WO2022241229A1 - Stabilized s2 beta-coronavirus antigens - Google Patents

Stabilized s2 beta-coronavirus antigens Download PDF

Info

Publication number
WO2022241229A1
WO2022241229A1 PCT/US2022/029216 US2022029216W WO2022241229A1 WO 2022241229 A1 WO2022241229 A1 WO 2022241229A1 US 2022029216 W US2022029216 W US 2022029216W WO 2022241229 A1 WO2022241229 A1 WO 2022241229A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
engineered
seq
cov
mers
Prior art date
Application number
PCT/US2022/029216
Other languages
French (fr)
Inventor
Jason MCLELLAN
Ching-Lin Hsieh
Original Assignee
Board Of Regents, The University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Board Of Regents, The University Of Texas System filed Critical Board Of Regents, The University Of Texas System
Publication of WO2022241229A1 publication Critical patent/WO2022241229A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present disclosure relates generally to the fields of medicine, virology, immunology, and protein engineering. More particular, the disclosure relates to engineered beta-coronavirus S2 domain-only proteins and the use thereof in drug design and vaccine formulation.
  • Coronaviruses are a genetically diverse group of enveloped viruses containing a large appx. 30 kb, positive-sense, single- stranded RNA genome (Li, 2016).
  • HCoVs human Co Vs
  • CoVs exhibit adaptation to alternative host species, and spillover of three novel beta genus CoVs (b-CoVs) — Middle East respiratory syndrome (MERS)-CoV, severe acute respiratory syndrome (SARS)-CoV, and SARS-CoV-2 — from bats directly or indirectly into humans within the past two decades underscores the serious and persistent threat to public health that coronaviruses hold.
  • SARS-CoV-2 has led to >100 million cases worldwide and left in its path detrimental socioeconomic consequences.
  • global development of vaccines and therapeutics against SARS-CoV-2 has proceeded at an
  • VOC virus-associated virus-2
  • SARS-CoV-2 “variants of concern” distinguished by one to many unique or recurring changes in S, recently emerged in multiple regions of the world, including western Europe, South Africa, and North America. These variants have spread at disproportionately fast rates relative to predecessor variants in certain geographic regions, consistent with augmented replication capacity, greater transmissibility, and/or immune evasion.
  • SARS-CoV-2 trained on conserved S2 epitopes and stimulated by SARS-CoV-2 infection may account for the skewed neutralizing antibody response to the SARS-CoV-2 S2 subunit in young individuals.
  • SARS-CoV-2 a majority of the anti- SARS-CoV-2 IgG repertoire targets the S2 subdomain, reiterating the potential for cross reactivity directed at conserved epitopes on HCoVs (Nguyen-Contant et al., 2020).
  • the S2 subunit serves as an attractive target for development of broad-spectrum vaccines and therapeutic antibodies for current and future novel HCoVs.
  • Coronaviruses are genetically diverse positive-strand RNA viruses that generally dwell in animal reservoirs but can cause pandemics after spillover into the human population.
  • Vaccine development for SARS-CoV-2 has progressed at unprecedented speed resulting in several vaccine candidates with up to 95% efficacy against COVID-19.
  • current CoV vaccines primarily target immunodominant epitopes in the S 1 subunit, which are generally not well conserved across CoV subgenera and are sensitive to escape mutations, thus threatening vaccine efficacy.
  • structure-guided protein engineering was used to remove the SI subunit from the MERS-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens.
  • Vaccination with MERS SS elicited cross-reactive b-CoV antibody responses and protected mice against lethal MERS-CoV challenge.
  • High-throughput microfluidic discovery of antibody secreting cells from MERS SS-immunized mice led to discovery of a panel of cross-reactive monoclonal antibodies.
  • Antibody IgG22 bound with high affinity to both MERS-CoV and SARS-CoV-2 S proteins, and electron microscopy localized the epitope to a conserved coiled-coil region in the S2 subunit.
  • engineered proteins comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, or at least 95% identical to: (a) positions 762-1291 of SEQ ID NO: 1 (i.e., the S2 domain of MERS-CoV spike protein); (b) positions 687-1208 of SEQ ID NO: 2 (i.e., the S2 domain of SARS-CoV-2 spike protein); (c) positions 668-1190 of SEQ ID NO: 3 (i.e., the S2 domain of SARS -CoV spike protein) or (d) position 683-1205 of SEQ ID NO: 4; wherein the engineered protein comprises the following substitutions relative to the sequence of SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P,
  • engineered proteins comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, or at least 95%identical to: (a) positions 762-1291 of SEQ ID NO: 1; (b) positions 687-1208 of SEQ ID NO: 2; (c) positions 668-1190 of SEQ ID NO: 3; or (d) position 683-1205 of SEQ ID NO: 4; wherein the engineered protein does not comprise a beta-coronavirus SI domain, and wherein the engineered protein comprises at least one substitution relative to the sequence of SEQ ID NO: 1, 2, or 3, said at least one substitution being at a position corresponding to: V958, V983, A918, V1139, L1094, S1091, N1132, K816, H1020, H1146, V1150, S845, T803, K933, S858, G953, S975, L923, L1033, P93
  • the engineered proteins comprise at least one engineered disulfide bond comprising paired cysteine substitutions at positions corresponding to: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1.
  • the engineered proteins further comprise at least one additional engineered disulfide bond.
  • the engineered proteins comprise at least one cavity filling substitution at a position corresponding to: S975, P937, M939, L923, and/or L1033 relative to SEQ ID NO: 1. In some aspects, the engineered proteins comprise at least one cavity filling substitution selected from: S975M, P937F, M939K, L923W, and L1033F relative to SEQ ID NO: 1.
  • the engineered proteins comprise at least one substitution that provides an electrostatic interaction substitution at a position corresponding to: S845, L923, L1033, A1049, S787, Q1003, L840, and/or A1093 relative to SEQ ID NO: 1.
  • the engineered proteins comprise at least one electrostatic interaction substitution selected from S845E, L923K, L1033E, A1049S, S787D, Q1003K, L840E, and A1093R relative to SEQ ID NO: 1.
  • the engineered proteins comprise V1060P and L1061P substitutions relative to SEQ ID NO: 1.
  • the engineered proteins comprise a combination of at least one engineered disulfide bond, at least one cavity filling substitution, at least one proline substitution, and at least one electrostatic interaction substitution.
  • the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I/, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P. In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P.
  • the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, K816R, H1020Q, H1146Y, V1150T, V1060P, and L1061P. In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, and L1061P.
  • the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P, V898C, V1022C, A838C, and S0189C.
  • the engineered proteins are fused or conjugated to a dimerization domain. In some aspects, the engineered proteins are fused to a dimerization domain. In some aspects, the trimerization domain is positioned C-terminally relative to S protein ectodomain. In some aspects, the trimerization domain comprises a T4 fibritin trimerization domain.
  • the engineered proteins are fused or conjugated to a transmembrane domain. In some aspects, the engineered proteins are fused to a transmembrane domain. In some aspects, the transmembrane domain comprises a beta- coronavirus spike protein transmembrane domain. In some aspects, the transmembrane domain comprises a homologous beta-coronavirus spike protein transmembrane domain.
  • engineered beta-coronavirus S2 trimers comprising at least one subunit according to any one of the present embodiments.
  • the S2 trimers are stabilized in a prefusion conformation relative to a S2 trimer of wildtype S protein subunits.
  • the S2 trimers comprise at least one engineered disulfide bond between subunits.
  • 5 disulfide bond between subunits is selected from: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1.
  • compositions comprising a pharmaceutically acceptable carrier; and an engineered protein or an engineered trimer of any one of the present embodiments.
  • the compositions further comprise an adjuvant.
  • nucleic acid molecules comprising a nucleotide sequence that encodes an amino acid sequence of an engineered protein of any one of the present embodiments.
  • the nucleic acid comprises a DNA expression vector.
  • the nucleic acid comprises a mRNA.
  • kits for preventing coronavirus infection or a disease associate with coronavirus infection in a subject comprising administering to the subject an effective amount of the pharmaceutical composition or a nucleic acid molecule according to any one of the present embodiments.
  • the methods elicit a beta-coronavirus cross-reactive immune response.
  • the methods elicit the production of pan-coronavirus antibodies in the subject.
  • composition comprising an engineered protein of any one of the present embodiments bound to an antibody.
  • FIG. 1 Exemplary substitutions for MERS spike stem stabilization.
  • One protomer of the S2 subunits is shown as a ribbon diagram with the other two protomers shown in a transparent molecular surface.
  • the regions that refold during the pre-to-postfusion transition are colored cyan with the rest of the S2 in wheat.
  • Each inset corresponds to the location of exemplary substitutions in the MERS SS.V1 construct.
  • FIGS. 2A-H Characterization of MERS stem stabilized spike variants.
  • FIG. 2A SDS-PAGE of MERS-CoV S2-2P and single-substitution spike variants on mutll backbone. Molecular weight standards are indicated at the left in kDa.
  • FIGS. 2B-D Size- exclusion chromatography traces of purified spike variants, grouped by type (FIG. 2B, cavity and aromatic pi; FIG. 2C, disulfide; FIG. 2D polar and salt bridge). A vertical dotted line indicates the peak retention volume for S2-2P.
  • FIG. 2E SEC traces for reversed and combinational-substitution spike variants. Mut5, mut6 and mut7 have six, five and four residues of mutll reversed to the wild-type, respectively.
  • S975M and T803C/K933C are additional mutations combined with mut5, mut6 and mut7.
  • FIG. 2F SEC traces for combinatorial disulfide-substituted spike variants. Additional one or two disulfide substitutions are introduced on MERS SS.V1 backbone.
  • FIG. 2G Differential scanning fluorimetry analysis of spike variant thermostability. The vertical dotted line indicates the apparent melting temperature for S2-2P.
  • FIG. 2H SEC traces of MERS SS.V1 and MERS SS.V2 purified from a 1 L culture of FreeStyle 293F cells.
  • FIGS. 3A-F Immunogenicity of MERS SS immunogens in mice.
  • SAS Sigma Adjuvant System
  • Mice were immunized at weeks 0 and 3 and bled two weeks post-boost for serological analyses including ELISAs to assess binding to (FIG. 3B) MERS-CoV, (FIG.
  • FIG. 3C HCoV-HKUl
  • FIG. 3D SARS-CoV
  • FIG. 3E SARS-CoV-2 S-2P-specific binding IgG
  • FIG. 3F MERS-CoV pseudovirus neutralization assay.
  • Each circle represents an individual mouse. Dotted lines represent upper and lower limits of detection where applicable.
  • FIGS. 3B-F Min to max box plots, with the box from 25-75% and the median value denoted by the line.
  • FIGGS. 3B-E Experimental groups were compared by two-way ANOVA with multiple
  • FIGS. 4A-H Efficacy of SS.V1 against lethal MERS-CoV challenge in mice.
  • Two weeks post-boost mice were bled for analysis of (FIG. 4B) MERS-CoV S-2P-specific IgG and (FIG. 4C) pseudovirus neutralizing antibodies.
  • FIG. 4C pseudovirus neutralizing antibodies.
  • mice were challenged with a lethal dose of mouse-adapted MERS-CoV (MA35c5).
  • mice were monitored for weight loss.
  • FIGGS. 4B-C, E-H Each circle represents an individual mouse. Min to max box plots, with the box from 25-75% and the median value denoted by the line. Dotted lines represent lower limits of detection where applicable. Experimental groups were compared by one-way ANOVA with Kruskal-Wallis post-test. (FIG.
  • FIGS. 5A-F MERS stem-targeted mAbs neutralize authentic MERS- CoV. Binding of Fab22 to (FIG. 5A) MERS-CoV S, (FIG. 5B) SARS-CoV S, and (FIG. 5C) SARS-CoV-2 S assessed by surface plasmon resonance. Binding data are shown as black lines and the best fit to a 1:1 binding model is shown as gray lines. (FIG. 5D) IgG22 and IgG72 demonstrated concentration-dependent neutralization of MERS-CoV infectivity. Other SS.V1 elicited mAbs shown lacked detectable neutralizing activity against MERS-CoV.
  • mAbs IgG20, IgG22 and IgG72 were tested in duplicate, and remaining mAbs were tested once. Neutralizing mAh G4 was included as a positive control and tested in triplicate.
  • FIG. 5E Neither IgG22 or IgG72 exhibited detectable neutralization of SARS-CoV-2.
  • mAh S309 which neutralizes SARS-CoV-2, was included as a positive control.
  • IgG22 and IgG72 were tested once, and S309 was tested in duplicate.
  • FIG. 5F Representative 2D class averages and cryo-EM density map of Fab22 bound to MERS S-2P. The local resolution is depicted by
  • FIGS. 6A-D Stem-targeted mAb 22 binds to helical stalk region of SARS- CoV-2 spike.
  • FIG. 6A Representative 2D class averages and 3D reconstructions of Fab22 bound SARS-CoV-2 S.
  • FIG. 6B Side view of cryo-EM density of Fab22 bound to SARS- CoV-2 S. The local resolution is depicted by a spectrum as a scale bar.
  • Fab22 binds to the base of the spike.
  • FIG. 6C Model of full-length wildtype SARS-CoV-2 spike (PDB: 6XR8) docked into EM map of Fab22 bound SARS-CoV-2 S.
  • Sequence alignments of the helical stalk region of four b-CoVs show high sequence similarity.
  • the sequences for SARS-CoV and SARS-CoV-2 are SEQ ID NO: 7.
  • the sequence for MERS-CoV is SEQ ID NO: 8.
  • the sequence for HKU1 is SEQ ID NO: 9.
  • FIG. 6D Binding of Fab22 to three spike variants captured by RBD-directed IgG is assessed by BLI. Binding data are shown as black lines and the best fit to a 1:1 binding model is shown as gray lines.
  • FIGS. 7A-C Characterization of MERS stem stabilized spike variants.
  • FIGS. 7A and B DSF analysis for spike variant thermostability.
  • FIG. 7A For reversed spike variants (the first and the second iterations), mut5, mut6 and mut7 have six, five and four residues of mutll reverted to the wild-type, respectively.
  • S975M and T803C/K933C are additional mutations combined with mut5, mut6 and mut7.
  • the dotted line indicates the melting curve for S2-2P.
  • FIG. 7B DSF analysis for reversed spike variants (the third iterations). The variants having the same Tm are indicated by a dot line, dash line, dash- single dotted line or dash-double dotted line for clarity.
  • FIG. 7A For reversed spike variants (the first and the second iterations), mut5, mut6 and mut7 have six, five and four residues of mutll reverted to the wild-type, respectively.
  • S975M and T803C/K933C are
  • FIGS. 8A-B MERS S-2P and MERS SS.V1 exhibit nanomolar binding affinity to mAb G4. Binding of (FIG. 8A) MERS S-2P or (FIG. 8B) MERS SS.V1 to mAb G4 assessed by biolayer interferometry (BLI). AHC sensor tips were used to capture mAh G4 and then dipped into a well containing MERS S-2P or MERS SS in BLI buffer. The end point binding responses were plotted against concentrations of the spikes, and the best fit by steady state analysis is shown as a nonlinear line.
  • BLI buffer biolayer interferometry
  • FIGS. 9A-C MERS SS.V1 elicited mAbs exhibit a spectrum of the binding specificities to betacorona virus spikes. Binding of MERS SS.V1 elicited mAbs to MERS-CoV S, SARS-CoV S, HCoV-HKUl S assessed by biolayer interferometry (BLI). RSV-F containing a consensus trimerization motif (foldon) is also included as a negative control. Binding data are shown as solid lines, and the best fit to a 1:1 binding model is shown as dash lines. A vertical dotted line indicates the end of the binding event. The selected mAbs are grouped by their binding kinetics: (FIG.
  • FIG. 9A bi-specificity, faster on rates to MERS-S than SARS-S
  • FIG. 9B bi-specificity, faster on rates to SARS-S than MERS-S
  • FIG. 9C only binding to MERS-S or only binding to foldon.
  • FIGS. 10A-B Two third of MERS SS.V1 elicited mAbs bind to the regions other than G4 binding loop.
  • FIG. 10A Illustration of the scheme of experimental design for G4 competition assay by BLI. AHC biosensors were used to capture selected Ah and then dipped into G4 Fab pre-saturated MERS-S or apo MERS-S. Binding data are shown as solid lines and the best fit to a 1:1 binding model is shown as dash lines. A vertical dotted line indicates the end of the binding event when the responses are used for end-point binding analysis.
  • FIG. 10A Illustration of the scheme of experimental design for G4 competition assay by BLI. AHC biosensors were used to capture selected Ah and then dipped into G4 Fab pre-saturated MERS-S or apo MERS-S. Binding data are shown as solid lines and the best fit to a 1:1 binding model is shown as dash lines. A vertical dotted line indicates the end of the binding event when the responses are used for
  • End-point binding responses of mAbs to G4 Fab pre-saturated MERS-S versus MERS-S are calculated and shown as percentage. Ah G4 is also included as a control (white bar). Non-G4 competing mAbs having higher responses to G4 Fab pre saturated MERS-S than MERS-S are depicted as gray bars. G4 competing mAbs having higher responses to MERS-S than G4 Fab pre-saturated MERS-S are depicted as black bars.
  • FIGS. 11A-C Fab22 and Fab72 bind to a helical stalk region of the spikes.
  • FIG. 11 A Representative 2D class averages of Fab22 complexed with MERS-CoV S by negative stain electron microscopy (nsEM).
  • FIG. 11B Representative 2D class averages of Fab72 complexed with MERS-CoV S by nsEM.
  • FIG. 11C Representative 2D class averages of Fab22 complexed with HexaPro, a prefusion stabilized SARS-CoV-2 S, by nsEM.
  • FIGS. 12A-C Cryo-EM structure validation. FSC curves and viewing distribution plots for (FIG. 12A) MERS-CoV S-Fab 22 structure, (FIGS. 12B-C) SARS- CoV-2 S-Fab 22 structures with (FIG. 12B) 1-RBD up and (FIG. 12C) 3-RBD down generated in cry oS PARC v2.15.
  • Vaccine development for SARS-CoV-2 has progressed at unprecedented speed resulting in several vaccine candidates with up to 95% efficacy against COVID-19.
  • current CoV vaccines primarily target immunodominant epitopes in the S 1 subunit, which are generally not well conserved across CoV subgenera.
  • Structure-guided protein engineering was used to remove the SI subunit from the MERS-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens.
  • Vaccination with MERS SS elicited cross-reactive b-CoV antibody responses and protected mice against lethal MERS-CoV challenge.
  • MERS-CoV stabilized stem constructs MERS SS.V1 and MERS SS.V2, both of which lack the SI subunit (FIG. 1). Both antigens are immunogenic in mice, inducing broadly cross-reactive antibodies to MERS-CoV, HCoV HKU1, SARS-CoV, and SARS-CoV-2 S, and confer protection in a lethal murine MERS- CoV challenge model.
  • Two monoclonal antibodies, IgG22 and IgG72 isolated using microfluidic single B-cell screening technology from MERS SS. VI -immunized mice, neutralized authentic MERS-CoV.
  • All CoV spikes are composed of an SI subunit, a major determinant for host cell tropism, and an S2 subunit, which contains the machinery that drives viral-host fusion
  • the SI subunit which directly interacts with the host receptor, is composed of an N-terminal domain (NTD), a receptor-binding domain (RBD) and subdomains (SDs).
  • NTD N-terminal domain
  • RBD receptor-binding domain
  • SDs subdomains
  • SARS-CoV-2 transient hinging of the RBD into an ‘up’ conformation allows for host-cell receptor engagement.
  • a helix-loop region spanning from the fusion peptide (FP) to heptad repeat 1 (HR1) constitutes a metastable structure that transitions to a long stable a-helix in the postfusion conformation during viral entry.
  • the FP, HR1, central helix (CH) and connector domain (CD) comprise the globular head of the S2 subunit.
  • the helical stalk region, connecting the globular head to the viral membrane is elongated and highly flexible (Ke et al., 2020; Turonova et al., 2020).
  • the stalk region can be further divided into a hip, knee, and ankle, wherein the knee functions as a hinge, providing a considerable range in flexibility and movement for the spikes on the viral surface.
  • the S2 subunit of CoV S analogous to HA2 of influenza vims HA and gp41 of HIV-1 Env, functions as a fusogen by bringing viral and host cell membranes together, thus enabling viral entry.
  • the S2 subunit transitions from a metastable prefusion to a highly stable 250 post- fusion conformation (Li, 2016).
  • HA stem hemagglutinin stem region (functionally analogous to the CoV S2 subunit) to elicit broad protection in animals.
  • two independent research groups rationally engineered the HA stem by introducing disulfide bridges, increasing surface hydrophilicity, stabilizing the hydrophobic core, optimizing the protease cleavage site, and/or displaying the HA stem on nanoparticles (Impagliazzo et al., 2015; Yassine et al., 2015).
  • the HA stem trimers stabilized in the prefusion conformation induced neutralizing antibodies targeting stems of various group 1 HA subtypes and protected animals from heterotypic IAV challenge.
  • a similar strategy based on structure-guided vaccine design was successfully applied to more distantly related group 2 IAV (Boyoglu-Barnum et al., 2020; Corbett et al., 2019).
  • the Cys803-Cys933 pair was introduced to cross-link regions of mobility and immobility during the pre- to post-fusion transition in a manner similar to the Cysl55-Cys290 substitution in RSV F (DS-Cavl) (McLellan et al., 2013).
  • a covalent linkage was made across the S2' protease cleavage site, via the formation of a Cys838-Cysl089 bridge, akin to the Cys93(HA2)- Cys310(HAl) substitution in the HA stem (Impagliazzo et al., 2015).
  • Cys898 and Cysl022 substitutions were placed in the fusion peptide and HR1 to prevent the helix-loop region from transitioning to a single, elongated helix. Both Cys898 and Cysl022 substitutions were at regions that move substantially, and a similar approach was employed to increase the trimer fraction of HA stem (Cys68-Cys76) and to keep PIV3 F in a prefusion conformation (Cysl62-Cysl68) (Impagliazzo et al., 2015; Stewart-Jones et al., 2018).
  • Disulfide engineering has also been used to restrict local flexibility of secondary structures in SARS-CoV-2 S (Hsieh et al., 2020) or to trap the RBDs in a closed configuration (Henderson et al., 2020; McCallum et al., 2020; Xiong et al., 2020).
  • MERS SS V2 elicited 10-fold higher neutralizing antibodies against MERS CoV than SS VI in a single prime-boost immunization regimen.
  • Each disulfide substitution significantly improved
  • thermostability of the MERS SS antigens consistent with disulfide designs in other class I viral fusion proteins.
  • N1132Y substitution seems to pack against Pro937, Vall206, and Proll31 and possibly forms H bonds with Gln800 and Asnl029.
  • Other modifications intended to enhance polar interactions for instance, V958S, S1091E and L1094Q substitutions — were considered as beneficial additions to the best construct.
  • Alternative strategies such as stabilizing proline substitutions, reducing hydrophobicity at the S1-S2 interface, and nanoparticle display, are viable options to further improve our MERS SS.V2 antigens in efforts to induce cross-neutralizing antibodies.
  • MERS SS -immunization stimulated the production of antibodies that were cross-reactive to multiple CoV S proteins.
  • This disclosure is the first to show protection against lethal CoV challenge with a stem-only immunogen — protection that comes without elicitation of potent neutralizing antibody responses.
  • Previous studies suggest that in vivo activity of influenza virus stem-specific antibodies rely on Fc-mediated functions (DiLillo et al., 2014, 2016). In fact, only a handful of S2-specific neutralizing antibodies against MERS- CoV have been defined (Wang et al., 2015; Widjaja et al., 2019).
  • This disclosure also describes a conserved epitope near the base of S, distinct from the G4-binding site.
  • this disclosure provides rationally engineered CoV S stems as stabilized immunogens to elicit antibodies cross-reactive with all three epidemic b-HCoVs and to provide complete protection in animals against a lethal MERS-CoV challenge.
  • a stabilized stem construct the production of antibodies was elicited which enabled the identification of a novel site of vulnerability in the S2 subunit, which will inform development of next-generation CoV vaccines and fortify CoV pandemic preparedness.
  • essentially free in terms of a specified component, is used herein to mean that none of the specified component has been purposefully formulated into a composition and/or is present only as a contaminant or in trace amounts.
  • the total amount of the specified component resulting from any unintended contamination of a composition is therefore well below 0.05%, preferably below 0.01%.
  • Most preferred is a composition in which no amount of the specified component can be detected with standard analytical methods.
  • antibody refers to an intact immunoglobulin of any isotype, or a fragment thereof that can compete with the intact antibody for specific binding to the target antigen, and includes, for instance, chimeric, humanized, fully human, and bispecific antibodies.
  • An “antibody” is a species of an antigen binding protein.
  • An intact antibody will generally comprise at least two full-length heavy chains and two full-length light chains, but in some instances can include fewer chains such as antibodies naturally occurring in camelids which can comprise only heavy chains.
  • Antibodies can be derived solely from a single source, or can be “chimeric,” that is, different portions of the antibody can be derived from two different antibodies as described further below.
  • antigen binding proteins, antibodies, or binding fragments can be produced in hybridomas, by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies.
  • antibody includes, in addition to antibodies comprising two full-length heavy chains and two full-length light chains, derivatives, variants, fragments, and muteins thereof, examples of which are described below.
  • antibodies include monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic
  • antibody mimetics sometimes referred to herein as “antibody mimetics”
  • chimeric antibodies humanized antibodies
  • human antibodies sometimes referred to herein as “antibody conjugates”
  • fragments thereof respectively.
  • the term also encompasses peptibodies.
  • Naturally occurring antibody structural units typically comprise a tetramer.
  • Each such tetramer typically is composed of two identical pairs of polypeptide chains, each pair having one full-length “light” (in certain embodiments, about 25 kDa) and one full- length “heavy” chain (in certain embodiments, about 50-70 kDa).
  • the amino-terminal portion of each chain typically includes a variable region of about 100 to 110 or more amino acids that typically is responsible for antigen recognition.
  • the carboxy-terminal portion of each chain typically defines a constant region that can be responsible for effector function.
  • Human light chains are typically classified as kappa and lambda light chains.
  • Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively.
  • IgG has several subclasses, including, but not limited to, IgGl, IgG2, IgG3, and IgG4.
  • IgM has subclasses including, but not limited to, IgMl and IgM2.
  • IgA is similarly subdivided into subclasses including, but not limited to, IgAl and IgA2.
  • variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids.
  • J Fundamental Immunology
  • the variable regions of each light/heavy chain pair typically form the antigen binding site.
  • variable region refers to a portion of the light and/or heavy chains of an antibody, typically including approximately the amino-terminal 120 to 130 amino acids in the heavy chain and about 100 to 110 amino terminal amino acids in the light chain.
  • variable regions of different antibodies differ extensively in amino acid sequence even among antibodies of the same species.
  • the variable region of an antibody typically determines specificity of a particular antibody for its target.
  • variable regions typically exhibit the same general structure of relatively conserved framework regions (FR) joined by three hyper variable regions, also called complementarity determining regions or CDRs.
  • FR relatively conserved framework regions
  • CDRs complementarity determining regions
  • both light and heavy chain variable regions typically comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • the assignment of amino acids to each domain is typically in accordance with the definitions of Rabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia & Lesk, J. Mol. Biol., 196:901-917 (1987) or Chothia et al, Nature, 342:878-883 (1989).
  • an antibody heavy chain binds to an antigen in the absence of an antibody light chain.
  • an antibody light chain binds to an antigen in the absence of an antibody heavy chain.
  • an antibody binding region binds to an antigen in the absence of an antibody light chain.
  • an antibody binding region binds to an antigen in the absence of an antibody heavy chain.
  • an individual variable region specifically binds to an antigen in the absence of other variable regions.
  • definitive delineation of a CDR and identification of residues comprising the binding site of an antibody is accomplished by solving the structure of the antibody and/or solving the structure of the antibody-ligand complex. In certain embodiments, that can be accomplished by any of a variety of techniques known to those skilled in the art, such as X-ray crystallography. In certain embodiments, various methods of analysis can be employed to identify or approximate the CDR regions. Examples of such methods include, but are not limited to, the Rabat definition, the Chothia definition, the AbM definition and the contact definition.
  • the Rabat definition is a standard for numbering the residues in an antibody and is typically used to identify CDR regions. See, e.g., Johnson & Wu, Nucleic Acids Res., 28: 214-8 (2000).
  • the Chothia definition is similar to the Rabat definition, but the Chothia definition takes into account positions of certain structural loop regions. See, e.g., Chothia et al, J. Mol. Biol., 196: 901-17 (1986); Chothia et al, Nature, 342: 877-83 (1989).
  • the AbM definition uses an integrated suite of computer programs produced by Oxford Molecular Group that model antibody structure.
  • the CDR regions in the heavy chain are typically referred to as HI, H2, and H3 and are numbered sequentially in the direction from the amino terminus to the carboxy terminus.
  • the CDR regions in the light chain are typically referred to as LI, L2, and L3 and are numbered sequentially in the direction from the amino terminus to the carboxy term in us.
  • the term “light chain” includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity.
  • a full-length light chain includes a variable region domain, VL, and a constant region domain, CL.
  • the variable region domain of the light chain is at the amino-terminus of the polypeptide.
  • Light chains include kappa chains and lambda chains.
  • the term “heavy chain” includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity.
  • a full-length heavy chain includes a variable region domain, VH, and three constant region domains, CHI, CH2, and CH3.
  • the VH domain is at the amino-terminus of the polypeptide, and the CH domains are at the carboxyl-terminus, with the CH3 being closest to the carboxy- terminus of the polypeptide.
  • Heavy chains can be of any isotype, including IgG (including IgGl, IgG2, IgG3 and IgG4 subtypes), IgA (including IgAl and IgA2 subtypes), IgM and IgE.
  • a bispecific or bifunctional antibody typically is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • Bispecific antibodies can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai et al., Clin. Exp. Immunol., 79: 315-321 (1990); Kostelny et al, J. Immunol., 148:1547-1553 (1992).
  • an antigen refers to a substance capable of inducing adaptive immune responses.
  • an antigen is a substance which serves as a target for the receptors of an adaptive immune response.
  • an antigen is a molecule that binds to antigen- specific receptors but cannot induce an immune response in the body by itself. Antigens are
  • antigens 21 usually proteins and polysaccharides, less frequently also lipids.
  • antigens also include immunogens and haptens.
  • An “Fc” region comprises two heavy chain fragments comprising the CHI and CH2 domains of an antibody.
  • the two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
  • the “Fv region” comprises the variable regions from both the heavy and light chains but lacks the constant regions.
  • An antibody that “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.
  • the Coronavirus S protein specific antibodies of the present invention are specific to Coronavirus S protein.
  • the antibody that binds to Coronavirus S protein has a dissociation constant (Kd) of £100 nM, £100 nM, £ nM, £0.1 nM, £0.01 nM, or £0.001 nM (e.g., 10 -8 M or less, e.g., from 10 _8 M to 10 -13 M, e.g., from 10 -9 M to 10 -13 M).
  • Kd dissociation constant
  • antigen binding proteins e.g., atnibody or antigen-binding fragment thereof
  • competition when used in the context of antigen binding proteins (e.g., atnibody or antigen-binding fragment thereof) that compete for the same epitope means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or antigen-binding fragment thereof) being tested prevents or inhibits (e.g., reduces) specific binding of a reference antigen binding protein (e.g., a ligand, or a reference antibody) to a common antigen (e.g., Coronavirus S protein or a fragment thereof).
  • a reference antigen binding protein e.g., a ligand, or a reference antibody
  • RIA solid phase direct or indirect radioimmunoassay
  • EIA solid phase direct or indirect enzyme immunoassay
  • sandwich competition assay see, e.g., Stahli et al., 1983, Methods in Enzymology 9:242- 253
  • solid phase direct biotin-avidin EIA see, e.g., Kirkland et al., 1986, J. Immunol.
  • solid phase direct labeled assay solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Press); solid phase direct label RIA using 1-125 label (see, e.g., Morel et al, 1988, Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al, 1990, Virology 176:546-552); and direct labeled RIA (Moldenhauer et al, 1990,
  • Such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabelled test antigen binding protein and a labeled reference antigen binding protein. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess.
  • Antigen binding proteins identified by competition assay include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur.
  • a competing antigen binding protein when present in excess, it will inhibit (e.g., reduce) specific binding of a reference antigen binding protein to a common antigen by at least 40-45%, 45-50%, 50-55%, 55-60%, 60-65%, 65- 70%, 70-75 % or 75% or more. In some instances, binding is inhibited by at least 80-85%, 85- 90%, 90-95%, 95-97%, or 97% or more.
  • epitope refers to the specific group of atoms or amino acids on an antigen to which an antibody binds.
  • the epitope can be either linear epitope or a conformational epitope.
  • a linear epitope is formed by a continuous sequence of amino acids from the antigen and interacts with an antibody based on their primary structure.
  • a conformational epitope is composed of discontinuous sections of the antigen’s amino acid sequence and interacts with the antibody based on the 3D structure of the antigen.
  • an epitope is approximately five or six amino acid in length. Two antibodies may bind the same epitope within an antigen if they exhibit competitive binding for the antigen.
  • the term “host cell” means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest.
  • the term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present.
  • identity refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent identity” means the percent of identical
  • the sequences being compared are typically aligned in a way that gives the largest match between the sequences.
  • One example of a computer program that can be used to determine percent identity is the GCG program package, which includes GAP (Devereux et al, 1984, Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.).
  • GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined.
  • the sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span”, as determined by the algorithm).
  • a gap opening penalty (which is calculated as 3x the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm.
  • a standard comparison matrix (see, Dayhoff et al, 1978, Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al, 1992, Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.
  • Certain alignment schemes for aligning two amino acid sequences may result in matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 or other number of contiguous amino acids of the target polypeptide.
  • link refers to the association via intramolecular interaction, e.g., covalent bonds, metallic bonds, and/or ionic bonding, or inter-molecular interaction, e.g., hydrogen bond or noncovalent bonds.
  • operably linked refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function.
  • a given signal peptide that is operably linked to a polypeptide directs the secretion of the polypeptide from a cell.
  • a promoter that is operably linked to a coding sequence will direct the expression of the coding sequence.
  • the promoter or other control elements need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. For example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
  • polynucleotide or “nucleic acid” includes both single-stranded and double-stranded nucleotide polymers.
  • the nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide.
  • Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2',3'-dideoxyribose, and intemucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.
  • polypeptide or “protein” means a macromolecule having the amino acid sequence of a native protein, that is, a protein produced by a naturally-occurring
  • non-recombinant cell or it is produced by a genetically-engineered or recombinant cell, and comprise molecules having the amino acid sequence of the native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence.
  • the term also includes amino acid polymers in which one or more amino acids are chemical analogs of a corresponding naturally occurring amino acid and polymers.
  • polypeptide and protein specifically encompass Coronavirus S protein binding proteins, antibodies, or sequences that have deletions from, additions to, and/or substitutions of one or more amino acid of antigen-binding protein.
  • polypeptide fragment refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length native protein. Such fragments can also contain modified amino acids as compared with the native protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long.
  • Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains.
  • useful fragments include but are not limited to a CDR region, a variable domain of a heavy and/or light chain, a portion of an antibody chain or just its variable region including two CDRs, and the like.
  • compositions and formulations suitable for pharmaceutical delivery of the fusion proteins herein disclosed are conventional. Remington’s Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the fusion proteins herein disclosed. In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
  • injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
  • non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch or magnesium stearate.
  • pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
  • the term “subject” refers to a human or any non-human animal (e.g., mouse, rat, rabbit, dog, cat, cattle, swine, sheep, horse or primate).
  • a human includes pre- and post-natal forms.
  • a subject is a human being.
  • a subject can be a patient, which refers to a human presenting to a medical provider for diagnosis or treatment of a disease.
  • the term “subject” is used herein interchangeably with “individual” or “patient.”
  • a subject can be afflicted with or is susceptible to a disease or disorder but may or may not display symptoms of the disease or disorder.
  • terapéuticaally effective amount or “effective dosage” as used herein refers to the dosage or concentration of a drug effective to treat a disease or condition.
  • a drug effective to treat a disease or condition.
  • monoclonal antibodies or antigen-binding fragments thereof disclosed herein to treat viral infection.
  • Treating” or “treatment” of a condition as used herein includes preventing or alleviating a condition, slowing the onset or rate of development of a condition, reducing the risk of developing a condition, preventing or delaying the development of symptoms associated with a condition, reducing or ending symptoms associated with a condition, generating a complete or partial regression of a condition, curing a condition, or some combination thereof.
  • a “vector” refers to a nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell.
  • a vector may include nucleic acid sequences that permit it to replicate in the host cell, such as an origin of replication.
  • a vector may also include one or more therapeutic genes and/or selectable marker genes and other genetic elements known in the art.
  • a vector can transduce, transform or infect a cell, thereby causing the cell to express nucleic acids and/or proteins other than those native to the cell.
  • a vector optionally includes materials to aid in achieving entry of the nucleic acid into the cell, such as a viral particle, liposome, protein coating or the like.
  • compositions comprising an engineered, stabilized beta-coronavirus S2 domain-only protein, a nucleic acid molecule encoding an engineered, stabilized beta-coronavirus S2 domain-only protein, and viral vector comprising an engineered, stabilized beta-coronavirus S2 domain-only protein and/or encoding the engineered, stabilized beta-coronavirus S2 domain-only protein in its genomic
  • compositions can be used for stimulating an immune response, such as part of a vaccine formulation.
  • nucleic acid molecule encoding an engineered, stabilized beta-coronavirus S2 domain-only protein
  • the nucleic acid molecule may comprise or consist of deoxyribonucleotides and/or ribonucleotides, or analogs thereof, covalently linked together.
  • a nucleic acid molecule as described herein generally contains phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages, and peptide nucleic acid backbones and linkages.
  • a nucleic acid molecule may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
  • the sequence of nucleotides may be interrupted by non-nucleotide components.
  • a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. The term also includes both double- and single- stranded molecules.
  • polynucleotide encompasses both the double- stranded form and each of two complementary single-stranded forms known or predicted to make up the double- stranded form.
  • a nucleic acid molecule is composed of a specific sequence of four nucleotide bases: adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) for thymine when the polynucleotide is RNA.
  • A adenine
  • C cytosine
  • G guanine
  • T thymine
  • U uracil
  • nucleic acid sequence is the alphabetical representation of a nucleic acid molecule.
  • nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated.
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues.
  • the nucleic acids of the present disclosure comprise one or more modified nucleosides comprising a modified sugar moiety.
  • modified nucleosides comprising a modified sugar moiety.
  • Such compounds comprising one or more sugar-modified nucleosides may have desirable properties, such as
  • modified sugar moieties are substituted sugar moieties.
  • modified sugar moieties are sugar surrogates. Such sugar surrogates may comprise one or more substitutions corresponding to those of substituted sugar moieties.
  • modified sugar moieties are substituted sugar moieties comprising one or more non-bridging sugar substituent, including but not limited to substituents at the 2' and/or 5' positions.
  • sugar substituents suitable for the 2'- position include, but are not limited to: 2'-F, 2'-OCH 3 ("OMe” or "O-methyl"), and 2'- 0(CH 2 ) 2 0CH 3 (“MOE").
  • sugar substituents at the 5'-position include, but are not limited to: 5'-methyl (R or S); 5'- vinyl, and 5'-methoxy.
  • substituted sugars comprise more than one non-bridging sugar substituent, for example, T-F-5'-methyl sugar moieties (see, e.g., PCT International Application WO 2008/101157, for additional 5',2'-bis substituted sugar moieties and nucleosides).
  • Nucleosides comprising 2'-substituted sugar moieties are referred to as 2'- substituted nucleosides.
  • These 2'-substituent groups can be further substituted with one or more substituent groups independently selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro (N0 2 ), thiol, thioalkoxy (S-alkyl), halogen, alkyl, aryl, alkenyl and alkynyl.
  • each R m and R n is, independently, H, an amino protecting group or substituted or unsubstituted Ci-Cio alkyl.
  • a 2'-substituted nucleoside comprises a sugar moiety comprising a 2'-substituent group selected from F, O--CH3, and OCH2CH2OCH3.
  • nucleosides of the present disclosure comprise one or more unmodified nucleobases. In certain embodiments, nucleosides of the present disclosure comprise one or more modified nucleobases.
  • modified nucleobases are selected from: universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases as defined herein.
  • nucleobases include tricyclic pyrimidines such as phenoxazine cytidine([5,4-b][l,4]benzoxazin-2(3H)-one), phenothiazine cytidine (lH-pyrimido[5,4- b][l,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g.
  • nucleobases may also include those in which the purine or
  • nucleobases include those disclosed in U.S. Patent 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J. I., Ed., John Wiley & Sons, 1990, 858-859; those disclosed by Englisch et al, 1991; and those disclosed by Sanghvi, Y. S., 1993.
  • Additional modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide.
  • one additional modification of the ligand conjugated oligonucleotides of the present disclosure involves chemically linking to the oligonucleotide one or more additional non-ligand moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide.
  • Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al, 1989), cholic acid (Manoharan et al, 1994), a thioether, e.g., hexyl-5-tritylthiol (Manoharan et al., 1992; Manoharan et al., 1993), a thiocholesterol (Oberhauser et al., 1992), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., 1991; Kabanov et al., 1990; Svinarchuk et al, 1993), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium l,2-di-0-hexadecyl-rac-glycero-3-H-phosphon
  • a nucleic acid molecule encoding an engineered Coronavirus S protein is a modified RNA, such as, for example, a modified mRNA.
  • Modified (m)RNA contemplates certain chemical modifications that confer increased stability and low immunogenicity to mRNAs, thereby facilitating expression of therapeutically important proteins. For instance, N1 -methyl-pseudouridine (NIhiY) outperforms several other nucleoside modifications and their combinations in terms of translation capacity.
  • the (m)RNA such as, for example, a modified mRNA.
  • the 31 molecules used herein may have the uracils replaced with psuedouracils such as 1 -methyl-3 '- pseudouridylyl bases. In some embodiments, some of the uracils are replaced, but in other embodiments, all of the uracils have been replaced.
  • the (m)RNA may comprise a 5’ cap, a 5’ UTR element, an optionally codon optimized open reading frame, a 3’ UTR element, and a poly(A) sequence and/or a polyadenylation signal.
  • the nucleic acid molecule may be delivered as a naked nucleic acid molecule or in a delivery vehicle, such as a lipid nanoparticle.
  • a lipid nanoparticle may comprise one or more nucleic acids present in a weight ratio to the lipid nanoparticles from about 5:1 to about 1:100.
  • the weight ratio of nucleic acid to lipid nanoparticles is from about 5:1, 2.5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:60, 1:70, 1:80, 1:90, or 1:100, or any value derivable therein.
  • the lipid nanoparticles used herein may contain one, two, three, four, five, six, seven, eight, nine, or ten lipids.
  • These lipids may include triglycerides, phospholipids, steroids or sterols, a PEGylated lipids, or a group with a ionizable group such as an alkyl amine and one or more hydrophobic groups such as C6 or greater alkyl groups.
  • the lipid nanoparticles are mixed with one or more steroid or a steroid derivative.
  • the steroid or steroid derivative comprises any steroid or steroid derivative.
  • the term “steroid” is a class of compounds with a four ring 17 carbon cyclic structure which can further comprises one or more substitutions including alkyl groups, alkoxy groups, hydroxy groups, oxo groups, acyl groups, or a double bond between two or more carbon atoms.
  • the lipid nanoparticles are mixed with one or more PEGylated lipids (or PEG lipid).
  • the present disclosure comprises using any lipid to which a PEG group has been attached.
  • the PEG lipid is a diglyceride which also comprises a PEG chain attached to the glycerol group.
  • the PEG lipid is a compound which contains one or more C6-C24 long chain alkyl or alkenyl group or a C6-C24 fatty acid group attached to a linker group with a PEG chain.
  • a PEG lipid includes a PEG modified phosphatidylethanolamine and phosphatidic acid, a PEG ceramide conjugated, PEG
  • the PEG modification is measured by the molecular weight of PEG component of the lipid. In some embodiments, the PEG modification has a molecular weight from about 100 to about 15,000. In some embodiments, the molecular weight is from about 200 to about 500, from about 400 to about 5,000, from about 500 to about 3,000, or from about 1,200 to about 3,000. The molecular weight of the PEG modification is from about 100, 200, 400,
  • lipids that may be used in the present disclosure are taught by U.S. Patent 5,820,873, WO 2010/141069, or U.S. Patent 8,450,298, which is incorporated herein by reference.
  • the lipid nanoparticles are mixed with one or more phospholipids.
  • the phospholipid is a structure which contains one or two long chain C6-C24 alkyl or alkenyl groups, a glycerol or a sphingosine, one or two phosphate groups, and, optionally, a small organic molecule.
  • the small organic molecule is an amino acid, a sugar, or an amino substituted alkoxy group, such as choline or ethanolamine.
  • the phospholipid is a phosphatidylcholine.
  • the phospholipid is distearoylphosphatidylcholine or dioleoylphosphatidylethanolamine.
  • other zwitterionic lipids are used, where zwitterionic lipid defines lipid and lipid-like molecules with both a positive charge and a negative charge.
  • lipid nanoparticle containing compounds containing lipophilic and cationic components, wherein the cationic component is ionizable are provided.
  • the cationic ionizable lipids contain one or more groups which is protonated at physiological pH but may deprotonated and has no charge at a pH above 8, 9, 10, 11, or 12.
  • the ionizable cationic group may contain one or more protonatable amines which are able to form a cationic group at physiological pH.
  • the cationic ionizable lipid compound may also further comprise one or more lipid components such as two or more fatty acids with C6-C24 alkyl or alkenyl carbon groups.
  • 33 groups may be attached through an ester linkage or may be further added through a Michael addition to a sulfur atom.
  • these compounds may be a dendrimer, a dendron, a polymer, or a combination thereof.
  • composition containing compounds containing lipophilic and cationic components, wherein the cationic component is ionizable are provided.
  • ionizable cationic lipids refer to lipid and lipid- like molecules with nitrogen atoms that can acquire charge (pKa). These lipids may be known in the literature as cationic lipids. These molecules with amino groups typically have between 2 and 6 hydrophobic chains, often alkyl or alkenyl such as C6-C24 alkyl or alkenyl groups, but may have at least 1 or more that 6 tails.
  • the amount of the lipid nanoparticle with the nucleic acid molecule encapsulated in the pharmaceutical composition is from about 0.1% w/w to about 50% w/w, from about 0.25% w/w to about 25% w/w, from about 0.5% w/w to about 20% w/w, from about 1% w/w to about 15% w/w, from about 2% w/w to about 10% w/w, from about 2% w/w to about 5% w/w, or from about 6% w/w to about 10% w/w.
  • the amount of the lipid nanoparticle with the nucleic acid molecule encapsulated in the pharmaceutical composition is from about 0.1% w/w, 0.25% w/w, 0.5% w/w, 1% w/w, 2.5% w/w, 5% w/w, 7.5% w/w, 10% w/w, 15% w/w, 20% w/w, 25% w/w, 30% w/w, 35% w/w, 40% w/w, 45% w/w, 50% w/w, 55% w/w, 60% w/w, 65% w/w, 70% w/w, 75% w/w, 80% w/w, 85% w/w, 90% w/w, to about 95% w/w, or any range derivable therein.
  • the present disclosure comprises one or more sugars formulated into pharmaceutical compositions.
  • the sugars used herein are saccharides. These saccharides may be used to act as a lyoprotectant that protects the pharmaceutical composition from destabilization during the drying process.
  • These water- soluble excipients include carbohydrates or saccharides such as disaccharides such as sucrose, trehalose, or lactose, a trisaccharide such as fructose, glucose, galactose comprising raffinose, polysaccharides such as starches or cellulose, or a sugar alcohol such as xylitol, sorbitol, or mannitol.
  • these excipients are solid at room temperature.
  • sugar alcohols include erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, galactitol, fucitol, iditol, inositol, volemitol, isomalt, maltitol, lactitol, maltotritol, maltotetraitol, or a polyglycitol.
  • the amount of the sugar in the pharmaceutical composition is from about 25% w/w to about 98% w/w, 40% w/w to about 95% w/w, 50% w/w to about 90% w/w, 50% w/w to about 70% w/w, or from about 80% w/w to about 90% w/w.
  • the amount of the sugar in the pharmaceutical composition is from about 10% w/w, 15% w/w, 20% w/w, 25% w/w, 30% w/w, 35% w/w, 40% w/w, 45% w/w, 50% w/w, 52.5% w/w, 55% w/w, 57.5% w/w, 60% w/w, 62.5% w/w, 65% w/w, 67.5 % w/w, 70% w/w, 75% w/w, 80% w/w, 82.5% w/w, 85% w/w, 87.5% w/w, 90% w/w, to about 95% w/w, or any range derivable therein.
  • the pharmaceutically acceptable polymer is a copolymer.
  • the pharmaceutically acceptable polymer may further comprise one, two, three, four, five, or six subunits of discrete different types of polymer subunits. These polymer subunits may include polyoxypropylene, polyoxyethylene, or a similar subunit.
  • the pharmaceutically acceptable polymer may comprise at least one hydrophobic subunit and at least one hydrophilic subunit.
  • the copolymer may have hydrophilic subunits on each side of a hydrophobic unit.
  • the copolymer may have a hydrophilic subunit that is polyoxyethylene and a hydrophobic subunit that is polyoxypropylene.
  • expression cassettes are employed to express an engineered, stabilized beta-coronavirus S2 domain-only protein, either for subsequent purification and delivery to a cell/subject, or for use directly in a viral-based delivery approach.
  • expression vectors which contain one or more nucleic acids encoding an engineered, stabilized beta-coronavirus S2 domain-only protein.
  • Expression requires that appropriate signals be provided in the vectors and include various regulatory elements such as enhancers/promoters from both viral and mammalian sources that drive expression of the an engineered, stabilized beta-coronavirus S2 domain-only protein in cells.
  • expression cassette is meant to include any type of genetic construct containing a nucleic acid coding for a gene product in which part or all of the nucleic acid encoding sequence is capable of being transcribed and translated, /. ⁇ ? ., is under the control of a promoter.
  • a “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene.
  • under transcriptional control means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene.
  • an “expression vector” is meant to include expression cassettes comprised in a genetic construct that is capable of replication, and thus including one or more of origins of replication, transcription termination signals, poly-A regions, selectable markers, and multipurpose cloning sites.
  • promoter will be used here to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II. Much of the thinking about how promoters are organized derives from analyses of several viral promoters, including those for the HSV thymidine kinase (tk) and SV40 early transcription units. These studies, augmented by more recent work, have shown that promoters are composed of discrete functional modules, each consisting of approximately 7-20 bp of DNA, and containing one or more recognition sites for transcriptional activator or repressor proteins.
  • At least one module in each promoter functions to position the start site for RNA synthesis.
  • the best known example of this is the TATA box, but in some promoters lacking a TATA box, such as the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 late genes, a discrete element overlying the start site itself helps to fix the place of initiation.
  • Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the tk promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either co-operatively or independently to activate transcription.
  • viral promotes such as the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, the Rous sarcoma vims long terminal repeat, rat insulin promoter and glyceraldehyde-3 -phosphate dehydrogenase can be used to obtain high-level expression of the coding sequence of interest.
  • CMV human cytomegalovirus
  • SV40 early promoter the Rous sarcoma vims long terminal repeat
  • rat insulin promoter and glyceraldehyde-3 -phosphate dehydrogenase
  • Enhancers are genetic elements that increase transcription from a promoter located at a distant position on the same molecule of DNA. Enhancers are organized much like promoters. That is, they are composed of many individual elements, each of which binds to one or more transcriptional proteins. The basic distinction between enhancers and promoters is operational. An enhancer region as a whole must be able to stimulate transcription at a distance; this need not be true of a promoter region or its component elements. On the other hand, a promoter must have one or more elements that direct initiation of RNA synthesis at a particular site and in a particular orientation, whereas enhancers lack these specificities. Promoters and enhancers are often overlapping and contiguous, often seeming to have a very similar modular organization.
  • promoters/enhancers and inducible promoters/enhancers that could be used in combination with the nucleic acid encoding a gene of interest in an expression construct. Additionally, any promoter/enhancer combination (as per the Eukaryotic Promoter Data Base EPDB) could also be used to drive expression of the gene. Eukaryotic cells can support cytoplasmic transcription from certain bacterial promoters if the appropriate bacterial polymerase is provided, either as part of the delivery complex or as an additional genetic expression construct.
  • the promoter and/or enhancer may be, for example, immunoglobulin light chain, immunoglobulin heavy chain, T-cell receptor, HLA DQ a and/or DQ b, b-interferon, interleukin-2, interleukin-2 receptor, MHC class II 5, MHC class II HLA-Dra, b-Actin, muscle creatine kinase (MCK), prealbumin (transthyretin), elastase I, metallothionein (MTII), collagenase, albumin, a-fetoprotein, t-globin, b-globin, c-fos, c-HA-ra.v, insulin, neural cell adhesion molecule (NCAM), oci-antitrypain, H2B (TH2B) histone, mouse and/or type I collagen, glucose-regulated proteins (GRP94 and GRP78), rat growth hormone, human serum amyloid A (SAA), troponin I (TN I
  • a cDNA insert is employed, one will typically desire to include a polyadenylation signal to effect proper polyadenylation of the gene transcript.
  • Any polyadenylation sequence may be employed such as human growth hormone and SV40 polyadenylation signals.
  • a terminator is also contemplated as an element of the expression cassette. These elements can serve to enhance message levels and to minimize read through from the cassette into other sequences.
  • the expression construct comprises a virus or engineered constmct derived from a viral genome.
  • Adenovirus expression vector is meant to include those constructs containing adenovirus sequences sufficient to (a) support packaging of the constmct and (b) to express engineered, stabilized beta-coronavirus S2 domain-only protein that has been cloned therein. In this context, expression does not require that the gene product be synthesized.
  • the expression vector comprises a genetically engineered form of adenovirus.
  • Knowledge of the genetic organization of adenovirus, a 36 kB, linear, double-stranded DNA vims, allows substitution of large pieces of adenoviral DNA with foreign sequences up to 7 kB.
  • retrovirus the adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner without potential genotoxicity.
  • adenoviruses are structurally stable, and no genome rearrangement has been detected after extensive amplification. Adenovims can infect
  • adenoviral infection appears to be linked only to mild disease such as acute respiratory disease in humans.
  • Adenovirus is particularly suitable for use as a gene transfer vector because of its mid-sized genome, ease of manipulation, high titer, wide target cell range and high infectivity. Both ends of the viral genome contain 100-200 base pair inverted repeats (ITRs), which are cis elements necessary for viral DNA replication and packaging.
  • ITRs inverted repeats
  • the early (E) and late (L) regions of the genome contain different transcription units that are divided by the onset of viral DNA replication.
  • the El region (E1A and E1B) encodes proteins responsible for the regulation of transcription of the viral genome and a few cellular genes.
  • the expression of the E2 region results in the synthesis of the proteins for viral DNA replication. These proteins are involved in DNA replication, late gene expression and host cell shut-off.
  • the products of the late genes are expressed only after significant processing of a single primary transcript issued by the major late promoter (MLP).
  • MLP major late promoter
  • the MLP (located at 16.8 m.u.) is particularly efficient during the late phase of infection, and all the mRNAs issued from this promoter possess a 5’- tripartite leader (TPL) sequence which makes them preferred mRNAs for translation.
  • TPL tripartite leader
  • recombinant adenovirus is generated from homologous recombination between shuttle vector and provirus vector. Due to the possible recombination between two proviral vectors, wild-type adenovirus may be generated from this process. Therefore, it is critical to isolate a single clone of vims from an individual plaque and examine its genomic structure.
  • adenovirus generation and propagation of the current adenovirus vectors, which are replication deficient, depend on a unique helper cell line, designated 293, which was transformed from human embryonic kidney cells by Ad5 DNA fragments and constitutively expresses El proteins. Since the E3 region is dispensable from the adenovirus genome, the current adenovirus vectors, with the help of 293 cells, carry foreign DNA in either the El, the D3 or both regions. In nature, adenovirus can package approximately 105% of the wild-type genome, providing capacity for about 2 extra kb of DNA.
  • the maximum capacity of the current adenovirus vector is under 7.5 kb, or about 15% of the total length of the vector. More than 80% of the adenovirus viral genome remains in the vector backbone and is the source of vector-borne cytotoxicity. Also, the replication deficiency of the El-deleted virus is incomplete.
  • Helper cell lines may be derived from human cells such as human embryonic kidney cells, muscle cells, hematopoietic cells or other human embryonic mesenchymal or epithelial cells.
  • the helper cells may be derived from the cells of other mammalian species that are permissive for human adenovirus. Such cells include, e.g., Vero cells or other monkey embryonic mesenchymal or epithelial cells.
  • the preferred helper cell line is 293.
  • the adenoviruses of the disclosure are replication defective, or at least conditionally replication defective.
  • the adenovirus may be of any of the 42 different known serotypes or subgroups A-F.
  • Adenovirus type 5 of subgroup C is one exemplary starting material that may be used to obtain the conditional replication-defective adenovirus vector for use in the present disclosure.
  • viral vectors may be employed as expression constructs in the present disclosure.
  • Vectors derived from viruses such as vaccinia vims, adeno-associated virus (AAV) and herpesviruses may be employed. They offer several attractive features for various mammalian cells.
  • the vector is an AAV vector.
  • AAV is a small virus that infects humans and some other primate species. AAV is not currently known to cause disease. The vims causes a very mild immune response, lending further support to its apparent lack of pathogenicity.
  • AAV vectors integrate into the host cell genome, which can be important for certain applications, but can also have unwanted consequences. Gene therapy vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell, although in the native vims some integration of virally carried genes into the host genome does occur. These features make AAV a very attractive candidate for creating viral vectors for gene therapy, and for the creation of isogenic human disease models.
  • AAV belongs to the genus Dependoparvovirus , which in turn belongs to the family Parvoviridae.
  • the virus is a small (20 nm) replication-defective, nonenveloped virus.
  • Wild-type AAV has attracted considerable interest from gene therapy researchers due to a number of features. Chief amongst these is the vims's apparent lack of pathogenicity. It can also infect non-dividing cells and has the ability to stably integrate into
  • the desired gene together with a promoter to drive transcription of the gene is inserted between the inverted terminal repeats (ITR) that aid in concatemer formation in the nucleus after the single-stranded vector DNA is converted by host cell DNA polymerase complexes into double-stranded DNA.
  • ITR inverted terminal repeats
  • AAV-based gene therapy vectors form episomal concatemers in the host cell nucleus. In non-dividing cells, these concatemers remain intact for the life of the host cell. In dividing cells, AAV DNA is lost through cell division, since the episomal DNA is not replicated along with the host cell DNA. Random integration of AAV DNA into the host genome is detectable but occurs at very low frequency.
  • AAVs also present very low immunogenicity, seemingly restricted to generation of neutralizing antibodies, while they induce no clearly defined cytotoxic response. This feature, along with the ability to infect quiescent cells present their dominance over adenoviruses as vectors for human gene therapy.
  • the AAV genome is built of single- stranded deoxyribonucleic acid (ssDNA), either positive- or negative-sensed, which is about 4.7 kilobase long.
  • the genome comprises inverted terminal repeats (ITRs) at both ends of the DNA strand, and two open reading frames (ORFs): rep and cap.
  • ITRs inverted terminal repeats
  • ORFs open reading frames
  • the former is composed of four overlapping genes encoding Rep proteins required for the AAV life cycle, and the latter contains overlapping nucleotide sequences of capsid proteins: VP1, VP2 and VP3, which interact together to form a capsid of an icosahedral symmetry.
  • the Inverted Terminal Repeat (ITR) sequences comprise 145 bases each. They were named so because of their symmetry, which was shown to be required for efficient multiplication of the AAV genome. The feature of these sequences that gives them this property is their ability to form a hairpin, which contributes to so-called self-priming that allows primase-independent synthesis of the second DNA strand.
  • the ITRs were also shown to be required for both integration of the AAV DNA into the host cell genome (19th chromosome in humans) and rescue from it, as well as for efficient encapsidation of the AAV
  • ITRs seem to be the only sequences required in cis next to the therapeutic gene: structural (cap) and packaging (rep) proteins can be delivered in trans. With this assumption many methods were established for efficient production of recombinant AAV (rAAV) vectors containing a reporter or therapeutic gene. However, it was also published that the ITRs are not the only elements required in cis for the effective replication and encapsidation. A few research groups have identified a sequence designated cis-acting Rep-dependent element (CARE) inside the coding sequence of the rep gene. CARE was shown to augment the replication and encapsidation when present in cis.
  • CARE Rep-dependent element
  • the present disclosure provides pharmaceutical compositions that contain one or more salts.
  • the salts may be an inorganic potassium or sodium salt such as potassium chloride, sodium chloride, potassium phosphate dibasic, potassium phosphate monobasic, sodium phosphate dibasic, or sodium phosphate monobasic.
  • the pharmaceutical composition may comprise one or more phosphate salts such to generate a phosphate buffer solution.
  • the phosphate buffer solution may be comprise each of the phosphates to buffer a solution to a pH from about 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0, or any range derivable therein.
  • the present disclosure comprises one or more excipients formulated into pharmaceutical compositions.
  • excipient refers to pharmaceutically acceptable carriers that are relatively inert substances used to facilitate administration or delivery of an API into a subject or used to facilitate processing of an API into drug formulations that can be used pharmaceutically for delivery to the site of action in a subject.
  • these compounds may be used as diluents in order to obtain a dosage that can be readily measured or administered to a patient.
  • excipients include polymers, stabilizing agents, surfactants, surface modifiers, solubility enhancers, buffers, encapsulating agents, antioxidants, preservatives, nonionic wetting or clarifying agents, viscosity increasing agents, and absorption-enhancing agents.
  • the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more
  • carrier refers to a diluent, excipient, or vehicle with which the therapeutic is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and can preferably include an adjuvant. Water is a particular carrier when the pharmaceutical composition is administered by injections, such an intramuscular injection. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • compositions can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
  • These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
  • Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical agents are described in “Remington's Pharmaceutical Sciences.”
  • Such compositions will contain a prophylactically or therapeutically effective amount of the antibody or fragment thereof, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
  • the formulation should suit the mode of administration, which can be oral, intravenous, intraarterial, intrabuccal, intranasal, nebulized, bronchial inhalation, or delivered by mechanical ventilation.
  • Engineered proteins or nucleic acids encoding engineered proteins of the present disclosure, as described herein, can be formulated for parenteral administration, e.g., formulated for injection via the intradermal, intravenous, intramuscular, subcutaneous, intra- tumoral or even intraperitoneal routes.
  • the formulation could alternatively be administered by a topical route directly to the mucosa, for example by nasal drops, inhalation, or by nebulizer.
  • Pharmaceutically acceptable salts include the acid salts and those which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like.
  • Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
  • inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
  • compositions of the disclosure are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
  • a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
  • the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
  • an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration ⁇
  • compositions of the disclosure can be formulated as neutral or salt forms.
  • Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc. , and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
  • Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunization schedule and/or in a booster immunization schedule. In a multiple dose schedule the various doses may be given by the same or different routes. Multiple doses will typically be administered at least 1 week apart (e.g., about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).
  • compositions disclosed herein may be used to treat both children and adults.
  • a human subject may be less than 1 year old, 1-5 years old, 5-16 years old, 16-55 years old, 55-65 years old, or at least 65 years old.
  • Preferred routes of administration include, but are not limited to, intramuscular, intraperitoneal, intradermal, subcutaneous, intravenous, intraarterial, and intraoccular injection. Particularly preferred routes of administration include intramuscular, intradermal and subcutaneous injection.
  • the present disclosure concerns immunodetection methods for binding, purifying, removing, quantifying and otherwise generally detecting Coronavirus S protein. While such methods can be applied in a traditional
  • antibodies according to the present disclosure can be used to assess the amount or integrity (/. ⁇ ? ., long term stability) of antigens.
  • the methods may be used to screen various antibodies for appropriate/desired reactivity profiles.
  • Some immunodetection methods include enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, and Western blot to mention a few.
  • ELISA enzyme linked immunosorbent assay
  • RIA radioimmunoassay
  • immunoradiometric assay fluoroimmunoassay
  • fluoroimmunoassay fluoroimmunoassay
  • chemiluminescent assay chemiluminescent assay
  • bioluminescent assay bioluminescent assay
  • Western blot to mention a few.
  • a competitive assay for the detection and quantitation of Coronavirus S protein also is provided.
  • the steps of various useful immunodetection methods have been described in the scientific literature, such as, e.g., Doolittle and Ben-Zeev (1999), Gulbis and Gal
  • These methods include methods for detecting or purifying Coronavirus S protein or Coronavirus S protein from a sample.
  • the antibody will preferably be linked to a solid support, such as in the form of a column matrix, and the sample suspected of containing the Coronavirus S protein will be applied to the immobilized antibody. The unwanted components will be washed from the column, leaving the Coronavirus S protein-expressing cells immunocomplexed to the immobilized antibody, which is then collected by removing the organism or antigen from the column.
  • the immunobinding methods also include methods for detecting and quantifying the amount of Coronavirus S protein or related components in a sample and the detection and quantification of any immune complexes formed during the binding process.
  • a sample suspected of containing Coronavirus S protein and contact the sample with an antibody that binds Coronavirus S protein or components thereof, followed by detecting and quantifying the amount of immune complexes formed under the specific conditions.
  • the biological sample analyzed may be any sample that is suspected of containing Coronavirus S protein, such as a tissue section or specimen, a homogenized tissue extract, a biological fluid (e.g., a nasal swab), including blood and serum, or a secretion, such as feces or urine.
  • the antibody employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined.
  • the first antibody that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the antibody.
  • the second binding ligand may be linked to a detectable label.
  • the second binding ligand is itself often an antibody, which may thus be termed a “secondary” antibody.
  • the primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under effective conditions and for a period of time sufficient to allow the formation of secondary immune complexes.
  • the secondary immune complexes are then generally washed to remove any non-specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
  • Further methods include the detection of primary immune complexes by a two-step approach.
  • a second binding ligand such as an antibody that has binding affinity for the antibody, is used to form secondary immune complexes, as described above.
  • the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under effective conditions and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes).
  • the third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
  • One method of immunodetection uses two different antibodies.
  • a first biotinylated antibody is used to detect the target antigen, and a second antibody is then used to detect the biotin attached to the complexed biotin.
  • the sample to be tested is first incubated in a solution containing the first step antibody. If the target antigen is present, some of the antibody binds to the antigen to form a biotinylated antibody/antigen complex.
  • the antibody/antigen complex is then amplified by incubation in successive solutions of streptavidin (or avidin), biotinylated DNA, and/or complementary biotinylated DNA, with each step adding additional biotin sites to the antibody/antigen complex.
  • the amplification steps are repeated until a suitable level of amplification is achieved, at which point the sample is incubated in a solution containing the second step antibody against biotin.
  • This second step antibody is labeled, as for example with an enzyme that can be used to detect the presence of the antibody/antigen complex by histoenzymology using a chromogen substrate.
  • a conjugate can be produced which is macroscopically visible.
  • Another known method of immunodetection takes advantage of the immuno-PCR (Polymerase Chain Reaction) methodology.
  • the PCR method is similar to the Cantor method up to the incubation with biotinylated DNA, however, instead of using multiple rounds of strep tavidin and biotinylated DNA incubation, the DNA/biotin/streptavidin/antibody complex is washed out with a low pH or high salt buffer that releases the antibody. The resulting wash solution is then used to carry out a PCR reaction with suitable primers with appropriate controls.
  • the enormous amplification capability and specificity of PCR can be utilized to detect a single antigen molecule.
  • Immunoassays in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked
  • ELISAs immunosorbent assays
  • RIA radioimmunoassays
  • the antibodies of the disclosure are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the Coronavirus S protein is added to the wells. After binding and washing to remove non- specifically bound immune complexes, the bound antigen may be detected. Detection may be achieved by the addition of another anti-Coronavirus S protein antibody that is linked to a detectable label.
  • ELISA is a simple “sandwich ELISA.” Detection may also be achieved by the addition of a second anti-Coronavirus S protein antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
  • the samples suspected of containing the Coronavirus S protein are immobilized onto the well surface and then contacted with the anti- Coronavirus S protein antibodies of the disclosure. After binding and washing to remove non-specifically bound immune complexes, the bound anti- Coronavirus S protein antibodies are detected. Where the initial anti-Coronavirus S protein antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first anti-Coronavirus S protein antibody, with the second antibody being linked to a detectable label.
  • ELISAs have certain features in common, such as coating, incubating and binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described below.
  • antisera include bovine serum albumin (BSA), casein or solutions of milk powder.
  • BSA bovine serum albumin
  • the coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
  • Under conditions effective to allow immune complex (antigen/antibody) formation means that the conditions preferably include diluting the antigens and/or antibodies with solutions such as BSA, bovine gamma globulin (BGG) or phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
  • the “suitable” conditions also mean that the incubation is at a temperature or for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 hours or so, at temperatures preferably on the order of 25 °C to 27°C, or may be overnight at about 4°C or so.
  • the contacted surface is washed so as to remove non-complexed material.
  • a preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
  • the second or third antibody will have an associated label to allow detection.
  • this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate.
  • a urease glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody
  • the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea, or bromocresol purple, or 2,2'-azino-di-(3-ethyl- benzthiazoline-6-sulfonic acid (ABTS), or 3 ⁇ 4(3 ⁇ 4, in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
  • a chromogenic substrate such as urea, or bromocresol purple, or 2,2'-azino-di-(3-ethyl- benzthiazoline-6-sulfonic acid (ABTS), or 3 ⁇ 4(3 ⁇ 4, in the case of peroxidase as the enzyme label.
  • Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
  • the Western blot is an analytical technique used to detect specific proteins in a given sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D structure of the protein (native/ non denaturing conditions). The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein.
  • a membrane typically nitrocellulose or PVDF
  • Samples may be taken from whole tissue or from cell culture. In most cases, solid tissues are first broken down mechanically using a blender (for larger sample volumes), using a homogenizer (smaller volumes), or by sonication. Cells may also be broken open by one of the above mechanical methods. Assorted detergents, salts, and buffers may be employed to encourage lysis of cells and to solubilize proteins. Protease and phosphatase inhibitors are often added to prevent the digestion of the sample by its own enzymes. Tissue preparation is often done at cold temperatures to avoid protein denaturing.
  • the proteins of the sample are separated using gel electrophoresis. Separation of proteins may be by isoelectric point (pi), molecular weight, electric charge, or a combination of these factors. The nature of the separation depends on the treatment of the sample and the nature of the gel. This is a very useful way to determine a protein. It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single sample out in two dimensions. Proteins are separated according to isoelectric point (pH at which they
  • the proteins are moved from within the gel onto a membrane made of nitrocellulose or polyvinylidene difluoride (PVDF).
  • PVDF polyvinylidene difluoride
  • the membrane is placed on top of the gel, and a stack of filter papers placed on top of that. The entire stack is placed in a buffer solution which moves up the paper by capillary action, bringing the proteins with it.
  • Another method for transferring the proteins is called electroblotting and uses an electric current to pull proteins from the gel into the PVDF or nitrocellulose membrane.
  • the proteins move from within the gel onto the membrane while maintaining the organization they had within the gel. As a result of this blotting process, the proteins are exposed on a thin surface layer for detection (see below).
  • the antibodies of the present disclosure may also be used in conjunction with both fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks prepared for study by immunohistochemistry (IHC).
  • IHC immunohistochemistry
  • the method of preparing tissue blocks from these particulate specimens has been successfully used in previous IHC studies of various prognostic factors, and is well known to those of skill in the art (Brown et al, 1990; Abbondanzo et al, 1990; Allred el al. , 1990).
  • frozen- sections may be prepared by rehydrating 50 ng of frozen “pulverized” tissue at room temperature in phosphate buffered saline (PBS) in small plastic capsules; pelleting the particles by centrifugation; resuspending them in a viscous embedding medium (OCT); inverting the capsule and/or pelleting again by centrifugation; snap-freezing in -70°C isopentane; cutting the plastic capsule and/or removing the frozen
  • PBS phosphate buffered saline
  • OCT viscous embedding medium
  • Permanent- sections may be prepared by a similar method involving rehydration of the 50 mg sample in a plastic microfuge tube; pelleting; resuspending in 10% formalin for 4 hours fixation; washing/pelleting; resuspending in warm 2.5% agar; pelleting; cooling in ice water to harden the agar; removing the tissue/agar block from the tube; infiltrating and/or embedding the block in paraffin; and/or cutting up to 50 serial permanent sections. Again, whole tissue samples may be substituted.
  • the present disclosure concerns immunodetection kits for use with the immunodetection methods described above.
  • the antibodies may be used to detect Coronavirus S protein, the antibodies may be included in the kit.
  • the immunodetection kits will thus comprise, in suitable container means, a first antibody that binds to an Coronavirus S protein, and optionally an immunodetection reagent.
  • the antibody may be pre-bound to a solid support, such as a column matrix and/or well of a microtitre plate.
  • the immunodetection reagents of the kit may take any one of a variety of forms, including those detectable labels that are associated with or linked to the given antibody. Detectable labels that are associated with or attached to a secondary binding ligand are also contemplated. Exemplary secondary ligands are those secondary antibodies that have binding affinity for the first antibody.
  • suitable immunodetection reagents for use in the present kits include the two-component reagent that comprises a secondary antibody that has binding affinity for the first antibody, along with a third antibody that has binding affinity for the second antibody, the third antibody being linked to a detectable label.
  • a number of exemplary labels are known in the art and all such labels may be employed in connection with the present disclosure.
  • kits may further comprise a suitably aliquoted composition of Coronavirus S protein, whether labeled or unlabeled, as may be used to prepare a standard curve for a detection assay.
  • kits may contain antibody-label conjugates either in fully
  • kits 52 conjugated form, in the form of intermediates, or as separate moieties to be conjugated by the user of the kit.
  • the components of the kits may be packaged either in aqueous media or in lyophilized form.
  • the container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the antibody may be placed, or preferably, suitably aliquoted.
  • the kits of the present disclosure will also typically include a means for containing the antibody, antigen, and any other reagent containers in close confinement for commercial sale.
  • Such containers may include injection or blow- molded plastic containers into which the desired vials are retained.
  • the antibodies of the present disclosure may also be used in flow cytometry or FACS.
  • Flow cytometry is a laser- or impedance-based technology employed in many detection assays, including cell counting, cell sorting, biomarker detection and protein engineering. The technology suspends cells in a stream of fluid and passing them through an electronic detection apparatus, which allows simultaneous multiparametric analysis of the physical and chemical characteristics of up to thousands of particles per second.
  • Flow cytometry is routinely used in the diagnosis disorders, especially blood cancers, but has many other applications in basic research, clinical practice and clinical trials.
  • Fluorescence-activated cell sorting is a specialized type of cytometry. It provides a method for sorting a heterogenous mixture of biological cells into two or more containers, one cell at a time, based on the specific light scattering and fluorescent characteristics of each cell.
  • the technology involves a cell suspension entrained in the center of a narrow, rapidly flowing stream of liquid. The flow is arranged so that there is a large separation between cells relative to their diameter. A vibrating mechanism causes the stream of cells to break into individual droplets. Just before the stream breaks into droplets, the flow passes through a fluorescence measuring station where the fluorescence of each cell is measured. An electrical charging ring is placed just at the point where the stream breaks into droplets.
  • a charge is placed on the ring based immediately prior to fluorescence intensity being measured, and the opposite charge is trapped on the droplet as it breaks form the stream.
  • the charged droplets then fall through an electrostatic deflection system that diverts droplets into containers based upon their charge.
  • the antibodies of the present disclosure are labeled with fluorophores and then allowed to bind to the cells of interest, which are analyzed in a flow cytometer or sorted by a FACS machine.
  • the base construct used for the S2 subunit of MERS-CoV S-2P variant contained residues 762-1291 of MERS-CoV S (GenBank ID: AFY13307) with proline substituted at residues 1060 and 1061, the foldon dimerization motif of T4 fibritin, an HRV3C protease recognition site, an octa- histidine tag, and a tandem Twin-Strep-tag, cloned into the mammalian expression plasmid paH. All mutations in subsequent designs were introduced into this base construct.
  • the initial design was conducted via the PROSS server (Goldenzweig et ah, 2016), and a total of 11 substitutions were picked (yielding the ‘mutll’ construct) from 53 computational designs based on the biochemical property of the residues and steric effect on the prefusion-stabilized MERS S-2P structure (PDB ID: 5W9I).
  • additional substitutions that were aimed at favoring the stability of the prefusion structure were introduced into the mutll backbone. Pairs of core-facing residues less than 5 A apart were replaced with aromatic sidechains or pairs of aromatic and positively charged sidechains to favor pi-pi or pi-cation interactions, respectively.
  • MERS SS variants Protein expression and purification for MERS SS variants. Plasmids encoding MERS SS variants were transiently transfected into FreeStyle293F cells (Thermo Fisher) using polyethyleneimine, with 5 mM kifunensine being added 3h post-transfection. Cultures were grown for 6 days, and culture supernatant was separated via centrifugation and passage through a 0.22 pm filter. Protein was purified from supernatants using StrepTactin resin (IB A).
  • IB A StrepTactin resin
  • MERS SS variants were further purified by size-exclusion chromatography (SEC) using a Superose 6 10/300 column (GE Healthcare) in a buffer composed of 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3.
  • SEC size-exclusion chromatography
  • GE Healthcare Superose 6 10/300 column
  • a buffer composed of 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3.
  • single-substitution and combinatorial variants were purified from 40 mL cultures.
  • the SS.V1 and SS.V2 variants were further tested in large-scale expression and purification from 1 L cultures.
  • the protein purity, monodispersity and expression level were determined by SDS- PAGE and SEC.
  • MERS SS variants were prepared at a concentration of 1.5 pM with a final concentration 5X SYPRO Orange Protein Gel Stain (ThermoFisher) in a white, opaque 96-wellplate.
  • mice were carried out in compliance with all pertinent US National Institutes of Health regulations and approval from the Animal Care and Use Committee (ACUC) of the Vaccine Research Center, University of North Carolina at Chapel Hill, or Abcellera Biologies.
  • ACUC Animal Care and Use Committee
  • mice were used for immunogenicity studies.
  • mice were inoculated intramuscularly with protein
  • mice Female C57BL/6J mice aged 4- to 8-weeks (Jackson Laboratory) were used. Mice were immunized intramuscularly with 10 pg MERS SS.V1 + SAS at weeks 0, 3, and 9. At week 13, mice were euthanized and spleens, thymuses, and lymph nodes were harvested for single B cell technology for mAh isolation. Sample size for animal experiments was determined on the basis of criteria set by institutional ACUC. Experiments were neither randomized nor blinded.
  • Serum IgG measurement HCoV S-2P-specific IgG in immunized mouse sera were quantified via enzyme-linked immunosorbent assay (ELISA). Briefly, Nunc MaxiSorp 96-well plates (ThermoFisher) were coated with either MERS S2P, SARS S-2P, SARS-CoV-2 S-2P, or HKU1 S-2P at 1 pg/mL in IX PBS 400 at 4°C for 16h. Sera dilutions were prepared in blocking buffer, which consisted of PBS-Tween 20 + 5% non-fat dairy milk, and diluted serially at 1:100, four- fold, 8x.
  • blocking buffer which consisted of PBS-Tween 20 + 5% non-fat dairy milk
  • Sigmoidal curves taking averages of triplicates at each dilution, were generated from RLU readings; 50% neutralization (ID50) titers were calculated considering uninfected cells as 100% neutralization and cells transduced with only vims as 0% neutralization, by fitting RLU readings to a log(agonist) vs. normalized-response (variable slope) nonlinear regression model in Prism v8 (GraphPad).
  • BSA bovine serum albumin His-tag and T4 foldon trimerization domain were used as negative controls. Beads were flowed into microfluidic screening devices and incubated with single antibody- secreting cells, and monoclonal antibody binding to cognate antigens was detected via a fluorescently labeled anti-human IgG secondary antibody. Positive hits were identified using machine vision and recovered using automated robotics- based protocols.
  • IgGs and Fab Expression and purification of IgGs and Fab. Twenty monoclonal antibodies discovered by single B cell technology were selected for characterization based on their binding specifies to HKU1-S, MERS-S and SARS-l-S (monospecific, bi-specific or tri specific), diversity of heavy and light chain CDR3s, and high frequency rates in the B cell repertoire (independently isolated by the probes more than 2 times). The individual VH sequence of selected IgGs was cloned into a mammalian expression plasmid pVRC8400 containing HRV 3C cleavage site in the hinge, and human IgGl Fc domain. VL sequences were also cloned into pVRC8400 with human CL.
  • Paired VH and VL in a 1 : 1 ratio were co transfected transiently into FreeStyle293F cells as previously described.
  • the supernatant was harvested six days post-transfection and IgGs were purified with Protein A agarose (ThermoFisher).
  • IgGs were eluted with 100 mM glycine, pH 3 into 1/lOth volume 1 M Tris- HC1 pH 8.0. IgGs were then buffer exchanged into PBS pH 7.4.
  • Fab fragments were generated by digesting the IgGs with HRV 3C protease at 4 °C.
  • Fc was removed by passing digests over a fresh Protein A agarose, leaving the Fab in the flowthrough, which was further purified by SEC using a Superdex 200 increase 10/300 column (GE Healthcare) in PBS buffer, pH 7.4.
  • the binding affinity of purified IgGs to HKUl-CoV S, MERS-CoV S or SARS-CoV S was characterized by BLI using an Octet RED96e (ForteBio). Briefly, anti-human Fc (AHC) sensors (ForteBio) with captured IgG were dipped into the wells containing 100 nM of CoV spikes in a BLI buffer composed of 10 mM HEPES pH 7.4, 150 mM NaCl, 0.005% v/v Tween 20 and 1 mg/mL BSA. After 600s association step, the dissociation step was carried out in the wells containing only BLI buffer for 600s.
  • AHC anti-human Fc
  • RSV F-foldon was also included in the experiments as negative control.
  • the binding affinity of purified mAh G4 to MERS-CoV S and MERS SS was also characterized by BLI using similar approach.
  • AHC sensors with captured mAh G4 were dipped into the wells containing serial dilutions of MERS-CoV S or MERS SS at concentration ranging from 100 to 1.56 nM in a BLI buffer.
  • the data were aligned to a baseline prior to association step and fit to a 1:1 binding model to calculate rate and dissociation constants using Octet Data Analysis software vll.l.
  • the IgGs exhibiting binding to MERS-CoV S was further examined for the ability to compete with mAh G4, the only S2- targed antibody MERS-S antibody with a defined epitope (Pallesen et al., 2017).
  • Four-fold molar excess of G4 Fab was preincubated with 100 nM MERS-S at room temperature for 10 min.
  • the IgG being tested was loaded on AHC sensors and then dipped into either 100 nM
  • G4 IgG was also included in one set of the experiments as a control. The data were plotted as the difference between the binding level of G4-saturated and apo MERS-S, normalized to the binding level of apo MERS-S to the IgG of interest.
  • Fab22 concentrations ranging from 100 to 3.13 nM were used instead.
  • the Ni- NTA sensorchip was regenerated between each cycle with 0.35 M EDTA, 50 mM NaOH and followed by 0.5 mM NiC12. Response curves were double-reference subtracted and fit to a 1:1 binding model using Biacore X100 Evaluation Software (GE Healthcare).
  • Plaque reduction neutralization test PRNT.
  • MERS-CoV HCo V -EMC/2012
  • SARS-CoV-2 SARS-CoV-2/human/USA/USA-WAl/2020
  • 100 pL of vims-mAb mixture was applied to each of two confluent Vero 81 or Vero E6 cell monolayers, respectively, in 6-well (10-cm 2 ) plates.
  • DMEM Dulbecco’s modified Eagle’s medium
  • Negative stain EM for spike-Fab complexes Purified MERS-CoV S- 2P or SARS-CoV-2 S-HexaPro were incubated with 2-fold molar excess of Fab22 or Fab72 in 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3 at room temperature for 30 min. The spike-Fab complexes were diluted to a concentration of 0.06 mg/mL in 2 mM Tris pH 8.0,
  • purified SARS-CoV-2 S (HexaPro variant) complexed with 2-fold molar excess of Fab22 was diluted to a concentration of 0.37 mg/mL in 2 mM Tris pH 8.0, 200 mM NaCl, 0.02% NaN3 and applied to plasma-cleaned CF-400 1.2/1.3 grids before being blotted for 3.5 seconds with -4 force in a Vitrobot Mark IV and plunge-frozen into liquid ethane.
  • Fab22-MERS S-2P sample 4,330 micrographs were collected from a single grid.
  • 2,013 micrographs were collected from a single grid.
  • FEI Titan Krios (ThermoFisher) equipped with a K3 direct electron detector (Gatan) was used for imaging. Data were collected at a magnification of 22,500x, corresponding to a calibrated pixel size of 1.07 A/pix. A full description of the data collection parameters can be found in Table 4. Warp was used for motion correction, CTF estimation, and particle picking (Tegunov and Cramer, 2019). The particle stack was then imported into cryoSPARC v2.15.0, which was used to curate the particles via iterative rounds of 2D classification (Punjani et al., 2017). The final reconstructions were then arrived at via ab initio reconstruction, heterogeneous refinement, and subsequently non-uniform homogeneous refinement of final classes. The structure validation can be found in FIGS. 12A-C.
  • Example 1 Structure-based vaccine design of MERS-CoV stabilized stem (SS) antigens
  • the Protein Repair One-Stop Shop was first used to computationally design stabilizing mutations based on a prefusion-stabilized structure of the MERS-CoV spike ectodomain (PDB ID: 5W9I) (Goldenzweig et ah, 2016; Pallesen et ak, 2017).
  • PDB ID: 5W9I prefusion-stabilized structure of the MERS-CoV spike ectodomain
  • 11 substitutions were selected and introduced in varying combinations into the S2 subunit of MERS-CoV S.
  • the protein expression level of the mutant containing all 11 substitutions (mutll) was substantially higher than MERS S2-2P (base construct) (FIG. 2A).
  • T803C/K933C disulfide design
  • S975M cavity filling design
  • T803C/K933C a combination of both designs
  • S975M, T803C/K933C was added on top of mut7.
  • T803C/K933C decreased the protein expression relative to mut7, but increased the Tm by 1.7 °C (FIG. 7A).
  • S975M substitution not only boosted the protein expression relative to mut7, but also enhanced the thermostability.
  • MERS SS.V1 containing 7 substitutions in addition to the original 2P mutations (S975M, T803C/K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P).
  • MERS SS.V1 As an immunogen, large- scale production in FreeStyle 293 -F cells, thermostability, and epitope integrity were investigated. After two consecutive runs of SEC, MERS SS.V1 exhibited a monodispersed trimeric peak, with a yield of 2.2 mg from 1 L of cell culture (FIG. 2H). The Tm of MERS SS.V1 is 59.9 °C, which is a 6.3 °C increase relative to mutll. mAh G4 is one of very few S2-directed antibodies showing neutralizing activity to MERS-CoV (Wang et ah, 2015).
  • MERS SS.V1 The binding kinetics of MERS SS.V1 to G4 IgG were comparable to those of MERS S-2P ectodomain, with apparent affinities of 8.5 nM and 13.2 nM, respectively (FIG. 8). Taken together, these results suggest that MERS SS.V1 retains the integrity of the known neutralization epitope and should be amenable to large-scale production.
  • Example 2 MERS SS immunization elicits cross-reactive b-CoV antibodies
  • Example 3 - MERS SS protects humanized-DPP4 mice against lethal MERS-CoV challenge
  • mice In order to assess the ability of MERS stabilized stems to protect against lethal MERS-CoV challenge, 288/330+/+ mice (Cockrell et ak, 2016) were immunized with 10 pg of MERS SS.V1 or S-2P, adjuvanted with SAS. Mock-immunized mice received PBS. 288/330+/+ mice express human DPP4 and harbor localized lung viral replication and succumb to lethal doses of mouse-adapted (MA) MERS-CoV maM35c4 (Douglas et ak, 2018). Giving three immunogen doses at weeks 0, 3, and 9, the antibody responses were then assessed two weeks post-boost and challenged at week 13 (FIG. 4A).
  • MA mouse-adapted MERS-CoV maM35c4
  • MERS SS.V1 elicits similar levels of robust ⁇ 10 5 homotypic binding IgG as MERS S-2P (FIG. 4B).
  • stem-specific binding antibodies were sub neutralizing as MERS SS.
  • mice receiving MERS S-2P 1/5758
  • mice immunized with either MERS S-2P or MERS SS.V1 demonstrated no weight loss throughout the course of infection.
  • mice in the PBS control group demonstrated severe clinical presentations and succumbed to death one week post-challenge (FIG. 4D).
  • IgGs were then expressed recombinantly in vitro and characterized by binding specificities to b-CoV prefusion- stabilized S, namely HCoV-HKUl S-2P, MERS-CoV S-2P, and SARS-CoV S-2P.
  • IgG20, IgG23 and IgG62 demonstrated cross-reactive binding to MERS- and SARS-CoV S with higher apparent affinity to the former (FIG. 9A).
  • IgG21, IgG22 and IgG72 were also MERS- and SARS-specific, but the association rates of these mAbs to SARS-CoV S were nearly 5-fold higher than to MERS-CoV S (FIG. 9B).
  • IgG12, IgG19 and IgG42 only bound to MERS-CoV S (FIG. 9C).
  • One third of selected mAbs (IgG20, IgG23 and IgG62) competed with G4 binding to MERS-CoV S (FIG. 10).
  • IgG12, IgG19, IgG21, IgG22, IgG42, and IgG72 appeared to bind to regions outside of the G4 epitope.
  • Example 5 - IgG22 binds to multiple CoV spikes and neutralizes authentic MERS-CoV
  • IgG22 and the clonally related IgG72 are two of the cross-reactive antibodies that exhibited faster association to SARS-CoV S than MERS-CoV S (FIG. 9B).
  • surface plasmon resonance experiments were performed where Fab was flowed over spike ectodomain immobilized to a sensor chip.
  • the binding affinity of Fab22 to MERS-CoV S was comparable to those of SARS-CoV S and SARS-CoV-2 S, with KD values of 2.9 nM, 7.2 nM, and 6.7 nM, respectively (FIGS. 5A-C).
  • Fab22 exhibited distinct binding kinetics to MERS-CoV S, featuring a much slower on-rate and off-rate than SARS-CoV or SARS-CoV-2 S.
  • the neutralization activities of selected mAbs were examined against authentic MERS-CoV. IgG22 and IgG72 exhibited
  • Example 6 Cryo-EM structure of Fab22 bound to the MERS-CoV spike
  • Example 7 CryoEM structure of Fab22 bound to the SARS-CoV-2 spike
  • a neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS CoV-2. Science (New York, N.Y.) 369, 650- 655.
  • SARS- CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567-571.
  • Impagliazzo A., Milder, F., Kuipers, H., Wagner, M. v, Zhu, X., Hoffman, R.M.B., van Meersbergen, R., Huizingh, J., Wanningen, P., Verspuij, J., et al. (2015).
  • cryoSPARC algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290-296.
  • MERS protective human monoclonal antibodies targeting different domains and functions of the MERS -coronavirus spike glycoprotein. Emerging Microbes & Infections 8, 516-530.

Abstract

Provided herein are engineered, stabilized beta-coronavirus S2 proteins, such as engineered, stabilized MERS S2 proteins. In some aspects, the engineered S2 proteins exhibit enhanced antigenicity. Methods are also provided for use of the engineered S2 proteins as diagnostics, in screening platforms, and/or in vaccine compositions.

Description

DESCRIPTION
STABILIZED S2 BETA-CORONA VIRUS ANTIGENS
REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims the priority benefit of United States provisional application number 63/188,813, filed May 14, 2021, the entire contents of which are incorporated herein by reference.
REFERENCE TO A SEQUENCE LISTING
[0001] The instant application contains a Sequence Listing, which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on April 22, 2022, is named UTFBP1276WO_ST25.txt and is 68,056 bytes in size.
BACKGROUND
1. Field
[0002] The present disclosure relates generally to the fields of medicine, virology, immunology, and protein engineering. More particular, the disclosure relates to engineered beta-coronavirus S2 domain-only proteins and the use thereof in drug design and vaccine formulation.
2. Description of Related Art
[0003] Coronaviruses (Co Vs) are a genetically diverse group of enveloped viruses containing a large appx. 30 kb, positive-sense, single- stranded RNA genome (Li, 2016). Four endemic (or “seasonal”) human Co Vs (HCoVs) — HCoV-OC43, -HKU1, NL63, and 229E — circulate globally and produce primarily mild upper respiratory illness in otherwise healthy individuals. CoVs exhibit adaptation to alternative host species, and spillover of three novel beta genus CoVs (b-CoVs) — Middle East respiratory syndrome (MERS)-CoV, severe acute respiratory syndrome (SARS)-CoV, and SARS-CoV-2 — from bats directly or indirectly into humans within the past two decades underscores the serious and persistent threat to public health that coronaviruses hold. Most recently, SARS-CoV-2 has led to >100 million cases worldwide and left in its path detrimental socioeconomic consequences. As a result, global development of vaccines and therapeutics against SARS-CoV-2 has proceeded at an
1 unprecedented rate in efforts to slow the ongoing pandemic. Effective vaccines are crucial not only to mitigating overall morbidity and mortality of SARS-CoV-2 infection but may enable populations to achieve herd immunity and temper the emergence and spread of new viral variants. Many of the vaccines in the global portfolio are based on an engineered version of the full-length viral attachment protein, Spike (S), stabilized in its prefusion conformation (Walls et al., 2020; Wrapp et al., 2020). In particular, mRNA-1273 and BNT162b2 showed >94% efficacy against COVID-19 in adult phase III clinical trials (Baden et al., 2020; Polack et al., 2020). However, recent emergence of numerous SARS-CoV-2 variants harboring diverse changes in S substantiate concerns about breadth of this efficacy (Choi et al., 2020; Grubaugh et al., 2021; Kupferschmidt, 2021; Tang et al., 2021).
[0004] Several new SARS-CoV-2 “variants of concern (VOC),” distinguished by one to many unique or recurring changes in S, recently emerged in multiple regions of the world, including western Europe, South Africa, and North America. These variants have spread at disproportionately fast rates relative to predecessor variants in certain geographic regions, consistent with augmented replication capacity, greater transmissibility, and/or immune evasion. Among recurring changes, multiple amino-acid deletions in the NTD (del 69-70, del 144, del 242-244) and the E484K and N501Y substitutions in the RBD have garnered special attention due to enhanced affinity of S for angiotensin converting enzyme 2 (ACE2) and reduced sensitivity to neutralization by convalescent polyclonal sera and anti-RBD therapeutic mAbs (Gu et al., 2020; Starr et al., 2020; Wang et al., 2021; Weisblum et al., 2020; Wu et al., 2021; Zhao et al., 2021). The del 69-70 and N501Y alterations have evolved both together and separately in independent VOC lineages, as has the E484K mutation (Ku et al., 2021). Altogether, these data indicate that selective pressures on the neutralization sensitive epitopes of the SI subunit ultimately result in escape variants.
[0005] Although most neutralizing antibodies target the S 1 subunit, the S2 subunit is more conserved, likely constrained by complex and precisely timed refolding events in S2 that are essential for productive viral entry. Nevertheless, antibodies targeting this region may be neutralizing and protective against infection and pathology in vivo (Chi et al., 2020; Ng et al., 2020; Zhang et al., 2021). Notably, it has been observed that SARS-CoV-2-infected children, and young adolescents that have also recently been infected with an endemic HCoV, develop higher titers of S2 antibodies relative to SARS-CoV-2-infected adults without a recognized antecedent endemic HCoV infection (Ng et al., 2020). Memory B cells
2 trained on conserved S2 epitopes and stimulated by SARS-CoV-2 infection may account for the skewed neutralizing antibody response to the SARS-CoV-2 S2 subunit in young individuals. In individuals not previously infected with SARS-CoV-2, a majority of the anti- SARS-CoV-2 IgG repertoire targets the S2 subdomain, reiterating the potential for cross reactivity directed at conserved epitopes on HCoVs (Nguyen-Contant et al., 2020). Thus, the S2 subunit serves as an attractive target for development of broad-spectrum vaccines and therapeutic antibodies for current and future novel HCoVs.
SUMMARY
[0006] Coronaviruses (CoV) are genetically diverse positive-strand RNA viruses that generally dwell in animal reservoirs but can cause pandemics after spillover into the human population. Vaccine development for SARS-CoV-2 has progressed at unprecedented speed resulting in several vaccine candidates with up to 95% efficacy against COVID-19. However, current CoV vaccines primarily target immunodominant epitopes in the S 1 subunit, which are generally not well conserved across CoV subgenera and are sensitive to escape mutations, thus threatening vaccine efficacy. As disclosed herein, structure-guided protein engineering was used to remove the SI subunit from the MERS-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicited cross-reactive b-CoV antibody responses and protected mice against lethal MERS-CoV challenge. High-throughput microfluidic discovery of antibody secreting cells from MERS SS-immunized mice led to discovery of a panel of cross-reactive monoclonal antibodies. Antibody IgG22 bound with high affinity to both MERS-CoV and SARS-CoV-2 S proteins, and electron microscopy localized the epitope to a conserved coiled-coil region in the S2 subunit.
[0007] In one embodiment, provided herein are engineered proteins comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, or at least 95% identical to: (a) positions 762-1291 of SEQ ID NO: 1 (i.e., the S2 domain of MERS-CoV spike protein); (b) positions 687-1208 of SEQ ID NO: 2 (i.e., the S2 domain of SARS-CoV-2 spike protein); (c) positions 668-1190 of SEQ ID NO: 3 (i.e., the S2 domain of SARS -CoV spike protein) or (d) position 683-1205 of SEQ ID NO: 4; wherein the engineered protein comprises the following substitutions relative to the sequence of SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P, V898C, V1022C, A838C, and S0189C, wherein the engineered protein does not comprise a beta-coronavirus SI domain.
3 [0008] In one embodiment, provided herein are engineered proteins comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, or at least 95%identical to: (a) positions 762-1291 of SEQ ID NO: 1; (b) positions 687-1208 of SEQ ID NO: 2; (c) positions 668-1190 of SEQ ID NO: 3; or (d) position 683-1205 of SEQ ID NO: 4; wherein the engineered protein does not comprise a beta-coronavirus SI domain, and wherein the engineered protein comprises at least one substitution relative to the sequence of SEQ ID NO: 1, 2, or 3, said at least one substitution being at a position corresponding to: V958, V983, A918, V1139, L1094, S1091, N1132, K816, H1020, H1146, V1150, S845, T803, K933, S858, G953, S975, L923, L1033, P937, M939, A1049, L923, L1033, S787, Q1003, L840, Q769, S858, A1093, V1060, L1061, V898, VI 022, S845, A1096, A838, or S 1089 relative to SEQ ID NO: 1.
[0009] In some aspects, the engineered proteins comprise at least one engineered disulfide bond comprising paired cysteine substitutions at positions corresponding to: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1. In some aspects, the engineered proteins further comprise at least one additional engineered disulfide bond.
[0010] In some aspects, the engineered proteins comprise at least one cavity filling substitution at a position corresponding to: S975, P937, M939, L923, and/or L1033 relative to SEQ ID NO: 1. In some aspects, the engineered proteins comprise at least one cavity filling substitution selected from: S975M, P937F, M939K, L923W, and L1033F relative to SEQ ID NO: 1.
[0011] In some aspects, the engineered proteins comprise at least one substitution that provides an electrostatic interaction substitution at a position corresponding to: S845, L923, L1033, A1049, S787, Q1003, L840, and/or A1093 relative to SEQ ID NO: 1. In some aspects, the engineered proteins comprise at least one electrostatic interaction substitution selected from S845E, L923K, L1033E, A1049S, S787D, Q1003K, L840E, and A1093R relative to SEQ ID NO: 1.
[0012] In some aspects, the engineered proteins comprise V1060P and L1061P substitutions relative to SEQ ID NO: 1.
4 [0013] In some aspects, the engineered proteins comprise a combination of at least one engineered disulfide bond, at least one cavity filling substitution, at least one proline substitution, and at least one electrostatic interaction substitution.
[0014] In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I/, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P. In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P. In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, K816R, H1020Q, H1146Y, V1150T, V1060P, and L1061P. In some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, and L1061P. IN some aspects, the engineered proteins comprise the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P, V898C, V1022C, A838C, and S0189C.
[0015] In some aspects, the engineered proteins are fused or conjugated to a dimerization domain. In some aspects, the engineered proteins are fused to a dimerization domain. In some aspects, the trimerization domain is positioned C-terminally relative to S protein ectodomain. In some aspects, the trimerization domain comprises a T4 fibritin trimerization domain.
[0016] In some aspects, the engineered proteins are fused or conjugated to a transmembrane domain. In some aspects, the engineered proteins are fused to a transmembrane domain. In some aspects, the transmembrane domain comprises a beta- coronavirus spike protein transmembrane domain. In some aspects, the transmembrane domain comprises a homologous beta-coronavirus spike protein transmembrane domain.
[0017] In one embodiment, provided herein are engineered beta-coronavirus S2 trimers comprising at least one subunit according to any one of the present embodiments. In some aspects, the S2 trimers are stabilized in a prefusion conformation relative to a S2 trimer of wildtype S protein subunits. In some aspects, the S2 trimers comprise at least one engineered disulfide bond between subunits. In some aspects, the at least one engineered
5 disulfide bond between subunits is selected from: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1.
[0018] In one embodiment, provided herein are pharmaceutical compositions comprising a pharmaceutically acceptable carrier; and an engineered protein or an engineered trimer of any one of the present embodiments. In some aspects, the compositions further comprise an adjuvant.
[0019] In one embodiment, provided herein are nucleic acid molecules comprising a nucleotide sequence that encodes an amino acid sequence of an engineered protein of any one of the present embodiments. In some aspects, the nucleic acid comprises a DNA expression vector. In some aspects, the nucleic acid comprises a mRNA.
[0020] In one embodiment, provided herein are methods of preventing coronavirus infection or a disease associate with coronavirus infection in a subject, comprising administering to the subject an effective amount of the pharmaceutical composition or a nucleic acid molecule according to any one of the present embodiments. In some aspects, the methods elicit a beta-coronavirus cross-reactive immune response. In some aspects, the methods elicit the production of pan-coronavirus antibodies in the subject.
[0021] In one embodiment, provided herein are composition comprising an engineered protein of any one of the present embodiments bound to an antibody.
[0022] Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
6 [0024] FIG. 1. Exemplary substitutions for MERS spike stem stabilization. Side view of the trim eric MERS-CoV globular spike ectodomain in a prefusion conformation (PDB ID: 5W9I) with SI subunits omitted. One protomer of the S2 subunits is shown as a ribbon diagram with the other two protomers shown in a transparent molecular surface. The regions that refold during the pre-to-postfusion transition are colored cyan with the rest of the S2 in wheat. Each inset corresponds to the location of exemplary substitutions in the MERS SS.V1 construct.
[0025] FIGS. 2A-H. Characterization of MERS stem stabilized spike variants.
(FIG. 2A) SDS-PAGE of MERS-CoV S2-2P and single-substitution spike variants on mutll backbone. Molecular weight standards are indicated at the left in kDa. (FIGS. 2B-D) Size- exclusion chromatography traces of purified spike variants, grouped by type (FIG. 2B, cavity and aromatic pi; FIG. 2C, disulfide; FIG. 2D polar and salt bridge). A vertical dotted line indicates the peak retention volume for S2-2P. (FIG. 2E) SEC traces for reversed and combinational-substitution spike variants. Mut5, mut6 and mut7 have six, five and four residues of mutll reversed to the wild-type, respectively. S975M and T803C/K933C are additional mutations combined with mut5, mut6 and mut7. (FIG. 2F) SEC traces for combinatorial disulfide-substituted spike variants. Additional one or two disulfide substitutions are introduced on MERS SS.V1 backbone. (FIG. 2G) Differential scanning fluorimetry analysis of spike variant thermostability. The vertical dotted line indicates the apparent melting temperature for S2-2P. (FIG. 2H) SEC traces of MERS SS.V1 and MERS SS.V2 purified from a 1 L culture of FreeStyle 293F cells.
[0026] FIGS. 3A-F. Immunogenicity of MERS SS immunogens in mice. To assess immunogenicity of MERS SS immunogens, (FIG. 3A) BALB/cJ mice (n = 10/group) were inoculated with PBS (gray), 1 pg of MERS S-2P (red), or 0.4, 2, or 10 pg of MERS SS.V1 (blue) or SS.V2 (green) adjuvanted with Sigma Adjuvant System (SAS). Mice were immunized at weeks 0 and 3 and bled two weeks post-boost for serological analyses including ELISAs to assess binding to (FIG. 3B) MERS-CoV, (FIG. 3C) HCoV-HKUl, (FIG. 3D) SARS-CoV and (FIG. 3E) SARS-CoV-2 S-2P-specific binding IgG and (FIG. 3F) MERS-CoV pseudovirus neutralization assay. Each circle represents an individual mouse. Dotted lines represent upper and lower limits of detection where applicable. (FIGS. 3B-F) Min to max box plots, with the box from 25-75% and the median value denoted by the line. (FIGS. 3B-E) Experimental groups were compared by two-way ANOVA with multiple
7 comparisons post-test and (FIG. 3F) one-way ANOVA with groups Kruskal-Wallis multiple comparisons test. * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001, **** = p- value < 0.0001.
[0027] FIGS. 4A-H. Efficacy of SS.V1 against lethal MERS-CoV challenge in mice. (FIG. 4A) hDPP4 (288/330+/+) mice (n = 20/group) were immunized at weeks 0, 3, and 9 with PBS or 10 pg of MERS-CoV S-2P or SS.V1 adjuvanted with SAS. Two weeks post-boost, mice were bled for analysis of (FIG. 4B) MERS-CoV S-2P-specific IgG and (FIG. 4C) pseudovirus neutralizing antibodies. Four weeks post-boost, mice were challenged with a lethal dose of mouse-adapted MERS-CoV (MA35c5). (FIG. 4D) Following challenge, mice were monitored for weight loss. (FIGS. 4E-H) At days 3 and 5 post-challenge, a subset of mouse lungs (N = 5/timepoint) was harvested for analysis of (FIGS. 4E-F) viral titers and (FIGS. 4G-H) hemorrhage (0 = no hemorrhage, 4 = severe hemorrhage in all lobes). (FIGS. 4B-C, E-H) Each circle represents an individual mouse. Min to max box plots, with the box from 25-75% and the median value denoted by the line. Dotted lines represent lower limits of detection where applicable. Experimental groups were compared by one-way ANOVA with Kruskal-Wallis post-test. (FIG. 4D) For weight loss, the mean of each group is represented by a circle, error bars represent SEM, and experimental groups was compared to the PBS- immunized group on each day post-challenge. * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001, **** = p-value < 0.0001.
[0028] FIGS. 5A-F. MERS stem-targeted mAbs neutralize authentic MERS- CoV. Binding of Fab22 to (FIG. 5A) MERS-CoV S, (FIG. 5B) SARS-CoV S, and (FIG. 5C) SARS-CoV-2 S assessed by surface plasmon resonance. Binding data are shown as black lines and the best fit to a 1:1 binding model is shown as gray lines. (FIG. 5D) IgG22 and IgG72 demonstrated concentration-dependent neutralization of MERS-CoV infectivity. Other SS.V1 elicited mAbs shown lacked detectable neutralizing activity against MERS-CoV. mAbs IgG20, IgG22 and IgG72 were tested in duplicate, and remaining mAbs were tested once. Neutralizing mAh G4 was included as a positive control and tested in triplicate. (FIG. 5E) Neither IgG22 or IgG72 exhibited detectable neutralization of SARS-CoV-2. mAh S309, which neutralizes SARS-CoV-2, was included as a positive control. IgG22 and IgG72 were tested once, and S309 was tested in duplicate. (FIG. 5F) Representative 2D class averages and cryo-EM density map of Fab22 bound to MERS S-2P. The local resolution is depicted by
8 a spectrum of rainbow color as a scale bar. The side view and top-down view of the smoothened maps indicate three distinct Fab density.
[0029] FIGS. 6A-D. Stem-targeted mAb 22 binds to helical stalk region of SARS- CoV-2 spike. (FIG. 6A) Representative 2D class averages and 3D reconstructions of Fab22 bound SARS-CoV-2 S. (FIG. 6B) Side view of cryo-EM density of Fab22 bound to SARS- CoV-2 S. The local resolution is depicted by a spectrum as a scale bar. Fab22 binds to the base of the spike. (FIG. 6C) Model of full-length wildtype SARS-CoV-2 spike (PDB: 6XR8) docked into EM map of Fab22 bound SARS-CoV-2 S. Sequence alignments of the helical stalk region of four b-CoVs show high sequence similarity. The sequences for SARS-CoV and SARS-CoV-2 are SEQ ID NO: 7. The sequence for MERS-CoV is SEQ ID NO: 8. The sequence for HKU1 is SEQ ID NO: 9. (FIG. 6D) Binding of Fab22 to three spike variants captured by RBD-directed IgG is assessed by BLI. Binding data are shown as black lines and the best fit to a 1:1 binding model is shown as gray lines.
[0030] FIGS. 7A-C. Characterization of MERS stem stabilized spike variants.
(FIGS. 7A and B) DSF analysis for spike variant thermostability. (FIG. 7A) For reversed spike variants (the first and the second iterations), mut5, mut6 and mut7 have six, five and four residues of mutll reverted to the wild-type, respectively. S975M and T803C/K933C are additional mutations combined with mut5, mut6 and mut7. The dotted line indicates the melting curve for S2-2P. (FIG. 7B) DSF analysis for reversed spike variants (the third iterations). The variants having the same Tm are indicated by a dot line, dash line, dash- single dotted line or dash-double dotted line for clarity. (FIG. 7C) SEC traces for reversed spike variants (the third iterations). A vertical dotted line indicates the peak retention volume for S2-2P. (FIGS. 7B-C) Each substitution in mut6,S975M,T803C/K933C backbone was respectively reversed to the wild-type residue.
[0031] FIGS. 8A-B. MERS S-2P and MERS SS.V1 exhibit nanomolar binding affinity to mAb G4. Binding of (FIG. 8A) MERS S-2P or (FIG. 8B) MERS SS.V1 to mAb G4 assessed by biolayer interferometry (BLI). AHC sensor tips were used to capture mAh G4 and then dipped into a well containing MERS S-2P or MERS SS in BLI buffer. The end point binding responses were plotted against concentrations of the spikes, and the best fit by steady state analysis is shown as a nonlinear line.
9 [0032] FIGS. 9A-C. MERS SS.V1 elicited mAbs exhibit a spectrum of the binding specificities to betacorona virus spikes. Binding of MERS SS.V1 elicited mAbs to MERS-CoV S, SARS-CoV S, HCoV-HKUl S assessed by biolayer interferometry (BLI). RSV-F containing a consensus trimerization motif (foldon) is also included as a negative control. Binding data are shown as solid lines, and the best fit to a 1:1 binding model is shown as dash lines. A vertical dotted line indicates the end of the binding event. The selected mAbs are grouped by their binding kinetics: (FIG. 9A) bi- specificity, faster on rates to MERS-S than SARS-S (FIG. 9B) bi-specificity, faster on rates to SARS-S than MERS-S (FIG. 9C) only binding to MERS-S or only binding to foldon.
[0033] FIGS. 10A-B. Two third of MERS SS.V1 elicited mAbs bind to the regions other than G4 binding loop. (FIG. 10A) Illustration of the scheme of experimental design for G4 competition assay by BLI. AHC biosensors were used to capture selected Ah and then dipped into G4 Fab pre-saturated MERS-S or apo MERS-S. Binding data are shown as solid lines and the best fit to a 1:1 binding model is shown as dash lines. A vertical dotted line indicates the end of the binding event when the responses are used for end-point binding analysis. (FIG. 10B) End-point binding responses of mAbs to G4 Fab pre-saturated MERS-S versus MERS-S are calculated and shown as percentage. Ah G4 is also included as a control (white bar). Non-G4 competing mAbs having higher responses to G4 Fab pre saturated MERS-S than MERS-S are depicted as gray bars. G4 competing mAbs having higher responses to MERS-S than G4 Fab pre-saturated MERS-S are depicted as black bars.
[0034] FIGS. 11A-C. Fab22 and Fab72 bind to a helical stalk region of the spikes. (FIG. 11 A) Representative 2D class averages of Fab22 complexed with MERS-CoV S by negative stain electron microscopy (nsEM). (FIG. 11B) Representative 2D class averages of Fab72 complexed with MERS-CoV S by nsEM. (FIG. 11C) Representative 2D class averages of Fab22 complexed with HexaPro, a prefusion stabilized SARS-CoV-2 S, by nsEM.
[0035] FIGS. 12A-C. Cryo-EM structure validation. FSC curves and viewing distribution plots for (FIG. 12A) MERS-CoV S-Fab 22 structure, (FIGS. 12B-C) SARS- CoV-2 S-Fab 22 structures with (FIG. 12B) 1-RBD up and (FIG. 12C) 3-RBD down generated in cry oS PARC v2.15.
10 DETAILED DESCRIPTION
[0036] Vaccine development for SARS-CoV-2 has progressed at unprecedented speed resulting in several vaccine candidates with up to 95% efficacy against COVID-19. However, current CoV vaccines primarily target immunodominant epitopes in the S 1 subunit, which are generally not well conserved across CoV subgenera. Structure-guided protein engineering was used to remove the SI subunit from the MERS-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicited cross-reactive b-CoV antibody responses and protected mice against lethal MERS-CoV challenge. High- throughput microfluidic discovery of antibody secreting cells from MERS SS-immunized mice led to discovery of a panel of cross-reactive monoclonal antibodies. Antibody IgG22 bound with high affinity to both MERS-CoV and SARS-CoV-2 S proteins, and electron microscopy localized the epitope to a conserved coiled-coil region in the S2 subunit. Collectively, these results provide proof of principle for cross-reactive CoV antibodies and inform the future development of next-generation pan-CoV vaccines.
[0037] Provided herein are two MERS-CoV stabilized stem constructs, MERS SS.V1 and MERS SS.V2, both of which lack the SI subunit (FIG. 1). Both antigens are immunogenic in mice, inducing broadly cross-reactive antibodies to MERS-CoV, HCoV HKU1, SARS-CoV, and SARS-CoV-2 S, and confer protection in a lethal murine MERS- CoV challenge model. Two monoclonal antibodies, IgG22 and IgG72, isolated using microfluidic single B-cell screening technology from MERS SS. VI -immunized mice, neutralized authentic MERS-CoV. Single-particle cryo-EM studies revealed that IgG22 binds to an epitope in the S2 stalk of MERS-CoV and SARS-CoV-2 S proteins that undergoes substantial changes during the pre- to -post-fusion conformational transition. These findings establish feasibility of rationally designing stabilized S2 constructs as protective vaccine immunogens against emerging HCoVs, which upon further development, may exhibit efficacy against divergent HCoV species. In addition, stem cross-reactive antibodies may serve as valuable tools for prospective serological surveillance of future CoV spillover into humans.
I. Coronavirus Stabilized Stem S2
[0038] All CoV spikes are composed of an SI subunit, a major determinant for host cell tropism, and an S2 subunit, which contains the machinery that drives viral-host fusion
11 (Li, 2016; Siebert et al., 2003). The SI subunit, which directly interacts with the host receptor, is composed of an N-terminal domain (NTD), a receptor-binding domain (RBD) and subdomains (SDs). For SARS-CoV-2, transient hinging of the RBD into an ‘up’ conformation allows for host-cell receptor engagement. In the S2 subunit, a helix-loop region spanning from the fusion peptide (FP) to heptad repeat 1 (HR1), constitutes a metastable structure that transitions to a long stable a-helix in the postfusion conformation during viral entry. The FP, HR1, central helix (CH) and connector domain (CD) comprise the globular head of the S2 subunit. In contrast, the helical stalk region, connecting the globular head to the viral membrane, is elongated and highly flexible (Ke et al., 2020; Turonova et al., 2020). The stalk region can be further divided into a hip, knee, and ankle, wherein the knee functions as a hinge, providing a considerable range in flexibility and movement for the spikes on the viral surface. As the SI is responsible for interacting directly with the host receptor, the majority of vaccine-induced antibodies and antibodies elicited upon natural infection target this subunit, most notably the RBD (Corbett et al., 2020b, 2020a; Jackson et al., 2020). In addition, a portion of neutralizing monoclonal antibodies (mAbs) isolated from convalescent COVID-19 patients recognize the NTD (Chi et al., 2020; Liu et al., 2020). Amino acid changes are concentrated in the SI subunit among the majority of SARS-CoV-2 variants described thus far. Additionally, recent data suggest that antibodies in convalescent sera that target neutralization-sensitive epitopes in the SI domain induce a selective pressure that yields escape mutations in these epitopes (Andreano et al., 2020).
[0039] The S2 subunit of CoV S, analogous to HA2 of influenza vims HA and gp41 of HIV-1 Env, functions as a fusogen by bringing viral and host cell membranes together, thus enabling viral entry. To complete fusion, the S2 subunit transitions from a metastable prefusion to a highly stable 250 post- fusion conformation (Li, 2016). The introduction of stabilizing mutations into the S2 subunit of MERS-CoV, SARS-CoV and SARS-CoV-2 permitted production of large quantities of prefusion stabilized trim eric full-length S retaining well-folded 3D structures resembling native S on the virion surface (Hsieh et al., 2020; Ke et al., 2020; Kirchdoerfer et al., 2018; Pallesen et al., 2017; Turonova et al., 2020; Wrapp et al., 2020). Importantly, neutralization-sensitive epitopes and host receptor-binding sites in the SI subunit were completely preserved. Collectively, the strategy of stabilizing S through engineered prevention of S2 refolding has been successful for generating vaccine antigens that protect animals in CoV-challenge models and humans from SARS-CoV-2 infection (Baden et al., 2020; Corbett et al., 2020a, 2020b; Polack et al., 2020).
12 [0040] Efforts toward a universal influenza A virus (IAV) vaccine yielded the first proof-of-concept for exploiting antigenic conservation in the hemagglutinin stem (HA stem) region (functionally analogous to the CoV S2 subunit) to elicit broad protection in animals. Specifically, two independent research groups rationally engineered the HA stem by introducing disulfide bridges, increasing surface hydrophilicity, stabilizing the hydrophobic core, optimizing the protease cleavage site, and/or displaying the HA stem on nanoparticles (Impagliazzo et al., 2015; Yassine et al., 2015). The HA stem trimers stabilized in the prefusion conformation induced neutralizing antibodies targeting stems of various group 1 HA subtypes and protected animals from heterotypic IAV challenge. A similar strategy based on structure-guided vaccine design was successfully applied to more distantly related group 2 IAV (Boyoglu-Barnum et al., 2020; Corbett et al., 2019).
[0041] Herein, a structure-guided design strategy was used to generate MERS-CoV S2-only antigens, with the intention of eliciting cross-reactive antibodies against conserved S2 epitopes. Using the PROSS server (Goldenzweig et al., 2016) to identify candidate stabilizing mutations and biochemical analyses to down-select expressed S2 mutant proteins, two S2 subunit constructs optimized for stability, conformational fidelity, and product yields were identified as immunogens. Intra-protomer disulfide bonds were the most effective means of enhancing protein expression and thermostability. The Cys803-Cys933 pair was introduced to cross-link regions of mobility and immobility during the pre- to post-fusion transition in a manner similar to the Cysl55-Cys290 substitution in RSV F (DS-Cavl) (McLellan et al., 2013). In addition, a covalent linkage was made across the S2' protease cleavage site, via the formation of a Cys838-Cysl089 bridge, akin to the Cys93(HA2)- Cys310(HAl) substitution in the HA stem (Impagliazzo et al., 2015). Finally, Cys898 and Cysl022 substitutions were placed in the fusion peptide and HR1 to prevent the helix-loop region from transitioning to a single, elongated helix. Both Cys898 and Cysl022 substitutions were at regions that move substantially, and a similar approach was employed to increase the trimer fraction of HA stem (Cys68-Cys76) and to keep PIV3 F in a prefusion conformation (Cysl62-Cysl68) (Impagliazzo et al., 2015; Stewart-Jones et al., 2018). Disulfide engineering has also been used to restrict local flexibility of secondary structures in SARS-CoV-2 S (Hsieh et al., 2020) or to trap the RBDs in a closed configuration (Henderson et al., 2020; McCallum et al., 2020; Xiong et al., 2020). Most importantly, MERS SS V2 elicited 10-fold higher neutralizing antibodies against MERS CoV than SS VI in a single prime-boost immunization regimen. Each disulfide substitution significantly improved
13 thermostability of the MERS SS antigens, consistent with disulfide designs in other class I viral fusion proteins.
[0042] The cavity-filling approach proved to be successful in stabilizing loosely packed regions of RSV F in its prefusion conformation (Krarup et al., 2015; McLellan et al., 2013). This tactic was used in the optimization of a stable S2-only MERS immunogen by substituting Ser975 and Val983 with Met and lie, respectively, at the base of MERS-CoV SS. These changes neatly filled a hydrophobic pocket between HR1 and amino acids that remain stationary during the pre- to post-fusion transition. A lone S975M change proved to be the most effective, leading to more than 10-fold increase in protein yields relative to the parental molecule. Similarly, N1132Y substitution seems to pack against Pro937, Vall206, and Proll31 and possibly forms H bonds with Gln800 and Asnl029. Other modifications intended to enhance polar interactions — for instance, V958S, S1091E and L1094Q substitutions — were considered as beneficial additions to the best construct. Alternative strategies, such as stabilizing proline substitutions, reducing hydrophobicity at the S1-S2 interface, and nanoparticle display, are viable options to further improve our MERS SS.V2 antigens in efforts to induce cross-neutralizing antibodies.
[0043] MERS SS -immunization stimulated the production of antibodies that were cross-reactive to multiple CoV S proteins. This disclosure is the first to show protection against lethal CoV challenge with a stem-only immunogen — protection that comes without elicitation of potent neutralizing antibody responses. Previous studies suggest that in vivo activity of influenza virus stem-specific antibodies rely on Fc-mediated functions (DiLillo et al., 2014, 2016). In fact, only a handful of S2-specific neutralizing antibodies against MERS- CoV have been defined (Wang et al., 2015; Widjaja et al., 2019). One of these, murine mAh G4, protects against challenge in a murine lethal model of MERS-CoV infection and binds a hypervariable loop containing a unique N-glycosylation site in the connector domain (Pallesen et al., 2017; Wang et al., 2018). Roughly one third of SS-cross-reactive antibodies compete with G4 Fab for the loop epitope. Deletion of the highly immunogenic loop from an S2 subunit vaccine might be advantageous to prevent natural immunofocusing on an epitope poorly conserved among even closely related lineage C b-HCoVs.
[0044] This disclosure also describes a conserved epitope near the base of S, distinct from the G4-binding site. Two antibodies that recognize this epitope, IgG22 and IgG72, display heterotypic binding to all highly pathogenic b-HCoVs. Both antibodies neutralize
14 authentic MERS-CoV and at low nM concentrations in the case of IgG22. However, IgG72 demonstrated markedly reduced neutralizing activity against MERS-CoV as compared to IgG22 (approximately a 10-fold reduction in inhibitory titer). Sequence alignments of Fab22 and Fab72 reveal only four amino acid differences, one in CDR-L3 and three in CDR-H2, plausibly explaining shared binding profiles for HCoV S proteins. Cryo-EM structures of Fab22 complexed with MERS S-2P and prefusion-stabilized SARS-CoV-2 S (HexaPro) revealed the Fab binding site in proximity to the helical stalk. Although the binding interface was incompletely resolved, the target site was localized to a region upstream of HR2. These residues dramatically refold to form a six-helical bundle with HR1, leading to virus-cell fusion. The faster (nearly 100-fold) dissociation rate of Fab22 for HexaPro (and SARS-CoV S-2P) compared to MERS-CoV S-2P provides an explanation for the undetectable heterotypic neutralizing activity by IgG22 (and IgG72). Similar antibodies have been recently described (Sauer et ak, 2021; Wang et ak, 2020), although in these cases sequential immunization was employed using full-length spikes from divergent b-CoVs to induce a response to the conserved S2.
[0045] In summary, this disclosure provides rationally engineered CoV S stems as stabilized immunogens to elicit antibodies cross-reactive with all three epidemic b-HCoVs and to provide complete protection in animals against a lethal MERS-CoV challenge. Using a stabilized stem construct, the production of antibodies was elicited which enabled the identification of a novel site of vulnerability in the S2 subunit, which will inform development of next-generation CoV vaccines and fortify CoV pandemic preparedness.
Table 1. b-CoV S2 substitutions and mutations
Figure imgf000017_0001
15
Figure imgf000018_0001
Table 2. b-CoV combinations of substitutions
Figure imgf000018_0002
Table 3. SARS-CoV-2 Variant Classification and Definitions
Figure imgf000018_0003
16
Figure imgf000019_0001
II. Definitions
[0046] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise. Also, the use of the term “portion” can include part of a moiety or the entire moiety.
[0047] As used herein, the singular forms “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising,” the words “a” or “an” may mean one or more than one.
[0048] The term “about” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of up to ±10% from the specified value. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in
17 the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the disclosed subject matter. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
[0049] As used herein, “essentially free,” in terms of a specified component, is used herein to mean that none of the specified component has been purposefully formulated into a composition and/or is present only as a contaminant or in trace amounts. The total amount of the specified component resulting from any unintended contamination of a composition is therefore well below 0.05%, preferably below 0.01%. Most preferred is a composition in which no amount of the specified component can be detected with standard analytical methods.
[0050] The term “antibody” refers to an intact immunoglobulin of any isotype, or a fragment thereof that can compete with the intact antibody for specific binding to the target antigen, and includes, for instance, chimeric, humanized, fully human, and bispecific antibodies. An “antibody” is a species of an antigen binding protein. An intact antibody will generally comprise at least two full-length heavy chains and two full-length light chains, but in some instances can include fewer chains such as antibodies naturally occurring in camelids which can comprise only heavy chains. Antibodies can be derived solely from a single source, or can be “chimeric,” that is, different portions of the antibody can be derived from two different antibodies as described further below. The antigen binding proteins, antibodies, or binding fragments can be produced in hybridomas, by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Unless otherwise indicated, the term “antibody” includes, in addition to antibodies comprising two full-length heavy chains and two full-length light chains, derivatives, variants, fragments, and muteins thereof, examples of which are described below. Furthermore, unless explicitly excluded, antibodies include monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic
18 antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), and fragments thereof, respectively. In some embodiments, the term also encompasses peptibodies.
[0051] Naturally occurring antibody structural units typically comprise a tetramer. Each such tetramer typically is composed of two identical pairs of polypeptide chains, each pair having one full-length “light” (in certain embodiments, about 25 kDa) and one full- length “heavy” chain (in certain embodiments, about 50-70 kDa). The amino-terminal portion of each chain typically includes a variable region of about 100 to 110 or more amino acids that typically is responsible for antigen recognition. The carboxy-terminal portion of each chain typically defines a constant region that can be responsible for effector function. Human light chains are typically classified as kappa and lambda light chains. Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subclasses, including, but not limited to, IgGl, IgG2, IgG3, and IgG4. IgM has subclasses including, but not limited to, IgMl and IgM2. IgA is similarly subdivided into subclasses including, but not limited to, IgAl and IgA2. Within full-length light and heavy chains, typically, the variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids. See, e.g., Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair typically form the antigen binding site.
[0052] The term “variable region” or “variable domain” refers to a portion of the light and/or heavy chains of an antibody, typically including approximately the amino-terminal 120 to 130 amino acids in the heavy chain and about 100 to 110 amino terminal amino acids in the light chain. In certain embodiments, variable regions of different antibodies differ extensively in amino acid sequence even among antibodies of the same species. The variable region of an antibody typically determines specificity of a particular antibody for its target.
[0053] The variable regions typically exhibit the same general structure of relatively conserved framework regions (FR) joined by three hyper variable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair typically are aligned by the framework regions, which can enable binding to a specific
19 epitope. From N-terminal to C-terminal, both light and heavy chain variable regions typically comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is typically in accordance with the definitions of Rabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia & Lesk, J. Mol. Biol., 196:901-917 (1987) or Chothia et al, Nature, 342:878-883 (1989).
[0054] In certain embodiments, an antibody heavy chain binds to an antigen in the absence of an antibody light chain. In certain embodiments, an antibody light chain binds to an antigen in the absence of an antibody heavy chain. In certain embodiments, an antibody binding region binds to an antigen in the absence of an antibody light chain. In certain embodiments, an antibody binding region binds to an antigen in the absence of an antibody heavy chain. In certain embodiments, an individual variable region specifically binds to an antigen in the absence of other variable regions.
[0055] In certain embodiments, definitive delineation of a CDR and identification of residues comprising the binding site of an antibody is accomplished by solving the structure of the antibody and/or solving the structure of the antibody-ligand complex. In certain embodiments, that can be accomplished by any of a variety of techniques known to those skilled in the art, such as X-ray crystallography. In certain embodiments, various methods of analysis can be employed to identify or approximate the CDR regions. Examples of such methods include, but are not limited to, the Rabat definition, the Chothia definition, the AbM definition and the contact definition.
[0056] The Rabat definition is a standard for numbering the residues in an antibody and is typically used to identify CDR regions. See, e.g., Johnson & Wu, Nucleic Acids Res., 28: 214-8 (2000). The Chothia definition is similar to the Rabat definition, but the Chothia definition takes into account positions of certain structural loop regions. See, e.g., Chothia et al, J. Mol. Biol., 196: 901-17 (1986); Chothia et al, Nature, 342: 877-83 (1989). The AbM definition uses an integrated suite of computer programs produced by Oxford Molecular Group that model antibody structure. See, e.g., Martin et al, Proc Natl Acad Sci (USA), 86:9268-9272 (1989); “AbM™, A Computer Program for Modeling Variable Regions of Antibodies,” Oxford, UR; Oxford Molecular, Ltd. The AbM definition models the tertiary structure of an antibody from primary sequence using a combination of knowledge databases and ab initio methods, such as those described by Samudrala et ai, “Ab Initio Protein
20 Structure Prediction Using a Combined Hierarchical Approach,” in PROTEINS, Structure, Function and Genetics Suppl., 3:194-198 (1999). The contact definition is based on an analysis of the available complex crystal structures. See, e.g., MacCallum et al., J. Mol. Biol., 5:732-45 (1996).
[0057] By convention, the CDR regions in the heavy chain are typically referred to as HI, H2, and H3 and are numbered sequentially in the direction from the amino terminus to the carboxy terminus. The CDR regions in the light chain are typically referred to as LI, L2, and L3 and are numbered sequentially in the direction from the amino terminus to the carboxy term in us.
[0058] The term “light chain” includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length light chain includes a variable region domain, VL, and a constant region domain, CL. The variable region domain of the light chain is at the amino-terminus of the polypeptide. Light chains include kappa chains and lambda chains.
[0059] The term “heavy chain” includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length heavy chain includes a variable region domain, VH, and three constant region domains, CHI, CH2, and CH3. The VH domain is at the amino-terminus of the polypeptide, and the CH domains are at the carboxyl-terminus, with the CH3 being closest to the carboxy- terminus of the polypeptide. Heavy chains can be of any isotype, including IgG (including IgGl, IgG2, IgG3 and IgG4 subtypes), IgA (including IgAl and IgA2 subtypes), IgM and IgE.
[0060] A bispecific or bifunctional antibody typically is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai et al., Clin. Exp. Immunol., 79: 315-321 (1990); Kostelny et al, J. Immunol., 148:1547-1553 (1992).
[0061] The term “antigen” refers to a substance capable of inducing adaptive immune responses. Specifically, an antigen is a substance which serves as a target for the receptors of an adaptive immune response. Typically, an antigen is a molecule that binds to antigen- specific receptors but cannot induce an immune response in the body by itself. Antigens are
21 usually proteins and polysaccharides, less frequently also lipids. As used herein, antigens also include immunogens and haptens.
[0062] An “Fc” region comprises two heavy chain fragments comprising the CHI and CH2 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
[0063] The “Fv region” comprises the variable regions from both the heavy and light chains but lacks the constant regions.
[0064] An antibody that “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope. For example, the Coronavirus S protein specific antibodies of the present invention are specific to Coronavirus S protein. In some embodiments, the antibody that binds to Coronavirus S protein has a dissociation constant (Kd) of £100 nM, £10 nM, £1 nM, £0.1 nM, £0.01 nM, or £0.001 nM (e.g., 10-8M or less, e.g., from 10_8M to 10-13M, e.g., from 10-9M to 10-13 M).
[0065] The term “compete” when used in the context of antigen binding proteins (e.g., atnibody or antigen-binding fragment thereof) that compete for the same epitope means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or antigen-binding fragment thereof) being tested prevents or inhibits (e.g., reduces) specific binding of a reference antigen binding protein (e.g., a ligand, or a reference antibody) to a common antigen (e.g., Coronavirus S protein or a fragment thereof). Numerous types of competitive binding assays can be used to determine if one antigen binding protein competes with another, for example: solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., 1983, Methods in Enzymology 9:242- 253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., 1986, J. Immunol. 137:3614-3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Press); solid phase direct label RIA using 1-125 label (see, e.g., Morel et al, 1988, Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al, 1990, Virology 176:546-552); and direct labeled RIA (Moldenhauer et al, 1990,
22 Scand. J. Immunol. 32:77-82). Typically, such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabelled test antigen binding protein and a labeled reference antigen binding protein. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Additional details regarding methods for determining competitive binding are provided in the examples herein. Usually, when a competing antigen binding protein is present in excess, it will inhibit (e.g., reduce) specific binding of a reference antigen binding protein to a common antigen by at least 40-45%, 45-50%, 50-55%, 55-60%, 60-65%, 65- 70%, 70-75 % or 75% or more. In some instances, binding is inhibited by at least 80-85%, 85- 90%, 90-95%, 95-97%, or 97% or more.
[0066] The term “epitope” as used herein refers to the specific group of atoms or amino acids on an antigen to which an antibody binds. The epitope can be either linear epitope or a conformational epitope. A linear epitope is formed by a continuous sequence of amino acids from the antigen and interacts with an antibody based on their primary structure. A conformational epitope, on the other hand, is composed of discontinuous sections of the antigen’s amino acid sequence and interacts with the antibody based on the 3D structure of the antigen. In general, an epitope is approximately five or six amino acid in length. Two antibodies may bind the same epitope within an antigen if they exhibit competitive binding for the antigen.
[0067] The term “host cell” means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present.
[0068] The term “identity” refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent identity” means the percent of identical
23 residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared. For these calculations, gaps in alignments (if any) are preferably addressed by a particular mathematical model or computer program (/.<?., an “algorithm”). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology, (Lesk, A. M., ed.), 1988, New York: Oxford University Press; Biocomputing Informatics and Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer Analysis of Sequence Data, Part I, (Griffin, A. M., and Griffin, H. G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., 1987, Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo el al., 1988, SIAM J. Applied Math. 48:1073.
[0069] In calculating percent identity, the sequences being compared are typically aligned in a way that gives the largest match between the sequences. One example of a computer program that can be used to determine percent identity is the GCG program package, which includes GAP (Devereux et al, 1984, Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span”, as determined by the algorithm). A gap opening penalty (which is calculated as 3x the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et al, 1978, Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al, 1992, Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.
[0070] Examples of parameters that can be employed in determining percent identity for polypeptides or nucleotide sequences using the GAP program can be found in Needleman et al, 1970, J. Mol. Biol. 48:443-453.
24 [0071] Certain alignment schemes for aligning two amino acid sequences may result in matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 or other number of contiguous amino acids of the target polypeptide.
[0072] The term “link” as used herein refers to the association via intramolecular interaction, e.g., covalent bonds, metallic bonds, and/or ionic bonding, or inter-molecular interaction, e.g., hydrogen bond or noncovalent bonds.
[0073] The term “operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, a given signal peptide that is operably linked to a polypeptide directs the secretion of the polypeptide from a cell. In the case of a promoter, a promoter that is operably linked to a coding sequence will direct the expression of the coding sequence. The promoter or other control elements need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. For example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
[0074] The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” As used herein “another” may mean at least a second or more.
[0075] The term “polynucleotide” or “nucleic acid” includes both single-stranded and double-stranded nucleotide polymers. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2',3'-dideoxyribose, and intemucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.
[0076] The terms “polypeptide” or “protein” means a macromolecule having the amino acid sequence of a native protein, that is, a protein produced by a naturally-occurring
25 and non-recombinant cell; or it is produced by a genetically-engineered or recombinant cell, and comprise molecules having the amino acid sequence of the native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence. The term also includes amino acid polymers in which one or more amino acids are chemical analogs of a corresponding naturally occurring amino acid and polymers. The terms “polypeptide” and “protein” specifically encompass Coronavirus S protein binding proteins, antibodies, or sequences that have deletions from, additions to, and/or substitutions of one or more amino acid of antigen-binding protein. The term “polypeptide fragment” refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length native protein. Such fragments can also contain modified amino acids as compared with the native protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of a CORONAVIRUS S PROTEIN- binding antibody, useful fragments include but are not limited to a CDR region, a variable domain of a heavy and/or light chain, a portion of an antibody chain or just its variable region including two CDRs, and the like.
[0077] The pharmaceutically acceptable carriers useful in this invention are conventional. Remington’s Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the fusion proteins herein disclosed. In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (e.g., powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch or magnesium stearate. In addition to biologically- neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
26 [0078] As used herein, the term “subject” refers to a human or any non-human animal (e.g., mouse, rat, rabbit, dog, cat, cattle, swine, sheep, horse or primate). A human includes pre- and post-natal forms. In many embodiments, a subject is a human being. A subject can be a patient, which refers to a human presenting to a medical provider for diagnosis or treatment of a disease. The term “subject” is used herein interchangeably with “individual” or “patient.” A subject can be afflicted with or is susceptible to a disease or disorder but may or may not display symptoms of the disease or disorder.
[0079] The term “therapeutically effective amount” or “effective dosage” as used herein refers to the dosage or concentration of a drug effective to treat a disease or condition. For example, with regard to the use of the monoclonal antibodies or antigen-binding fragments thereof disclosed herein to treat viral infection.
[0080] “Treating” or “treatment” of a condition as used herein includes preventing or alleviating a condition, slowing the onset or rate of development of a condition, reducing the risk of developing a condition, preventing or delaying the development of symptoms associated with a condition, reducing or ending symptoms associated with a condition, generating a complete or partial regression of a condition, curing a condition, or some combination thereof.
[0081] As used herein, a “vector” refers to a nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in the host cell, such as an origin of replication. A vector may also include one or more therapeutic genes and/or selectable marker genes and other genetic elements known in the art. A vector can transduce, transform or infect a cell, thereby causing the cell to express nucleic acids and/or proteins other than those native to the cell. A vector optionally includes materials to aid in achieving entry of the nucleic acid into the cell, such as a viral particle, liposome, protein coating or the like.
III. Pharmaceutical Formulations
[0082] The present disclosure provides pharmaceutical compositions comprising an engineered, stabilized beta-coronavirus S2 domain-only protein, a nucleic acid molecule encoding an engineered, stabilized beta-coronavirus S2 domain-only protein, and viral vector comprising an engineered, stabilized beta-coronavirus S2 domain-only protein and/or encoding the engineered, stabilized beta-coronavirus S2 domain-only protein in its genomic
27 material. Such compositions can be used for stimulating an immune response, such as part of a vaccine formulation.
[0001] In the case that a nucleic acid molecule encoding an engineered, stabilized beta-coronavirus S2 domain-only protein is used in a pharmaceutical composition, the nucleic acid molecule may comprise or consist of deoxyribonucleotides and/or ribonucleotides, or analogs thereof, covalently linked together. A nucleic acid molecule as described herein generally contains phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages, and peptide nucleic acid backbones and linkages. Mixtures of naturally occurring polynucleotides and analogs can be made; alternatively, mixtures of different polynucleotide analogs, and mixtures of naturally occurring polynucleotides and analogs may be made. A nucleic acid molecule may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. The term also includes both double- and single- stranded molecules. Unless otherwise specified or required, the term polynucleotide encompasses both the double- stranded form and each of two complementary single-stranded forms known or predicted to make up the double- stranded form. A nucleic acid molecule is composed of a specific sequence of four nucleotide bases: adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) for thymine when the polynucleotide is RNA. Thus, the term “nucleic acid sequence” is the alphabetical representation of a nucleic acid molecule. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues.
[0002] In some embodiments, the nucleic acids of the present disclosure comprise one or more modified nucleosides comprising a modified sugar moiety. Such compounds comprising one or more sugar-modified nucleosides may have desirable properties, such as
28 enhanced nuclease stability or increased binding affinity with a target nucleic acid relative to an oligonucleotide comprising only nucleosides comprising naturally occurring sugar moieties. In some embodiments, modified sugar moieties are substituted sugar moieties. In some embodiments, modified sugar moieties are sugar surrogates. Such sugar surrogates may comprise one or more substitutions corresponding to those of substituted sugar moieties.
[0003] In some embodiments, modified sugar moieties are substituted sugar moieties comprising one or more non-bridging sugar substituent, including but not limited to substituents at the 2' and/or 5' positions. Examples of sugar substituents suitable for the 2'- position, include, but are not limited to: 2'-F, 2'-OCH3 ("OMe" or "O-methyl"), and 2'- 0(CH2)20CH3 ("MOE"). In certain embodiments, sugar substituents at the 2' position is selected from allyl, amino, azido, thio, O-allyl, O-Ci-Cio alkyl, O-Ci-Cio substituted alkyl; OCF3, 0(CH2)2SCH , 0(CH2)2-0— N(Rm)(Rn), and 0-CH2-C(=0)-N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted Ci-Cio alkyl. Examples of sugar substituents at the 5'-position, include, but are not limited to: 5'-methyl (R or S); 5'- vinyl, and 5'-methoxy. In some embodiments, substituted sugars comprise more than one non-bridging sugar substituent, for example, T-F-5'-methyl sugar moieties (see, e.g., PCT International Application WO 2008/101157, for additional 5',2'-bis substituted sugar moieties and nucleosides).
[0004] Nucleosides comprising 2'-substituted sugar moieties are referred to as 2'- substituted nucleosides. In some embodiments, a 2'-substituted nucleoside comprises a 2'- substituent group selected from halo, allyl, amino, azido, SH, CN, OCN, CF3, OCF3, O, S, or N(Rm)-alkyl; O, S, or N(Rm)-alkenyl; O, S or N(Rm)-alkynyl; O-alkylenyl-O-alkyl, alkynyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, 0(CH2)2SCH3, 0(CH2)2-0-N(Rm)(Rn) or 0-CH2- C(=0)— N(Rm)(Rn), where each Rm and Rn is, independently, H, an amino protecting group or substituted or unsubstituted C1-C10 alkyl. These 2'-substituent groups can be further substituted with one or more substituent groups independently selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro (N02), thiol, thioalkoxy (S-alkyl), halogen, alkyl, aryl, alkenyl and alkynyl.
[0005] In some embodiments, a 2'-substituted nucleoside comprises a 2'- substituent group selected from F, NH2, N3, OCF3, O— CH3, 0(CH2)3NH2, CH2 — CH=CH2, 0-CH2— CH=CH2, OCH2CH2OCH3, 0(CH2)2SCH3, O— (CH2)2-0— N(Rm)(Rn),
0(CH2)20(CH2)2N(CH3)2, and N-substituted acetamide (O— CH2-C(=0)— N(Rm)(Rn) where
29 each Rm and Rn is, independently, H, an amino protecting group or substituted or unsubstituted Ci-Cio alkyl.
[0006] In some embodiments, a 2'-substituted nucleoside comprises a sugar moiety comprising a 2'-substituent group selected from F, OCF3, O--CH3, OCH2CH2OCH3, 0(CH2)2SCH3, 0(CH2)2-0-N(CH3)2, -0(CH2)20(CH2)2N(CH3)2, and 0-CH2-C(=0)- N(H)CH3.
[0007] In some embodiments, a 2'-substituted nucleoside comprises a sugar moiety comprising a 2'-substituent group selected from F, O--CH3, and OCH2CH2OCH3.
[0008] In some embodiments, nucleosides of the present disclosure comprise one or more unmodified nucleobases. In certain embodiments, nucleosides of the present disclosure comprise one or more modified nucleobases.
[0009] In some embodiments, modified nucleobases are selected from: universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases as defined herein. 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil; 5-propynylcytosine; 5- hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5- propynyl CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8- thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5- bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2- amino- adenine, 8-azaguanine and 8-azaadenine, 7- deazaguanine and 7-deazaadenine, 3-deazaguanine and 3-deazaadenine, universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases as defined herein. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine([5,4-b][l,4]benzoxazin-2(3H)-one), phenothiazine cytidine (lH-pyrimido[5,4- b][l,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. , 9-(2-aminoethoxy)-H-pyrimido[5,4-13][l,4]benzoxazin-2(3H)-one), carbazole cytidine (2H- pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3- d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or
30 pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7- deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Patent 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J. I., Ed., John Wiley & Sons, 1990, 858-859; those disclosed by Englisch et al, 1991; and those disclosed by Sanghvi, Y. S., 1993.
[0010] Representative United States Patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include without limitation, U.S. Patents 3,687,808; 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,617; 5,645,985; 5,681,941; 5,750,692; 5,763,588; 5,830,653 and 6,005,096, each of which is herein incorporated by reference in its entirety.
[0011] Additional modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide. For example, one additional modification of the ligand conjugated oligonucleotides of the present disclosure involves chemically linking to the oligonucleotide one or more additional non-ligand moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al, 1989), cholic acid (Manoharan et al, 1994), a thioether, e.g., hexyl-5-tritylthiol (Manoharan et al., 1992; Manoharan et al., 1993), a thiocholesterol (Oberhauser et al., 1992), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., 1991; Kabanov et al., 1990; Svinarchuk et al, 1993), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium l,2-di-0-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al, 1995; Shea et al, 1990), a polyamine or a polyethylene glycol chain (Manoharan et al, 1995), or adamantane acetic acid (Manoharan et al, 1995), a palmityl moiety (Mishra et al, 1995), or an octadecylamine or hexylamino-carbonyl-oxy cholesterol moiety (Crooke et al, 1996). The some aspects, a nucleic acid molecule encoding an engineered Coronavirus S protein is a modified RNA, such as, for example, a modified mRNA. Modified (m)RNA contemplates certain chemical modifications that confer increased stability and low immunogenicity to mRNAs, thereby facilitating expression of therapeutically important proteins. For instance, N1 -methyl-pseudouridine (NIhiY) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. In some embodiments, the (m)RNA
31 molecules used herein may have the uracils replaced with psuedouracils such as 1 -methyl-3 '- pseudouridylyl bases. In some embodiments, some of the uracils are replaced, but in other embodiments, all of the uracils have been replaced. The (m)RNA may comprise a 5’ cap, a 5’ UTR element, an optionally codon optimized open reading frame, a 3’ UTR element, and a poly(A) sequence and/or a polyadenylation signal.
[0012] The nucleic acid molecule, whether native or modified, may be delivered as a naked nucleic acid molecule or in a delivery vehicle, such as a lipid nanoparticle. A lipid nanoparticle may comprise one or more nucleic acids present in a weight ratio to the lipid nanoparticles from about 5:1 to about 1:100. In some embodiments, the weight ratio of nucleic acid to lipid nanoparticles is from about 5:1, 2.5:1, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:60, 1:70, 1:80, 1:90, or 1:100, or any value derivable therein.
[0083] In some embodiments, the lipid nanoparticles used herein may contain one, two, three, four, five, six, seven, eight, nine, or ten lipids. These lipids may include triglycerides, phospholipids, steroids or sterols, a PEGylated lipids, or a group with a ionizable group such as an alkyl amine and one or more hydrophobic groups such as C6 or greater alkyl groups.
[0013] In some aspects of the present disclosure, the lipid nanoparticles are mixed with one or more steroid or a steroid derivative. In some embodiments, the steroid or steroid derivative comprises any steroid or steroid derivative. As used herein, in some embodiments, the term “steroid” is a class of compounds with a four ring 17 carbon cyclic structure which can further comprises one or more substitutions including alkyl groups, alkoxy groups, hydroxy groups, oxo groups, acyl groups, or a double bond between two or more carbon atoms.
[0014] In some aspects of the present disclosure, the lipid nanoparticles are mixed with one or more PEGylated lipids (or PEG lipid). In some embodiments, the present disclosure comprises using any lipid to which a PEG group has been attached. In some embodiments, the PEG lipid is a diglyceride which also comprises a PEG chain attached to the glycerol group. In other embodiments, the PEG lipid is a compound which contains one or more C6-C24 long chain alkyl or alkenyl group or a C6-C24 fatty acid group attached to a linker group with a PEG chain. Some non-limiting examples of a PEG lipid includes a PEG modified phosphatidylethanolamine and phosphatidic acid, a PEG ceramide conjugated, PEG
32 modified dialkylamines and PEG modified l,2-diacyloxypropan-3-amines, PEG modified diacylglycerols and dialky lglycerols. In some embodiments, PEG modified diastearoylphosphatidylethanolamine or PEG modified di my ri stoy 1 -.vn-gl ycerol . In some embodiments, the PEG modification is measured by the molecular weight of PEG component of the lipid. In some embodiments, the PEG modification has a molecular weight from about 100 to about 15,000. In some embodiments, the molecular weight is from about 200 to about 500, from about 400 to about 5,000, from about 500 to about 3,000, or from about 1,200 to about 3,000. The molecular weight of the PEG modification is from about 100, 200, 400,
500, 600, 800, 1,000, 1,250, 1,500, 1,750, 2,000, 2,250, 2,500, 2,750, 3,000, 3,500, 4,000,
4,500, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 12,500, to about 15,000. Some non-limiting examples of lipids that may be used in the present disclosure are taught by U.S. Patent 5,820,873, WO 2010/141069, or U.S. Patent 8,450,298, which is incorporated herein by reference.
[0015] In some aspects of the present disclosure, the lipid nanoparticles are mixed with one or more phospholipids. In some embodiments, any lipid which also comprises a phosphate group. In some embodiments, the phospholipid is a structure which contains one or two long chain C6-C24 alkyl or alkenyl groups, a glycerol or a sphingosine, one or two phosphate groups, and, optionally, a small organic molecule. In some embodiments, the small organic molecule is an amino acid, a sugar, or an amino substituted alkoxy group, such as choline or ethanolamine. In some embodiments, the phospholipid is a phosphatidylcholine. In some embodiments, the phospholipid is distearoylphosphatidylcholine or dioleoylphosphatidylethanolamine. In some embodiments, other zwitterionic lipids are used, where zwitterionic lipid defines lipid and lipid-like molecules with both a positive charge and a negative charge.
[0016] In some aspects of the present disclosure, lipid nanoparticle containing compounds containing lipophilic and cationic components, wherein the cationic component is ionizable, are provided. In some embodiments, the cationic ionizable lipids contain one or more groups which is protonated at physiological pH but may deprotonated and has no charge at a pH above 8, 9, 10, 11, or 12. The ionizable cationic group may contain one or more protonatable amines which are able to form a cationic group at physiological pH. The cationic ionizable lipid compound may also further comprise one or more lipid components such as two or more fatty acids with C6-C24 alkyl or alkenyl carbon groups. These lipid
33 groups may be attached through an ester linkage or may be further added through a Michael addition to a sulfur atom. In some embodiments, these compounds may be a dendrimer, a dendron, a polymer, or a combination thereof.
[0017] In some aspects of the present disclosure, composition containing compounds containing lipophilic and cationic components, wherein the cationic component is ionizable, are provided. In some embodiments, ionizable cationic lipids refer to lipid and lipid- like molecules with nitrogen atoms that can acquire charge (pKa). These lipids may be known in the literature as cationic lipids. These molecules with amino groups typically have between 2 and 6 hydrophobic chains, often alkyl or alkenyl such as C6-C24 alkyl or alkenyl groups, but may have at least 1 or more that 6 tails.
[0018] In some embodiments, the amount of the lipid nanoparticle with the nucleic acid molecule encapsulated in the pharmaceutical composition is from about 0.1% w/w to about 50% w/w, from about 0.25% w/w to about 25% w/w, from about 0.5% w/w to about 20% w/w, from about 1% w/w to about 15% w/w, from about 2% w/w to about 10% w/w, from about 2% w/w to about 5% w/w, or from about 6% w/w to about 10% w/w. In some embodiments, the amount of the lipid nanoparticle with the nucleic acid molecule encapsulated in the pharmaceutical composition is from about 0.1% w/w, 0.25% w/w, 0.5% w/w, 1% w/w, 2.5% w/w, 5% w/w, 7.5% w/w, 10% w/w, 15% w/w, 20% w/w, 25% w/w, 30% w/w, 35% w/w, 40% w/w, 45% w/w, 50% w/w, 55% w/w, 60% w/w, 65% w/w, 70% w/w, 75% w/w, 80% w/w, 85% w/w, 90% w/w, to about 95% w/w, or any range derivable therein.
[0019] In some aspects, the present disclosure comprises one or more sugars formulated into pharmaceutical compositions. In some embodiments, the sugars used herein are saccharides. These saccharides may be used to act as a lyoprotectant that protects the pharmaceutical composition from destabilization during the drying process. These water- soluble excipients include carbohydrates or saccharides such as disaccharides such as sucrose, trehalose, or lactose, a trisaccharide such as fructose, glucose, galactose comprising raffinose, polysaccharides such as starches or cellulose, or a sugar alcohol such as xylitol, sorbitol, or mannitol. In some embodiments, these excipients are solid at room temperature. Some non-limiting examples of sugar alcohols include erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, galactitol, fucitol, iditol, inositol, volemitol, isomalt, maltitol, lactitol, maltotritol, maltotetraitol, or a polyglycitol.
34 [0020] In some embodiments, the amount of the sugar in the pharmaceutical composition is from about 25% w/w to about 98% w/w, 40% w/w to about 95% w/w, 50% w/w to about 90% w/w, 50% w/w to about 70% w/w, or from about 80% w/w to about 90% w/w. In some embodiments, the amount of the sugar in the pharmaceutical composition is from about 10% w/w, 15% w/w, 20% w/w, 25% w/w, 30% w/w, 35% w/w, 40% w/w, 45% w/w, 50% w/w, 52.5% w/w, 55% w/w, 57.5% w/w, 60% w/w, 62.5% w/w, 65% w/w, 67.5 % w/w, 70% w/w, 75% w/w, 80% w/w, 82.5% w/w, 85% w/w, 87.5% w/w, 90% w/w, to about 95% w/w, or any range derivable therein.
[0021] In some embodiments, the pharmaceutically acceptable polymer is a copolymer. The pharmaceutically acceptable polymer may further comprise one, two, three, four, five, or six subunits of discrete different types of polymer subunits. These polymer subunits may include polyoxypropylene, polyoxyethylene, or a similar subunit. In particular, the pharmaceutically acceptable polymer may comprise at least one hydrophobic subunit and at least one hydrophilic subunit. In particular, the copolymer may have hydrophilic subunits on each side of a hydrophobic unit. The copolymer may have a hydrophilic subunit that is polyoxyethylene and a hydrophobic subunit that is polyoxypropylene.
[0084] In some embodiments, expression cassettes are employed to express an engineered, stabilized beta-coronavirus S2 domain-only protein, either for subsequent purification and delivery to a cell/subject, or for use directly in a viral-based delivery approach. Provided herein are expression vectors which contain one or more nucleic acids encoding an engineered, stabilized beta-coronavirus S2 domain-only protein.
[0085] Expression requires that appropriate signals be provided in the vectors and include various regulatory elements such as enhancers/promoters from both viral and mammalian sources that drive expression of the an engineered, stabilized beta-coronavirus S2 domain-only protein in cells. Throughout this application, the term “expression cassette” is meant to include any type of genetic construct containing a nucleic acid coding for a gene product in which part or all of the nucleic acid encoding sequence is capable of being transcribed and translated, /.<?., is under the control of a promoter. A “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrase “under transcriptional control” means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene.
35 An “expression vector” is meant to include expression cassettes comprised in a genetic construct that is capable of replication, and thus including one or more of origins of replication, transcription termination signals, poly-A regions, selectable markers, and multipurpose cloning sites.
[0086] The term promoter will be used here to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II. Much of the thinking about how promoters are organized derives from analyses of several viral promoters, including those for the HSV thymidine kinase (tk) and SV40 early transcription units. These studies, augmented by more recent work, have shown that promoters are composed of discrete functional modules, each consisting of approximately 7-20 bp of DNA, and containing one or more recognition sites for transcriptional activator or repressor proteins.
[0087] At least one module in each promoter functions to position the start site for RNA synthesis. The best known example of this is the TATA box, but in some promoters lacking a TATA box, such as the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 late genes, a discrete element overlying the start site itself helps to fix the place of initiation.
[0088] Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the tk promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either co-operatively or independently to activate transcription.
[0089] In certain embodiments, viral promotes such as the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, the Rous sarcoma vims long terminal repeat, rat insulin promoter and glyceraldehyde-3 -phosphate dehydrogenase can be used to obtain high-level expression of the coding sequence of interest. The use of other viral or mammalian cellular or bacterial phage promoters which are well-known in the
36 art to achieve expression of a coding sequence of interest is contemplated as well, provided that the levels of expression are sufficient for a given purpose. By employing a promoter with well-known properties, the level and pattern of expression of the protein of interest following transfection or transformation can be optimized. Further, selection of a promoter that is regulated in response to specific physiologic signals can permit inducible expression of the gene product.
[0090] Enhancers are genetic elements that increase transcription from a promoter located at a distant position on the same molecule of DNA. Enhancers are organized much like promoters. That is, they are composed of many individual elements, each of which binds to one or more transcriptional proteins. The basic distinction between enhancers and promoters is operational. An enhancer region as a whole must be able to stimulate transcription at a distance; this need not be true of a promoter region or its component elements. On the other hand, a promoter must have one or more elements that direct initiation of RNA synthesis at a particular site and in a particular orientation, whereas enhancers lack these specificities. Promoters and enhancers are often overlapping and contiguous, often seeming to have a very similar modular organization.
[0091] Below is a list of promoters/enhancers and inducible promoters/enhancers that could be used in combination with the nucleic acid encoding a gene of interest in an expression construct. Additionally, any promoter/enhancer combination (as per the Eukaryotic Promoter Data Base EPDB) could also be used to drive expression of the gene. Eukaryotic cells can support cytoplasmic transcription from certain bacterial promoters if the appropriate bacterial polymerase is provided, either as part of the delivery complex or as an additional genetic expression construct.
[0092] The promoter and/or enhancer may be, for example, immunoglobulin light chain, immunoglobulin heavy chain, T-cell receptor, HLA DQ a and/or DQ b, b-interferon, interleukin-2, interleukin-2 receptor, MHC class II 5, MHC class II HLA-Dra, b-Actin, muscle creatine kinase (MCK), prealbumin (transthyretin), elastase I, metallothionein (MTII), collagenase, albumin, a-fetoprotein, t-globin, b-globin, c-fos, c-HA-ra.v, insulin, neural cell adhesion molecule (NCAM), oci-antitrypain, H2B (TH2B) histone, mouse and/or type I collagen, glucose-regulated proteins (GRP94 and GRP78), rat growth hormone, human serum amyloid A (SAA), troponin I (TN I), platelet-derived growth factor (PDGF), SV40, polyoma,
37 retroviruses, papilloma virus, hepatitis B vims, human immunodeficiency vims, cytomegalovirus (CMV), and gibbon ape leukemia virus.
[0093] Where a cDNA insert is employed, one will typically desire to include a polyadenylation signal to effect proper polyadenylation of the gene transcript. Any polyadenylation sequence may be employed such as human growth hormone and SV40 polyadenylation signals. Also contemplated as an element of the expression cassette is a terminator. These elements can serve to enhance message levels and to minimize read through from the cassette into other sequences.
[0094] There are a number of ways in which expression vectors may be introduced into cells. In certain embodiments, the expression construct comprises a virus or engineered constmct derived from a viral genome. The ability of certain viruses to enter cells via receptor-mediated endocytosis, to integrate into host cell genome and express viral genes stably and efficiently have made them attractive candidates for the transfer of foreign genes into mammalian cells. These have a relatively low capacity for foreign DNA sequences and have a restricted host spectrum. Furthermore, their oncogenic potential and cytopathic effects in permissive cells raise safety concerns. They can accommodate only up to 8 kB of foreign genetic material but can be readily introduced in a variety of cell lines and laboratory animals.
[0095] One method for in vivo delivery involves the use of an adenovirus expression vector. “Adenovirus expression vector” is meant to include those constructs containing adenovirus sequences sufficient to (a) support packaging of the constmct and (b) to express engineered, stabilized beta-coronavirus S2 domain-only protein that has been cloned therein. In this context, expression does not require that the gene product be synthesized.
[0096] The expression vector comprises a genetically engineered form of adenovirus. Knowledge of the genetic organization of adenovirus, a 36 kB, linear, double-stranded DNA vims, allows substitution of large pieces of adenoviral DNA with foreign sequences up to 7 kB. In contrast to retrovirus, the adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner without potential genotoxicity. Also, adenoviruses are structurally stable, and no genome rearrangement has been detected after extensive amplification. Adenovims can infect
38 virtually all epithelial cells regardless of their cell cycle stage. So far, adenoviral infection appears to be linked only to mild disease such as acute respiratory disease in humans.
[0097] Adenovirus is particularly suitable for use as a gene transfer vector because of its mid-sized genome, ease of manipulation, high titer, wide target cell range and high infectivity. Both ends of the viral genome contain 100-200 base pair inverted repeats (ITRs), which are cis elements necessary for viral DNA replication and packaging. The early (E) and late (L) regions of the genome contain different transcription units that are divided by the onset of viral DNA replication. The El region (E1A and E1B) encodes proteins responsible for the regulation of transcription of the viral genome and a few cellular genes. The expression of the E2 region (E2A and E2B) results in the synthesis of the proteins for viral DNA replication. These proteins are involved in DNA replication, late gene expression and host cell shut-off. The products of the late genes, including the majority of the viral capsid proteins, are expressed only after significant processing of a single primary transcript issued by the major late promoter (MLP). The MLP, (located at 16.8 m.u.) is particularly efficient during the late phase of infection, and all the mRNAs issued from this promoter possess a 5’- tripartite leader (TPL) sequence which makes them preferred mRNAs for translation. In one system, recombinant adenovirus is generated from homologous recombination between shuttle vector and provirus vector. Due to the possible recombination between two proviral vectors, wild-type adenovirus may be generated from this process. Therefore, it is critical to isolate a single clone of vims from an individual plaque and examine its genomic structure.
[0098] Generation and propagation of the current adenovirus vectors, which are replication deficient, depend on a unique helper cell line, designated 293, which was transformed from human embryonic kidney cells by Ad5 DNA fragments and constitutively expresses El proteins. Since the E3 region is dispensable from the adenovirus genome, the current adenovirus vectors, with the help of 293 cells, carry foreign DNA in either the El, the D3 or both regions. In nature, adenovirus can package approximately 105% of the wild-type genome, providing capacity for about 2 extra kb of DNA. Combined with the approximately 5.5 kb of DNA that is replaceable in the El and E3 regions, the maximum capacity of the current adenovirus vector is under 7.5 kb, or about 15% of the total length of the vector. More than 80% of the adenovirus viral genome remains in the vector backbone and is the source of vector-borne cytotoxicity. Also, the replication deficiency of the El-deleted virus is incomplete.
39 [0099] Helper cell lines may be derived from human cells such as human embryonic kidney cells, muscle cells, hematopoietic cells or other human embryonic mesenchymal or epithelial cells. Alternatively, the helper cells may be derived from the cells of other mammalian species that are permissive for human adenovirus. Such cells include, e.g., Vero cells or other monkey embryonic mesenchymal or epithelial cells. As stated above, the preferred helper cell line is 293.
[00100] The adenoviruses of the disclosure are replication defective, or at least conditionally replication defective. The adenovirus may be of any of the 42 different known serotypes or subgroups A-F. Adenovirus type 5 of subgroup C is one exemplary starting material that may be used to obtain the conditional replication-defective adenovirus vector for use in the present disclosure.
[00101] Other viral vectors may be employed as expression constructs in the present disclosure. Vectors derived from viruses such as vaccinia vims, adeno-associated virus (AAV) and herpesviruses may be employed. They offer several attractive features for various mammalian cells.
[00102] In embodiments, particular embodiments, the vector is an AAV vector. AAV is a small virus that infects humans and some other primate species. AAV is not currently known to cause disease. The vims causes a very mild immune response, lending further support to its apparent lack of pathogenicity. In many cases, AAV vectors integrate into the host cell genome, which can be important for certain applications, but can also have unwanted consequences. Gene therapy vectors using AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell, although in the native vims some integration of virally carried genes into the host genome does occur. These features make AAV a very attractive candidate for creating viral vectors for gene therapy, and for the creation of isogenic human disease models. Recent human clinical trials using AAV for gene therapy in the retina have shown promise. AAV belongs to the genus Dependoparvovirus , which in turn belongs to the family Parvoviridae. The virus is a small (20 nm) replication-defective, nonenveloped virus.
[00103] Wild-type AAV has attracted considerable interest from gene therapy researchers due to a number of features. Chief amongst these is the vims's apparent lack of pathogenicity. It can also infect non-dividing cells and has the ability to stably integrate into
40 the host cell genome at a specific site (designated AAVS1) in the human chromosome 19. This feature makes it somewhat more predictable than retroviruses, which present the threat of a random insertion and of mutagenesis, which is sometimes followed by development of a cancer. The AAV genome integrates most frequently into the site mentioned, while random incorporations into the genome take place with a negligible frequency. Development of A A Vs as gene therapy vectors, however, has eliminated this integrative capacity by removal of the rep and cap from the DNA of the vector. The desired gene together with a promoter to drive transcription of the gene is inserted between the inverted terminal repeats (ITR) that aid in concatemer formation in the nucleus after the single-stranded vector DNA is converted by host cell DNA polymerase complexes into double-stranded DNA. AAV-based gene therapy vectors form episomal concatemers in the host cell nucleus. In non-dividing cells, these concatemers remain intact for the life of the host cell. In dividing cells, AAV DNA is lost through cell division, since the episomal DNA is not replicated along with the host cell DNA. Random integration of AAV DNA into the host genome is detectable but occurs at very low frequency. AAVs also present very low immunogenicity, seemingly restricted to generation of neutralizing antibodies, while they induce no clearly defined cytotoxic response. This feature, along with the ability to infect quiescent cells present their dominance over adenoviruses as vectors for human gene therapy.
[00104] The AAV genome is built of single- stranded deoxyribonucleic acid (ssDNA), either positive- or negative-sensed, which is about 4.7 kilobase long. The genome comprises inverted terminal repeats (ITRs) at both ends of the DNA strand, and two open reading frames (ORFs): rep and cap. The former is composed of four overlapping genes encoding Rep proteins required for the AAV life cycle, and the latter contains overlapping nucleotide sequences of capsid proteins: VP1, VP2 and VP3, which interact together to form a capsid of an icosahedral symmetry.
[00105] The Inverted Terminal Repeat (ITR) sequences comprise 145 bases each. They were named so because of their symmetry, which was shown to be required for efficient multiplication of the AAV genome. The feature of these sequences that gives them this property is their ability to form a hairpin, which contributes to so-called self-priming that allows primase-independent synthesis of the second DNA strand. The ITRs were also shown to be required for both integration of the AAV DNA into the host cell genome (19th chromosome in humans) and rescue from it, as well as for efficient encapsidation of the AAV
41 DNA combined with generation of a fully assembled, deoxyribonuclease-resistant AAV particles.
[00106] With regard to gene therapy, ITRs seem to be the only sequences required in cis next to the therapeutic gene: structural (cap) and packaging (rep) proteins can be delivered in trans. With this assumption many methods were established for efficient production of recombinant AAV (rAAV) vectors containing a reporter or therapeutic gene. However, it was also published that the ITRs are not the only elements required in cis for the effective replication and encapsidation. A few research groups have identified a sequence designated cis-acting Rep-dependent element (CARE) inside the coding sequence of the rep gene. CARE was shown to augment the replication and encapsidation when present in cis.
[0022] In some aspects, the present disclosure provides pharmaceutical compositions that contain one or more salts. The salts may be an inorganic potassium or sodium salt such as potassium chloride, sodium chloride, potassium phosphate dibasic, potassium phosphate monobasic, sodium phosphate dibasic, or sodium phosphate monobasic. The pharmaceutical composition may comprise one or more phosphate salts such to generate a phosphate buffer solution. The phosphate buffer solution may be comprise each of the phosphates to buffer a solution to a pH from about 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0, or any range derivable therein.
[0023] In some aspects, the present disclosure comprises one or more excipients formulated into pharmaceutical compositions. An “excipient” refers to pharmaceutically acceptable carriers that are relatively inert substances used to facilitate administration or delivery of an API into a subject or used to facilitate processing of an API into drug formulations that can be used pharmaceutically for delivery to the site of action in a subject. Furthermore, these compounds may be used as diluents in order to obtain a dosage that can be readily measured or administered to a patient. Non-limiting examples of excipients include polymers, stabilizing agents, surfactants, surface modifiers, solubility enhancers, buffers, encapsulating agents, antioxidants, preservatives, nonionic wetting or clarifying agents, viscosity increasing agents, and absorption-enhancing agents.
[00107] In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more
42 particularly in humans. The term “carrier” refers to a diluent, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and can preferably include an adjuvant. Water is a particular carrier when the pharmaceutical composition is administered by injections, such an intramuscular injection. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Other suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
[00108] The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical agents are described in “Remington's Pharmaceutical Sciences.” Such compositions will contain a prophylactically or therapeutically effective amount of the antibody or fragment thereof, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration, which can be oral, intravenous, intraarterial, intrabuccal, intranasal, nebulized, bronchial inhalation, or delivered by mechanical ventilation.
[00109] Engineered proteins or nucleic acids encoding engineered proteins of the present disclosure, as described herein, can be formulated for parenteral administration, e.g., formulated for injection via the intradermal, intravenous, intramuscular, subcutaneous, intra- tumoral or even intraperitoneal routes. The formulation could alternatively be administered by a topical route directly to the mucosa, for example by nasal drops, inhalation, or by nebulizer. Pharmaceutically acceptable salts include the acid salts and those which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
43 [00110] Generally, the ingredients of compositions of the disclosure are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration·
[00111] The compositions of the disclosure can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc. , and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
[00112] Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunization schedule and/or in a booster immunization schedule. In a multiple dose schedule the various doses may be given by the same or different routes. Multiple doses will typically be administered at least 1 week apart (e.g., about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).
[00113] The compositions disclosed herein may be used to treat both children and adults. Thus a human subject may be less than 1 year old, 1-5 years old, 5-16 years old, 16-55 years old, 55-65 years old, or at least 65 years old.
[00114] Preferred routes of administration include, but are not limited to, intramuscular, intraperitoneal, intradermal, subcutaneous, intravenous, intraarterial, and intraoccular injection. Particularly preferred routes of administration include intramuscular, intradermal and subcutaneous injection.
IV. Immunodetection Methods
[00115] In still further embodiments, the present disclosure concerns immunodetection methods for binding, purifying, removing, quantifying and otherwise generally detecting Coronavirus S protein. While such methods can be applied in a traditional
44 sense, another use will be in quality control and monitoring of vaccine stocks, where antibodies according to the present disclosure can be used to assess the amount or integrity (/.<?., long term stability) of antigens. Alternatively, the methods may be used to screen various antibodies for appropriate/desired reactivity profiles.
[00116] Some immunodetection methods include enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, and Western blot to mention a few. In particular, a competitive assay for the detection and quantitation of Coronavirus S protein also is provided. The steps of various useful immunodetection methods have been described in the scientific literature, such as, e.g., Doolittle and Ben-Zeev (1999), Gulbis and Galand (1993), De Jager et al. (1993), and Nakamura et al. (1987). In general, the immunobinding methods include obtaining a sample suspected of containing Coronavirus S protein, and contacting the sample with a first antibody in accordance with the present disclosure, as the case may be, under conditions effective to allow the formation of immunocomplexes.
[00117] These methods include methods for detecting or purifying Coronavirus S protein or Coronavirus S protein from a sample. The antibody will preferably be linked to a solid support, such as in the form of a column matrix, and the sample suspected of containing the Coronavirus S protein will be applied to the immobilized antibody. The unwanted components will be washed from the column, leaving the Coronavirus S protein-expressing cells immunocomplexed to the immobilized antibody, which is then collected by removing the organism or antigen from the column.
[00118] The immunobinding methods also include methods for detecting and quantifying the amount of Coronavirus S protein or related components in a sample and the detection and quantification of any immune complexes formed during the binding process. Here, one would obtain a sample suspected of containing Coronavirus S protein and contact the sample with an antibody that binds Coronavirus S protein or components thereof, followed by detecting and quantifying the amount of immune complexes formed under the specific conditions. In terms of antigen detection, the biological sample analyzed may be any sample that is suspected of containing Coronavirus S protein, such as a tissue section or specimen, a homogenized tissue extract, a biological fluid (e.g., a nasal swab), including blood and serum, or a secretion, such as feces or urine.
45 [00119] Contacting the chosen biological sample with the antibody under effective conditions and for a period of time sufficient to allow the formation of immune complexes (primary immune complexes) is generally a matter of simply adding the antibody composition to the sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to Coronavirus S protein. After this time, the sample-antibody composition, such as a tissue section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non-specifically bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
[00120] In general, the detection of immunocomplex formation is well known in the art and may be achieved through the application of numerous approaches. These methods are generally based upon the detection of a label or marker, such as any of those radioactive, fluorescent, biological and enzymatic tags. Patents concerning the use of such labels include U.S. Patents 3,817,837, 3,850,752, 3,939,350, 3,996,345, 4,277,437, 4,275,149 and 4,366,241. Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody and/or a biotin/avidin ligand binding arrangement, as is known in the art.
[00121] The antibody employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined. Alternatively, the first antibody that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the antibody. In these cases, the second binding ligand may be linked to a detectable label. The second binding ligand is itself often an antibody, which may thus be termed a “secondary” antibody. The primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under effective conditions and for a period of time sufficient to allow the formation of secondary immune complexes. The secondary immune complexes are then generally washed to remove any non-specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
[00122] Further methods include the detection of primary immune complexes by a two-step approach. A second binding ligand, such as an antibody that has binding affinity for the antibody, is used to form secondary immune complexes, as described above.
46 After washing, the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under effective conditions and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes). The third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
[00123] One method of immunodetection uses two different antibodies. A first biotinylated antibody is used to detect the target antigen, and a second antibody is then used to detect the biotin attached to the complexed biotin. In that method, the sample to be tested is first incubated in a solution containing the first step antibody. If the target antigen is present, some of the antibody binds to the antigen to form a biotinylated antibody/antigen complex. The antibody/antigen complex is then amplified by incubation in successive solutions of streptavidin (or avidin), biotinylated DNA, and/or complementary biotinylated DNA, with each step adding additional biotin sites to the antibody/antigen complex. The amplification steps are repeated until a suitable level of amplification is achieved, at which point the sample is incubated in a solution containing the second step antibody against biotin. This second step antibody is labeled, as for example with an enzyme that can be used to detect the presence of the antibody/antigen complex by histoenzymology using a chromogen substrate. With suitable amplification, a conjugate can be produced which is macroscopically visible.
[00124] Another known method of immunodetection takes advantage of the immuno-PCR (Polymerase Chain Reaction) methodology. The PCR method is similar to the Cantor method up to the incubation with biotinylated DNA, however, instead of using multiple rounds of strep tavidin and biotinylated DNA incubation, the DNA/biotin/streptavidin/antibody complex is washed out with a low pH or high salt buffer that releases the antibody. The resulting wash solution is then used to carry out a PCR reaction with suitable primers with appropriate controls. At least in theory, the enormous amplification capability and specificity of PCR can be utilized to detect a single antigen molecule.
A. ELISAs
[00125] Immunoassays, in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked
47 immunosorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and western blotting, dot blotting, FACS analyses, and the like may also be used.
[00126] In one exemplary ELISA, the antibodies of the disclosure are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the Coronavirus S protein is added to the wells. After binding and washing to remove non- specifically bound immune complexes, the bound antigen may be detected. Detection may be achieved by the addition of another anti-Coronavirus S protein antibody that is linked to a detectable label. This type of ELISA is a simple “sandwich ELISA.” Detection may also be achieved by the addition of a second anti-Coronavirus S protein antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
[00127] In another exemplary ELISA, the samples suspected of containing the Coronavirus S protein (e.g., potentially infected cells) are immobilized onto the well surface and then contacted with the anti- Coronavirus S protein antibodies of the disclosure. After binding and washing to remove non-specifically bound immune complexes, the bound anti- Coronavirus S protein antibodies are detected. Where the initial anti-Coronavirus S protein antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first anti-Coronavirus S protein antibody, with the second antibody being linked to a detectable label.
[00128] Irrespective of the format employed, ELISAs have certain features in common, such as coating, incubating and binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described below.
[00129] In coating a plate with either antigen or antibody, one will generally incubate the wells of the plate with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate will then be washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then “coated” with a nonspecific protein that is antigenically neutral with regard to the test
48 antisera. These include bovine serum albumin (BSA), casein or solutions of milk powder. The coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
[00130] In ELISAs, it is probably more customary to use a secondary or tertiary detection means rather than a direct procedure. Thus, after binding of a protein or antibody to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or antibody, and a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or a third binding ligand.
[00131] “Under conditions effective to allow immune complex (antigen/antibody) formation” means that the conditions preferably include diluting the antigens and/or antibodies with solutions such as BSA, bovine gamma globulin (BGG) or phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
[00132] The “suitable” conditions also mean that the incubation is at a temperature or for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 hours or so, at temperatures preferably on the order of 25 °C to 27°C, or may be overnight at about 4°C or so.
[00133] Following all incubation steps in an ELISA, the contacted surface is washed so as to remove non-complexed material. A preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
[00134] To provide a detecting means, the second or third antibody will have an associated label to allow detection. Preferably, this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact or incubate the first and second immune complex with a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody
49 for a period of time and under conditions that favor the development of further immune complex formation (e.g., incubation for 2 hours at room temperature in a PBS -containing solution such as PBS-Tween).
[00135] After incubation with the labeled antibody, and subsequent to washing to remove unbound material, the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea, or bromocresol purple, or 2,2'-azino-di-(3-ethyl- benzthiazoline-6-sulfonic acid (ABTS), or ¾(¾, in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
B. Western Blot
[00136] The Western blot (alternatively, protein immunoblot) is an analytical technique used to detect specific proteins in a given sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D structure of the protein (native/ non denaturing conditions). The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein.
[00137] Samples may be taken from whole tissue or from cell culture. In most cases, solid tissues are first broken down mechanically using a blender (for larger sample volumes), using a homogenizer (smaller volumes), or by sonication. Cells may also be broken open by one of the above mechanical methods. Assorted detergents, salts, and buffers may be employed to encourage lysis of cells and to solubilize proteins. Protease and phosphatase inhibitors are often added to prevent the digestion of the sample by its own enzymes. Tissue preparation is often done at cold temperatures to avoid protein denaturing.
[00138] The proteins of the sample are separated using gel electrophoresis. Separation of proteins may be by isoelectric point (pi), molecular weight, electric charge, or a combination of these factors. The nature of the separation depends on the treatment of the sample and the nature of the gel. This is a very useful way to determine a protein. It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single sample out in two dimensions. Proteins are separated according to isoelectric point (pH at which they
50 have neutral net charge) in the first dimension, and according to their molecular weight in the second dimension.
[00139] In order to make the proteins accessible to antibody detection, they are moved from within the gel onto a membrane made of nitrocellulose or polyvinylidene difluoride (PVDF). The membrane is placed on top of the gel, and a stack of filter papers placed on top of that. The entire stack is placed in a buffer solution which moves up the paper by capillary action, bringing the proteins with it. Another method for transferring the proteins is called electroblotting and uses an electric current to pull proteins from the gel into the PVDF or nitrocellulose membrane. The proteins move from within the gel onto the membrane while maintaining the organization they had within the gel. As a result of this blotting process, the proteins are exposed on a thin surface layer for detection (see below). Both varieties of membrane are chosen for their non-specific protein binding properties (/.<?., binds all proteins equally well). Protein binding is based upon hydrophobic interactions, as well as charged interactions between the membrane and protein. Nitrocellulose membranes are cheaper than PVDF, but are far more fragile and do not stand up well to repeated probings. The uniformity and overall effectiveness of transfer of protein from the gel to the membrane can be checked by staining the membrane with Coomassie Brilliant Blue or Ponceau S dyes. Once transferred, proteins are detected using labeled primary antibodies, or unlabeled primary antibodies followed by indirect detection using labeled protein A or secondary labeled antibodies binding to the Fc region of the primary antibodies.
C. Immunohistochemistry
[00140] The antibodies of the present disclosure may also be used in conjunction with both fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks prepared for study by immunohistochemistry (IHC). The method of preparing tissue blocks from these particulate specimens has been successfully used in previous IHC studies of various prognostic factors, and is well known to those of skill in the art (Brown et al, 1990; Abbondanzo et al, 1990; Allred el al. , 1990).
[00141] Briefly, frozen- sections may be prepared by rehydrating 50 ng of frozen “pulverized” tissue at room temperature in phosphate buffered saline (PBS) in small plastic capsules; pelleting the particles by centrifugation; resuspending them in a viscous embedding medium (OCT); inverting the capsule and/or pelleting again by centrifugation; snap-freezing in -70°C isopentane; cutting the plastic capsule and/or removing the frozen
51 cylinder of tissue; securing the tissue cylinder on a cryostat microtome chuck; and/or cutting 25-50 serial sections from the capsule. Alternatively, whole frozen tissue samples may be used for serial section cuttings.
[00142] Permanent- sections may be prepared by a similar method involving rehydration of the 50 mg sample in a plastic microfuge tube; pelleting; resuspending in 10% formalin for 4 hours fixation; washing/pelleting; resuspending in warm 2.5% agar; pelleting; cooling in ice water to harden the agar; removing the tissue/agar block from the tube; infiltrating and/or embedding the block in paraffin; and/or cutting up to 50 serial permanent sections. Again, whole tissue samples may be substituted.
D. Immunodetection Kits
[00143] In still further embodiments, the present disclosure concerns immunodetection kits for use with the immunodetection methods described above. As the antibodies may be used to detect Coronavirus S protein, the antibodies may be included in the kit. The immunodetection kits will thus comprise, in suitable container means, a first antibody that binds to an Coronavirus S protein, and optionally an immunodetection reagent.
[00144] In certain embodiments, the antibody may be pre-bound to a solid support, such as a column matrix and/or well of a microtitre plate. The immunodetection reagents of the kit may take any one of a variety of forms, including those detectable labels that are associated with or linked to the given antibody. Detectable labels that are associated with or attached to a secondary binding ligand are also contemplated. Exemplary secondary ligands are those secondary antibodies that have binding affinity for the first antibody.
[00145] Further suitable immunodetection reagents for use in the present kits include the two-component reagent that comprises a secondary antibody that has binding affinity for the first antibody, along with a third antibody that has binding affinity for the second antibody, the third antibody being linked to a detectable label. As noted above, a number of exemplary labels are known in the art and all such labels may be employed in connection with the present disclosure.
[00146] The kits may further comprise a suitably aliquoted composition of Coronavirus S protein, whether labeled or unlabeled, as may be used to prepare a standard curve for a detection assay. The kits may contain antibody-label conjugates either in fully
52 conjugated form, in the form of intermediates, or as separate moieties to be conjugated by the user of the kit. The components of the kits may be packaged either in aqueous media or in lyophilized form.
[00147] The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the antibody may be placed, or preferably, suitably aliquoted. The kits of the present disclosure will also typically include a means for containing the antibody, antigen, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow- molded plastic containers into which the desired vials are retained.
E. Flow Cytometry and FACS
[00148] The antibodies of the present disclosure may also be used in flow cytometry or FACS. Flow cytometry is a laser- or impedance-based technology employed in many detection assays, including cell counting, cell sorting, biomarker detection and protein engineering. The technology suspends cells in a stream of fluid and passing them through an electronic detection apparatus, which allows simultaneous multiparametric analysis of the physical and chemical characteristics of up to thousands of particles per second. Flow cytometry is routinely used in the diagnosis disorders, especially blood cancers, but has many other applications in basic research, clinical practice and clinical trials.
[00149] Fluorescence-activated cell sorting (FACS) is a specialized type of cytometry. It provides a method for sorting a heterogenous mixture of biological cells into two or more containers, one cell at a time, based on the specific light scattering and fluorescent characteristics of each cell. In general, the technology involves a cell suspension entrained in the center of a narrow, rapidly flowing stream of liquid. The flow is arranged so that there is a large separation between cells relative to their diameter. A vibrating mechanism causes the stream of cells to break into individual droplets. Just before the stream breaks into droplets, the flow passes through a fluorescence measuring station where the fluorescence of each cell is measured. An electrical charging ring is placed just at the point where the stream breaks into droplets. A charge is placed on the ring based immediately prior to fluorescence intensity being measured, and the opposite charge is trapped on the droplet as it breaks form the stream. The charged droplets then fall through an electrostatic deflection system that diverts droplets into containers based upon their charge.
53 [00150] In certain embodiments, to be used in flow cytometry or FACS, the antibodies of the present disclosure are labeled with fluorophores and then allowed to bind to the cells of interest, which are analyzed in a flow cytometer or sorted by a FACS machine.
V. Examples
[00151] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
Materials & Methods
[00152] Design scheme for MERS stem stabilized spike variants. The base construct used for the S2 subunit of MERS-CoV S-2P variant contained residues 762-1291 of MERS-CoV S (GenBank ID: AFY13307) with proline substituted at residues 1060 and 1061, the foldon dimerization motif of T4 fibritin, an HRV3C protease recognition site, an octa- histidine tag, and a tandem Twin-Strep-tag, cloned into the mammalian expression plasmid paH. All mutations in subsequent designs were introduced into this base construct. The initial design was conducted via the PROSS server (Goldenzweig et ah, 2016), and a total of 11 substitutions were picked (yielding the ‘mutll’ construct) from 53 computational designs based on the biochemical property of the residues and steric effect on the prefusion-stabilized MERS S-2P structure (PDB ID: 5W9I). Using structure-based design, additional substitutions that were aimed at favoring the stability of the prefusion structure were introduced into the mutll backbone. Pairs of core-facing residues less than 5 A apart were replaced with aromatic sidechains or pairs of aromatic and positively charged sidechains to favor pi-pi or pi-cation interactions, respectively. Alternatively, residues were replaced with extended or bulkier hydrophobic sidechains in efforts to fill pre-existing internal cavities. Disulfide bonds were designed to increase overall stability or prevent formation of the postfusion conformation. The charged or polar substitutions were aimed to establish hydrogen bonds or salt bridges with the native residues that were predicted to be within 4.0 A. To examine the
54 effect of the substitutions in the mutll backbone, the mutations were individually or combinatorially reverted back to the wild-type sequence. Three designs, each containing 5-7 of the beneficial substitutions from the PROSS server (mut5, mut6 and mut7) were chosen to serve as backgrounds for subsequent rounds of design. These were then combined with individual substitutions or combinations of substitutions from the structure-based designs that were shown to be beneficial, for subsequent assessment of improved monodispersity and thermostability. Substitutions predicted to potentially interfere with one another or clash with native residues were avoided.
[00153] Protein expression and purification for MERS SS variants. Plasmids encoding MERS SS variants were transiently transfected into FreeStyle293F cells (Thermo Fisher) using polyethyleneimine, with 5 mM kifunensine being added 3h post-transfection. Cultures were grown for 6 days, and culture supernatant was separated via centrifugation and passage through a 0.22 pm filter. Protein was purified from supernatants using StrepTactin resin (IB A). MERS SS variants were further purified by size-exclusion chromatography (SEC) using a Superose 6 10/300 column (GE Healthcare) in a buffer composed of 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3. For initial purification and characterization, single-substitution and combinatorial variants were purified from 40 mL cultures. The SS.V1 and SS.V2 variants were further tested in large-scale expression and purification from 1 L cultures. The protein purity, monodispersity and expression level were determined by SDS- PAGE and SEC.
[00154] Differential scanning fluorimetry . MERS SS variants were prepared at a concentration of 1.5 pM with a final concentration 5X SYPRO Orange Protein Gel Stain (ThermoFisher) in a white, opaque 96-wellplate. Continuous fluorescence measurements (/.ex=465 nm, /.em=580 nm) were performed using a Roche LightCycler 480 II, with a temperature ramp rate of 4.4 °C/minute, and a temperature range of 25 °C to 95 °C. Data were plotted as the derivative of the melting curve.
[00155] Mouse experiments. Mouse experiments were carried out in compliance with all pertinent US National Institutes of Health regulations and approval from the Animal Care and Use Committee (ACUC) of the Vaccine Research Center, University of North Carolina at Chapel Hill, or Abcellera Biologies. For immunogenicity studies, female BALB/cJ mice aged 6- to 8-weeks (Jackson Laboratory) were used. Per the experimental design schema outlined in figure 3A, mice were inoculated intramuscularly with protein
55 immunogens adjuvanted with SAS as previously described (Pallesen et al., 2017) and bled for serological assays. For challenge studies to evaluate MERS-CoV vaccines, 16- to 20-week- old male and female 288/330+/+mice (Cockrell et ah, 2016) were immunized, bled, and challenged, as detailed in figure 4 A. Mice were challenged with 5 x 105 PFU of a mouse- adapted MERS-CoV EMC derivative, m35c4 (Douglas et ak, 2018). On days 3 and 5 post challenge, lungs were collected from selected mice to assess viral titers and hemorrhage, using previously published methods. For S -reactive monoclonal antibody isolation, female C57BL/6J mice aged 4- to 8-weeks (Jackson Laboratory) were used. Mice were immunized intramuscularly with 10 pg MERS SS.V1 + SAS at weeks 0, 3, and 9. At week 13, mice were euthanized and spleens, thymuses, and lymph nodes were harvested for single B cell technology for mAh isolation. Sample size for animal experiments was determined on the basis of criteria set by institutional ACUC. Experiments were neither randomized nor blinded.
[00156] Serum IgG measurement. HCoV S-2P-specific IgG in immunized mouse sera were quantified via enzyme-linked immunosorbent assay (ELISA). Briefly, Nunc MaxiSorp 96-well plates (ThermoFisher) were coated with either MERS S2P, SARS S-2P, SARS-CoV-2 S-2P, or HKU1 S-2P at 1 pg/mL in IX PBS 400 at 4°C for 16h. Sera dilutions were prepared in blocking buffer, which consisted of PBS-Tween 20 + 5% non-fat dairy milk, and diluted serially at 1:100, four- fold, 8x. To eliminate foldon- specific binding, 50 pg/mL of foldon was added to the dilutions and incubated for an hour at room temperature. After standard washes and blocks, goat anti-mouse IgG-horseradish peroxidase (HRP) conjugate (SigmaAldrich) was used as secondary antibody. Plates were reacted with 3,5,3’5’- tetramethylbenzidine (TMB) (KPL) to detect binding responses. Plates were read at OD450/650 using SpectraMax Paradigm (Molecular Devices). Endpoint titers were calculated as the reciprocal serum dilution that yielded a signal 4x greater than that of the background signal (secondary antibody alone).
[00157] Pseudovirus neutralization assay. Neutralization activity was assessed as previously described (Pallesen et ak, 2017). Briefly, Huh7.5 cells were seeded at 10,000 cells/well in 96-well black/white Isoplates (PerkinElmer) 24-h prior to infection. Sera were serially diluted (1:40, 4-fold dilutions, 8x) in DMEM (Gibco) + 1% penicillin/streptomycin, and mixed with a pseudotyped MERS-CoV Englandl lentivirus reporter that was previously titrated to 104 RLU, and incubated for 30 minutes at room temperature. Thr sera +
56 pseudovirus mixture was then added to Huh7.5 cells in duplicate, and incubated at 37°C and 5% C02 for 2h. Then, 100 pL of DMEM supplemented with 10% FBS, 2 mM glutamine, and 1% penicillin/streptomycin was added to each well, and incubated for 72h. Cells were then lysed, and luciferase substrate (Promega) was added. Luciferase activity was measured as relative luciferase units (RLU) at 570 nm, using a SpectraMaxL (Molecular Devices). Sigmoidal curves, taking averages of triplicates at each dilution, were generated from RLU readings; 50% neutralization (ID50) titers were calculated considering uninfected cells as 100% neutralization and cells transduced with only vims as 0% neutralization, by fitting RLU readings to a log(agonist) vs. normalized-response (variable slope) nonlinear regression model in Prism v8 (GraphPad).
[00158] Single-cell screening and recovery. Immunized mice exhibiting elevated serum titers were sacrificed and plasma cells from lymph node, spleen, and bone marrow tissues were isolated using standard protocols. Samples were screened with AbCellera’ s high-throughput single-cell microfluidic platform using a multiplexed microbead assay on devices containing individual nanoliter-volume reaction chambers (Lecault et al., 2011). The multiplexed assay employed multiple optically-encoded beads, each conjugated to one of the following unique antigens: full-length pre- fusion stabilized spike proteins of MERS-CoV, SARS-CoV, or HKUl-CoV, or the S2 subunit of MERS-CoV spike. Bead- conjugated bovine serum albumin (BSA) His-tag and T4 foldon trimerization domain were used as negative controls. Beads were flowed into microfluidic screening devices and incubated with single antibody- secreting cells, and monoclonal antibody binding to cognate antigens was detected via a fluorescently labeled anti-human IgG secondary antibody. Positive hits were identified using machine vision and recovered using automated robotics- based protocols.
[00159] Single-cell sequencing, bioinformatic analysis, and cloning. For recovery of paired heavy and light chain sequences, single-cell polymerase chain reaction (PCR) and next-generation sequencing (MiSeq, Illumina) were performed using automated workstations (Bravo, Agilent) and custom molecular biology protocols. Sequences were analyzed using a custom bioinformatics pipeline to yield paired heavy and light chain sequences for each recovered antibody secreting cell. Each sequence was assigned the closest germline (V(D)J) genes, degree of somatic hypermutation, and potential sequence liabilities.
57 [00160] Expression and purification of IgGs and Fab. Twenty monoclonal antibodies discovered by single B cell technology were selected for characterization based on their binding specifies to HKU1-S, MERS-S and SARS-l-S (monospecific, bi-specific or tri specific), diversity of heavy and light chain CDR3s, and high frequency rates in the B cell repertoire (independently isolated by the probes more than 2 times). The individual VH sequence of selected IgGs was cloned into a mammalian expression plasmid pVRC8400 containing HRV 3C cleavage site in the hinge, and human IgGl Fc domain. VL sequences were also cloned into pVRC8400 with human CL. Paired VH and VL in a 1 : 1 ratio were co transfected transiently into FreeStyle293F cells as previously described. The supernatant was harvested six days post-transfection and IgGs were purified with Protein A agarose (ThermoFisher). IgGs were eluted with 100 mM glycine, pH 3 into 1/lOth volume 1 M Tris- HC1 pH 8.0. IgGs were then buffer exchanged into PBS pH 7.4. Fab fragments were generated by digesting the IgGs with HRV 3C protease at 4 °C. Fc was removed by passing digests over a fresh Protein A agarose, leaving the Fab in the flowthrough, which was further purified by SEC using a Superdex 200 increase 10/300 column (GE Healthcare) in PBS buffer, pH 7.4.
[00161] Spike binding analysis by Biolayer interferometry. The binding affinity of purified IgGs to HKUl-CoV S, MERS-CoV S or SARS-CoV S was characterized by BLI using an Octet RED96e (ForteBio). Briefly, anti-human Fc (AHC) sensors (ForteBio) with captured IgG were dipped into the wells containing 100 nM of CoV spikes in a BLI buffer composed of 10 mM HEPES pH 7.4, 150 mM NaCl, 0.005% v/v Tween 20 and 1 mg/mL BSA. After 600s association step, the dissociation step was carried out in the wells containing only BLI buffer for 600s. RSV F-foldon was also included in the experiments as negative control. The binding affinity of purified mAh G4 to MERS-CoV S and MERS SS was also characterized by BLI using similar approach. AHC sensors with captured mAh G4 were dipped into the wells containing serial dilutions of MERS-CoV S or MERS SS at concentration ranging from 100 to 1.56 nM in a BLI buffer. The data were aligned to a baseline prior to association step and fit to a 1:1 binding model to calculate rate and dissociation constants using Octet Data Analysis software vll.l. The IgGs exhibiting binding to MERS-CoV S was further examined for the ability to compete with mAh G4, the only S2- targed antibody MERS-S antibody with a defined epitope (Pallesen et al., 2017). Four-fold molar excess of G4 Fab was preincubated with 100 nM MERS-S at room temperature for 10 min. The IgG being tested was loaded on AHC sensors and then dipped into either 100 nM
58 apo MERS-S or 100 nM G4-presaturated MERS-S. G4 IgG was also included in one set of the experiments as a control. The data were plotted as the difference between the binding level of G4-saturated and apo MERS-S, normalized to the binding level of apo MERS-S to the IgG of interest.
[00162] Surface plasmon resonance. To accurately determine the binding kinetics, His-tagged spike variants (MERS-CoV S-2P, SARS-CoV S-2P and SARS-CoV-2 S- HexaPro) were immobilized to a Ni-NTA sensorchip (GE Healthcare) to a level of -600 response units (RUs) using a Biacore X100 (GE Healthcare) and running buffer composed of 10 mM HEPES pH 8.0, 150 mM NaCl and 0.05% Tween 20. Serial dilutions of purified Fab22 were injected at concentrations ranging from 400 to 6.25 nM over immobilized MERS-CoV S-2P. For the SARS-CoV S-2P and SARS-CoV-2 S-HexaPro binding experiments, Fab22 concentrations ranging from 100 to 3.13 nM were used instead. The Ni- NTA sensorchip was regenerated between each cycle with 0.35 M EDTA, 50 mM NaOH and followed by 0.5 mM NiC12. Response curves were double-reference subtracted and fit to a 1:1 binding model using Biacore X100 Evaluation Software (GE Healthcare).
[00163] Plaque reduction neutralization test (PRNT). Four-fold serial dilutions of mAbs were combined with an average of 124 plaque-forming units of MERS-CoV (HCo V -EMC/2012) or SARS-CoV-2 (SARS-CoV-2/human/USA/USA-WAl/2020) in 200 pL gelatin saline (0.3% [wt/vol] gelatin in phosphate-buffered saline supplemented with CaCh and MgCh) for 20 min at 37°C, and 100 pL of vims-mAb mixture was applied to each of two confluent Vero 81 or Vero E6 cell monolayers, respectively, in 6-well (10-cm2) plates. Monolayers were overlaid with Dulbecco’s modified Eagle’s medium (DMEM) containing 1% agar following vims adsorption for 30 min at 37°C, and plaques were enumerated at 72 h or 96 h post-infection. Percent plaque reduction resulting from mAh treatment (relative to untreated vims control) was plotted as a function of logio mAh concentration. Neutralization data were subjected to five-parameter logistic regression modeling using GraphPad PRISM 9.0.0. Minimum mAh concentrations resulting in 50% and 80% virus neutralization were interpolated from fitted dose-response curves.
[00164] Negative stain EM for spike-Fab complexes. Purified MERS-CoV S- 2P or SARS-CoV-2 S-HexaPro were incubated with 2-fold molar excess of Fab22 or Fab72 in 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3 at room temperature for 30 min. The spike-Fab complexes were diluted to a concentration of 0.06 mg/mL in 2 mM Tris pH 8.0,
59 200 mM NaCl and 0.02% NaN3. Each protein complex was deposited on a CF-400-CU grid (Electron Microscopy Sciences) that had been plasma cleaned for 30 seconds in a Solarus 950 plasma cleaner (Gatan) with a 4:1 ratio of O2/H2 and stained using methylamine tungstate (Nanoprobes). Grids were imaged at a magnification of 92,000X (corresponding to a calibrated pixel size of 1.63 A/pix) in a Talos F200C TEM microscope equipped with a Ceta 16M detector (Thermo Fisher Scientific). The CTF-estimation and particle picking were performed in cisTEM (Grant et al., 2018). Particles were then imported into cryoSPARC v2.15.0 for 2D classification (Punjani et al., 2017).
[00165] Cryo-EM sample preparation, data collection and processing. Purified MERS-CoV S-2P at 1 mg/mL was incubated with 2-fold molar excess of Fab22 in 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN3 at room temperature for 30 min. Sample was then deposited on a plasma-cleaned CF-400 1.2/1.3 grid before being blotted for 5 seconds with +1 force in a Vitrobot Mark IV (ThermoFisher) and plunge-frozen into liquid ethane. Similarly, purified SARS-CoV-2 S (HexaPro variant) complexed with 2-fold molar excess of Fab22 was diluted to a concentration of 0.37 mg/mL in 2 mM Tris pH 8.0, 200 mM NaCl, 0.02% NaN3 and applied to plasma-cleaned CF-400 1.2/1.3 grids before being blotted for 3.5 seconds with -4 force in a Vitrobot Mark IV and plunge-frozen into liquid ethane. For the Fab22-MERS S-2P sample, 4,330 micrographs were collected from a single grid. For the Fab22-HexaPro sample, 2,013 micrographs were collected from a single grid. FEI Titan Krios (ThermoFisher) equipped with a K3 direct electron detector (Gatan) was used for imaging. Data were collected at a magnification of 22,500x, corresponding to a calibrated pixel size of 1.07 A/pix. A full description of the data collection parameters can be found in Table 4. Warp was used for motion correction, CTF estimation, and particle picking (Tegunov and Cramer, 2019). The particle stack was then imported into cryoSPARC v2.15.0, which was used to curate the particles via iterative rounds of 2D classification (Punjani et al., 2017). The final reconstructions were then arrived at via ab initio reconstruction, heterogeneous refinement, and subsequently non-uniform homogeneous refinement of final classes. The structure validation can be found in FIGS. 12A-C.
Table 4. Cryo-EM data collection and processing statistics
Figure imgf000062_0001
60
Figure imgf000063_0001
Example 1 - Structure-based vaccine design of MERS-CoV stabilized stem (SS) antigens
[00166] To stabilize the stem region (S2 subunit) of the spike, the Protein Repair One-Stop Shop (PROSS) was first used to computationally design stabilizing mutations based on a prefusion-stabilized structure of the MERS-CoV spike ectodomain (PDB ID: 5W9I) (Goldenzweig et ah, 2016; Pallesen et ak, 2017). Among 53 designs, 11 substitutions were selected and introduced in varying combinations into the S2 subunit of MERS-CoV S. The protein expression level of the mutant containing all 11 substitutions (mutll) was substantially higher than MERS S2-2P (base construct) (FIG. 2A). To further improve the protein expression and thermostability of S2, a variety of stabilization strategies were employed to design 12 different substitutions, which were added onto the mutll background. The strategies employed include using hydrophobic residues to fill loosely packed internal cavities (FIG. 2B), disulfide bonds to lock the regions that move substantially during the pre-to-postfusion transition (FIG. 2C), polar residues to counter internal charge imbalance (FIG. 2D), and aromatic side chains to favor pi-pi or cation-pi interactions with positively charged residues (FIG. 2B). Except for the S858C/G953C variant, all other single substitutions increased the protein expression to various extents compared to mutll. Particularly, S975M, F923W/F1033F, Q796C/S858C, T803C/K933C, S845E, A1094S and A1093R substitutions exhibited more than 10-fold higher expression than their parental
61 construct mutll (FIGS. 2A-D). The size-exclusion chromatography (SEC) traces of all variants showed a major trimeric peak with some minor shoulder peaks, with the retention volumes of the trimeric variants being similar to the base construct and mutl 1.
[00167] Next, whether the contribution of the individual substitutions comprising mutll to protein expression and thermostability was examined by reverting each of the substitutions back to the wildtype residue. Reverting K816R, H1020Q, H1146Y or V1150T increased the protein expression relative to mutll, meaning these four substitutions in mutl 1 are dispensable. Thus, a new base construct containing 7 substitutions (mut7) was used for subsequent designs (FIG. 2E). To test whether the structure-based designs (previously tested individually on the mutll background) have additive effects, a disulfide design (T803C/K933C), a cavity filling design (S975M), or a combination of both designs (S975M, T803C/K933C) was added on top of mut7. However, unlike the increase in expression for mutll, T803C/K933C decreased the protein expression relative to mut7, but increased the Tm by 1.7 °C (FIG. 7A). S975M substitution not only boosted the protein expression relative to mut7, but also enhanced the thermostability. Combining both T803C/K933C and S975M on the mut7 backbone restored the expression to a level similar to mut7 and increased Tm by 4.0°C. After iterative screening of WT reversions in mut7 S975M/T803C/K933C, A918P and V1139F were found to have adverse effects on protein expression and thermostability (FIGS. 2E and 7). Removal of A918P and V1193F resulted in the first stabilized stem antigen, MERS SS.V1, containing 7 substitutions in addition to the original 2P mutations (S975M, T803C/K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P).
[00168] To evaluate the viability of MERS SS.V1 as an immunogen, large- scale production in FreeStyle 293 -F cells, thermostability, and epitope integrity were investigated. After two consecutive runs of SEC, MERS SS.V1 exhibited a monodispersed trimeric peak, with a yield of 2.2 mg from 1 L of cell culture (FIG. 2H). The Tm of MERS SS.V1 is 59.9 °C, which is a 6.3 °C increase relative to mutll. mAh G4 is one of very few S2-directed antibodies showing neutralizing activity to MERS-CoV (Wang et ah, 2015). The binding kinetics of MERS SS.V1 to G4 IgG were comparable to those of MERS S-2P ectodomain, with apparent affinities of 8.5 nM and 13.2 nM, respectively (FIG. 8). Taken together, these results suggest that MERS SS.V1 retains the integrity of the known neutralization epitope and should be amenable to large-scale production.
62 [00169] Introducing disulfide linkages to lock viral glycoproteins in the prefusion conformation has proven effective in class I viral fusion proteins such as RSV F, HIV-1 Env and Ebola GP (McLellan et ak, 2013; Rutten et ak, 2020; Sanders et ak, 2013). Although it was not successfully applied to the SARS CoV-2 spike (Hsieh et ak, 2020), its feasibility on MERS SS.V1 was explored. Three disulfide designs, A838C/S1089C, S845C/A1096C and V898C/V1022C, were introduced individually or in combination to stabilize the region proximal to the fusion peptide and central helix. With the addition of V898C/V1022C, the protein expression level increased 1.3-fold relative to MERS SS.V1 and the Tm increased by 4.0 °C (FIGS. 2F-G). Upon combination with either A838C/S1089C or S845C/A1096C substitutions, the protein expression levels increased 1.7-fold relative to MERS SS.V1 and the Tm increased by 6.3 °C. Notably, both constructs exhibited a sharp monodisperse trim eric peak on SEC without any prominent shoulder peaks. This led to the MERS SS.V2 construct, which contains A838C/S1089C and V898C/V1022C added onto the MERS SS.V1 background. The large-scale expression of MERS SS.V2 outperformed MERS SS.V1, yielding 9.5 mg from 1L of FreeStyle 293-F cells (FIG. 2H).
Example 2 - MERS SS immunization elicits cross-reactive b-CoV antibodies
[00170] To evaluate the cross-reactive immunogenicity of MERS SS immunogens, BALB/cJ mice were immunized with 0.4, 2, or 10 pg of MERS SS.V1 or SS.V2 or the maximally effective dose of 1 pg stabilized MERS spike ectodomain (MERS S- 2P) (Pallesen et ak, 2017). The immunogens were administered at weeks 0 and 3 with Sigma Adjuvant System (SAS). Mice were bled 2 weeks post-boost to assess binding IgG and pseudovirus neutralizing antibody responses (FIG. 3A). All doses of both immunogens elicited robust ~105 MERS S-2P-specific reciprocal endpoint binding titers (FIG. 3B). Both MERS SS.V1 and SS.V2 elicited HKU1, SARS, and SARS-2 S-2P-specific IgG that trended toward dose-dependency; most notably at the 0.4 pg dose, heterotypic SARS and SARS-2 S- 2P-specific binding IgG responses were more significant in mice immunized with SS.V1 compared to mice immunized with SS.V2 (FIGS. 3C-E). Conversely, neutralizing antibody responses against a pseudotyped lentivirus reporter expressing MERS-CoV S was not dose- dependent. As expected, both SS immunogens elicited significantly fewer neutralizing antibodies than MERS S-2P given the lack of the SI subunit in the SS immunogens. While MERS SS.V1 elicited only modest baseline neutralizing antibody responses (up to a geometric mean ID50 titer, GMT = 1/156), SS.V2 induced stronger neutralization responses
63 with GMT of 1/550 (FIG. 3F). Altogether, these data corroborate that the introduction of stabilizing disulfide bonds into the SS.V1 backbone promotes the production of more potently neutralizing MERS-CoV S2-specific antibodies. Additionally, they underscore the importance of targeting conserved epitopes to induce broadly specific antibody responses.
Example 3 - MERS SS protects humanized-DPP4 mice against lethal MERS-CoV challenge
[00171] In order to assess the ability of MERS stabilized stems to protect against lethal MERS-CoV challenge, 288/330+/+ mice (Cockrell et ak, 2016) were immunized with 10 pg of MERS SS.V1 or S-2P, adjuvanted with SAS. Mock-immunized mice received PBS. 288/330+/+ mice express human DPP4 and harbor localized lung viral replication and succumb to lethal doses of mouse-adapted (MA) MERS-CoV maM35c4 (Douglas et ak, 2018). Giving three immunogen doses at weeks 0, 3, and 9, the antibody responses were then assessed two weeks post-boost and challenged at week 13 (FIG. 4A). Firstly, ELISA revealed MERS SS.V1 elicits similar levels of robust ~105 homotypic binding IgG as MERS S-2P (FIG. 4B). However, stem-specific binding antibodies were sub neutralizing as MERS SS. VI -immunized mice had significantly reduced homotypic pseudo virus neutralizing antibody responses (GMT = 1/185) as compared to mice receiving MERS S-2P (GMT = 1/5758), similar to BALB/cJ mice in FIG. 3F. In fact, only 5 out of 20 MERS SS.V 1 -immunized 288/330+/+ mice had detectable neutralizing antibody responses (FIG. 4C).
[00172] Following challenge, mice immunized with either MERS S-2P or MERS SS.V1 demonstrated no weight loss throughout the course of infection. Conversely, mice in the PBS control group demonstrated severe clinical presentations and succumbed to death one week post-challenge (FIG. 4D). At day 3 post-challenge, the day of peak lung viral titers in this model, MERS S-2P-immunized mice had no detectable lung viral load, and MERS SS.V1 -immunized mice hovered about the viral detection limit (geometric mean PFU per lung lobe = 167) (FIG. 4E). At day 4 post-challenge, MERS SS.V1 and S-2P-immunized mice alike had cleared viral replication, contrasting against PBS-immunized mice, which presented 2xl06 geometric mean PFU per lung lobe (FIG. 4F). In line with trends of viral replication among SS.V1 and S-2P-immunized mice, at both days 3 and 5 post-challenge there was little to no distinguishable pulmonary hemorrhage; indicating that both vaccines effectively impeded infection and further prevented substantial lung disease (FIG. 4G-H).
64 These findings emphasize the utility of eliciting protective immunity by targeting epitopes outside of immunodominant and neutralization sensitive SI sites.
Example 4 - Discovery of pan-CoV antibodies from MERS SS-immunized mice
[00173] Next, AbCellera’s single B cell technology was used to isolate cross reactive monoclonal antibodies from the spleen, thymus and lymph nodes of mice immunized with MERS SS.V1 antigen. Using HCoV HKU1 S-2P, SARS-CoV S-2P, MERS-CoV S-2P, and MERS SS.V1 as probes, 146 antibodies with a diverse spectrum of specificities to the b- CoV spikes were discovered. Antibodies exhibiting broader spike reactivities, higher frequencies, and unique CDR3s in both heavy and light chains were selected for in order to cover a wide distribution of the germline family. The selected IgGs were then expressed recombinantly in vitro and characterized by binding specificities to b-CoV prefusion- stabilized S, namely HCoV-HKUl S-2P, MERS-CoV S-2P, and SARS-CoV S-2P. IgG20, IgG23 and IgG62 demonstrated cross-reactive binding to MERS- and SARS-CoV S with higher apparent affinity to the former (FIG. 9A). Intriguingly, IgG21, IgG22 and IgG72 were also MERS- and SARS-specific, but the association rates of these mAbs to SARS-CoV S were nearly 5-fold higher than to MERS-CoV S (FIG. 9B). In contrast, IgG12, IgG19 and IgG42 only bound to MERS-CoV S (FIG. 9C). Competitive binding experiments with G4, the only MERS S2-targeted antibody with a structurally defined epitope, were also performed (Pallesen et ak, 2017). One third of selected mAbs (IgG20, IgG23 and IgG62) competed with G4 binding to MERS-CoV S (FIG. 10). By contrast, IgG12, IgG19, IgG21, IgG22, IgG42, and IgG72 appeared to bind to regions outside of the G4 epitope.
Example 5 - IgG22 binds to multiple CoV spikes and neutralizes authentic MERS-CoV
[00174] IgG22 and the clonally related IgG72 are two of the cross-reactive antibodies that exhibited faster association to SARS-CoV S than MERS-CoV S (FIG. 9B). To determine the kinetics of their interactions, surface plasmon resonance experiments were performed where Fab was flowed over spike ectodomain immobilized to a sensor chip. The binding affinity of Fab22 to MERS-CoV S was comparable to those of SARS-CoV S and SARS-CoV-2 S, with KD values of 2.9 nM, 7.2 nM, and 6.7 nM, respectively (FIGS. 5A-C). However, Fab22 exhibited distinct binding kinetics to MERS-CoV S, featuring a much slower on-rate and off-rate than SARS-CoV or SARS-CoV-2 S. The neutralization activities of selected mAbs were examined against authentic MERS-CoV. IgG22 and IgG72 exhibited
65 potent neutralizing activity, with IC50 values of 0.12 pg/rnL and 2.45 pg/mL, respectively (FIG. 5D). On the other hand, IgG20, IgG21 and IgG42 showed no neutralization activity against MERS-CoV. Interestingly, IgG22 and IgG72 failed to neutralize authentic SARS- CoV-2 (FIG. 5E), which may be due to the faster off-rate of IgG22 to SARS-CoV-2.
Example 6 - Cryo-EM structure of Fab22 bound to the MERS-CoV spike
[00175] To investigate Fab22 and Fab72 binding sites on the spikes, negative stain electron microscopy (nsEM) analysis were performed for the Fab-spike complexes. 2D classification showed three distinct densities for Fab22 attached to the S2 stalk region of MERS-CoV S-2P, a region that undergoes substantial conformation changes during the pre- to-postfusion transition (FIG. 11 A). Interestingly, Fab72 also binds to a similar region of S2 in proximity to HR2 (FIG. 1 IB). Given that binding of HR2 could potentially prevent virus cell membrane fusion, a cryo-EM structure of Fab22 bound to MERS S-2P was determined. Resembling the nsEM analysis, three distinct Fab9 densities were seen from multiple 2D classes (FIG. 5F). The initial 3D reconstruction exhibited a single conformation of the spike, with all three RBDs in the down conformation. A total of 183,556 particles led to a 3.3 A reconstruction with well-defined side chain densities at the core of S2. Three Fab densities could be visualized at the bottom stalk of S2, although one of the Fabs displayed a broader than usual Fab density. It is possible that the highly flexible nature of the stalk-HR2 region could lead to broadened Fab density. Therefore, the initial set of particles was subjected to two additional rounds of heterogeneous refinement to sort out 3D classes with diverse Fab orientations. A 3D reconstruction (3.3 A) from about half of the total particles (48.7%) was obtained, which demonstrated three distinct Fab densities bound to the spike. Interestingly, both reconstructions displayed three-RBD-down conformations. Focused refinement on the Fab22 densities was attempted, but the Fab-spike interface could not be resolved.
Example 7 - CryoEM structure of Fab22 bound to the SARS-CoV-2 spike
[00176] Resembling the Fab22-MERS-CoV S complex, nsEM analysis showed that Fab22 binds to the stalk region of SARS-CoV-2 S (FIG. 11C). To ascertain the discrepancy between the MERS-CoV and SARS-CoV-2 neutralization by IgG22, a high- resolution structure of Fab22 bound to SARS-CoV-2 S HexaPro, a prefusion-stabilized spike (Hsieh et ak, 2020), was attempted to be determined. The initial 3D reconstruction exhibited a disc-shaped Fab density beneath the helical stalk of the globular ectodomain. After two
66 additional rounds of heterogeneous refinement, two different conformations of the spikes were identified: one-RBD-up at 4.0 A (53% of the total particles) and three-RBD-down at 4.4 A (31% of the total particles) (FIGS. 6A-B). Although Fab22 density was not well defined, the Fab binding site on the spike could be located to the helical stalk, which is only resolved in the full-length spike model (PDB: 6XR8) (FIG. 6C). Sequence alignments of the helical stalk show that, among the b-CoVs, HCoV-HKUl is the least conserved in this region. This could explain why IgG22 has the weakest affinity to the HCoV-HKUl S. To further narrow down the binding site, two C-terminal truncations of the spike variants were constructed: AHR2 (1-1160) and Astalk (1-1142). In line with the cryo-EM map, Fab22 retained the affinity to HexaPro-AHR2 but completely lost the binding to HexaPro-Astalk (FIG. 6D). Collectively, these data demonstrate that the conserved helical stalk region between residues 1142 and 1160 is a novel epitope with the potential to elicit cross-reactive S2-targeted antibodies.
* * * [00177] All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
67 REFERENCES
The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
Baden, L.R., el Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Creech, C.B., et al. (2020). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England Journal of Medicine.
Boyoglu-Bamum, S., Hutchinson, G.B., Boyington, J.C., Moin, S.M., Gillespie, R.A., Tsybovsky, Y., Stephens, T., Vaile, J.R., Lederhofer, J., Corbett, K.S., et al. (2020). Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nature Communications 11, 791.
Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., et al. (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS CoV-2. Science (New York, N.Y.) 369, 650- 655.
Choi, B., Choudhary, M.C., Regan, J., Sparks, J.A., Padera, R.F., Qiu, X., Solomon, I.H., Kuo, H.-H., Boucau, J., Bowman, K., et al. (2020). Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. The New England Journal of Medicine 383, 2291-2293.
Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.-C., Marasco, W.A., Heise, M.T., and Baric, R.S. (2016). A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature Microbiology 2, 16226.
Corbett, K.S., Moin, S.M., Yassine, H.M., Cagigi, A., Kanekiyo, M., Boyoglu-Bamum, S., Myers, S.I., Tsybovsky, Y., Wheatley, A.K., Schramm, C.A., et al. (2019). Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio 10.
Corbett, K.S., Edwards, D.K., Leist, S.R., Abiona, O.M., Boyoglu-Bamum, S., Gillespie, R.A., Himansu, S., Schafer, A., Ziwawo, C.T., DiPiazza, A.T., et al. (2020a). SARS- CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567-571.
68 Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Bamum, S., Werner, A.P., Flach, B., O’Connell, S., Bock, K.W., Minai, M., et al. (2020b). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. The New England Journal of Medicine 383, 1544-1555.
Douglas, M.G., Kocher, J.F., Scobey, T., Baric, R.S., and Cockrell, A.S. (2018). Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Virology 517, 98-107.
Goldenzweig, A., Goldsmith, M., Hill, S.E., Gertman, O., Laurino, P., Ashani, Y., Dym, O., Unger, T., Albeck, S., Prilusky, J., et al. (2016). Automated Structure- and Sequence- Based Design of Proteins for High Bacterial Expression and Stability. Molecular Cell 63, 337-346.
Grant, T., Rohou, A., and Grigorieff, N. (2018). cisTEM, user-friendly software for single particle image processing. ELife 7.
Grubaugh, N.D., Hodcroft, E.B., Fauver, J.R., Phelan, A.L., and Cevik, M. (2021). Public health actions to control new SARS-CoV-2 variants. Cell.
Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y.-Q., Wang, Y., Teng, Y., Zhao, Z., Cui, Y., et al. (2020). Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603 LP - 1607.
Hsieh, C.-L., Goldsmith, J.A., Schaub, J.M., DiVenere, A.M., Kuo, H.-C., Javanmardi, K., Le, K.C., Wrapp, D., Lee, A.G., Liu, Y., et al. (2020). Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501 LP - 1505.
Impagliazzo, A., Milder, F., Kuipers, H., Wagner, M. v, Zhu, X., Hoffman, R.M.B., van Meersbergen, R., Huizingh, J., Wanningen, P., Verspuij, J., et al. (2015). A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science (New York, N.Y.) 349, 1301-1306.
Jackson, L.A., Anderson, E.J., Rouphael, N.G., Roberts, P.C., Makhene, M., Coler, R.N., McCullough, M.P., Chappell, J.D., Denison, M.R., Stevens, L.J., et al. (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. The New England Journal of Medicine 383, 1920-1931.
Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C.J., Cerikan, B., et al. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498-502.
Kirchdoerfer, R.N., Wang, N., Pallesen, J., Wrapp, D., Turner, H.L., Cottrell, C.A., Corbett, K.S., Graham, B.S., McLellan, J.S., and Ward, A.B. (2018). Stabilized coronavirus
69 spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports 8, 15701.
Krarup, A., Truan, D., Furmanova-Hollenstein, P., Bogaert, L., Bouchier, P., Bisschop, I.J.M., Widjojoatmodjo, M.N., Zahn, R., Schuitemaker, H., McLellan, J.S., et al. (2015). A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nature Communications 6, 8143.
Ku, Z., Xie, X., Davidson, E., Ye, X., Su, H., Menachery, V.D., Li, Y., Yuan, Z., Zhang, X., Muruato, A.E., et al. (2021). Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications 12, 469.
Kupferschmidt, K. (2021). Fast-spreading U.K. vims variant raises alarms· Science 371, 9 LP - 10.
Li, F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology 3, 237-261.
Liu, L., Wang, P., Nair, M.S., Yu, L, Rapp, M., Wang, Q., Luo, Y., Chan, J.F.-W., Sahi, V., Figueroa, A., et al. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-456.
McLellan, J.S., Chen, M., Joyce, M.G., Sastry, M., Stewart-Jones, G.B.E., Yang, Y., Zhang,
B., Chen, L., Srivatsan, S., Zheng, A., et al. (2013). Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science (New York, N.Y.) 342, 592-598.
Ng, K.W., Faulkner, N., Cornish, G.H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl,
C., Wrobel, A.G., Benton, D.J., et al. (2020). Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339 LP - 1343.
Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Becker, M.M., Wang, L., Shi, W., et al. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America 114, E7348-E7357.
Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England Journal of Medicine 383, 2603-2615.
Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290-296.
70 Rutten, L., Gilman, M.S.A., Blokland, S., Juraszek, J., McLellan, J.S., and Langedijk, J.P.M. (2020). Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Reports 30, 4540-4550.e3.
Sanders, R.W., Derking, R., Cupo, A., Julien, J.-P., Yasmeen, A., de Val, N., Kim, H.J., Blattner, C., de la Pena, A.T., Korzun, J., et al. (2013). A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gpl40, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathogens 9, el003618.
Siebert, D.N., Bosch, B.J., van der Zee, R., de Haan, C.A.M., and Rottier, P.J.M. (2003). The Coronavirus Spike Protein Is a Class I Vims Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. Journal of Virology 77, 8801-8811.
Starr, T.N., Greaney, A.J., Hilton, S.K., Ellis, D., Crawford, K.H.D., Dingens, A.S., Navarro, M.J., Bowen, J.E., Tortorici, M.A., Walls, A.C., et al. (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295-1310.e20.
Stewart-Jones, G.B.E., Chuang, G.-Y., Xu, K., Zhou, T., Acharya, P., Tsybovsky, Y., Ou, L., Zhang, B., Fernandez-Rodriguez, B., Gilardi, V., et al. (2018). Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1- 4. Proceedings of the National Academy of Sciences of the United States of America 115, 12265-12270.
Tang, J.W., Toovey, O.T.R., Harvey, K.N., and Hui, D.D.S. (2021). Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. The Journal of Infection.
Tegunov, D., and Cramer, P. (2019). Real-time cryo-electron microscopy data preprocessing with Warp. Nature Methods 16, 1146-1152.
Turonova, B., Sikora, M., Schiirmann, C., Hagen, W.J.H., Welsch, S., Blanc, F.E.C., von Billow, S., Gecht, M., Bagola, K., Horner, C., et al. (2020). In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203 LP - 208.
Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292.e6.
Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., van Doremalen, N., Fischer, R., Wang, N., et al. (2018). Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East
71 Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology 92, e02002-17.
Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C.O., Finkin, S., Schaefer- Babajew, D., Cipolla, M., Gaebler, C., Fieberman, J.A., et al. (2021). mRNA vaccine- elicited antibodies to SAR-CoV-2 and circulating variants. BioRxiv : The Preprint Server for Biology.
Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Forenzi, J.C.C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., et al. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. EFife 9, e61312.
Widjaja, I., Wang, C., van Haperen, R., Gutierrez-Alvarez, J., van Dieren, B., Okba, N.M.A., Raj, V.S., Fi, W., Femandez-Delgado, R., Grosveld, F., et al. (2019). Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS -coronavirus spike glycoprotein. Emerging Microbes & Infections 8, 516-530.
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-F., Abiona, O., Graham, B.S., and McFellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260 FP - 1263.
Wu, K., Werner, A.P., Moliva, J.I., Koch, M., Choi, A., Stewart-Jones, G.B.E., Bennett, H., Boyoglu-Bamum, S., Shi, W., Graham, B.S., et al. (2021). mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. BioRxiv : The Preprint Server for Biology.
Yassine, H.M., Boyington, J.C., McTamney, P.M., Wei, C.-J., Kanekiyo, M., Kong, W.-P., Gallagher, J.R., Wang, F., Zhang, Y., Joyce, M.G., et al. (2015). Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine 21, 1065-1070.
Zhang, J., Wu, Q., Fiu, Z., Wang, Q., Wu, J., Hu, Y., Bai, T., Xie, T., Huang, M., Wu, T., et al. (2021). Spike- specific circulating T follicular helper cell and cross-neutralizing antibody responses in CO VID- 19-convalescent individuals. Nature Microbiology 6, 51-58.
Zhao, S., Fou, J., Cao, F., Zheng, H., Chong, M.K.C., Chen, Z., Chan, R.W.Y., Zee, B.C.Y., Chan, P.K.S., and Wang, M.H. (2021). Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the United Kingdom: An early data-driven analysis. Journal of Travel Medicine.
72

Claims

WHAT IS CLAIMED IS:
1. An engineered protein comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90% identical to: (a) positions 762-1291 of SEQ ID NO: 1; (b) positions 687-1208 of SEQ ID NO: 2; or (c) positions 668-1190 of SEQ ID NO: 3; wherein the engineered protein comprises the following substitutions relative to the sequence of SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P, V898C, V1022C, A838C, and S0189C, wherein the engineered protein does not comprise a beta-coronavirus S 1 domain.
2. An engineered protein comprising an engineered beta-coronavirus S2 domain that comprises a sequence at least 90% identical to: (a) positions 762-1291 of SEQ ID NO: 1; (b) positions 687-1208 of SEQ ID NO: 2; or (c) positions 668-1190 of SEQ ID NO: 3; wherein the engineered protein does not comprise a beta-coronavirus SI domain, and wherein the engineered protein comprises at least one substitution relative to the sequence of SEQ ID NO: 1, 2, or 3, said at least one substitution being at a position corresponding to: V958, V983, A918, V1139, L1094, S1091, N1132, K816, H1020, H1146, V1150, S845, T803, K933, S858, G953, S975, L923, L1033, P937, M939, A1049, L923, L1033, S787, Q1003, L840, Q769, S858, A1093, V1060, L1061, V898, V1022, S845, A1096, A838, or S1089 relative to SEQ ID NO: 1.
3. The engineered protein of any one of claims 1-2, comprising at least one engineered disulfide bond comprising paired cysteine substitutions at positions corresponding to: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1.
4. The engineered protein of claim 3, further comprising at least one additional engineered disulfide bond.
5. The engineered protein of any one of claims 1-2, comprising at least one cavity filling substitution at a position corresponding to: S975, P937, M939, L923, and/or L1033 relative to SEQ ID NO: 1.
6. The engineered protein of claim 5, comprising at least one cavity filling substitution selected from: S975M, P937F, M939K, L923W, and L1033F relative to SEQ ID NO: 1.
73
7. The engineered protein of any one of claims 1-2, comprising at least one substitution that provides an electrostatic interaction substitution at a position corresponding to: S845, L923, L1033, A1049, S787, Q1003, L840, and/or A1093 relative to SEQ ID NO: 1.
8. The engineered protein of claim 7, comprising at least one electrostatic interaction substitution selected from S845E, L923K, L1033E, A1049S, S787D, Q1003K, L840E, and A1093R relative to SEQ ID NO: 1.
9. The engineered protein of any one of claims 1-8, comprising V1060P and L1061P substitutions relative to SEQ ID NO: 1.
10. The engineered protein of any one of claims 1-9, comprising a combination of at least one engineered disulfide bond, at least one cavity filling substitution, at least one proline substitution, and at least one electrostatic interaction substitution.
11. The engineered protein of any one of claims 1-10, comprising the following substitutions relative to SEQ ID NO: 1: V983I/, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P.
12. The engineered protein of any one of claims 1-10, comprising the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, V1060P, and L1061P.
13. The engineered protein of any one of claims 1-10, comprising the following substitutions relative to SEQ ID NO: 1: V983I, A918P, V1139F, V958S, L1094Q, S1091E, N1132Y, K816R, H1020Q, H1146Y, V1150T, V1060P, and L1061P.
14. The engineered protein of any one of claims 1-10, comprising the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, and L1061P.
15. The engineered protein of any one of claims 1-10, comprising the following substitutions relative to SEQ ID NO: 1: S975M, T803C, K933C, V958S, V983I, S1091E, L1094Q, N1132Y, V1060P, L1061P, V898C, V1022C, A838C, and S0189C.
16. The engineered protein of any one of claims 1-15, having at least 95% identity to positions 762-1291 of SEQ ID NO: 1.
74
17. The engineered protein of any one of claims 1-16, wherein the protein is fused or conjugated to a trimerization domain.
18. The engineered protein of claim 17, wherein the protein is fused to a trimerization domain.
19. The engineered protein of claim 17, wherein the trimerization domain is positioned C- terminally relative to S protein ectodomain.
20. The engineered protein of claim 18, wherein the trimerization domain comprises a T4 fibritin trimerization domain.
21. The engineered protein of any one of claims 1-20, wherein the protein is fused or conjugated to a transmembrane domain.
22. The engineered protein of claim 21, wherein the protein is fused to a transmembrane domain.
23. The engineered protein of claim 21, wherein the transmembrane domain comprises a beta-coronavirus spike protein transmembrane domain.
24. The engineered protein of claim 23, wherein the transmembrane domain comprises a homologous beta-coronavirus spike protein transmembrane domain.
25. An engineered beta-coronavirus S2 trimer comprising at least one subunit according to any one of claims 1-24.
26. The engineered trimer of claim 25, wherein the S2 trimer is stabilized in a prefusion conformation relative to a S2 trimer of wildtype S protein subunits.
27. The engineered trimer of claim 25, wherein the S2 trimer comprises at least one engineered disulfide bond between subunits.
28. The engineered trimer of claim 27, wherein the at least one engineered disulfide bond between subunits is selected from: T803C and K933C; S858C and G953C; and/or Q769C and S858C relative to SEQ ID NO: 1.
75
29. A pharmaceutical composition comprising a pharmaceutically acceptable carrier; and (i) an engineered protein of any one of claims 1-24, or (ii) an engineered trimer of any one of claims 25-28.
30. The composition of claim 29, further comprising an adjuvant.
31. A nucleic acid molecule comprising a nucleotide sequence that encodes an amino acid sequence of an engineered protein of any one of claims 1-24.
32. The nucleic acid of claim 31, wherein the nucleic acid comprises a DNA expression vector.
33. The nucleic acid of claim 31, wherein the nucleic acid comprises a mRNA.
34. A method of preventing coronavirus infection or a disease associate with coronavirus infection in a subject, comprising administering to the subject an effective amount of the pharmaceutical composition according to any one of claims 29-30 or a nucleic acid molecule according to any one of claims 31-33.
35. The method of claim 34, wherein the method elicits a beta-coronavirus cross-reactive immune response.
36. The method of claim 34, wherein the method elicits the production of pan-coronavirus antibodies in the subject.
37. A composition comprising an engineered protein of any one of claims 1-24 bound to an antibody.
76
PCT/US2022/029216 2021-05-14 2022-05-13 Stabilized s2 beta-coronavirus antigens WO2022241229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163188813P 2021-05-14 2021-05-14
US63/188,813 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022241229A1 true WO2022241229A1 (en) 2022-11-17

Family

ID=84029832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/029216 WO2022241229A1 (en) 2021-05-14 2022-05-13 Stabilized s2 beta-coronavirus antigens

Country Status (1)

Country Link
WO (1) WO2022241229A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081318A1 (en) * 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use
WO2018115527A2 (en) * 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081318A1 (en) * 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use
WO2018115527A2 (en) * 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine

Similar Documents

Publication Publication Date Title
US20230242594A1 (en) Engineered coronavirus spike (s) protein and methods of use thereof
Hsieh et al. Stabilized coronavirus spike stem elicits a broadly protective antibody
US20230285539A1 (en) Vaccines against sars-cov-2 and other coronaviruses
US10858400B2 (en) Prefusion RSV F proteins and their use
Du et al. The spike protein of SARS-CoV—a target for vaccine and therapeutic development
CN111671890B (en) Novel coronavirus vaccine and application thereof
US11919927B2 (en) Prefusion-stabilized hMPV F proteins
Coughlin et al. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential
AU2018282476A1 (en) Prefusion rsv f proteins and their use
Verma et al. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics
Guo et al. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines
Malonis et al. A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice
Yeung et al. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention
Coughlin et al. Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms
WO2023288296A1 (en) Prefusion-stabilized chimeric hmpv-rsv f proteins
US20230277653A1 (en) Stabilized beta-coronavirus antigens
WO2022241229A1 (en) Stabilized s2 beta-coronavirus antigens
US20240140994A1 (en) Prefusion-stabilized hmpv f proteins
Thavorasak et al. Enhancing epitope of PEDV spike protein
Fenwick et al. Broadly potent anti-SARS-CoV-2 antibody shares 93% of epitope with ACE2 and provides full protection in monkeys
Duan et al. Negative effects of a disulfide bond mismatch in anti-rabies G protein single-chain antibody variable fragment FV57
WO2024050549A2 (en) Prefusion-stabilized cmv gb proteins
Li et al. Interactions between SARS coronavirus and its receptor
Wang Structure-Guided Vaccine, Antibody and Drug Discovery
WO2023023520A1 (en) Membrane fusion and immune evasion by the spike protein of sars-cov-2 delta variant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22808415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE