WO2022240253A1 - Recycled polyvinyl chloride material - Google Patents

Recycled polyvinyl chloride material Download PDF

Info

Publication number
WO2022240253A1
WO2022240253A1 PCT/KR2022/006921 KR2022006921W WO2022240253A1 WO 2022240253 A1 WO2022240253 A1 WO 2022240253A1 KR 2022006921 W KR2022006921 W KR 2022006921W WO 2022240253 A1 WO2022240253 A1 WO 2022240253A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
pvc
weight
recycled
ppm
Prior art date
Application number
PCT/KR2022/006921
Other languages
French (fr)
Korean (ko)
Inventor
장명근
이봄
정승문
이진규
Original Assignee
(주)엘엑스하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220046862A external-priority patent/KR20220155191A/en
Application filed by (주)엘엑스하우시스 filed Critical (주)엘엑스하우시스
Publication of WO2022240253A1 publication Critical patent/WO2022240253A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • This application relates to a recycled polyvinyl chloride material or a manufacturing method thereof.
  • the need for technology to recover plastics from waste materials is increasing.
  • the core of plastic recovery technology to date is how purely desired plastic can be recovered from waste materials, that is, how effectively other unnecessary components other than the desired components can be removed, and how similar physical properties of recovered recycled plastic to plastic before use are. It was possible to have a .
  • Recycling plastic recovery technology also needs to be carried out as an eco-friendly, economical, and low-energy process as possible.
  • PVC-based materials are widely used in various products.
  • PVC-based materials are used to manufacture building materials such as windows, wallpaper, and flooring, pipes, automobile parts, hoses, agricultural films used for house cultivation of vegetables and fruits, or construction sheets.
  • PVC-based materials are widely used in various fields.
  • PVC has a property of mixing well with various materials such as plasticizers, heat stabilizers, or fillers, so that it is easy to impart desired properties and to easily color in desired colors.
  • waste materials containing PVC may contain heavy metals. This is because in the past, when applying materials containing PVC, there were no restrictions on whether or not heavy metals were included, or the current strict standards were not applied. Therefore, when PVC is recycled, it is necessary to effectively remove heavy metals contained in waste materials.
  • PVC has a property of being well mixed with other materials, it is not easy to effectively remove impurities such as heavy metals.
  • PVC has various advantages as described above, it also has disadvantages of being rather hard and brittle.
  • additives that make the PVC material flexible and do not break easily may be added to compensate for the above disadvantages, and it is advantageous that these additives are included in the recycled PVC material.
  • This application is directed to recycled PVC materials and methods for their manufacture.
  • the manufacturing method of recycled PVC in this application may be a method of recycling PVC from waste materials.
  • the present application as recycled from waste materials, has physical properties equivalent to those of PVC materials before use, while unnecessary impurities such as heavy metals are effectively removed, and at the same time, beneficial additives remain, providing recycled PVC materials and a method for manufacturing the same. aims to
  • the present application aims to obtain the recycled PVC material through an economical, environmentally friendly process that consumes little energy.
  • the corresponding physical properties refer to physical properties measured at room temperature and/or normal pressure, unless otherwise specified.
  • room temperature refers to a natural temperature that is not heated or cooled, and may mean, for example, any temperature in the range of about 10 ° C to 30 ° C, 25 ° C, or 23 ° C.
  • normal pressure is a pressure when not particularly reduced or increased, and may mean a pressure environment of about 740 mmHg to 780 mmHg, such as normal atmospheric pressure.
  • the physical properties mentioned in this specification when measured humidity affects the physical properties, unless otherwise specified, the physical properties refer to physical properties measured at natural humidity that is not specially adjusted in the measured temperature and pressure state. do.
  • This application is directed to a method for manufacturing recycled PVC or a material comprising the same.
  • the manufacturing method in one example, may be a method of recycling PVC from waste.
  • recycled PVC is PVC contained in waste and may refer to PVC recycled through a recycling process.
  • the regeneration process may be a regeneration process of the present application to be described later.
  • the type of waste containing PVC is not particularly limited.
  • PVC is applied to the manufacture of various products including building materials such as windows and doors, automobile parts, electric wires, hoses, agricultural films used for house cultivation of vegetables and fruits, or construction sheets. Therefore, wastes such as discarded building materials such as discarded windows, discarded automobile parts, discarded wires, discarded hoses, and discarded agricultural or construction sheets contain PVC, and these wastes are all used as raw materials for the method. can be used In one example, the waste may be a closed window.
  • Wastes containing PVC have different types of other components other than PVC, depending on the product from which the waste is derived. can be recovered
  • recycled PVC material herein may refer to a material comprising the recycled PVC and other materials, which may also be referred to as a recycled PVC composition or a polymer material.
  • Other materials included in the recycled PVC material may be materials derived from the waste.
  • the content of the recycled PVC in the recycled PVC material is about 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, or 85% by weight. % or more, and may also be less than about 100% by weight, less than about 95% by weight, or less than about 90% by weight. In one example, the remaining amount excluding various components that may be included in the material to be described later may be the content of the recycled PVC.
  • the content of the recycled PVC can be obtained through 1 H NMR analysis.
  • the analysis may be performed, for example, using a 400 MHz FT-NMR Spectrometer (model name: AVANCE III HD 400, manufacturer: Bruker Biospin) (measurement conditions: 400 MHz, solvent: THF (tetrahydrofuran) -D8).
  • the recycled PVC in the material may be included in a particle state.
  • the polymer material may be in a powder form.
  • Reclaimed PVC particles in the recycled PVC material may be in a non-cluster particle state or a primary particle state.
  • the non-cluster particle state or primary particle state is a different concept from the so-called cluster particle state or secondary particle state, and means that it is not a particle state formed by aggregation of a plurality of particles.
  • the recycled PVC particles in the non-cluster particle state or primary particle state in the material may have an average particle diameter in the range of 50 ⁇ m to 300 ⁇ m.
  • the average particle diameter is the median particle diameter, so-called D50 particle diameter.
  • the average particle diameter is 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m or more, or 100 ⁇ m or more, or 290 ⁇ m or less, 280 ⁇ m or less, 270 ⁇ m or less, 260 ⁇ m or less, 250 ⁇ m or less, 240 ⁇ m It may be about 230 ⁇ m or less, 220 ⁇ m or less, 210 ⁇ m or less, or 200 ⁇ m or less.
  • the recycled PVC material may include the recycled PVC and other materials.
  • the other material may be a material derived from waste, such as the recycled PVC, and in particular, it may be a material that can compensate for the disadvantages of PVC, such as being somewhat hard, brittle, and lacking in flexibility. have. That is, the reclaimed PVC material regenerated according to the regeneration method of the present application may be a material in which impurities such as heavy metals are selectively removed and beneficial substances remain. You can get it.
  • the recycled PVC material may exhibit a first peak in the range of 4 ppm to 5 ppm and a second peak in the range of 1 ppm to 1.6 ppm in the 1 H NMR spectrum.
  • the second peak may be identified within a range of about 1 ppm to 1.5 ppm or about 1 ppm to 1.4 ppm in another example.
  • the 1 H NMR spectrum can be obtained through the same 1 H NMR analysis as for confirming the content of the recycled PVC described above.
  • the analysis can be performed, for example, using a 400 MHz FT-NMR Spectrometer (model name: AVANCE III HD 400, manufacturer: Bruker Biospin) (measurement condition: 400 MHz, solvent: THF (tetrahydrofuran) -D8 ).
  • the first peak appearing in the range of 4 ppm to 5 ppm in the 1 H NMR spectrum is a peak derived from recycled PVC, and may be, for example, a peak derived from a hydrogen atom of a carbon atom bonded to chlorine in PVC. have.
  • the second peak appearing in the range of 1 ppm to 1.5 ppm in the spectrum is a material included in the recycled PVC material, is a material other than the recycled PVC, and is a peak derived from a material that can compensate for the disadvantages of PVC. can be
  • a peak (1) (first peak) derived from recycled PVC and a peak (3) (second peak) derived from other materials are also observed.
  • the other material are not particularly limited, and may be, for example, MMA (methyl methacrylate), PMMA (poly (methyl methacrylate)), and/or ABS resin.
  • the peak (2) identified at 2 to 3 ppm in FIG. 3 is also a peak derived from recycled PVC.
  • the ratio (second peak/first peak) of the area (integral value) of the second peak to the area (integral value) of the first peak is within a range of about 0.01 to 0.5. There may be. Under this ratio, the material that derives the second peak can adequately compensate for the disadvantages of PVC to obtain a recycled PVC material having excellent physical properties.
  • the ratio may be 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, or 0.08 or more, or 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, or 0.09 or less.
  • a material exhibiting the above 1 H-NMR spectrum can be provided by the regeneration method according to the present application.
  • the PVC material may further include heavy metals in an amount of 500 ppm or less.
  • the method of the present application can provide a material with a minimized ratio of heavy metals.
  • the heavy metal include lead, cadmium, and the like, but are not limited thereto.
  • the ratio of the heavy metal is 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, 100 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less , less than or equal to 20 ppm or less than or equal to 10 ppm, and also greater than or equal to 0 ppm, greater than 0 ppm, greater than or equal to 1 ppm, greater than or equal to 2 ppm, greater than or equal to 3 ppm, greater than or equal to 4 ppm, greater than or equal to 5 ppm, greater than or equal to 6 ppm, greater than or equal to 7 ppm, greater than or equal to 8 ppm , 9 ppm or more, or 10 ppm or more. That is, the material may not contain the heavy metal or may contain the heavy metal in a minimum amount within the above content range.
  • the heavy metal content can be confirmed through inductively coupled plasma emission spectrometry (ICP-OES).
  • ICP-OES inductively coupled plasma emission spectrometry
  • the analysis can be performed, for example, by using a measuring device from Agilent (Agilent, 5110 Series) through a so-called waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
  • the polymer material may also contain a good solvent (ketones such as cyclic ketones and/or tetrahydrofuran (THF)).
  • the good solvent may be a good solvent for the PVC.
  • Such a good solvent may exist in the material by applying the good solvent in a regeneration step described later.
  • the content ratio of the good solvent may be, for example, about 1,000 ppm or less, and the ratio may be 10 ppm or more in another example. Specific types of the good solvent will be described later.
  • the content of the good solvent in the polymer material can be obtained by a known gas chromatography (GC) analysis method.
  • GC gas chromatography
  • the polymeric material may also contain non-solvents (such as alcohols and/or ketones).
  • the non-solvent may be a non-solvent for the PVC.
  • Such a non-solvent may exist in the material by applying the non-solvent in a regeneration process described later.
  • the non-solvent content may be, for example, about 500 ppm or less, and the ratio may be 10 ppm or more in another example. Specific types of the non-solvent are as described above.
  • the content of the non-solvent in the polymer material can be obtained by a known gas chromatography (GC) analysis method.
  • GC gas chromatography
  • the polymeric material may also further comprise fatty acids or salts of said fatty acids.
  • the fatty acid or salt thereof may be a by-product of the heavy metal removal process described above.
  • a specific example of the fatty acid is not particularly limited, and may be, for example, oleic acid or stearic acid.
  • the polymeric material may also include chlorinated poly(ethylene) (CPE). This component may be present when the recycled PVC is derived from waste windows.
  • CPE chlorinated poly(ethylene)
  • the polymeric material may also include a phthalate compound.
  • phthalate compound are derived from materials commonly added to PVC as plasticizers.
  • Specific examples of the phthalate compound include di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di- (ethylhexyl) phthalate (DEHP), and Di-n-butyl phthalate (DOP).
  • DIBP di-iso-butyl phthalate
  • DBP di-n-butyl phthalate
  • BBP butyl benzyl phthalate
  • DEHP di- (ethylhexyl) phthalate
  • DOP Di-n-butyl phthalate
  • -Octyl phthalate DINP
  • DIDP Di-isodecyl phthalate
  • the ratio of the phthalate compound in the material may be about 500 ppm or less, 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, or 100 ppm or less. . Since the phthalate compound may not be present in the material, the content is greater than or equal to 0 ppm, greater than 0 ppm, greater than 1 ppm, greater than 2 ppm, greater than 3 ppm, greater than 4 ppm, greater than 5 ppm, greater than 6 ppm, greater than 7 ppm. , 8 ppm or more, 9 ppm or more, or 10 ppm or more.
  • the content of the phthalate compound may be measured by GC-MS (Gas Chromatography Mass Spectrometry), for example, using Agilent's 7890B (GC) and 5977B (MS) instruments.
  • the recycled PVC material may include aluminum.
  • This aluminum may be derived from a heavy metal scavenger applied during the manufacturing process (recycling process) of the recycled PVC material of the present application.
  • a heavy metal scavenger applied during the manufacturing process (recycling process) of the recycled PVC material of the present application.
  • PAC poly aluminum chloride
  • aluminum included in the recycled PVC material may be derived from PAC, which is a heavy metal removal agent described below, and specifically, may be derived from PAC represented by Chemical Formula 1 below.
  • the aluminum content in the recycled PVC material of the present application may vary depending on the amount of the heavy metal removal agent applied in the recycling process, but is usually about 1000 ppm or less, 950 ppm or less, 900 ppm or less, 850 ppm or less, 800 ppm 750 ppm or less, 700 ppm or less, 650 ppm or less, 600 ppm or less, 550 ppm or less, 500 ppm or less, 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, or 200 ppm or less , or may be greater than 0 ppm, greater than 50 ppm, greater than 100 ppm, greater than 150 ppm, greater than 200 ppm, greater than 250 ppm, or greater than 300 ppm.
  • the aluminum content can be measured by acid decomposition of the sample with Microwave equipment (Preekem's TOPEX) and ICP-OES equipment (Agilent's Technologies 5110). Details of the relevant measurement methods are summarized in the Examples section.
  • the polymer material may also include components such as charcoal (CaCO 3 ) and TiO 2 . These components may be mainly included in the material applied to the regeneration when the material is a waste window and when the material is not subjected to the filtering process. Since these materials are components necessary for the manufacture of windows and doors, the polymer material containing them can be applied to the manufacture of windows and doors.
  • the content of components such as carbon (CaCO 3 ) and TiO 2 is not particularly limited, and is, for example, 10 wt% or less, 9 wt% or less, 8 wt% or less, 7 wt% or less, 6 wt% or less, or It may contain less than 5% by weight.
  • the ratio may be about 0.1% by weight or more or about 1% by weight or more in another example.
  • thermogravimetric analysis The analysis can be performed, for example, using a TGA/DSC 3+ instrument from Mettler Toledo, and the temperature range from 30 °C to 1,000 °C under a nitrogen (N 2 ) atmosphere at a heating rate of 10 °C/min. It can be done by heating it up.
  • the content of charcoal or the like can also be confirmed through the above-mentioned inductively coupled plasma emission spectrometry (ICP-OES).
  • ICP-OES inductively coupled plasma emission spectrometry
  • This analysis can be performed, for example, using Agilent's 5110 Series, and can be performed through a so-called waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
  • the recycled PVC material may exhibit color properties equivalent to PVC before use.
  • the recycled PVC material may have a b value of 6.5 or less in CIE Lab color coordinates.
  • the b value is 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, 5 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, 4.5 or less, 4.4 or less, 4.3 or less, 4.2 or less, 4.1 or less, 4 or less, 3.9 or less, 3.8 or less, 3.7 or less, or 3.6 or less, or 1 or more, 1.1 or more , 1.2+, 1.3+, 1.4+, 1.5+, 1.6+, 1.7+, 1.8+, 1.9+, 2+, 2.1+, 2.2+, 2.3+, 2.4+, 2.5+, 2.6+, 2.7+, 2.8 3 or more
  • the polymer material may have an L value in the range of 70 to 100 in CIE Lab color coordinates.
  • the L value is 72 or more, 74 or more, 76 or more, 78 or more, 80 or more, 82 or more, 84 or more, 86 or more, 88 or more, 90 or more, or 92 or more, 98 or less, 96 or less, 94 or less, or It may be around 93 or less.
  • the polymer material may have an a value of 5 or less in CIE Lab color coordinates.
  • the a value is 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, 4.5 or less, 4.4 or less, 4.3 or less, 4.2 or less, 4.1 or less, 4.0 or less, 3.9 or less, 3.8 or less, 3.7 or less, 3.6 or less, 3.5 3.4 or less, 3.3 or less, 3.2 or less, 3.1 or less, 3.0 or less, 2.9 or less, 2.8 or less, 2.7 or less, 2.6 or less, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less, 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1.0 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less,
  • the recycled PVC material may also satisfy the following relational expression 1.
  • a and b are a and b values of the CIE Lab color coordinates of the recycled PVC material, respectively.
  • (a 2 +b 2 ) 1/2 is 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, 5.0 or less, or 4.9 or less in another example.
  • Satisfaction of the b value, L value, a value, and/or relational expression 1 means that the color characteristics of the recycled PVC are close to those of PVC before use, and the characteristics of PVC that can be easily colored in various colors are maintained.
  • the regeneration method of the present invention it is possible to remove impurities such as heavy metals and leave useful components while minimizing damage to PVC during the regeneration process.
  • impurities such as heavy metals
  • leave useful components while minimizing damage to PVC during the regeneration process.
  • a lot of damage is applied to PVC during the regeneration process of PVC, a relatively large number of double bonds are generated in the material, and these double bonds affect the color characteristics of the material.
  • the method of the present application it is possible to minimize defects such as the double bond generated in the regeneration process, and thus maintain excellent color characteristics of the material as described above.
  • This application also relates to a method for manufacturing recycled PVC material, which manufacturing method may be a method for recycling recycled PVC material from waste.
  • the method for producing recycled PVC of the present application may include mixing waste containing PVC and a treatment agent.
  • the treatment agent may include a good solvent for the PVC.
  • waste of the same type of product as the product to be manufactured using recycled PVC as the waste.
  • recycled PVC is to be applied to the manufacture of windows and doors, discarded windows and doors can be used as the waste.
  • the treatment agent mixed with the waste containing PVC may be a good solvent for the PVC or may contain the good solvent. Therefore, preparing the mixture may be a step of obtaining a mixture containing PVC dissolved in the good solvent.
  • the ratio of the good solvent in the treatment agent can be adjusted to an appropriate range.
  • the treatment agent contains the good solvent in an amount of 50 vol% or more, 55 vol% or more, 60 vol% or more, 65 vol% or more, 70 vol% or more, 75 vol% or more, 80 vol% or more, 85 vol% or more, 90 vol% or more, or 95 vol% or more.
  • the treatment agent may include only the good solvent. Therefore, the upper limit of the proportion of the good solvent in the treatment agent is 100% by volume.
  • the good solvent a ketone or THF (Tetrahydrofuran) may be applied. Therefore, the ratio of the ketone or THF (tetrahydrofuran) in the treatment agent is 50 vol% or more, 55 vol% or more, 60 vol% or more, 65 vol% or more, 70 vol% or more, 75 vol% or more, 80 vol% or more, 85 vol% or more, 90 vol% or more, or 95 vol% or more, and the upper limit thereof may be 100 vol%.
  • ketone that can be applied as a good solvent, for example, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, such as methyl ethyl ketone.
  • a release ketone or a cyclic ketone can be used.
  • the regeneration process can be performed at a relatively low temperature.
  • the cyclic ketone can be easily recovered and reused even when a non-solvent is applied in the recovery process of PVC through the application of the cyclic ketone. Therefore, through the application of the good solvent, the regeneration process can be economical and low energy consumption process.
  • the selection of the good solvent enables other processes of the present application (eg, a phase separation process to be described later) to proceed, or to obtain recycled PVC in a state in which impurities are better removed in conjunction with the other processes make it possible
  • the cyclic ketone may have a molar mass in the range of 70 to 150 g/mol. In another example, the molar mass is 80 g/mol or more, 90 g/mol or more, or 95 g/mol or more, or 140 g/mol or less, 130 g/mol or less, 120 g/mol or less, 110 g/mol or less, or 100 g/mol or less. It may be on the order of g/mol or less.
  • the boiling point of the cyclic ketone may be in the range of 130°C to 200°C.
  • the boiling point is 135 ° C or higher, 140 ° C or higher, 145 ° C or higher or 150 ° C or higher, or 195 ° C or lower, 190 ° C or lower, 185 ° C or lower, 180 ° C or lower, 175 ° C or lower, 170 ° C or lower, 165 ° C or lower.
  • it may be about 160° C. or less.
  • the cyclic ketone may have a water solubility of 15 g/100 mL or less at 20°C.
  • the water solubility is 13 g/100 mL or less, 11 g/100 mL or less, or 9 g/100 mL or less, or 1 g/100 mL or more, 2 g/100 mL or more, 3 g/100 mL or more, 4 g/100 mL or more, or 5 g/100 mL. Or more, 6 g/100 mL or more, 7 g/100 mL or more, or 8 g/100 mL or more.
  • the cyclic ketone may have a vapor pressure in the range of 1 to 10 mmHg at 20 °C.
  • the vapor pressure may be 2 mmHg or more, 3 mmHg or more, or 4 mmHg or more, or 9 mmHg or less, 8 mmHg or less, 7 mmHg or less, or 6 mmHg or less in another example.
  • cyclic ketone one that satisfies the above characteristics may be appropriately selected and used, and specific examples thereof are not particularly limited.
  • a compound having 3 to 10, 5 to 9, or 5 to 8 carbon atoms forming a ring structure may be used, and for example, cyclohexanone may be used. , but is not limited thereto.
  • the mixing process of the treatment agent and the waste can be performed at a low temperature. That is, through the selection of the above-described good solvent, an efficient PVC dissolution process can be performed even at a relatively low temperature, and subsequent processes can also be effectively performed.
  • the mixing process with the good solvent may proceed at a temperature range of about 10 °C to 100 °C.
  • the temperature range is, in another example, 12 ° C or more, 14 ° C or more, 16 ° C or more, 18 ° C or more or 20 ° C or more, or 95 ° C or less, 90 ° C or less, 85 ° C or less, 80 ° C or less, 75 ° C or less, 70 ° C. It may be 65°C or less, 60°C or less, 55°C or less, 50°C or less, 45°C or less, 40°C or less, 35°C or less, or 30°C or less.
  • the kind of the above-described good solvent is the same as the good solvent included in the above-described PVC material.
  • the amount of the good solvent used in the mixing process is not particularly limited, but for efficient process progress, for example, 100 to 5,000 parts by weight of the good solvent may be mixed with respect to 100 parts by weight of the PVC-containing waste. Therefore, the treatment agent is used in an amount such that the ratio of the good solvent to the waste falls within the above range. Within this range, PVC can be effectively dissolved in a good solvent, and subsequent processes (eg, a heavy metal removal process, a phase separation process, etc.) can also be effectively performed.
  • the mixing ratio of the good solvent is 200 parts by weight or more, 300 parts by weight or more, 400 parts by weight or more, 500 parts by weight or more, 600 parts by weight or more, 700 parts by weight or more, 800 parts by weight or more, 900 parts by weight or more, 1,000 parts by weight or more, 1,500 parts by weight or more, 4,500 parts by weight or less, 4,000 parts by weight or less, 3,500 parts by weight or less, 3000 parts by weight or less, 2500 parts by weight or less, 2000 parts by weight or less, or 1500 parts by weight or less.
  • a PVC recovery step may proceed.
  • This recovering step may, in one example, include inducing phase separation of the mixture; and separating a phase including PVC from the phase-separated mixture.
  • the manufacturing method of the recycled PVC may further include inducing phase separation in the mixture of the waste and the good solvent.
  • the step of inducing phase separation may be performed to obtain a recycled PVC material from which impurities are more efficiently removed.
  • Waste which is a raw material for obtaining recycled PVC, contains various impurities, and some of these impurities (eg, heavy metals, etc.) exist in a phase different from PVC in a phase-separated mixture. Therefore, after inducing phase separation in the mixture, only the phase containing PVC is separated from the separated phases, and PVC is recovered, thereby obtaining a recycled PVC material in which impurities are more effectively removed and useful substances remain.
  • a method of inducing phase separation in the mixture is not particularly limited.
  • the method of inducing the phase separation may be a step of mixing the mixture and an aqueous solvent.
  • aqueous solvent There is no particular limitation on the type of aqueous solvent, and water may be used, for example.
  • the treatment agent used in the preparation of the mixture contains a cyclic ketone or the like as a good solvent, and the cyclic ketone is a substance capable of phase separation from the aqueous solvent. Therefore, the phase separation may be induced by mixing the mixture and the aqueous solvent.
  • aqueous solvents may be mixed with the mixture alone or with other components at appropriate points in the course of the process. For example, if a process of applying a heavy metal scavenger or a non-solvent to be described later is performed in the process of the present application, an aqueous solvent may be added to the mixture together with the heavy metal scavenger and/or the non-solvent. The aqueous solvent may be added only once during the process or divided into several times.
  • the amount of the aqueous solvent is not particularly limited as long as it is selected so as to induce an appropriate phase separation.
  • the aqueous solvent may be applied so that the volume ratio (volume of aqueous solvent/volume of good solvent) of the aqueous solvent and the good solvent (cyclic ketone, etc.) in the treatment agent is in the range of 0.1 to 10.
  • the volume ratio (aqueous solvent volume / good solvent volume) is, in another example, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, or 1 or more, 9 or less, 8 or less, It may be about 7 or less, 6 or less, 5 or less, 4 or less, or 3 or less.
  • the aqueous solvent may be mixed so that about 100 to 3,000 good solvents are present relative to 100 parts by weight of the aqueous solvent.
  • the ratio is 150 parts by weight or more, 200 parts by weight or more, 250 parts by weight or more, 300 parts by weight or more, 350 parts by weight or more, 400 parts by weight or more, 450 parts by weight or more, 500 parts by weight or more, based on 100 parts by weight of the aqueous solvent.
  • the amount of the aqueous solvent may be adjusted to be within the above range.
  • the aqueous solvent may be additionally added separately.
  • the phase separation induction process can also be performed at a low temperature.
  • the phase separation induction process may proceed at a temperature range of about 10 °C to 50 °C.
  • the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
  • a step of separating a phase including PVC from the phase separated mixture may be performed.
  • phase separation is induced by introducing an aqueous component, the mixture is separated into an organic phase and an aqueous phase, and PVC usually exists in the organic phase including cyclic ketones and the like. Accordingly, the organic phase may be separated from the phase-separated mixture following the above step.
  • PVC usually exists in the aqueous phase, it will separate the aqueous phase.
