WO2022241885A1 - 一种3d打印机挤出结构 - Google Patents

一种3d打印机挤出结构 Download PDF

Info

Publication number
WO2022241885A1
WO2022241885A1 PCT/CN2021/100450 CN2021100450W WO2022241885A1 WO 2022241885 A1 WO2022241885 A1 WO 2022241885A1 CN 2021100450 W CN2021100450 W CN 2021100450W WO 2022241885 A1 WO2022241885 A1 WO 2022241885A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrusion
printer
hob
housing
heating block
Prior art date
Application number
PCT/CN2021/100450
Other languages
English (en)
French (fr)
Inventor
刘辉林
唐京科
陈春
敖丹军
吴大江
Original Assignee
深圳市创想三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创想三维科技有限公司 filed Critical 深圳市创想三维科技有限公司
Priority to KR1020237044281A priority Critical patent/KR20240005147A/ko
Priority to JP2023572219A priority patent/JP2024519128A/ja
Priority to EP21940334.2A priority patent/EP4342657A1/en
Publication of WO2022241885A1 publication Critical patent/WO2022241885A1/zh
Priority to US18/515,602 priority patent/US20240083111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the present application relates to the technical field of 3D printing, in particular to a 3D printer extrusion structure.
  • the extruded structure is a structure that heats the material at the nozzle of the 3D printer and extrudes it from the nozzle.
  • the stability of the extruded structure plays a key role in the printing quality and printing stability.
  • the traditional extrusion structure has a large volume and weight, which not only takes up a lot of space and is expensive, but also causes a large load on the printer due to its large volume and weight, which is not suitable for near-end and ultra-near-end printing.
  • some of the existing extrusion structures use single-tooth feeding, which causes the feeding to be not stable enough, and the stability and accuracy of feeding are poor.
  • the present invention provides a 3D printer extrusion structure that is small in size, light in weight, stable and accurate in feeding, and easy to operate.
  • a 3D printer extruded structure comprising:
  • the motor is arranged on the housing;
  • active extrusion hobbing set in the housing and connected with the motor
  • the adjustment bracket is rotatably connected in the housing
  • the driven extrusion hob is arranged at one end of the adjustment bracket and is rotatably connected with the adjustment bracket;
  • an elastic member is connected to the other end of the adjustment bracket, so that the end of the adjustment bracket provided with the driven extrusion hob approaches the active extrusion hob, so that the driven extrusion hob
  • the active extrusion hob cooperates with the active extrusion hob to complete extrusion
  • the adjusting bracket is provided with one end of the driven extrusion hob protruding to the outside of the housing.
  • the extrusion structure of the 3D printer also includes:
  • the gear shaft is rotatably connected in the housing
  • a reduction gear is arranged on the gear shaft and meshes with the motor gear.
  • the outer diameter of the reduction gear is larger than the outer diameter of the motor gear.
  • the active extrusion hobbing is arranged on the gear shaft and meshes with the motor gear. The reduction gears rotate coaxially.
  • the extrusion structure of the 3D printer also includes:
  • a heat sink is arranged below the active extrusion hob and the driven extrusion hob;
  • the first discharge pipe is arranged in the heat sink for discharging the consumables of the 3D printer
  • a throat sleeved outside the first discharge pipe, and one end of the throat is in contact with the heat sink;
  • the first cooling fan and the first air guide are arranged on the housing, and the first air guide can guide the air blown by the first cooling fan to the heat sink.
  • the extrusion structure of the 3D printer also includes:
  • a heating block is arranged under the heat sink, and the other end of the throat is in contact with the heating block;
  • the nozzle is arranged at the bottom of the heating block, and the consumables are ejected from the nozzle after passing through the heat sink and the heating block in sequence;
  • the heating tube is arranged on the heating block and is used for heating the consumables in the heating block.
  • the outer periphery of the reduction gear passes through to the outside of the housing.
  • the extrusion structure of the 3D printer also includes:
  • the second cooling fan and the second air guide are arranged on the housing, and the second air guide can guide the air of the second cooling fan to the model under the extrusion structure of the 3D printer.
  • the extrusion structure of the 3D printer also includes:
  • the casing is provided with a clamping position for installing the mounting screw, the mounting screw is arranged in the clamping position, and the elastic member is sleeved on the mounting screw.
  • the other end of the adjustment bracket has a first side and a second side along its rotation direction, the first side is connected with the elastic member, and the shell A limiting structure corresponding to the second side is provided in the body to limit the adjustment bracket.
  • a thermistor is arranged in the heating block.
  • the surface of the heating block is covered with a heat insulating member.
  • the extrusion structure of the 3D printer of the present invention adopts a double-tooth feeding method, and the active extrusion hob cooperates with the driven extrusion hob to realize the extrusion of consumables, which can realize stable and accurate feeding.
  • the adjustment bracket installed with the driven extrusion hob protrudes out of the housing. When the consumable needs to be inserted, the adjustment bracket can be moved from the outside of the housing to separate the driven extrusion hob from the active extrusion hob. Insert consumables, easy to operate.
  • the extruded structure of the 3D printer of the present invention is small in volume and light in weight, can realize miniaturization and light weight of the extruded structure, and can be adapted to near-end and ultra-near-end printing.
  • Fig. 1 is the schematic diagram of the three-dimensional structure of the extruded structure of the 3D printer in the present invention
  • Fig. 2 is a schematic diagram of the internal structure of the extrusion structure of the 3D printer in the present invention
  • Fig. 3 is a schematic diagram of the exploded structure of the extruded structure of the 3D printer in the present invention.
  • Fig. 4 is the schematic diagram of the front view of the extruded structure of the 3D printer in the present invention.
  • Fig. 5 is a schematic cross-sectional view of the A-A section in Fig. 4;
  • Fig. 6 is a front structural schematic diagram of the structure shown in Fig. 2;
  • Fig. 7 is a schematic structural view of the extruded structure of the 3D printer in the present invention when the consumable is inserted.
