载波与第二下行载波位于第二小区,且该至少一个第一上行载波位于该第一小区;或者,该至少一个第一上行载波与第一下行载波位于该第一小区。
其中,该步骤430-440可以由图1中的终端设备20-终端设备40中的任意终端设备执行。
本申请实施例中,该至少一个第一上行载波可以包括1个或多个上行载波,若该至少一个第一上行载波包括1个上行载波,则第二上行载波即为该1个上行载波;若该至少一个第一上行载波包括多个上行载波,则第二上行载波为这多个上行载波的其中1个上行载波。
需要说明的是,本申请实施例中,该第二上行载波为用于接入的上行载波,可以理解为:终端设备在该第二上行载波上进行随机接入。
本申请提供的方案,终端设备可以根据接收到的至少一个第一上行载波与至少一个第二下行载波的对应信息从该至少一个第一上行载波中确定第二上行载波。由于终端设备在确定用于接入的第二上行载波时,是基于至少一个第一上行载波与至少一个第二下行载波的对应信息确定的,可以使终端设备接入到匹配的上行载波,保证覆盖性能,从而提升系统吞吐量。
上文指出,终端设备根据第一信息从该至少一个第一上行载波中确定第二上行载波,下文将介绍终端设备确定第二上行载波的可能的几种方式。
方式一:
该方法400还包括:该终端设备确定该至少一个第二下行载波的信号强度;该第二上行载波为该至少一个第二下行载波中的信号强度最高的所对应的上行载波。
本申请实施例中,终端设备在接收到第一信息确定至少一个第一上行载波与至少一个第二下行载波的对应信息后,可以先确定该至少一个第二下行载波的信号强度,并从至少一个第二下行载波中确定其中信号强度最高的下行载波所对应的上行载波为用于接入的第二上行载波。
仍然参考上述图3,假设本申请的至少一个第一上行载波包括5个上行载波,分别为上行载波1、上行载波2、上行载波3、上行载波4和上行载波5,至少一个第二下行载波包括5个下行载波,分别为下行载波1’、下行载波2’、下行载波3’、下行载波4’和下行载波5’,此时,终端设备可以先确定这5个下行载波的信号强度,如这5个下行载波的信号强度依次分别为-80dBm、-70dBm、-60dBm、-110dBm、-100dBm,由于下行载波3’的信号强度最高,因此,终端设备可以选择下行载波3’所对应的上行载波3为用于接入的第二上行载波。
本申请提供的方案,终端设备确定的第二上行载波可以为至少一个第二下行载波中的信号强度最高的所对应的上行载波,由于信号强度越高,覆盖程度越好,从而终端设备基于该信号强度接入到匹配的上行载波,增大接入概率,减少接入时延,从而提升系统性能。
方式二:
该方法400还包括:该终端设备接收该至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;确定第一数值;该第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,该第二上行载波为该至少一个第三上行载波中序号最小的上行载波;其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于第一数值的上行载波;或者,该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
本申请方式二的具体实施方式可以参考上述方法200中的方式二中的相关内容,在此不再赘述。
方式三:
该终端设备接收该至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、SCS;确定第一数值;其中,该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的该至少一个第二下行载波的信号强度最高的上行载波;或者,其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于该第一数值的上行载波;或者,该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
本申请方式三的具体实施方式可以参考上述方法200中的方式三中的相关内容,在此不再赘述。
可选地,在一些实施例中,该第一数值大于或等于0且小于或等于第三阈值,该第三阈值关联于下述项中的至少一项:QoS级别、BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
可选地,在一些实施例中,该第三阈值为网络设备通过RRC信令配置的;或者,该第三阈值为预定义的。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
上述实施例均可参考方法200中的相关内容,在此不再赘述。
如图5所示,为本申请实施例提供的一种测量方法500的示意图,该方法500可以由终端设备执行,或者也可以由终端设备中的芯片执行。该方法500可以包括步骤S510-S520。
S510,终端设备接收系统信息,该系统信息包括针对其它终端设备的用于测量载波的参考信号的配置信息。
S520,该终端设备根据该系统信息对该参考信号进行测量。
本申请实施例的终端设备可以处于空闲态,当该终端设备接收到系统信息后,可以对其参考信号进行测量。
本申请实施例中的其它终端设备的配置信息中所测量的载波可以为较高频段上的载波,从而较高频段上的载波上的参考信号可以按需发送。作为一种示例,较高频段上的载波上的参考信号基于其它终端设备的调度请求(scheduling request,SR),BSR,上行参考信号或上报信息中任何一种被触发发送。其中,该上报信息可以通过RRC信令传输;或者,该上报信息承载在上行控制信息(uplink control information,UCI)中;或者,该上报信息包括在SR中。进一步的,若该上报信息承载在UCI中,该上报信息可以包括在 UCI中的第一字段中,第一字段为UCI中的已有字段,或者,该上报信息包括在UCI中的第二字段中,第二字段为UCI中的新增字段。第一字段为UCI中的已有字段可以理解为上报信息复用了第一字段。可选地,较高频段可以为毫米波波段或者任何大于或等于4.9GHz以上的频段。
本申请中的终端设备所测量的载波与其它终端设备的配置信息中所测量的载波相同时,终端设备可以根据针对其它终端设备的用于测量载波的参考信号的配置信息对其自身的参考信号进行测量,可以节省资源。
以上结合图1至图5对本申请实施例的确定上行载波的方法做了详细说明。以下,结合图6至图13对本申请实施例的装置进行说明。
图6示出了本申请实施例的通信装置600的示意性框图,该装置600可以对应上述方法200描述的终端设备,并且,该装置600中各模块分别用于执行上述方法200中终端设备所执行的各动作或处理过程,如图6所示,该通信装置600可以包括:
通信模块610,用于从网络设备接收至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
处理模块620,根据该至少一个第一上行载波的第一参数,从该至少一个第一上行载波确定第二上行载波,该第二上行载波为用于接入的上行载波。
可选地,在一些实施例中,该第二上行载波为该至少一个第一上行载波中第一参数最大的上行载波;或者,
该第二上行载波为该至少一个第一上行载波中第一参数最小的上行载波。
可选地,在一些实施例中,该处理模块620还用于:确定第一数值;
其中,该第二上行载波为该至少一个第三上行载波中序号最大的上行载波;或者,
该第二上行载波为该至少一个第三上行载波中序号最小的上行载波;
其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于第一数值的上行载波;或者,
该至少一个第三上行载波为该至少一个第一上行载波中,与该至少一个第一上行载波相关联的下行载波的第一参数小于该第一数值的上行载波。
可选地,在一些实施例中,该处理模块620还用于:
确定第一数值;
其中,该第二上行载波为至少一个第三上行载波中信号强度最高的上行载波;或者,
该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;
其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于该第一数值的上行载波;或者,
该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
可选地,在一些实施例中,该第一数值大于或等于0且小于或等于第三阈值,该第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
可选地,在一些实施例中,该第三阈值为网络设备通过无线资源控制RRC信令配置 的;或者,
该第三阈值为预定义的。
可选地,在一些实施例中,该至少一个第一上行载波为该网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波;或者,
该至少一个第一上行载波为该网络设备配置的至少一个上行载波中,与该至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,
下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
可选地,在一些实施例中,该至少一个第一上行载波的数量为大于1的正整数。
图7示出了本申请实施例的通信装置700的示意性框图,该装置700可以对应上述方法200描述的网络设备,并且,该装置700中各模块分别用于执行上述方法200中网络设备所执行的各动作或处理过程,如图7所示,该通信装置700可以包括:
处理模块710,用于网络设备确定第一参数,第一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
通信模块720,用于向终端设备发送该第一参数。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,
下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
可选地,在一些实施例中,该至少一个第一上行载波的数量为大于1的正整数。
图8示出了本申请实施例的通信装置800的示意性框图,该装置800可以对应上述方法400描述的终端设备,并且,该装置800中各模块分别用于执行上述方法400中终端设备所执行的各动作或处理过程,如图8所示,该通信装置800可以包括:
通信模块810,用于接收第一信息,该第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;
处理模块820,用于根据第一信息从该至少一个第一上行载波中确定第二上行载波,该第二上行载波为第一小区中用于接入的上行载波;
其中,该至少一个第一上行载波与第二下行载波位于第二小区,且该至少一个第一上行载波位于该第一小区;或者,
该至少一个第一上行载波与第一下行载波位于该第一小区。
可选地,在一些实施例中,该处理模块820还用于:
确定该至少一个第二下行载波的信号强度;
该第二上行载波为该至少一个第二下行载波中的信号强度最高的所对应的上行载波。
可选地,在一些实施例中,该通信模块810还用于:
接收该至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
该处理模块820还用于:确定第一数值;
该第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,
该第二上行载波为该至少一个第三上行载波中序号最小的上行载波;
其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于第一数值的上行载波;或者,
该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
可选地,在一些实施例中,该通信模块810还用于:
接收该至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
该处理模块820还用于:
确定第一数值;
其中,该第二上行载波为至少一个第三上行载波中,与该至少一个第三上行载波相关联的该至少一个第二下行载波的信号强度最高的上行载波;或者,
其中,该至少一个第三上行载波为该至少一个第一上行载波中第一参数大于该第一数值的上行载波;或者,
该至少一个第三上行载波为该至少一个第一上行载波中第一参数小于该第一数值的上行载波。
可选地,在一些实施例中,该第一数值大于或等于0且小于或等于第三阈值,该第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
可选地,在一些实施例中,该第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,
该第三阈值为预定义的。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,
下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
可选地,在一些实施例中,该至少一个第一上行载波的数量为大于1的正整数。
图9示出了本申请实施例的通信装置900的示意性框图,该装置900可以对应上述方法400描述的网络设备,并且,该装置900中各模块分别用于执行上述方法400中网络设备所执行的各动作或处理过程,如图9所示,该通信装置900可以包括:
处理模块910,用于确定第一信息,该第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;
通信模块920,用于向终端设备发送该第一信息。
可选地,在一些实施例中,通信模块920还用于:
向该终端设备发送至少一个第一上行载波的第一参数,该第一参数与该至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS。
可选地,在一些实施例中,下述项中的至少一项越大,该第一参数越小:该负载、该SCS;或者,
下述项中的至少一项越大,该第一参数越大:该负载、该SCS。
可选地,在一些实施例中,该至少一个第一上行载波的数量为大于1的正整数。
图10示出了本申请实施例的通信装置1000的示意性框图,该装置1000可以对应上 述方法500描述的终端设备,并且,该装置1000中各模块分别用于执行上述方法500中终端设备所执行的各动作或处理过程,如图10所示,该通信装置1000可以包括:
通信模块1010,用于接收系统信息,该系统信息包括针对其它终端设备的用于测量载波的参考信号的配置信息;
处理模块1020,用于根据该系统信息对该参考信号进行测量。
图11是本申请实施例提供的通信装置1200的结构示意图,例如可以为上述实施例中的终端设备。如图11所示,该通信装置1200包括处理器1210和收发器1220。可选地,该通信装置1200还包括存储器1230。其中,处理器1210、收发器1220和存储器1230之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1230用于存储计算机程序,该处理器1210用于从该存储器1230中调用并运行该计算机程序,以控制该收发器1220收发信号。
上述处理器1210和存储器1230可以合成一个处理装置,处理器1210用于执行存储器1230中存储的程序代码来实现上述方法实施例中终端设备的功能。具体实现时,该存储器1230也可以集成在处理器1210中,或者独立于处理器1210。收发器1220可以通过收发电路的方式来实现。
上述通信装置还可以包括天线1240,用于将收发器1220输出的上行数据或上行控制信令通过无线信号发送出去,或者将下行数据或下行控制信令接收后发送给收发器1220进一步处理。
应理解,该装置1200可对应于根据本申请实施例的方法200、方法400和方法500中的终端设备,该装置1200也可以是应用于终端设备的芯片或组件。并且,该装置1200中的各器件实现方法200、方法400和方法500中的相应流程,具体地,该存储器1230用于存储程序代码,使得处理器1210在执行该程序代码时,控制该收发器1220用于执行方法200中的S230的过程,该处理器1210用于执行方法200中的S240的过程;或者,控制收发器1220用于执行方法400中的S430的过程,该处理器1210用于执行方法400中的S440的过程;或者,控制该收发器1220用于执行方法500中的S510的过程,该处理器1210用于执行方法500中的S520的过程;各器件执行上述相应步骤的具体过程在方法200、方法400和方法500中已经详细说明,为了简洁,在此不加赘述。
图12是本申请实施例提供的通信装置1300的结构示意图,例如,可以为上述实施例中的网络设备。如图12所示,该通信装置1300(例如基站)包括处理器1310和收发器1320。可选地,该通信装置1300还包括存储器1330。其中,处理器1310、收发器1320和存储器1330之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1330用于存储计算机程序,该处理器1310用于从该存储器1330中调用并运行该计算机程序,以控制该收发器1320收发信号。
上述处理器1310和存储器1330可以合成一个处理装置,处理器1310用于执行存储器1330中存储的程序代码来实现上述方法实施例中网络设备的功能。具体实现时,该存储器1330也可以集成在处理器1310中,或者独立于处理器1310。收发器1320可以通过收发电路的方式来实现。
上述通信装置1300还可以包括天线1340,用于将收发器1320输出的下行数据或下行控制信令通过无线信号发送出去,或者将上行数据或上行控制信令接收后发送给收发器 1320进一步处理。
应理解,该装置1300可对应于根据本申请实施例的方法200或400中的网络设备,该装置1300也可以是应用于网络设备的芯片或组件。并且,该装置1300中的各器件实现图2中方法200或图4中方法400中的相应流程,具体地,该处理器1310用于执行方法200中的S210的过程,该收发器1320用于执行方法200中的S220的过程;或者,该处理器1310用于执行方法400中的S410的过程,该收发器1320用于执行方法400中的S420的过程;各器件执行上述相应步骤的具体过程在方法200和方法400中已经详细说明,为了简洁,在此不再赘述。
图13是本申请实施例提供的芯片的示意性结构图。图13所示的芯片1400包括处理器1410,该处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1400还可以包括存储器1420。其中,该处理器1410可以从存储器1420中调用并运行计算机程序,以执行本申请实施例中的方法200或方法700的步骤。
其中,存储器1420可以是独立于该处理器1410的一个单独的器件,也可以集成在该处理器1410中。
可选地,该芯片1400还可以包括输入接口1430。其中,该处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1400还可以包括输出接口1440。其中,该处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备或网络设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的终端设备或网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的终端设备或网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的终端设备或网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信系统,包括上述实施例中的终端设备和网络设备,实现设备间的相互协作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合的方式来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合。另一点,所显示或讨论的相互之间的耦合或通信连接可以是通过一些接口、装置或模块的间接耦合或通信连接。
另外,在本申请各个实施例中的各功能模块可以集成在一个物理实体中,也可以是各个模块单独对应一个物理实体,也可以两个或两个以上模块集成在一个物理实体中。
该功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (27)

  1. 一种确定上行载波的方法,其特征在于,包括:
    从网络设备接收至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
    根据所述至少一个第一上行载波的第一参数,从所述至少一个第一上行载波确定第二上行载波,所述第二上行载波为用于接入的上行载波。
  2. 根据权利要求1所述的方法,其特征在于,所述第二上行载波为所述至少一个第一上行载波中第一参数最大的上行载波;或者,
    所述第二上行载波为所述至少一个第一上行载波中第一参数最小的上行载波。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第一数值;
    其中,所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,
    所述第二上行载波为至少一个第三上行载波中序号最小的上行载波;
    其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,
    所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第一数值;
    其中,所述第二上行载波为至少一个第三上行载波中信号强度最高的上行载波;或者,
    所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的下行载波的信号强度最高的上行载波;
    其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,
    所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
  6. 根据权利要求5所述的方法,其特征在于,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,
    所述第三阈值为预定义的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中信号强度大于或等于第一阈值的上行载波;或者,
    所述至少一个第一上行载波为所述网络设备配置的至少一个上行载波中,与所述至少一个上行载波相关联的下行载波的信号强度大于或等于第二阈值的上行载波。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,
    下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述至少一个第一上行载波的数量为大于1的正整数。
  10. 一种上行载波接入方法,其特征在于,包括:
    网络设备确定第一参数,第一参数与至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
    所述网络设备向终端设备发送所述第一参数。
  11. 根据权利要求10所述的方法,其特征在于,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,
    下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
  12. 根据权利要求10或11所述的方法,其特征在于,所述至少一个第一上行载波的数量为大于1的正整数。
  13. 一种上行载波接入方法,其特征在于,包括:
    终端设备接收第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;
    所述终端设备根据第一信息从所述至少一个第一上行载波中确定第二上行载波,所述第二上行载波为第一小区中用于接入的上行载波;
    其中,所述至少一个第一上行载波与第二下行载波位于第二小区,且所述至少一个第一上行载波位于所述第一小区;或者,
    所述至少一个第一上行载波与第一下行载波位于所述第一小区。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述至少一个第二下行载波的信号强度;
    所述第二上行载波为所述至少一个第二下行载波中的信号强度最高的所对应的上行载波。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
    确定第一数值;
    所述第二上行载波为至少一个第三上行载波中序号最大的上行载波;或者,
    所述第二上行载波为所述至少一个第三上行载波中序号最小的上行载波;
    其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,
    所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS;
    确定第一数值;
    其中,所述第二上行载波为至少一个第三上行载波中,与所述至少一个第三上行载波相关联的所述至少一个第二下行载波的信号强度最高的上行载波;或者,
    其中,所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数大于所述第一数值的上行载波;或者,
    所述至少一个第三上行载波为所述至少一个第一上行载波中第一参数小于所述第一数值的上行载波。
  17. 根据权利要求16所述的方法,其特征在于,所述第一数值大于或等于0且小于或等于第三阈值,所述第三阈值关联于下述项中的至少一项:服务质量QoS级别、缓冲状态报告BSR级别、终端设备的类型、时延要求、终端设备的业务类型。
  18. 根据权利要求17所述的方法,其特征在于,所述第三阈值为网络设备通过无线资源控制RRC信令配置的;或者,
    所述第三阈值为预定义的。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,
    下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述至少一个第一上行载波的数量为大于1的正整数。
  21. 一种上行载波接入方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息包含至少一个第一上行载波与至少一个第二下行载波的对应信息;
    所述网络设备向终端设备发送所述第一信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送至少一个第一上行载波的第一参数,所述第一参数与所述至少一个第一上行载波的下述项中的至少一项相关联:负载、子载波间隔SCS。
  23. 根据权利要求22所述的方法,其特征在于,下述项中的至少一项越大,所述第一参数越小:所述负载、所述SCS;或者,
    下述项中的至少一项越大,所述第一参数越大:所述负载、所述SCS。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述至少一个第一上行载波的数量为大于1的正整数。
  25. 一种测量方法,其特征在于,所述方法包括:
    终端设备接收系统信息,所述系统信息包括针对其它终端设备的用于测量载波的参考信号的配置信息;
    所述终端设备根据所述系统信息对所述参考信号进行测量。
  26. 一种通信装置,其特征在于,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9或13至20或25,或者,10至12或21至24中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至9或13至20或25,或者,10至12或21至24中任一项所述的方法。
PCT/CN2022/081173 2021-05-17 2022-03-16 确定上行载波的方法和通信装置 WO2022242283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22803612.5A EP4333495A1 (en) 2021-05-17 2022-03-16 Method for determining uplink carrier, and communication apparatus
CN202280012794.6A CN116783932A (zh) 2021-05-17 2022-03-16 确定上行载波的方法和通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110534705.1A CN115379503A (zh) 2021-05-17 2021-05-17 确定上行载波的方法和通信装置
CN202110534705.1 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022242283A1 true WO2022242283A1 (zh) 2022-11-24

Family

ID=84058352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081173 WO2022242283A1 (zh) 2021-05-17 2022-03-16 确定上行载波的方法和通信装置

Country Status (3)

Country Link
EP (1) EP4333495A1 (zh)
CN (2) CN115379503A (zh)
WO (1) WO2022242283A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2197231A2 (en) * 2008-12-11 2010-06-16 Electronics and Telecommunications Research Institute Carrier selection method of terminal and call connection method
CN102215575A (zh) * 2010-04-09 2011-10-12 中兴通讯股份有限公司 一种终端的上行辅载波确定方法和无线网络控制器
CN104468064A (zh) * 2013-09-17 2015-03-25 中国移动通信集团公司 一种小区的实现方法、系统和设备
CN111436070A (zh) * 2019-01-11 2020-07-21 中国信息通信研究院 一种功率余量上报的方法和终端设备
CN111526600A (zh) * 2020-04-21 2020-08-11 深圳前海达闼云端智能科技有限公司 网络接入的方法、装置、存储介质及终端和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2197231A2 (en) * 2008-12-11 2010-06-16 Electronics and Telecommunications Research Institute Carrier selection method of terminal and call connection method
CN102215575A (zh) * 2010-04-09 2011-10-12 中兴通讯股份有限公司 一种终端的上行辅载波确定方法和无线网络控制器
CN104468064A (zh) * 2013-09-17 2015-03-25 中国移动通信集团公司 一种小区的实现方法、系统和设备
CN111436070A (zh) * 2019-01-11 2020-07-21 中国信息通信研究院 一种功率余量上报的方法和终端设备
CN111526600A (zh) * 2020-04-21 2020-08-11 深圳前海达闼云端智能科技有限公司 网络接入的方法、装置、存储介质及终端和网络设备

Also Published As

Publication number Publication date
EP4333495A1 (en) 2024-03-06
CN115379503A (zh) 2022-11-22
CN116783932A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
EP3965449B1 (en) Method and device for determining spectrum resource
CN112136289B (zh) 当配置多个集合时选取srs资源集
US11540267B2 (en) DCI detection method, PDCCH configuration method, and communications apparatus
JP6987990B2 (ja) 通信方法および装置
CN111918297B (zh) 一种cu-du架构下小区合并的方法及装置
CN110831181B (zh) 信息检测方法、通信设备与计算机可读存储介质
US12004228B2 (en) Information transmission method, terminal device, and network device
US20230049307A1 (en) Device-to-Device Based Resource Determining Method and Device
US20230189290A1 (en) Information determining method, information sending method, terminal, and network side device
US20230262452A1 (en) Communication Method for Terminal and Communication Apparatus
US20230131328A1 (en) Message processing method and device
CN110958067A (zh) 一种资源配置的方法、装置及系统
US11996959B2 (en) SRS transmission method, access network device, and terminal device
US20210219298A1 (en) Resource configuration method, information sending method, and apparatus
US20240014969A1 (en) Communication method and apparatus
CN117460007A (zh) 一种小区状态切换方法及装置
US20230023034A1 (en) Sidelink Communication Method, Apparatus, and System
WO2022242283A1 (zh) 确定上行载波的方法和通信装置
CN115553010A (zh) 用于物理控制信道可靠性增强的控制信令
CN108293189A (zh) 一种随机接入方法及装置
CN114930758B (zh) 多发射和接收点(多trp)增强
WO2020061893A1 (zh) 测量信道质量的方法和装置
WO2020061961A1 (zh) 测量信道质量的方法和装置
US20230199777A1 (en) Method for transmitting uplink control information, communication apparatus, and related device
WO2024032735A1 (zh) 一种下行控制信息的检测方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012794.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022803612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022803612

Country of ref document: EP

Effective date: 20231129

NENP Non-entry into the national phase

Ref country code: DE