WO2022241791A1 - 短距离无线通信方法及相关设备 - Google Patents

短距离无线通信方法及相关设备 Download PDF

Info

Publication number
WO2022241791A1
WO2022241791A1 PCT/CN2021/095323 CN2021095323W WO2022241791A1 WO 2022241791 A1 WO2022241791 A1 WO 2022241791A1 CN 2021095323 W CN2021095323 W CN 2021095323W WO 2022241791 A1 WO2022241791 A1 WO 2022241791A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
frame header
modulation
transmission frame
header
Prior art date
Application number
PCT/CN2021/095323
Other languages
English (en)
French (fr)
Inventor
张衡
付凯
李之平
余展
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180091151.0A priority Critical patent/CN116965070A/zh
Priority to PCT/CN2021/095323 priority patent/WO2022241791A1/zh
Priority to EP21940244.3A priority patent/EP4336872A1/en
Publication of WO2022241791A1 publication Critical patent/WO2022241791A1/zh
Priority to US18/512,668 priority patent/US20240089156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of short-distance wireless communication, and in particular to a short-distance wireless communication method and related equipment.
  • Short-range wireless communication technology is a technology for wirelessly interacting data within a small range (tens of meters to hundreds of meters).
  • Short-range wireless communication technologies include Bluetooth (BT) technology, wireless high-fidelity (Wi-Fi) technology, ultra-wideband (UWB) technology, and near-field communication (NFC) technology.
  • BT Bluetooth
  • Wi-Fi wireless high-fidelity
  • UWB ultra-wideband
  • NFC near-field communication
  • the transmission rate of the existing bluetooth technology is not high (maximum 3Mbps), resulting in a corresponding low throughput rate and large delay.
  • the existing Bluetooth standard cannot meet certain application scenarios with high throughput and low latency. Exemplary high-throughput application scenarios.
  • the downloaded firmware installation package needs to be transmitted to these devices via Bluetooth for installation.
  • the data transmission volume is large.
  • Bluetooth takes a long time and affects user experience.
  • the current Bluetooth When using a wireless keyboard and mouse to play games, the current Bluetooth will have a large delay, which affects the user experience. Exemplary application scenarios with high throughput and low latency, when using wireless headphones to watch high-definition video, it is necessary to transmit high-definition audio data to the headphones and play them out, while maintaining audio and video synchronization. Current Bluetooth devices can only transmit low-quality audio information and complete audio playback, which affects the user's experience of listening to high-definition audio.
  • an embodiment of the present application provides a short-distance wireless communication method, the method including:
  • the transmission frame including a frame header and a data field
  • the frame header adopts phase offset keying modulation
  • the data field adopts phase offset keying modulation or quadrature amplitude modulation with the same bandwidth as the frame header.
  • the frame header of the transmission frame is modulated by phase shift keying
  • the data field is modulated by phase shift keying or quadrature amplitude modulation of the same bandwidth to increase the transmission rate of the transmission frame.
  • the format of the transmission frame is simple , the transmission time is short to achieve high throughput and low delay.
  • the frame header includes a preamble
  • the preamble is modulated using a first phase shift keying
  • any adjacent symbol of the sequence of the preamble is the first Phase shift keying modulation corresponds to adjacent points on the constellation diagram.
  • the fluctuation of the preamble amplitude is small, so as to approximate a constant envelope signal and reduce the amplitude caused by modulation Influence of fluctuation on gain adjustment, wherein the first phase offset modulation may be any phase offset modulation supported by the preamble.
  • the frame header further includes an access code.
  • the format of the frame header of the transmission frame is simple, the length of the frame header is short, and the transmission time is minimized to achieve the purpose of high throughput and low delay.
  • the frame header further includes a synchronization code and an access code.
  • the transmission frame improves the synchronization performance through the synchronization code, and the synchronization code can be used to assist in realizing time synchronization, frequency estimation and phase estimation, thereby improving the overall performance of the receiving device and ensuring that information can be received correctly even when the channel quality is poor.
  • the frame header further includes a first synchronization code, a second synchronization code, and an access code.
  • the combination of different synchronization codes can be used as a network ID to distinguish devices on different networks.
  • Devices in the same network are distinguished by access codes.
  • the two-segment synchronization code improves the performance of the overall receiving device and ensures that information can be received correctly even when the channel quality is poor.
  • the method further includes: adjusting the modulation mode of the transmission frame according to channel quality.
  • the modulation mode of the transmission frame is adjusted according to the channel quality, so that the transmission of the transmission frame can adapt to different application environments.
  • the method further includes:
  • the bandwidth of the transmission frame is adjusted according to the channel quality, and the supported bandwidth of the transmission frame includes: 1 MHz, 2 MHz and 4 MHz.
  • the phase shift keying modulation has a property of odd-even rotation.
  • the peak-to-average power ratio of the sending device can be reduced by using this feature, and the transmission power can be increased to cover a larger receiving range.
  • the frame header also includes a packet header
  • the method further includes:
  • the field to be encoded includes at least one of the access code, the header and the data field, and the encoding method includes the encoding type and code rate, and the encoding type is forward error correction encoding.
  • the frame header further includes a packet header
  • the method further includes: adjusting the insertion mode of the pilot field according to the channel quality, the insertion mode includes a field to be inserted and an insertion ratio, The field to be inserted includes at least one of the access code, the packet header and the data field, and the pilot field is used for assisting phase estimation.
  • the insertion manner of the pilot field is adjusted through the channel quality, so that the present application can be applied to different application environments.
  • a second aspect provides a short-distance wireless communication method, the method comprising:
  • the transmission frame includes a frame header and a data field, wherein the frame header is modulated by phase shift keying, and the data field is modulated by phase shift keying with the same bandwidth as the frame header or Quadrature Amplitude Modulation.
  • the frame header includes a preamble
  • the preamble is modulated using a first phase shift keying
  • any adjacent symbol of the sequence of the preamble is the first Phase shift keying modulation corresponds to adjacent points on the constellation diagram.
  • the frame header further includes an access code.
  • the frame header further includes a synchronization code and an access code.
  • the frame header further includes a first synchronization code, a second synchronization code, and an access code.
  • the supported bandwidth of the transmission frame includes: 1 MHz, 2 MHz and 4 MHz.
  • any adjacent symbols of the preamble sequence are adjacent constellation points on the constellation diagram.
  • the phase shift keying modulation has a property of odd-even rotation.
  • the frame header further includes a packet header, and at least one field in the access code, the packet header, and the data field may adopt forward error correction coding.
  • the frame header further includes a packet header, and at least one field among the access code, the packet header, and the data field has a pilot field, and the pilot field is used for Auxiliary phase estimation.
  • a third aspect provides a sending device, the sending device comprising:
  • a transmitting circuit coupled to the processor, for sending the transmission frame
  • processors at least one processor, memory and communication interface
  • the at least one processor is coupled to the memory and the communication interface
  • the memory is used to store instructions, the processor is used to execute the instructions, and the communication interface is used to communicate with the receiving device under the control of the at least one processor;
  • the instructions when executed by the at least one processor, cause the at least one processor to execute the short-distance wireless communication method described in any one of the first aspects.
  • a fourth aspect provides a sending device, the sending device comprising:
  • a processor configured to generate a transmission frame, the transmission frame including a frame header and a data field; wherein the frame header adopts phase shift keying modulation, and the data field uses a phase shift key with the same bandwidth as the frame header control modulation or quadrature amplitude modulation;
  • a transmitting circuit coupled to the processor, for sending the transmission frame.
  • the frame header includes a preamble
  • the preamble is modulated using a first phase shift keying (PSK)
  • PSK phase shift keying
  • any adjacent symbol of the preamble sequence is the first A phase shift keying modulation PSK corresponds to adjacent points on the constellation diagram.
  • the frame header further includes an access code.
  • the frame header further includes a synchronization code and an access code.
  • the frame header further includes a first synchronization code, a second synchronization code, and the access code
  • the processor is further configured to: adjust the modulation mode of the transmission frame according to channel quality.
  • the processor is further configured to: adjust the bandwidth of the transmission frame according to channel quality, where the supported bandwidth of the transmission frame includes: 1 MHz, 2 MHz, and 4 MHz.
  • the phase shift keying modulation has a characteristic of odd-even rotation.
  • the frame header further includes a packet header
  • the processor is further configured to:
  • the field to be coded includes at least one of the access code, the packet header, and the data field, and the coding method includes a coding type and code rate, and the encoding type is forward error correction encoding.
  • the frame header further includes a packet header
  • the processor is further configured to:
  • the insertion mode includes a field to be inserted and an insertion ratio, and the field to be inserted includes at least one of the access code, the packet header, and the data field, so The above pilot field is used to assist phase estimation.
  • a fifth aspect provides a receiving device, where the receiving device includes at least one processor, a memory, and a communication interface;
  • the at least one processor is coupled to the memory and the communication interface
  • the memory is used to store instructions, the processor is used to execute the instructions, and the communication interface is used to communicate with the sending device under the control of the at least one processor;
  • the instructions when executed by the at least one processor, cause the at least one processor to execute the method for short-distance wireless communication according to any one of the second aspect.
  • the receiving device includes:
  • the receiving circuit is used to receive a transmission frame, and the transmission frame includes a frame header and a data field; wherein the frame header adopts phase shift keying modulation, and the data field uses a phase shift key with the same bandwidth as the frame header control modulation or quadrature amplitude modulation;
  • the receiving circuit is coupled to the processor.
  • the frame header includes a preamble, the preamble is modulated using the first phase shift keying, and any adjacent symbols of the sequence of the preamble are adjacent on the corresponding constellation diagram of the first phase shift keying point.
  • the frame header further includes an access code.
  • the frame header further includes a synchronization code and an access code.
  • the frame header further includes a first synchronization code, a second synchronization code, and the access code.
  • the supported bandwidth of the transmission frame includes: 1 MHz, 2 MHz, and 4 MHz.
  • the phase shift keying modulation has a property of odd-even rotation.
  • the frame header further includes a packet header, and at least one of the access code, the packet header, and the data field adopts forward error correction coding.
  • the frame header further includes a packet header, at least one of the access code, the packet header, and the data field has a pilot field, and the pilot field is used to assist phase estimate
  • a seventh aspect provides a short-distance wireless communication system, the short-distance wireless communication system includes a sending device and a receiving device;
  • the sending device is configured to implement the method for short-distance wireless communication in any one of the first aspects
  • the receiving device is configured to implement the method for short-distance wireless communication in any one of the second aspects.
  • the eighth aspect of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a program, and the program enables the computer device to perform the short-distance wireless communication as described in any one of the first to second aspects. method of communication.
  • FIG. 1 is a schematic diagram of a short-distance wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of a short-distance wireless communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a module structure of a sending device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a module structure of a receiving device provided by an embodiment of the present application.
  • Fig. 5a is a schematic diagram of a basic rate frame provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of an enhanced rate frame provided by an embodiment of the present application.
  • Fig. 5c is a schematic diagram of an LE uncoded frame provided by an embodiment of the present application.
  • Fig. 5d is a schematic diagram of an LE coded frame provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmission frame provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a transmission frame provided by Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of constellations of two preambles provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a transmission frame provided by Embodiment 2 of the present application.
  • FIG. 10 is a schematic diagram of a transmission frame provided by Embodiment 3 of the present application.
  • FIG. 11 is a schematic diagram of a physical structure of a sending device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a physical structure of a receiving device provided by an embodiment of the present application.
  • FIG. 13 is a flow chart of a method for short-distance wireless communication provided by an embodiment of the present application.
  • the short-range wireless communication system 100 includes a sending device 10 and a receiving device 20 .
  • the sending device 10 is used for generating a transmission frame, and sending the transmission frame to the receiving device 20, and the receiving device 20 is used for receiving the transmission frame.
  • one sending device 10 communicates with one receiving device 20.
  • the short-distance wireless communication system 100 may include multiple sending devices 10 or multiple receiving devices 20, and each sending device 10 may communicate with Multiple receiving devices 20 communicate, and each receiving device 20 can communicate with multiple transmitting devices 10 , for example, one transmitting device performs data transmission with different receiving devices at different times.
  • FIG. 2 is a schematic diagram of the application scenario of the short-distance wireless communication system provided by an embodiment of the present application.
  • the short-distance wireless communication system can be applied to terminal devices such as mobile phones and tablets, and can also be applied to smart watches and wireless earphones. It can also be used in peripheral devices such as keyboards and mice, smart homes and other Internet of Things (IOT) devices, and in-vehicle systems, as shown in Figure 2.
  • IOT Internet of Things
  • FIG. 2 is only one application scenario provided by this application, and the short-distance wireless communication system provided by this application can also be applied to other application scenarios.
  • FIG. 3 is a schematic diagram of a sending device module provided by an embodiment of the present application.
  • the sending device 10 includes a signal source module 11 , a baseband processing module 12 and a transmitting module 13 .
  • the signal source module 11 is used for compiling the original data to be sent into a bit data stream, of course, the signal source module 11 can also perform operations such as encryption, checksum addition, whitening, and encoding;
  • the baseband processing module 12 is used for performing bit data stream Encapsulation, and then grouping according to the transmission frame format, and finally mapping into a baseband signal according to the modulation method.
  • the transmitting module 13 is used to modulate the baseband signal to a frequency band suitable for transmission, and then perform operations such as filtering and amplification to transmit the baseband signal.
  • FIG. 3 is only an embodiment of a sending device provided in this application, and the sending device may also be composed of at least one other functional module.
  • FIG. 4 is a schematic diagram of modules of a receiving device provided by an embodiment of the present application.
  • the receiving device 20 includes a receiving module 21 , a baseband processing module 22 and a signal processing module 23 .
  • the receiving module 21 is used for amplifying, mixing, filtering, sampling and other operations on the received signal to form a baseband signal that the baseband processing module 22 can identify.
  • the baseband processing module 22 is used to perform operations such as synchronization, tracking, and demodulation on the baseband signal to obtain a bit stream in the data.
  • the signal processing module 23 is used to translate the bit data stream into identifiable original data, which may involve operations such as decoding, de-whitening, verification, and decryption.
  • FIG. 4 is only an embodiment of a receiving device provided in the present application, and the receiving device may also be composed of at least one other functional module.
  • FIG. 5a, FIG. 5b, FIG. 5c and FIG. 5d are schematic diagrams of transmission frames in some embodiments based on the Bluetooth protocol.
  • the transmission frame provided in the embodiment of the present application is described by taking the Bluetooth protocol as an example. It can be understood that the embodiment of the present application can also be applied to other short-distance communication technologies, such as an alternative standard of the Bluetooth protocol.
  • the transmission frame shown in FIG. 5a is a basic rate frame, that is, a BR frame, and the BR frame includes a preamble, a synchronization code, a packet header, and a data field.
  • the preamble is used to adjust the gain of the receiving device, and the gain of the receiving device is adjusted to an appropriate size, so that the receiving device can receive signals within the expected amplitude range, and the synchronization code is used for frame synchronization, where frame synchronization includes time synchronization, frequency offset Estimation and phase estimation, after the receiving device correctly receives the synchronization code field and successfully performs frame synchronization, it can successfully receive the subsequent fields; if the receiver receives an error in the synchronization code, the synchronization fails, and the receiving device stops receiving the transmission frame.
  • the packet header contains control information, and the receiving device demodulates the data field according to the packet header.
  • the data field is used to transmit data information.
  • the data field includes user data, a check code and a packet tail.
  • the check code can be a cyclic redundancy check (Cyclic Redundancy Check, CRC).
  • CRC Cyclic Redundancy Check
  • the field before the data field is called the frame header.
  • Both the frame header and the data field of the BR frame are modulated by Gaussian frequency-shift keying (GFSK), occupying 1MHz signal bandwidth, and can provide a bit rate of 1Mbps.
  • GFSK Gaussian frequency-shift keying
  • the transmission frame shown in Figure 5b is an enhanced rate frame, that is, an EDR frame.
  • EDR frame Compared with the basic rate frame, two fields, guard time and synchronization code 2, are added between the packet header and the data field of the EDR frame.
  • the frame header of the EDR frame is modulated by Gaussian frequency shift keying, and the data domain is modulated by differential phase shift keying. Since it takes time to switch between the two modulation modes, the guard time is increased.
  • the length of the guard time is between 4.75usec and 5.25usec, and the guard time field does not contain any valid information, and is only used to switch the modulation mode. Since the protection time has elapsed, synchronization needs to be performed again, so the synchronization code 2 field is added.
  • the frame header of the EDR frame adopts GFSK modulation, occupies 1MHz signal bandwidth, and can provide a bit rate of 1Mbps.
  • the field after the guard time adopts differential quadrature phase offset keying modulation or differential 8 phase offset keying modulation, both of which occupy 1 MHz signal bandwidth, and the transmission frame in this embodiment can provide a bit rate of 2 Mbps or 3 Mbps.
  • the transmission frame shown in FIG. 5c is an LE uncoded frame, and the LE uncoded frame includes a preamble, an access code, and a data field. Access codes are used for frame synchronization.
  • the LE uncoded frame adopts GFSK modulation, including two rates of LE1M and LE2M. Among them, LE1M occupies 1MHz signal bandwidth and can provide a bit rate of 1Mbps. LE2M occupies a 2MHz signal bandwidth and can provide a bit rate of 2Mbps. In order to achieve low power consumption, LE unencoded frames have a low transmission speed.
  • the transmission frame shown in FIG. 5d is an LE coded frame, and the LE coded frame includes a preamble, an access code, a code rate identifier and a data field.
  • the LE coded frame adopts 1/2 code rate forward error correction coding and 4 times repetition coding for the access code, code rate identification field and data domain field.
  • the forward error correction coding of 1/2 code rate will encode one information bit into 2 bits. 4-fold repetition encoding repeats each encoded bit 4 times to form 4 bits.
  • the LE has the access code and code rate identification field of the coded frame, and uses a fixed 1/2 forward error correction code plus 4 times repetition code, that is, 1 information bit will be coded into 8 bits.
  • the data domain field of the LE coded frame adopts 1/2 FEC coding or 1/2 FEC coding plus 4 times repetition coding, and the coding method is stored in the code rate identification field.
  • LE coded frames adopt GFSK modulation and occupy 1MHz bandwidth. Affected by coding, the access code and other parts can provide a bit rate of 125Kbps, and the data field and other parts can provide a bit rate of 500Kbps or 125Kbps.
  • the transmission frames shown in Fig. 5a, Fig. 5b, Fig. 5c and Fig. 5d have the following problems: the throughput rate is low and the time delay is relatively large.
  • a kind of The format of the new transport frame is used.
  • FIG. 6 is a schematic diagram of a transmission frame provided by an embodiment of the present application.
  • the transmission frame includes a preamble, a synchronous access sequence, a packet header and a data field; the preamble, the synchronous access sequence, and the packet header in the transmission frame are used for gain adjustment of the receiving device; the synchronous access sequence is used for receiving
  • the frame synchronization of the device wherein, the frame synchronization includes time synchronization, frequency estimation and phase estimation; the header contains control information, header error control (Head error control, HEC), HEC is used to detect whether the header data is correct; the data field includes user data, Check code and packet tail, the check code can be CRC, which can be used to check the integrity of user data.
  • HEC header error control
  • the baseband processing module 12 of the sending device 10 assembles packets according to the transmission frame format described in FIG. 6 .
  • the baseband processing module 12 encapsulates the bit data compiled by the signal source module 11 into a data domain.
  • the compiling method of the signal source module 11 will also be encapsulated into the data domain to assist the signal processing module 23 of the receiving device 20 to translate bit data into original data in a correct way.
  • the baseband processing module 12 of the sending device 10 adds a preamble, a synchronization access sequence, a packet header and other fields before the data field to assist the receiving device in receiving.
  • the receiving module 21 of the receiving device 20 performs gain adjustment according to the preamble, so as to ensure that the subsequent signal amplitude can be adjusted within an appropriate range.
  • the baseband processing module 22 of the receiving device 20 performs operations such as synchronization, frequency offset estimation, and phase estimation according to the synchronization access sequence. After the synchronization is successful, continue to demodulate the subsequent fields.
  • the baseband processing module 22 of the receiving device 20 demodulates the packet header, and then demodulates the data field according to the packet header information to obtain bit data.
  • the signal processing module 23 translates the bit data according to the coding method of the signal source in the bit data, so as to obtain the original data.
  • FIG. 7 is a schematic diagram of Embodiment 1 of a transmission frame provided by this application.
  • the embodiment of the present application uses the Bluetooth protocol as an example for description, and it can be understood that the embodiments of the present application can also be applied to other short-distance communication technologies, such as alternative standards of the Bluetooth protocol.
  • Figure 7 is an embodiment of the transmission frame shown in Figure 6, the transmission frame includes a preamble, an access code, a header and a data field, the access code is used as a synchronous access sequence, and the access code is used as a user ID for realizing Frame synchronization, the format of the transmission frame is simple, and the length of the frame header is short, so as to minimize the transmission time and achieve the purpose of high throughput and low delay. It can be understood that in practical applications, the composition of the frame header is adjusted.
  • the frame header may only include a preamble, or the frame header may include a preamble and an access code, or the frame header may include a preamble, an access code, and a packet header.
  • the frame header of the transmission frame that is, the preamble, the access code, and the header are all modulated by Phase Shift Keying (PSK) with the same bandwidth.
  • PSK Phase Shift Keying
  • the frame header of the transmission frame adopts binary phase shift keying (BPSK) modulation with a bandwidth of 4 MHz, and the bit rate of the frame header can reach 4 Mbps.
  • the frame header of the transmission frame adopts quadrature phase shift keying (QPSK) modulation with 4MHz bandwidth, and the bit rate of the frame header can reach 8Mbps.
  • QPSK quadrature phase shift keying
  • the increase in the transmission rate of the frame header can shorten the transmission time of the frame header and reduce the delay.
  • the frame header can adopt any one of ⁇ /2-BPSK modulation and ⁇ /4-QPSK modulation.
  • the data field of the transmission frame is modulated by phase shift keying with the same bandwidth as that of the frame header.
  • the frame header of the transmission frame adopts ⁇ /2-BPSK modulation with 4MHz bandwidth
  • the data domain adopts 8 phase shift keying (8PSK) modulation with 4MHz bandwidth
  • the bit rate of the data domain can reach 12Mbps, so that the throughput can be obtained Substantially improved.
  • the frame header and the data field of the transmission frame are both modulated by phase shift keying with the same bandwidth, the switching of the modulation mode between the frame header and the data field does not require additional guard time and synchronization code fields, thereby shortening the frame length of the transmission frame
  • the transmission time of the header is reduced to reduce the delay.
  • the data field can use any one of ⁇ /2-BPSK, ⁇ /4-QPSK and 8PSK.
  • the frame header of the transmission frame is modulated by phase shift keying, and the data domain is modulated by quadrature amplitude (Quadrature Amplitude Modulation, QAM) with the same bandwidth as the frame header.
  • QAM Quadrature Amplitude Modulation
  • the frame header of the transmission frame adopts ⁇ /2-BPSK modulation with 4MHz bandwidth; the data domain adopts 16-QAM modulation with 4MHz bandwidth, and the bit rate of the data domain can reach 16Mbps to improve throughput.
  • the frame header of the transmission frame adopts PSK modulation
  • the data field of the transmission frame adopts QAM modulation. Since the PSK modulation and QAM modulation can be realized by the same filter, when switching the modulation mode between the frame header and the data field of the transmission frame, it is not necessary to
  • the enhanced rate frame shown in Fig. 5b increases the guard time and synchronization code 2 fields, thereby reducing the length of the frame header, shortening the transmission time of the frame header of the transmission frame, and reducing the delay.
  • the sending device and the receiving device negotiate and adjust the modulation method of the frame header according to the channel quality. For example, if the channel quality is good, use a high-order modulation method such as ⁇ /4-QPSK; if the channel quality is poor , then use a low-order modulation method such as ⁇ /2-BPSK, that is, different phase shift keying modulation methods can be selected according to the channel quality.
  • a high-order modulation method such as ⁇ /4-QPSK
  • a low-order modulation method such as ⁇ /2-BPSK
  • the sending device can independently adjust the modulation mode of the data domain according to the channel quality. That is, the sending device can select different phase offset keying modulation modes or quadrature amplitude modulation modes according to the channel quality. For example, if the modulation method of the data domain is ⁇ /2-BPSK, if the channel quality becomes better, the sending device can switch the modulation method of the data domain to 16-QAM or ⁇ /4-QPSK, if the modulation method of the data domain is 64 -QAM, if the channel quality deteriorates, the sending device can switch the data modulation method to 16-QAM or ⁇ /4-QPSK. That is, the sending device can switch the modulation mode of the data domain between multiple phase offset keying modulation modes and multiple quadrature amplitude modulation modes according to the channel quality.
  • the bandwidths supported by both the frame header and the data field of the transmission frame provided by the present application include 1 MHz, 2 MHz and 4 MHz. And the frame header and data field of the transmission frame use the same bandwidth, which saves the protection time and secondary synchronization time brought by bandwidth switching, and reduces the delay.
  • the sending device and the receiving device may negotiate to adjust the bandwidth according to the channel quality, for example, if the channel quality is good, they negotiate to increase the bandwidth; if the channel quality is not good, they negotiate to decrease the bandwidth.
  • the preamble is used for gain adjustment, and if the amplitude of the preamble sequence fluctuates greatly, it will affect the accuracy of the gain adjustment.
  • PSK modulation is a non-constant envelope, and the amplitude fluctuation of the signal is much larger than that of GFSK modulation.
  • the preamble sequence of this application is designed such that any adjacent symbols are adjacent constellation points on the constellation diagram, so as to ensure that the amplitude fluctuation of the preamble Small, to approximate a constant envelope signal, for example, determine the corresponding constellation diagram according to the modulation mode of the preamble (such as ⁇ /2-BPSK modulation and ⁇ /4-QPSK modulation), and any adjacent symbol of the preamble sequence is The modulation mode corresponds to adjacent points on the constellation diagram, so that .
  • the modulation mode of the preamble such as ⁇ /2-BPSK modulation and ⁇ /4-QPSK modulation
  • Figure 8 is the constellation diagram of the two preambles provided by this application, in which Figure 8(a) is the ⁇ /4-QPSK modulation of the preamble using a sequence of all 0s, and the constellation points corresponding to the constellation diagram of this sequence are 0 , ⁇ /4, 0, ⁇ /4, ..., that is, when two adjacent symbols of the preamble sequence change, it corresponds to jumping between two adjacent constellation points 0 and ⁇ /4 on the constellation diagram.
  • Figure 8(b) shows the DQPSK modulation of the preamble using all 0 sequences, and the constellation points corresponding to the constellation diagram of the sequence are ⁇ /4, ⁇ /2, 3 ⁇ /4,..., 3 ⁇ /2, 7 ⁇ /4, 0 , that is, when adjacent symbols of the preamble sequence change, it corresponds to moving between adjacent constellation points on the constellation diagram.
  • the PSK modulation adopted by the frame header or the data field of the transmission frame has a characteristic of parity rotation.
  • the odd-even rotation is: for a symbol sequence, the constellation diagram used by the symbols in the even positions is obtained by rotating a certain angle on the basis of the constellation diagram used by the symbols in the odd positions; correspondingly, the constellation diagram used by the symbols in the odd positions The constellation diagram used is obtained by rotating a certain angle on the basis of the constellation diagram used by symbols in even positions.
  • the frame header or data field of the transmission frame adopts ⁇ /2-BPSK modulation, and the constellation diagram corresponding to the odd-numbered symbols can be obtained by rotating the constellation diagram corresponding to the even-numbered symbols around the coordinate center of the constellation diagram by ⁇ /2.
  • the constellation diagram with this characteristic can reduce the peak-to-average power ratio of the transmitting device and increase the transmitting power to cover a larger receiving range.
  • any of the access code, packet header, and data field of the transmission frame can adopt forward error correction coding (Forward error correction, FEC), and the forward error correction coding can reduce the receiving device's time to receive the transmission frame.
  • FEC Forward error correction coding
  • the FEC code can be a convolutional code or a polar code.
  • the sending device and the receiving device can communicate to determine whether the access code and packet header in the transmission frame adopt forward error correction coding, that is, adjust the encoding method of the access code and packet header.
  • the encoding method includes the encoding type and code rate. For example, if the channel quality is good, the sending device and the receiving device can select the access code and header without encoding after communicating to obtain high throughput and low delay. If the channel quality is poor, the sending device and the receiving device may choose to encode the access code and the packet header after communicating. Furthermore, the coding rate can also be selected according to the channel quality.
  • the coding rate can be increased to reduce redundancy, so as to improve throughput and reduce delay; if the channel quality is poor, it can be reduced
  • the bit rate of the encoding increases redundancy to improve the transmission accuracy of the transmission frame and improve the receiving performance.
  • the sending device may adjust the encoding method of the data field according to the channel quality. For example, the sending device may choose not to encode when detecting that the channel quality is good, so as to obtain high throughput and low delay. For example, when the sending device detects that the channel quality is poor, in order to improve the transmission accuracy of the data field, the data is selected to use forward error correction coding and the coding rate can be increased or decreased according to the actual channel quality. Encoding-related information is placed in the header field. The receiving device identifies according to the information in the packet header to determine whether the data field is coded and the corresponding code rate.
  • the field to be encoded may be selected according to the actual application scenario, where the field to be encoded may be at least one of an access code, a packet header, and a data field.
  • the field to be encoded may be at least one of an access code, a packet header, and a data field.
  • different application environments can choose different encoding methods. For example, if the accuracy of the data is required to be high, the access code, packet header and data field can be encoded; if the data rate is required to be high, the Only headers are encoded.
  • part of the field can be inserted into a pilot field with a known phase to improve the performance of phase detection and tracking.
  • the receiving device receives the pilot, it can use the received pilot phase and the known pilot The phases are compared to estimate the current phase deviation.
  • the fields that can be inserted into the pilot are the access code, packet header and data field.
  • the sending device can select the field to insert the pilot field according to the application requirements, for example, insert the pilot field into the three fields of the access code, packet header and data field, or insert any one of the three fields of the access code, packet header and data field or any two inserted pilot fields.
  • the sending device can select different insertion ratios to insert pilot fields into different fields according to factors such as the current communication quality, coding conditions, and the degree of influence of phase offset on the reception of different fields. For example, if the channel quality is good, the sending device may choose not to insert the pilot, and if the channel quality is poor, the sending device may choose to insert the pilot. The better the channel quality, the lower the pilot insertion ratio. Wherein, whether the access code and the packet header are inserted into the pilot and the insertion ratio of the pilot are adjusted after confirmation by the sending device and the receiving device. Whether the data field is inserted into the pilot and the insertion ratio of the pilot are determined by the sending device according to the channel quality. The receiving device identifies according to the information in the packet header, and judges whether the data field is inserted such as pilot and the insertion ratio.
  • the sending device may insert a pilot into the access code and header at an insertion ratio of 16:1, and insert a pilot into the payload at a ratio of 8:1, that is, insert one after every 16 access codes and header symbols Pilot, a pilot is inserted after every 8 payload symbols.
  • the insertion ratio can be reduced to increase the number of insertions and improve the ability of phase estimation.
  • one or more of the relevant parameters involved in the above embodiments can be adjusted according to the actual application scenario.
  • FIG. 9 is a schematic diagram of Embodiment 2 of the transmission frame provided by this application.
  • the transmission frame provided by Embodiment 2 is similar to the transmission frame provided by Embodiment 1.
  • the transmission frame includes a preamble, a synchronous access sequence, a packet header, and a data field.
  • the similarities will not be repeated here, and the differences are:
  • the synchronization code and access code are combined into a synchronous access sequence.
  • the synchronization code and access code are set in sequence along the direction from the preamble to the data field.
  • the synchronization performance is improved through the synchronization code field, and the time synchronization and frequency synchronization can be realized through the synchronization code.
  • Estimation and phase estimation so as to improve the overall performance of the receiving device, ensure that the information can be received correctly even in the case of poor channel quality, and improve the receiving performance under the premise of ensuring a high rate. It can be understood that the setting sequence between the synchronization code and the access code can be adjusted according to actual scenarios, for example, the access code and the synchronization code are included in sequence.
  • the synchronization code may use an m-sequence or a golden sequence.
  • FIG. 10 is a schematic diagram of Embodiment 3 of the transmission frame provided by this application.
  • the transmission frame provided by Embodiment 3 is similar to the transmission frame provided by Embodiment 2.
  • the transmission frame includes a preamble, a synchronous access sequence, a packet header, and a data field.
  • the similarities will not be repeated here, and the differences are:
  • the synchronous access sequence includes the first synchronization code, the second synchronization code and the access code.
  • the first synchronization code, the second synchronization code and the access code are set in sequence along the direction from the preamble to the data field.
  • By setting two synchronization codes Improve the receiving performance and the number of combinations of synchronization codes.
  • the combination of different synchronization codes can be used as a network ID to distinguish devices (such as sending devices or receiving devices) on different networks. Devices in the same network are distinguished by access codes.
  • Both the first synchronization code and the second synchronization code can improve the synchronization performance independently, and the first synchronization code and the second synchronization code can also be used as a whole to further improve the synchronization performance, thereby improving the performance of the overall receiving device and ensuring the channel quality Information can be received correctly even under poor conditions. It can be understood that in other embodiments, the order of setting the first synchronization code, the second synchronization code and the access code can be adjusted according to actual scenarios.
  • sequences of the two synchronization codes can be the same or different.
  • FIG. 11 is a schematic diagram of a sending device 10 according to an embodiment of the present application, wherein the sending device 10 can be a terminal with a short-range wireless communication function, such as a mobile phone, a tablet computer, etc.
  • the sending device 10 can also be a terminal with a short-range wireless communication function. Chips for wireless communication functions.
  • the sending device 10 includes a processor 14 and a sending circuit 15 .
  • the structure shown in FIG. 11 does not constitute a limitation on the sending device 10, and the sending device 10 may include more or less components than those shown in the figure, or combine certain components, Or split some parts, or a different arrangement of parts.
  • the sending device 10 may also include a memory.
  • the memory may be used to store software programs and/or modules/units.
  • the processor 14 implements various functions of the sending device 10 by running or executing software programs and/or modules/units stored in the memory, and calling data stored in the memory. In this application, the processor 14 is used to generate transmission frames.
  • the memory may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function, etc.; the data storage area may store data created according to the use of the sending device 10, etc. .
  • the memory may include non-volatile computer-readable memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) ), at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • non-volatile computer-readable memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) ), at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 14 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor 14 can be a microprocessor or the processor 14 can also be any conventional processor, such as a baseband signal processing chip, and the processor 14 is the control center of the sending device 10, utilizing various interfaces and The lines connect various parts of the entire sending device 10 .
  • the sending circuit 15 is coupled to the processor 14 for sending the transmission frame, wherein the sending circuit 15 can be coupled to the antenna 16 to realize the transmission of the transmission frame signal.
  • the sending device 10 communicates with the receiving device 20 through the sending circuit 15 .
  • FIG. 12 is a schematic diagram of a receiving device 20 according to an embodiment of the present application.
  • the receiving device 20 can be a terminal with a short-distance wireless communication function, such as a mobile phone, a tablet computer, etc.
  • the receiving device 20 can also be a chip with a short-distance wireless communication function
  • the receiving device 20 includes a processor 24 and a receiving device. Circuit 25.
  • the structure shown in FIG. 12 does not constitute a limitation to the receiving device 20, and the receiving device 20 may include more or less components than those shown in the figure, or combine certain components, Or split some parts, or a different arrangement of parts.
  • receiving device 20 may also include a memory.
  • the memory may be used to store software programs and/or modules/units.
  • the processor 24 implements various functions of the receiving device 20 by running or executing software programs and/or modules/units stored in the memory, and calling data stored in the memory.
  • the memory may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function, etc.; the data storage area may store data created according to the use of the receiving device 20, etc. .
  • the memory may include non-volatile computer-readable memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) ), at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • non-volatile computer-readable memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) ), at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • Described processor 24 can be central processing unit (Central Processing Unit, CPU), can also be other general processors, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • This processor 24 can be microprocessor or this processor 24 also can be any conventional processor etc.
  • described processor 24 is the control center of described receiving device 20, utilizes various interfaces and lines to connect whole receiving device 20 various parts of .
  • the receiving circuit 25 is coupled to the processor 24 for receiving the transmission frame, wherein the receiving circuit 25 can be coupled to the antenna 24 to receive the transmission frame signal.
  • the receiving device 20 communicates with the sending device 10 through a receiving circuit 25 .
  • FIG. 13 it is a flow chart of a method for short-distance wireless communication according to an embodiment of the present application.
  • the execution subject is a sending device. According to different requirements, the order of steps in the flow chart can be changed, and some steps can be omitted. . For ease of description, only the parts related to the embodiment of the present application are shown.
  • the method for short-distance wireless communication includes:
  • the transmission frame includes a preamble, a synchronization access sequence, a packet header, and a data field
  • the synchronization access sequence is used for frame synchronization, wherein the preamble, the synchronization access sequence, the packet header, and the
  • the data domains all adopt phase offset keying modulation with the same bandwidth, or, the data domains adopt quadrature amplitude modulation, and the preamble, the synchronous access sequence and the packet header all adopt the same bandwidth as the data phase shift keying modulation.
  • the bandwidth is negotiated and determined by the transmitting and receiving devices.
  • the frame header of the transmission frame is modulated by phase shift keying, and the data field is modulated by phase shift keying or quadrature amplitude modulation of the same bandwidth to increase the transmission rate of the transmission frame.
  • the format of the transmission frame is simple , The length of the frame header is short, and the transmission time is minimized to achieve the purpose of high throughput and low delay.
  • generating the transmission frame and sending the transmission frame may be performed by different modules of the sending device.
  • the short-distance wireless communication method further includes:
  • S132 Adjust the bandwidth of the transmission frame according to the channel quality.
  • the supported bandwidth of the transmission frame includes: 1MHz, 2MHz and 4MHz, and the frame header and the bandwidth of the data field of the transmission frame are the same.
  • the method for short-distance wireless communication further includes:
  • S133 Adjust the modulation mode of the transmission frame according to the channel quality.
  • the modulation mode to be adjusted includes at least one of a frame header and a data field.
  • the sending device and the receiving device negotiate and adjust the modulation mode of the frame header according to the channel quality.
  • the sending device can switch the modulation mode of the data domain among multiple phase offset keying modulation modes and multiple quadrature amplitude modulation modes according to the channel quality.
  • the method for short-distance wireless communication further includes:
  • S134 Adjust the coding mode of the field to be coded in the transmission frame according to the channel quality.
  • the field to be encoded includes at least one of the access code, the header and the data field, and the encoding method includes an encoding type and a code rate, and the encoding type may be forward error correction encoding.
  • the sending device can select an appropriate coding type according to the channel instruction, such as convolutional code or polar code; the sending device can adjust the code rate according to the channel quality. For example, if the channel quality is good, the coding rate can be increased, or even the transmission frame can not be coded to obtain high throughput and low delay; if the channel quality is poor, the coding rate can be reduced to increase redundancy. In order to improve the transmission accuracy of the transmission frame and improve the receiving performance.
  • an appropriate coding type such as convolutional code or polar code
  • the sending device can adjust the code rate according to the channel quality. For example, if the channel quality is good, the coding rate can be increased, or even the transmission frame can not be coded to obtain high throughput and low delay; if the channel quality is poor, the coding rate can be reduced to increase redundancy. In order to improve the transmission accuracy of the transmission frame and improve the receiving performance.
  • the short-distance wireless communication method further includes:
  • S135 Adjust the insertion mode of the pilot field according to the channel quality.
  • the insertion method includes the field to be inserted and the insertion ratio.
  • the field to be inserted includes the access code, header and data field
  • the sending device can select the field to be inserted into the pilot field according to the application requirement environment, such as any one or more of the three fields of the access code, packet header and data field field to insert a pilot.
  • the sending device may select different ratios to insert pilot fields into different fields according to factors such as current communication quality, coding information, and influence degree of phase offset on reception of different fields.
  • the flow chart of the method for short-distance wireless communication in another embodiment of the present application is executed by a receiving device. According to different requirements, the order of steps in the flow chart can be changed, and some steps can be omitted. For ease of description, only the parts related to the embodiment of the present application are shown.
  • the method for short-distance wireless communication includes:
  • the transmission frame at least includes a preamble, a synchronization access sequence, a header and a data field, and the synchronization access sequence is used for frame synchronization, wherein the preamble, the synchronization access sequence, the Both the header and the data field adopt phase shift keying modulation with the same bandwidth, or, the data field adopts quadrature amplitude modulation, and the preamble, the synchronous access sequence, and the header all adopt the same bandwidth as the Phase shift keying modulation with the same bandwidth in the data domain.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a program, and the program enables the computer device to execute the short-distance wireless communication method shown in FIG. 13 .
  • a computer program product comprising computer-executable instructions stored in a computer-readable storage medium; from which at least one processor of a device can read the Computer-executed instructions, the at least one processor executes the computer-executed instructions so that the device implements the short-distance wireless communication method shown in FIG. 13 .
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute the method described in each embodiment of the present application .
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wired eg, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种短距离无线通信的方法及相关设备,所述方法包括:生成传输帧,所述传输帧包括帧头及数据域,其中,所述帧头采用相位偏移键控调制,所述数据域采用正交幅度调制或相位偏移键控调制;发送所述传输帧,本申请通过将传输帧的帧头采用相位偏移键控调制,将数据域采用相同带宽的相位偏移键控调制或正交幅度调制,以提升传输帧的传输速率,该传输帧的格式简单,帧头传输时间短,以达到高吞吐率、低时延的目的。

Description

短距离无线通信方法及相关设备 技术领域
本申请涉及短距离无线通信技术领域,尤其涉及一种短距离无线通信方法及相关设备。
背景技术
短距无线通信技术是一种在小范围(几十米到几百米)内对数据进行无线交互的技术。短距无线通信技术包括蓝牙(BT)技术,无线高保真(Wi-Fi)技术,超宽带(UWB)技术,近场通信(NFC)技术。
然而,现有的蓝牙技术传输速率不高(最大3Mbps),导致相应的吞吐率低,时延大。现有的蓝牙标准不能满足某些吞吐率高低时延的应用场景。示例性的,吞吐率高应用场景,对智能手表手环等配置有蓝牙的设备进行固件升级的时候,需要将下载的固件安装包通过蓝牙传输到这些设备上进行安装,数据传输量大,当前蓝牙耗时较长,影响用户体验。示例性的,时延低应用场景,使用无线键盘鼠标的时候,需要在人眼所能察觉的时隙内,把键盘输入的文字信息以及鼠标的坐标信息传给电脑。使用无线键鼠玩游戏的时候,当前蓝牙会有较大延迟,影响用户体验。示例性的,吞吐率高且时延低的应用场景,使用无线耳机看高清视频的时候,需要把高清音频数据传输到耳机中并且播放出来,同时保持音画同步。当前蓝牙设备只能传输较低音质的音频信息并完成音频播放,影响用户听高清音频的体验。
发明内容
鉴于以上内容,有必要提供一种短距离无线通信的方法、系统、发送装置、接收装置、短距离无线通信系统及存储介质,有助于提升吞吐率并降低时延,以提升用户体验。
第一方面,本申请的一实施例提供一种短距离无线通信的方法,该方法包括:
生成传输帧,所述传输帧包括帧头及数据域,
其中,所述帧头采用相位偏移键控调制,所述数据域采用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制。
如此,通过将传输帧的帧头采用相位偏移键控调制,将数据域采用相同带宽的相位偏移键控调制或正交幅度调制,以提升传输帧的传输速率,该传输帧的格式简单,传输时间短,以达到高吞吐率、低时延的目的。
在第一方面的某些实施方式中,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制对应星座图上相邻的点。
如此,通过将前导码序列的相邻符号限制为该前导码调制方式对应的星座图上相邻的点,以使前导码幅度波动小,以近似成一个恒包络信号,减少调制引起的幅度波动对增益调整的 影响,其中第一相位偏移调制可为前导码支持的任一种相位偏移调制。
在第一方面的某些实现方式中,所述帧头还包括接入码。
如此,该传输帧的帧头格式简单、帧头长度短、最大限度减少传输时间,以达到高吞吐率、低时延的目的。
在第一方面的某些实现方式中,所述帧头还包括同步码和接入码。
如此,该传输帧通过同步码提升同步性能,即可通过同步码辅助实现时间同步、频率估计及相位估计,从而提升接收装置的整体性能,确保在信道质量差的情况下也能正确接收信息,以保证高速率的前提下提升接收性能。
在第一方面的某些实现方式中,所述帧头还包括第一同步码、第二同步码及接入码。
如此,通过设置两段同步码以提升接收性能和同步码的组合数,不同同步码的组合可以作为网络ID,用于对不同网络的设备进行区分。同一网络内的设备,使用接入码进行区分,两段同步码提升了整体接收装置的性能,确保在信道质量差的情况下也能正确接收信息。
在第一方面的某些实现方式中,所述方法还包括:依据信道质量调整所述传输帧的调制方式。
如此,依据信道质量调整传输帧的调制方式,以使从传输帧的传输可适应不同的应用环境。
在第一方面的某些实现方式中,所述方法还包括:
依据信道质量调整所述传输帧的带宽,所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
在第一方面的某些实现方式中,所述相位偏移键控调制具有奇偶旋转的特性。
如此,通过该特性以降低发送装置峰均功率比,提高发射功率,以覆盖更大接收范围。
在第一方面的某些实现方式中,所述帧头还包括包头,所述方法还包括:
依据信道指令调整所述传输帧中待编码字段的编码方式,所述待编码字段包括所述接入码、所述包头及所述数据域中至少一种,所述编码方式包括编码类型和码率,所述编码类型为前向纠错编码。
如此,通过信道编码以提升传输帧抗噪声的能力。
在第一方面的某些实现方式中,所述帧头还包括包头,所述方法还包括:依据所述信道质量调整导频字段的插入方式,所述插入方式包括待插入字段和插入比例,所述待插入字段包括所述接入码、所述包头及所述数据域中至少一个,所述导频字段用于辅助相位估计。
如此,通过信道质量调整导频字段的插入方式,以使本申请可适用不同的应用环境。
第二方面提供一种短距离无线通信方法,所述方法包括:
接收传输帧,所述传输帧包括帧头及数据域,其中,所述帧头采用相位偏移键控调制,所述数据域均采用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制。
在第二方面的某些实现方式中,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制对应星座图上相邻的点。
在第二方面的某些实现方式中,所述帧头还包括接入码。
在第二方面的某些实现方式中,所述帧头还包括同步码和接入码组成。
在第二方面的某些实现方式中,所述帧头还包括第一同步码、第二同步码及接入码。
在第二方面的某些实现方式中,所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
在第二方面的某些实现方式中,所述前导码序列的任意相邻符号均为星座图上相邻的星座点。
在第二方面的某些实现方式中,所述相位偏移键控调制具有奇偶旋转的特性。
在第二方面的某些实现方式中,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一个字段可采用前向纠错编码。
在第二方面的某些实现方式中,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一个字段中具有导频字段,所述导频字段用于辅助相位估计。
第三方面提供一种发送装置,所述发送装置包括:
处理器,用于生成传输帧;
发射电路,耦合至所述处理器,用于发送所述传输帧
至少一个处理器、存储器和通信接口;
所述至少一个处理器与所述存储器和所述通信接口耦合;
所述存储器用于存储指令,所述处理器用于执行所述指令,所述通信接口用于在所述至少一个处理器的控制下与接收装置进行通信;
所述指令在被所述至少一个处理器执行时,使所述至少一个处理器执行第一方面中任意一项所述的短距离无线通信的方法。
第四方面提供一种发送装置,所述发送装置包括:
处理器,用于生成传输帧,所述传输帧包括帧头及数据域;其中所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制;
发射电路,耦合至所述处理器,用于发送所述传输帧。
在第四方面的某些实现方式中,所述帧头包括前导码,所述前导码使用第一相位偏移键控PSK调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制PSK对应星座图上相邻的点。
在第四方面的某些实现方式中,所述帧头还包括接入码。
在第四方面的某些实现方式中,所述帧头还包括同步码和接入码。
在第四方面的某些实现方式中,所述帧头还包括第一同步码、第二同步码及所述接入码
在第四方面的某些实现方式中,所述处理器还用于:依据信道质量调整所述传输帧的调制方式。
在第四方面的某些实现方式中,所述处理器还用于:依据信道质量调整所述传输帧的带宽,其中所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
在第四方面的某些实现方式中,所述相位偏移键控调制具有奇偶旋转的特性。
在第四方面的某些实现方式中,所述帧头还包括包头,所述处理器还用于:
依据信道质量调整所述传输帧中待编码字段的编码方式,所述待编码字段包括所述接入码、所述包头及所述数据域中至少一种,所述编码方式包括编码类型和码率,所述编码类型为前向纠错编码。
在第四方面的某些实现方式中,所述帧头还包括包头,所述处理器还用于:
依据所述信道质量调整导频字段的插入方式,所述插入方式包括待插入字段和插入比例,所述待插入字段包括所述接入码、所述包头及所述数据域中至少一个,所述导频字段用于辅助相位估计。
第五方面提供一种接收装置,所述接收装置包括至少一个处理器、存储器和通信接口;
所述至少一个处理器与所述存储器和所述通信接口耦合;
所述存储器用于存储指令,所述处理器用于执行所述指令,所述通信接口用于在所述至少一个处理器的控制下与发送装置进行通信;
所述指令在被所述至少一个处理器执行时,使所述至少一个处理器执行第二方面中任意一项所述的短距离无线通信的方法。
第六方面提供一种,所述接收装置包括:
接收电路,用于接收传输帧,所述传输帧包括帧头及数据域;其中所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制;
处理器,所述接收电路耦合至所述处理器。
所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控对应星座图上相邻的点。
在第六方面的某些实现方式中,所述帧头还包括接入码。
在第六方面的某些实现方式中,所述帧头还包括同步码和接入码。
在第六方面的某些实现方式中,所述帧头还包括第一同步码、第二同步码及所述接入码。
在第六方面的某些实现方式中,所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
在第六方面的某些实现方式中,所述相位偏移键控调制具有奇偶旋转的特性。
在第六方面的某些实现方式中,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一种采用前向纠错编码。
在第六方面的某些实现方式中,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一个具有导频字段,所述导频字段用于辅助相位估计
第七方面提供一种短距离无线通信系统,所述短距离无线通信系统包括发送装置和接收装置;
所述发送装置用于执行第一方面中任意一项所述的短距离无线通信的方法,所述接收装置用于执行第二方面中任意一项所述的短距离无线通信的方法。
本申请第八方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得计算机设备执行如第一方面至第二方面中任意一项所述的短距离无线通信的方法。
本申请中第二方面到第八方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面到第八方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
附图说明
图1为本申请实施例提供的短距离无线通信系统的示意图。
图2为本申请实施例提供的短距离无线通信系统的应用场景示意图。
图3为本申请实施例提供的发送装置模块结构的示意图。
图4为本申请实施例提供的接收装置模块结构的示意图。
图5a为本申请实施例提供的基础速率帧的示意图。
图5b为本申请实施例提供的增强速率帧的示意图。
图5c为本申请实施例提供的LE无编码帧的示意图。
图5d为本申请实施例提供的LE有编码帧帧的示意图。
图6为本申请一实施例提供的传输帧的示意图。
图7为本申请实施例一提供的传输帧的示意图。
图8为本申请实施例提供的两种前导码的星座示意图。
图9为本申请实施例二提供的传输帧的示意图。
图10为本申请实施例三提供的传输帧的示意图。
图11为本申请实施例提供的发送装置实体结构的示意图。
图12为本申请实施例提供的接收装置实体结构的示意图。
图13为本申请实施例提供的一种短距离无线通信的方法的流程图。
具体实施方式
在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请中的技术领域的技术人员通常理解的含义相同。本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。应理解,本申请中除非另有说明,“多个”是指两个或多于两个。
参考图1所示,为本申请实施例的一种短距离无线通信系统的示意图。如图1所示,所述短距离无线通信系统100包括发送装置10及接收装置20。
发送装置10用于生成传输帧,并将传输帧发送至接收装置20,接收装置20用于接收该传输帧。
本实施例中,一个发送装置10与一个接收装置20进行通信,可以理解,短距离无线通信系统100可包括多个发送装置10,也可以包括多个接收装置20,每个发送装置10可与多个接收装置20进行通信,每个接收装置20可与多个发送装置10进行通信,例如,一个发送装置在不同的时刻分别与不同的接收装置进行数据传输。
请参见图2,图2为本申请一实施例提供的短距离无线通信系统的应用场景示意图,短距离无线通信系统可以应用于手机、平板等终端设备中,也可应用于智能手表、无线耳机等穿戴设备中,也可应用于键盘、鼠标等外围设备中,亦可以应用于智能家居等物联网(Internet of Things,IOT)设备中,也可以应用于车载系统中,如图2所示。示例性的,使用本短距离无线通信系统,可以用无线耳机打电话或者听高音质音乐,使用智能手环或者手表急速上传运动和健康数据到手机中,使用无线键盘和鼠标等无延迟玩游戏,使用手机给这些周边设备快速进行固件升级。可以理解,图2仅为本申请提供的一种应用场景,本申请提供的短距离无线通信系统还可应用于其他应用场景中。
请参见图3,为本申请一实施例提供的发送装置模块示意图。
发送装置10包括信号源模块11、基带处理模块12和发射模块13。信号源模块11用于将待发送的原始数据编译成比特数据流,当然,信号源模块11还可进行加密、添加校验、白化、编码等操作;基带处理模块12用于将比特数据流进行封装,然后按照传输帧格式进行组 包,最终根据调制方式映射成基带信号。发射模块13用于将基带信号调制到适合发射的频段,然后进行滤波放大等操作,以把基带信号发射出去。
可以理解,图3仅为本申请提供的一种发送装置的实施例,发送装置也可由至少一个其他的功能模块组成。
请参见图4,为本申请一实施例提供的接收装置的模块示意图。
接收装置20包含接收模块21、基带处理模块22和信号处理模块23。接收模块21用于将接收到的信号进行放大、混频、滤波、采样等操作,以形成基带处理模块22能识别的基带信号。基带处理模块22用于对基带信号进行同步、跟踪、解调等操作,得到数据中的比特数据流。信号处理模块23用于将比特数据流翻译成能被识别的原始数据,其中可能涉及解码、去白化、校验、解密等操作。
可以理解,图4仅为本申请提供的一种接收装置的实施例,接收装置也可由至少一个其他的功能模块组成。
请参见图5a、图5b、图5c及图5d,为基于蓝牙协议的一些实施例中的传输帧的示意图。本申请实施例提供的传输帧以蓝牙协议为例进行说明,可以理解,本申请的实施例还可应用于其他短距离通信技术中,例如蓝牙协议的替代标准中。
其中图5a所示的传输帧为基础速率帧,即BR帧,BR帧包含前导码、同步码、包头、及数据域。其中前导码用于进行接收装置增益调整,接收装置的增益调整到合适的大小,接收装置才能在期望的幅度范围内接收信号,同步码用以进行帧同步,其中帧同步包括时间同步、频偏估计和相位估计,接收装置在正确接收到同步码字段之后,并成功进行帧同步,才可成功接收后面的字段;如果接收机接收同步码出错,则同步失败,接收装置停止接收传输帧后面的字段,导致接收装置丢帧。包头包含控制信息,接收装置依据包头解调数据域。数据域用来传输数据信息,数据域包括用户数据、校验码和包尾,校验码可为循环冗余校验(Cyclic Redundancy Check,CRC)。数据域之前的字段称为帧头。BR帧的帧头以及数据域均使用高斯频率偏移键控(Gaussian frequency-shift keying,GFSK)调制,占用1MHz信号带宽,可以提供1Mbps的比特速率。基础速率帧信号带宽小,数据传输速率较低。
图5b所示的传输帧为增强速率帧,即EDR帧,相较于基础速率帧,EDR帧的包头和数据域之间新增保护时间和同步码2,两个字段。EDR帧的帧头采用高斯频率偏移键控调制,数据域采用差分相位偏移键控调制。由于这两种调制方式切换需要时间,所以增加了保护时间。保护时间的长度在4.75usec到5.25usec之间,保护时间字段不包含任何有效信息,仅用作切换调制方式。由于经过了保护时间,需要重新进行同步,所以新增了同步码2字段。EDR帧的帧头采用GFSK调制,占用1MHz信号带宽,可以提供1Mbps的比特速率。保护时间之后的字段采用差分正交相位偏移键控调制或者差分8相位偏移键控调制,均占用1MHz信号带宽,该实施例的传输帧可以提供2Mbps或者3Mbps的比特速率。
由于EDR的帧头和数据域采用不同的调制方式,增加了一个保护时间和同步码2,导致数据包的整体速度较低,延迟较大。
图5c所示的传输帧为LE无编码帧,LE无编码帧包含前导码、接入码及数据域。接入码用于进行帧同步。LE无编码帧采用GFSK调制,包含LE1M以及LE2M两种速率。其中LE1M占用1MHz信号带宽,可以提供1Mbps的比特速率。LE2M占用2MHz信号带宽,可以提供2Mbps的比特速率。LE无编码帧为了实现低功耗,传输速度较低。
图5d所示的传输帧为LE有编码帧,LE有编码帧包含前导码、接入码、码率标识及数据域。为了提升接收性能,LE有编码帧对接入码、码率标识字段和数据域字段采用了1/2码率前向纠错编码和4倍重复编码。其中1/2码率的前向纠错编码会把一个信息比特编码成2个比特。4倍重复编码会把每一个编码的比特重复4次形成4个比特。LE有编码帧的接入码及码率标识字段,采用固定的1/2前向纠错编码加4倍重复编码,即1个信息比特会被编码成8个比特。LE有编码帧的数据域字段采用1/2前向纠错编码或者1/2前向纠错编码加4倍重复编码,编码方式被存放在码率标识字段中。LE有编码帧采用GFSK调制,占用1MHz带宽,受编码影响,接入码及其他部分可以提供125Kbps的比特速率,数据域及其他部分可以提供500Kbps或者125Kbps的比特速率。通过采用固定的1/2前向纠错编码加4倍重复码,提升了数据传输的准确率,导致数据传输冗余较多,传输速度较小。
图5a、图5b、图5c及图5d所示的传输帧存在以下问题:吞吐率较低,时延较大,为了解决以上实施例中所示的传输帧的问题,本申请提供的一种新的传输帧的格式。
请参见图6,为本申请一实施例提供的传输帧的示意图。
该传输帧包括前导码、同步接入序列、包头及数据域;其中传输帧中前导码、同步接入序列、包头其中前导码用于进行接收装置的增益调整;同步接入序列用于进行接收装置的帧同步,其中,帧同步包括时间同步、频率估计和相位估计;包头包含控制信息,包头错误控制(Head error control,HEC),HEC用于检测包头数据是否正确;数据域包括用户数据、校验码和包尾,校验码可为CRC,可以用于校验用户数据的完整性。
如此,发送装置10的基带处理模块12依据图6所述的传输帧格式组包。基带处理模块12将信号源模块11编译的比特数据封装到数据域中。同时信号源模块11的编译方式也会被封装进数据域中,用以辅助接收装置20的信号处理模块23按照正确方式将比特数据翻译成原始数据。其次,发送装置10的基带处理模块12在数据域之前加入前导码,同步接入序列,包头等字段,用以辅助接收装置进行接收。
接收装置20的接收模块21根据前导码进行增益调整,以确保后续信号幅度能被调整到合适的范围内。接收装置20的基带处理模块22会根据同步接入序列进行同步、频偏估计、相位估计等操作。同步成功后继续解调后续字段。接收装置20的基带处理模块22解调出包头,然后根据包头信息,对数据域进行解调以得到比特数据。信号处理模块23根据比特数据中的信号源编译方式对比特数据进行翻译,从而得到原始数据。
请参见图7,为本申请提供的传输帧的实施例一的示意图。本申请实施例以蓝牙协议为例进行说明书,可以理解,本申请的实施例还可应用于其他短距离通信技术中,例如蓝牙协议的替代标准中。
图7为图6所示的传输帧的一种实施例,传输帧包括前导码、接入码、包头及数据域,接入码作为同步接入序列,接入码作为用户ID,用于实现帧同步,该传输帧的格式简单、帧头长度短,以最大限度减少传输时间,达到高吞吐率、低时延的目的。可以理解,在实际应用中,调整帧头的组成,例如帧头的可仅包括前导码,或,帧头包括前导码和接入码,或,帧头包括前导码、接入码及包头。
本申请一实施例中,该传输帧的帧头,即前导码、接入码及包头均采用相同带宽的相位偏移键控(PSK)调制。
示例性的,传输帧的帧头采用4MHz带宽的二元相位偏移键控(BPSK)调制,帧头的比 特速率可以达到4Mbps。传输帧的帧头采用4MHz带宽的正交相位偏移键控(QPSK)调制,帧头的比特速率可以达到8Mbps。帧头的传输速率的提高,可以缩短帧头的传输时间,降低时延。
优选地,帧头可采用π/2-BPSK调制和π/4-QPSK调制中的任意一种。
进一步地,传输帧的数据域采用与帧头相同带宽的相位偏移键控调制。
示例性的,传输帧的帧头采用4MHz带宽的π/2-BPSK调制,数据域采用4MHz带宽的8相位偏移键控(8PSK)调制,数据域的比特速率可以达到12Mbps,使吞吐率得到大幅提升。且由于传输帧的帧头和数据域均采用相同带宽的相位偏移键控调制,帧头与数据域之间调制方式的切换不需要额外增加保护时间和同步码字段,从而缩短传输帧的帧头的传输时间,降低时延。
优选地,数据域可采用π/2-BPSK,π/4-QPSK及8PSK中任一种。
在一实施例中,传输帧的帧头采用相位偏移键控调制,数据域采用与帧头相同带宽的正交幅度(Quadrature Amplitude Modulation,QAM)调制。
示例性的,传输帧的帧头采用4MHz带宽的π/2-BPSK调制;数据域使用4MHz带宽的16-QAM调制,数据域的比特速率可以达到16Mbps,以提升吞吐率。
其中,传输帧的帧头采用PSK调制,传输帧的数据域采用QAM调制,由于PSK调制和QAM调制可采用同一种滤波器实现,因此传输帧的帧头和数据域切换调制方式时,无需如图5b所示的增强速率帧增加保护时间和同步码2字段,从而减小了帧头长度,缩短传输帧的帧头的传输时间,降低时延。
在一实施例中,发送装置和接收装置根据信道质量,协商调整帧头的调制方式,例如,若信道质量较好,则使用高阶的调制方式如π/4-QPSK,若信道质量较差,则使用低阶的调制方式如π/2-BPSK,即可以依据信道质量选择不同的相位偏移键控调制方式。
在一实施例中,发送装置可以根据信道质量,独自调整数据域的调制方式。即发送装置可以依据信道质量选择不同的相位偏移键控调制方式或正交幅度调制方式。例如,若数据域的调制方式为π/2-BPSK,若信道质量变好,发送装置可将数据域的调制方式切换为16-QAM或π/4-QPSK,若数据域的调制方式为64-QAM,若信道质量变差,发送装置可将数据的调制方式切换为16-QAM或π/4-QPSK。即发送装置可依据信道质量将数据域的调制方式在多个相位偏移键控调制方式及多个正交幅度调制方式之间切换。
在一实施例中,本申请提供的传输帧的帧头以及数据域均支持的带宽包括1MHz、2MHz及4MHz。且传输帧的帧头和数据域使用相同的带宽,省去带宽切换带来的保护时间和二次同步时间,降低时延。
在一实施例中,发送装置和接收装置可依据信道质量,协商调整带宽,例如,若信道质量较好,则协商增大带宽;若信道质量不好,则协商减小带宽。
在一实施例中,前导码用于增益调整,如果前导码序列的幅度波动较大,会影响增益调整的准确性。PSK调制为非恒包络,信号的幅度波动较GFSK调制大很多。为了减少PSK调制引起的幅度波动对增益调整的影响,本申请的前导码序列设计成任意相邻符号均为星座图上的相邻星座点,以保证前导码符号变化时,前导码的幅度波动小,以近似成一个恒包络信号,例如依据前导码的调制方式(例如π/2-BPSK调制和π/4-QPSK调制)确定对应的星座图,前导码的序列的任意相邻符号为该调制方式对应星座图上相邻的点,以使。
请参见图8,为本申请提供的两种前导码的星座图,其中图8(a)为前导码采用全0序列的π/4-QPSK调制,该序列对应星座图的星座点分别为0,π/4,0,π/4,……,即前导码序列的两个相邻符号变换时,对应为在星座图上的两个相邻的星座点0和π/4之间跳动。图8(b)为前导码采用全0序列的DQPSK调制,该序列对应星座图的星座点分别为π/4,π/2,3π/4,……,3π/2,7π/4,0,即前导码序列的相邻符号变换时,对应为在星座图上的相邻星座点之间移动。
在一实施例中,传输帧的帧头或数据域采用的PSK调制具有奇偶旋转的特性。其中奇偶旋转为:对一个符号序列,偶数位置的符号所使用的星座图,是在奇数位置的符号所使用的星座图的基础上,旋转某个角度得到的;相应的,奇数位置的符号所使用的星座图,是在偶数位置的符号所使用的星座图的基础上,旋转某个角度得到的。例如,传输帧的帧头或数据域采用π/2-BPSK调制,奇数位置的符号对应的星座图,可以通过偶数位置的符号对应的星座图绕星座图的坐标中心旋转π/2获得。具有该特性的星座图可以降低发送装置峰均功率比,提高发射功率,以覆盖更大接收范围。
在一实施例中,传输帧的接入码、包头及数据域中任一个均可采用前向纠错编码(Forward error correction,FEC),通过前向纠错编码以降低接收装置接收传输帧的误码率。
在一实施例中,前向纠错编码可为卷积码或polar码。
在一实施例中,发送装置和接收装置可通过沟通以确定传输帧中的接入码和包头是否采用前向纠错编码,即调整接入码和包头的编码方式,编码方式包括编码类型和码率。例如,若信道质量好,则发送装置和接收装置可以沟通之后选择接入码和包头不编码,以获取高吞吐率和低时延。若信道质量较差,则发送装置和接收装置可以沟通之后选择对接入码和包头进行编码。进一步地,编码的码率也可依据信道质量选择,若信道质量较好,则可提高编码的码率减小冗余,以提高吞吐率和降低时延;若信道质量较差,则可降低编码的码率,增加冗余,以提升传输帧的传输准确度,提升接收性能。
在一实施例中,发送装置可依据信道质量调整数据域的编码方式,例如,发送装置检测到信道质量好,可以选择不编码,以获取高吞吐率和低时延。例如,发送装置检测到信道质量较差,为了提升数据域字段的传输准确性,则选择数据采用前向纠错编码且可依据实际信道质量提高或降低编码的码率。编码相关信息放置于包头字段中。接收装置依据包头中的信息进行识别,以确定数据域是否编码及对应的码率。
可以理解,以上实施例中,可以依据实际应用场景选择待编码的字段,其中待编码的字段可为接入码、包头及数据域中至少一个。例如,不同的应用环境可选择不同的编码方式,例如若对数据的精确度要求较高,则可对接入码、包头及数据域均进行编码,若对数据的速率要求较高,则可仅对包头进行编码。
在一实施例中,部分字段可插入已知相位的导频(pilot)字段,以提升相位检测与跟踪性能,如此,接收装置在接收pilot时,可以根据接收到的pilot相位与已知的pilot相位进行比较,从而估计出当前的相位偏差。
本实施例中,可以插入导频的字段为接入码、包头及数据域。发送装置可以依据应用需求,选择需插入导频字段的字段,例如接入码、包头及数据域三个字段中均插入导频字段,或接入码、包头及数据域三个字段中任意一个或任意两个插入导频字段。
进一步地,发送装置可以根据当前通信质量、编码情况以及相位偏移对不同字段接收的 影响程度等因素,选择不同的插入比例来对不同字段进行插入导频字段。例如,信道质量好,发送装置可选择不插入pilot,信道质量差,则选择插入pilot。信道质量越好,pilot插入比例越低。其中,接入码和包头是否插入pilot以及pilot的插入比例是发送装置和接收装置确认好之后再进行调整的。数据域是否插入pilot以及pilot的插入比例是发送装置依据信道质量确定的。接收装置根据包头中信息进行识别,判断数据字段是否插如pilot及插入比例。
示例性的,发送装置可以采用16:1的插入比例在接入码和包头中插入pilot,并采用8:1的比例在payload中插入pilot,即每16个接入码和包头符号之后插入一个pilot,每8个payload符号之后插入一个pilot,当通信质量变差,则可减小插入比例,以增大插入数量,提升相位估计的能力。
可以理解,以上几个实施例涉及的相关参数,例如传输帧的调制方式、带宽、是否编码、编码码率、是否插入pilot及插入比例,可依据实际应用场景调整其中一个或多个。
请参见图9,为本申请提供的传输帧的实施例二的示意图。
实施例二提供的传输帧与实施例一提供的传输帧相似,传输帧包括前导码、同步接入序列、包头及数据域,相同之处这里不再赘述,不同之处在于:
同步码和接入码组合为同步接入序列,同步码和接入码沿从前导码至数据域的方向依次设置,通过同步码字段提升同步性能,即可通过同步码辅助实现时间同步、频率估计及相位估计,从而提升接收装置的整体性能,确保在信道质量差的情况下也能正确接收信息,以了保证高速率的前提下提升接收性能。可以理解,同步码和接入码之间的设置顺序可依据实际场景调整,例如依次包括接入码和同步码。
在一实施例中,同步码可采用m序列或golden序列。
请参见图10,为本申请提供的传输帧的实施例三的示意图。
实施例三提供的传输帧与实施例二提供的传输帧相似,传输帧包括前导码、同步接入序列、包头及数据域,相同之处这里不再赘述,不同之处在于:
同步接入序列包括第一同步码、第二同步码及接入码,第一同步码、第二同步码及接入码沿从前导码至数据域的方向依次设置,通过设置两段同步码提升接收性能和同步码的组合数,不同同步码的组合可以作为网络ID,用于对不同网络的设备(例如发送装置、或接收装置)进行区分。同一网络内的设备,使用接入码进行区分。第一同步码和第二同步码均可单独提升同步性能,第一同步码和第二同步码也可作为一个整体,进一步地提升同步性能,从而提升了整体接收装置的性能,确保在信道质量差的情况下也能正确接收信息。可以理解,在其他实施例中,第一同步码、第二同步码及接入码的设置顺序可依据实际场景进行调整。
进一步地,两个同步码的序列既可以相同,也可以不同。
请参考图11,为本申请实施例的发送装置10的示意图,其中发送装置10可为具有短距离无线通信功能的终端,例如手机、平板电脑等,当然,发送装置10还可为具有短距离无线通信功能的芯片。
发送装置10包括处理器14及发送电路15。本领域技术人员可以理解,图11中示出的结构并不构成对所述发送装置10的限定,所述发送装置10可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。例如,发送装置10还可包括存储器。
所述存储器可用于存储软件程序和/或模块/单元。所述处理器14通过运行或执行存储在 所述存储器内的软件程序和/或模块/单元,以及调用存储在存储器内的数据,实现所述发送装置10的各种功能,本申请中处理器14用于生成传输帧。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据发送装置10的使用所创建的数据等。此外,存储器可以包括非易失性计算机可读存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
所述处理器14可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。该处理器14可以是微处理器或者该处理器14也可以是任何常规的处理器等,例如基带信号处理芯片,所述处理器14是所述发送装置10的控制中心,利用各种接口和线路连接整个发送装置10的各个部分。
所述发送电路15与处理器14耦合,用于发送传输帧,其中发送电路15可耦合至天线16以实现传输帧信号的传输。发送装置10通过发送电路15与所述接收装置20进行通信。
请参考图12,为本申请实施例的接收装置20的示意图。其中接收装置20可为具有短距离无线通信功能的终端,例如手机、平板电脑等,当然,接收装置20还可为具有短距离无线通信功能的芯片,所述接收装置20包括处理器24及接收电路25。本领域技术人员可以理解,图12中示出的结构并不构成对所述接收装置20的限定,所述接收装置20可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。例如,接收装置20还可包括存储器。
所述存储器可用于存储软件程序和/或模块/单元。所述处理器24通过运行或执行存储在所述存储器内的软件程序和/或模块/单元,以及调用存储在存储器内的数据,实现所述接收装置20的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据接收装置20的使用所创建的数据等。此外,存储器可以包括非易失性计算机可读存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
所述处理器24可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。该处理器24可以是微处理器或者该处理器24也可以是任何常规的处理器等,所述处理器24是所述接收装置20的控制中心,利用各种接口和线路连接整个接收装置20的各个部分。
所述接收电路25与处理器24耦合,用于接收传输帧,其中接收电路25可耦合至天线24以实现传输帧信号的接收。所述接收装置20通过接收电路25与所述发送装置10进行通信。
参考图13所示,为本申请一实施例的短距离无线通信的方法的流程图,执行主体为发送装置,根据不同的需求,所述流程图中步骤的顺序可以改变,某些步骤可以省略。为了便于说明,仅示出了与本申请实施例相关的部分。所述短距离无线通信的方法包括:
S131:生成并发送传输帧。
具体地,传输帧包括前导码、同步接入序列、包头及数据域,所述同步接入序列用于进行帧同步,其中,所述前导码、所述同步接入序列、所述包头及所述数据域均采用相同带宽的相位偏移键控调制,或,所述数据域采用正交幅度调制,所述前导码、所述同步接入序列及所述包头均采用与所述数据相同带宽的相位偏移键控调制。带宽由发送接收装置协商确定。
如此,通过将传输帧的帧头采用相位偏移键控调制,将数据域采用相同带宽的相位偏移键控调制或正交幅度调制,以提升传输帧的传输速率,该传输帧的格式简单、帧头长度较短,最大限度减少传输时间,以达到高吞吐率、低时延的目的。
可以理解,生成传输帧和发送传输帧可由发送装置的不同模块执行。
另传输帧的格式及其他特性可参见以上的实施例,这里不再赘述。
在一实施例中,请参见图13,所述短距离无线通信的方法还包括:
S132:依据信道质量调整传输帧的带宽。
其中所述传输帧支持带宽包括:1MHz、2MHz及4MHz,传输帧的帧头及数据域的带宽均相同。
在一实施例中,请再次参见图13,所述短距离无线通信的方法还包括:
S133:依据信道质量调整传输帧的调制方式。
其中,所述待调整调制方式包括帧头和数据域中至少一种。发送装置和接收装置根据信道质量,协商调整帧头的调制方式。发送装置可依据信道质量将数据域的调制方式在多个相位偏移键控调制方式及多个正交幅度调制方式之间切换。
在一实施例中,请再次参见图13,所述短距离无线通信的方法还包括:
S134:依据信道质量调整传输帧中待编码字段的编码方式。
其中,所述待编码字段包括所述接入码,所述包头及所述数据域中至少一种,所述编码方式包括编码类型和码率,所述编码类型可为前向纠错编码。
具体地,发送装置可依据信道指令选择合适的编码类型,例如卷积码或polar码;发送装置可依据信道质量调整编码的码率。例如,若信道质量较好,则可提高编码的码率,甚至可不对传输帧进行编码,以获取高吞吐率和低时延;若信道质量较差,则可降低编码的码率,增加冗余,以提升传输帧的传输准确度,提升接收性能。
在一实施例中,请参见图13,所述短距离无线通信的方法还包括:
S135:依据信道质量调整导频字段的插入方式。
其中,插入方式包括待插入字段及插入比例。
具体地,待插入字段包括接入码、包头及数据域,发送装置可以依据应用需求环境选择需插入导频字段的字段,例如接入码、包头及数据域三个字段中任意一个或多个字段插入导频。
进一步地,发送装置可以根据当前通信质量,编码信息,以及相位偏移对不同字段接收的影响程度等因素,选择不同的比例来对不同字段进行插入导频字段。
本申请另一实施例的短距离无线通信的方法的流程图,执行主体为接收装置,根据不同的需求,所述流程图中步骤的顺序可以改变,某些步骤可以省略。为了便于说明,仅示出了与本申请实施例相关的部分。所述短距离无线通信的方法包括:
接收传输帧,所述传输帧至少包括前导码、同步接入序列、包头及数据域,所述同步接 入序列用于进行帧同步,其中,所述前导码、所述同步接入序列、所述包头及所述数据域均采用相同带宽的相位偏移键控调制,或,所述数据域采用正交幅度调制,所述前导码、所述同步接入序列及所述包头均采用与所述数据域相同带宽的相位偏移键控调制。
除以上方法和设备外,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得计算机设备执行图13所示的短距离无线通信的方法。
一种计算机程序产品,所述计算机程序产品包括计算机执行指令,所述计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从所述计算机可读存储介质中读取所述计算机执行指令,所述至少一个处理器执行所述计算机执行指令使得所述设备实现图13所示的短距离无线通信的方法。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (33)

  1. 一种短距离无线通信方法,其特征在于,所述方法包括:
    生成传输帧,所述传输帧包括帧头及数据域;其中,所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制;
    发送所述传输帧。
  2. 如权利要求1所述的方法,其特征在于,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制对应星座图上相邻的点。
  3. 如权利要求2所述的方法,其特征在于,所述帧头还包括接入码。
  4. 如权利要求2所述的方法,其特征在于,所述帧头还包括同步码和接入码。
  5. 如权利要求2所述的方法,其特征在于,所述帧头还包括第一同步码、第二同步码及接入码。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    依据信道质量调整所述传输帧的调制方式。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    依据信道质量调整所述传输帧的带宽,其中所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
  8. 如权利要求1至7任一项所述的方法,其特征在于,所述相位偏移键控调制具有奇偶旋转的特性。
  9. 如权利要求3至5任一项所述的方法,其特征在于,所述帧头还包括包头,所述方法还包括:
    依据信道质量调整所述传输帧中待编码字段的编码方式,所述待编码字段包括所述接入码、所述包头及所述数据域中至少一种,所述编码方式包括编码类型和码率,所述编码类型为前向纠错编码。
  10. 如权利要求3、4、5和9中任一项所述的方法,其特征在于,所述帧头还包括包头,所述方法还包括:
    依据所述信道质量调整导频字段的插入方式,所述插入方式包括待插入字段和插入比例,所述待插入字段包括所述接入码、所述包头及所述数据域中至少一个,所述导频字段用于辅助相位估计。
  11. 一种短距离无线通信方法,其特征在于,所述方法包括:
    接收传输帧,所述传输帧包括帧头及数据域;其中,所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制。
  12. 如权利要求11所述的方法,其特征在于,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控对应星座图上相邻的点。
  13. 如权利要求12所述的方法,其特征在于,所述帧头还包括接入码。
  14. 如权利要求12所述的方法,其特征在于,所述帧头还包括同步码和接入码。
  15. 如权利要求12所述的方法,其特征在于,所述帧头还包括第一同步码、第二同步码及所述接入码。
  16. 如权利要求11至15任一项所述的方法,其特征在于,所述传输帧支持带宽包括:1MHz、2MHz及4MHz。
  17. 如权利要求11至16任一项所述的方法,其特征在于,所述相位偏移键控调制具有奇偶旋转的特性。
  18. 如权利要求13至15任一项所述的方法,其特征在于,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一种采用前向纠错编码。
  19. 如权利要求13、14、15及18中任一项所述的方法,其特征在于,所述帧头还包括包头,所述接入码、所述包头及所述数据域中至少一个具有导频字段,所述导频字段用于辅助相位估计。
  20. 一种发送装置,其特征在于,所述发送装置包括:
    处理器,用于生成传输帧,所述传输帧包括帧头及数据域;其中所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制;
    发射电路,耦合至所述处理器,用于发送所述传输帧。
  21. 如权利要求20所述的发送装置,其特征在于,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制对应星座图上相邻的点。
  22. 如权利要求21所述的发送装置,其特征在于,所述帧头还包括接入码。
  23. 如权利要求21所述的发送装置,其特征在于,所述帧头还包括同步码和接入码。
  24. 如权利要求21所述的发送装置,其特征在于,所述帧头还包括第一同步码、第二同步码及所述接入码。
  25. 如权利要求21至24任一项所述的发送装置,其特征在于,所述相位偏移键控调制具有奇偶旋转的特性。
  26. 一种接收装置,其特征在于,所述接收装置包括:
    接收电路,用于接收传输帧,所述传输帧包括帧头及数据域;其中所述帧头采用相位偏移键控调制,所述数据域使用与所述帧头相同带宽的相位偏移键控调制或正交幅度调制;
    处理器,所述接收电路耦合至所述处理器。
  27. 如权利要求26所述的接收装置,其特征在于,所述帧头包括前导码,所述前导码使用第一相位偏移键控调制,且所述前导码的序列的任意相邻符号为所述第一相位偏移键控调制对应星座图上相邻的点。
  28. 如权利要求27所述的接收装置,其特征在于,所述帧头还包括接入码。
  29. 如权利要求27所述的接收装置,其特征在于,所述帧头还包括同步码和接入码。
  30. 如权利要求27所述的接收装置,其特征在于,所述帧头还包括第一同步码、第二同步码及所述接入码。
  31. 如权利要求27至30任一项所述的接收装置,其特征在于,所述相位偏移键控调制具有奇偶旋转的特性。
  32. 一种短距离无线通信系统,其特征在于,所述短距离无线通信系统包括发送装置和接收装置;
    所述发送装置用于执行如权利要求1至10中任意一项所述的短距离无线通信的方法,所述接收装置用于执行如权利要求11至19中任意一项所述的短距离无线通信的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序,所述程序使得计算机设备执行如权利要求1至19中任意一项所述的短距离无线通信的方法。
PCT/CN2021/095323 2021-05-21 2021-05-21 短距离无线通信方法及相关设备 WO2022241791A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180091151.0A CN116965070A (zh) 2021-05-21 2021-05-21 短距离无线通信方法及相关设备
PCT/CN2021/095323 WO2022241791A1 (zh) 2021-05-21 2021-05-21 短距离无线通信方法及相关设备
EP21940244.3A EP4336872A1 (en) 2021-05-21 2021-05-21 Short-range wireless communication method and related device
US18/512,668 US20240089156A1 (en) 2021-05-21 2023-11-17 Short-range wireless communication method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/095323 WO2022241791A1 (zh) 2021-05-21 2021-05-21 短距离无线通信方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/512,668 Continuation US20240089156A1 (en) 2021-05-21 2023-11-17 Short-range wireless communication method and related device

Publications (1)

Publication Number Publication Date
WO2022241791A1 true WO2022241791A1 (zh) 2022-11-24

Family

ID=84140122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095323 WO2022241791A1 (zh) 2021-05-21 2021-05-21 短距离无线通信方法及相关设备

Country Status (4)

Country Link
US (1) US20240089156A1 (zh)
EP (1) EP4336872A1 (zh)
CN (1) CN116965070A (zh)
WO (1) WO2022241791A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722146A (zh) * 2016-03-25 2016-06-29 珠海市魅族科技有限公司 无线局域网的通信方法及通信装置、接入点和站点
CN106878215A (zh) * 2017-01-18 2017-06-20 深圳市极致汇仪科技有限公司 一种蓝牙信号的dpsk快速调制方法
US20180270876A1 (en) * 2017-03-15 2018-09-20 Avago Technologies General IP (Singapore) Pte. Ltd . Enhanced data rate low energy wireless communications
CN109243473A (zh) * 2018-10-26 2019-01-18 南京中感微电子有限公司 一种音频数据通信方法及头戴设备
CN110166989A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种高速传输音频数据的方法和装置
CN111065083A (zh) * 2019-12-31 2020-04-24 锐迪科微电子科技(上海)有限公司 蓝牙通信方法及装置、存储介质、终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722146A (zh) * 2016-03-25 2016-06-29 珠海市魅族科技有限公司 无线局域网的通信方法及通信装置、接入点和站点
CN106878215A (zh) * 2017-01-18 2017-06-20 深圳市极致汇仪科技有限公司 一种蓝牙信号的dpsk快速调制方法
US20180270876A1 (en) * 2017-03-15 2018-09-20 Avago Technologies General IP (Singapore) Pte. Ltd . Enhanced data rate low energy wireless communications
CN110166989A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种高速传输音频数据的方法和装置
CN109243473A (zh) * 2018-10-26 2019-01-18 南京中感微电子有限公司 一种音频数据通信方法及头戴设备
CN111065083A (zh) * 2019-12-31 2020-04-24 锐迪科微电子科技(上海)有限公司 蓝牙通信方法及装置、存储介质、终端

Also Published As

Publication number Publication date
CN116965070A (zh) 2023-10-27
US20240089156A1 (en) 2024-03-14
EP4336872A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US11968070B2 (en) Technologies for transmitting or receiving an aggregate physical layer protocol data unit
US9614605B1 (en) Multicarrier transmit diversity
Guo et al. WIDE: Physical-level CTC via digital emulation
US7903538B2 (en) Technique to select transmission parameters
CN111279700B (zh) 用于提高视频流稳健性的可调整的调制编码方案
US8699316B2 (en) USF coding
US10136287B2 (en) Method and apparatus for close proximity communications
US8094749B2 (en) Signaling format for wireless communications
TW201244413A (en) Method and apparatus for reliably transmitting radio blocks with piggybacked ACK/NACK fields
Muslimin et al. SDR-based transceiver of digital communication system using USRP and GNU radio
US10784990B2 (en) Method and apparatus for encoding and modulating data for wireless transmission
JP4012464B2 (ja) シンボル・レート当たり複数ビットの直交振幅エンコーディング
WO2012142907A1 (zh) 一种数据发送的方法及系统
WO2022241791A1 (zh) 短距离无线通信方法及相关设备
US10778479B1 (en) Systems and methods for wireless transmission of audio information
CN115347977B (zh) 数据调制方法、数据处理方法、设备和存储介质
Chen et al. A research on internet of things with CRC method
CN106656221B (zh) 一种数据收发方法和装置
WO2024088116A1 (zh) 一种信息处理的方法和装置
WO2022089137A1 (zh) 一种编码方法、解码方法、相关设备以及存储介质
WO2023071785A1 (zh) 通信方法、设备、存储介质和计算机程序产品
Mishra et al. Supporting continuous mobility through multi-rate wireless packetization
CN109600197B (zh) 极性码的编码方法和编码装置
CN111385778B (zh) 通信方法和终端设备
WO2015044780A2 (zh) 用于设备到设备通信中的发现检测的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091151.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021940244

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021940244

Country of ref document: EP

Effective date: 20231204

NENP Non-entry into the national phase

Ref country code: DE