  • the present invention provides a 3D printer extrusion structure. Please refer to FIG. 1 to FIG. 150 and elastic member 160.
  • the casing 110 may include a front casing 111 and a rear casing 112 , and of course, the number of components of the casing 110 may also be adjusted according to needs, for example, a multi-segment casing that is spliced together, which is not limited here.
  • the motor 120 is arranged on the casing 110.
  • the motor 120 is arranged on the rear side of the casing 110, and the motor 120 is arranged outside the casing 110, and the casing 110 passes through the positioning hole on the casing of the motor 120 to locate the installation.
  • the rotor of the motor 120 penetrates into the housing 110 , and the active extrusion hob 130 is disposed in the housing 110 and connected with the rotor of the motor 120 so that the motor 120 drives the active extrusion hob 130 to rotate.
  • the active extrusion hob 130 can be directly connected to the motor 120 , or indirectly connected through other intermediate transmission structures. In the present invention, the active extrusion hob 130 is indirectly connected to the motor 120 .
  • the adjusting bracket 140 is rotatably connected in the casing 110 .
  • the adjustment bracket 140 is rotatably connected to the housing 110 through the first rotation pin 131 , so that the adjustment bracket 140 can rotate around the rotation axis 132 .
  • one end of the first rotating pin 131 is supported on the front shell 111 , and the other end is supported on the rear shell 112 .
  • the driven extrusion hob 150 is arranged at one end of the adjustment bracket 140 and is rotatably connected with the adjustment bracket 140 . The driven extrusion hob 150 can rotate on the adjustment bracket 140 to realize material feeding.
  • the elastic member 160 is connected to the other end of the adjustment bracket 140, and the elastic member 160 can make the end of the adjustment bracket 140 provided with the driven extrusion hob 150 approach the active extrusion hob 130 to compress the consumable 101, so that the driven extrusion
  • the hob 150 cooperates with the active extrusion hob 130 to complete extrusion, and the consumable 101 is clamped between the active extrusion hob 130 and the driven extrusion hob 150, and is extruded outward with the rotation of the hob .
  • the dual-tooth feeding mode in which the active extrusion hob 130 and the driven extrusion hob 150 cooperate, the feeding of the extrusion structure of the 3D printer of the present invention is relatively stable and accurate.
  • one end of the adjusting bracket 140 provided with the driven extrusion hob 150 goes out to the outside of the casing 110 to form a lever located outside the casing 110. Toggle the adjustment bracket 140 to make the adjustment bracket 140 rotate clockwise around the rotation axis 132, referring to FIG. Between the active extrusion hob 150 and the active extrusion hob 130. During the process of toggling the adjustment bracket 140, the elastic member 160 is compressed, and after the consumable 101 is penetrated, the adjustment bracket 140 is released, and the adjustment bracket 140 can be reset under the elastic force of the elastic member 160, so that the driven extrusion hob 150 Cooperate with the active extrusion hob 130 again, clamp the consumable 101, and start feeding.
  • the extrusion structure of the 3D printer of the present invention only needs to toggle the part of the adjustment bracket 140 outside the casing 110 to realize the material feeding operation, which is convenient and quick.
  • the extruded structure of the 3D printer of the present invention is small in volume and light in weight, can realize miniaturization and light weight of the extruded structure, and can be adapted to near-end and ultra-near-end printing.
  • the driven extrusion hob 150 is rotatably connected to the adjustment bracket 140 through the second rotating pin 151 .
  • the two ends of the second rotating pin 151 are respectively supported on the front and rear sides of the adjustment bracket 140, and the front and rear ends of the driven extrusion hob 150 are pressed into the first plastic flange bearing 152 and the second plastic flange bearing respectively. 153, and then penetrate the second rotating pin 151.
  • the extrusion structure of the 3D printer of the present invention also includes a mounting screw 141, and the casing 110 is provided with a clamping position for mounting the mounting screw 141, the mounting screw 141 is located in the clamping position, and the elastic member 160 can be a spring , the spring is sleeved on the mounting screw 141 to realize the guiding of the spring.
  • the spring is sleeved on the mounting screw 141 , and the other end is abutted against the adjusting bracket 140 , and the spring tightens the adjusting bracket 140 toward the active extrusion hob 130 .
  • the end of the adjustment bracket 140 connected to the elastic member 160 has a first side and a second side along the direction of rotation, the first side is connected to the elastic member 160 , and the casing 110 is provided with a device corresponding to the second side.
  • the limiting structure 142 is used to limit the adjustment bracket 140 .
  • the limit structure 142 is a stopper wall, which can stop the adjustment bracket 140 to limit the extrusion limit position, and prevent the adjustment bracket 140 from actively extruding the hobbing gear under the action of the spring.
  • the extrusion force of 130 extrusion is too large, resulting in material breakage.
  • the spring makes the adjustment bracket 140 have a certain extrusion force, which avoids planing due to too small extrusion force.
  • the extrusion structure of the 3D printer also includes a motor gear 170, a gear shaft 180, and a reduction gear 190.
  • the motor gear 170 is connected to the rotor of the motor 120, and the gear shaft 180 is rotatably connected in the housing 110.
  • the gear shaft 180 is rotatably connected in the housing 110 through a bearing 181 .
  • the reduction gear 190 is disposed on the gear shaft 180 and meshes with the motor gear 170 .
  • the outer diameter of the reduction gear 190 is larger than the outer diameter of the motor gear 170, so that the motor gear 170 with a smaller diameter meshes with the reduction gear 190 with a larger diameter to form a first-stage reduction, and the active extrusion hobbing 130 is arranged on the gear shaft 180 It rotates coaxially with the reduction gear 190 , and the reduction gear 190 transmits the torque to the coaxial active extrusion hob 130 through the gear shaft 180 after deceleration.
  • the active extrusion hob 130 cooperates with the driven extrusion hob 150 to extrude the consumable 101 . Only one level of deceleration is used, which makes the entire 3D printer extrusion structure more streamlined, smaller in size, lighter in weight, and miniaturized and lightweight. At the same time, there are fewer deceleration levels, only one, which can realize the torque output of a small motor with a large torque.
  • the outer circumference of the reduction gear 190 goes out to the outside of the housing 110, so that the reduction gear 190 can be rotated from the outside of the housing 110.
  • the auxiliary consumable 101 enters the 3D by rotating the reduction gear 190.
  • the printer extrudes in the structure.
  • the extrusion structure of the 3D printer of the present invention further includes a heat sink 200 , a first discharge pipe 210 , a throat 220 , a first cooling fan 230 and a first air guide 240 .
  • the heat sink 200 is arranged under the active extrusion hob 130 and the driven extrusion hob 150, and is located in the casing 110.
  • the heat dissipation element 200 is integrated into the casing 110, that is, the heat dissipation element 200 is integrated into the entire 3D In the extruded structure of the printer, in the prior art, the heat sink is separated from the extruded structure of the 3D printer. The volume of the machine.
  • the first discharge pipe 210 is arranged in the heat sink 200.
  • the first discharge pipe 210 is used for discharging the consumables 101 of the 3D printer.
  • the discharge pipe is a Teflon tube, and the consumables 101 are discharged from the Teflon tube.
  • a second discharge pipe 211 is provided above the first discharge pipe 210
  • a feed conduit 212 is provided above the extrusion hob, and the consumables 101 flow from the feed conduit 212 After entering the extrusion structure of the 3D printer, it is extruded through the extrusion hob, and then passes through the second discharge pipe 211 and the first discharge pipe 210 in sequence.
  • the throat pipe 220 is sleeved outside the first discharge pipe 210, and one end of the throat pipe 220 is in contact with the heat sink 200, and the other end of the throat pipe 220 is in contact with the heating block 250, so as to transfer the heat generated by the heating block 250 to the heat sink. 200 to realize heat dissipation.
  • the first heat dissipation fan 230 and the first air guide 240 are fixed outside the housing 110. Specifically, the first heat dissipation fan 230 and the first air guide 240 can be installed on the left or right side of the extrusion structure of the 3D printer. An air guide 240 can guide the air blown by the first heat dissipation fan 230 to the heat dissipation element 200 .
  • the first cooling fan 230 and the first air guide 240 are installed on the left side, the first air guide 240 has a first air guide 241, and the first air guide 241 is located on the heat sink. 200 , so that the first heat dissipation fan 230 blows the heat dissipation airflow from the first air guide opening 241 to the heat dissipation element 200 .
  • the heat sink 200 is roughly in the shape of a groove, and a plurality of cooling fins are arranged in the groove.
  • the first air guide port 241 is located at the left end of the groove, and blows the heat dissipation air through the heat sink 200 from left to right.
  • the heat sink 200 is preferably made of metal with better heat dissipation performance, such as aluminum.
  • the extrusion structure of the 3D printer further includes a heating block 250 , a nozzle 260 and a heating tube 270 .
  • the heating block 250 is arranged under the heat sink 200, and the nozzle 260 is arranged at the bottom of the heating block 250.
  • the nozzle 260 can be screwed to the bottom of the heating block 250, so that the installation can be completed simply by tightening the nozzle 260, which is simple and quick.
  • the consumables 101 pass through the heat sink 200 and the heating block 250 in sequence, and then are ejected from the nozzle 260 .
  • the heating tube 270 is disposed on the heating block 250 for heating the consumables 101 in the heating block 250 .
  • the heating tube 270 is connected to an external power source to achieve heating.
  • the heating tube 270 generates heat after being energized, and transfers the heat to the heating block 250 , thereby increasing the temperature of the consumables 101 in the heating block 250 .
  • a thermal insulation member 251 can be sleeved on the outer surface of the heating block 250 to prevent personnel from accidentally touching the heating block 250 and causing burns.
  • the heat insulating member 251 is made of a heat insulating material, such as a silicone sleeve, a plastic sleeve or a rubber sleeve, and the like.
  • a thermistor 252 is also provided in the heating block 250 to detect the heating temperature, thereby realizing precise control of the heating temperature.
  • the extrusion structure of the 3D printer also includes a second heat dissipation fan 280 and a second air guide 290, and the second heat dissipation fan 280 and the second air guide 290 are arranged on the housing 110
  • the second heat dissipation fan 280 and the second air guide 290 are arranged on the rear side of the casing 110 and below the motor 120, so that the space under the motor 120 can be fully utilized and the volume of the whole machine can be reduced.
  • the second air guide 290 can guide the air of the second cooling fan 280 to the model under the extrusion structure of the 3D printer. Specifically, as shown in FIG. 3 , FIG. 5 and FIG.
  • the left and right sides of the second air guide member 290 are provided with second air guide openings 291 facing downward, so as to blow the cooling air flow to the printing model below. Print the model to cool down.
  • a special heat dissipation channel design is adopted to ensure the overall heat dissipation effect and improve the printing effect while reducing the volume.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • the first feature being "above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the fact that the first feature is "below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • orientations or positional relationships of the terms “upper”, “lower”, “left”, “right”, “front”, and “rear” are based on the orientation or positional relationships shown in the accompanying drawings, and only In order to facilitate description and simplify operation, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the present invention.
  • the terms “first” and “second” are only used to distinguish in description, and have no special meaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种3D打印机挤出结构包括:壳体(110);电机(120),设于所述壳体(110)上;主动挤出滚齿(130),设于所述壳体(110)内且与所述电机(120)连接;调节支架(140),转动连接在所述壳体(110)内;从动挤出滚齿(150),设于所述调节支架(140)的一端且与所述调节支架(140)转动连接;弹性件(160),所述弹性件(160)与所述调节支架(140)的另一端连接,能使所述调节支架(140)设置有所述从动挤出滚齿(150)的一端向所述主动挤出滚齿(130)靠近,以使所述从动挤出滚齿(150)与所述主动挤出滚齿(130)配合完成挤料;其中,所述调节支架(140)设置有所述从动挤出滚齿(150)的一端穿出至所述壳体(110)的外部。

Description

一种3D打印机挤出结构 技术领域
本申请涉及3D打印技术领域,尤其涉及一种3D打印机挤出结构。
背景技术
在3D打印机中,挤出结构是位于3D打印机的喷嘴处将物料加热及从喷嘴挤出的结构,挤出结构的稳定性对打印质量和打印稳定性起到关键作用。传统的挤出结构体积和重量较大,不仅占用空间大,成本高,而且由于其体积和重量较大,导致打印机负载大,不适合做近端和超近端打印。另外,现有的挤出结构有些是采用单齿送料,导致送料不够平稳,送料的稳定性和精确性较差。
发明内容
为解决上述技术问题,本发明提供一种体积小、质量轻、送料平稳精确且便于操作的3D打印机挤出结构。
为达此目的,本发明采用以下技术方案:
一种3D打印机挤出结构,包括:
壳体;
电机,设于所述壳体上;
主动挤出滚齿,设于所述壳体内且与所述电机连接;
调节支架,转动连接在所述壳体内;
从动挤出滚齿,设于所述调节支架的一端且与所述调节支架转动连接;
弹性件,所述弹性件与所述调节支架的另一端连接,能使所述 调节支架设置有所述从动挤出滚齿的一端向所述主动挤出滚齿靠近,以使所述从动挤出滚齿与所述主动挤出滚齿配合完成挤料;
其中,所述调节支架设置有所述从动挤出滚齿的一端穿出至所述壳体的外部。
作为上述一种3D打印机挤出结构的可选方案,所述的3D打印机挤出结构还包括:
电机齿轮,与所述电机连接;
齿轮转轴,转动连接在所述壳体内;
减速齿轮,设于所述齿轮转轴上并与所述电机齿轮啮合,所述减速齿轮的外径大于所述电机齿轮的外径,所述主动挤出滚齿设于所述齿轮转轴上并与所述减速齿轮同轴转动。
作为上述一种3D打印机挤出结构的可选方案,所述的3D打印机挤出结构还包括:
散热件,设于所述主动挤出滚齿及所述从动挤出滚齿的下方;
第一出料管,设于所述散热件内,以供3D打印机的耗材出料;
喉管,套设于所述第一出料管外,且所述喉管的一端与所述散热件接触;
第一散热风扇及第一导风件,设于所述壳体上,所述第一导风件能将所述第一散热风扇吹出的风导至所述散热件处。
作为上述一种3D打印机挤出结构的可选方案,所述的3D打印机挤出结构还包括:
加热块,设于所述散热件下方,所述喉管的另一端与所述加热块接触;
喷嘴,设于所述加热块底端,所述耗材依次经过所述散热件、所述加热块后从所述喷嘴喷出;
加热管,设于所述加热块上,用于对所述加热块中的耗材进行加热。
作为上述一种3D打印机挤出结构的可选方案,所述减速齿轮的外周穿出至所述壳体的外部。
作为上述一种3D打印机挤出结构的可选方案,所述的3D打印机挤出结构还包括:
第二散热风扇及第二导风件,设于所述壳体上,所述第二导风件能将所述第二散热风扇的风导至所述3D打印机挤出结构下方的模型处。
作为上述一种3D打印机挤出结构的可选方案,所述的3D打印机挤出结构还包括:
安装螺钉,所述壳体内设置有用于安装所述安装螺钉的卡位,所述安装螺钉设于所述卡位中,所述弹性件套设于所述安装螺钉上。
作为上述一种3D打印机挤出结构的可选方案,所述调节支架的另一端具有沿其转动方向的第一侧和第二侧,所述第一侧与所述弹性件连接,所述壳体内设置有与所述第二侧对应的限位结构,以对所述调节支架进行限位。
作为上述一种3D打印机挤出结构的可选方案,所述加热块内设置有热敏电阻。
作为上述一种3D打印机挤出结构的可选方案,所述加热块的表面套设有隔热件。
本发明的3D打印机挤出结构采用双齿送料的方式,主动挤出滚齿与从动挤出滚齿配合实现耗材的挤出,可以实现平稳和精确送料。安装从动挤出滚齿的调节支架伸出至壳体外部,当需要穿入耗材时,从壳体外部拨动调节支架即可使从动挤出滚齿与主动挤出滚齿分离,以穿入耗材,操作方便。同时,本发明的3D打印机挤出结构体积小,重量轻,能实现挤出结构的小型化和轻量化,能适应近端和超近端打印。
附图说明
图1是本发明中3D打印机挤出结构的立体结构示意图;
图2是本发明中3D打印机挤出结构的内部结构示意图;
图3是本发明中3D打印机挤出结构的分解结构示意图;
图4是本发明中3D打印机挤出结构的主视结构示意图;
图5是图4中A-A截面的截面示意图;
图6是图2所示结构的主视结构示意图;
图7是本发明中3D打印机挤出结构的穿入耗材时的结构示意图。
图中:
101、耗材;110、壳体;111、前壳;112、后壳;120、电机;130、主动挤出滚齿;131、第一转动销钉;132、转动轴线;140、调节支架;141、安装螺钉;142、限位结构;150、从动挤出滚齿;151、第二转动销钉;152、第一塑料法兰轴承;153、第二塑料法兰轴承;160、弹性件;170、电机齿轮;180、齿轮转轴;181、轴承;190、减速齿轮;200、散热件;210、第一出料管;211、第二出料管;212、进料导管;220、喉管;230、第一散热风扇;240、第一导风件;241、第一导风口;250、加热块;251、隔热件;252、热敏电阻;260、喷嘴;270、加热管;280、第二散热风扇;290、第二导风件;291、第二导风口。
具体实施方式:
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
本发明提供了一种3D打印机挤出结构,请结合图1至图6,3D 打印机挤出结构包括壳体110、电机120、主动挤出滚齿130、调节支架140、从动挤出滚齿150以及弹性件160。壳体110可包括前壳111和后壳112,当然也可根据需要调整壳体110的构成部件数量,例如包括互相拼接的多段壳体,在此不作限制。
电机120设置在壳体110上,于一具体实施例中,电机120设置在壳体110的后侧,且电机120设置在壳体110的外部,壳体110通过电机120机壳上的定位孔来定位安装。电机120的转子穿入壳体110内部,主动挤出滚齿130设置在壳体110内且与电机120的转子连接,以使电机120驱动主动挤出滚齿130转动。主动挤出滚齿130与电机120可直接连接,也可以通过其它中间传动结构间接连接,本发明中,主动挤出滚齿130与电机120间接连接。
调节支架140转动连接在壳体110内。如图2及图3所示,调节支架140通过第一转动销钉131与壳体110转动连接,以使调节支架140能绕转动轴线132转动。较佳的,第一转动销钉131的一端支撑在前壳111上,另一端支撑在后壳112上。如图6所示,从动挤出滚齿150设置在调节支架140的一端且与调节支架140转动连接,从动挤出滚齿150能在调节支架140上转动以实现送料。弹性件160与调节支架140的另一端连接,弹性件160能使调节支架140设置有从动挤出滚齿150的一端向主动挤出滚齿130靠近以压紧耗材101,使从动挤出滚齿150与主动挤出滚齿130配合完成挤料,耗材101被夹紧在主动挤出滚齿130和从动挤出滚齿150之间,并随着滚齿的转动被向外挤出。通过主动挤出滚齿130和从动挤出滚齿150配合的双齿送料的方式,使得本发明的3D打印机挤出结构送料较平稳精确。
结合图4及图6,调节支架140上设置有从动挤出滚齿150的一端穿出至壳体110的外部,以形成一个位于壳体110外部的拨杆,通过拨动该拨杆来拨动调节支架140使调节支架140绕转动轴线 132沿顺时针方向转动,参考图7,从而使从动挤出滚齿150与主动挤出滚齿130分离,这样就可以将耗材101穿入从动挤出滚齿150与主动挤出滚齿130之间了。拨动调节支架140的过程中,弹性件160被压缩,耗材101穿入完成后,释放调节支架140,调节支架140又可以在弹性件160的弹力作用下复位,使从动挤出滚齿150与主动挤出滚齿130重新配合在一起,夹紧耗材101,开始送料。也就是说,本发明的3D打印机挤出结构只需拨动调节支架140位于壳体110外的部分即可实现穿料操作,方便快捷。同时,本发明的3D打印机挤出结构体积小,重量轻,能实现挤出结构的小型化和轻量化,能适应近端和超近端打印。
进一步的,如图3及图6所示,从动挤出滚齿150通过第二转动销钉151转动连接在调节支架140上。具体的,第二转动销钉151的两端分别支撑在调节支架140的前后两侧,从动挤出滚齿150的前后两端分别压入第一塑料法兰轴承152和第二塑料法兰轴承153,再穿入第二转动销钉151中。
如图6所示,本发明的3D打印机挤出结构还包括安装螺钉141,壳体110内设置有用于安装安装螺钉141的卡位,安装螺钉141设于卡位中,弹性件160可采用弹簧,弹簧套设于安装螺钉141上,以实现弹簧的导向。如图6所示,弹簧的一端套设于安装螺钉141上,另一端抵接在调节支架140上,弹簧将调节支架140向主动挤出滚齿130顶紧。当需要穿料时,只需沿图6中箭头所示的方向按压调节支架140即可使从动挤出滚齿150与主动挤出滚齿130分离,以便将耗材101穿入两者之间,按压过程中弹簧被压缩,当释放调节支架140后调节支架140即可在弹簧的作用下复位。
请继续参考图6,调节支架140与弹性件160连接的一端具有沿其转动方向的第一侧和第二侧,第一侧与弹性件160连接,壳体110内设置有与第二侧对应的限位结构142,以对调节支架140进行 限位。本实施例中,如图6所述,限位结构142为一个止挡壁面,能止挡住调节支架140,以限定挤压极限位置,避免调节支架140在弹簧的作用下向主动挤出滚齿130挤压的挤压力过大,造成断料。同时,弹簧使得调节支架140具有一定的挤压力,避免了挤压力过小而导致刨料。
如图3所示,3D打印机挤出结构还包括电机齿轮170、齿轮转轴180以及减速齿轮190,电机齿轮170与电机120的转子连接,齿轮转轴180转动连接在壳体110内,具体的,如图3所示,齿轮转轴180通过轴承181转动连接在壳体110内。减速齿轮190设置在齿轮转轴180上并与电机齿轮170啮合。减速齿轮190的外径大于电机齿轮170的外径,这样使得直径较小的电机齿轮170与直径较大的减速齿轮190啮合后形成一级减速,主动挤出滚齿130设置在齿轮转轴180上与减速齿轮190同轴转动,减速齿轮190实现减速后将转矩通过齿轮转轴180传递给同轴设置的主动挤出滚齿130。主动挤出滚齿130与从动挤出滚齿150配合将耗材101挤出。仅采用一级减速,使得整个3D打印机挤出结构结构较精简,体积较小,质量较轻,实现小型化和轻量化。同时,减速级别较少,只有一级,可实现小电机大扭矩的力矩输出。
如图1所示,减速齿轮190的外周穿出至壳体110的外部,以便于从壳体110的外部即可转动减速齿轮190,在穿料时,通过转动减速齿轮190辅助耗材101进入3D打印机挤出结构中。
请结合图2、图3以及图5,本发明的3D打印机挤出结构还包括散热件200、第一出料管210、喉管220、第一散热风扇230及第一导风件240。散热件200设置在主动挤出滚齿130及从动挤出滚齿150的下方,且位于壳体110内,将散热件200集成到壳体110中,也就是将散热件200集成到整个3D打印机挤出结构中,而现有技术中,是将散热件与3D打印机挤出结构分离,本发明将散热 件200集成到整个3D打印机挤出结构中的集成结构设计,极大的缩小了整机的体积。第一出料管210设置在散热件200内,第一出料管210用于供3D打印机的耗材101出料,出料管采用特氟龙管,耗材101从特氟龙管中出料。具体的,如图3及图5所示,第一出料管210上方还设置有一段第二出料管211,挤出滚齿的上方设置有进料导管212,耗材101从进料导管212进入3D打印机挤出结构后,经过挤出滚齿中被挤出,然后依次经过第二出料管211和第一出料管210。喉管220套设于在第一出料管210外,且喉管220的一端与散热件200接触,喉管220的另一端与加热块250接触,以将加热块250产生的热量传递到散热件200上,实现散热。第一散热风扇230及第一导风件240固定于壳体110外部,具体的,第一散热风扇230及第一导风件240可安装在3D打印机挤出结构的左侧或右侧,第一导风件240能将第一散热风扇230吹出的风导至散热件200处。如图3所示,本实施例中,第一散热风扇230和第一导风件240安装在左侧,第一导风件240上具有第一导风口241,第一导风口241位于散热件200的左端,以使第一散热风扇230将散热气流从第一导风口241吹向散热件200。如图3所述,散热件200大致为槽形,槽形中设置有若干散热片,第一导风口241位于槽型的左端,并将散热气流由左至右吹过散热件200。散热件200优选散热性能较好的金属材质,例如铝。
如图3及图5所示,3D打印机挤出结构还包括加热块250、喷嘴260以及加热管270。加热块250设置在散热件200下方,喷嘴260设置在加热块250底端,具体可将喷嘴260螺接在加热块250底端,这样只需拧紧喷嘴260即可完成安装,简单快捷。耗材101依次经过散热件200、加热块250后从喷嘴260喷出。加热管270设置在加热块250上,用于对加热块250中的耗材101进行加热。可以理解的是,加热管270连接外部电源,以实现加热。加热管270 通电后发热,将热量传递给加热块250,进而使加热块250中的耗材101升温。
为了提升安全性能,如图3及图5所述,可以在加热块250外表面套设隔热件251,避免人员误触碰到加热块250导致烫伤。隔热件251采用隔热材质,例如可以采用硅胶套,也可以采用塑胶套及橡胶套等。
另外,加热块250内还设置有热敏电阻252,以检测加热温度,进而实现加热温度的精确控制。
如图3、图5及图6所示,3D打印机挤出结构还包括第二散热风扇280及第二导风件290,第二散热风扇280及第二导风件290设于壳体110上,本实施例中,第二散热风扇280及第二导风件290设于壳体110的后侧并位于电机120的下方,这样可以充分利用电机120下方的空间,缩小整机的体积。第二导风件290能将第二散热风扇280的风导至3D打印机挤出结构下方的模型处。具体的,如图3、图5及图6所示,第二导风件290的左右两侧均设置有朝向下方的第二导风口291,以将冷却气流吹至下方的打印模型处,对打印模型进行冷却。本发明中,采用特殊的散热流道设计,在缩小体积的同时保证了整体的散热效果,改善了打印效果。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征 接触。而且,第一特征在第二特征“上方”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”“前”、“后”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种3D打印机挤出结构,其特征在于,包括:
    壳体(110);
    电机(120),设于所述壳体(110)上;
    主动挤出滚齿(130),设于所述壳体(110)内且与所述电机(120)连接;
    调节支架(140),转动连接在所述壳体(110)内;
    从动挤出滚齿(150),设于所述调节支架(140)的一端且与所述调节支架(140)转动连接;
    弹性件(160),所述弹性件(160)与所述调节支架(140)的另一端连接,能使所述调节支架(140)设置有所述从动挤出滚齿(150)的一端向所述主动挤出滚齿(130)靠近,以使所述从动挤出滚齿(150)与所述主动挤出滚齿(130)配合完成挤料;
    其中,所述调节支架(140)设置有所述从动挤出滚齿(150)的一端穿出至所述壳体(110)的外部。
  2. 根据权利要求1所述的3D打印机挤出结构,其特征在于,还包括:
    电机齿轮(170),与所述电机(120)连接;
    齿轮转轴(180),转动连接在所述壳体(110)内;
    减速齿轮(190),设于所述齿轮转轴(180)上并与所述电机齿轮(170)啮合,所述减速齿轮(190)的外径大于所述电机齿轮(170)的外径,所述主动挤出滚齿(130)设于所述齿轮转轴(180)上并与所述减速齿轮(190)同轴转动。
  3. 根据权利要求1所述的3D打印机挤出结构,其特征在于,还包括:
    散热件(200),设于所述主动挤出滚齿(130)及所述从动挤出滚齿(150)的下方;
    第一出料管(210),设于所述散热件(200)内,以供3D打印机的耗材(101)出料;
    喉管(220),套设于所述第一出料管(210)外,且所述喉管(220)的一端与所述散热件(200)接触;
    第一散热风扇(230)及第一导风件(240),设于所述壳体(110)上,所述第一导风件(240)能将所述第一散热风扇(230)吹出的风导至所述散热件(200)处。
  4. 根据权利要求3所述的3D打印机挤出结构,其特征在于,还包括:
    加热块(250),设于所述散热件(200)下方,所述喉管(220)的另一端与所述加热块(250)接触;
    喷嘴(260),设于所述加热块(250)底端,所述耗材(101)依次经过所述散热件(200)、所述加热块(250)后从所述喷嘴(260)喷出;
    加热管(270),设于所述加热块(250)上,用于对所述加热块(250)中的耗材(101)进行加热。
  5. 根据权利要求2所述的3D打印机挤出结构,其特征在于,所述减速齿轮(190)的外周穿出至所述壳体(110)的外部。
  6. 根据权利要求1所述的3D打印机挤出结构,其特征在于,还包括:
    第二散热风扇(280)及第二导风件(290),设于所述壳体(110)上,所述第二导风件(290)能将所述第二散热风扇(280)的风导至所述3D打印机挤出结构下方的模型处。
  7. 根据权利要求1所述的3D打印机挤出结构,其特征在于,还包括:
    安装螺钉(141),所述壳体(110)内设置有用于安装所述安装螺钉(141)的卡位,所述安装螺钉(141)设于所述卡位中,所述 弹性件(160)套设于所述安装螺钉(141)上。
  8. 根据权利要求1所述的3D打印机挤出结构,其特征在于,所述调节支架(140)的另一端具有沿其转动方向的第一侧和第二侧,所述第一侧与所述弹性件(160)连接,所述壳体(110)内设置有与所述第二侧对应的限位结构(142),以对所述调节支架(140)进行限位。
  9. 根据权利要求4所述的3D打印机挤出结构,其特征在于,所述加热块(250)内设置有热敏电阻(252)。
  10. 根据权利要求4所述的3D打印机挤出结构,其特征在于,所述加热块(250)的表面套设有隔热件(251)。
PCT/CN2021/100450 2021-05-21 2021-06-16 一种3d打印机挤出结构 WO2022241885A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237044281A KR20240005147A (ko) 2021-05-21 2021-06-16 3d 프린터 압출 구조
JP2023572219A JP2024519128A (ja) 2021-05-21 2021-06-16 3dプリンタの押出構造
EP21940334.2A EP4342657A1 (en) 2021-05-21 2021-06-16 3d printer extrusion structure
US18/515,602 US20240083111A1 (en) 2021-05-21 2023-11-21 3d printer extrusion structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110560451.0 2021-05-21
CN202110560451.0A CN115416284A (zh) 2021-05-21 2021-05-21 一种3d打印机挤出结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/515,602 Continuation-In-Part US20240083111A1 (en) 2021-05-21 2023-11-21 3d printer extrusion structure

Publications (1)

Publication Number Publication Date
WO2022241885A1 true WO2022241885A1 (zh) 2022-11-24

Family

ID=84140301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100450 WO2022241885A1 (zh) 2021-05-21 2021-06-16 一种3d打印机挤出结构

Country Status (6)

Country Link
US (1) US20240083111A1 (zh)
EP (1) EP4342657A1 (zh)
JP (1) JP2024519128A (zh)
KR (1) KR20240005147A (zh)
CN (1) CN115416284A (zh)
WO (1) WO2022241885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117261223A (zh) * 2023-11-22 2023-12-22 江苏锐力斯三维科技有限公司 自动检测断料堵料的挤出机结构及包含它的3d打印机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204309267U (zh) * 2014-12-17 2015-05-06 杭州杉帝科技有限公司 一种3d打印机的丝料挤出装置
KR101853431B1 (ko) * 2017-08-21 2018-05-02 주식회사 3디나라 3d프린터용 익스트루더
CN208946698U (zh) * 2018-10-31 2019-06-07 深圳上维科技有限公司 一种3d打印机的送料机构
US20190193331A1 (en) * 2017-12-21 2019-06-27 Ultimaker B.V. Filament feeder
CN110497617A (zh) * 2018-05-18 2019-11-26 罗天珍 双驱行星齿轮推料的快速三维打印机挤出装置
CN212194228U (zh) * 2020-01-10 2020-12-22 张树泳 3d打印机挤出机
CN112659558A (zh) * 2020-11-30 2021-04-16 深圳市创想三维科技有限公司 3d打印机及其送料装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204309267U (zh) * 2014-12-17 2015-05-06 杭州杉帝科技有限公司 一种3d打印机的丝料挤出装置
KR101853431B1 (ko) * 2017-08-21 2018-05-02 주식회사 3디나라 3d프린터용 익스트루더
US20190193331A1 (en) * 2017-12-21 2019-06-27 Ultimaker B.V. Filament feeder
CN110497617A (zh) * 2018-05-18 2019-11-26 罗天珍 双驱行星齿轮推料的快速三维打印机挤出装置
CN208946698U (zh) * 2018-10-31 2019-06-07 深圳上维科技有限公司 一种3d打印机的送料机构
CN212194228U (zh) * 2020-01-10 2020-12-22 张树泳 3d打印机挤出机
CN112659558A (zh) * 2020-11-30 2021-04-16 深圳市创想三维科技有限公司 3d打印机及其送料装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117261223A (zh) * 2023-11-22 2023-12-22 江苏锐力斯三维科技有限公司 自动检测断料堵料的挤出机结构及包含它的3d打印机
CN117261223B (zh) * 2023-11-22 2024-02-13 江苏锐力斯三维科技有限公司 自动检测断料堵料的挤出机结构及包含它的3d打印机

Also Published As

Publication number Publication date
JP2024519128A (ja) 2024-05-08
US20240083111A1 (en) 2024-03-14
CN115416284A (zh) 2022-12-02
KR20240005147A (ko) 2024-01-11
EP4342657A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2022241885A1 (zh) 一种3d打印机挤出结构
CN203697485U (zh) 3d打印笔
WO2022105033A1 (zh) 一种喷头套件的冷却机构及用于3d打印机的喷头套件
US11534969B2 (en) Single screw extrusion sprayer of a 3D printer
CN206085674U (zh) 一种3d打印机的喷头组件
WO2024012282A1 (zh) 双喷头装置及3d打印设备
CN215550960U (zh) 一种3d打印机挤出结构
CN213382996U (zh) 用于3d打印机的近程挤出机
CN205238586U (zh) 不易堵头的多功能3d打印头
CN209633778U (zh) 一种应用于3d打印机的打印头结构
CN218577007U (zh) 一种行星减速机3d打印挤出机构
CN110001060B (zh) 一种可转换喷嘴的3d打印机喷头组合装置
CN215943701U (zh) 喷头及三维打印机
CN213198805U (zh) 一种适用于3d打印机喉管散热的半导体制冷片散热器
CN207350219U (zh) 一种中空导风散热式的led汽车灯
CN211542392U (zh) 易于散热的3d打印笔
CN203679264U (zh) 3d打印挤出机
CN216032518U (zh) 一种打印机挤出头结构及其设备
CN212824750U (zh) 一种带散热的磨加工主动测量控制器
CN208143359U (zh) 防爆空调摄像机护罩
WO2022110479A1 (zh) 3d打印机喷头
CN218084194U (zh) 一种高温打印头的新型结构
CN108468972A (zh) 一种方便拆装散热器的led灯
CN219028524U (zh) 一种用于3d打印机的挤出结构
CN211105620U (zh) 一种用于3d打印机的颗粒挤出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572219

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237044281

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021940334

Country of ref document: EP

Ref document number: 1020237044281

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021940334

Country of ref document: EP

Effective date: 20231221