  • the additional process may be a process of drying the PVC-containing phase.
  • PVC in the organic component may be recovered.
  • This drying process may be carried out at a temperature range of about 20 °C to 90 °C or 40 °C to 70 °C, for example.
  • an efficient drying process can be performed within the above range through the use of the specific good solvent described above, thereby effectively regenerating PVC while minimizing or eliminating the damage caused to PVC by high temperature.
  • the duration of the drying process there is no particular limitation on the duration of the drying process, and the desired PVC can be recovered by maintaining the temperature under the temperature for an appropriate time according to the purpose.
  • the additional process may be a process of mixing the PVC-containing phase with a poor solvent for the PVC.
  • the mixing process with the non-solvent may be a mixing process of the PVC-containing phase and the non-solvent, but when the phase separation process is not performed, the mixing process is performed with the waste and the treatment agent (good solvent or good solvent). It may be a process of mixing a mixture of a treatment agent containing) and the non-solvent.
  • the method for producing the recycled PVC may further include mixing the PVC-containing phase and the non-solvent or mixing the mixture of the waste and treatment agent with the non-solvent.
  • the PVC can be precipitated in an organic component or mixture, and the PVC can be recovered, and through this process, recycled PVC of higher purity can be obtained.
  • non-solvent is not particularly limited, but, for example, alcohol, water, or hexane may be used as the non-solvent.
  • a monohydric alcohol having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms (eg, methanol, ethanol, propanol, etc.) is the non-solvent can be used as
  • the absolute value of the difference in boiling point from the cyclic ketone is 40 ° C or more, 45 ° C or more, 50 ° C or more, 55 ° C or more, 60 ° C or more, 65 ° C or more, 70 ° C or more, A non-solvent above 75°C, above 80°C or above 85°C may be applied.
  • the non-solvent one having a boiling point lower than that of the cyclic ketone while the absolute value of the difference in boiling point from the cyclic ketone is within the above range may be used. This non-solvent enables more efficient precipitation of PVC.
  • the cyclic ketone or non-solvent can be effectively recovered from the mixture of the cyclic ketone and the non-solvent, and by reusing the recovered cyclic ketone or non-solvent in the process, it is more economical and , it is possible to proceed with a process of low energy consumption.
  • the absolute value of the difference between the boiling points of the cyclic ketone and the non-solvent is 200 ° C. or less, 180 ° C. °C or less, 120 °C or less, 100 °C or less, or 95 °C or less.
  • the kind of non-solvent described above is the same as the good solvent contained in the above-described PVC material.
  • the amount of the non-solvent to be mixed is not particularly limited as long as suitable PVC can be precipitated.
  • the non-solvent may be mixed in an amount of about 50 to 1000 parts by weight based on 100 parts by weight of the PVC-containing phase.
  • the ratio is 100 parts by weight or more, 150 parts by weight or more, or 200 parts by weight or more, or 900 parts by weight or less, 800 parts by weight or less, 700 parts by weight or less, 600 parts by weight or less, 500 parts by weight or less, 400 parts by weight or less. It may be less than or about 300 parts by weight or less.
  • the non-solvent may be mixed with the PVC-containing phase by itself or mixed with the organic component in a state of being mixed with other components.
  • the non-solvent e.g., alcohol
  • an aqueous solvent e.g., water
  • precipitation may be possible.
  • the phase containing PVC is an organic phase
  • an additional phase separation effect can be obtained by the mixing, and a desired recycled PVC can be obtained more effectively by this effect.
  • the ratio of the non-solvent in the mixture may be adjusted to enable efficient precipitation of PVC.
  • the non-solvent in the mixture is about 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more by weight. % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more or 95% or more.
  • the content of the non-solvent in the mixture may be, for example, less than 100% by weight.
  • the process of mixing the non-solvent with the PVC-containing phase may also be performed at a relatively low temperature.
  • the process of mixing the non-solvent with the PVC-containing phase may be performed at a temperature range of about 10 °C to 50 °C.
  • the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
  • Recycled PVC can be obtained by recovering PVC precipitated by mixing with the non-solvent by an appropriate means. An additional drying process may be performed on such recycled PVC.
  • the manufacturing method may further include a step of removing heavy metals from the mixture of the waste and treatment agent, and the step may be a process of mixing the mixture with a heavy metal removing agent. If the mixing process with such a heavy metal remover proceeds, heavy metals can be effectively removed from waste.
  • the mixing process with the heavy metal removing agent may be performed at an appropriate time in the process of the present application, for example, before the phase separation induction process. In another example, when the heavy metal scavenger is added together with the aqueous solvent as described above, the phase separation induction process and the process of adding the heavy metal scavenger are performed simultaneously.
  • Waste used as a raw material in the production of recycled PVC of the present application may include heavy metals.
  • Heavy metals refer to metals having a relatively high density, atomic weight or large atomic number, among which cadmium or lead is harmful to the human body. Therefore, it is required to remove the harmful heavy metals from recycled PVC as much as possible. Through the step of adding the heavy metal remover, the heavy metal can be removed more efficiently.
  • an acid, a salt and/or a base may be used, or a solution (eg aqueous solution) containing the above components may be used.
  • a solution eg aqueous solution
  • various inorganic salts such as NaCl, poly aluminum chloride (PAC), liquid, iron chloride, aluminum sulfate, magnesium sulfate, and/or acid clay may be used.
  • PAC poly aluminum chloride
  • NaOH or KOH may be used, but is not limited thereto.
  • various organic or inorganic acids are included in the category of acid that can be used as the heavy metal removal agent, and examples thereof include, but are not limited to, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, and/or citric acid.
  • hydrochloric acid nitric acid
  • sulfuric acid acetic acid
  • citric acid a solution containing the same
  • PAC poly aluminum chloride
  • a solution containing the same eg, aqueous solution
  • PAC a known PAC may be used without particular limitation.
  • PAC has a structure represented by Formula 1 below.
  • n is a number in the range of 1 to 5
  • m is a number of 10 or less.
  • n may be 2 or more, 3 or more, 4 or more, or 4.5 or more, or 4 or less, 3 or less, 2 or less, or 1.5 or less in another example.
  • m is, in another example, 0 or more, more than 0, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, 9 or less, 8 or less, It may be 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 or less.
  • the acids for example, those having a pKa in the range of about -10 to 5 can be used.
  • the pKa of the applicable acid is -9 or more, -8 or more, or -7 or more, or 4 or less, 3 or less, 2 or less, 1 or less, 0 or less, -1 or less, -2 or less, -3 or less, It can be -4 or less or -5 or less.
  • Hydrochloric acid may be exemplified as an acid having such a pKa, but the type of applicable acid is not limited thereto.
  • the heavy metal remover may be mixed with the mixture alone as described above, or may be mixed with the mixture in an aqueous solution. When mixed in an aqueous solution state, the mixing may contribute to the phase separation process as described above.
  • the ratio of the heavy metal scavenger in the aqueous solution is not particularly limited.
  • the ratio of the heavy metal scavenger may be adjusted in consideration of the ratio per 1 mole of heavy metal and the phase separation efficiency described below.
  • the ratio in the aqueous solution may be about 5 to 50% by weight.
  • the ratio is 7% by weight or more, 9% by weight or more, 11% by weight or more, 13% by weight or more, or 15% by weight or more, or 45% by weight or less, 40% by weight or less, 35% by weight or less, 30% by weight or less. It may be less than or about 25% by weight or less.
  • the acid aqueous solution may be prepared to have a molar concentration (M) of about 0.1 to about 10.
  • M molar concentration
  • the molar concentration (M) may be 0.3 or more, 0.5 or more, 0.7 or more, or 0.8 or more, or 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less.
  • the amount of the heavy metal remover applied during the mixing is not particularly limited.
  • a heavy metal remover within a range of 0.1 to 50 mol per 1 mol of the heavy metal may be mixed in consideration of the heavy metal content present in the waste.
  • 1 mole of heavy metal contained in waste can be removed by reacting with 1 to 2 moles of heavy metal removal agent, but in practice, the amount of heavy metal removal agent applied according to the solubility of heavy metal removes heavy metal present in waste Even if it is possible, the amount of heavy metals actually removed may be insignificant.
  • the ratio is 0.3 mol or more, 0.5 mol or more, 0.7 mol or more, 0.9 mol or more, 45 mol or less, 40 mol or less, 35 mol or less, 30 mol or less, 25 mol or less, 20 mol or less per 1 mol of heavy metal. , 15 moles or less, 10 moles or less, 8 moles or less, 6 moles or less, or 4 moles or less.
  • an acid when used as the heavy metal removal agent and applied in an aqueous solution, heavy metal removal is possible even in a low acidic aqueous solution, and the heavy metal remover is reduced through the use of a low acidic aqueous solution. Possible adverse effects on recycled PVC can also be minimized.
  • an aqueous solution having a molar concentration (M) of about 0.1 to about 5 may be used as the acidic aqueous solution.
  • the molar concentration (M) may be 0.3 or more, 0.5 or more, 0.7 or more, or 0.8 or more, or 4 or less, 3 or less, or 2 or less in another example.
  • the mixing amount may be such that the heavy metal remover (acid) is mixed in the range of 0.1 to 50 moles per 1 mole of heavy metal contained in the waste. have. More specific details of the range are as described above.
  • the heavy metal remover may be mixed so that the good solvent is present in a weight ratio of about 1 to 2,000 parts by weight in a mixture containing PVC and a good solvent mixed with 100 parts by weight of the heavy metal remover.
  • the ratio of the good solvent is 3 parts by weight or more, 5 parts by weight or more, 7 parts by weight or more, 9 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight or more.
  • 50 parts by weight or more 100 parts by weight or more, 150 parts by weight or more, 200 parts by weight or more, 250 parts by weight or more, 300 parts by weight or more, 350 parts by weight or more, 400 parts by weight or more, 450 parts by weight or more, 500 parts by weight 550 parts by weight or more, 600 parts by weight or more, 650 parts by weight or more, 700 parts by weight or more, 750 parts by weight or more, 800 parts by weight or more, 850 parts by weight or more, 900 parts by weight or more, 950 parts by weight or more, 1000 parts by weight or about 1500 parts by weight or more, 1500 parts by weight or less, 1000 parts by weight or less, 950 parts by weight or less, 900 parts by weight or less, 850 parts by weight or less, 800 parts by weight or less, 750 parts by weight or less, 700 parts by weight or less, 650 600 parts by weight or less, 550 parts by weight or less, 500 parts by weight or less, 450 parts by weight or less, 400 parts by weight or less, 350 parts by weight or less
  • the ratio may be appropriate when the heavy metal scavenger is or is an aqueous solution containing the acid, NaCl and/or PAC.
  • the heavy metal removal process can also be performed at a low temperature, and since heavy metals can be efficiently removed even under such a low temperature process, energy consumption is reduced, and damage to recycled PVC that can be applied under a high temperature process is also reduced. It can be prevented.
  • the heavy metal removal process that is, the mixing process of the mixture of the waste and the good solvent and the heavy metal removal agent may be performed at a temperature range of about 10°C to 50°C.
  • the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
  • the manufacturing process of the present application may also additionally perform a crushing process of the waste.
  • This pulverization process is any process that can be performed using an appropriate pulverization means, and when the pulverization process is performed, the dissolution efficiency of the waste into the treatment agent can be further increased.
  • the point at which the crushing process is performed is not particularly limited, and if it is performed, it may be performed before the mixing process of the waste and the treatment agent.
  • the grinding method is not particularly limited, and a known grinding method may be applied.
  • the manufacturing process of the present application may perform a filtering process if necessary.
  • a filtering process may be performed on a mixture including at least two components selected from the group consisting of the waste, treatment agent, aqueous solvent, heavy metal remover, and non-solvent.
  • This filtering process is an arbitrary process, and if performed, it may be performed, for example, before or after the phase separation induction process, before or after the heavy metal remover input process, and/or before or after the non-solvent input process. .
  • the filtering process is performed, for example, for a mixture of at least the waste and a good solvent or a mixture of a treatment agent containing the good solvent and a non-solvent, or a mixture of a PVC-containing phase and a non-solvent recovered after phase separation. can be performed
  • the filtering step may be performed between the mixing step of the treatment agent and the waste and the mixing step of the heavy metal remover.
  • the mixture of treatment agent and waste may be mixed with the heavy metal removal agent again after once subjected to a filtering process.
  • Components that need to be removed among the components present in the mixture of the treatment agent and the waste may be first filtered out by the filtering process.
  • the method of performing the filtering process is not particularly limited, and, for example, the filtering process may be performed by filtering the mixture with an appropriate filter medium.
  • the filter medium that can be applied in this process, and for example, the filtering is performed using an appropriate mesh, or a filter medium such as magnesium sulfate, aluminum sulfate, silica, celite, or activated carbon is used. Filtering can be exemplified. Also, filtering may be performed by combining two or more of the above-mentioned means.
  • Additional components may be applied in the filtering process.
  • additional components may be used in the filtering process.
  • components such as dichloromethane (DCM), tetrahydrofuran (THF), dichloroethane (DCE), methyl ethyl ketone (MEK), or dimethyl sulfoxide (DMSO) pass through the filter medium together with the mixture to be filtered.
  • DCM dichloromethane
  • DCE dichloroethane
  • MEK methyl ethyl ketone
  • DMSO dimethyl sulfoxide
  • an effective filtering process may be performed by passing these components through the filter medium in a state in which an appropriate amount of these components are mixed with the mixture.
  • the proportions of the components mixed in this process are adjusted according to the purpose and are not particularly limited.
  • components such as dichloromethane (DCM) or tetrahydrofuran (THF) may be used in an amount of about 0.5 to 20 parts by weight or about 5 to 10 parts by weight based on 100 parts by weight of the mixture to be filtered.
  • DCM dichloromethane
  • THF tetrahydrofuran
  • the mixture may also be treated with MgSO 4 .
  • Heavy metals can be removed more efficiently by such a treatment.
  • the treatment with MgSO 4 may be performed together with the filtering process (eg, a method of including the MgSO 4 in a filter medium in the filtering process), or may be performed independently before or after the filtering. Alternatively, the filtering process may not be performed, and only the treatment with MgSO 4 may be performed.
  • the treatment method with the MgSO 4 is not particularly limited, and for example, the treatment may be carried out by removing the MgSO 4 in a known manner after appropriately contacting the MgSO 4 and the mixture by mixing or the like. have.
  • the filtering process and/or the treatment with MgSO 4 can also be performed at a relatively low temperature.
  • the process or treatment may proceed at a temperature range of about 10 °C to 50 °C.
  • the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower or 30 ° C or lower.
  • known additional treatment eg, washing, drying, dehydration, etc.
  • additional treatment eg., washing, drying, dehydration, etc.
  • all processes of the method for manufacturing recycled PVC may be performed at a relatively low temperature.
  • all processes of the method for manufacturing recycled PVC may be performed at a temperature range of about 10° C. to 50° C.
  • the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
  • PVC with excellent physical properties can be effectively recovered even under the relatively low temperature, and the damage that may be applied to PVC during the process is minimized by the process being performed as a low-temperature process, and the required energy consumption can be minimized.
  • This application also relates to a resin molded body comprising the above-described recycled PVC material or a material recycled by the above manufacturing method.
  • the type of the resin molded body is not particularly limited, and may be, for example, a window or door.
  • a method for producing the resin molded body using the polymer material is not particularly limited, and a known method may be applied, and the PVC particles in the resin molded body may be in a particle state or not.
  • the resin molded body may have a b value in the range of 3 to 6 in CIE Lab color coordinates.
  • the b value may be 3.1 or more, 3.2 or more, 3.3 or more, 3.4 or more, 3.5 or more, 3.6 or more, or 3.7 or more, or 5.5 or less, 5 or less, 4.5 or less, or 4 or less.
  • the resin molded body may have an L value in the range of 80 to 100 in CIE Lab color coordinates.
  • the L value may be 82 or more, 84 or more, 86 or more, 88 or more, 90 or more, or 92 or more, or 98 or less, 96 or less, 94 or less, or 93 or less.
  • the resin molded body may have an a value in the range of 0 to 5 in CIE Lab color coordinates.
  • the a value may be 0.2 or more, 0.4 or more, 0.6 or more, or 0.8 or more, or 4 or less, 3 or less, 2 or less, or 1 or less.
  • the resin molded body (eg, window or door) may have a tensile yield strength of 36 MN/m 2 or more.
  • the strength may be, for example, 38 MN/m 2 or more, 40 MN/m 2 or more, or 60 MN/m 2 or less.
  • the resin molded body (eg, window or door) may have a tensile elongation at break of 100% or more.
  • the elongation may be, for example, 120% or more, 140% or more, 160% or more, or 250% or less.
  • the resin molded body may have a Charpy impact value (-10°C) of 4.9 KJ/m 2 or more.
  • the Charpy impact value may be, for example, 6 KJ/m 2 or more, 8 KJ/m 2 or more, or 20 KJ/m 2 or less.
  • the resin molded body (for example, a window or door) may also have a flexural modulus of 1960 MN/m 2 or more.
  • the resin molded body (for example, a window or door) may also have a heat elasticity of 2.5% or less.
  • the resin molded body may also have a Vikat softening temperature of 83°C or higher. In another example, the temperature may be 85° C. or higher or 95° C. or lower.
  • the resin molded body may also have a hardness (HRR) of 85 or more.
  • the hardness may be 90 or more, 95 or more, or 100 or less in another example.
  • the resin molded body may also have a heat/cold elasticity of about 0.2% or less.
  • the elasticity may be 0.15% or less, 0.1% or less, or 0% or more.
  • the tensile yield strength, tensile elongation at break, Lyarpy impact value, flexural modulus, heating elasticity, Vikat softening temperature, hardness, heat and cold cycle elasticity, etc. may be obtained according to specifications.
  • This application is directed to recycled PVC materials and methods for their manufacture.
  • the manufacturing method of recycled PVC in this application may be a method of recycling PVC from waste materials.
  • the present application is to provide a recycled PVC material that is recycled from waste material, has physical properties equivalent to those of PVC material before use, effectively removes unnecessary impurities such as heavy metals, and at the same time beneficial additives remain, and a method for manufacturing the same. can
  • the present application can obtain the recycled PVC material through an economical and environmentally friendly process that consumes little energy.
  • 1 is a SEM (Scanning Electron Microscope) image of PVC particles recovered from waste.
  • the content of heavy metals in the recycled PVC material was confirmed by inductively coupled plasma emission spectrometry (ICP-OES).
  • the analysis was performed using Agilent's measuring device (Agilent's 5110 Series), and was performed according to the waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
  • the heavy metal content is the result of measurement by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, and measuring the heavy metal content. The arithmetic average of the results was taken as the representative value. The amount of the sample to be collected was the amount allowed by the measuring device.
  • the aluminum content in the PVC material was measured using ICP-OES equipment (Technologies 5110 from Agilent) after acid decomposition of the measurement sample using a microwave equipment (TOPEX Microwave from Preekem) to prepare a pretreated sample.
  • Al content was measured according to the following procedure.
  • the Al content is a result measured by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, and measuring the Al content.
  • the arithmetic mean value of was taken as the representative value.
  • the content of the phthalate compound was measured by GC-MS (Gas Chromatography Mass Spectrometry) method. Measurements were performed using Agilent's 7890B (GC) and 5977B (MS) instruments. According to a known measurement method, the sample was dissolved in THF (Tetrahydrofuran), and after reprecipitation using alcohol, the concentration of the phthalate compound was measured.
  • GC-MS Gas Chromatography Mass Spectrometry
  • the content of the phthalate is a result measured by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, measuring the content, and then measuring the result.
  • the arithmetic mean value of was taken as the representative value.
  • the amount of the sample to be collected was the amount allowed by the measuring device.
  • the color coordinates of the PVC material were measured using Spectro-guide gloss S equipment from BYK Gardner.
  • Thermogravimetric analysis of the PVC material was performed using a TGA/DSC 3+ instrument from Mettler Toledo. The measurement was performed while raising the temperature in a temperature range from 30 °C to 1,000 °C at a heating rate of about 10 °C/min under a nitrogen (N 2 ) atmosphere.
  • the content of the good solvent and non-solvent is the result of measurement by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, and taking the same amount of samples from the selected area to measure the content
  • the arithmetic average value of the results measured later was used as the representative value.
  • the amount of the sample to be collected was the amount allowed by the measuring device.
  • Tensile properties (tensile strength, tensile modulus, and tensile elongation) of specimens made of recycled PVC materials were evaluated using a tensile tester (Ametek Lloyd, Irx plus). It was evaluated according to the method (measurement conditions: Gauge Length 30mm, Width 25mm, Thickness 0.3mm).
  • Number average molecular weight (Mn) and weight average molecular weight were measured using GPC (Gel permeation chromatography). Put the recycled PVC material in a vial, and dilute it in tetrahydrofuran (THF) to a concentration of about 0.1% by weight. After that, the standard sample for calibration and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 ⁇ m) and then measured. The analysis program used ChemStation from Agilent technologies, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were obtained by comparing the elution time of the sample with a calibration curve.
  • GPC Gel permeation chromatography
  • Waste windows made of PVC were used as waste, which is a raw material for PVC recycling. Foreign substances such as metal, glass, and adhesives present in the waste windows were first physically removed, and the waste windows from which the foreign substances were removed were firstly pulverized to a size of 2cm ⁇ 2cm with a grinder, and then secondarily pulverized to a size of 3mm ⁇ 3mm.
  • the crushed waste windows were mixed with cyclohexanone (molar mass: about 98.15 g/mol, boiling point: about 155.6°C, water solubility (20°C): about 8.6 g/100mL, vapor pressure (20°C): about 5 mmHg). .
  • the weight ratio of the waste windows and cyclohexanone was about 1:10 (waste windows:cyclohexanone).
  • a mixture was prepared by mixing and stirring the waste windows and cyclohexanone. All of the above processes were performed at room temperature (about 25° C.).
  • the mixture was then mixed with a heavy metal scavenger.
  • a heavy metal removal agent PAC (Poly Aluminum Chloride, manufactured by Samjusa Co., Ltd., 17% product) was used.
  • the PAC was mixed with a 1% by weight aqueous solution of NaCl and used as a heavy metal scavenger.
  • the PAC was mixed with the NaCl aqueous solution in a weight ratio of 10:1 (PAC:NaCl aqueous solution) and used as a heavy metal removing agent.
  • the weight ratio of cyclohexanone and the heavy metal scavenger in the mixture was about 10:1 (cyclohexanone:heavy metal scavenger).
  • the mixture was stirred for about 1 hour and filtered through a sieve.
  • phase separation was performed, the phase-separated aqueous phase was removed, and the organic phase in which PVC was present was recovered.
  • the organic phase was then mixed with ethanol (boiling point: about 78.37° C.), a non-solvent for PVC.
  • the ratio of ethanol mixed in the above was controlled to about 200 to 250 parts by weight based on 100 parts by weight of the organic phase.
  • the integral value of the first peak (the area of the peak found in the range of 4 ppm to 5 ppm) was about 1.00
  • the integral value of the second peak (the area of the peak found in the range of about 1.1 ppm to 1.4 ppm) was about 1.00. area) was about 0.08. Accordingly, the ratio of the integral values (second peak/first peak) is about 0.08.
  • Recycled PVC was obtained in the same manner as in Example 1, except that during the mixing process with the heavy metal scavenger, the weight ratio of cyclohexanone and the heavy metal scavenger in the mixture was about 4:1 (cyclohexanone: heavy metal scavenger). .
  • Recycled PVC was prepared in the same manner as in Example 1, except that aluminum sulfate was used as a heavy metal removal agent.
  • the heavy metal remover (liquid) was mixed, the weight ratio of cyclohexanone and liquid in the mixture was about 7:1 (cyclohexanone:liquid).
  • Mw means the weight average molecular weight
  • Mn means the number average molecular weight
  • Fig. 1 is a SEM photograph of reclaimed PVC particles recovered according to the method of Example 1, and it can be seen from the figure that the obtained reclaimed PVC is in a non-cluster particle state or primary particle state.
  • Specimen A was prepared using the recycled PVC material obtained in Example 1 as a raw resin material, and tensile strength, tensile modulus and elongation of the specimen were evaluated.
  • a stabilizer, CaCO 3 and an additive were mixed with the recycled PVC material (raw resin material) of Example 1 at a weight ratio of 25:1.2:73:0.8 (PVC material:stabilizer:CaCO 3 :additive), and a mixer (Brabender mixer) After kneading at 200 ° C., the kneaded material was press-worked at 200 ° C. to prepare a sheet material.
  • specimen A was prepared by sequentially stacking a white sheet, transfer paper, and a transparent film commonly applied to window production on one side of the plate material.
  • specimen B was prepared using a mixture of the recycled PVC material obtained in Example 1 and general PVC (synthesized PVC rather than recycled PVC) as a raw resin material.
  • a raw resin material was prepared by mixing the recycled PVC material and normal PVC in a weight ratio of 6:4 (recycled PVC material: normal PVC).
  • the stabilizer, CaCO 3 and additives were mixed with the raw resin material in a weight ratio of 25:1.2:73:0.8 (raw resin material:stabilizer:CaCO 3 :additive) in the same way as in the preparation of specimen A, and a mixer (Brabender mixer) ), and then kneaded at 200 ° C., the kneaded material was press-worked at 200 ° C. to prepare a plate having the same size as in specimen A.
  • specimen B was prepared by sequentially stacking a white sheet, a transfer paper, and a transparent film commonly applied to window production on one side of the plate material.
  • Specimen C is a mixture of the recycled PVC material of Example 1 and general PVC (synthesized PVC rather than recycled PVC) in a weight ratio of 1:9 (recycled PVC material: normal PVC) using a material as the raw resin material. It was manufactured in the same way as in the case of specimen B, except for specimen D, in which the general PVC (synthesized PVC, not recycled PVC) applied in specimens B and C was applied as a raw resin material instead of the recycled PVC material of Example 1. Except for the sample was prepared in the same way as in the case of sample A.

Abstract

The present invention relates to a recycled PVC material and a method for manufacturing same. The method for manufacturing recycled PVC according to the present invention may be a method for recycling PVC from waste materials. The present invention may provide: a recycled PVC material recycled from waste materials and having the same physical properties as PVC material that has yet to be used, wherein unnecessary impurities such as heavy metals have been effectively removed from the recycled PVC material while beneficial additives remain; and a method for manufacturing the same. Further, the present invention makes it possible to obtain the recycled PVC material economically by using an eco-friendly process that consumes little energy.

Description

재생 폴리염화비닐 재료Recycled polyvinyl chloride material
본 출원은, 재생 폴리염화비닐 재료 또는 그의 제조 방법에 대한 것이다.This application relates to a recycled polyvinyl chloride material or a manufacturing method thereof.
폐자재로부터 플라스틱을 회수하는 기술의 필요성이 증가하고 있다. 현재까지 플라스틱 회수 기술의 핵심은, 폐자재로부터 원하는 플라스틱을 얼마나 순수하게 회수할 수 있는지, 즉 원하는 성분 외의 다른 불필요한 성분을 얼마나 효과적으로 제거할 수 있는지와 회수된 재생 플라스틱이 사용전 플라스틱과 얼마나 유사한 물성을 가지도록 할 수 있는지 등이였다.The need for technology to recover plastics from waste materials is increasing. The core of plastic recovery technology to date is how purely desired plastic can be recovered from waste materials, that is, how effectively other unnecessary components other than the desired components can be removed, and how similar physical properties of recovered recycled plastic to plastic before use are. It was possible to have a .
폐자재로부터 사용전 플라스틱과 동등한 물성의 플라스틱을 불순물이 없이 회수하는 것이 요구되었다. 재생 플라스틱 회수 기술은 또한 가능한 친환경적이고, 경제적이며, 에너지의 소비가 적은 공정으로 진행될 것이 필요하다.It is required to recover plastics with physical properties equivalent to those of pre-use plastics from waste materials without impurities. Recycling plastic recovery technology also needs to be carried out as an eco-friendly, economical, and low-energy process as possible.
폴리염화비닐(poly(vinyl chloride), 이하, "PVC")계 재료는, 다양한 제품에 넓게 사용되고 있다. 예를 들면 창호, 벽지나 바닥재 등의 건축 자재, 파이프, 자동차 부품, 호스, 채소나 과일의 하우스 재배에 이용되는 농업용 필름 또는 공사용 시트 등의 제조에 PVC계 재료가 이용된다. BACKGROUND OF THE INVENTION Poly(vinyl chloride) (hereinafter referred to as "PVC")-based materials are widely used in various products. For example, PVC-based materials are used to manufacture building materials such as windows, wallpaper, and flooring, pipes, automobile parts, hoses, agricultural films used for house cultivation of vegetables and fruits, or construction sheets.
PVC계 재료가 다양한 분야에서 넓게 사용되는 이유는, PVC가 가소제, 열안정제 또는 충전재 등과 같은 다양한 재료와 잘 섞이는 특성이 있어서 원하는 특성의 부여가 쉽고, 원하는 색으로 착색하는 것이 용이하기 때문이다.The reason why PVC-based materials are widely used in various fields is that PVC has a property of mixing well with various materials such as plasticizers, heat stabilizers, or fillers, so that it is easy to impart desired properties and to easily color in desired colors.
그렇지만, 위와 같이 다양한 재료와 섞이기 쉽고, 착색되기 쉬운 특성은, 반대로 재생 과정에서 순수한 PVC를 불순물 없이 얻는 것을 어렵게 한다. 예를 들어, PVC를 포함하는 폐자재는, 중금속을 포함하고 있는 경우가 있다. 이는 과거 PVC를 포함하는 자재의 적용 시에는 중금속 포함 여부에 대한 제한이 없거나 혹은 현재와 같은 엄격한 기준이 적용되지는 않았기 때문이다. 따라서, PVC를 재생할 때에는, 폐자재에 포함되어 있는 중금속을 효과적으로 제거하는 것이 필요한데, PVC가 이종 재료와 잘 섞이는 특성을 가지기 때문에, 중금속 등의 불순물을 효과적으로 제거하는 것은 쉽지 않은 문제이다.However, the characteristics of being easily mixed with various materials and easily colored as above make it difficult to obtain pure PVC without impurities in the regeneration process. For example, waste materials containing PVC may contain heavy metals. This is because in the past, when applying materials containing PVC, there were no restrictions on whether or not heavy metals were included, or the current strict standards were not applied. Therefore, when PVC is recycled, it is necessary to effectively remove heavy metals contained in waste materials. However, since PVC has a property of being well mixed with other materials, it is not easy to effectively remove impurities such as heavy metals.
한편, PVC는 상기와 같은 다양한 장점을 가지지만, 다소 단단하고, 부서지기 쉽다는 단점을 가지기도 한다.On the other hand, although PVC has various advantages as described above, it also has disadvantages of being rather hard and brittle.
따라서, PVC의 적용 시에는 상기 단점을 보완하기 위해서 PVC 재료를 유연하게 하고, 쉽게 부서지지 않도록 하는 첨가제가 추가될 수 있는데, 이러한 첨가제는, 재생된 PVC 재료 내에 포함되어 있는 것이 유리하다. Therefore, when PVC is applied, additives that make the PVC material flexible and do not break easily may be added to compensate for the above disadvantages, and it is advantageous that these additives are included in the recycled PVC material.
그렇지만, 중금속 등의 불필요한 불순물은 제거하면서도 유익한 첨가제는 잔존시키는 선택적 재생 방법은 현재까지 알려져 있지 않다.However, a selective regeneration method that removes unnecessary impurities such as heavy metals while leaving beneficial additives has not been known to date.
본 출원은 재생 PVC 재료 및 그의 제조 방법에 대한 것이다. 본 출원에서 재생 PVC의 제조 방법은 폐자재로부터 PVC를 재생하는 방법일 수도 있다. This application is directed to recycled PVC materials and methods for their manufacture. The manufacturing method of recycled PVC in this application may be a method of recycling PVC from waste materials.
본 출원은, 폐자재로부터 재생된 것으로서, 사용 전 PVC 재료와 동등한 물성을 가지면서, 중금속 등의 불필요한 불순물은 효과적으로 제거되고, 동시에 유익한 첨가제는, 잔존하고 있는 재생 PVC 재료 및 그 제조 방법을 제공하는 것을 목적으로 한다. The present application, as recycled from waste materials, has physical properties equivalent to those of PVC materials before use, while unnecessary impurities such as heavy metals are effectively removed, and at the same time, beneficial additives remain, providing recycled PVC materials and a method for manufacturing the same. aims to
또한, 본 출원은, 상기 재생 PVC 재료를 경제적이고, 적은 에너지를 소비하는 친환경적인 공정으로 얻을 수 있도록 하는 것을 목적으로 한다.In addition, the present application aims to obtain the recycled PVC material through an economical, environmentally friendly process that consumes little energy.
본 명세서에서 언급하는 물성 중에서 측정 온도 및/또는 압력이 그 물성치에 영향을 미치는 경우에는 특별히 달리 언급하지 않는 한, 해당 물성은 상온 및/또는 상압에서 측정한 물성을 의미한다.Among the physical properties mentioned in this specification, when the measured temperature and/or pressure affect the physical properties, the corresponding physical properties refer to physical properties measured at room temperature and/or normal pressure, unless otherwise specified.
본 출원에서 용어 상온은 가온 및 감온되지 않은 자연 그대로의 온도이며, 예를 들면, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 25℃ 또는 23℃ 정도의 온도를 의미할 수 있다.In this application, the term room temperature refers to a natural temperature that is not heated or cooled, and may mean, for example, any temperature in the range of about 10 ° C to 30 ° C, 25 ° C, or 23 ° C.
본 출원에서 용어 상압은, 특별히 줄이거나 높이지 않은 때의 압력으로서, 보통 대기압과 같은 약 740 mmHg 내지 780 mmHg 정도의 압력의 환경을 의미할 수 있다.In the present application, the term normal pressure is a pressure when not particularly reduced or increased, and may mean a pressure environment of about 740 mmHg to 780 mmHg, such as normal atmospheric pressure.
본 명세서에서 언급하는 물성 중에서 측정 습도가 그 물성치에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 상기 물성은, 측정 온도 및 압력 상태에서 특별히 조절하지 않은 자연 그대로의 습도에서 측정한 물성을 의미한다.Among the physical properties mentioned in this specification, when measured humidity affects the physical properties, unless otherwise specified, the physical properties refer to physical properties measured at natural humidity that is not specially adjusted in the measured temperature and pressure state. do.
본 출원은 재생 PVC 또는 그를 포함하는 재료의 제조 방법에 대한 것이다. 상기 제조 방법은, 일 예시에서 폐기물로부터 PVC를 재생하는 방법일 수 있다.This application is directed to a method for manufacturing recycled PVC or a material comprising the same. The manufacturing method, in one example, may be a method of recycling PVC from waste.
본 명세서에서 용어 재생 PVC는, 폐기물에 포함되어 있던 PVC로서, 재생 공정을 통해 재생된 PVC를 의미할 수 있다. 이 때 상기 재생 공정은 후술하는 본 출원의 재생 공정일 수 있다.In this specification, the term recycled PVC is PVC contained in waste and may refer to PVC recycled through a recycling process. At this time, the regeneration process may be a regeneration process of the present application to be described later.
상기에서 PVC를 포함하는 폐기물의 종류는 특별히 제한되지 않는다. PVC는, 창호 등의 건축 자재나 자동차 부품, 전선, 호스, 채소나 과일의 하우스 재배에 이용되는 농업용 필름 또는 공사용 시트 등을 포함한 다양한 제품의 제조에 적용되고 있다. 따라서, 폐기된 창호 등의 폐기된 건축 자재나 폐기된 자동차 부품, 폐기된 전선, 폐기된 호스, 폐기된 농업용 또는 공사용 시트 등의 폐기물에는 PVC가 포함되어 있고, 이러한 폐기물은 모두 상기 방법의 원료로 사용될 수 있다. 일 예시에서 상기 폐기물은 폐창호일 수 있다.In the above, the type of waste containing PVC is not particularly limited. PVC is applied to the manufacture of various products including building materials such as windows and doors, automobile parts, electric wires, hoses, agricultural films used for house cultivation of vegetables and fruits, or construction sheets. Therefore, wastes such as discarded building materials such as discarded windows, discarded automobile parts, discarded wires, discarded hoses, and discarded agricultural or construction sheets contain PVC, and these wastes are all used as raw materials for the method. can be used In one example, the waste may be a closed window.
PVC를 포함하는 폐기물은, 해당 폐기물이 어떤 제품에서 유래하였는지에 따라서 PVC 외에 포함되어 있는 다른 성분의 종류가 다르지만, 본 출원의 방법을 적용하면, 폐기물이 어떤 제품에서 유래하였는지와 무관하게 효율적으로 PVC를 회수할 수 있다.Wastes containing PVC have different types of other components other than PVC, depending on the product from which the waste is derived. can be recovered
본 명세서에서 용어 재생 PVC 재료는, 상기 재생 PVC 및 다른 물질을 포함하는 재료를 의미할 수 있고, 이는 재생 PVC 조성물 또는 폴리머 재료로도 불리울 수 있다. 상기 재생 PVC 재료에 포함되어 있는 다른 물질은 상기 폐기물에서 유래한 물질일 수 있다.The term recycled PVC material herein may refer to a material comprising the recycled PVC and other materials, which may also be referred to as a recycled PVC composition or a polymer material. Other materials included in the recycled PVC material may be materials derived from the waste.
상기 재생 PVC 재료에서 상기 재생 PVC의 함량은, 약 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상 또는 85 중량% 이상 정도일 수 있으며, 또한 약 100 중량% 미만, 약 95 중량% 이하 또는 약 90 중량% 이하 정도일 수 있다. 일 예시에서 후술하는 상기 재료에 포함될 수 있는 다양한 성분들을 제외한 잔량이 상기 재생 PVC의 함량일 수 있다.The content of the recycled PVC in the recycled PVC material is about 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, or 85% by weight. % or more, and may also be less than about 100% by weight, less than about 95% by weight, or less than about 90% by weight. In one example, the remaining amount excluding various components that may be included in the material to be described later may be the content of the recycled PVC.
상기 재생 PVC의 함량은 1H NMR 분석을 통해 구할 수 있다. 상기 분석은, 예를 들면, 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행할 수 있다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8).The content of the recycled PVC can be obtained through 1 H NMR analysis. The analysis may be performed, for example, using a 400 MHz FT-NMR Spectrometer (model name: AVANCE III HD 400, manufacturer: Bruker Biospin) (measurement conditions: 400 MHz, solvent: THF (tetrahydrofuran) -D8).
특별히 제한되는 것은 아니지만, 상기 재료에서 상기 재생 PVC는 입자 상태로 포함되어 있을 수 있다. 이에 제한되는 것은 아니지만, 상기 폴리머 재료는 분말(powder)상일 수 있다.Although not particularly limited, the recycled PVC in the material may be included in a particle state. Although not limited thereto, the polymer material may be in a powder form.
상기 재생 PVC 재료에서 재생 PVC 입자들, 즉 후술하는 방식으로 재생된 PVC 입자들은, 비클러스터 입자 상태 또는 1차 입자 상태일 수 있다. 상기 비클러스터 입자 상태 또는 1차 입자 상태는, 소위 클러스트 입자 상태 또는 2차 입자 상태와는 다른 개념이고, 복수의 입자들이 응집되어 형성된 입자 상태가 아님을 의미한다.Reclaimed PVC particles in the recycled PVC material, that is, PVC particles regenerated in the manner described below may be in a non-cluster particle state or a primary particle state. The non-cluster particle state or primary particle state is a different concept from the so-called cluster particle state or secondary particle state, and means that it is not a particle state formed by aggregation of a plurality of particles.
이는 본 출원의 방식으로 회수된 PVC 입자들에서 나타나는 특성이며, 사용 전의 PVC에서는 나타나지 않는 특성이다. 즉, 사용 전의 합성된 PVC는, 도 2에 예시적으로 나타난 바와 같이 열역학 법칙에 의해 대략 구형의 복수의 입자가 응집되어 클러스터 또는 2차 입자 상태로 존재하게 되지만, 본 출원의 방식으로 회수된 PVC의 경우, 도 1에 예시적으로 나타난 바와 같이 단일 입자 상태로 존재한다.This is a characteristic that appears in PVC particles recovered by the method of the present application, and is a characteristic that does not appear in PVC before use. That is, the synthesized PVC before use, as exemplarily shown in FIG. 2, a plurality of particles of approximately spherical shape are aggregated and exist in a cluster or secondary particle state by the thermodynamic law, but the PVC recovered by the method of the present application In the case of , as shown exemplarily in FIG. 1 , it exists in a single particle state.
상기 재료에서의 비클러스터 입자 상태 또는 1차 입자 상태의 재생 PVC 입자들은 평균 입경이 50μm 내지 300μm의 범위 내에 있을 수 있다. 상기 평균 입경은 소위 D50 입경으로 불리는 메디안 입경이다. 상기 평균 입경은 다른 예시에서 60 μm 이상, 70 μm 이상, 80 μm 이상, 90 μm 이상 또는 100 μm 이상이거나, 290 μm 이하, 280 μm 이하, 270 μm 이하, 260 μm 이하, 250 μm 이하, 240 μm 이하, 230 μm 이하, 220 μm 이하, 210 μm 이하 또는 200 μm 이하 정도일 수도 있다.The recycled PVC particles in the non-cluster particle state or primary particle state in the material may have an average particle diameter in the range of 50 μm to 300 μm. The average particle diameter is the median particle diameter, so-called D50 particle diameter. In another example, the average particle diameter is 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, or 100 μm or more, or 290 μm or less, 280 μm or less, 270 μm or less, 260 μm or less, 250 μm or less, 240 μm It may be about 230 μm or less, 220 μm or less, 210 μm or less, or 200 μm or less.
상기 재생 PVC 재료는, 상기 재생 PVC 및 다른 물질을 포함할 수 있다. 상기 다른 물질은, 상기 재생 PVC와 같이 폐기물로부터 유래한 물질일 수 있으며, 특히 PVC가 가지는 단점, 예를 들면, 다소 단단하고, 부스러지기 쉬우며, 유연성이 부족한 성질을 보완할 수 있는 재료일 수 있다. 즉, 본 출원의 재생 방법에 따라 재생된 재생 PVC 재료는, 중금속 등과 같은 불순물은 선택적으로 제거되고, 유익한 물질들은 잔존하는 재료일 수 있으며, 이러한 재료는 본 출원의 제조 방법(재생 방법)에 의해 얻을 수 있다.The recycled PVC material may include the recycled PVC and other materials. The other material may be a material derived from waste, such as the recycled PVC, and in particular, it may be a material that can compensate for the disadvantages of PVC, such as being somewhat hard, brittle, and lacking in flexibility. have. That is, the reclaimed PVC material regenerated according to the regeneration method of the present application may be a material in which impurities such as heavy metals are selectively removed and beneficial substances remain. You can get it.
따라서, 일 예시에서 상기 재생 PVC 재료는, 1H NMR 스펙트럼의 4 ppm 내지 5 ppm의 범위에서 제 1 피크와 1 ppm 내지 1.6 ppm의 범위에서 제 2 피크를 나타낼 수 있다. 상기 제 2 피크는 다른 예시에서 약 1 ppm 내지 1.5 ppm 또는 약 1 ppm 내지 1.4 ppm의 범위 내에서 확인할 수 있다. 상기 1H NMR 스펙트럼은, 전술한 재생 PVC의 함량을 확인하기 위한 것과 동일한 1H NMR 분석을 통해 구할 수 있다. 따라서, 상기 분석은, 예를 들면, 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행할 수 있다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8).Accordingly, in one example, the recycled PVC material may exhibit a first peak in the range of 4 ppm to 5 ppm and a second peak in the range of 1 ppm to 1.6 ppm in the 1 H NMR spectrum. The second peak may be identified within a range of about 1 ppm to 1.5 ppm or about 1 ppm to 1.4 ppm in another example. The 1 H NMR spectrum can be obtained through the same 1 H NMR analysis as for confirming the content of the recycled PVC described above. Therefore, the analysis can be performed, for example, using a 400 MHz FT-NMR Spectrometer (model name: AVANCE III HD 400, manufacturer: Bruker Biospin) (measurement condition: 400 MHz, solvent: THF (tetrahydrofuran) -D8 ).
상기 1H NMR 스펙트럼에서 4 ppm 내지 5 ppm의 범위에서 나타나는 제 1 피크는, 재생 PVC에서 유래하는 피크이고, 예를 들면, PVC의 염소와 결합된 탄소 원자의 수소 원자에 의해 유래하는 피크일 수 있다. 또한, 상기 스펙트럼에서 1 ppm 내지 1.5 ppm의 범위에서 나타나는 제 2 피크는, 재생 PVC 재료에 포함되어 있는 물질로서, 상기 재생 PVC 외의 물질이고, PVC의 단점을 보완하여 줄 수 있는 물질로부터 유래한 피크일 수 있다.The first peak appearing in the range of 4 ppm to 5 ppm in the 1 H NMR spectrum is a peak derived from recycled PVC, and may be, for example, a peak derived from a hydrogen atom of a carbon atom bonded to chlorine in PVC. have. In addition, the second peak appearing in the range of 1 ppm to 1.5 ppm in the spectrum is a material included in the recycled PVC material, is a material other than the recycled PVC, and is a peak derived from a material that can compensate for the disadvantages of PVC. can be
도 3은 상기 PVC 재료의 하나의 예시에 대한 1H NMR 분석 결과이다. 도면을 보면, 재생 PVC에 의해 유래되는 피크(①)(제 1 피크)와 함께 상기 다른 물질에서 유래되는 피크(③)(제 2 피크)도 관찰되고 있다. 상기 다른 물질의 구체적인 예는 특별히 제한되지 않으며, 예를 들면, MMA(methyl methacrylate), PMMA(poly(methyl methacrylate)) 및/또는 ABS 수지 등일 수 있다. 도 3에서 2 내지 3 ppm에서 확인되는 피크(②) 역시 재생 PVC에서 유래하는 피크이다.3 is a 1 H NMR analysis result for one example of the PVC material. Referring to the figure, a peak (①) (first peak) derived from recycled PVC and a peak (③) (second peak) derived from other materials are also observed. Specific examples of the other material are not particularly limited, and may be, for example, MMA (methyl methacrylate), PMMA (poly (methyl methacrylate)), and/or ABS resin. The peak (②) identified at 2 to 3 ppm in FIG. 3 is also a peak derived from recycled PVC.
상기 재생 PVC 재료의 1H NMR 스펙트럼에서 제 2 피크의 면적(적분값)의 제 1 피크의 면적(적분값)에 대한 비율(제 2 피크/제 1 피크)은, 약 0.01 내지 0.5의 범위 내에 있을 수 있다. 이러한 비율 하에서 상기 제 2 피크를 도출시키는 물질이 PVC의 단점을 적정하게 보완하여 우수한 물성을 가지는 재생 PVC 재료를 얻을 수 있다.In the 1 H NMR spectrum of the recycled PVC material, the ratio (second peak/first peak) of the area (integral value) of the second peak to the area (integral value) of the first peak is within a range of about 0.01 to 0.5. There may be. Under this ratio, the material that derives the second peak can adequately compensate for the disadvantages of PVC to obtain a recycled PVC material having excellent physical properties.
상기 비율은 다른 예시에서 0.02 이상, 0.03 이상, 0.04 이상, 0.05 이상, 0.06 이상, 0.07 이상 또는 0.08 이상 정도이거나, 0.4 이하, 0.3 이하, 0.2 이하, 0.1 이하 또는 0.09 이하 정도일 수도 있다.In another example, the ratio may be 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, or 0.08 or more, or 0.4 or less, 0.3 or less, 0.2 or less, 0.1 or less, or 0.09 or less.
본 출원에 따른 재생 방식에 의해 상기와 같은 1H-NMR 스펙트럼을 보이는 재료를 제공할 수 있다.A material exhibiting the above 1 H-NMR spectrum can be provided by the regeneration method according to the present application.
상기 PVC 재료는, 중금속을 500 ppm 이하의 비율로 추가로 포함할 수 있다. 본 출원의 방식에 의해서 중금속이 비율이 최소화된 재료를 제공할 수 있다. 상기 중금속의 예에는 납이나 카드뮴 등이 있으나, 이에 제한되지 않는다. 상기 중금속의 비율은 다른 예시에서 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하, 200 ppm 이하, 150 ppm 이하, 100 ppm 이하, 50 ppm 이하, 40ppm 이하, 30 ppm 이하, 20 ppm 이하 또는 10 ppm 이하일 수 있으며, 또한 0ppm 이상, 0 ppm 초과, 1 ppm 이상, 2 ppm 이상, 3 ppm 이상, 4 ppm 이상, 5 ppm 이상, 6 ppm 이상, 7 ppm 이상, 8 ppm 이상, 9 ppm 이상 또는 10 ppm 이상일 수 있다. 즉, 상기 재료는 상기 중금속을 포함하지 않거나, 상기 함량 범위에서 최소량으로 포함할 수 있다. The PVC material may further include heavy metals in an amount of 500 ppm or less. The method of the present application can provide a material with a minimized ratio of heavy metals. Examples of the heavy metal include lead, cadmium, and the like, but are not limited thereto. In another example, the ratio of the heavy metal is 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, 100 ppm or less, 50 ppm or less, 40 ppm or less, 30 ppm or less , less than or equal to 20 ppm or less than or equal to 10 ppm, and also greater than or equal to 0 ppm, greater than 0 ppm, greater than or equal to 1 ppm, greater than or equal to 2 ppm, greater than or equal to 3 ppm, greater than or equal to 4 ppm, greater than or equal to 5 ppm, greater than or equal to 6 ppm, greater than or equal to 7 ppm, greater than or equal to 8 ppm , 9 ppm or more, or 10 ppm or more. That is, the material may not contain the heavy metal or may contain the heavy metal in a minimum amount within the above content range.
상기 중금속 함량은, 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인할 수 있다. 상기 분석은, 예를 들면, Agilent사의 측정 기기(Agilent社, 5110 Series)를 사용하여, 소위 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)을 통해 수행할 수 있다.The heavy metal content can be confirmed through inductively coupled plasma emission spectrometry (ICP-OES). The analysis can be performed, for example, by using a measuring device from Agilent (Agilent, 5110 Series) through a so-called waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
상기 폴리머 재료는 또한 양용매(고리형 케톤 등의 케톤 및/또는 THF(Tetrahydrofuran) 등)를 포함할 수 있다. 상기 양용매는, 상기 PVC에 대한 양용매일 수 있다. 이러한 양용매는, 후술하는 재생 공정에서 상기 양용매가 적용되는 것에 의해 재료 내에 존재할 수 있다. 상기 양용매의 포함 비율은 예를 들면, 약 1,000 ppm 이하일 수 있으며, 상기 비율은 다른 예시에서 10 ppm 이상일 수 있다. 상기 양용매에 대한 구체적인 종류는 후술한다. 상기 폴리머 재료 내의 양용매의 함량은, 공지의 GC(Gas chromatography) 분석 방법으로 구할 수 있다.The polymer material may also contain a good solvent (ketones such as cyclic ketones and/or tetrahydrofuran (THF)). The good solvent may be a good solvent for the PVC. Such a good solvent may exist in the material by applying the good solvent in a regeneration step described later. The content ratio of the good solvent may be, for example, about 1,000 ppm or less, and the ratio may be 10 ppm or more in another example. Specific types of the good solvent will be described later. The content of the good solvent in the polymer material can be obtained by a known gas chromatography (GC) analysis method.
상기 폴리머 재료는 또한 비용매(알코올 및/또는 케톤 등)를 포함할 수 있다. 상기 비용매는, 상기 PVC에 대한 비용매일 수 있다. 이러한 비용매는, 후술하는 재생 공정에서 상기 비용매가 적용되는 것에 의해 재료 내에 존재할 수 있다. 비용매의 포함 비율은 예를 들면, 약 500 ppm 이하일 수 있으며, 상기 비율은 다른 예시에서 10 ppm 이상일 수 있다. 상기 비용매에 대한 구체적인 종류는 전술한 바와 같다. 상기 폴리머 재료 내의 비용매의 함량은, 공지의 GC(Gas chromatography) 분석 방법으로 구할 수 있다.The polymeric material may also contain non-solvents (such as alcohols and/or ketones). The non-solvent may be a non-solvent for the PVC. Such a non-solvent may exist in the material by applying the non-solvent in a regeneration process described later. The non-solvent content may be, for example, about 500 ppm or less, and the ratio may be 10 ppm or more in another example. Specific types of the non-solvent are as described above. The content of the non-solvent in the polymer material can be obtained by a known gas chromatography (GC) analysis method.
상기 폴리머 재료는 또한 지방산 또는 상기 지방산의 염을 추가로 포함할 수 있다. 상기 지방산 또는 그의 염은 전술한 중금속의 제거 과정의 부산물일 수 있다. 상기 지방산의 구체적인 예는 특별한 제한은 없고, 예를 들면, 올레산(oleic acid) 또는 스테아르산(stearic acid) 등일 수 있다.The polymeric material may also further comprise fatty acids or salts of said fatty acids. The fatty acid or salt thereof may be a by-product of the heavy metal removal process described above. A specific example of the fatty acid is not particularly limited, and may be, for example, oleic acid or stearic acid.
상기 폴리머 재료는 또한 염소화 폴리에틸렌(CPE, chlorinated poly(ethylene))을 포함할 수 있다. 이 성분은, 상기 재생 PVC가 폐창호에서 유래한 경우에 존재할 수 있다. The polymeric material may also include chlorinated poly(ethylene) (CPE). This component may be present when the recycled PVC is derived from waste windows.
상기 폴리머 재료는 또한 프탈레이트 화합물을 포함할 수 있다. 이러한 화합물은 통상 PVC에 가소제로서 첨가되는 물질로부터 유래한 것이다. 상기 프탈레이트 화합물의 구체적인 예로는, DIBP(Di-iso-butyl phthalate), DBP(Di-n-butyl phthalate), BBP(Butyl benzyl phthalate), DEHP(Di-(ethylhexyl) phthalate), DOP(Di-n-Octyl phthalate), DINP(Di-isononyl phthalate) 및/또는 DIDP(Di-isodecyl phthalate) 등일 수 있지만, 이에 제한되는 것은 아니다. 상기 프탈레이트 화합물의 재료 내에서의 비율은, 약 500 ppm 이하, 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하, 200 ppm 이하, 150 ppm 이하 또는 100 ppm 이하 정도일 수 있다. 상기 프탈레이트 화합물은, 재료 내에 존재하지 않을 수도 있기 때문에 상기 함량은 0 ppm 이상 또는 0 ppm 초과, 1ppm 이상, 2 ppm 이상, 3 ppm 이상, 4 ppm 이상, 5 ppm 이상, 6 ppm 이상, 7 ppm 이상, 8 ppm 이상, 9 ppm 이상 또는 10 ppm 이상일 수 있다. 상기 프탈레이트 화합물의 함량은, GC-MS(Gas Chromatography Mass Spectrometry) 방식으로 측정할 수 있으며, 예를 들면, Agilent사의 7890B (GC) 및 5977B (MS) 기기를 사용하여 수행할 수 있다.The polymeric material may also include a phthalate compound. These compounds are derived from materials commonly added to PVC as plasticizers. Specific examples of the phthalate compound include di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di- (ethylhexyl) phthalate (DEHP), and Di-n-butyl phthalate (DOP). -Octyl phthalate), DINP (Di-isononyl phthalate) and/or DIDP (Di-isodecyl phthalate), but not limited thereto. The ratio of the phthalate compound in the material may be about 500 ppm or less, 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, or 100 ppm or less. . Since the phthalate compound may not be present in the material, the content is greater than or equal to 0 ppm, greater than 0 ppm, greater than 1 ppm, greater than 2 ppm, greater than 3 ppm, greater than 4 ppm, greater than 5 ppm, greater than 6 ppm, greater than 7 ppm. , 8 ppm or more, 9 ppm or more, or 10 ppm or more. The content of the phthalate compound may be measured by GC-MS (Gas Chromatography Mass Spectrometry), for example, using Agilent's 7890B (GC) and 5977B (MS) instruments.
일 예시에서 상기 재생 PVC 재료는, 알루미늄을 포함할 수 있다. 이러한 알루미늄은, 본 출원의 재생 PVC 재료의 제조 공정(재생 공정) 중 적용되는 중금속 제거제로부터 유래한 것일 수 있다. 본 출원에서 적용될 수 있는 다양한 중금속 제거제 중에서 특히 후술하는 PAC(poly aluminum chloride)은, 중금속 등은 효과적으로 제거하면서, 상기 제 2 피크를 유발하는 유익한 물질들은 재료 내에 효과적으로 잔존시킬 수 있는데, 이러한 PAC가 적용되면, 상기 PAC에서 유래하는 알루미늄이 재료 내에 잔존하게 된다.In one example, the recycled PVC material may include aluminum. This aluminum may be derived from a heavy metal scavenger applied during the manufacturing process (recycling process) of the recycled PVC material of the present application. Among various heavy metal removal agents that can be applied in the present application, poly aluminum chloride (PAC), which will be described later, can effectively remove heavy metals and the like while effectively remaining beneficial substances that cause the second peak in the material. Then, aluminum derived from the PAC remains in the material.
따라서, 상기 재생 PVC 재료에 포함되는 알루미늄은 후술하는 중금속 제거제인 PAC에서 유래하는 것일 수 있으며, 구체적으로는 하기 화학식 1의 PAC에서 유래한 것일 수 있다.Therefore, aluminum included in the recycled PVC material may be derived from PAC, which is a heavy metal removal agent described below, and specifically, may be derived from PAC represented by Chemical Formula 1 below.
본 출원의 재생 PVC 재료 내에서 상기 알루미늄의 함량은, 재생 과정에서 적용되는 중금속 제거제의 양에 따라 변화될 수 있지만, 통상 약 1000 ppm 이하, 950 ppm 이하, 900 ppm 이하, 850 ppm 이하, 800 ppm 이하, 750 ppm 이하, 700 ppm 이하, 650 ppm 이하, 600 ppm 이하, 550 ppm 이하, 500 ppm 이하, 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하 또는 200 ppm 이하 정도이거나, 0 ppm 초과, 50 ppm 이상, 100 ppm 이상, 150 ppm 이상, 200 ppm 이상, 250 ppm 이상 또는 300 ppm 이상 정도일 수 있다.The aluminum content in the recycled PVC material of the present application may vary depending on the amount of the heavy metal removal agent applied in the recycling process, but is usually about 1000 ppm or less, 950 ppm or less, 900 ppm or less, 850 ppm or less, 800 ppm 750 ppm or less, 700 ppm or less, 650 ppm or less, 600 ppm or less, 550 ppm or less, 500 ppm or less, 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, or 200 ppm or less , or may be greater than 0 ppm, greater than 50 ppm, greater than 100 ppm, greater than 150 ppm, greater than 200 ppm, greater than 250 ppm, or greater than 300 ppm.
상기와 같은 수준의 알루미늄이 잔존하도록 중금속 제거제를 사용하는 것에 의해 목적하는 특성의 재생 PVC 재료를 제공할 수 있다.By using a heavy metal removal agent so that the aluminum of the above level remains, it is possible to provide a recycled PVC material with desired characteristics.
상기 알루미늄 함량은, 시료를 Microwave 장비(Preekem社 TOPEX)로 산 분해하고, ICP-OES 장비(Agilent社 Technologies 5110)를 사용하여 측정할 수 있다. 관련 측정 방법의 세부적인 사항은 실시예 항목에 정리되어 있다.The aluminum content can be measured by acid decomposition of the sample with Microwave equipment (Preekem's TOPEX) and ICP-OES equipment (Agilent's Technologies 5110). Details of the relevant measurement methods are summarized in the Examples section.
상기 폴리머 재료는 또한 탄석(CaCO3)과 TiO2 등의 성분을 포함할 수 있다. 이러한 성분들은 주로 상기 재생에 적용된 재료가 폐창호인 경우, 그리고 상기 필터링 공정을 거치지 않은 경우에 주로 상기 재료에 포함될 수 있다. 이러한 재료는 창호 등의 제조에 필요한 성분이어서, 이를 포함하는 폴리머 재료는 창호 등의 제조에 적용될 수 있다. 상기 탄석(CaCO3)과 TiO2 등의 성분 등의 함량은 특별한 제한은 없으며, 예를 들면, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하 또는 5 중량% 이하로 포함할 수 있다. 상기 비율은 다른 예시에서 약 0.1 중량% 이상 또는 약 1 중량% 이상 정도일 수 있다.The polymer material may also include components such as charcoal (CaCO 3 ) and TiO 2 . These components may be mainly included in the material applied to the regeneration when the material is a waste window and when the material is not subjected to the filtering process. Since these materials are components necessary for the manufacture of windows and doors, the polymer material containing them can be applied to the manufacture of windows and doors. The content of components such as carbon (CaCO 3 ) and TiO 2 is not particularly limited, and is, for example, 10 wt% or less, 9 wt% or less, 8 wt% or less, 7 wt% or less, 6 wt% or less, or It may contain less than 5% by weight. The ratio may be about 0.1% by weight or more or about 1% by weight or more in another example.
상기 탄석 등의 함량은, 열중량분석 방법(TGA)으로 확인할 수 있다. 상기 분석은, 예를 들면, Mettler Toledo사의 TGA/DSC 3+ 기기를 사용하여 수행할 수 있으며, 질소(N2) 분위기 하에서 30℃에서 1,000℃까지의 온도 구간을 10℃/분의 승온 속도로 승온시켜서 수행할 수 있다.The content of charcoal or the like can be confirmed by thermogravimetric analysis (TGA). The analysis can be performed, for example, using a TGA/DSC 3+ instrument from Mettler Toledo, and the temperature range from 30 °C to 1,000 °C under a nitrogen (N 2 ) atmosphere at a heating rate of 10 °C/min. It can be done by heating it up.
상기 탄석 등의 함량은 또한 상기 언급한 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인할 수 있다. 이러한 분석은, 예를 들면, Agilent사의 Agilent社, 5110 Series를 사용하여 수행할 수 있으며, 소위 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)을 통해 수행할 수 있다.The content of charcoal or the like can also be confirmed through the above-mentioned inductively coupled plasma emission spectrometry (ICP-OES). This analysis can be performed, for example, using Agilent's 5110 Series, and can be performed through a so-called waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
상기 재생 PVC 재료는, 사용 전 PVC와 동등한 색 특성을 나타낼 수 있다.The recycled PVC material may exhibit color properties equivalent to PVC before use.
예를 들면, 상기 재생 PVC 재료는, CIE Lab 색좌표에서 b값이 6.5 이하일 수 있다. 상기 b값은 다른 예시에서 6.4 이하, 6.3 이하, 6.2 이하, 6.1 이하, 6.0 이하, 5.9 이하, 5.8 이하, 5.7 이하, 5.6 이하, 5.5 이하, 5.4 이하, 5.3 이하, 5.2 이하, 5.1 이하, 5 이하, 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4 이하, 3.9 이하, 3.8 이하, 3.7 이하 또는 3.6 이하이거나, 1 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상, 1.9 이상, 2 이상, 2.1 이상, 2.2 이상, 2.3 이상, 2.4 이상, 2.5 이상, 2.6 이상, 2.7 이상, 2.8 이상, 2.9 이상, 3 이상, 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상, 3.7 이상, 3.8 이상, 3.9 이상, 4.0 이상, 4.1 이상, 4.2 이상, 4.3 이상, 4.4 이상, 4.5 이상, 4.6 이상, 4.7 이상, 4.8 이상, 4.9 이상, 5.0 이상, 5.1 이상, 5.2 이상, 5.3 이상 또는 5.4 이상 정도일 수도 있다.For example, the recycled PVC material may have a b value of 6.5 or less in CIE Lab color coordinates. In another example, the b value is 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less, 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, 5 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, 4.5 or less, 4.4 or less, 4.3 or less, 4.2 or less, 4.1 or less, 4 or less, 3.9 or less, 3.8 or less, 3.7 or less, or 3.6 or less, or 1 or more, 1.1 or more , 1.2+, 1.3+, 1.4+, 1.5+, 1.6+, 1.7+, 1.8+, 1.9+, 2+, 2.1+, 2.2+, 2.3+, 2.4+, 2.5+, 2.6+, 2.7+, 2.8 3 or more, 2.9 or more, 3 or more, 3.1 or more, 3.2 or more, 3.3 or more, 3.4 or more, 3.5 or more, 3.6 or more, 3.7 or more, 3.8 or more, 3.9 or more, 4.0 or more, 4.1 or more, 4.2 or more, 4.3 or more, 4.4 or more, It may be about 4.5 or more, 4.6 or more, 4.7 or more, 4.8 or more, 4.9 or more, 5.0 or more, 5.1 or more, 5.2 or more, 5.3 or more, or 5.4 or more.
상기 폴리머 재료는, CIE Lab 색좌표에서 L값이 70 내지 100의 범위 내에 있을 수 있다. 상기 L값은 다른 예시에서 72 이상, 74 이상, 76 이상, 78 이상, 80 이상, 82 이상, 84 이상, 86 이상, 88 이상, 90 이상 또는 92 이상이거나, 98 이하, 96 이하, 94 이하 또는 93 이하 정도일 수도 있다.The polymer material may have an L value in the range of 70 to 100 in CIE Lab color coordinates. In another example, the L value is 72 or more, 74 or more, 76 or more, 78 or more, 80 or more, 82 or more, 84 or more, 86 or more, 88 or more, 90 or more, or 92 or more, 98 or less, 96 or less, 94 or less, or It may be around 93 or less.
상기 폴리머 재료는, CIE Lab 색좌표에서 a값이 5 이하일 수 있다. 상기 a값은 다른 예시에서 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4.0 이하, 3.9 이하, 3.8 이하, 3.7 이하, 3.6 이하, 3.5 이하, 3.4 이하, 3.3 이하, 3.2 이하, 3.1 이하, 3.0 이하, 2.9 이하, 2.8 이하, 2.7 이하, 2.6 이하, 2.5 이하, 2.4 이하, 2.3 이하, 2.2 이하, 2.1 이하, 2.0 이하, 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 1.0 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 0.5 이하, 0.4 이하, 0.3 이하, 0.2 이하, 0.1 이하 또는 0.0 이하이거나, -2 이상, -1.8 이상, -1.6 이상, -1.4 이상, -1.2 이상, -1.0 이상, -0.8 이상, -0.6 이상, -0.4 이상, -0.2 이상, 0.0 이상, 0.5 이상, 1 이상 또는 1.5 이상 정도일 수도 있다.The polymer material may have an a value of 5 or less in CIE Lab color coordinates. In another example, the a value is 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, 4.5 or less, 4.4 or less, 4.3 or less, 4.2 or less, 4.1 or less, 4.0 or less, 3.9 or less, 3.8 or less, 3.7 or less, 3.6 or less, 3.5 3.4 or less, 3.3 or less, 3.2 or less, 3.1 or less, 3.0 or less, 2.9 or less, 2.8 or less, 2.7 or less, 2.6 or less, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less, 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1.0 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less , less than 0.1 or less than 0.0, or greater than -2, greater than -1.8, greater than -1.6, greater than -1.4, greater than -1.2, greater than -1.0, greater than -0.8, greater than -0.6, greater than -0.4, greater than -0.2, greater than 0.0 , may be about 0.5 or more, 1 or more, or 1.5 or more.
상기 재생 PVC 재료는 또한 하기 관계식 1을 만족할 수 있다.The recycled PVC material may also satisfy the following relational expression 1.
[관계식 1][Relationship 1]
(a2+b2)1/2 ≤ 6(a 2 + b 2 ) 1/2 ≤ 6
관계식 1에서 a 및 b는 각각 상기 재생 PVC 재료의 CIE Lab 색좌표의 a값 및 b값이다.In relational expression 1, a and b are a and b values of the CIE Lab color coordinates of the recycled PVC material, respectively.
상기 관계식 1에서 (a2+b2)1/2는 다른 예시에서 5.9 이하, 5.8 이하, 5.7 이하, 5.6 이하, 5.5 이하, 5.4 이하, 5.3 이하, 5.2 이하, 5.1 이하, 5.0 이하, 4.9 이하, 4.8 이하, 4.7 이하, 4.6 이하, 4.5 이하, 4.4 이하, 4.3 이하, 4.2 이하, 4.1 이하, 4.0 이하, 3.9 이하, 3.8 이하, 3.7 이하, 3.6 이하, 3.5 이하, 3.4 이하, 3.3 이하, 3.2 이하, 3.1 이하 또는 3.0 이하일 수 있고, 또한 1 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상, 1.9 이상, 2 이상, 2.1 이상, 2.2 이상, 2.3 이상, 2.4 이상, 2.5 이상, 2.6 이상, 2.7 이상, 2.8 이상, 2.9 이상, 3 이상, 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상, 3.7 이상, 3.8 이상, 3.9 이상, 4 이상, 4.1 이상, 4.2 이상, 4.3 이상, 4.4 이상, 4.5 이상, 4.6 이상, 4.7 이상, 4.8 이상, 4.9 이상, 5 이상, 5.1 이상, 5.2 이상, 5.3 이상, 5.4 이상, 5.5 이상, 5.6 이상, 5.7 이상, 5.8 이상 또는 5.9 이상 정도일 수도 있다.In the above relational expression 1, (a 2 +b 2 ) 1/2 is 5.9 or less, 5.8 or less, 5.7 or less, 5.6 or less, 5.5 or less, 5.4 or less, 5.3 or less, 5.2 or less, 5.1 or less, 5.0 or less, or 4.9 or less in another example. , 4.8 or less, 4.7 or less, 4.6 or less, 4.5 or less, 4.4 or less, 4.3 or less, 4.2 or less, 4.1 or less, 4.0 or less, 3.9 or less, 3.8 or less, 3.7 or less, 3.6 or less, 3.5 or less, 3.4 or less, 3.3 or less, 3.2 1 or more, 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, 1.9 or more, 2 or more, 2.1 or more, 2.2 or more, 2.3+, 2.4+, 2.5+, 2.6+, 2.7+, 2.8+, 2.9+, 3+, 3.1+, 3.2+, 3.3+, 3.4+, 3.5+, 3.6+, 3.7+, 3.8+, 3.9+ , 4+, 4.1+, 4.2+, 4.3+, 4.4+, 4.5+, 4.6+, 4.7+, 4.8+, 4.9+, 5+, 5.1+, 5.2+, 5.3+, 5.4+, 5.5+, 5.6 or higher, 5.7 or higher, 5.8 or higher, or 5.9 or higher.
상기 b값, L값, a값 및/또는 관계식 1의 충족은 재생 PVC의 색특성이 사용 전 PVC에 가까우며, 다양한 색으로의 착색이 용이한 PVC의 특성을 유지하고 있다는 점을 의미한다. Satisfaction of the b value, L value, a value, and/or relational expression 1 means that the color characteristics of the recycled PVC are close to those of PVC before use, and the characteristics of PVC that can be easily colored in various colors are maintained.
이러한 우수한 색 특성은, 본 출원에 따른 방법에 의해 얻어지는 재생 PVC의 고유의 특성이다.These excellent color properties are inherent in the recycled PVC obtained by the method according to the present application.
즉, 본 발명의 재생 방법에 의하면, 재생 과정에서 PVC에 가해지는 손상(damage)을 최소화하면서 중금속 등의 불순물의 제거와 유용 성분을 잔존시키는 것이 가능하다. PVC의 재생 과정에서 PVC에 손상이 많이 가해지는 경우에, 재료 내에 이중 결합이 상대적으로 많이 생성되게 되는데, 이러한 이중 결합은 재료의 색 특성에 영향을 주게 된다. 본 출원의 방식에 의하면, 재생 과정에서 생성되는 상기 이중 결합 등의 결함(defect)을 최소화할 수 있고, 따라서 재료의 색 특성을 상기와 같이 우수하게 유지할 수 있다.That is, according to the regeneration method of the present invention, it is possible to remove impurities such as heavy metals and leave useful components while minimizing damage to PVC during the regeneration process. When a lot of damage is applied to PVC during the regeneration process of PVC, a relatively large number of double bonds are generated in the material, and these double bonds affect the color characteristics of the material. According to the method of the present application, it is possible to minimize defects such as the double bond generated in the regeneration process, and thus maintain excellent color characteristics of the material as described above.
본 출원은 또한 재생 PVC 재료의 제조 방법에 대한 것이고, 이 제조 방법은 폐기물로부터 재생 PVC 재료를 재생하는 방법일 수 있다. This application also relates to a method for manufacturing recycled PVC material, which manufacturing method may be a method for recycling recycled PVC material from waste.
후술하는 본 출원의 방식에 의해서 우수한 특성의 재생 PVC 재료를 얻을 수 있다. Recycled PVC material with excellent properties can be obtained by the method of the present application described later.
본 출원의 재생 PVC의 제조 방법은, PVC를 포함하는 폐기물과 처리제를 혼합하는 단계를 포함할 수 있다. 상기 처리제는 상기 PVC에 대한 양용매(good solvent)를 포함할 수 있다.The method for producing recycled PVC of the present application may include mixing waste containing PVC and a treatment agent. The treatment agent may include a good solvent for the PVC.
상기에서 PVC를 포함하는 폐기물의 종류는 전술한 바와 같다.The types of waste containing PVC are as described above.
이에 제한되는 것은 아니지만, 상기 폐기물로는 재생된 PVC를 사용하여 제조하고자 하는 제품과 동종의 제품의 폐기물을 사용하는 것이 유리할 수 있다. 예를 들면, 재생 PVC를 창호의 제조에 적용하고자 한다면, 상기 폐기물로도 폐기된 창호 등을 사용할 수 있다.Although not limited thereto, it may be advantageous to use waste of the same type of product as the product to be manufactured using recycled PVC as the waste. For example, if recycled PVC is to be applied to the manufacture of windows and doors, discarded windows and doors can be used as the waste.
상기에서 PVC를 포함하는 폐기물과 혼합되는 처리제는, 상기 PVC에 대한 양용매(good solvent)이거나, 상기 양용매를 포함하는 것일 수 있다. 따라서, 상기 혼합물을 제조하는 단계는, 상기 양용매에 용해된 PVC를 포함하는 혼합물을 얻는 단계일 수 있다.The treatment agent mixed with the waste containing PVC may be a good solvent for the PVC or may contain the good solvent. Therefore, preparing the mixture may be a step of obtaining a mixture containing PVC dissolved in the good solvent.
처리제가 양용매를 포함하는 경우에, 처리제 내의 양용매의 비율은 적정 범위로 조절될 수 있다. 예를 들면, 상기 처리제는, 상기 양용매를 50 부피% 이상, 55 부피% 이상, 60 부피% 이상, 65 부피% 이상, 70 부피% 이상, 75 부피% 이상, 80 부피% 이상, 85 부피% 이상, 90 부피% 이상 또는 95 부피% 이상 포함할 수 있다. 일 예시에서 처리제는 상기 양용매만을 포함할 수 있다. 따라서, 상기 처리제 내의 상기 양용매의 비율의 상한은 100 부피%이다. When the treatment agent contains a good solvent, the ratio of the good solvent in the treatment agent can be adjusted to an appropriate range. For example, the treatment agent contains the good solvent in an amount of 50 vol% or more, 55 vol% or more, 60 vol% or more, 65 vol% or more, 70 vol% or more, 75 vol% or more, 80 vol% or more, 85 vol% or more, 90 vol% or more, or 95 vol% or more. In one example, the treatment agent may include only the good solvent. Therefore, the upper limit of the proportion of the good solvent in the treatment agent is 100% by volume.
본 출원에서는 상기 양용매로서, 케톤 또는 THF(Tetrahydrofuran)을 적용할 수 있다. 따라서, 상기 처리제 내에서의 상기 케톤 또는 THF(tetrahydrofuran)의 비율은 50 부피% 이상, 55 부피% 이상, 60 부피% 이상, 65 부피% 이상, 70 부피% 이상, 75 부피% 이상, 80 부피% 이상, 85 부피% 이상, 90 부피% 이상 또는 95 부피% 이상일 수 있으며, 그 상한은 100 부피%일 수 있다. In the present application, as the good solvent, a ketone or THF (Tetrahydrofuran) may be applied. Therefore, the ratio of the ketone or THF (tetrahydrofuran) in the treatment agent is 50 vol% or more, 55 vol% or more, 60 vol% or more, 65 vol% or more, 70 vol% or more, 75 vol% or more, 80 vol% or more, 85 vol% or more, 90 vol% or more, or 95 vol% or more, and the upper limit thereof may be 100 vol%.
양용매로서 적용될 수 있는 케톤의 종류에는 특별한 제한은 없으며, 예를 들면, 메틸에틸 케톤과 같은 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 비고리형 케톤이나, 고리형 케톤을 사용할 수 있다.There is no particular limitation on the type of ketone that can be applied as a good solvent, for example, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, such as methyl ethyl ketone. A release ketone or a cyclic ketone can be used.
특히 양용매로서 고리형 케톤을 적용함으로써, 재생 공정을 상대적으로 저온에서 진행할 수 있다. 또한, 후술하는 바와 같이 상기 고리형 케톤의 적용을 통해서 PVC의 회수 과정에서 비용매가 적용되는 경우에도 상기 고리형 케톤을 쉽게 회수하여 재사용할 수 있다. 따라서, 상기 양용매의 적용을 통해 재생 공정을 경제적이며, 저에너지 소비 공정으로 할 수 있다. 또한, 상기 양용매의 선택은, 본 출원의 다른 공정(예를 들면, 후술하는 상분리 공정 등)의 진행을 가능하게 하거나 혹은 상기 다른 공정과 연계되어 보다 불순물이 잘 제거된 상태의 재생 PVC를 얻을 수 있게 한다.In particular, by applying a cyclic ketone as a good solvent, the regeneration process can be performed at a relatively low temperature. In addition, as will be described later, the cyclic ketone can be easily recovered and reused even when a non-solvent is applied in the recovery process of PVC through the application of the cyclic ketone. Therefore, through the application of the good solvent, the regeneration process can be economical and low energy consumption process. In addition, the selection of the good solvent enables other processes of the present application (eg, a phase separation process to be described later) to proceed, or to obtain recycled PVC in a state in which impurities are better removed in conjunction with the other processes make it possible
상기 고리형 케톤은 일 예시에서 몰질량(molar mass)이 70 내지 150 g/mol의 범위 내일 수 있다. 상기 몰질량은 다른 예시에서 80g/mol 이상, 90 g/mol 이상 또는 95 g/mol 이상이거나, 140 g/mol 이하, 130 g/mol 이하, 120 g/mol 이하, 110 g/mol 이하 또는 100 g/mol 이하 정도일 수도 있다.In one example, the cyclic ketone may have a molar mass in the range of 70 to 150 g/mol. In another example, the molar mass is 80 g/mol or more, 90 g/mol or more, or 95 g/mol or more, or 140 g/mol or less, 130 g/mol or less, 120 g/mol or less, 110 g/mol or less, or 100 g/mol or less. It may be on the order of g/mol or less.
상기 고리형 케톤은 비점이 130℃ 내지 200℃의 범위 내에 있을 수 있다. 상기 비점은 다른 예시에서 135℃ 이상, 140℃ 이상, 145℃ 이상 또는 150℃ 이상이거나, 195℃ 이하, 190℃ 이하, 185℃ 이하, 180℃ 이하, 175℃ 이하, 170℃ 이하, 165℃ 이하 또는 160℃ 이하 정도일 수도 있다.The boiling point of the cyclic ketone may be in the range of 130°C to 200°C. In another example, the boiling point is 135 ° C or higher, 140 ° C or higher, 145 ° C or higher or 150 ° C or higher, or 195 ° C or lower, 190 ° C or lower, 185 ° C or lower, 180 ° C or lower, 175 ° C or lower, 170 ° C or lower, 165 ° C or lower. Alternatively, it may be about 160° C. or less.
상기 고리형 케톤은, 20℃에서의 수용해도가 15 g/100mL 이하일 수 있다. 상기 수용해도는 다른 예시에서 13g/100mL 이하, 11g/100mL 이하 또는 9g/100mL 이하이거나, 1g/100mL 이상, 2 g/100mL 이상, 3 g/100mL 이상, 4 g/100mL 이상, 5 g/100mL 이상, 6 g/100mL 이상, 7 g/100mL 이상 또는 8 g/100mL 이상 정도일 수도 있다.The cyclic ketone may have a water solubility of 15 g/100 mL or less at 20°C. In another example, the water solubility is 13 g/100 mL or less, 11 g/100 mL or less, or 9 g/100 mL or less, or 1 g/100 mL or more, 2 g/100 mL or more, 3 g/100 mL or more, 4 g/100 mL or more, or 5 g/100 mL. Or more, 6 g/100 mL or more, 7 g/100 mL or more, or 8 g/100 mL or more.
상기 고리형 케톤은 20℃에서의 증기압이 1 내지 10 mmHg의 범위 내에 있을 수 있다. 상기 증기압은 다른 예시에서 2 mmHg 이상, 3 mmHg 이상 또는 4 mmHg 이상이거나, 9 mmHg 이하, 8 mmHg 이하, 7 mmHg 이하 또는 6 mmHg 이하일 수 있다.The cyclic ketone may have a vapor pressure in the range of 1 to 10 mmHg at 20 °C. The vapor pressure may be 2 mmHg or more, 3 mmHg or more, or 4 mmHg or more, or 9 mmHg or less, 8 mmHg or less, 7 mmHg or less, or 6 mmHg or less in another example.
고리형 케톤으로는 상기 특성을 만족하는 것을 적절히 선택 사용할 수 있으며, 그 구체적인 예는 특별히 제한되지 않는다. 예를 들면, 고리형 케톤으로는 고리 구조를 형성하는 탄소 원자의 수가 3 내지 10, 5 내지 9 또는 5 내지 8인 화합물을 사용할 수 있고, 예를 들면, 사이클로헥사논(cyclohexanone)을 사용할 수 있지만, 이에 제한되는 것은 아니다.As the cyclic ketone, one that satisfies the above characteristics may be appropriately selected and used, and specific examples thereof are not particularly limited. For example, as the cyclic ketone, a compound having 3 to 10, 5 to 9, or 5 to 8 carbon atoms forming a ring structure may be used, and for example, cyclohexanone may be used. , but is not limited thereto.
상기 양용매의 선택을 통해서 상기 처리제와 폐기물의 혼합 공정은 저온에서 진행될 수 있다. 즉, 상기 기술한 양용매의 선택을 통해서 상대적으로 저온 하에서도 효율적인 PVC의 용해 공정을 진행할 수 있으며, 후속 공정도 효과적으로 진행될 수 있다. 일 예시에서 상기 양용매와의 혼합 공정은 약 10℃ 내지 100℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 95℃ 이하, 90℃ 이하, 85℃ 이하, 80℃ 이하, 75℃ 이하, 70℃ 이하, 65℃ 이하, 60℃ 이하, 55℃ 이하, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.Through the selection of the good solvent, the mixing process of the treatment agent and the waste can be performed at a low temperature. That is, through the selection of the above-described good solvent, an efficient PVC dissolution process can be performed even at a relatively low temperature, and subsequent processes can also be effectively performed. In one example, the mixing process with the good solvent may proceed at a temperature range of about 10 °C to 100 °C. The temperature range is, in another example, 12 ° C or more, 14 ° C or more, 16 ° C or more, 18 ° C or more or 20 ° C or more, or 95 ° C or less, 90 ° C or less, 85 ° C or less, 80 ° C or less, 75 ° C or less, 70 ° C. It may be 65°C or less, 60°C or less, 55°C or less, 50°C or less, 45°C or less, 40°C or less, 35°C or less, or 30°C or less.
상기 기술한 양용매의 종류는 상기 기술한 PVC 재료에 포함되는 양용매와 동일하다.The kind of the above-described good solvent is the same as the good solvent included in the above-described PVC material.
상기 혼합 공정에서 사용되는 양용매의 양은 특별한 제한은 없으나, 효율적인 공정 진행을 위해서, 예를 들면, 상기 PVC를 포함하는 폐기물 100 중량부 대비 100 내지 5,000 중량부의 양용매가 혼합될 수 있다. 따라서, 처리제는 폐기물에 대한 양용매의 비율이 상기 범위 내가 되는 양으로 사용된다. 이러한 범위 내에서 양용매에 PVC를 효과적으로 용해시킬 수 있으며, 후속 공정(예를 들면, 중금속 제거 공정이나, 상분리 공정 등)도 효과적으로 진행할 수 있다. 상기 양용매의 혼합 비율은 다른 예시에서 200 중량부 이상, 300 중량부 이상, 400 중량부 이상, 500 중량부 이상, 600 중량부 이상, 700 중량부 이상, 800 중량부 이상, 900 중량부 이상, 1,000 중량부 이상 또는 1,500 중량부 이상이거나, 4,500 중량부 이하, 4,000 중량부 이하, 3,500 중량부 이하, 3000 중량부 이하, 2500 중량부 이하, 2000 중량부 이하, 1500 중량부 이하 정도일 수도 있다.The amount of the good solvent used in the mixing process is not particularly limited, but for efficient process progress, for example, 100 to 5,000 parts by weight of the good solvent may be mixed with respect to 100 parts by weight of the PVC-containing waste. Therefore, the treatment agent is used in an amount such that the ratio of the good solvent to the waste falls within the above range. Within this range, PVC can be effectively dissolved in a good solvent, and subsequent processes (eg, a heavy metal removal process, a phase separation process, etc.) can also be effectively performed. In another example, the mixing ratio of the good solvent is 200 parts by weight or more, 300 parts by weight or more, 400 parts by weight or more, 500 parts by weight or more, 600 parts by weight or more, 700 parts by weight or more, 800 parts by weight or more, 900 parts by weight or more, 1,000 parts by weight or more, 1,500 parts by weight or more, 4,500 parts by weight or less, 4,000 parts by weight or less, 3,500 parts by weight or less, 3000 parts by weight or less, 2500 parts by weight or less, 2000 parts by weight or less, or 1500 parts by weight or less.
상기 혼합 공정에 이어서 PVC의 회수 단계가 진행될 수 있다. 이러한 회수 단계는, 일 예시에서 상기 혼합물의 상분리를 유도하는 단계; 및 상기 상분리된 혼합물에서 PVC를 포함하는 상을 분리하는 단계를 포함할 수 있다.Following the mixing process, a PVC recovery step may proceed. This recovering step may, in one example, include inducing phase separation of the mixture; and separating a phase including PVC from the phase-separated mixture.
따라서, 상기 재생 PVC의 제조 방법은, 상기 폐기물과 양용매의 혼합물에서 상분리를 유도하는 단계를 추가로 포함할 수 있다.Therefore, the manufacturing method of the recycled PVC may further include inducing phase separation in the mixture of the waste and the good solvent.
상기 상분리를 유도하는 단계는 보다 불순물이 효율적으로 제거된 재생 PVC 재료를 얻기 위해 수행될 수 있다. 재생 PVC를 얻기 위한 원료인 폐기물은 다양한 불순물을 포함하고 있는데, 이러한 불순물 중 어떤 불순물(예를 들면, 중금속 등)은 상분리된 혼합물 내에서 PVC와는 다른 상에 존재하게 된다. 따라서, 혼합물에 상분리를 유도한 후에 분리된 상들 중 PVC를 포함하는 상만을 따로 분리하고, PVC를 회수함으로써, 보다 불순물이 효과적으로 제거되면서, 유용한 물질이 잔존하는 재생 PVC 재료를 얻을 수 있다.The step of inducing phase separation may be performed to obtain a recycled PVC material from which impurities are more efficiently removed. Waste, which is a raw material for obtaining recycled PVC, contains various impurities, and some of these impurities (eg, heavy metals, etc.) exist in a phase different from PVC in a phase-separated mixture. Therefore, after inducing phase separation in the mixture, only the phase containing PVC is separated from the separated phases, and PVC is recovered, thereby obtaining a recycled PVC material in which impurities are more effectively removed and useful substances remain.
혼합물에 상분리를 유도하는 방식은 특별히 제한되지 않는다. 하나의 예시에서 상기 상분리를 유도하는 방식은, 상기 혼합물과 수성 용매를 혼합하는 단계일 수 있다. 수성 용매의 종류에는 특별한 제한은 없으며, 예를 들면, 물을 사용할 수 있다. 혼합물의 제조에 사용된 처리제는, 양용매로서 고리형 케톤 등을 포함하고, 이러한 고리형 케톤은 수성 용매와 상분리가 가능한 물질이다. 따라서, 상기 혼합물과 수성 용매를 혼합하는 방식으로 상기 상분리를 유도할 수 있다. A method of inducing phase separation in the mixture is not particularly limited. In one example, the method of inducing the phase separation may be a step of mixing the mixture and an aqueous solvent. There is no particular limitation on the type of aqueous solvent, and water may be used, for example. The treatment agent used in the preparation of the mixture contains a cyclic ketone or the like as a good solvent, and the cyclic ketone is a substance capable of phase separation from the aqueous solvent. Therefore, the phase separation may be induced by mixing the mixture and the aqueous solvent.
이러한 수성 용매는, 공정 진행 과정에서 적절한 시점에 단독으로 혼합물과 혼합되거나, 혹은 다른 성분과 함께 혼합될 수 있다. 예를 들어, 본 출원의 공정에서 후술하는 중금속 제거제의 적용 또는 비용매의 적용 공정 등이 수행된다면, 수성 용매는 상기 중금속 제거제 및/또는 비용매와 함께 혼합물에 투입될 수 있다. 수성 용매는 공정 진행 과정에서 1회만 투입되거나, 혹은 여러 번으로 나뉘어 투입될 수도 있다.These aqueous solvents may be mixed with the mixture alone or with other components at appropriate points in the course of the process. For example, if a process of applying a heavy metal scavenger or a non-solvent to be described later is performed in the process of the present application, an aqueous solvent may be added to the mixture together with the heavy metal scavenger and/or the non-solvent. The aqueous solvent may be added only once during the process or divided into several times.
상기 수성 용매(예를 들어, 물)의 양은 적절한 상분리가 유도될 수 있도록 선택된다면 특별히 제한되지 않는다. 통상 상기 수성 용매는 해당 수성 용매와 상기 처리제 내의 양용매(고리형 케톤 등)의 부피 비율(수성 용매 부피/양용매 부피)이 0.1 내지 10의 범위 내가 되도록 적용될 수 있다. 상기 부피 비율(수성 용매 부피/양용매 부피)은 다른 예시에서 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상 또는 1 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하 또는 3 이하 정도일 수도 있다. The amount of the aqueous solvent (eg water) is not particularly limited as long as it is selected so as to induce an appropriate phase separation. In general, the aqueous solvent may be applied so that the volume ratio (volume of aqueous solvent/volume of good solvent) of the aqueous solvent and the good solvent (cyclic ketone, etc.) in the treatment agent is in the range of 0.1 to 10. The volume ratio (aqueous solvent volume / good solvent volume) is, in another example, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, or 1 or more, 9 or less, 8 or less, It may be about 7 or less, 6 or less, 5 or less, 4 or less, or 3 or less.
다른 예시에서 상기 수성 용매는, 상기 수성 용매 100 중량부 대비 약 100 내지 3,000 정도의 양용매가 존재하도록 혼합될 수도 있다. 상기 비율은 상기 수성 용매 100 중량부 대비 150 중량부 이상, 200 중량부 이상, 250 중량부 이상, 300 중량부 이상, 350 중량부 이상, 400 중량부 이상, 450 중량부 이상, 500 중량부 이상, 550 중량부 이상, 600 중량부 이상, 650 중량부 이상, 700 중량부 이상, 750 중량부 이상, 800 중량부 이상, 850 중량부 이상, 900 중량부 이상, 950 중량부 이상 또는 1000 중량부 이상 정도이거나, 2800 중량부 이하, 2600 중량부 이하, 2400 중량부 이하, 2200 중량부 이하, 2000 중량부 이하, 1800 중량부 이하, 1600 중량부 이하, 1400 중량부 이하, 1200 중량부 이하, 1100 중량부 이하 또는 1000 중량부 이하 정도일 수도 있다.In another example, the aqueous solvent may be mixed so that about 100 to 3,000 good solvents are present relative to 100 parts by weight of the aqueous solvent. The ratio is 150 parts by weight or more, 200 parts by weight or more, 250 parts by weight or more, 300 parts by weight or more, 350 parts by weight or more, 400 parts by weight or more, 450 parts by weight or more, 500 parts by weight or more, based on 100 parts by weight of the aqueous solvent. About 550 parts by weight or more, 600 parts by weight or more, 650 parts by weight or more, 700 parts by weight or more, 750 parts by weight or more, 800 parts by weight or more, 850 parts by weight or more, 900 parts by weight or more, 950 parts by weight or more, or 1000 parts by weight or more Or, 2800 parts by weight or less, 2600 parts by weight or less, 2400 parts by weight or less, 2200 parts by weight or less, 2000 parts by weight or less, 1800 parts by weight or less, 1600 parts by weight or less, 1400 parts by weight or less, 1200 parts by weight or less, 1100 parts by weight It may be less than or about 1000 parts by weight or less.
상기 수성 용매가 단독으로 투입되거나, 혹은 중금속 제거제 및/또는 비용매와 혼합된 상태로 사용되는 경우에 수성 용매의 양이 상기 범위 내가 되도록 조절되면 된다. 중금속 제거제 및/또는 비용매와 함께 적용되는 수성 용매의 양이 상분리를 유도하기에는 불충분한 경우에는 수성 용매가 별도로 추가로 투입될 수도 있다.When the aqueous solvent is added alone or used in a mixed state with a heavy metal remover and/or non-solvent, the amount of the aqueous solvent may be adjusted to be within the above range. When the amount of the aqueous solvent applied together with the heavy metal remover and/or the non-solvent is insufficient to induce phase separation, the aqueous solvent may be additionally added separately.
상기 상분리 유도 공정도 저온에서 수행 가능하다. 예를 들면, 상기 상분리 유도 공정은, 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다. The phase separation induction process can also be performed at a low temperature. For example, the phase separation induction process may proceed at a temperature range of about 10 °C to 50 °C. In another example, the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
상기 상분리 단계에 이어서 상분리된 혼합물에서 PVC를 포함하는 상을 분리하는 단계를 수행할 수 있다. 수성 성분의 투입으로 상분리를 유도하면, 혼합물은 유기상과 수성상으로 분리되는데, 통상 PVC는 고리형 케톤 등을 포함하는 유기상 내에 존재하게 된다. 따라서, 상기 단계에 이어서 상분리된 혼합물 중에서 유기상을 분리할 수 있다. 물론 PVC가 수성상에 존재한다면, 수성상을 분리하게 된다.Following the phase separation step, a step of separating a phase including PVC from the phase separated mixture may be performed. When phase separation is induced by introducing an aqueous component, the mixture is separated into an organic phase and an aqueous phase, and PVC usually exists in the organic phase including cyclic ketones and the like. Accordingly, the organic phase may be separated from the phase-separated mixture following the above step. Of course, if PVC is present in the aqueous phase, it will separate the aqueous phase.
PVC를 포함하는 상을 분리한 후에 필요한 경우에 PVC를 회수하기 위한 추가적인 공정이 수행될 수 있다.After separation of the PVC-containing phase, further processing to recover the PVC may be carried out if necessary.
예를 들면, 상기 추가적인 공정은 상기 PVC를 포함하는 상을 건조하는 공정일 수 있다. 상기 건조를 통해서 유기 성분 내의 PVC를 회수할 수 있다. 이러한 건조 공정은, 예를 들면, 약 20℃ 내지 90℃ 또는 40℃ 내지 70℃ 정도의 온도 범위에서 진행할 수 있다. 본 출원에서는 전술한 특정한 양용매의 사용을 통해서 상기 범위 내에서 효율적인 건조 공정을 진행할 수 있으며, 이에 의해서 고온에 의해서 PVC에 가해지는 악영향(Damage)을 최소화하거나 없애면서 효과적으로 PVC를 재생시킬 수 있다.For example, the additional process may be a process of drying the PVC-containing phase. Through the drying, PVC in the organic component may be recovered. This drying process may be carried out at a temperature range of about 20 °C to 90 °C or 40 °C to 70 °C, for example. In the present application, an efficient drying process can be performed within the above range through the use of the specific good solvent described above, thereby effectively regenerating PVC while minimizing or eliminating the damage caused to PVC by high temperature.
상기 건조 공정의 진행 시간에는 특별한 제한은 없고, 목적에 따라서 적정 시간으로 상기 온도 하에서 유지시킴으로써 목적하는 PVC를 회수할 수 있다.There is no particular limitation on the duration of the drying process, and the desired PVC can be recovered by maintaining the temperature under the temperature for an appropriate time according to the purpose.
다른 예시에서 상기 추가적인 공정은 상기 PVC를 포함하는 상을 상기 PVC에 대한 비용매(poor solvent)와 혼합하는 공정일 수 있다. 또한, 이러한 비용매와의 혼합 공정은, 상기 PVC를 포함하는 상과 비용매의 혼합 공정일 수도 있지만, 상기 상분리 공정이 수행되지 않는 경우에 상기 혼합 공정은 상기 폐기물과 처리제(양용매 또는 양용매를 포함하는 처리제)의 혼합물과 상기 비용매를 혼합하는 공정일 수도 있다. In another example, the additional process may be a process of mixing the PVC-containing phase with a poor solvent for the PVC. In addition, the mixing process with the non-solvent may be a mixing process of the PVC-containing phase and the non-solvent, but when the phase separation process is not performed, the mixing process is performed with the waste and the treatment agent (good solvent or good solvent). It may be a process of mixing a mixture of a treatment agent containing) and the non-solvent.
따라서, 상기 재생 PVC의 제조 방법은, 상기 PVC를 포함하는 상과 상기 비용매를 혼합하는 단계 또는 상기 폐기물과 처리제의 혼합물을 상기 비용매와 혼합하는 단계를 추가로 포함할 수 있다.Accordingly, the method for producing the recycled PVC may further include mixing the PVC-containing phase and the non-solvent or mixing the mixture of the waste and treatment agent with the non-solvent.
비용매와의 혼합을 통해서 유기 성분 또는 혼합물 내에서 상기 PVC를 석출시키고, PVC를 회수할 수 있으며, 이 과정을 통해 보다 우수한 순도의 재생 PVC를 얻을 수 있다. Through mixing with a non-solvent, the PVC can be precipitated in an organic component or mixture, and the PVC can be recovered, and through this process, recycled PVC of higher purity can be obtained.
비용매의 종류는 특별한 제한은 없으나, 예를 들면, 상기 비용매로는 알코올, 물 또는 헥산 등이 적용될 수 있다. 특별히 제한되는 것은 아니지만, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 1가 알코올(예를 들면, 메탄올, 에탄올, 프로판올 등)이 상기 비용매로서 사용될 수 있다.The type of non-solvent is not particularly limited, but, for example, alcohol, water, or hexane may be used as the non-solvent. Although not particularly limited, a monohydric alcohol having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms (eg, methanol, ethanol, propanol, etc.) is the non-solvent can be used as
하나의 예시에서 비용매로는, 상기 고리형 케톤과의 비점의 차이의 절대값이 40℃ 이상, 45℃ 이상, 50℃ 이상, 55℃ 이상, 60℃ 이상, 65℃ 이상, 70℃ 이상, 75℃ 이상, 80℃ 이상 또는 85℃ 이상인 비용매가 적용될 수 있다. 비용매로는, 상기 고리형 케톤과의 비점의 차이의 절대값이 상기 범위 내이면서 상기 고리형 케톤 대비 낮은 비점을 가지는 것을 사용할 수 있다. 이러한 비용매는 보다 PVC의 효율적인 석출을 가능하게 한다. 또한, 위와 같은 비점 차이를 가지는 경우, 고리형 케톤과 비용매의 혼합물로부터 고리형 케톤 또는 비용매만을 효과적으로 회수할 수 있고, 이렇게 회수된 고리형 케톤 또는 비용매를 공정에 재사용함으로써, 보다 경제적이며, 저에너지 소비의 공정을 진행할 수 있다. 상기에서 상기 고리형 케톤과 비용매의 비점의 차이의 절대값의 상한에는 특별한 제한은 없으며, 예를 들면, 상기 비점의 차이의 절대값은, 200℃ 이하, 180℃ 이하, 160℃ 이하, 140℃ 이하, 120℃ 이하, 100℃ 이하 또는 95℃ 이하 정도일 수 있다.In one example, as a non-solvent, the absolute value of the difference in boiling point from the cyclic ketone is 40 ° C or more, 45 ° C or more, 50 ° C or more, 55 ° C or more, 60 ° C or more, 65 ° C or more, 70 ° C or more, A non-solvent above 75°C, above 80°C or above 85°C may be applied. As the non-solvent, one having a boiling point lower than that of the cyclic ketone while the absolute value of the difference in boiling point from the cyclic ketone is within the above range may be used. This non-solvent enables more efficient precipitation of PVC. In addition, in the case of having the above boiling point difference, only the cyclic ketone or non-solvent can be effectively recovered from the mixture of the cyclic ketone and the non-solvent, and by reusing the recovered cyclic ketone or non-solvent in the process, it is more economical and , it is possible to proceed with a process of low energy consumption. In the above, there is no particular limitation on the upper limit of the absolute value of the difference between the boiling points of the cyclic ketone and the non-solvent, and for example, the absolute value of the difference in boiling points is 200 ° C. or less, 180 ° C. °C or less, 120 °C or less, 100 °C or less, or 95 °C or less.
상기 기술한 비용매의 종류는 상기 기술한 PVC 재료에 포함되는 양용매와 동일하다.The kind of non-solvent described above is the same as the good solvent contained in the above-described PVC material.
혼합되는 비용매의 양은, 적절한 PVC의 석출이 가능하다면 특별히 제한되는 것은 아니다. 예를 들면, 상기 비용매는, 상기 PVC를 포함하는 상 100 중량부 대비 약 50 내지 1000 중량부의 비율로 혼합될 수 있다. 상기 비율은 다른 예시에서 100 중량부 이상, 150 중량부 이상 또는 200 중량부 이상이거나, 900 중량부 이하, 800 중량부 이하, 700 중량부 이하, 600 중량부 이하, 500 중량부 이하, 400 중량부 이하 또는 300 중량부 이하 정도일 수도 있다.The amount of the non-solvent to be mixed is not particularly limited as long as suitable PVC can be precipitated. For example, the non-solvent may be mixed in an amount of about 50 to 1000 parts by weight based on 100 parts by weight of the PVC-containing phase. In another example, the ratio is 100 parts by weight or more, 150 parts by weight or more, or 200 parts by weight or more, or 900 parts by weight or less, 800 parts by weight or less, 700 parts by weight or less, 600 parts by weight or less, 500 parts by weight or less, 400 parts by weight or less. It may be less than or about 300 parts by weight or less.
상기 비용매는 해당 비용매 단독으로 상기 PVC를 포함하는 상과 혼합되거나, 혹은 다른 성분과 혼합된 상태로 상기 유기 성분과 혼합될 수 있다. 예를 들면, 전술한 바와 같이 상기 비용매(예를 들면, 알코올)는, 수성 용매(예를 들면, 물)와 혼합된 상태로 상기 PVC를 포함하는 상과 혼합될 수 있고, 이에 의해서도 효율적인 PVC의 석출이 가능할 수 있다. 이러한 경우에 PVC를 포함하는 상이 유기상인 경우에 상기 혼합에 의해 추가적인 상분리 효과를 얻을 수 있고, 이러한 효과에 의해 보다 효과적으로 목적하는 재생 PVC를 얻을 수 있다.The non-solvent may be mixed with the PVC-containing phase by itself or mixed with the organic component in a state of being mixed with other components. For example, as described above, the non-solvent (e.g., alcohol) can be mixed with the PVC-containing phase in a mixed state with an aqueous solvent (e.g., water), whereby the PVC is also efficient. precipitation may be possible. In this case, when the phase containing PVC is an organic phase, an additional phase separation effect can be obtained by the mixing, and a desired recycled PVC can be obtained more effectively by this effect.
비용매와 수성 용매의 혼합물이 혼합되는 경우에 상기 혼합물 내에서 비용매의 비율은 효율적인 PVC의 석출이 가능하도록 조절될 수 있다. 예를 들면, 상기 혼합물 내에서 상기 비용매는, 약 20중량% 이상, 25중량% 이상, 30중량% 이상, 35중량% 이상, 40중량% 이상, 45중량% 이상, 50중량% 이상, 55중량% 이상, 60중량% 이상, 65중량% 이상, 70중량% 이상, 75중량% 이상, 80중량% 이상, 85중량% 이상, 90중량% 이상 또는 95중량% 이상 정도의 비율로 존재할 수 있다. 혼합물 내에서 비용매의 함량의 상한에는 제한이 없다. 즉, 전술한 바와 같이 비용매는 수성 용매와 혼합되지 않은 상태로도 적용 가능하기 때문에, 혼합물 내에서의 상기 비용매의 함량은 예를 들면, 100 중량% 미만일 수 있다.When a mixture of a non-solvent and an aqueous solvent is mixed, the ratio of the non-solvent in the mixture may be adjusted to enable efficient precipitation of PVC. For example, the non-solvent in the mixture is about 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more by weight. % or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more or 95% or more. There is no upper limit on the content of the non-solvent in the mixture. That is, since the non-solvent can be applied even without being mixed with the aqueous solvent as described above, the content of the non-solvent in the mixture may be, for example, less than 100% by weight.
상기 비용매와 PVC를 포함하는 상과의 혼합 공정 역시 상대적으로 저온에서 수행될 수 있다. 예를 들면, 상기 비용매와 PVC를 포함하는 상과의 혼합 공정은, 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.The process of mixing the non-solvent with the PVC-containing phase may also be performed at a relatively low temperature. For example, the process of mixing the non-solvent with the PVC-containing phase may be performed at a temperature range of about 10 °C to 50 °C. In another example, the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
상기 비용매와의 혼합에 의해 석출된 PVC를 적정한 수단으로 회수함으로써 재생 PVC를 얻을 수 있다. 이러한 재생 PVC에 대해서는 추가적인 건조 공정 등이 진행될 수도 있다.Recycled PVC can be obtained by recovering PVC precipitated by mixing with the non-solvent by an appropriate means. An additional drying process may be performed on such recycled PVC.
본 출원의 제조 방법에서는 상기 기술한 것에 추가로 다른 공정이 더 진행될 수 있다. In the manufacturing method of the present application, other processes may be further performed in addition to those described above.
예를 들면, 상기 제조 방법은, 상기 폐기물과 처리제의 혼합물로부터 중금속을 제거하는 단계를 추가로 포함할 수 있으며, 상기 단계는, 상기 혼합물을 중금속 제거제와 혼합하는 공정일 수 있다. 이러한 중금속 제거제와의 혼합 공정이 진행된다면, 폐기물로부터 중금속을 효과적으로 제거할 수 있다. 이 중금속 제거제와의 혼합 공정은 본 출원의 공정 진행 과정에서 적정한 시기에 수행될 수 있으며, 예를 들면, 상기 상분리 유도 공정 전에 수행될 수 있다. 다른 예시에서 전술한 바와 같이 중금속 제거제를 수성 용매와 함께 투입하는 경우에는 상기 상분리 유도 공정과 중금속 제거제의 투입 공정은 동시에 수행되게 된다.For example, the manufacturing method may further include a step of removing heavy metals from the mixture of the waste and treatment agent, and the step may be a process of mixing the mixture with a heavy metal removing agent. If the mixing process with such a heavy metal remover proceeds, heavy metals can be effectively removed from waste. The mixing process with the heavy metal removing agent may be performed at an appropriate time in the process of the present application, for example, before the phase separation induction process. In another example, when the heavy metal scavenger is added together with the aqueous solvent as described above, the phase separation induction process and the process of adding the heavy metal scavenger are performed simultaneously.
본 출원의 재생 PVC의 제조에 원료로 사용되는 폐기물은 중금속(heavy metal)을 포함할 수 있다. 중금속은, 공지된 바와 같이 상대적으로 높은 밀도나 원자량 또는 큰 원자 번호를 가지는 금속을 지칭하는데, 이 중에는 카드뮴이나 납 등은 인체에 유해하다. 따라서, 상기 유해 중금속은 재생 PVC로부터 최대한 제거되는 것이 요구된다. 상기 중금속 제거제의 투입 공정을 통해서 상기 중금속을 보다 효율적으로 제거할 수 있다. Waste used as a raw material in the production of recycled PVC of the present application may include heavy metals. Heavy metals, as is well known, refer to metals having a relatively high density, atomic weight or large atomic number, among which cadmium or lead is harmful to the human body. Therefore, it is required to remove the harmful heavy metals from recycled PVC as much as possible. Through the step of adding the heavy metal remover, the heavy metal can be removed more efficiently.
중금속 제거제로는, 예를 들면, 산(acid), 염(salt) 및/또는 염기 등을 사용하거나, 상기 성분을 포함하는 용액(예를 들면 수용액)을 사용할 수 있다. 상기에서 염(salt)으로는, 예를 들면, NaCl, PAC(poly aluminum chloride), 액반, 염화철, 황산 알루미늄, 황산 마그네슘 및/또는 산성 백토 등과 같은 다양한 무기염(다가 무기염 포함) 등을 사용할 수 있으며, 염기로는, NaOH 또는 KOH 등을 사용할 수 있지만, 이에 제한되는 것은 아니다. 또한, 중금속 제거제로서 사용될 수 있는 산(acid)의 범주에도 다양한 유기산 또는 무기산이 포함되고, 예를 들면, 염산, 질산, 황산, 아세트산 및/또는 시트르산 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. PVC의 특성을 손상시키지 않고, 효과적으로 중금속을 제거할 수 있다는 측면에서는 상기 중금속 제거제로서 산, NaCl 및/또는 PAC(poly aluminum chloride) 또는 상기를 포함하는 용액(예를 들면, 수용액)을 사용할 수 있고, 특히 PAC 또는 상기를 포함하는 용액(예를 들면, 수용액)을 사용할 수 있다. As the heavy metal removing agent, for example, an acid, a salt and/or a base may be used, or a solution (eg aqueous solution) containing the above components may be used. In the above, as the salt, various inorganic salts (including polyvalent inorganic salts) such as NaCl, poly aluminum chloride (PAC), liquid, iron chloride, aluminum sulfate, magnesium sulfate, and/or acid clay may be used. And, as the base, NaOH or KOH may be used, but is not limited thereto. In addition, various organic or inorganic acids are included in the category of acid that can be used as the heavy metal removal agent, and examples thereof include, but are not limited to, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, and/or citric acid. In terms of effectively removing heavy metals without damaging the properties of PVC, acid, NaCl and / or poly aluminum chloride (PAC) or a solution containing the same (eg, aqueous solution) may be used as the heavy metal removal agent, , in particular PAC or a solution containing the same (eg aqueous solution) can be used.
PAC로는 특별한 제한 없이 공지의 PAC를 사용할 수 있다. 통상 PAC는 하기 화학식 1의 구조를 가진다.As the PAC, a known PAC may be used without particular limitation. Typically, PAC has a structure represented by Formula 1 below.
[화학식 1][Formula 1]
[Al2(OH)nCl6-n]m [Al 2 (OH) n Cl 6-n ] m
화학식 1에서 n은 1 내지 5의 범위 내의 수이고, m은 10 이하의 수이다.In Formula 1, n is a number in the range of 1 to 5, and m is a number of 10 or less.
화학식 1에서 n은 다른 예시에서 2 이상, 3 이상, 4 이상 또는 4.5 이상이거나, 4 이하, 3 이하, 2 이하 또는 1.5 이하 정도일 수도 있다.In Formula 1, n may be 2 or more, 3 or more, 4 or more, or 4.5 or more, or 4 or less, 3 or less, 2 or less, or 1.5 or less in another example.
또한, 화학식 1에서 m은 다른 예시에서 0 이상, 0 초과, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상 또는 9 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하, 2 이하 또는 1 이하 정도일 수도 있다.In Formula 1, m is, in another example, 0 or more, more than 0, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, 9 or less, 8 or less, It may be 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 or less.
산 중에서는, 예를 들어, pKa가 약 -10 내지 5의 범위 내인 산을 사용할 수 있다. 상기 적용 가능한 산의 pKa는 다른 예시에서 -9 이상, -8 이상 또는 -7 이상이거나, 4 이하, 3 이하, 2 이하, 1 이하, 0 이하, -1 이하, -2 이하, -3 이하, -4 이하 또는 -5 이하일 수 있다. 이러한 pKa를 가지는 산으로는 염산을 예시할 수 있으나, 적용 가능한 산의 종류가 이에 제한되는 것은 아니다.Among the acids, for example, those having a pKa in the range of about -10 to 5 can be used. In another example, the pKa of the applicable acid is -9 or more, -8 or more, or -7 or more, or 4 or less, 3 or less, 2 or less, 1 or less, 0 or less, -1 or less, -2 or less, -3 or less, It can be -4 or less or -5 or less. Hydrochloric acid may be exemplified as an acid having such a pKa, but the type of applicable acid is not limited thereto.
상기 중금속 제거제는, 전술한 바와 같이 단독으로 상기 혼합물과 혼합되거나, 수용액 상태로 상기 혼합물과 혼합될 수 있다. 수용액 상태로 혼합되는 경우에 전술한 바와 같이 상분리 공정에 상기 혼합이 기여할 수 있다.The heavy metal remover may be mixed with the mixture alone as described above, or may be mixed with the mixture in an aqueous solution. When mixed in an aqueous solution state, the mixing may contribute to the phase separation process as described above.
수용액 상태로 중금속 제거제가 사용되는 경우에 상기 수용액 내에서의 중금속 제거제의 비율은 특별히 제한되지 않는다. 예를 들면, 이러한 경우에 상기 중금속 제거제는 후술하는 중금속 1몰 당 비율과 상분리 효율을 고려하여 그 비율이 조절될 수 있다. 예를 들어, 중금속 제거제가 상기 PAC인 경우에, 이는 수용액 내의 비율이 약 5 내지 50 중량% 정도일 수 있다. 상기 비율은 다른 예시에서 7 중량% 이상, 9 중량% 이상, 11 중량% 이상, 13 중량% 이상 또는 15 중량% 이상이거나, 45 중량% 이하, 40 중량% 이하, 35 중량% 이하, 30 중량% 이하 또는 25 중량% 이하 정도일 수도 있다.When the heavy metal scavenger is used in an aqueous solution, the ratio of the heavy metal scavenger in the aqueous solution is not particularly limited. For example, in this case, the ratio of the heavy metal scavenger may be adjusted in consideration of the ratio per 1 mole of heavy metal and the phase separation efficiency described below. For example, when the heavy metal scavenger is the PAC, the ratio in the aqueous solution may be about 5 to 50% by weight. In another example, the ratio is 7% by weight or more, 9% by weight or more, 11% by weight or more, 13% by weight or more, or 15% by weight or more, or 45% by weight or less, 40% by weight or less, 35% by weight or less, 30% by weight or less. It may be less than or about 25% by weight or less.
또한, 상기 중금속 제거제가 산인 경우에 상기 산 수용액은, 약 0.1 내지 10 정도의 몰농도(M)를 가지도록 제조될 수 있다. 상기 몰 농도(M)는 다른 예시에서 0.3 이상, 0.5 이상, 0.7 이상 또는 0.8 이상이거나, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하 또는 2 이하 정도일 수도 있다.In addition, when the heavy metal remover is an acid, the acid aqueous solution may be prepared to have a molar concentration (M) of about 0.1 to about 10. In another example, the molar concentration (M) may be 0.3 or more, 0.5 or more, 0.7 or more, or 0.8 or more, or 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less.
상기 혼합 시에 적용되는 중금속 제거제의 양은 특별히 제한되지 않는다. 예를 들면, 상기 폐기물에 존재하는 중금속의 함량을 고려하여, 해당 중금속 1몰 당 0.1 내지 50몰의 범위 내의 중금속 제거제가 혼합될 수 있다. 이론적으로 폐기물에 포함되어 있는 중금속 1몰은, 1몰 내지 2몰의 중금속 제거제와 반응하여 제거될 수 있지만, 실제적으로는 중금속의 용해능 등에 따라서 적용된 중금속 제거제의 양이 폐기물에 존재하는 중금속을 제거할 수 있는 양이라고 해도 실제 제거되는 중금속의 양은 미미할 수 있다. 그렇지만, 본 출원의 방법에 의하면, 적절한 양용매의 선택을 통해서 저온 공정에서도 폐기물 내에 포함되어 있는 중금속을 상대적으로 적은 양의 중금속 제거제를 통해서도 효과적으로 제거할 수 있고, 이에 따라서 중금속은 효과적으로 제거되면서도 중금속 제거제의 사용으로 인한 물성 저하가 없는 재생 PVC를 얻을 수 있다.The amount of the heavy metal remover applied during the mixing is not particularly limited. For example, a heavy metal remover within a range of 0.1 to 50 mol per 1 mol of the heavy metal may be mixed in consideration of the heavy metal content present in the waste. Theoretically, 1 mole of heavy metal contained in waste can be removed by reacting with 1 to 2 moles of heavy metal removal agent, but in practice, the amount of heavy metal removal agent applied according to the solubility of heavy metal removes heavy metal present in waste Even if it is possible, the amount of heavy metals actually removed may be insignificant. However, according to the method of the present application, it is possible to effectively remove heavy metals contained in the waste even in a low-temperature process through the selection of an appropriate good solvent through a relatively small amount of the heavy metal remover, and accordingly, the heavy metal is effectively removed while the heavy metal remover It is possible to obtain recycled PVC without deterioration of physical properties due to the use of
상기 비율은 다른 예시에서 중금속 1몰 당 0.3몰 이상, 0.5몰 이상, 0.7몰 이상 또는 0.9몰 이상이거나, 45몰 이하, 40몰 이하, 35몰 이하, 30몰 이하, 25몰 이하, 20몰 이하, 15몰 이하, 10몰 이하, 8몰 이하, 6몰 이하 또는 4몰 이하 정도일 수도 있다.In other examples, the ratio is 0.3 mol or more, 0.5 mol or more, 0.7 mol or more, 0.9 mol or more, 45 mol or less, 40 mol or less, 35 mol or less, 30 mol or less, 25 mol or less, 20 mol or less per 1 mol of heavy metal. , 15 moles or less, 10 moles or less, 8 moles or less, 6 moles or less, or 4 moles or less.
예를 들어, 본 출원에서 상기 중금속 제거제로서, 산을 사용하고, 이를 수용액 상태로 적용하는 경우에 저산성 수용액의 상태에서도 효율적인 중금속 제거가 가능하고, 저산성 수용액의 사용을 통해서 상기 중금속 제거제가 줄 수 있는 재생 PVC에게로의 악영향도 최소화할 수 있다. 예를 들어, 본 출원의 방법에서는 상기 산성 수용액으로서, 산의 몰농도(M)가 약 0.1 내지 5 정도의 몰농도(M)를 가지는 수용액을 사용할 수도 있다. 상기 몰 농도(M)는 다른 예시에서 0.3 이상, 0.5 이상, 0.7 이상 또는 0.8 이상이거나, 4 이하, 3 이하 또는 2 이하 정도일 수도 있다. 이와 같은 저산성 수용액이 중금속 제거제로 사용되는 경우에도 그 혼합량은, 폐기물에 포함되어 있는 중금속 1몰 당 0.1 내지 50몰의 범위 내의 중금속 제거제(산(acid))가 혼합되도록 상기 수용액이 혼합될 수 있다. 상기 범위의 보다 구체적인 내용은 전술한 바와 같다.For example, in the present application, when an acid is used as the heavy metal removal agent and applied in an aqueous solution, heavy metal removal is possible even in a low acidic aqueous solution, and the heavy metal remover is reduced through the use of a low acidic aqueous solution. Possible adverse effects on recycled PVC can also be minimized. For example, in the method of the present application, as the acidic aqueous solution, an aqueous solution having a molar concentration (M) of about 0.1 to about 5 may be used. The molar concentration (M) may be 0.3 or more, 0.5 or more, 0.7 or more, or 0.8 or more, or 4 or less, 3 or less, or 2 or less in another example. Even when such a low-acid aqueous solution is used as a heavy metal remover, the mixing amount may be such that the heavy metal remover (acid) is mixed in the range of 0.1 to 50 moles per 1 mole of heavy metal contained in the waste. have. More specific details of the range are as described above.
다른 예시에서 본 출원에서 상기 중금속 제거제는, 상기 중금속 제거제 100 중량부 대비 혼합되는 PVC와 양용매를 포함하는 혼합물에서 상기 양용매가 약 1 내지 2,000 중량부의 중량 비율로 존재하도록 혼합될 수 있다. 상기 비율은 다른 예시에서 상기 양용매의 비율이 3 중량부 이상, 5 중량부 이상, 7 중량부 이상, 9 중량부 이상, 10 중량부 이상, 15 중량부 이상, 20 중량부 이상, 25 중량부 이상, 50 중량부 이상, 100 중량부 이상, 150 중량부 이상, 200 중량부 이상, 250 중량부 이상, 300 중량부 이상, 350 중량부 이상, 400 중량부 이상, 450 중량부 이상, 500 중량부 이상, 550 중량부 이상, 600 중량부 이상, 650 중량부 이상, 700 중량부 이상, 750 중량부 이상, 800 중량부 이상, 850 중량부 이상, 900 중량부 이상, 950 중량부 이상, 1000 중량부 이상 또는 1500 중량부 이상 정도이거나, 1500 중량부 이하, 1000 중량부 이하, 950 중량부 이하, 900 중량부 이하, 850 중량부 이하, 800 중량부 이하, 750 중량부 이하, 700 중량부 이하, 650 중량부 이하, 600 중량부 이하, 550 중량부 이하, 500 중량부 이하, 450 중량부 이하, 400 중량부 이하, 350 중량부 이하, 300 중량부 이하, 250 중량부 이하, 200 중량부 이하, 150 중량부 이하, 100 중량부 이하, 90 중량부 이하, 80 중량부 이하, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 20 중량부 이하 또는 10 중량부 이하 정도일 수도 있다.In another example, in the present application, the heavy metal remover may be mixed so that the good solvent is present in a weight ratio of about 1 to 2,000 parts by weight in a mixture containing PVC and a good solvent mixed with 100 parts by weight of the heavy metal remover. In another example, the ratio of the good solvent is 3 parts by weight or more, 5 parts by weight or more, 7 parts by weight or more, 9 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight or more. 50 parts by weight or more, 100 parts by weight or more, 150 parts by weight or more, 200 parts by weight or more, 250 parts by weight or more, 300 parts by weight or more, 350 parts by weight or more, 400 parts by weight or more, 450 parts by weight or more, 500 parts by weight 550 parts by weight or more, 600 parts by weight or more, 650 parts by weight or more, 700 parts by weight or more, 750 parts by weight or more, 800 parts by weight or more, 850 parts by weight or more, 900 parts by weight or more, 950 parts by weight or more, 1000 parts by weight or about 1500 parts by weight or more, 1500 parts by weight or less, 1000 parts by weight or less, 950 parts by weight or less, 900 parts by weight or less, 850 parts by weight or less, 800 parts by weight or less, 750 parts by weight or less, 700 parts by weight or less, 650 600 parts by weight or less, 550 parts by weight or less, 500 parts by weight or less, 450 parts by weight or less, 400 parts by weight or less, 350 parts by weight or less, 300 parts by weight or less, 250 parts by weight or less, 200 parts by weight or less, 150 100 parts by weight or less, 90 parts by weight or less, 80 parts by weight or less, 70 parts by weight or less, 60 parts by weight or less, 50 parts by weight or less, 40 parts by weight or less, 30 parts by weight or less, 20 parts by weight or less, or 10 It may be on the order of parts by weight or less.
이러한 비율 하에서 목적하는 특성의 재생 PVC 재료를 효율적으로 회수할 수 있다. 특히 상기 비율은 중금속 제거제가 상기 산, NaCl 및/또는 PAC이거나 그를 포함하는 수용액인 경우에 적절할 수 있다.Under these ratios, recycled PVC material with desired properties can be efficiently recovered. In particular, the ratio may be appropriate when the heavy metal scavenger is or is an aqueous solution containing the acid, NaCl and/or PAC.
본 출원에서 상기 중금속 제거 공정도 저온 공정으로 진행될 수 있으며, 이러한 저온 공정 하에서도 효율적인 중금속의 제거가 가능하기 때문에, 에너지 소비를 줄이면서, 고온 공정 하에서 가해질 수 있는 재생 PVC에 대한 악영향(damage)도 방지할 수 있다.In the present application, the heavy metal removal process can also be performed at a low temperature, and since heavy metals can be efficiently removed even under such a low temperature process, energy consumption is reduced, and damage to recycled PVC that can be applied under a high temperature process is also reduced. It can be prevented.
예를 들면, 상기 중금속 제거 공정, 즉 폐기물과 양용매의 혼합물과 중금속 제거제의 혼합 공정은 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.For example, the heavy metal removal process, that is, the mixing process of the mixture of the waste and the good solvent and the heavy metal removal agent may be performed at a temperature range of about 10°C to 50°C. In another example, the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
본 출원의 제조 공정은 또한 상기 폐기물의 분쇄 공정을 추가로 수행할 수도 있다. 이러한 분쇄 공정은 적절한 분쇄 수단을 사용하여 수행할 수 있는 임의의 공정이며, 분쇄 공정이 수행되는 경우에 폐기물의 처리제 내로의 용해 효율을 보다 높일 수 있다. 분쇄 공정이 진행되는 시점에는 특별한 제한이 없고, 수행된다면 통상 폐기물과 처리제의 혼합 공정 전에 수행될 수 있다. 이 때 분쇄 방법은 특별히 제한되지 않고, 공지된 분쇄 방법이 적용될 수 있다.The manufacturing process of the present application may also additionally perform a crushing process of the waste. This pulverization process is any process that can be performed using an appropriate pulverization means, and when the pulverization process is performed, the dissolution efficiency of the waste into the treatment agent can be further increased. The point at which the crushing process is performed is not particularly limited, and if it is performed, it may be performed before the mixing process of the waste and the treatment agent. At this time, the grinding method is not particularly limited, and a known grinding method may be applied.
본 출원의 제조 공정은 필요한 경우에 필터링 공정을 수행할 수 있다. 예를 들면, 상기 폐기물, 처리제, 수성 용매, 중금속 제거제 및 비용매로 이루어진 군에서 선택된 적어도 2종의 성분을 포함하는 혼합물에 대해서 필터링 공정이 진행될 수 있다. 이러한 필터링 공정은 임의 공정이며, 수행된다면, 예를 들면, 상기 상분리 유도 공정의 전 또는 후, 상기 중금속 제거제의 투입 공정 전 또는 후, 및/또는 상기 비용매 투입 공정의 전 또는 후에 수행될 수 있다. 일 예시에서 상기 필터링 공정은 예를 들면, 적어도 상기 폐기물과 양용매이거나 상기 양용매를 포함하는 처리제와의 혼합물과 비용매의 혼합물 또는 상분리 후 회수된 PVC를 포함하는 상과 비용매의 혼합물에 대해서 수행될 수 있다.The manufacturing process of the present application may perform a filtering process if necessary. For example, a filtering process may be performed on a mixture including at least two components selected from the group consisting of the waste, treatment agent, aqueous solvent, heavy metal remover, and non-solvent. This filtering process is an arbitrary process, and if performed, it may be performed, for example, before or after the phase separation induction process, before or after the heavy metal remover input process, and/or before or after the non-solvent input process. . In one example, the filtering process is performed, for example, for a mixture of at least the waste and a good solvent or a mixture of a treatment agent containing the good solvent and a non-solvent, or a mixture of a PVC-containing phase and a non-solvent recovered after phase separation. can be performed
하나의 예시에서 상기 중금속 제거제의 투입 공정이 진행된다면, 상기 처리제와 폐기물의 혼합 단계와 상기 중금속 제거제와의 혼합 단계의 사이에 상기 필터링 공정이 진행될 수도 있다. 이러한 경우에, 상기 처리제와 폐기물의 혼합물은 일단 필터링 공정에 적용된 후에 다시 상기 중금속 제거제와 혼합될 수도 있다.In one example, if the step of adding the heavy metal remover is performed, the filtering step may be performed between the mixing step of the treatment agent and the waste and the mixing step of the heavy metal remover. In this case, the mixture of treatment agent and waste may be mixed with the heavy metal removal agent again after once subjected to a filtering process.
상기 필터링 공정에 의해서 처리제와 폐기물의 혼합물 내에 존재하는 성분 중 제거가 필요한 성분들을 먼저 걸러낼 수 있다.Components that need to be removed among the components present in the mixture of the treatment agent and the waste may be first filtered out by the filtering process.
상기 필터링 공정을 진행하는 방식은 특별히 제한되지 않으며, 예를 들면, 상기 혼합물을 적절한 여과재로 걸러내는 방식으로 상기 필터링 공정이 진행될 수 있다. The method of performing the filtering process is not particularly limited, and, for example, the filtering process may be performed by filtering the mixture with an appropriate filter medium.
이 과정에서 적용될 수 있는 여과재로는, 특별한 제한은 없으며, 예를 들면, 적절한 체(mesh)를 사용하여 상기 필터링을 수행하거나, 황산 마그네슘, 황산 알루미늄, 실리카, 셀라이트 또는 활성탄 등의 여과재를 사용한 필터링이 예시될 수 있다. 또한, 필터링은 상기 언급한 수단 중에서 2종 이상을 조합하여 수행할 수도 있다.There is no particular limitation on the filter medium that can be applied in this process, and for example, the filtering is performed using an appropriate mesh, or a filter medium such as magnesium sulfate, aluminum sulfate, silica, celite, or activated carbon is used. Filtering can be exemplified. Also, filtering may be performed by combining two or more of the above-mentioned means.
상기 필터링 과정에서는 추가 성분이 적용될 수 있다. 예를 들면, 상기 필터링 과정에서는 추가 성분이 사용될 수 있다. 예를 들면, 상기 필터링 과정에서는 상기 필터링되는 혼합물과 함께 DCM(Dichloromethane), THF(Tetrahydrofuran), DCE(Dichloroethane), MEK(Methyl Ethyl Ketone) 또는 DMSO(Dimethyl sulfoxide) 등의 성분이 상기 여과재를 통과할 수 있다. 이러한 성분들은 필터링 과정에서 여과재가 열화하거나, 여과재의 필터링 성능이 저하되는 현상을 방지할 수 있다. 예를 들면, 이러한 성분들을 적정량 상기 혼합물과 혼합한 상태에서 상기 여과재를 통과시킴으로써 효과적인 필터링 공정을 진행할 수 있다. 이 과정에서 혼합되는 상기 성분들의 비율은 목적에 따라서 조절되는 것으로서 특별히 제한되지는 않는다. 예를 들면, 상기 DCM(Dichloromethane)이나 THF(Tetrahydrofuran) 등의 성분은 필터링되는 혼합물 100 중량부 대비 약 0.5 내지 20 중량부 또는 약 5 내지 10 중량부 정도의 비율로 사용될 수 있다.Additional components may be applied in the filtering process. For example, additional components may be used in the filtering process. For example, in the filtering process, components such as dichloromethane (DCM), tetrahydrofuran (THF), dichloroethane (DCE), methyl ethyl ketone (MEK), or dimethyl sulfoxide (DMSO) pass through the filter medium together with the mixture to be filtered. can These components can prevent the filter medium from deteriorating or the filtering performance of the filter medium from deteriorating during the filtering process. For example, an effective filtering process may be performed by passing these components through the filter medium in a state in which an appropriate amount of these components are mixed with the mixture. The proportions of the components mixed in this process are adjusted according to the purpose and are not particularly limited. For example, components such as dichloromethane (DCM) or tetrahydrofuran (THF) may be used in an amount of about 0.5 to 20 parts by weight or about 5 to 10 parts by weight based on 100 parts by weight of the mixture to be filtered.
상기 혼합물은 또한 MgSO4에 의해 처리될 수도 있다. 이와 같은 처리에 의해서 중금속을 보다 효율적으로 제거할 수 있다. 상기 MgSO4에 의한 처리는 상기 필터링 공정과 함께 수행되거나(예를 들면, 필터링 공정에서의 여과재 내에 상기 MgSO4를 포함시키는 방법 등), 혹은 상기 필터링 전 또는 후에 독립적으로 수행될 수도 있다. 또는, 상기 필터링 공정은 수행하지 않고, 상기 MgSO4에 의한 처리만이 수행될 수 있다. 상기 MgSO4에 의한 처리 방법은 특별히 제한되지 않으며, 예를 들면, 상기 MgSO4와 상기 혼합물을 혼합 등의 방식으로 적절하게 접촉시킨 후에 공지의 방식으로 상기 MgSO4를 제거함으로써 상기 처리를 수행할 수 있다.The mixture may also be treated with MgSO 4 . Heavy metals can be removed more efficiently by such a treatment. The treatment with MgSO 4 may be performed together with the filtering process (eg, a method of including the MgSO 4 in a filter medium in the filtering process), or may be performed independently before or after the filtering. Alternatively, the filtering process may not be performed, and only the treatment with MgSO 4 may be performed. The treatment method with the MgSO 4 is not particularly limited, and for example, the treatment may be carried out by removing the MgSO 4 in a known manner after appropriately contacting the MgSO 4 and the mixture by mixing or the like. have.
본 출원에서 상기 필터링 공정 및/또는 상기 MgSO4에 의한 처리도 상대적으로 저온에서 수행 가능하다. 예를 들면, 상기 공정 또는 처리는, 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.In the present application, the filtering process and/or the treatment with MgSO 4 can also be performed at a relatively low temperature. For example, the process or treatment may proceed at a temperature range of about 10 °C to 50 °C. In another example, the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower or 30 ° C or lower.
본 출원의 제조 방법에서는 필요한 경우에 상기 회수된 PVC에 대해서 공지의 추가적인 처리(예를 들면, 세척, 건조, 탈수 등)가 진행될 수 있다. In the manufacturing method of the present application, if necessary, known additional treatment (eg, washing, drying, dehydration, etc.) may be performed on the recovered PVC.
일 예시에서 상기 재생 PVC의 제조 방법의 모든 공정(단, 전술한 PVC의 회수를 위한 건조 공정이 진행된다면, 해당 건조 공정은 제외)은, 상대적으로 저온에서 수행될 수 있다.In one example, all processes of the method for manufacturing recycled PVC (except for the drying process if the above-described drying process for recovery of PVC is performed) may be performed at a relatively low temperature.
예를 들면, 상기 재생 PVC 제조 방법의 모든 공정(단, 상기 건조 공정이 진행되는 경우에 해당 공정은 제외)은, 약 10℃ 내지 50℃의 온도 범위에서 진행할 수 있다. 상기 온도 범위는 다른 예시에서 12℃ 이상, 14℃ 이상, 16℃ 이상, 18℃ 이상 또는 20℃ 이상이거나, 45℃ 이하, 40℃ 이하, 35℃ 이하 또는 30℃ 이하 정도일 수도 있다.For example, all processes of the method for manufacturing recycled PVC (except for the process when the drying process is performed) may be performed at a temperature range of about 10° C. to 50° C. In another example, the temperature range may be 12 ° C or higher, 14 ° C or higher, 16 ° C or higher, 18 ° C or higher or 20 ° C or higher, or 45 ° C or lower, 40 ° C or lower, 35 ° C or lower, or 30 ° C or lower.
본 출원의 방법에서는 상기 상대적 저온 하에서도 우수한 물성의 PVC를 효과적으로 회수할 수 있고, 그러한 공정이 저온 공정으로 진행되는 것에 의해 공정 진행 과정에서 PVC에 가해질 수 있는 손상을 최소화하고, 필요한 에너지의 소비도 최소화할 수 있다.In the method of the present application, PVC with excellent physical properties can be effectively recovered even under the relatively low temperature, and the damage that may be applied to PVC during the process is minimized by the process being performed as a low-temperature process, and the required energy consumption can be minimized.
본 출원은 또한 상기 기술한 재생 PVC 재료 또는 상기 제조 방법으로 재생된 재료를 포함하는 수지 성형체에 대한 것이다. 수지 성형체의 종류는 특별히 제한되지 않고, 예를 들면, 창호일 수 있다. 상기 폴리머 재료를 사용하여 수지 성형체를 제조하는 방법은 특별히 제한되지 않고, 공지의 방식을 적용할 수 있으며, 이 수지 성형체에서 상기 PVC 입자들은 입자 상태일 수 있거나, 또는 그렇지 않은 상태일 수도 있다.This application also relates to a resin molded body comprising the above-described recycled PVC material or a material recycled by the above manufacturing method. The type of the resin molded body is not particularly limited, and may be, for example, a window or door. A method for producing the resin molded body using the polymer material is not particularly limited, and a known method may be applied, and the PVC particles in the resin molded body may be in a particle state or not.
상기 수지 성형체는, CIE Lab 색좌표에서 b값이 3 내지 6의 범위 내에 있을 수 있다. 상기 b값은 다른 예시에서 3.1 이상, 3.2 이상, 3.3 이상, 3.4 이상, 3.5 이상, 3.6 이상 또는 3.7 이상이거나, 5.5 이하, 5 이하, 4.5 이하 또는 4 이하 정도일 수도 있다.The resin molded body may have a b value in the range of 3 to 6 in CIE Lab color coordinates. In another example, the b value may be 3.1 or more, 3.2 or more, 3.3 or more, 3.4 or more, 3.5 or more, 3.6 or more, or 3.7 or more, or 5.5 or less, 5 or less, 4.5 or less, or 4 or less.
상기 수지 성형체는, CIE Lab 색좌표에서 L값이 80 내지 100의 범위 내에 있을 수 있다. 상기 L값은 다른 예시에서 82 이상, 84 이상, 86 이상, 88 이상, 90 이상 또는 92 이상이거나, 98 이하, 96 이하, 94 이하 또는 93 이하 정도일 수도 있다.The resin molded body may have an L value in the range of 80 to 100 in CIE Lab color coordinates. In another example, the L value may be 82 or more, 84 or more, 86 or more, 88 or more, 90 or more, or 92 or more, or 98 or less, 96 or less, 94 or less, or 93 or less.
상기 수지 성형체는, CIE Lab 색좌표에서 a값이 0 내지 5의 범위 내에 있을 수 있다. 상기 a값은 다른 예시에서 0.2 이상, 0.4 이상, 0.6 이상 또는 0.8 이상이거나, 4 이하, 3 이하, 2 이하 또는 1 이하 정도일 수도 있다.The resin molded body may have an a value in the range of 0 to 5 in CIE Lab color coordinates. In another example, the a value may be 0.2 or more, 0.4 or more, 0.6 or more, or 0.8 or more, or 4 or less, 3 or less, 2 or less, or 1 or less.
상기 수지 성형체(예를 들면, 창호)는, 인장 항복 강도가 36 MN/m2 이상일 수 있다. 상기 강도는 예를 들면, 38MN/m2 이상 또는 40MN/m2 이상이거나, 60MN/m2 이하일 수 있다.The resin molded body (eg, window or door) may have a tensile yield strength of 36 MN/m 2 or more. The strength may be, for example, 38 MN/m 2 or more, 40 MN/m 2 or more, or 60 MN/m 2 or less.
상기 수지 성형체(예를 들면, 창호)는, 인장 파단 신장율이 100% 이상일 수 있다. 상기 신장율은 예를 들면, 120% 이상, 140% 이상 또는 160% 이상이거나, 250% 이하일 수 있다.The resin molded body (eg, window or door) may have a tensile elongation at break of 100% or more. The elongation may be, for example, 120% or more, 140% or more, 160% or more, or 250% or less.
상기 수지 성형체(예를 들면, 창호)는, 샤르피충격값(-10℃)이 4.9 KJ/m2 이상일 수 있다. 상기 샤르피충격값은 예를 들면, 6 KJ/m2 이상 또는 8 KJ/m2 이상이거나, 20 KJ/m2 이하일 수 있다.The resin molded body (eg, window or door) may have a Charpy impact value (-10°C) of 4.9 KJ/m 2 or more. The Charpy impact value may be, for example, 6 KJ/m 2 or more, 8 KJ/m 2 or more, or 20 KJ/m 2 or less.
상기 수지 성형체(예를 들면, 창호)는, 또한 굴곡 탄성율이 1960 MN/m2 이상일 수 있다.The resin molded body (for example, a window or door) may also have a flexural modulus of 1960 MN/m 2 or more.
상기 수지 성형체(예를 들면, 창호)는, 또한 가열 신축성이 2.5% 이하일 수 있다.The resin molded body (for example, a window or door) may also have a heat elasticity of 2.5% or less.
상기 수지 성형체(예를 들면, 창호)는, 또한 비캇 연화 온도가 83℃ 이상일 수 있다. 상기 온도는 다른 예시에서 85℃ 이상이거나, 95℃ 이하 정도일 수도 있다.The resin molded body (for example, windows and doors) may also have a Vikat softening temperature of 83°C or higher. In another example, the temperature may be 85° C. or higher or 95° C. or lower.
상기 수지 성형체(예를 들면, 창호)는, 또한 경도(HRR)가 85 이상일 수 있다. 상기 경도는 다른 예시에서 90 이상 또는 95 이상이거나, 100 이하 정도일 수도 있다.The resin molded body (for example, a window or door) may also have a hardness (HRR) of 85 or more. The hardness may be 90 or more, 95 or more, or 100 or less in another example.
상기 수지 성형체(예를 들면, 창호)는, 또한 냉열 반복 신축성이 0.2% 이하 정도일 수 있다. 상기 신축성은 다른 예시에서 0.15% 이하, 0.1% 이하이거나, 0% 이상일 수 있다.The resin molded body (for example, a window or door) may also have a heat/cold elasticity of about 0.2% or less. In another example, the elasticity may be 0.15% or less, 0.1% or less, or 0% or more.
상기 인장 항복 강도, 인장 파단 신장률, 랴르피 충격값, 굴곡 탄성율, 가열 신축성, 비캇 연화 온도, 경도, 냉열 반복 신축성 등은 규격에 따라 구해질 수 있다.The tensile yield strength, tensile elongation at break, Lyarpy impact value, flexural modulus, heating elasticity, Vikat softening temperature, hardness, heat and cold cycle elasticity, etc. may be obtained according to specifications.
본 출원은 재생 PVC 재료 및 그의 제조 방법에 대한 것이다. 본 출원에서 재생 PVC의 제조 방법은 폐자재로부터 PVC를 재생하는 방법일 수도 있다. 본 출원은, 폐자재로부터 재생된 것으로서, 사용 전 PVC 재료와 동등한 물성을 가지면서, 중금속 등의 불필요한 불순물은 효과적으로 제거되고, 동시에 유익한 첨가제는, 잔존하고 있는 재생 PVC 재료 및 그 제조 방법을 제공할 수 있다. 또한, 본 출원은, 상기 재생 PVC 재료를 경제적이고, 적은 에너지를 소비하는 친환경적인 공정으로 얻을 수 있다.This application is directed to recycled PVC materials and methods for their manufacture. The manufacturing method of recycled PVC in this application may be a method of recycling PVC from waste materials. The present application is to provide a recycled PVC material that is recycled from waste material, has physical properties equivalent to those of PVC material before use, effectively removes unnecessary impurities such as heavy metals, and at the same time beneficial additives remain, and a method for manufacturing the same. can In addition, the present application can obtain the recycled PVC material through an economical and environmentally friendly process that consumes little energy.
도 1은 폐기물에서 회수된 PVC 입자에 대한 SEM(Scanning Electron Microscope) 이미지이다.1 is a SEM (Scanning Electron Microscope) image of PVC particles recovered from waste.
도 2는 합성된 PVC 입자에 대한 SEM(Scanning Electron Microscope) 이미지이다.2 is a SEM (Scanning Electron Microscope) image of synthesized PVC particles.
도 3은 폐기물에서 회수된 재료에 대한 1H NMR 분석 결과이다.3 is a result of 1 H NMR analysis of material recovered from waste.
도 4는 일반 PVC에 대한 1H NMR 분석 결과이다.4 is a result of 1 H NMR analysis of general PVC.
이하, 본 출원에 따른 실시예를 통해서 본 발명을 보다 구체적으로 설명하지만, 본 발명의 범위가 하기에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present application, but the scope of the present invention is not limited to the following.
1. 1H NMR 분석1. 1 H NMR Analysis
PVC 재료에 대한 1H NMR 분석은 400MHz FT-NMR Spectrometer(모델명: AVANCE III HD 400, 제조사: Bruker Biospin)를 사용하여 수행하였다(측정 조건: 400 MHz, solvent: THF(tetrahydrofuran)-D8)). 1 H NMR analysis of the PVC material was performed using a 400 MHz FT-NMR Spectrometer (model name: AVANCE III HD 400, manufacturer: Bruker Biospin) (measurement conditions: 400 MHz, solvent: THF (tetrahydrofuran) -D8)).
상기 분석에 기반하여 재생 PVC 재료 내의 재생 PVC의 함량도 확인하였다. Based on the above analysis, the content of recycled PVC in the recycled PVC material was also confirmed.
2. 중금속 함량 측정 방법2. Heavy metal content measurement method
재생 PVC 재료 내의 중금속 함량은, 유도결합 플라즈마 발광 분석법(ICP-OES)을 통해 확인하였다. 상기 분석은, Agilent사의 측정 기기(Agilent社, 5110 Series)를 사용하여 수행하였고, 폐기물 공정 시험법(산분해법)(KS C IEC62321-4 규격)에 기하여 수행하였다.The content of heavy metals in the recycled PVC material was confirmed by inductively coupled plasma emission spectrometry (ICP-OES). The analysis was performed using Agilent's measuring device (Agilent's 5110 Series), and was performed according to the waste process test method (acid decomposition method) (KS C IEC62321-4 standard).
상기 중금속의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 중금속 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.The heavy metal content is the result of measurement by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, and measuring the heavy metal content. The arithmetic average of the results was taken as the representative value. The amount of the sample to be collected was the amount allowed by the measuring device.
3. 알루미늄 함량 측정 방법3. How to measure aluminum content
PVC 재료 내의 알루미늄 함량은 측정 시료를 Microwave 장비(Preekem사의 TOPEX Microwave)를 사용하여 산 분해하여 전처리된 시료를 제조한 후에 ICP-OES 장비(Agilent사의 Technologies 5110)를 사용하여 측정하였다.The aluminum content in the PVC material was measured using ICP-OES equipment (Technologies 5110 from Agilent) after acid decomposition of the measurement sample using a microwave equipment (TOPEX Microwave from Preekem) to prepare a pretreated sample.
PTFE 베셀에 약 0.3 g의 PVC 재료(측정 시료)를 정량하여 넣고, 질산 8 mL, 염산 1 mL 및 불산 0.4 mL를 추가한 후, 상기 Microwave 장비에서 단계적으로 240℃까지 온도를 상승시켜 완전히 산분해시키고, 초순수를 첨가하여 최종 부피를 50 mL로 맞추어서 전처리된 시료를 제조하고, 해당 시료에 대해서 Al 함량을 측정하였다.Weigh about 0.3 g of PVC material (measurement sample) into a PTFE vessel, add 8 mL of nitric acid, 1 mL of hydrochloric acid, and 0.4 mL of hydrofluoric acid, and then raise the temperature step by step to 240 ° C in the microwave equipment to completely decompose acid. Then, ultrapure water was added to adjust the final volume to 50 mL to prepare a pretreated sample, and the Al content was measured for the sample.
Al 함량은 하기 순서에 따라서 측정하였다.Al content was measured according to the following procedure.
① 0.02 mg/L 내지 0.2 mg/L의 Al 표준 용액 조제① Preparation of 0.02 mg/L to 0.2 mg/L Al standard solution
② ICP-OES를 사용하여 상기 표준 용액에 대해서 3개의 파장 (167.019 nm, 237.312 nm 및 396.152 nm)에서 검정 곡선을 작성② Prepare a calibration curve at three wavelengths (167.019 nm, 237.312 nm and 396.152 nm) for the standard solution using ICP-OES.
③ 상기와 동일한 파장에서 상기 검정 곡선을 사용하여 상기 전처리된 시료에서의 Al 함량을 정량③ Quantify the Al content in the pretreated sample using the calibration curve at the same wavelength as above
상기 Al 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 Al 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다.The Al content is a result measured by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, and measuring the Al content. The arithmetic mean value of was taken as the representative value.
4. 프탈레이트 화합물 함량 측정 방법4. Method for measuring phthalate compound content
프탈레이트 화합물의 함량은, GC-MS(Gas Chromatography Mass Spectrometry) 방식으로 측정하였다. 측정은 Agilent사의 7890B (GC) 및 5977B (MS) 기기를 사용하여 수행하였다. 공지의 측정 방법에 따라서 시료를 THF(Tetrahydrofuran)에 용해시키고, 알코올을 사용하여 재침(reprecipitation)을 잡은 후에 프탈레이트 화합물의 농도를 측정하였다.The content of the phthalate compound was measured by GC-MS (Gas Chromatography Mass Spectrometry) method. Measurements were performed using Agilent's 7890B (GC) and 5977B (MS) instruments. According to a known measurement method, the sample was dissolved in THF (Tetrahydrofuran), and after reprecipitation using alcohol, the concentration of the phthalate compound was measured.
상기 프탈레이트의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.The content of the phthalate is a result measured by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, taking the same amount of samples from the selected areas, measuring the content, and then measuring the result. The arithmetic mean value of was taken as the representative value. The amount of the sample to be collected was the amount allowed by the measuring device.
5. 색좌표 측정 방법5. How to measure color coordinates
PVC 재료의 색좌표는 BYK Gardner사의 Spectro-guide gloss S 장비를 사용하여 측정하였다.The color coordinates of the PVC material were measured using Spectro-guide gloss S equipment from BYK Gardner.
6. 재생 PVC에 대한 SEM 촬영6. SEM imaging of recycled PVC
재생 PVC 재료에 대한 SEM 촬영은, Hitachi사의 SU8010 장비를 사용하여 수행하였고, 100배의 배율로 촬영하였다.SEM imaging of the recycled PVC material was performed using Hitachi's SU8010 equipment, and was taken at 100x magnification.
7. 열중량 분석(TGA) 분석7. Thermogravimetric analysis (TGA) analysis
PVC 재료에 대한 열중량 분석은, Mettler Toledo사의 TGA/DSC 3+ 기기를 사용하여 수행하였다. 질소(N2) 분위기 하에서 30℃에서 1,000℃까지의 온도 구간을 약 10℃/분의 승온 속도로 승온하면서 측정을 수행하였다. Thermogravimetric analysis of the PVC material was performed using a TGA/DSC 3+ instrument from Mettler Toledo. The measurement was performed while raising the temperature in a temperature range from 30 °C to 1,000 °C at a heating rate of about 10 °C/min under a nitrogen (N 2 ) atmosphere.
8. 양용매 및 비용매 함량 측정8. Measurement of good solvent and non-solvent content
재생 PVC 재료에 포함된 양용매 및 비용매의 함량은 GC(Gas chromatography) 분석으로 확인하였다. 측정 기기로는 Agilent사의 TDS3, 7890A/5975C 장비를 사용하였다.The content of the good solvent and non-solvent contained in the recycled PVC material was confirmed by GC (Gas chromatography) analysis. Agilent's TDS3 and 7890A/5975C equipment were used as measuring instruments.
상기 양용매 및 비용매의 함량은, 상기 PVC 재료에서 측정 시료를 채취하여 측정된 결과이고, 상기 재료에서 10곳의 영역을 임의로 선택하고, 선택된 영역에서 동일량의 시료를 채취하여 함량을 측정한 후에 측정된 결과의 산술 평균값을 대표값으로 하였다. 채취하는 시료의 양은 측정 기기에서 허용하는 양으로 하였다.The content of the good solvent and non-solvent is the result of measurement by taking measurement samples from the PVC material, randomly selecting 10 areas from the material, and taking the same amount of samples from the selected area to measure the content The arithmetic average value of the results measured later was used as the representative value. The amount of the sample to be collected was the amount allowed by the measuring device.
9. 탄성 특성의 평가9. Evaluation of elastic properties
재생 PVC 재료 등으로 제조된 시편의 인장 특성(인장 강도, 인장 탄성률 및 인장 신율)은 인장 시험기(Ametek Lloyd, Irx plus)를 사용하여 평가하였고, 통상적으로 창호용 PVC 재료에 대해서 인장 특성을 평가하는 방식에 따라서 평가하였다(측정 조건: Gauge Length 30mm, Width 25mm, Thickness 0.3mm).Tensile properties (tensile strength, tensile modulus, and tensile elongation) of specimens made of recycled PVC materials were evaluated using a tensile tester (Ametek Lloyd, Irx plus). It was evaluated according to the method (measurement conditions: Gauge Length 30mm, Width 25mm, Thickness 0.3mm).
10. 중량평균분자량/수평균분자량의 평가10. Evaluation of weight average molecular weight/number average molecular weight
수평균분자량(Mn) 및 중량평균분자량은 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 바이얼(vial)에 재생 PVC 재료를 넣고, 약 0.1 중량% 정도의 농도가 되도록 THF(tetrahydrofuran)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter (pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하였다.Number average molecular weight (Mn) and weight average molecular weight were measured using GPC (Gel permeation chromatography). Put the recycled PVC material in a vial, and dilute it in tetrahydrofuran (THF) to a concentration of about 0.1% by weight. After that, the standard sample for calibration and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 ㎛) and then measured. The analysis program used ChemStation from Agilent technologies, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were obtained by comparing the elution time of the sample with a calibration curve.
<GPC 측정 조건><GPC measurement conditions>
기기: Agilent technologies사의 1260 InfinityInstrument: 1260 Infinity from Agilent technologies
컬럼: Polymer laboratories 사의 PLgel mixed A 2개 사용Column: Use 2 PLgel mixed A from Polymer laboratories
용매: THFSolvent: THF
컬럼온도: 35℃Column temperature: 35 ℃
샘플 농도: 1mg/mL, 20μL 주입Sample concentration: 1 mg/mL, 20 μL injection
표준 시료: 폴리스티렌(PS-H EasiVial)Standard Sample: Polystyrene (PS-H EasiVial)
실시예 1.Example 1.
PVC의 재생의 원료인 폐기물로는 PVC로 제조된 폐창호를 사용하였다. 상기 폐창호에 존재하는 금속, 유리 및 접착제 등의 이물질을 먼저 물리적으로 제거하고, 이물질이 제거된 폐창호를 분쇄기로 2cmХ2cm의 크기로 1차 분쇄한 후, 다시 3mmХ3mm의 크기로 2차 분쇄하였다. 분쇄된 폐창호를 사이클로헥사논(몰질량: 약 98.15 g/mol, 비점: 약 155.6℃, 수용해도(20℃): 약 8.6 g/100mL, 증기압(20℃): 약 5 mmHg)과 혼합하였다. 상기 혼합 시에 폐창호와 사이클로헥사논의 중량 비율은 약 1:10 정도(폐창호:사이클로헥사논)로 하였다. 상기와 같이 폐창호와 사이클로헥사논을 혼합하고, 교반하여 혼합물을 제조하였다. 상기 공정은 모두 상온(약 25℃)에서 진행하였다. Waste windows made of PVC were used as waste, which is a raw material for PVC recycling. Foreign substances such as metal, glass, and adhesives present in the waste windows were first physically removed, and the waste windows from which the foreign substances were removed were firstly pulverized to a size of 2cmХ2cm with a grinder, and then secondarily pulverized to a size of 3mmХ3mm. The crushed waste windows were mixed with cyclohexanone (molar mass: about 98.15 g/mol, boiling point: about 155.6°C, water solubility (20°C): about 8.6 g/100mL, vapor pressure (20°C): about 5 mmHg). . During the mixing, the weight ratio of the waste windows and cyclohexanone was about 1:10 (waste windows:cyclohexanone). As described above, a mixture was prepared by mixing and stirring the waste windows and cyclohexanone. All of the above processes were performed at room temperature (about 25° C.).
이어서 상기 혼합물을 중금속 제거제와 혼합하였다. 중금속 제거제로는 PAC(Poly Aluminium Chloride, ㈜삼주사제, 17% 제품)를 사용하였다. 상기 PAC를 NaCl 1 중량% 수용액과 혼합하여 중금속 제거제로 사용하였다.The mixture was then mixed with a heavy metal scavenger. As a heavy metal removal agent, PAC (Poly Aluminum Chloride, manufactured by Samjusa Co., Ltd., 17% product) was used. The PAC was mixed with a 1% by weight aqueous solution of NaCl and used as a heavy metal scavenger.
상기 PAC를 상기 NaCl 수용액과 10:1의 중량 비율(PAC:NaCl 수용액)으로 혼합하여 중금속 제거제로서 사용하였다. 상기 혼합 과정에서 상기 혼합물 내의 사이클로헥사논과 상기 중금속 제거제의 중량 비율은 약 10:1 정도(사이클로헥사논:중금속 제거제)가 되도록 수행하였다. The PAC was mixed with the NaCl aqueous solution in a weight ratio of 10:1 (PAC:NaCl aqueous solution) and used as a heavy metal removing agent. During the mixing process, the weight ratio of cyclohexanone and the heavy metal scavenger in the mixture was about 10:1 (cyclohexanone:heavy metal scavenger).
상기 혼합 후에 혼합물을 1 시간 전후로 교반하고, 체(mesh)로 필터링하였다.After the mixing, the mixture was stirred for about 1 hour and filtered through a sieve.
그 후 필터링된 여과물을 방치하여 상분리를 유도하였다. 상기 공정은 모두 상온(약 25℃)에서 진행하였다.Thereafter, the filtered filtrate was allowed to stand to induce phase separation. All of the above processes were performed at room temperature (about 25° C.).
상분리가 이루어진 것을 확인하고, 상분리된 수상을 제거하고, PVC가 존재하는 유기상을 회수하였다. 이어서 상기 유기상을 PVC에 대한 비용매인 에탄올(비점: 약 78.37℃)과 혼합하였다. 상기에서 혼합되는 에탄올의 비율은 상기 유기상 100 중량부 대비 약 200 내지 250 중량부로 제어하였다.It was confirmed that the phase separation was performed, the phase-separated aqueous phase was removed, and the organic phase in which PVC was present was recovered. The organic phase was then mixed with ethanol (boiling point: about 78.37° C.), a non-solvent for PVC. The ratio of ethanol mixed in the above was controlled to about 200 to 250 parts by weight based on 100 parts by weight of the organic phase.
상기 혼합에 의해서 유기상에 용해되어 존재하던 PVC가 석출되었다. 석출된 PVC를 회수하고, 약 40℃의 온도에서 15 시간 정도 진공 건조하여 재생 PVC 재료를 수득하였다.By the above mixing, PVC, which was dissolved and existed in the organic phase, was precipitated. The precipitated PVC was recovered and vacuum dried at a temperature of about 40° C. for about 15 hours to obtain a recycled PVC material.
도 3은, 위와 같은 방식으로 얻어진 재생 PVC 재료의 1H NMR 스펙트럼이다. 도면에서 4 ppm 내지 5 ppm의 범위 내에서 PVC에서 유래하는 피크(제 1 피크, ①)가 확인되고, 약 1.1 ppm 내지 1.4 ppm의 범위 내에서 제 2 피크(③)가 확인되는 것을 알 수 있다. 3 is a 1 H NMR spectrum of the recycled PVC material obtained in the above manner. From the figure, it can be seen that the peak (first peak, ①) derived from PVC is confirmed within the range of 4 ppm to 5 ppm, and the second peak (③) is confirmed within the range of about 1.1 ppm to 1.4 ppm. .
상기 스펙트럼에서 제 1 피크의 적분값(4 ppm 내지 5 ppm의 범위에서 확인되는 피크의 면적)은 약 1.00 정도였고, 제 2 피크의 적분값(약 1.1 ppm 내지 1.4 ppm의 범위에서 확인되는 피크의 면적)은 약 0.08 정도였다. 따라서, 상기 적분값의 비율(제 2 피크/제 1 피크)은 약 0.08 정도이다.In the spectrum, the integral value of the first peak (the area of the peak found in the range of 4 ppm to 5 ppm) was about 1.00, and the integral value of the second peak (the area of the peak found in the range of about 1.1 ppm to 1.4 ppm) was about 1.00. area) was about 0.08. Accordingly, the ratio of the integral values (second peak/first peak) is about 0.08.
실시예 2.Example 2.
중금속 제거제와의 혼합 과정에서 혼합물 내의 사이클로헥사논과 상기 중금속 제거제의 중량 비율이 약 4:1 정도(사이클로헥사논:중금속 제거제)가 되도록 한 것을 제외하고는 실시예 1과 동일한 방식으로 재생 PVC를 얻었다.Recycled PVC was obtained in the same manner as in Example 1, except that during the mixing process with the heavy metal scavenger, the weight ratio of cyclohexanone and the heavy metal scavenger in the mixture was about 4:1 (cyclohexanone: heavy metal scavenger). .
비교예 1.Comparative Example 1.
중금속 제거제로서, 염산(pKa = 약 -6.3) 수용액을 사용한 것을 제외하고는 실시예 1과 동일하게 재생 PVC를 제조하였다. 이 때 염산 수용액에서의 염산의 농도는 약 1.1 M(몰 농도)였다. 상기 혼합물과 상기 염산 수용액을 혼합하였으며, 상기 혼합 과정에서 상기 혼합물 내의 사이클로헥사논과 상기 염산 수용액의 중량 비율은 약 7:1 정도(사이클로헥사논:염산)가 되도록 수행하였다.Recycled PVC was prepared in the same manner as in Example 1, except that an aqueous solution of hydrochloric acid (pKa = about -6.3) was used as a heavy metal removal agent. At this time, the concentration of hydrochloric acid in the aqueous hydrochloric acid solution was about 1.1 M (molar concentration). The mixture and the aqueous hydrochloric acid solution were mixed, and during the mixing process, the weight ratio of cyclohexanone and the aqueous hydrochloric acid solution in the mixture was about 7:1 (cyclohexanone:hydrochloric acid).
비교예 2.Comparative Example 2.
중금속 제거제로서, 액반(Aluminium Sulfate)을 사용한 것을 제외하고는 실시예 1과 동일하게 재생 PVC를 제조하였다. 상기 중금속 제거제(액반)의 혼합 시에 혼합물 내의 사이클로헥사논과 액반의 중량 비율은 약 7:1 정도(사이클로헥사논:액반)가 되도록 수행하였다.Recycled PVC was prepared in the same manner as in Example 1, except that aluminum sulfate was used as a heavy metal removal agent. When the heavy metal remover (liquid) was mixed, the weight ratio of cyclohexanone and liquid in the mixture was about 7:1 (cyclohexanone:liquid).
실시예 및 비교예에서 얻어진 재생 PVC에 대해서 측정한 물성을 하기 표 1에서 정리하여 기재하였다. 하기 표 1에서 Mw는 중량평균분자량을 의미하고, Mn은 수평균분자량을 의미한다.The physical properties measured for the recycled PVC obtained in Examples and Comparative Examples are summarized in Table 1 below. In Table 1 below, Mw means the weight average molecular weight, and Mn means the number average molecular weight.
실시예Example 비교예comparative example
1One 22 1One 22
불순물
함량
(ppm)
impurities
content
(ppm)
PbPb 1010 55 2020 260260
Cd CD 00 00 00 22
가소제 plasticizer 00 00 00 00
Al 함량(ppm)Al content (ppm) 약 200about 200 약 300about 300 약 100 미만less than about 100 약 100 미만less than about 100
사이클로헥사논함량(ppm)Cyclohexanone content (ppm) 약 400~500about 400 to 500 약 400~500about 400 to 500 약 400~500about 400 to 500 약 400~500about 400 to 500
에탄올 함량(ppm)Ethanol content (ppm) 약 400~500about 400 to 500 약 400~500about 400 to 500 약 400~500about 400 to 500 약 400~500about 400 to 500

색좌표

color coordinates
LL 92.292.2 92.292.2 9292 46.146.1
aa -0.45-0.45 -0.45-0.45 -0.3-0.3 9.49.4
bb 3.583.58 3.583.58 5.045.04 15.4915.49
분자량
(×10000)
Molecular Weight
(×10000)
MwMw 16.416.4 16.416.4 15.815.8 16.416.4
MnMn 7.77.7 7.77.7 7.27.2 7.77.7
표 1의 결과로부터 실시예의 방식을 적용하여 얻은 재생 PVC는 Pd나 Cd와 같은 중금속과 가소제 등이 효과적으로 제거되고, 색특성도 우수하게 나타난 것을 알 수 있다. From the results of Table 1, it can be seen that the recycled PVC obtained by applying the method of the embodiment effectively removes heavy metals such as Pd or Cd and plasticizers, and exhibits excellent color characteristics.
도 1은, 실시예 1의 방식에 따라서 회수된 재생 PVC 입자에 대한 SEM 사진이고, 도면으로부터 얻어진 재생 PVC는 비클러스터 입자 상태 또는 1차 입자 상태인 것을 알 수 있다.Fig. 1 is a SEM photograph of reclaimed PVC particles recovered according to the method of Example 1, and it can be seen from the figure that the obtained reclaimed PVC is in a non-cluster particle state or primary particle state.
시험예 1.Test Example 1.
실시예 1에서 얻은 재생 PVC 재료를 원료 수지 재료로 사용하여 시편 A를 제조하고, 해당 시편에 대해서 인장 강도, 인장 탄성률 및 신율을 평가하였다.Specimen A was prepared using the recycled PVC material obtained in Example 1 as a raw resin material, and tensile strength, tensile modulus and elongation of the specimen were evaluated.
실시예 1의 재생 PVC 재료(원료 수지 재료)에 안정제, CaCO3 및 첨가제를 25:1.2:73:0.8의 중량 비율(PVC 재료:안정제:CaCO3:첨가제)로 혼합하고, 혼합기(Brabender mixer)로 200℃에서 혼련한 후에 혼련된 재료를 200℃에서 프레스 가공하여 판재를 제조하였다.A stabilizer, CaCO 3 and an additive were mixed with the recycled PVC material (raw resin material) of Example 1 at a weight ratio of 25:1.2:73:0.8 (PVC material:stabilizer:CaCO 3 :additive), and a mixer (Brabender mixer) After kneading at 200 ° C., the kneaded material was press-worked at 200 ° C. to prepare a sheet material.
그 후, 상기 판재의 일면에 창호 제작에 통상 적용되는 백색 시트, 전사지 및 투명 필름을 순차 적층하여 시편 A를 제조하였다.After that, specimen A was prepared by sequentially stacking a white sheet, transfer paper, and a transparent film commonly applied to window production on one side of the plate material.
한편, 실시예 1에서 얻은 재생 PVC 재료와 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 혼합한 혼합물을 원료 수지 재료로 사용하여 시편 B를 제조하였다.On the other hand, specimen B was prepared using a mixture of the recycled PVC material obtained in Example 1 and general PVC (synthesized PVC rather than recycled PVC) as a raw resin material.
상기 일반 PVC로는 LG화학의 범용 PVC로서, LS 100 제품을 사용하였다. 도 4는 상기 일반 PVC에 대한 1H NMR 스펙트럼이다.As the general PVC, LG Chem's general-purpose PVC, LS 100 product was used. 4 is a 1 H NMR spectrum of the general PVC.
도면에서 상기 일반 PVC의 스펙트럼은 PVC에서 유래하는 피크만이 확인되고, 재생 PVC 재료의 제 2 피크에 해당하는 피크는 확인되지 않는 것을 알 수 있다.In the figure, it can be seen that in the spectrum of the general PVC, only the peak derived from PVC is confirmed, and the peak corresponding to the second peak of the recycled PVC material is not confirmed.
상기 재생 PVC 재료와 일반 PVC를 6:4의 중량 비율(재생 PVC 재료:일반 PVC)로 혼합하여 원료 수지 재료를 제조하였다. 상기 원료 수지 재료에 시편 A의 제조 시와 동일하게 안정제, CaCO3 및 첨가제를 25:1.2:73:0.8의 중량 비율(원료 수지 재료:안정제:CaCO3:첨가제)로 혼합하고, 혼합기(Brabender mixer)로 200℃에서 혼련한 후에 혼련된 재료를 200℃에서 프레스 가공하여 시편 A에서와 동일한 크기의 판재를 제조하였다. 그 후, 상기 판재의 일면에 창호 제작에 통상 적용되는 백색 시트, 전사지 및 투명 필름을 순차 적층하여 시편 B를 제조하였다.A raw resin material was prepared by mixing the recycled PVC material and normal PVC in a weight ratio of 6:4 (recycled PVC material: normal PVC). The stabilizer, CaCO 3 and additives were mixed with the raw resin material in a weight ratio of 25:1.2:73:0.8 (raw resin material:stabilizer:CaCO 3 :additive) in the same way as in the preparation of specimen A, and a mixer (Brabender mixer) ), and then kneaded at 200 ° C., the kneaded material was press-worked at 200 ° C. to prepare a plate having the same size as in specimen A. After that, specimen B was prepared by sequentially stacking a white sheet, a transfer paper, and a transparent film commonly applied to window production on one side of the plate material.
시편 C는, 실시예 1의 재생 PVC 재료와 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 1:9의 중량 비율(재생 PVC 재료:일반 PVC)로 혼합한 재료를 원료 수지 재료로 사용한 것을 제외하고는 시편 B의 경우와 동일하게 제조하였으며, 시편 D는, 실시예 1의 재생 PVC 재료 대신 시편 B 및 C에서 적용한 일반 PVC(재생된 PVC가 아닌 합성된 PVC)를 원료 수지 재료로 적용한 것을 제외하고는 시편 A의 경우와 동일하게 시편을 제조하였다.Specimen C is a mixture of the recycled PVC material of Example 1 and general PVC (synthesized PVC rather than recycled PVC) in a weight ratio of 1:9 (recycled PVC material: normal PVC) using a material as the raw resin material. It was manufactured in the same way as in the case of specimen B, except for specimen D, in which the general PVC (synthesized PVC, not recycled PVC) applied in specimens B and C was applied as a raw resin material instead of the recycled PVC material of Example 1. Except for the sample was prepared in the same way as in the case of sample A.
상기 시편들에 대한 인장 특성의 평가 결과는 하기 표 2와 같다.The evaluation results of the tensile properties of the specimens are shown in Table 2 below.
시편APsalm A 시편BPsalm B 시편CPsalm C 시편DPsalm D
인장강도(MPa)Tensile strength (MPa) 19.9319.93 20.9720.97 23.3423.34 24.9324.93
인장탄성률(MPa)Tensile Modulus (MPa) 61986198 64786478 66106610 69836983
신율(mm)Elongation (mm) 3.273.27 3.363.36 3.393.39 3.943.94
표 2의 결과로부터, 재생 PVC 재료의 함량이 많은 시편일수록 인장 강도 및 인장 탄성률이 감소하면서 신율이 증가하는 것을 알 수 있다. 이러한 결과는, 재생 PVC 재료에 포함되어 제 2 피크를 형성하는 재료가 PVC가 가지는 고유의 특성이 쉽게 깨지는 특성(brittleness)을 개선하고, 재료의 가공성과 유연성을 향상시키는 것을 알 수 있다.From the results of Table 2, it can be seen that the elongation increases while the tensile strength and tensile modulus decrease as the content of the recycled PVC material increases. From these results, it can be seen that the material included in the recycled PVC material and forming the second peak improves brittleness, which is an inherent characteristic of PVC, and improves workability and flexibility of the material.

Claims (17)

  1. 폐기물로부터 재생된 재생 폴리염화비닐 재료로서,As a recycled polyvinyl chloride material recycled from waste,
    재생 폴리염화비닐과 알루미늄을 포함하는 재료.Materials containing recycled polyvinyl chloride and aluminum.
  2. 제 1 항에 있어서, 재생 폴리염화비닐을 85 중량% 이상 포함하는 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 1, comprising at least 85% by weight of recycled polyvinyl chloride.
  3. 제 1 항에 있어서, 알루미늄은 하기 화학식 1의 화합물에 포함되어 있거나, 하기 화학식 1의 화합물에서 유래한 재생 폴리염화비닐 재료:The recycled polyvinyl chloride material according to claim 1, wherein aluminum is contained in a compound represented by the following formula (1) or derived from a compound represented by the following formula (1):
    [화학식 1][Formula 1]
    [Al2(OH)nCl6-n]m [Al 2 (OH) n Cl 6-n ] m
    화학식 1에서 n은 1 내지 5의 범위 내의 수이고, m은 10 이하의 수이다.In Formula 1, n is a number in the range of 1 to 5, and m is a number of 10 or less.
  4. 제 1 항에 있어서, 알루미늄을 0 ppm 초과 및 1000 ppm 이하의 범위 내로 비율로 포함하는 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 1, comprising aluminum in a proportion within a range of greater than 0 ppm and less than or equal to 1000 ppm.
  5. 제 1 항에 있어서, 케톤 또는 테트라하이드로퓨란을 추가로 포함하는 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 1, further comprising a ketone or tetrahydrofuran.
  6. 제 5 항에 있어서, 케톤은 몰질량이 70 내지 150 g/mol의 범위 내인 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 5, wherein the ketone has a molar mass in the range of 70 to 150 g/mol.
  7. 제 5 항에 있어서, 케톤은 비점이 130℃ 내지 200℃의 범위 내인 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 5, wherein the ketone has a boiling point in the range of 130°C to 200°C.
  8. 제 5 항에 있어서, 케톤은, 20℃에서의 수용해도가 15 g/100mL 이하인 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 5, wherein the ketone has a water solubility of 15 g/100 mL or less at 20°C.
  9. 제 5 항에 있어서, 케톤은 20℃에서의 증기압이 1 내지 10 mmHg의 범위 내에 있는 재생 폴리염화비닐 재료.6. The recycled polyvinyl chloride material according to claim 5, wherein the ketone has a vapor pressure at 20 DEG C in the range of 1 to 10 mmHg.
  10. 제 5 항에 있어서, 케톤은 사이클로헥사논인 재생 폴리염화비닐 재료.6. The recycled polyvinyl chloride material according to claim 5, wherein the ketone is cyclohexanone.
  11. 제 1 항에 있어서, 중금속을 포함하는 재생 폴리염화비닐 재료.The recycled polyvinyl chloride material according to claim 1, comprising heavy metals.
  12. 제 11 항에 있어서, 중금속 함량이 500 ppm 미만인 재생 폴리염화비닐 재료.12. The recycled polyvinyl chloride material of claim 11 having a heavy metal content of less than 500 ppm.
  13. 제 11 항에 있어서, 중금속 함량이 100 ppm 미만인 재생 폴리염화비닐 재료.12. The recycled polyvinyl chloride material of claim 11 having a heavy metal content of less than 100 ppm.
  14. 제 11 항에 있어서, 중금속 함량이 50 ppm 미만인 재생 폴리염화비닐 재료.12. The recycled polyvinyl chloride material of claim 11 having a heavy metal content of less than 50 ppm.
  15. 제 11 항에 있어서, 중금속 함량이 10 ppm 미만인 재생 폴리염화비닐 재료.12. The recycled polyvinyl chloride material of claim 11 having a heavy metal content of less than 10 ppm.
  16. 제 1 항 내지 제 15 항 중 어느 한 항의 재생 폴리염화비닐 재료를 포함하는 수지 성형체.A resin molded body comprising the recycled polyvinyl chloride material according to any one of claims 1 to 15.
  17. 제 1 항 내지 제 15 항 중 어느 한 항의 재생 폴리염화비닐 재료를 포함하는 창호.A window comprising the recycled polyvinyl chloride material according to any one of claims 1 to 15.
PCT/KR2022/006921 2021-05-14 2022-05-13 Recycled polyvinyl chloride material WO2022240253A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20210062827 2021-05-14
KR10-2021-0062827 2021-05-14
KR10-2021-0081719 2021-06-23
KR20210081719 2021-06-23
KR10-2022-0046862 2022-04-15
KR1020220046862A KR20220155191A (en) 2021-05-14 2022-04-15 Recycled Poly(vinyl chloride) Material

Publications (1)

Publication Number Publication Date
WO2022240253A1 true WO2022240253A1 (en) 2022-11-17

Family

ID=84028748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006921 WO2022240253A1 (en) 2021-05-14 2022-05-13 Recycled polyvinyl chloride material

Country Status (1)

Country Link
WO (1) WO2022240253A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970065433A (en) * 1997-07-07 1997-10-13 염복철 Water treatment composition and water treatment method using the same
KR20020042681A (en) * 1999-09-24 2002-06-05 더블유. 니첼스 Method for recycling vinyl polymer-based articles
JP2009096869A (en) * 2007-10-16 2009-05-07 Hokkaido Univ Method for removing inorganic substance such as lead compound from polyvinyl chloride material
US20090149619A1 (en) * 2004-11-22 2009-06-11 Solvay (Societe Anonyme) Process for the purification from heavy metals of vinyl chloride polymers
KR20200060160A (en) * 2018-11-22 2020-05-29 주식회사 유앤아이기술 aluminum based absorbent and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970065433A (en) * 1997-07-07 1997-10-13 염복철 Water treatment composition and water treatment method using the same
KR20020042681A (en) * 1999-09-24 2002-06-05 더블유. 니첼스 Method for recycling vinyl polymer-based articles
US20090149619A1 (en) * 2004-11-22 2009-06-11 Solvay (Societe Anonyme) Process for the purification from heavy metals of vinyl chloride polymers
JP2009096869A (en) * 2007-10-16 2009-05-07 Hokkaido Univ Method for removing inorganic substance such as lead compound from polyvinyl chloride material
KR20200060160A (en) * 2018-11-22 2020-05-29 주식회사 유앤아이기술 aluminum based absorbent and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2017095174A1 (en) Polymeric composition
WO2018030552A1 (en) Polymerizable composition
WO2013100409A1 (en) Monomer for a hardmask composition, hardmask composition comprising the monomer, and method for forming a pattern using the hardmask composition
WO2018110923A1 (en) Plasticizer composition and resin composition comprising same
WO2016129876A1 (en) Plasticizer composition, resin composition, and preparation methods therefor
WO2018084557A1 (en) Thermoplastic resin composition having excellent weather resistance, method for preparing same, and molded product comprising same
WO2022092558A1 (en) Production method for polyester copolymer comprising recycled monomers
WO2018084408A1 (en) Method for preparing abs resin composition and method for preparing abs injection-molded product comprising same
WO2019240405A1 (en) Plasticizer composition, and resin composition comprising same
WO2019240409A1 (en) Plasticizer composition, and resin composition comprising same
WO2022240253A1 (en) Recycled polyvinyl chloride material
WO2017018740A1 (en) Plasticizer composition, resin composition, and preparation methods therefor
WO2015119443A1 (en) Ester compound, plasticizer composition comprising same, method for manufacturing ester composition, and resin composition comprising ester composition
WO2012177044A2 (en) Optical film
WO2018147617A1 (en) Polyamide-imide film and method for producing same
WO2022035071A1 (en) Transparent thermoplastic resin and method for preparing same
WO2022220610A1 (en) Method for preparing intermediate for synthesis of sphingosine-1-phosphate receptor agonist
WO2022097903A1 (en) Method for purifying bis-2-hydroxylethyl terephthalate and polyester resin comprising same
WO2022145933A1 (en) Plasticizer composition
WO2023003277A1 (en) Monomer composition for synthesizing recycled plastic, method for manufacturing same, and recycled plastic, molded article, and plasticizer composition using same
WO2024049140A1 (en) Reprocessable or recyclable cured liquid crystalline epoxy resin, re-cured product thereof, and method for producing same
WO2016060340A1 (en) Polyimide preparation method carried out under pressurized conditions
WO2019221448A1 (en) Matrix copolymer, graft copolymer, and thermoplastic resin composition
WO2015119442A1 (en) Ester compound, plasticizer composition comprising same, method for manufacturing plasticizer composition, and resin composition comprising plasticizer composition
WO2023163481A1 (en) Method for preparing recycled bis(2-hydroxyethyl) terephthalate through multi-step depolymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE