WO2022240096A1 - Turbocompressor and method for controlling same - Google Patents

Turbocompressor and method for controlling same Download PDF

Info

Publication number
WO2022240096A1
WO2022240096A1 PCT/KR2022/006567 KR2022006567W WO2022240096A1 WO 2022240096 A1 WO2022240096 A1 WO 2022240096A1 KR 2022006567 W KR2022006567 W KR 2022006567W WO 2022240096 A1 WO2022240096 A1 WO 2022240096A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
refrigerant
valve
compression unit
inlet
Prior art date
Application number
PCT/KR2022/006567
Other languages
French (fr)
Korean (ko)
Inventor
오준철
배효조
문창국
이병철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP22807744.2A priority Critical patent/EP4339464A1/en
Publication of WO2022240096A1 publication Critical patent/WO2022240096A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/14Refrigerants with particular properties, e.g. HFC

Definitions

  • the present invention relates to a turbo compressor and a method for controlling the same, and more particularly, to a turbo compressor having a structure that can be miniaturized while producing a high compression ratio by a three-stage structure impeller, and a method for controlling the same.
  • compressors are applied to vapor compression type refrigerating cycles (hereinafter, abbreviated as refrigerating cycles) such as refrigerators or air conditioners.
  • the compressor may be classified into a reciprocating type, a rotary type, a scroll type, and the like according to a method of compressing refrigerant.
  • a reciprocating compressor is a compressor in which a piston in a cylinder compresses gas by reciprocating motion.
  • a scroll compressor engages a fixed scroll fixed in the inner space of an airtight container to perform a orbital motion, thereby performing a orbital movement with a fixed wrap of the fixed scroll and an orbiting scroll. It is a compressor in which a compression chamber is formed between the orbiting wraps of the
  • a turbo compressor is a type of centrifugal compressor, which compresses gas with centrifugal force by rotating the impeller wheels of the curved blades in the casing.
  • Turbo compressors have advantages over reciprocating and screw-type compressors such as large capacity, low noise, and low maintenance. In addition, it is possible to produce clean compressed gas that does not contain oil.
  • a centrifugal turbocompressor consists of an impeller to compress the gas and a diffuser to decelerate the accelerated gas flow and convert it to pressure.
  • the motor rotates the impeller at high speed, external gas is sucked in along the axial direction of the impeller, and the sucked gas is discharged in the centrifugal direction of the impeller.
  • the fluid discharged in the centrifugal direction of the impeller is compressed while moving along a flow path formed inside the turbo compressor.
  • the counter-type turbo compressor has first and second stage impellers centered on the motor and disposed opposite to each other on both sides of the motor.
  • both the impeller and the journal bearing that apply the load to the shaft are symmetrically arranged to take a mechanically stable structure.
  • liquid refrigerant at a cold temperature is injected into the motor unit. Its advantage is that it can quickly and reliably lower the temperature of the motor.
  • the refrigerant performance of the entire refrigeration cycle may be partially reduced by partially bypassing the refrigerant of the refrigeration cycle and using it for motor cooling.
  • Turbo compressors have a certain relationship between the operating speed and the maximum pressure ratio. In addition, there is a certain relationship between the operating speed and the flow rate. Due to these characteristics, there is a problem in that it is difficult to have a required flow rate range in all pressure ratios when designing three or more stages.
  • Patent Document 1 discloses a turbocompressor having an axial bearing cooling arrangement structure.
  • Patent Document 1 as a solution to the problem of deformation of the thrust bearing plate due to heat generation in the thrust bearing and vibration of the shaft caused by this, forms a suction refrigerant bypass passage adjacent to the thrust bearing plate to cool the thrust bearing part.
  • the inlet distributor having an inlet refrigerant flow path, the inlet distributor is configured to cool adjacent to the thrust bearing plate, includes a bypass opening, and a part of the suction refrigerant introduced through the bypass opening cools the thrust plate.
  • a structure that joins the suction refrigerant again is disclosed.
  • Patent Document 1 it is difficult to manufacture and assemble the shape of the guide that distributes the suction refrigerant into the first-stage compression unit, and the efficiency of the compressor decreases due to flow resistance, and the inflow of high density refrigerant depends on the operating conditions of the compressor.
  • the efficiency of the compressor decreases due to flow resistance, and the inflow of high density refrigerant depends on the operating conditions of the compressor.
  • Patent Document 1 in order to cool the motor and the bearing part, a liquid refrigerant is put in and the liquid refrigerant having a high density is expanded and introduced into the suction part due to the characteristics of the horizontal compressor in implementing the stirring well. there is a problem.
  • Patent Document 2 (US 7293954 (November 13, 2007) predicts surge of a turbo compressor and discloses a control system for preventing surge.
  • a high-temperature gas bypass is used as a method of controlling the surge.
  • a bypass pipe connects a discharge part and a suction part, and a bypass valve enabling opening and closing of the bypass pipe is applied.
  • Patent Document 2 discloses a feature of opening and closing the bypass valve of the hot gas at a predetermined value through a control device when it is determined that a surge occurs in the anti-surge control system.
  • Patent Document 2 when the high-temperature gas bypass is applied, the high-temperature and high-pressure discharge gas of the discharge unit is mixed with the suction gas, thereby increasing the suction pressure and enabling surge avoidance.
  • the temperature of the suction refrigerant rises, which lowers the efficiency of the compressor and adversely affects the reliability of the mechanical unit.
  • the pressure and temperature of the discharge gas discharged to the 3-stage compression unit are much higher than those of the 1-stage or 2-stage compressor, and the conventional high-temperature gas bypass is used to avoid surge in the 3-stage turbo compressor. If used, there is a problem that the temperature of the suction refrigerant rises excessively.
  • the present invention has been made to solve the above problems, and one object of the present invention is to provide a turbo compressor of a structure that can be miniaturized while paying a high compression ratio by a three-stage structure impeller and a method for controlling the same.
  • Another object of the present invention is to provide a turbo compressor and a method for controlling the same in which a flow rate range is not reduced while securing a pressure ratio by means of a three-stage impeller.
  • Another object of the present invention is a structure in which only the first and second stage compression units enable discharge and the third stage compression unit bypasses or sends refrigerant to the suction unit of the first stage compression unit to lower the operating speed and minimize losses. It is to provide a turbo compressor and a method for controlling the same.
  • Another object of the present invention is to provide a turbo compressor having a structure capable of having a required flow rate range at all pressure ratios when designed with three or more stages, and a method for controlling the same.
  • the turbo compressor of the present invention a driving unit capable of generating rotational power for compression of the refrigerant; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit; One side of the shaft includes first to third compression units installed on the shaft, and the first compression unit sucks the refrigerant discharged from the evaporator, compresses the sucked refrigerant, and discharges the refrigerant from the drive unit. and a first impeller rotating by the power of, and the second compression unit sucks in the refrigerant discharged from the first compression unit and compresses the sucked refrigerant so that it can be discharged by the power of the drive unit.
  • a rotating second impeller is provided, and the third compression unit sucks the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges the refrigerant to the outside or bypasses the first compression unit.
  • 3 Impeller is provided.
  • the first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and the first inlet communicates with the third impeller to enable supply of the refrigerant.
  • a first bypass passage is connected, and a first valve enabling or blocking flow from the first inlet to the third impeller may be installed in the first bypass passage.
  • the first compression unit may include a first impeller housing capable of accommodating the first impeller, and the first inlet may be formed at one side of the first impeller housing in a direction parallel to the axis.
  • the second compression unit has a second outlet capable of supplying the refrigerant discharged from the second impeller to the third impeller, the third compression unit is capable of communicating with the second outlet, An inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller is provided, and a second valve is installed at the second outlet or the inflow passage, and the second valve discharges the refrigerant from the second impeller.
  • the flow of the refrigerant to the third impeller may be enabled or blocked.
  • a second impeller housing capable of accommodating the second impeller may be provided, and the second outlet may be provided in the second impeller housing.
  • the third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller,
  • a second bypass passage may be formed between the first inlet and the third volute.
  • a third valve is installed in the second bypass passage, and the third valve enables or blocks the flow of the refrigerant discharged from the third impeller from the third volute to the first inlet. .
  • a third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. can be enabled or blocked.
  • the drive unit may include a refrigerant inlet flow path capable of communicating with the first inlet, and a fifth valve may be connected to the refrigerant inlet flow path to enable or block the inflow of the refrigerant discharged from the evaporator.
  • the turbo compressor of the present invention includes a driving unit capable of generating rotational power for compressing a refrigerant; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit; first to third compression units installed on the shaft at one side of the shaft; and a control unit electrically connected to the drive unit to control operations of the first to third compression units, wherein the first compression unit can suck in refrigerant discharged from the evaporator, compress the sucked refrigerant, and discharge the sucked refrigerant.
  • a first impeller rotating by power from the drive unit to do so and the second compression unit sucks the refrigerant discharged from the first compression unit, compresses the sucked refrigerant, and discharges the refrigerant. It has a second impeller rotating by power from the unit, and the third compression unit sucks in the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges it to the outside or to the first compression unit.
  • a third impeller enabling bypass may be provided.
  • the first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and a first bypass flow path communicating to enable supply of refrigerant to the third impeller is connected to the first inlet.
  • a first valve enabling or blocking the flow from the first inlet to the third impeller may be installed in the first bypass passage.
  • the second compression unit has a second outlet capable of providing the refrigerant discharged from the second impeller to the third compression unit, and the third compression unit is capable of communicating with the second outlet, An inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller is provided, and a second valve is installed at the second outlet or the inflow passage, and the second valve discharges the refrigerant from the second impeller.
  • the flow of the refrigerant to the third impeller may be enabled or blocked.
  • the third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller, wherein the first A second bypass passage may be formed between the inlet and the third volute.
  • the control unit is electrically connected to the first valve and can control the first valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
  • the control unit is electrically connected to the second valve and can control the second valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
  • a third valve is installed in the second bypass passage, and the third valve allows the refrigerant discharged from the third impeller to flow from the third volute to the first inlet. It can enable or block the flow.
  • the control unit is electrically connected to the third valve, and the third valve is turned off when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected, and the target pressure ratio is greater than the operable pressure ratio.
  • the third valve may be controlled to be turned on when a surge or a surge is expected.
  • a third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. can be enabled or blocked.
  • the control unit is electrically connected to the fourth valve and can control the fourth valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
  • the drive unit may include a refrigerant inlet passage capable of communicating with the first inlet, and a fifth valve may be installed in the refrigerant inlet passage to enable or block the inflow of the refrigerant discharged from the evaporator.
  • the control unit is electrically connected to the fifth valve and controls the fifth valve to be turned off when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected, and the target flow rate is operated.
  • the fifth valve may be controlled to be turned on when heating is performed without being greater than the available flow rate and the response to the injection load is possible.
  • a method for controlling a turbo compressor of the present invention includes determining whether a target flow rate is greater than an operable flow rate; determining whether the target pressure ratio is greater than the operable pressure ratio; Determining whether a surge is expected; and determining whether to perform cooling or heating.
  • the third compression unit When the target pressure ratio is smaller than the operable pressure ratio, the third compression unit operates, and when the third compression unit operates, the first to fifth valves are turned off to discharge the refrigerant Response operation according to the load is performed so that
  • the second compression unit When the surge is not expected to occur, the second compression unit is operated, and when the second compression unit is operated, the second and third valves are turned off to discharge the refrigerant Responsive operation according to the load.
  • the third stage compression unit bypasses or sends the refrigerant to the suction unit of the first stage compression unit to lower the operating speed and thereby minimize losses.
  • the present invention at a pressure ratio of 15 or more, compresses only the compression parts of the first and second stages sequentially without sequentially compressing all the compression units of the first to third stages so as to have a flow rate range of 10% to 100% of partial load.
  • the compression part of the bypass bypasses the intake or cycle to secure the operating range.
  • the surge margin valve can be applied in this way, and operates to avoid the operating speed when the surge point of the turbocompressor of the present invention is unstable or acts as a safety valve only for the turbocompressor other than the bypass of the cycle. This makes it possible to respond to driving in real time.
  • the present invention directly bypasses the first-stage compression unit in the third-stage compression unit, so that an additional valve is required, but the flow rate of the turbo compressor is increased to have a larger operating range than the choking area. Therefore, it can be applied to various products by expanding the rated capacity without increasing the operating speed.
  • the method of discarding the refrigerant by bypassing from the 3-stage compression unit to the external cycle can simplify the flow path (for example, piping), thereby securing an operating range.
  • FIG. 1 is a cross-sectional view showing a turbo compressor of the present invention.
  • Figure 2 is a conceptual diagram schematically showing the flow, suction and discharge of refrigerant in the turbo compressor of the present invention.
  • FIG. 3 is a conceptual diagram showing first to third compression units in the turbo compressor of the present invention.
  • FIG. 4 is a block diagram showing an electrical connection relationship with a driving unit, first to third compression units, and first to fifth valves of a control unit;
  • FIG. 5 is a flowchart showing operations aimed at low flow rate and high pressure ratio operation of the turbocompressor of the present invention.
  • Fig. 6 is a flow chart showing operations aimed at low flow rate and medium pressure ratio operation of the turbocompressor of the present invention.
  • Fig. 7 is a flow chart showing operations aimed at high flow rate and low pressure ratio operation of the turbocompressor of the present invention.
  • FIG. 8 is a graph showing flow rate, pressure ratio, and surge line by comparing the three-stage turbocompressor of the present invention and the conventional two-stage turbocompressor.
  • turbo compressor 100 according to the present invention will be described in detail based on an embodiment shown in the accompanying drawings.
  • the turbo compressor 100 of the present invention includes a driving unit 120, a shaft 125, and first to third compression units 130, 140, and 180.
  • the drive unit 120 can generate rotational power for compression of the refrigerant.
  • the driving unit 120 includes a stator 121 and a rotor 122, and a detailed structure thereof will be described later.
  • the shaft 125 extends in one direction and is rotated by power generated from the drive unit 120 .
  • the first to third compression units 130, 140, and 180 are installed on the shaft 125 at one side of the shaft 125, and each of the first to third compression units 130, 140, and 180 and first to third impellers 131, 141, and 181 enabling compression (125) of the refrigerant.
  • the first compression unit 130 includes a first impeller 131 that rotates by power from the drive unit 120 to suck in the refrigerant discharged from the evaporator, compress the sucked refrigerant, and enable discharge.
  • the second compression unit 140 sucks in the refrigerant discharged from the first compression unit 130, compresses the sucked refrigerant, and rotates the second impeller by power from the driving unit 120 to enable discharge. (141) is provided.
  • the third compression unit 180 sucks in the refrigerant discharged from the second compression unit 140, compresses the sucked refrigerant, discharges it to the outside, or bypasses the first compression unit to provide a third compression unit.
  • An impeller 181 is provided.
  • the third compression unit 180 receives suction refrigerant and bypasses it to the housing or cycle, thereby minimizing loss and providing a wide operating range. have.
  • the third compression unit 180 is configured to compress the high-density refrigerant after being compressed in the first and second compression units 130 and 140, so that a relatively large flow rate is achieved when the refrigerant is compressed in the first compression unit 130. It is not necessary to compress, and the refrigerant compressed in the third compression unit 180 can be supplied again to the rear end of the evaporator, which is the inlet of the housing, so that loss can be minimized.
  • this method reduces the flow rate and pressure ratio at the same operating speed compared to the method of performing three-stage compression through the first to third compression units 130, 140, and 180, but it is possible to secure an operating range while minimizing surge point operation.
  • turbo compressor 100 since the hot gas by-pass sucks the discharged refrigerant compressed in the second stage back into the first-stage compression unit, the temperature and pressure increase relatively rapidly. Therefore, there is a problem that the flow rate of the bypass is limited.
  • the turbo compressor 100 of the present invention since the refrigerant compressed through the third compression unit 180 is supplied back to the first and second compression units 130 and 140, the temperature and pressure are relatively increased. It is possible to minimize, and it is possible to have a design margin for the surge characteristic that the turbo compressor 100 generally has.
  • the surge margin valve can be applied in this way, and operates to avoid the operating speed at the time of unstable operation of the surge point of the turbo compressor 100 of the present invention or the turbo compressor other than the bypass of the cycle ( 100) as a safety valve, enabling real-time operation response.
  • the turbo compressor 100 of the present invention may further include a casing 110.
  • the drive unit 120 is installed in the inner space
  • the first compression unit 130 and the second compression unit 140 are installed outside the casing 110
  • the drive unit 120 and A shaft 125 is connected between the compression units 130 and 140 .
  • the drive unit 120 is installed in the inner space of the casing 110, and the first compression unit 130 and the outside of the casing 110 are installed.
  • a second compression unit 140 is installed, and an example in which a shaft 125 is connected between the drive unit 120 and the compression units 130 and 140 is shown.
  • the casing 110 may include a shell 111 having a cylindrical shape with both ends open, and a front frame 112 and a rear frame 113 covering both open ends of the shell 111, respectively.
  • a stator 121 of a driving unit 120 to be described later is fixedly coupled to the inner circumferential surface of the shell 111, and a shaft 125 to be described later passes through the center of the front frame 112 and the rear frame 113.
  • Holes 112a and 113a are formed, respectively, and the hole 112a of the front frame 112 and the hole 113a of the rear frame 113 are radial bearings for supporting the shaft 125 in the radial direction (151, 152) can be installed respectively.
  • first thrust bearing 153 is coupled to the inner surface of the front frame 112 and a second thrust bearing 154 is coupled to the inner surface of the rear frame 113, respectively.
  • the first axial support plate (thrust runner) 161 and the second axial support plate (thrust runner 162) may be fixedly coupled to each other so as to face the thrust bearing 153 and the second thrust bearing 154, respectively. That is, the first thrust bearing 153 together with the first axial support plate 161 forms a first direction thrust limiter, and the second thrust bearing 154 together with the second axial support plate (thrust runner 162) A second direction thrust limiting portion is formed.
  • the first direction thrust limiting unit and the second direction thrust limiting unit cancel thrust on the rotating element including the shaft 125 while forming thrust bearings in opposite directions.
  • the driving unit 120 serves to generate rotational power for compressing the refrigerant.
  • the driving unit 120 includes a stator 121 and a rotor 122, and at the center of the rotor 122, the rotational force of the rotor 122 is transferred to a first impeller 131 and a second impeller 141, which will be described later.
  • a shaft 125 for transmission is coupled.
  • the stator 121 may be fixed by being press-fitted to the inner circumferential surface of the casing 110 or welded to the casing 110 .
  • the outer circumferential surface of the stator 121 is formed to be decut in a D shape, and a passage through which fluid can move may be formed between the inner circumferential surface of the casing 110.
  • the rotor 122 is located inside the stator 121 and is spaced apart from the stator 121 .
  • Balance weights may be coupled to both ends of the rotor 122 in the axial direction to offset eccentric loads generated by the first impeller 131 and the second impeller 141, which will be described later. However, the balance weight may be coupled to the shaft 125 without being installed on the rotor 122 .
  • a refrigerant inlet passage 182f may be formed in the driving unit 120 to allow the inflow of refrigerant discharged from the evaporator, and its structure will be described later.
  • the first axial support plate 161 and the second axial support plate (thrust runner) 162 may be used as the balance weight.
  • the shaft 125 is press-fitted through the center of the rotor 122 . Therefore, the shaft 125 receives rotational force generated by the interaction between the stator 121 and the rotor 122 and rotates together with the rotor 122, and this rotational force is transmitted to the first impeller 131 and the second impeller to be described later. (141) to inhale, compress and discharge the refrigerant.
  • a first axial support plate 161 axially supported by first and second thrust bearings 153 and 154 provided in the casing 110 and The second axial support plates (thrust runners, 162) are fixedly coupled to each other.
  • the shaft 125 is a first thrust bearing (where the first axial support plate 161 and the second axial support plate 162 provided on the shaft 125 are provided on the casing 110), as described above. 153) and the second thrust bearing 154, it is possible to effectively cancel the thrust generated by the first compression unit 130 and the second compression unit 140 while being supported in opposite directions.
  • the first axial support plate 161 and the second axial support plate 162 may be integrally provided at both ends of the rotor 122, but in this case, the first axial support plate 161 and the second axial support plate 162 ) Frictional heat generated in the process of supporting the shaft 125 in the axial direction may be transmitted to the rotor 122, and when each support plate 161, 162 is deformed by receiving a load in the axial direction, the rotor 122 may be transformed. Accordingly, it is preferable that the first axial support plate 161 and the second axial support plate 162 are spaced apart from both ends of the rotor 122 .
  • the first axial support plate 161 and the second axial support plate 162 are fixedly coupled to the shaft 125 to be described later, as described above, the first axial support plate 161 and the second axial support plate It may be used as a balance weight by adjusting the weight or fixing position of (162). In this case, since there is no need to install a separate balance weight on the rotor 122, not only can the weight of the rotating element be reduced, but also the axial length of the turbo compressor 100 can be reduced, thereby miniaturizing the turbo compressor 100. can
  • first thrust bearing 153 and the second thrust bearing 154 are not installed on the front frame 112 and the rear frame 113, but on the first axial support plate 161 and the second shaft opposite to each other. It may also be installed on the direction support plate 162 .
  • the inside of the casing 110 that is, between the front frame 112 and the rotor 122 or between the rear frame 113 and the rotor 122 is a separate front side fixed to the casing 110, respectively.
  • a side fixing plate (not shown) and a rear fixing plate (not shown) may be further provided, and the first thrust bearing 153 and the second thrust bearing 154 may be respectively installed on the front fixing plate and the rear fixing plate.
  • the axial length of the turbo compressor 100 may increase and the number of assembly man-hours may increase, reliability may be improved compared to installing a thrust bearing directly on the casing 110.
  • first thrust bearing 153 and the second thrust bearing 154 are gathered on one side of the drive unit 120, that is, on either the front side or the rear side with respect to the stator 121. may be provided.
  • the compression units 130, 140, and 180 may be formed of one compression unit to perform single compression, but may be formed of a plurality of compression units to perform multi-stage compression as in the present embodiment.
  • the plurality of compression units 130, 140, and 180 are installed on both sides of the casing 110 with respect to the drive unit 120 to improve the characteristics of the turbo compressor 100 having a large axial load. Considering this, it can be desirable in terms of reliability.
  • first to third compression units 130, 140, and 180 will be separately described according to the order of compressing the refrigerant.
  • the first compression unit 130 and the second compression unit 140 are installed consecutively along the axial direction on one side of the casing 110 .
  • first and second impellers 131 and 141 are disposed to face the same direction so that the refrigerant flows from the right side of the first compression unit 130 and the second compression unit 140.
  • the first compression unit 130 includes a first inlet 132b through which the refrigerant discharged from the evaporator can be sucked.
  • the first compression unit 130 may include a first impeller housing 132 capable of accommodating the first impeller 131, the first inlet 132b is, for example, the first impeller housing ( 132) may be formed on one side. 1 shows an example in which the first inlet 132b is formed in a direction parallel to the axis in the first impeller housing 132 near the center of the turbo compressor 100.
  • the first inlet 132b is connected to a first bypass passage 182d communicating to enable the supply of refrigerant to the third impeller 181, and the first bypass passage 182d has the first inlet ( A first valve 191a enabling or blocking the flow from 132b) to the impeller 181 may be installed.
  • first inlet 132b may be formed on one side of the first impeller housing 132 in a direction parallel to the axis.
  • the first valve 191a may be understood as a first bypass valve.
  • the first bypass passage 182d is formed in an “L” shape in the first impeller housing 132, the second impeller housing 142, and the third impeller housing 182.
  • An example is shown, but it is not necessarily limited to this structure, and may be formed in other structures or configurations as long as the first inlet 132b and the inflow passage 182f of the third compression unit 180 can communicate.
  • each of the impellers 131, 141, and 181 are accommodated in the respective impeller housings 132, 142, and 182 and coupled. It can be. That is, in the first compression unit 130, the first impeller 131 is accommodated in the first impeller housing 132 and coupled to the shaft 125, and the second compression unit 140 has a second impeller 141 The second impeller housing 142 is accommodated and coupled to the shaft 125, and the third compression unit 180 is accommodated in the third impeller housing 182 and coupled to the shaft 125.
  • the first impeller 131, the second impeller 141, and the third impeller 181 may be continuously arranged in one impeller housing and coupled to the shaft 125.
  • the shape of the impeller housing will be considerably complicated.
  • a multi-stage turbo compressor 100 in which a plurality of impellers are successively installed on one side in the axial direction with respect to the driving unit 120 (or casing 110) will be described as an example.
  • a first impeller accommodating space 132a in which the first impeller 131 is accommodated is formed inside the first impeller housing 132, and a suction pipe 115 is connected to one end of the first impeller housing 132 to cycle the refrigeration cycle.
  • the first impeller accommodating space 132a may be formed in a closed shape except for the first inlet 132b and the first outlet 132c so as to completely accommodate the first impeller 131, but the first impeller 131 It may be formed in a semi-enclosed shape in which the rear side of the is opened and the open side is sealed to the front side of the second impeller housing 142 to be described later.
  • the first diffuser 133 is formed by being spaced apart from the outer circumferential surface of the wing 131b of the first impeller 131 by a predetermined interval, and the first diffuser 133
  • the first volute 134 is formed on the downstream side of ).
  • the first inlet 132b is formed at the center of one end of the first diffuser 133 in the axial direction
  • the first outlet 132c is formed at the downstream side of the first volute 134, respectively.
  • the first impeller 131 includes a first disc portion 131a coupled to the shaft 125 and a plurality of first wing portions 131b formed on the front surface of the first disc portion 131a.
  • the first disc portion 131a has a plurality of first wing portions 131b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
  • a first back pressure plate (not shown) coupled to the shaft 125 is provided at the rear of the first disk part 131a and is spaced apart by a predetermined interval, and a first sealing member having an annular shape is attached to the first back pressure plate. (not shown) may be provided. Accordingly, a first back pressure space (not shown) filled with a predetermined refrigerant may be formed between the front surface of the second impeller housing 142 and the first back pressure plate at the rear of the first disc unit.
  • the thrust to the shaft 125 may not be large, so the first back pressure space may be excluded.
  • the second compression unit 140 may have a second outlet 142d that enables the refrigerant discharged from the second impeller 141 to be provided to the third impeller 181 .
  • the second outlet 142d may be provided in the second impeller housing 142 .
  • the third compression unit 180 may include an inflow passage 182f.
  • the inflow passage 182f may communicate with the second outlet 142d and may include an inflow passage 182f allowing the refrigerant discharged from the second impeller 141 to flow into the third impeller 181. .
  • a second valve 191b may be installed in the second outlet 142d or the inflow passage 182f to enable or block the flow of the refrigerant discharged from the second impeller 141 to the third impeller 181.
  • the second valve 191b may be understood as an inflow valve that introduces or blocks the flow of the refrigerant discharged from the second impeller 141 to the third impeller 181 .
  • FIG. 1 shows an example in which the second outlet 142d is provided in the second volute and the second valve 191b is installed in the inflow passage 182f.
  • the second valve 191b may be installed on the side of the second outlet 142d.
  • a second impeller accommodating space 142a in which the second impeller 141 is accommodated is formed inside the second impeller housing 142, and one end of the second impeller housing 142 has a first impeller housing 132 is connected to the first outlet 132c of the second inlet 142b through which the first-stage compressed refrigerant is sucked, and a discharge pipe 116 is connected to the other end of the second impeller housing 142 to form a second-stage compressed refrigerant.
  • a second discharge port 142c is formed to guide the refrigerant to the condenser of the refrigerating cycle.
  • a second diffuser 143 is formed between the second inlet 142b and the second outlet 142c by being spaced apart from the outer circumferential surface of the wing 141b of the second impeller 141 by a predetermined interval, and the second diffuser 143
  • the second volute 144 is formed on the downstream side of ).
  • the second inlet 142b is formed at the center of one end of the second diffuser 143 in the axial direction
  • the second outlet 142c is formed at the downstream side of the second volute 144, respectively.
  • the second impeller 141 includes a second disk portion 141a coupled to the shaft 125 and a plurality of second wing portions 141b formed on the front surface of the second disk portion 141a.
  • the second disc portion 141a has a plurality of second wing portions 141b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
  • a second back pressure plate 145 coupled to the shaft 125 is provided at the rear of the second disk part 141a and is spaced apart by a predetermined interval, and the second back pressure plate 145 has an annular second back plate 145.
  • a sealing groove 145a is formed, and the second sealing member 146 may be inserted into the second sealing groove 145a.
  • a second back pressure space (not shown) filled with a predetermined refrigerant is formed between the second back pressure plate (not shown) and the front surface of the casing 110 at the rear of the second disc portion 141a.
  • the second back pressure space is sealed.
  • the second back pressure space is connected to a back pressure passage to be described later, and the back pressure passage is selectively connected to the back pressure passage so that the pressure in the second back pressure space can be varied according to the operating speed (ie, compression ratio) of the compressor.
  • a back pressure control valve that opens and closes may be installed.
  • the back pressure passage may be formed through the inside of the second impeller housing 142 and the casing 110 . That is, a first back pressure passage is formed inside the housing constituting the wall of the second impeller housing 142, and a second back pressure passage communicates with the first back pressure passage inside the front frame 112 of the casing 110. can be formed.
  • the back pressure flow path may be formed in the form of a pipe branched from the middle of the discharge pipe, but it may be preferable to form the back pressure flow path inside the impeller housing and the front frame to reduce manufacturing cost by reducing the number of parts.
  • the back pressure passage may be formed by assembling a separate valve frame equipped with the back pressure passage to the front surface of the casing 110 .
  • the third compression unit 180 is disposed adjacent to the second compression unit 140 .
  • the third compression unit 180 is installed on one side of the casing 110 opposite to the position where the drive unit 120 is disposed.
  • the third impeller 181 is accommodated in the third impeller housing 182 and coupled to the shaft 125.
  • the third impeller 181 is disposed to face opposite to the first and second impellers 131 and 141.
  • a third impeller receiving space 182a in which the third impeller 181 is accommodated is formed inside the third impeller housing 182, and at one end of the third impeller housing 182, the second compression unit 140 A third inlet 182b through which the refrigerant discharged from is provided is formed, and a third discharge port 182c for discharging the refrigerant compressed in three stages is formed on the lower side of the third impeller housing 182 .
  • the third impeller accommodating space 182a may be formed in a closed shape except for the third inlet 182b and the third discharge port 182c so as to completely accommodate the third impeller 181, but the third impeller 181 It may be formed in a semi-enclosed shape in which the rear side of the is opened and the open side is sealed to the rear side of the second impeller housing 142 to be described later.
  • a third diffuser 183 is formed between the third inlet 182b and the third discharge port 182c by being spaced apart from the outer circumferential surface of the wing 181b of the third impeller 181 by a predetermined distance, and the third diffuser 183 A third volute 184 is formed on the downstream side of ). Also, a third inlet 182b is formed at the center of one end of the third diffuser 183 in the axial direction, and a third discharge port 182c is formed at the downstream side of the third volute 184, respectively.
  • the third impeller 181 includes a third disc portion 181a coupled to the shaft 125 and a plurality of third wing portions 181b formed on the front surface of the third disc portion 181a.
  • the third disc portion 181a has a plurality of third wing portions 181b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
  • a back pressure plate (not shown) coupled to the shaft 125 is spaced apart from each other by a predetermined interval at the rear of the third disc portion 181a, and an annular sealing member (not shown) is provided on the back pressure plate. It can be. Accordingly, a back pressure space (not shown) filled with a predetermined refrigerant may be formed between the rear surface of the second impeller housing 142 and the back pressure plate at the rear of the third disc unit.
  • the third compression unit 180 may include a third volute 184 capable of discharging the refrigerant discharged from the third impeller 181 .
  • a second bypass passage 182e may be formed between the aforementioned first inlet 132b and the third volute 184 .
  • a third valve 191c may be installed in the second bypass flow path 182e, and the third valve 191c allows the refrigerant discharged from the third impeller 181 to flow through the third volute. The flow from 184 to the first inlet 132b is allowed or blocked.
  • the third valve 191c may be understood as a second bypass valve installed in the second bypass flow path 182e.
  • a third outlet 182g communicating with an external cycle is formed in the third volute 184
  • a fourth valve 191d is installed in the third outlet 182g, and the fourth valve 191d ) may enable or block the refrigerant discharged from the third impeller 181 from being discharged to an external cycle.
  • the fourth valve 191d may be understood as a third bypass valve installed in the third bypass passage.
  • FIG. 1 shows an example in which a third outlet 182g is formed in the left direction in the third impeller housing 182, the third outlet 182g may communicate with an external cycle, and the third outlet 182g has An example in which the fourth valve 191d is installed is shown.
  • a third outlet 182g communicating with an external cycle is formed in the third volute 184, a fourth valve 191d is installed in the third outlet 182g, and
  • the third outlet (182g) may communicate with an external cycle, and by the configuration in which the fourth valve (191d) is installed at the third outlet (182g), at a pressure ratio of 15 or more, at a partial load of 10% to 100%
  • all compression units in stages 1 to 3 do not compress sequentially, but only compression units in stages 1 and 2 are sequentially compressed, and the compression unit in 3 stages is bypassed with suction or cycle to secure an operating range.
  • the turbo compressor 100 of the present invention has a multi-stage structure in which a plurality of impellers 131, 141, and 181 are successively installed on one side in the axial direction with respect to the driving unit 120 (or casing 110).
  • the turbo compressor 100 of will be described as an example.
  • a third impeller accommodating space 182a in which the third impeller 181 is accommodated is formed inside the third impeller housing 182, and one end of the third impeller housing 182 is inlet
  • a flow path 182f is provided to receive the refrigerant discharged from the second compression unit 140, and the other end of the third impeller housing 182 discharges the refrigerant compressed by the third impeller 181.
  • a third outlet 182g and a third outlet 182c are formed.
  • the drive unit 120 may include a refrigerant inlet passage 182f capable of communicating with the first inlet 132b, and a fifth valve 191e may be connected to the refrigerant inlet passage 182f.
  • the refrigerant inlet passage 182f may be formed along at least one direction, for example.
  • the fifth valve 191e may be understood as an injection valve that supplies refrigerant from the evaporator to the inside of the turbo compressor 100 .
  • a refrigerant inlet passage 182f is formed in the stator 121 of the driving unit 120 .
  • the refrigerant inlet passage 182f is formed in a diagonal direction of the stator 121. Examples are shown, but are not necessarily limited to these structures.
  • FIG. 1 shows an example in which an inlet communicating with the refrigerant inlet passage 182f is formed in the casing 110 and a fifth valve 191e is installed in the inlet.
  • the fifth valve 191e allows the refrigerant discharged from the evaporator to flow into or block the turbo compressor 100 .
  • a valve space (not shown) having a predetermined depth in the radial direction is formed in the front frame 112 of the casing 110, a back pressure valve (not shown) may be inserted and installed, and between the valve space and the back pressure valve A valve spring (not shown) may be installed to elastically support the back pressure valve.
  • a second back pressure hole may be formed at one side of the first back pressure hole (not shown) to communicate the valve space with the inner space of the casing 110 .
  • the second back pressure hole is formed to be located more centrally than the first back pressure hole so that it can be opened when a higher pressure than the first back pressure hole is received when the back pressure valve is opened by pressure.
  • the second back pressure hole may be formed at the same position as the first back pressure hole, that is, at a position where the first back pressure hole and the second back pressure hole are simultaneously opened and closed, or may be formed further outside the first back pressure hole. may be
  • the back pressure valve may be composed of a ball valve or a piston valve.
  • the back pressure valve may have three positions depending on the difference between the force due to the pressure of the refrigerant flowing through the back pressure passage and the force due to the elastic force of the elastic member. That is, the back pressure valve has a first position where both the first back pressure hole and the second back pressure hole are closed, a second position where the first back pressure hole is open and the second back pressure hole is closed, and both the first back pressure hole and the second back pressure hole are open. It may be formed to have a third position.
  • the valve spring is composed of a compression coil spring and may be installed between the inner surface of the back pressure valve and the valve space.
  • the valve spring is composed of a tension coil spring and is installed between the outside of the back pressure valve and the valve space. may be installed.
  • the first back pressure passage is connected to the discharge side of the second compression unit 140, that is, to the second discharge port, but in some cases, the back pressure passage may be connected to the discharge side of the first compression unit. Even in this case, basic configurations such as the valve space and the back pressure valve may be formed in the same manner as in the above-described embodiment.
  • the turbo compressor 100 according to the present embodiment as described above may be operated as follows.
  • the refrigerant passing through the evaporator of the refrigeration cycle flows into the first impeller accommodation space 132a through the suction pipe and the first inlet 132b, and the refrigerant moves along the wing 131b of the first impeller 131. While doing so, the static pressure rises and at the same time passes through the first diffuser 133 with centrifugal force.
  • the kinetic energy of the refrigerant passing through the first diffuser 133 leads to an increase in the pressure head by the centrifugal force in the first diffuser 133, and the centrifugally compressed high-temperature and high-pressure refrigerant flows in the first volute 134. It is collected and discharged through the first outlet 132c.
  • the refrigerant passing through the second diffuser 143 is compressed to a desired pressure by the centrifugal force, and the high-temperature, high-pressure refrigerant compressed in two stages is collected in the second volute 144 and passed through the second outlet 142c and the discharge pipe. Through (not shown), a series of processes of being discharged to the condenser are repeated.
  • the third compression unit 180 some of the refrigerant passing through the second diffuser 143 and collected in the second volute 144 is provided to the third compression unit 180 .
  • the refrigerant supplied to the third compression unit 180 flows along the inflow passage 182f of the third compression unit 180 and flows into the third impeller receiving space 182a through the third inlet 182b. do.
  • the refrigerant passing through the third diffuser 183 is compressed to a desired pressure by centrifugal force, and the high-temperature, high-pressure refrigerant compressed in three stages is collected in the third volute 184 and part of the refrigerant is discharged through the third discharge port 182c. ) and a series of processes of being discharged to the condenser through a discharge pipe (not shown) are repeated.
  • Another part of the refrigerant collected in the third volute 184 may be supplied to an external cycle through the third outlet 182g.
  • another part of the refrigerant collected in the third volute 184 may be provided again to the first compression unit 130 by flowing through the second bypass passage 182e by the controller 170 to be described later. .
  • the first impeller 131 and the second impeller 141 provide thrust pushed backward by the refrigerant sucked through the first inlet 132b and the second inlet 142b of each of the impeller housings 132 and 142. You will receive.
  • the second impeller 141 as the refrigerant compressed in one stage by the first impeller 131 flows in through the second inlet 142b, it receives a considerably large backward thrust. This backward thrust is prevented by the first thrust bearing 153 and the second thrust bearing 154 provided inside the casing 110, so that the first impeller 131 and the second impeller 141 are connected to the shaft 125. ), and pushing toward the rear is suppressed.
  • the first impeller 131 and the second impeller 141 receive thrust to the rear
  • the third impeller 181 also receives thrust to the rear, so that the first and second impellers 131 and 141, Thrust forces of the third impeller 181 may be offset with each other, thereby reducing the load applied to the thrust bearing. Then, the size of the thrust bearing can be reduced, and the efficiency of the compressor can be increased by reducing the frictional loss caused by the thrust bearing.
  • the amount of heat generated from the drive unit 120 may increase during high-speed operation, when a portion of the bypassed refrigerant is induced into the inner space of the casing 110 to cool the drive unit 120, the drive unit 120 ) to improve compressor efficiency.
  • FIG. 4 shows the control unit 170, the drive unit 120, the first to third compression units 130, 140, 180, and the first to fifth valves 191a, 191b, 191c, 191d, 191e and electrical It is a block diagram showing the connection relationship.
  • the turbo compressor 100 of the present invention may further include a controller 170.
  • the controller 170 causes the turbo compressor 100 to operate or stop based on the target flow rate, the operable flow rate, the target pressure ratio, and the operable pressure ratio of the turbo compressor 100 .
  • control unit 170 may include a controller or board on which a CPU or the like is mounted, but is not necessarily limited thereto.
  • control unit 170 may be understood as a configuration capable of storing and utilizing various logics or programs related to a control method described below.
  • the control unit 170 is electrically connected to the drive unit 120, the first to third compression units 130, 140, and 180, and the first to fifth valves 191a, 191b, 191c, 191d, and 191e, respectively. , and an example of this is shown in FIG.
  • the control unit 170 controls the first to fifth valves 191a, 191b, 191c, 191d, in each case of low-flow/high-pressure ratio operation, low-flow/medium-pressure ratio operation, or high-flow/low-pressure ratio operation of the turbo compressor 100.
  • 191e may be turned on or off, or the second or third compression unit 140 or 180 may compress the refrigerant to operate in response to a load.
  • the turbocompressor 100 based on the target flow rate, operable flow rate, target pressure ratio, and operable pressure ratio of the turbo compressor 100 by the control unit 170 ) drive or stop.
  • the turbo compressor control method (S100, S200, S300) of the present invention includes the step of determining whether the target flow rate is greater than the operable flow rate (S10, S210, S310), and the step of determining whether the target pressure ratio is greater than the operable pressure ratio. (S20, S220, S320), determining whether a surge is expected (S50, S250, S350), and determining whether to perform cooling or heating (S30, S230, S330).
  • the turbo compressor control method (S100, S200, S300) of the present invention in each case of low flow high pressure ratio operation, low flow medium pressure ratio operation or high flow low pressure ratio operation of the turbo compressor 100, the control unit 170 ), the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned on or off, or the second or third compression unit compresses the refrigerant, thereby operating in response to the load. can do
  • turbo compressor control method S100, S200, and S300 of the present invention is performed by the controller 170 will be described with reference to flowcharts of FIGS. 5 to 7 below.
  • FIG 5 is a flow chart of an operation (S100) aimed at low flow rate and high pressure ratio operation of the turbo compressor 100 of the present invention.
  • the controller 170 determines whether the target flow rate is greater than the operable flow rate (S10), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S20), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S30).
  • the third compression unit 180 operates (S55).
  • the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned off (S57). In this case, discharge 2 in FIG. It is performed, and corresponding operation according to the load is performed (S70).
  • the third valve 191c is turned on (S60) and corresponding operation according to the load is performed (S70).
  • the third compression unit 180 operates (S55).
  • the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned off (S57). In this case, discharge 2 in FIG. It is performed, and corresponding operation according to the load is performed (S70).
  • FIG. 6 is a flowchart of an operation (S200) aimed at low flow rate and medium pressure ratio operation of the turbo compressor 100 according to the present invention.
  • the controller 170 determines whether the target flow rate is greater than the operable flow rate (S210), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S220), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S230).
  • the second compression unit 140 determines whether the target pressure ratio is greater than the operable pressure ratio (S220), and if the target pressure ratio is less than the operable pressure ratio (No), the second compression unit 140 operates (S255). When the second compression unit 140 operates, the second and third valves 191c are turned off (S257). In this case, discharge 1 in FIG. 2 is performed, and according to the load A response operation is performed (S270).
  • the third valve 191c is turned on (S260) and corresponding operation according to the load is performed (S270).
  • the second compression unit 140 operates (S255).
  • the second and third valves 191c are turned off (S257). In this case, discharge 1 in FIG. 2 is performed, and according to the load A response operation is performed (S270).
  • a non-return valve for example, a check valve
  • a differential pressure valve may be installed.
  • FIG. 7 shows a flow chart of an operation (S300) aimed at driving the turbo compressor 100 with a high flow rate and a low pressure ratio according to the present invention.
  • the controller 170 determines whether the target flow rate is greater than the operable flow rate (S310), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S320), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S330).
  • the third compression unit 180 determines whether or not it is possible to respond to the flow rate (S333), and if the response is not possible (No), the operation of the turbo compressor 100 is stopped (S335). . On the other hand, if the third compression unit 180 can respond to the flow rate (yes), the second valve 191b in the third compression unit 180 is turned off, and the first valve 191a is turned on. ) state, discharge 2 in FIG. 2 is performed or the fourth valve 191d is turned on to enable load response operation (S356).
  • the third valve 191c is turned on (S360) and corresponding operation is performed according to the load (S370).
  • the second compression unit 140 operates (S355).
  • the second and third valves 191b and 191c are turned off. In this case, discharge 1 in FIG. 2 is performed (S357), and Corresponding operation according to the load is performed (S370).
  • a non-return valve for example, a check valve
  • a differential pressure valve may be installed.
  • turbo compressor 100 described above and the method for controlling it are not limited to the configuration and method of the above-described embodiments, but the embodiments are all of the embodiments so that various modifications can be made. Alternatively, some of them may be selectively combined.
  • the present invention can be used for a turbo compressor and a method for controlling the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention provides a turbocompressor and a method for controlling same, the turbocompressor comprising: a driving unit for enabling generation of rotational power for compressing refrigerant; a shaft extending in one direction and installed in the driving unit to be able to rotate by means of power generated by the driving unit; and first to third compression units installed on the shaft from one side of the shaft. The first compression unit comprises a first impeller rotated by power from the driving unit such that refrigerant discharged from an evaporator can be suctioned, and the suctioned refrigerant can be compressed and discharged. The second compression unit comprises a second impeller rotated by power from the driving unit such that refrigerant discharged from the first compression unit can be suctioned, and the suctioned refrigerant can be compressed and discharged. The third compression unit comprises a third impeller. The third impeller makes it possible to suction refrigerant discharged from the second compression unit, to compress the suctioned refrigerant, and to discharge same to the outside. Alternatively, the third impeller makes it possible to provide the refrigerant while bypassing the first compression unit.

Description

터보 압축기 및 이를 제어하는 방법Turbo compressor and method for controlling it
본 발명은 터보 압축기 및 이를 제어하는 방법에 관한 것으로서, 보다 상세하게는 3단 구조의 임펠러에 의해 고압축비를 내면서 소형화 가능한 구조의 터보 압축기 및 이를 제어하는 방법에 관한 것이다.The present invention relates to a turbo compressor and a method for controlling the same, and more particularly, to a turbo compressor having a structure that can be miniaturized while producing a high compression ratio by a three-stage structure impeller, and a method for controlling the same.
일반적으로 압축기는 냉장고나 에어콘과 같은 증기압축식 냉동사이클(이하, 냉동사이클로 약칭함)에 적용되고 있다. 압축기는 냉매를 압축하는 방식에 따라 왕복동식, 로터리식, 스크롤식 등으로 구분될 수 있다.In general, compressors are applied to vapor compression type refrigerating cycles (hereinafter, abbreviated as refrigerating cycles) such as refrigerators or air conditioners. The compressor may be classified into a reciprocating type, a rotary type, a scroll type, and the like according to a method of compressing refrigerant.
왕복동식 압축기는 실린더 내 피스톤이 왕복운동으로 가스를 압축하는 압축기이고, 이 중 스크롤 압축기는 밀폐용기의 내부공간에 고정된 고정 스크롤에 선회 스크롤이 맞물려 선회운동을 함으로써 고정 스크롤의 고정랩과 선회 스크롤의 선회랩 사이에 압축실이 형성되는 압축기이다.A reciprocating compressor is a compressor in which a piston in a cylinder compresses gas by reciprocating motion. Among them, a scroll compressor engages a fixed scroll fixed in the inner space of an airtight container to perform a orbital motion, thereby performing a orbital movement with a fixed wrap of the fixed scroll and an orbiting scroll. It is a compressor in which a compression chamber is formed between the orbiting wraps of the
터보 압축기는 원심 압축기의 일종으로, 케이싱 내에 후곡 날개의 날개 바퀴를 회전해서 그 원심력으로 기체의 압축을 실행하는 것이다. 터보 압축기는 왕복동식, 스크류식 보다 대용량, 저소음, 낮은 유지 보수 등의 장점을 가진다. 뿐만 아니라 오일이 함유되지 않은 깨끗한 압축기체를 생산할 수 있다. A turbo compressor is a type of centrifugal compressor, which compresses gas with centrifugal force by rotating the impeller wheels of the curved blades in the casing. Turbo compressors have advantages over reciprocating and screw-type compressors such as large capacity, low noise, and low maintenance. In addition, it is possible to produce clean compressed gas that does not contain oil.
원심형 터보 압축기는 기체를 압축하기 위해 임펠러와 가속된 기체 흐름을 감속시켜 압력으로 전환시키는 디퓨져로 구성된다. 모터가 임펠러를 고속 회전시키면 외부 기체가 임펠러의 축방향을 따라 흡입되고 흡입된 기체는 임펠러의 원심방향으로 토출된다. 임펠러의 원심방향으로 토출된 유체는 터보 압축기 내부에 형성된 유로를 따라 이동하면서 압축된다.A centrifugal turbocompressor consists of an impeller to compress the gas and a diffuser to decelerate the accelerated gas flow and convert it to pressure. When the motor rotates the impeller at high speed, external gas is sucked in along the axial direction of the impeller, and the sucked gas is discharged in the centrifugal direction of the impeller. The fluid discharged in the centrifugal direction of the impeller is compressed while moving along a flow path formed inside the turbo compressor.
2단 터보 압축기 중 대항형의 터보 압축기는 모터를 중심으로 하여 1,2단의 임펠러가 모터의 양쪽에 대립하여 배치한다. 이러한 구조는 축에 하중을 가하는 임펠러와 저널베어링이 모두 대칭으로 배치되서 기구적으로 안정적인 구조를 취하고 있다. Among the two-stage turbo compressors, the counter-type turbo compressor has first and second stage impellers centered on the motor and disposed opposite to each other on both sides of the motor. In this structure, both the impeller and the journal bearing that apply the load to the shaft are symmetrically arranged to take a mechanically stable structure.
이러한 대항형 터보 압축기의 모터를 냉각하기 위한 방법으로써, 차가운 온도의 액냉매를 모터부에 인젝션하는 것이 있다. 빠르고 확실하게 모터의 온도를 낮춰줄 수 있다는 것이 장점이다. 하지만 냉동싸이클의 냉매를 일부 바이패스하여 모터냉각에 사용함으로써, 전체 냉동싸이클의 냉동성능을 일부 저감시킬 수 있다는 단점이 있다. As a method for cooling the motor of the counter-type turbo compressor, liquid refrigerant at a cold temperature is injected into the motor unit. Its advantage is that it can quickly and reliably lower the temperature of the motor. However, there is a disadvantage in that the refrigerant performance of the entire refrigeration cycle may be partially reduced by partially bypassing the refrigerant of the refrigeration cycle and using it for motor cooling.
이러한 단점을 보완하면서 모터를 냉각하는 방식으로는 모터의 한쪽면에 임펠러를 모두 배치하는 방식이 있다. 이렇게 임펠러를 배치할 경우 임펠러로 흡입되는 냉매가 모터를 거치면서 모터를 냉각하고 임펠러로 흡입되게 된다. 따라서 추가적인 인젝션 라인이 필요치 않으므로, 대항형의 인젝션 냉각의 단점이 없어진다. 또한 차가운 액냉매 대신의 기체 상태의 흡입냉매를 사용하기 때문에 액냉매 유입에 의한 공력부 효율저하나 신뢰성의 문제가 생기지 않는다. As a method of cooling the motor while compensating for these disadvantages, there is a method of arranging all the impellers on one side of the motor. When the impeller is arranged in this way, the refrigerant sucked into the impeller passes through the motor to cool the motor and is sucked into the impeller. Thus, no additional injection lines are required, eliminating the disadvantages of counter-type injection cooling. In addition, since gaseous suction refrigerant is used instead of cold liquid refrigerant, there is no problem of reliability or reduction in efficiency of the aerodynamic part due to inflow of liquid refrigerant.
터보 압축기는 운전속도와 최대 압력비 간에 일정한 관계가 있다. 또한, 운전속도와 유량 간에도 일정한 관계가 있다. 이러한 특성으로 인해, 3단 이상으로 설계 시에 모든 압력비에서 필요 유량 범위를 갖기 어려운 문제가 있다.Turbo compressors have a certain relationship between the operating speed and the maximum pressure ratio. In addition, there is a certain relationship between the operating speed and the flow rate. Due to these characteristics, there is a problem in that it is difficult to have a required flow rate range in all pressure ratios when designing three or more stages.
특히, 압력비 15 이상에서 10 내지 100%의 부분 부하의 유량범위를 갖기 위해서는 1단 내지 3단의 모든 압축부가 순차적으로 압축하지 않고 2개의 압축부만 차례로 압축하고 1개의 압축부는 흡입 또는 사이클로 바이패스(by-pass)하여 운전범위를 확보하는 기술의 개발이 요구된다. In particular, in order to have a flow rate range of 10 to 100% of partial load at a pressure ratio of 15 or more, all compression parts of the first to third stages do not compress sequentially, but only two compression parts are compressed sequentially, and one compression part is bypassed by suction or cycle (by-pass) and the development of technology to secure the operating range is required.
종래의 터보 압축기 중에서, 특허문헌 1(EP 2019192850(2020.02.26.))에는, 축 베어링 냉각 배치 구조를 갖는 터보 압축기가 개시되어 있다. Among conventional turbocompressors, Patent Document 1 (EP 2019192850 (2020.02.26.)) discloses a turbocompressor having an axial bearing cooling arrangement structure.
특허문헌 1은, 스러스트 베어링에서의 발열로 인한 스러스트 베이링 플레이트의 변형과, 이로 인한 축의 진동으로 인한 문제의 해결 방법으로 스러스트 베어링 플레이트에 인접하여 흡입냉매 바이패스 유로를 형성하여, 스러스트 베어링부의 냉각을 통한 스러스트 베어링 플레이트의 열변형을 방지하는 구조를 제공한다. 또한, 입구 냉매 유로가 구비된 입구 분배기에 대하여, 입구 분배기는 스러스트 베어링 플레이트에 인접하여 냉각하도록 구성되며, 바이 패스 개구를 포함하며 바이패스 개구를 통해 유입된 일부의 흡입냉매가 스러스트 플레이트를 냉각하고 다시 흡입냉매와 합류하는 구조가 개시되어 있다. Patent Document 1, as a solution to the problem of deformation of the thrust bearing plate due to heat generation in the thrust bearing and vibration of the shaft caused by this, forms a suction refrigerant bypass passage adjacent to the thrust bearing plate to cool the thrust bearing part. Provides a structure that prevents thermal deformation of the thrust bearing plate through. Further, for the inlet distributor having an inlet refrigerant flow path, the inlet distributor is configured to cool adjacent to the thrust bearing plate, includes a bypass opening, and a part of the suction refrigerant introduced through the bypass opening cools the thrust plate. A structure that joins the suction refrigerant again is disclosed.
특허문헌 1의 경우, 흡입냉매를 1단 압축부 내부로 분배해주는 가이드의 형상의 제작 및 조립이 어려우며, 유로 저항으로 인한, 압축기의 효율이 저하되며, 압축기의 운전 조건에 따라 높은 밀도의 냉매 유입시 베어링 냉각을 목적으로 분배하게 되면, 냉각 보다 발열이 생기는 문제가 있다.In the case of Patent Document 1, it is difficult to manufacture and assemble the shape of the guide that distributes the suction refrigerant into the first-stage compression unit, and the efficiency of the compressor decreases due to flow resistance, and the inflow of high density refrigerant depends on the operating conditions of the compressor. When distributed for the purpose of bearing cooling, there is a problem of generating heat rather than cooling.
또한, 특허문헌 1의 경우, 모터와, 베어링 부를 냉각하기 위해서 액상의 냉매를 넣어주고 이와 교반이 잘 되도록 구현함에 있어서 횡형 압축기의 특성상 1번의 교반으로 밀도가 높은 액냉매가 팽창되어 흡입부로 유입되는 문제가 있다.In addition, in the case of Patent Document 1, in order to cool the motor and the bearing part, a liquid refrigerant is put in and the liquid refrigerant having a high density is expanded and introduced into the suction part due to the characteristics of the horizontal compressor in implementing the stirring well. there is a problem.
한편, 특허문헌 2(US 7293954(2007.11.13))에는 터보 압축기의 서지(surge)를 예측하고, 서지를 방지하는 제어 시스템이 개시되어 있다. 서지를 제어하는 방법으로서, 고온 가스의 바이패스가 사용되는데, 바이패스 배관은 토출부와 흡입부를 연결하며, 배이패스 배관의 개폐를 가능하게 하는 바이패스 밸브가 적용된다. 또한, 특허문헌 2에는, 서지 방지 제어 시스템에서 서지 발생을 판단하면, 제어장치를 통해 고온 가스의 바이패스 밸브를 정해진 값으로 개폐하는 특징이 개시된다. Meanwhile, Patent Document 2 (US 7293954 (November 13, 2007)) predicts surge of a turbo compressor and discloses a control system for preventing surge. As a method of controlling the surge, a high-temperature gas bypass is used. A bypass pipe connects a discharge part and a suction part, and a bypass valve enabling opening and closing of the bypass pipe is applied. In addition, Patent Document 2 discloses a feature of opening and closing the bypass valve of the hot gas at a predetermined value through a control device when it is determined that a surge occurs in the anti-surge control system.
특허문헌 2에서 고온 가스 바이패스를 적용하면 토출부의 고온 고압의 토출가스가 흡입 가스와 혼합되어, 흡입압이 올라가면서 서지 회피를 가능하게 한다. In Patent Document 2, when the high-temperature gas bypass is applied, the high-temperature and high-pressure discharge gas of the discharge unit is mixed with the suction gas, thereby increasing the suction pressure and enabling surge avoidance.
이와 같이, 고온 가스 바이패스를 하면 흡입냉매의 온도가 올라가게 되는데, 이로 인해, 압축기의 효율이 저하되고 기구부 신뢰성에 악영향을 미칠 수 있다. 특히, 3단 압축을 할 경우 3단 압축부로 토출되는 토출가스의 압력과 온도는 1단 또는 2단 압축기에 비하여 훨씬 높게 되며, 3단 터보 압축기에서 서지를 회피하기 위해 종래의 고온 가스 바이패스를 사용한다면, 흡입 냉매의 온도가 과도하게 상승되는 문제가 있다.In this way, when the hot gas is bypassed, the temperature of the suction refrigerant rises, which lowers the efficiency of the compressor and adversely affects the reliability of the mechanical unit. In particular, in the case of 3-stage compression, the pressure and temperature of the discharge gas discharged to the 3-stage compression unit are much higher than those of the 1-stage or 2-stage compressor, and the conventional high-temperature gas bypass is used to avoid surge in the 3-stage turbo compressor. If used, there is a problem that the temperature of the suction refrigerant rises excessively.
본 발명은 상기의 과제를 해결하기 위해 안출된 것으로서, 본 발명의 일 목적은, 3단 구조의 임펠러에 의해 고압축비를 내면서 소형화 가능한 구조의 터보 압축기 및 이를 제어하는 방법을 제공하는 것이다.The present invention has been made to solve the above problems, and one object of the present invention is to provide a turbo compressor of a structure that can be miniaturized while paying a high compression ratio by a three-stage structure impeller and a method for controlling the same.
본 발명의 다른 일 목적은, 3단 구조의 임펠러에 의해 압력비를 확보하면서도 유량범위가 작아지지 않는 터보 압축기 및 이를 제어하는 방법을 제공하는 것이다. Another object of the present invention is to provide a turbo compressor and a method for controlling the same in which a flow rate range is not reduced while securing a pressure ratio by means of a three-stage impeller.
본 발명의 또 다른 일 목적은, 1단 및 2단 압축부만이 토출을 가능하게 하고 3단 압축부는 바이패스를 하거나 1단 압축부의 흡입부로 냉매를 보내서 운전속도를 낮추어 손실을 최소화하는 구조의 터보 압축기 및 이를 제어하는 방법을 제공하는 것이다. Another object of the present invention is a structure in which only the first and second stage compression units enable discharge and the third stage compression unit bypasses or sends refrigerant to the suction unit of the first stage compression unit to lower the operating speed and minimize losses. It is to provide a turbo compressor and a method for controlling the same.
본 발명의 또 다른 일 목적은, 3단 이상으로 설계시 모든 압력비에서 필요 유량 범위를 가질 수 있는 구조의 터보 압축기 및 이를 제어하는 방법을 제공하는 것이다.Another object of the present invention is to provide a turbo compressor having a structure capable of having a required flow rate range at all pressure ratios when designed with three or more stages, and a method for controlling the same.
상기의 과제를 해결하기 위해, 본 발명의 터보 압축기는, 냉매의 압축을 위한 회전 동력을 발생 가능하게 하는 구동 유닛; 일 방향으로 연장되며, 상기 구동 유닛으로부터 발생된 동력에 의해 회전 가능하도록 상기 구동 유닛에 설치되는 축; 상기 축의 일 측에서 상기 축에 설치되는 제1 내지 제3압축유닛을 포함하고, 상기 제1압축유닛은, 증발기로부터 배출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제1 임펠러를 구비하며, 상기 제2압축유닛은, 상기 제1압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제2임펠러를 구비하며, 상기 제3압축유닛은, 상기 제2압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 외부로 토출하거나 상기 제1압축유닛으로 바이패스 가능하게 하는 제3임펠러를 구비한다.In order to solve the above problems, the turbo compressor of the present invention, a driving unit capable of generating rotational power for compression of the refrigerant; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit; One side of the shaft includes first to third compression units installed on the shaft, and the first compression unit sucks the refrigerant discharged from the evaporator, compresses the sucked refrigerant, and discharges the refrigerant from the drive unit. and a first impeller rotating by the power of, and the second compression unit sucks in the refrigerant discharged from the first compression unit and compresses the sucked refrigerant so that it can be discharged by the power of the drive unit. A rotating second impeller is provided, and the third compression unit sucks the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges the refrigerant to the outside or bypasses the first compression unit. 3 Impeller is provided.
본 발명과 관련된 일 예에 따르면, 상기 제1압축유닛은, 상기 증발기로부터 배출된 냉매가 흡입 가능한 제1입구를 구비하며, 상기 제1입구에는 상기 제3임펠러에 냉매의 제공을 가능하게 하도록 연통되는 제1 바이패스 유로가 연결되며, 상기 제1 바이패스 유로에는 상기 제1입구로부터 상기 제3임펠러로의 유동을 가능 또는 차단하게 하는 제1밸브가 설치될 수 있다. According to an example related to the present invention, the first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and the first inlet communicates with the third impeller to enable supply of the refrigerant. A first bypass passage is connected, and a first valve enabling or blocking flow from the first inlet to the third impeller may be installed in the first bypass passage.
상기 제1압축유닛은, 상기 제1임펠러를 수용 가능하게 하는 제1 임펠러 하우징을 구비하며, 상기 제1입구는 상기 제1 임펠러 하우징에서 축과 나란한 방향으로 일 측에 형성될 수 있다. The first compression unit may include a first impeller housing capable of accommodating the first impeller, and the first inlet may be formed at one side of the first impeller housing in a direction parallel to the axis.
상기 제2압축유닛은, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 제공 가능하게 하는 제2출구를 구비하며, 상기 제3압축유닛은, 상기 제2출구와 연통 가능하며, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유입 가능하게 하는 유입 유로를 구비하며, 상기 제2출구 또는 상기 유입 유로에는 제2밸브가 설치되고, 상기 제2밸브는, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유동을 가능 또는 차단하게 할 수 있다. The second compression unit has a second outlet capable of supplying the refrigerant discharged from the second impeller to the third impeller, the third compression unit is capable of communicating with the second outlet, An inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller is provided, and a second valve is installed at the second outlet or the inflow passage, and the second valve discharges the refrigerant from the second impeller. The flow of the refrigerant to the third impeller may be enabled or blocked.
상기 제2임펠러를 수용 가능하게 하는 제2 임펠러 하우징을 구비하며, 상기 제2출구는 상기 제2 임펠러 하우징에 구비될 수 있다. A second impeller housing capable of accommodating the second impeller may be provided, and the second outlet may be provided in the second impeller housing.
본 발명과 관련된 다른 일 예에 따르면, 상기 제3압축유닛은, 상기 제3임펠러의 측부에 형성되어 상기 제3임펠러로부터 토출된 냉매를 모아서 배출 가능하게 하는 제3볼류트를 구비하며, 상기 제1입구 및 상기 제3볼류트 사이에는 제2 바이패스 유로가 형성될 수 있다. According to another example related to the present invention, the third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller, A second bypass passage may be formed between the first inlet and the third volute.
상기 제2 바이패스 유로에는 제3밸브가 설치되고, 상기 제3밸브는 상기 제3임펠러로부터 토출된 냉매가, 상기 제3 볼류트로부터 상기 제1입구로 유동되는 것을 가능 또는 차단하게 할 수 있다. A third valve is installed in the second bypass passage, and the third valve enables or blocks the flow of the refrigerant discharged from the third impeller from the third volute to the first inlet. .
상기 제3볼류트에는 외부의 사이클과 연통되는 제3출구가 형성되고, 상기 제3출구에는 제4밸브가 설치되고, 상기 제4밸브는 상기 제3임펠러로부터 토출된 냉매를 외부의 사이클로 배출되는 것을 가능 또는 차단하게 할 수 있다. A third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. can be enabled or blocked.
상기 구동 유닛에는, 상기 제1입구와 연통 가능한 냉매 유입 유로가 구비되고, 상기 냉매 유입 유로에는 상기 증발기로부터 배출된 냉매의 유입을 가능 또는 차단하게 하는 제5밸브가 연결될 수 있다. The drive unit may include a refrigerant inlet flow path capable of communicating with the first inlet, and a fifth valve may be connected to the refrigerant inlet flow path to enable or block the inflow of the refrigerant discharged from the evaporator.
또 다른 상기의 과제를 해결하기 위해, 본 발명의 터보 압축기는, 냉매의 압축을 위한 회전 동력을 발생 가능하게 하는 구동 유닛; 일 방향으로 연장되며, 상기 구동 유닛으로부터 발생된 동력에 의해 회전 가능하도록 상기 구동 유닛에 설치되는 축; 상기 축의 일 측에서 상기 축에 설치되는 제1 내지 제3압축유닛; 및 상기 구동 유닛에 전기적으로 연결되어 상기 제1 내지 제3압축유닛의 동작을 제어하는 제어부를 포함하고, 상기 제1압축유닛은, 증발기로부터 배출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제1 임펠러를 구비하며, 상기 제2압축유닛은, 상기 제1압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제2임펠러를 구비하며, 상기 제3압축유닛은, 상기 제2압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 외부로 토출하거나 상기 제1압축유닛으로 바이패스 가능하게 하는 제3임펠러를 구비할 수 있다. In order to solve another of the above problems, the turbo compressor of the present invention includes a driving unit capable of generating rotational power for compressing a refrigerant; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit; first to third compression units installed on the shaft at one side of the shaft; and a control unit electrically connected to the drive unit to control operations of the first to third compression units, wherein the first compression unit can suck in refrigerant discharged from the evaporator, compress the sucked refrigerant, and discharge the sucked refrigerant. And a first impeller rotating by power from the drive unit to do so, and the second compression unit sucks the refrigerant discharged from the first compression unit, compresses the sucked refrigerant, and discharges the refrigerant. It has a second impeller rotating by power from the unit, and the third compression unit sucks in the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges it to the outside or to the first compression unit. A third impeller enabling bypass may be provided.
상기 제1압축유닛은, 상기 증발기로부터 배출된 냉매가 흡입 가능한 제1입구를 구비하며, 상기 제1입구에는 상기 제3임펠러에 냉매의 제공을 가능하게 하도록 연통되는 제1 바이패스 유로가 연결되며, 상기 제1 바이패스 유로에는 상기 제1입구로부터 상기 제3임펠러로의 유동을 가능 또는 차단하게 하는 제1밸브가 설치될 수 있다. The first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and a first bypass flow path communicating to enable supply of refrigerant to the third impeller is connected to the first inlet. , A first valve enabling or blocking the flow from the first inlet to the third impeller may be installed in the first bypass passage.
상기 제2압축유닛은, 상기 제2임펠러로부터 토출된 냉매를 상기 제3압축유닛으로 제공 가능하게 하는 제2출구를 구비하며, 상기 제3압축유닛은, 상기 제2출구와 연통 가능하며, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유입 가능하게 하는 유입 유로를 구비하며, 상기 제2출구 또는 상기 유입 유로에는 제2밸브가 설치되고, 상기 제2밸브는 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유동을 가능 또는 차단하게 할 수 있다. The second compression unit has a second outlet capable of providing the refrigerant discharged from the second impeller to the third compression unit, and the third compression unit is capable of communicating with the second outlet, An inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller is provided, and a second valve is installed at the second outlet or the inflow passage, and the second valve discharges the refrigerant from the second impeller. The flow of the refrigerant to the third impeller may be enabled or blocked.
본 발명과 관련된 일 예에 따르면, 상기 제3압축유닛은, 상기 제3임펠러의 측부에 형성되어 상기 제3임펠러로부터 토출된 냉매를 모아서 배출 가능하게 하는 제3볼류트를 구비하며, 상기 제1입구 및 상기 제3볼류트 사이에는 제2 바이패스 유로가 형성될 수 있다. According to an example related to the present invention, the third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller, wherein the first A second bypass passage may be formed between the inlet and the third volute.
상기 제어부는, 상기 제1밸브에 전기적으로 연결되고, 목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제1밸브가 오프(off) 상태가 되도록 제어할 수 있다. The control unit is electrically connected to the first valve and can control the first valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
상기 제어부는, 상기 제2밸브에 전기적으로 연결되고, 목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제2밸브가 오프(off) 상태가 되도록 제어할 수 있다. The control unit is electrically connected to the second valve and can control the second valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
본 발명과 관련된 다른 일 예에 따르면, 상기 제2 바이패스 유로에는 제3밸브가 설치되고, 상기 제3밸브는 상기 제3임펠러로부터 토출된 냉매가, 상기 제3 볼류트로부터 상기 제1입구로 유동되는 것을 가능 또는 차단하게 할 수 있다. According to another example related to the present invention, a third valve is installed in the second bypass passage, and the third valve allows the refrigerant discharged from the third impeller to flow from the third volute to the first inlet. It can enable or block the flow.
상기 제어부는, 상기 제3밸브에 전기적으로 연결되고, 목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제3밸브가 오프(off)되고, 목표 압력비가 운전가능 압력비 보다 큰 경우나 서지가 예상되는 경우에 제3밸브가 온(on) 상태가 되도록 제어할 수 있다. The control unit is electrically connected to the third valve, and the third valve is turned off when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected, and the target pressure ratio is greater than the operable pressure ratio. The third valve may be controlled to be turned on when a surge or a surge is expected.
상기 제3볼류트에는 외부의 사이클과 연통되는 제3출구가 형성되고, 상기 제3출구에는 제4밸브가 설치되고, 상기 제4밸브는 상기 제3임펠러로부터 토출된 냉매를 외부의 사이클로 배출되는 것을 가능 또는 차단하게 할 수 있다. A third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. can be enabled or blocked.
상기 제어부는, 상기 제4밸브에 전기적으로 연결되고, 목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제4밸브가 오프(off) 상태가 되도록 제어할 수 있다. The control unit is electrically connected to the fourth valve and can control the fourth valve to be turned off when a target pressure ratio is not greater than an operable pressure ratio or when a surge is not expected.
상기 구동 유닛에는, 상기 제1입구와 연통 가능한 냉매 유입 유로가 구비되고, 상기 냉매 유입 유로에는 상기 증발기로부터 배출된 냉매의 유입을 가능 또는 차단하게 하는 제5밸브가 설치될 수 있다. The drive unit may include a refrigerant inlet passage capable of communicating with the first inlet, and a fifth valve may be installed in the refrigerant inlet passage to enable or block the inflow of the refrigerant discharged from the evaporator.
상기 제어부는, 상기 제5밸브에 전기적으로 연결되고, 목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제5밸브가 오프(off) 상태가 되도록 제어하고, 목표 유량이 운전가능 유량 보다 크지 않고 난방을 수행하며, 인젝션 부하의 대응이 가능한 경우에 제5밸브가 온(on) 상태가 되도록 제어할 수 있다. The control unit is electrically connected to the fifth valve and controls the fifth valve to be turned off when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected, and the target flow rate is operated. The fifth valve may be controlled to be turned on when heating is performed without being greater than the available flow rate and the response to the injection load is possible.
상기의 또 다른 과제를 해결하기 위해 본 발명의 터보 압축기 제어 방법은, 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하는 단계; 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하는 단계; 서지 예상 여부를 판단하는 단계; 및 냉방 또는 난방을 행할지를 판단하는 단계를 포함한다. In order to solve the above another problem, a method for controlling a turbo compressor of the present invention includes determining whether a target flow rate is greater than an operable flow rate; determining whether the target pressure ratio is greater than the operable pressure ratio; Determining whether a surge is expected; and determining whether to perform cooling or heating.
냉방을 하도록 결정하게 되면 압축기의 동작을 정지하게 하도록 제어한다. When it is decided to perform cooling, the operation of the compressor is controlled to be stopped.
목표 압력비가 운전 가능 압력비 보다 작은 경우에, 제3압축유닛이 동작하게 되며, 상기 제3압축유닛이 동작하게 되면, 제1 내지 제5밸브를 오프(off) 상태로 하여, 냉매의 토출을 수행하게 하도록 부하에 따른 대응운전을 한다. When the target pressure ratio is smaller than the operable pressure ratio, the third compression unit operates, and when the third compression unit operates, the first to fifth valves are turned off to discharge the refrigerant Response operation according to the load is performed so that
서지가 발생하지 않을 것으로 예상되면, 제2압축유닛을 동작하게 하고, 상기 제2압축유닛이 동작하게 되면, 제2 및 제3밸브를 오프(off) 상태로 하여, 냉매의 토출을 수행하게 하도록 부하에 따른 대응운전을 한다.When the surge is not expected to occur, the second compression unit is operated, and when the second compression unit is operated, the second and third valves are turned off to discharge the refrigerant Responsive operation according to the load.
본 발명은, 1단 및 2단 압축부만이 토출을 가능하게 하고 3단 압축부는 바이패스를 하거나 1단 압축부의 흡입부로 냉매를 보내서 운전속도를 낮추어 손실을 최소화할 수 있다. In the present invention, only the first and second stage compression units enable discharge, and the third stage compression unit bypasses or sends the refrigerant to the suction unit of the first stage compression unit to lower the operating speed and thereby minimize losses.
또한, 본 발명은, 압력비 15이상에서, 10 % 내지 100 %의 부분 부하의 유량 범위를 갖도록 1 내지 3단의 모든 압축부가 순차적으로 압축하지 않고 1, 2단의 압축부만 차례로 압축하고 3단의 압축부는 흡입 또는 사이클로 바이패스 하여 운전 범위를 확보할 수 있게 한다. In addition, the present invention, at a pressure ratio of 15 or more, compresses only the compression parts of the first and second stages sequentially without sequentially compressing all the compression units of the first to third stages so as to have a flow rate range of 10% to 100% of partial load. The compression part of the bypass bypasses the intake or cycle to secure the operating range.
본 발명에서는, 이러한 방식으로 서지 마진 밸브가 적용될 수 있는데, 본 발명의 터보 압축기의 서지점의 운전 불안 발생 시의 운전 속도를 피하도록 동작하거나 사이클의 바이패스 이외의 터보 압축기 만의 안전 밸브의 역할을 하게 되어 실시간으로의 운전 대응을 가능하게 할 수 있다.In the present invention, the surge margin valve can be applied in this way, and operates to avoid the operating speed when the surge point of the turbocompressor of the present invention is unstable or acts as a safety valve only for the turbocompressor other than the bypass of the cycle. This makes it possible to respond to driving in real time.
본 발명에서 여러 밸브의 운전 특성을 조절하면 종래 기술에서 언급된 냉매 분배기 없이도 고속에서 냉각을 위해서 사용된 많은 양의 냉매가 1단 입구로 들어와서 액압축을 하는 우려점을 최소화가 가능 하기 때문에 신뢰성을 향상시킬 수 있다.In the present invention, by adjusting the operation characteristics of various valves, it is possible to minimize the concern that a large amount of refrigerant used for cooling at high speed enters the first stage inlet and compresses the liquid without the refrigerant distributor mentioned in the prior art. can improve
또한, 본 발명은, 3단 압축부에서 1단 압축부에 직접적으로 바이패스(by-pass)하여 밸브가 추가로 하나 더 필요하지만 터보 압축기의 유량이 증가되어 초킹 영역보다 더 큰 운전 범위를 가질 수 있으므로 운전속도를 증가하지 않으면서도 정격용량을 확대하여 다양한 제품에 적용이 가능할 수 있다. In addition, the present invention directly bypasses the first-stage compression unit in the third-stage compression unit, so that an additional valve is required, but the flow rate of the turbo compressor is increased to have a larger operating range than the choking area. Therefore, it can be applied to various products by expanding the rated capacity without increasing the operating speed.
또한, 본 발명은, 3단 압축부에서 외부 사이클로 바이패스(by-pass)하여 냉매를 버리는 방법은 유로(일례로, 배관)을 단수화할 수 있어 운전 범위의 확보를 가능하게 할 수 있다.In addition, according to the present invention, the method of discarding the refrigerant by bypassing from the 3-stage compression unit to the external cycle can simplify the flow path (for example, piping), thereby securing an operating range.
도 1은 본 발명의 터보 압축기를 도시하는 단면도.1 is a cross-sectional view showing a turbo compressor of the present invention.
도 2는 본 발명의 터보 압축기에서의 냉매의 유동, 흡입과 토출을 모식적으로 도시한 개념도.Figure 2 is a conceptual diagram schematically showing the flow, suction and discharge of refrigerant in the turbo compressor of the present invention.
도 3은 본 발명의 터보 압축기에서 제1 내지 제3압축유닛을 도시하는 개념도.3 is a conceptual diagram showing first to third compression units in the turbo compressor of the present invention;
도 4는 제어부의, 구동 유닛, 제1 내지 제3압축유닛, 및 제1 내지 제5밸브과 전기적 연결 관계를 도시하는 블록도. 4 is a block diagram showing an electrical connection relationship with a driving unit, first to third compression units, and first to fifth valves of a control unit;
도 5는 본 발명의 터보 압축기의 저유량 고압력비 운전을 목표로 하는 동작을 도시하는 순서도.5 is a flowchart showing operations aimed at low flow rate and high pressure ratio operation of the turbocompressor of the present invention.
도 6은 본 발명의 터보 압축기의 저유량 중압력비 운전을 목표로 하는 동작을 도시하는 순서도.Fig. 6 is a flow chart showing operations aimed at low flow rate and medium pressure ratio operation of the turbocompressor of the present invention.
도 7은 본 발명의 터보 압축기의 대유량 저압력비 운전을 목표로 하는 동작을 도시하는 순서도.Fig. 7 is a flow chart showing operations aimed at high flow rate and low pressure ratio operation of the turbocompressor of the present invention.
도 8은 본 발명의 3단의 터보 압축기와 종래의 2단의 터보 압축기를 비교하여, 유량, 압력비 및 서지 라인을 도시하는 그래프.8 is a graph showing flow rate, pressure ratio, and surge line by comparing the three-stage turbocompressor of the present invention and the conventional two-stage turbocompressor.
본 명세서에서는 서로 다른 실시예라도 동일 또는 유사한 구성에 대해서는 동일 또는 유사한 참조번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.In this specification, the same or similar reference numerals are given to the same or similar components even in different embodiments, and overlapping descriptions thereof will be omitted.
또한, 서로 다른 실시예라도 구조적, 기능적으로 모순이 되지 않는 한 어느 하나의 실시예에 적용되는 구조는 다른 하나의 실시예에도 동일하게 적용될 수 있다.In addition, a structure applied to one embodiment may be equally applied to another embodiment as long as there is no structural or functional contradiction between different embodiments.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions thereof will be omitted.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the accompanying drawings, and all changes and equivalents included in the spirit and technical scope of the present invention are included. It should be understood to include water or substitutes.
이하, 본 발명에 의한 터보 압축기(100)를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다.Hereinafter, the turbo compressor 100 according to the present invention will be described in detail based on an embodiment shown in the accompanying drawings.
도 1은 본 발명의 터보 압축기(100)를 도시하는 단면도이다. 도 1을 참조하면, 본 발명의 터보 압축기(100)는, 구동 유닛(120), 축(125) 및 제1 내지 제3압축유닛(130, 140, 180)을 포함한다. 1 is a cross-sectional view showing a turbo compressor 100 of the present invention. Referring to FIG. 1 , the turbo compressor 100 of the present invention includes a driving unit 120, a shaft 125, and first to third compression units 130, 140, and 180.
구동 유닛(120)은 냉매의 압축을 위한 회전 동력을 발생 가능하게 한다. 구동 유닛(120)은, 스테이터(121) 및 로터(122)를 포함하여 구성되는데 상세 구조는 후술하기로 한다. The drive unit 120 can generate rotational power for compression of the refrigerant. The driving unit 120 includes a stator 121 and a rotor 122, and a detailed structure thereof will be described later.
축(125)은, 일 방향으로 연장되며, 구동 유닛(120)으로부터 발생된 동력에 의해 회전되게 된다. The shaft 125 extends in one direction and is rotated by power generated from the drive unit 120 .
제1 내지 제3압축유닛(130, 140, 180)은, 축(125)의 일 측에서 상기 축(125)에 설치되는데, 각각의 제1 내지 제3압축유닛(130, 140, 180)은, 냉매를 압축(125) 가능하게 하는 제1 내지 제3임펠러(131, 141, 181)를 구비한다. The first to third compression units 130, 140, and 180 are installed on the shaft 125 at one side of the shaft 125, and each of the first to third compression units 130, 140, and 180 and first to third impellers 131, 141, and 181 enabling compression (125) of the refrigerant.
제1압축유닛(130)은, 증발기로부터 배출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 구동 유닛(120)으로부터의 동력에 의해 회전하는 제1임펠러(131)를 구비한다. The first compression unit 130 includes a first impeller 131 that rotates by power from the drive unit 120 to suck in the refrigerant discharged from the evaporator, compress the sucked refrigerant, and enable discharge.
또한, 제2압축유닛(140)은, 제1압축유닛(130)으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 구동 유닛(120)으로부터의 동력에 의해 회전하는 제2임펠러(141)를 구비한다. In addition, the second compression unit 140 sucks in the refrigerant discharged from the first compression unit 130, compresses the sucked refrigerant, and rotates the second impeller by power from the driving unit 120 to enable discharge. (141) is provided.
한편, 제3압축유닛(180)은, 제2압축유닛(140)으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 외부로 토출하거나 상기 제1압축유닛으로 바이패스하여 제공 가능하게 하는 제3임펠러(181)를 구비한다. On the other hand, the third compression unit 180 sucks in the refrigerant discharged from the second compression unit 140, compresses the sucked refrigerant, discharges it to the outside, or bypasses the first compression unit to provide a third compression unit. An impeller 181 is provided.
제1 및 제2압축유닛(130, 140)의 냉매 압축(125)에 의해 제3압축유닛(180)은 흡입 냉매를 제공받아서 하우징 또는 사이클로 바이패스하여 손실을 최소화하면서 넓은 운전 범위를 갖게 할 수 있다. By the refrigerant compression 125 of the first and second compression units 130 and 140, the third compression unit 180 receives suction refrigerant and bypasses it to the housing or cycle, thereby minimizing loss and providing a wide operating range. have.
제3압축유닛(180)은 제1 및 제2압축유닛(130, 140)에서 압축된 후의 높은 밀도의 냉매를 압축하도록 이루어져서 제1압축유닛(130)에서 냉매를 압축 시에 상대적으로 큰 유량을 압축하지 않아도 되며, 제3압축유닛(180)에서 압축된 냉매는 하우징 입구인 증발기 후단으로 다시 제공을 가능하게 하기에 손실을 최소화할 수 있게 한다. The third compression unit 180 is configured to compress the high-density refrigerant after being compressed in the first and second compression units 130 and 140, so that a relatively large flow rate is achieved when the refrigerant is compressed in the first compression unit 130. It is not necessary to compress, and the refrigerant compressed in the third compression unit 180 can be supplied again to the rear end of the evaporator, which is the inlet of the housing, so that loss can be minimized.
또한, 제1 내지 제3압축유닛(130, 140, 180)을 통하여, 목표 압력비를 위한 목표 속도에서 유량과 압력비가 커지기 때문에 운전속도를 낮추어 운전하게 되므로 효율 개선을 확보할 수 있다. In addition, since the flow rate and pressure ratio increase at the target speed for the target pressure ratio through the first to third compression units 130, 140, and 180, the operation speed is lowered to ensure efficiency improvement.
또한, 이러한 방법은 제1 내지 제3압축유닛(130, 140, 180)을 통한 3단 압축을 하는 방법 대비 동일 운전 속도에서 유량과 압력비가 줄어들게 되지만 서지점 운전을 최소화하면서 운전역을 확보할 수 있게 된다.In addition, this method reduces the flow rate and pressure ratio at the same operating speed compared to the method of performing three-stage compression through the first to third compression units 130, 140, and 180, but it is possible to secure an operating range while minimizing surge point operation. there will be
종래의 2단 터보 압축기(100)의 경우, 고온 가스 바이패스(hot gas by-pass)는 2단 압축된 토출 냉매를 1단 압축부로 다시 흡입하게 하기 때문에 상대적으로 온도 및 압력 상승이 급격하게 증가하였기 때문에, 바이패스의 유량이 제한되는 문제가 있다. 반면, 본 발명의 터보 압축기(100)는, 제3압축유닛(180)을 통하여 압축된 냉매가 제1 및 제2압축유닛(130, 140)으로 다시 공급되기 때문에 상대적으로 온도 및 압력의 상승이 최소화가 가능하며, 터보 압축기(100)가 일반적으로 가지고 있는 서지 특성에 대하여 설계 마진을 가질 수 있게 된다. In the case of the conventional two-stage turbo compressor 100, since the hot gas by-pass sucks the discharged refrigerant compressed in the second stage back into the first-stage compression unit, the temperature and pressure increase relatively rapidly. Therefore, there is a problem that the flow rate of the bypass is limited. On the other hand, in the turbo compressor 100 of the present invention, since the refrigerant compressed through the third compression unit 180 is supplied back to the first and second compression units 130 and 140, the temperature and pressure are relatively increased. It is possible to minimize, and it is possible to have a design margin for the surge characteristic that the turbo compressor 100 generally has.
또한, 본 발명에서는, 이러한 방식으로 서지 마진 밸브가 적용될 수 있는데, 본 발명의 터보 압축기(100)의 서지점의 운전 불안 발생 시의 운전 속도를 피하도록 동작하거나 사이클의 바이패스 이외의 터보 압축기(100) 만의 안전 밸브의 역할을 하게 되어 실시간으로의 운전 대응을 가능하게 할 수 있다. In addition, in the present invention, the surge margin valve can be applied in this way, and operates to avoid the operating speed at the time of unstable operation of the surge point of the turbo compressor 100 of the present invention or the turbo compressor other than the bypass of the cycle ( 100) as a safety valve, enabling real-time operation response.
제1 내지 제3압축유닛(130, 140, 180)과, 이에 구비되는 제1 내지 제3임펠러(131, 141, 181)의 상세 구조에 대하여는 후술하기로 한다. Detailed structures of the first to third compression units 130 , 140 , and 180 and the first to third impellers 131 , 141 , and 181 provided thereto will be described later.
본 발명의 터보 압축기(100)는, 케이싱(110)을 더 포함할 수 있다. 케이싱(110)은, 내부공간에 구동 유닛(120)이 설치되고, 케이싱(110)의 외부에는 제1압축유닛(130)과 제2압축유닛(140)이 설치되며, 구동 유닛(120)과 압축유닛(130, 140)의 사이에는 축(125)으로 연결된다.The turbo compressor 100 of the present invention may further include a casing 110. In the casing 110, the drive unit 120 is installed in the inner space, the first compression unit 130 and the second compression unit 140 are installed outside the casing 110, and the drive unit 120 and A shaft 125 is connected between the compression units 130 and 140 .
본 실시예에 따른 터보 압축기(100)는, 도 1을 참조하면, 케이싱(110)의 내부공간에 구동 유닛(120)이 설치되고, 케이싱(110)의 외부에는 제1압축유닛(130)과 제2압축유닛(140)이 설치되며, 구동 유닛(120)과 압축유닛(130, 140)의 사이에는 축(125)으로 연결되는 예가 도시된다.Referring to FIG. 1, in the turbo compressor 100 according to the present embodiment, the drive unit 120 is installed in the inner space of the casing 110, and the first compression unit 130 and the outside of the casing 110 are installed. A second compression unit 140 is installed, and an example in which a shaft 125 is connected between the drive unit 120 and the compression units 130 and 140 is shown.
케이싱(110)은 양단이 개구되어 원통모양으로 형성되는 쉘(111)과, 쉘(111)의 양쪽 개구단을 각각 복개하는 전방측 프레임(112)과 후방측 프레임(113)으로 이루어질 수 있다.The casing 110 may include a shell 111 having a cylindrical shape with both ends open, and a front frame 112 and a rear frame 113 covering both open ends of the shell 111, respectively.
쉘(111)의 내주면에는 후술할 구동 유닛(120)의 스테이터(121)가 고정 결합되고, 전방측 프레임(112)과 후방측 프레임(113)의 중앙부에는 후술할 축(125)이 관통되도록 축구멍(112a, 113a)이 각각 형성되며, 전방측 프레임(112)의 축구멍(112a)과 후방측 프레임(113)의 축구멍(113a)에는 축(125)을 반경방향으로 지지하는 레이디얼 베어링(151, 152)이 각각 설치될 수 있다.A stator 121 of a driving unit 120 to be described later is fixedly coupled to the inner circumferential surface of the shell 111, and a shaft 125 to be described later passes through the center of the front frame 112 and the rear frame 113. Holes 112a and 113a are formed, respectively, and the hole 112a of the front frame 112 and the hole 113a of the rear frame 113 are radial bearings for supporting the shaft 125 in the radial direction (151, 152) can be installed respectively.
그리고 전방측 프레임(112)의 내측면에는 제1 스러스트 베어링(153), 후방측 프레임(113)의 내측면에는 제2 스러스트 베어링(154)이 각각 결합되고, 후술할 축(125)에는 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)에 각각 대향하도록 제1 축방향 지지판(스러스트 러너, 161)과 제2 축방향 지지판(스러스트 러너, 162)이 각각 고정 결합될 수 있다. 즉, 제1 스러스트 베어링(153)은 제1 축방향 지지판(161)과 함께 제1 방향 추력제한부를 형성하고, 제2 스러스트 베어링(154)은 제2 축방향 지지판(스러스트 러너, 162)과 함께 제2 방향 추력제한부를 형성하게 된다. 이로써, 제1 방향 추력제한부와 제2 방향 추력제한부는 서로 반대방향으로 스러스트 베어링을 형성하면서 축(125)을 포함한 회전요소에 대한 추력을 상쇄시키게 된다.In addition, a first thrust bearing 153 is coupled to the inner surface of the front frame 112 and a second thrust bearing 154 is coupled to the inner surface of the rear frame 113, respectively. The first axial support plate (thrust runner) 161 and the second axial support plate (thrust runner 162) may be fixedly coupled to each other so as to face the thrust bearing 153 and the second thrust bearing 154, respectively. That is, the first thrust bearing 153 together with the first axial support plate 161 forms a first direction thrust limiter, and the second thrust bearing 154 together with the second axial support plate (thrust runner 162) A second direction thrust limiting portion is formed. Thus, the first direction thrust limiting unit and the second direction thrust limiting unit cancel thrust on the rotating element including the shaft 125 while forming thrust bearings in opposite directions.
한편, 구동 유닛(120)은 냉매의 압축을 위한 회전 동력을 발생시키는 역할을 한다. 구동 유닛(120)은 스테이터(121), 로터(122)를 포함하고, 로터(122)의 중심에는 그 로터(122)의 회전력을 후술할 제1임펠러(131)와 제2임펠러(141)로 전달하기 위한 축(125)이 결합된다.Meanwhile, the driving unit 120 serves to generate rotational power for compressing the refrigerant. The driving unit 120 includes a stator 121 and a rotor 122, and at the center of the rotor 122, the rotational force of the rotor 122 is transferred to a first impeller 131 and a second impeller 141, which will be described later. A shaft 125 for transmission is coupled.
스테이터(121)는 케이싱(110)의 내주면에 압입되어 고정되거나 케이싱(110)에 용접되어 고정될 수 있다. 일례로, 스테이터(121)의 외주면은 D자형으로 디컷지게 형성되어, 케이싱(110)의 내주면과의 사이에 유체가 이동할 수 있는 통로가 형성될 수 있다.The stator 121 may be fixed by being press-fitted to the inner circumferential surface of the casing 110 or welded to the casing 110 . For example, the outer circumferential surface of the stator 121 is formed to be decut in a D shape, and a passage through which fluid can move may be formed between the inner circumferential surface of the casing 110.
로터(122)는 스테이터(121)의 내측에 위치되며 스테이터(121)와 이격 배치된다. 로터(122)의 축방향 양단에는 후술할 제1임펠러(131)와 제2 임펠러(141)에 의해 발생되는 편심하중을 상쇄시키기 위한 밸런스 웨이트가 결합될 수 있다. 하지만, 밸런스 웨이트는 로터(122)에 설치되지 않고 축(125)에 결합될 수도 있다.The rotor 122 is located inside the stator 121 and is spaced apart from the stator 121 . Balance weights may be coupled to both ends of the rotor 122 in the axial direction to offset eccentric loads generated by the first impeller 131 and the second impeller 141, which will be described later. However, the balance weight may be coupled to the shaft 125 without being installed on the rotor 122 .
구동 유닛(120)에는 증발기로부터 배출된 냉매의 유입을 가능하게 하는 냉매 유입 유로(182f)가 형성될 수 있으며, 이의 구조에 대하여는 후술하기로 한다. A refrigerant inlet passage 182f may be formed in the driving unit 120 to allow the inflow of refrigerant discharged from the evaporator, and its structure will be described later.
밸런스 웨이트가 축(125)에 결합되는 경우에는 앞서 제1 축방향 지지판(161)과 제2 축방향 지지판(스러스트 러너)(162)을 이용하여 밸런스 웨이트로 활용할 수 있다.When the balance weight is coupled to the shaft 125, the first axial support plate 161 and the second axial support plate (thrust runner) 162 may be used as the balance weight.
축(125)은 로터(122)의 중심을 관통하여 압입 결합된다. 따라서 축(125)은 스테이터(121)와 로터(122)의 상호작용에 의해 발생하는 회전력을 전달받아 로터(122)와 함께 회전하고, 이 회전력은 후술할 제1임펠러(131)와 제2임펠러(141)에 전달되어 냉매를 흡입, 압축하여 토출하게 된다.The shaft 125 is press-fitted through the center of the rotor 122 . Therefore, the shaft 125 receives rotational force generated by the interaction between the stator 121 and the rotor 122 and rotates together with the rotor 122, and this rotational force is transmitted to the first impeller 131 and the second impeller to be described later. (141) to inhale, compress and discharge the refrigerant.
축(125)의 양측, 즉 로터(122)의 양쪽에는 케이싱(110)에 구비된 제1 및 제2 스러스트 베어링(153, 154)에 의해 축방향으로 지지되는 제1 축방향 지지판(161)과 제2 축방향 지지판(스러스트 러너, 162)이 각각 고정 결합된다. 이에 따라, 축(125)은 앞서 설명한 바와 같이 그 축(125)에 구비된 제1 축방향 지지판(161)과 제2 축방향 지지판(162)이 케이싱(110)에 구비된 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)에 의해 서로 반대방향으로 지지되면서 제 1 압축유닛(130)과 제2압축유닛(140)에 의해 발생되는 추력을 효과적으로 상쇄시킬 수 있다.On both sides of the shaft 125, that is, on both sides of the rotor 122, a first axial support plate 161 axially supported by first and second thrust bearings 153 and 154 provided in the casing 110 and The second axial support plates (thrust runners, 162) are fixedly coupled to each other. Accordingly, as described above, the shaft 125 is a first thrust bearing (where the first axial support plate 161 and the second axial support plate 162 provided on the shaft 125 are provided on the casing 110), as described above. 153) and the second thrust bearing 154, it is possible to effectively cancel the thrust generated by the first compression unit 130 and the second compression unit 140 while being supported in opposite directions.
제1 축방향 지지판(161)과 제2 축방향 지지판(162)은 로터(122)의 양단에 일체로 구비될 수도 있지만, 이 경우 제1 축방향 지지판(161)과 제2 축방향 지지판(162)이 축(125)을 축방향으로 지지하는 과정에서 발생되는 마찰열이 로터(122)에게로 전달될 수도 있고, 각 지지판(161, 162)이 축방향으로 하중을 받아 변형될 경우 로터(122)가 변형될 수 있다. 이에, 제1 축방향 지지판(161)과 제2 축방향 지지판(162)은 로터(122)의 양단으로부터 각각 이격되는 것이 바람직할 것이다.The first axial support plate 161 and the second axial support plate 162 may be integrally provided at both ends of the rotor 122, but in this case, the first axial support plate 161 and the second axial support plate 162 ) Frictional heat generated in the process of supporting the shaft 125 in the axial direction may be transmitted to the rotor 122, and when each support plate 161, 162 is deformed by receiving a load in the axial direction, the rotor 122 may be transformed. Accordingly, it is preferable that the first axial support plate 161 and the second axial support plate 162 are spaced apart from both ends of the rotor 122 .
또한, 후술할 축(125)에 제1 축방향 지지판(161)과 제2 축방향 지지판(162)을 고정 결합할 경우, 앞서 설명한 바와 같이 제1 축방향 지지판(161)과 제2 축방향 지지판(162)의 무게나 고정위치를 조절하여 밸런스 웨이트로 이용할 수도 있을 것이다. 이 경우, 로터(122)에 별도의 밸런스 웨이트를 설치하지 않아도 되므로, 그만큼 회전요소의 무게를 줄일 수 있을 뿐만 아니라 터보 압축기(100)의 축방향 길이를 줄일 수 있어 터보 압축기(100)를 소형화할 수 있다.In addition, when the first axial support plate 161 and the second axial support plate 162 are fixedly coupled to the shaft 125 to be described later, as described above, the first axial support plate 161 and the second axial support plate It may be used as a balance weight by adjusting the weight or fixing position of (162). In this case, since there is no need to install a separate balance weight on the rotor 122, not only can the weight of the rotating element be reduced, but also the axial length of the turbo compressor 100 can be reduced, thereby miniaturizing the turbo compressor 100. can
여기서, 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)은 전방측 프레임(112)과 후방측 프레임(113)에 설치되지 않고 그 반대쪽인 제1 축방향 지지판(161)과 제2 축방향 지지판(162)에 설치될 수도 있을 것이다.Here, the first thrust bearing 153 and the second thrust bearing 154 are not installed on the front frame 112 and the rear frame 113, but on the first axial support plate 161 and the second shaft opposite to each other. It may also be installed on the direction support plate 162 .
또한, 케이싱(110)의 내부, 즉 전방측 프레임(112)과 로터(122)의 사이 또는 후방측 프레임(113)과 로터(122)의 사이에는 그 케이싱(110)에 각각 고정되는 별도의 전방측 고정판(미도시)과 후방측 고정판(미도시)을 더 구비하고, 그 전방측 고정판과 후방측 고정판에 각각 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)이 설치될 수도 있다. 이 경우에는 터보 압축기(100)의 축방향 길이가 길어지고 조립공수가 증가할 수 있으나, 케이싱(110)에 직접 스러스트 베어링을 설치하는 것에 비해 신뢰성을 높일 수 있을 것이다.In addition, the inside of the casing 110, that is, between the front frame 112 and the rotor 122 or between the rear frame 113 and the rotor 122 is a separate front side fixed to the casing 110, respectively. A side fixing plate (not shown) and a rear fixing plate (not shown) may be further provided, and the first thrust bearing 153 and the second thrust bearing 154 may be respectively installed on the front fixing plate and the rear fixing plate. In this case, although the axial length of the turbo compressor 100 may increase and the number of assembly man-hours may increase, reliability may be improved compared to installing a thrust bearing directly on the casing 110.
여기서, 도면으로 도시하지는 않았으나, 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)이 구동 유닛(120)의 일측, 즉 스테이터(121)를 기준으로 전방측이나 후방측 중에서 어느 한 쪽에 모아 구비될 수도 있다.Here, although not shown, the first thrust bearing 153 and the second thrust bearing 154 are gathered on one side of the drive unit 120, that is, on either the front side or the rear side with respect to the stator 121. may be provided.
한편, 압축유닛(130, 140, 180)은 단일 압축을 진행하도록 한 개의 압축유닛으로 형성될 수도 있지만, 본 실시예와 같이 다단 압축을 진행하도록 복수 개의 압축유닛으로 형성될 수 있다. 다단 압축(125)의 경우 복수 개의 압축유닛(130, 140, 180)이 구동 유닛(120)을 기준으로 케이싱(110)의 양측에 설치되는 것이 축방향 하중이 큰 터보 압축기(100)의 특성을 고려하면 신뢰성 측면에서 바람직할 수 있다. Meanwhile, the compression units 130, 140, and 180 may be formed of one compression unit to perform single compression, but may be formed of a plurality of compression units to perform multi-stage compression as in the present embodiment. In the case of the multi-stage compression 125, the plurality of compression units 130, 140, and 180 are installed on both sides of the casing 110 with respect to the drive unit 120 to improve the characteristics of the turbo compressor 100 having a large axial load. Considering this, it can be desirable in terms of reliability.
하지만, 복수 개의 압축유닛이 양쪽에 설치되는 대향형의 경우는 압축기의 길이가 길어지고 압축효율이 저하될 수 있으므로, 복수 개의 압축유닛(130, 140, 180)을 구동 유닛(120)을 기준으로 한쪽에 형성하는 것이 고효율 및 소형화 측면에서 바람직할 수 있다. 이하에서는 복수 개의 압축유닛이 구비되어 다단으로 냉매를 압축하는 경우, 냉매를 압축하는 순서에 따라 제1 내지 제3압축유닛(130, 140, 180)으로 각각 구분하여 설명하기로 한다.However, in the case of the opposite type in which a plurality of compression units are installed on both sides, the length of the compressor becomes long and the compression efficiency may decrease. Forming on one side may be preferable in terms of high efficiency and miniaturization. Hereinafter, when a plurality of compression units are provided to compress the refrigerant in multiple stages, first to third compression units 130, 140, and 180 will be separately described according to the order of compressing the refrigerant.
제1압축유닛(130)과 제2압축유닛(140)은 케이싱(110)의 일측에서 축방향을 따라 연이어 설치된다. The first compression unit 130 and the second compression unit 140 are installed consecutively along the axial direction on one side of the casing 110 .
또한, 제1압축유닛(130)과 제2압축유닛(140)은 모두 우측에서 냉매가 유입되도록 제1 및 제2임펠러(131, 141)는 서로 같은 방향을 향하도록 배치된다. In addition, the first and second impellers 131 and 141 are disposed to face the same direction so that the refrigerant flows from the right side of the first compression unit 130 and the second compression unit 140.
제1압축유닛(130)은, 상기 증발기로부터 배출된 냉매가 흡입 가능한 제1입구(132b)를 구비한다. 또한, 제1압축유닛(130)은, 제1임펠러(131)를 수용 가능하게 하는 제1 임펠러 하우징(132)을 구비할 수 있는데, 제1입구(132b)는 일례로, 제1 임펠러 하우징(132)의 일 측에 형성될 수 있다. 도 1에는 터보 압축기(100)의 가운데 부근의 제1 임펠러 하우징(132)에서 축과 나란한 방향으로 제1입구(132b)가 형성되어 있는 예가 도시된다. The first compression unit 130 includes a first inlet 132b through which the refrigerant discharged from the evaporator can be sucked. In addition, the first compression unit 130 may include a first impeller housing 132 capable of accommodating the first impeller 131, the first inlet 132b is, for example, the first impeller housing ( 132) may be formed on one side. 1 shows an example in which the first inlet 132b is formed in a direction parallel to the axis in the first impeller housing 132 near the center of the turbo compressor 100.
제1입구(132b)에는 제3임펠러(181)에 냉매의 제공을 가능하게 하도록 연통되는 제1 바이패스 유로(182d)가 연결되며, 상기 제1 바이패스 유로(182d)에는 상기 제1입구(132b)로부터 상기 임펠러(181)으로의 유동을 가능 또는 차단하게 하는 제1밸브(191a)가 설치될 수 있다. The first inlet 132b is connected to a first bypass passage 182d communicating to enable the supply of refrigerant to the third impeller 181, and the first bypass passage 182d has the first inlet ( A first valve 191a enabling or blocking the flow from 132b) to the impeller 181 may be installed.
또한, 제1입구(132b)는 제1 임펠러 하우징(132)에서 축과 나란한 방향으로 일 측에 형성될 수 있다.In addition, the first inlet 132b may be formed on one side of the first impeller housing 132 in a direction parallel to the axis.
제1밸브(191a)는, 제1 바이패스 밸브로 이해될 수 있다. The first valve 191a may be understood as a first bypass valve.
도 1의 상측 부근을 보면, 제1 바이패스 유로(182d)가 제1 임펠러 하우징(132), 제2 임펠러 하우징(142) 및 제3 임펠러 하우징(182)에서 “ㄱ”자의 형상으로 형성되어 있는 예가 도시되는데, 반드시 이러한 구조에 한정되는 것은 아니고, 제1입구(132b)와 제3압축유닛(180)의 유입 유로(182f)를 연통할 수 있다면 다른 구조나 구성으로 형성될 수도 있다. Looking near the upper side of FIG. 1, the first bypass passage 182d is formed in an “L” shape in the first impeller housing 132, the second impeller housing 142, and the third impeller housing 182. An example is shown, but it is not necessarily limited to this structure, and may be formed in other structures or configurations as long as the first inlet 132b and the inflow passage 182f of the third compression unit 180 can communicate.
제1압축유닛(130)과 제2압축유닛(140)과 제3 압축유닛(180)은 각각의 임펠러(131, 141, 181)가 각각의 임펠러 하우징(132, 142, 182)에 수용되어 결합될 수 있다. 즉, 제1압축유닛(130)은 제1임펠러(131)가 제1 임펠러 하우징(132)에 수용되어 축(125)에 결합되고, 제2압축유닛(140)은 제2임펠러(141)가 제2 임펠러 하우징(142)에 수용되어 축(125)에 결합되고, 제3압축유닛(180)은 제3임펠러(181)가 제3 임펠러 하우징(182)에 수용되어 축(125)에 결합될 수 있다. 하지만, 경우에 따라서는 제1임펠러(131)와, 제2 임펠러(141)와, 제3임펠러(181)가 한 개의 임펠러 하우징에 연속으로 배치되어 축(125)에 결합될 수도 있다. 다만, 한 개의 임펠러 하우징에 복수 개의 임펠러가 설치되면 임펠러 하우징의 형상이 상당히 복잡하게 될 것이다.In the first compression unit 130, the second compression unit 140, and the third compression unit 180, each of the impellers 131, 141, and 181 are accommodated in the respective impeller housings 132, 142, and 182 and coupled. It can be. That is, in the first compression unit 130, the first impeller 131 is accommodated in the first impeller housing 132 and coupled to the shaft 125, and the second compression unit 140 has a second impeller 141 The second impeller housing 142 is accommodated and coupled to the shaft 125, and the third compression unit 180 is accommodated in the third impeller housing 182 and coupled to the shaft 125. can However, in some cases, the first impeller 131, the second impeller 141, and the third impeller 181 may be continuously arranged in one impeller housing and coupled to the shaft 125. However, if a plurality of impellers are installed in one impeller housing, the shape of the impeller housing will be considerably complicated.
여기서, 본 실시예는 복수 개의 임펠러가 구동 유닛(120)(또는 케이싱(110))을 기준으로 축방향의 일 측에 연이어 설치되는 다단 터보 압축기(100)를 예를 들어 설명한다.Here, in this embodiment, a multi-stage turbo compressor 100 in which a plurality of impellers are successively installed on one side in the axial direction with respect to the driving unit 120 (or casing 110) will be described as an example.
제1 임펠러 하우징(132)의 내부에는 제1임펠러(131)가 수용되는 제1 임펠러 수용공간(132a)이 형성되며, 제1 임펠러 하우징(132)의 일단에는 흡입관(115)이 연결되어 냉동사이클의 증발기로부터 냉매가 흡입되는 제1입구(132b)가 형성되고, 제1 임펠러 하우징(132)의 타단에는 1단 압축된 냉매를 후술할 제2 임펠러 하우징(142)으로 안내하는 제1출구(132c)가 형성된다.A first impeller accommodating space 132a in which the first impeller 131 is accommodated is formed inside the first impeller housing 132, and a suction pipe 115 is connected to one end of the first impeller housing 132 to cycle the refrigeration cycle. A first inlet 132b through which refrigerant is sucked from the evaporator is formed, and at the other end of the first impeller housing 132, a first outlet 132c guides the refrigerant compressed in the first stage to the second impeller housing 142 to be described later. ) is formed.
제1 임펠러 수용공간(132a)은 제1임펠러(131)를 완전히 수용할 수 있도록 제1입구(132b)와 제1출구(132c)를 제외한 밀폐형상으로 형성될 수도 있지만, 제1임펠러(131)의 배면측이 개방되고 그 개방된 면이 후술할 제2 임펠러 하우징(142)의 전방측면에 밀폐되는 반 밀폐형상으로 형성될 수도 있다.The first impeller accommodating space 132a may be formed in a closed shape except for the first inlet 132b and the first outlet 132c so as to completely accommodate the first impeller 131, but the first impeller 131 It may be formed in a semi-enclosed shape in which the rear side of the is opened and the open side is sealed to the front side of the second impeller housing 142 to be described later.
제1입구(132b)와 제1출구(132c)의 사이에는 제1임펠러(131)의 날개부(131b) 외주면과 일정 간격만큼 이격되어 제1디퓨져(133)가 형성되고, 제1디퓨져(133)의 후류측에는 제1볼류트(134)가 형성된다. 그리고, 제1디퓨져(133)의 축방향 일단의 중심에 제1입구(132b)가, 제1볼류트(134)의 후류측에 제1출구(132c)가 각각 형성된다.Between the first inlet 132b and the first outlet 132c, the first diffuser 133 is formed by being spaced apart from the outer circumferential surface of the wing 131b of the first impeller 131 by a predetermined interval, and the first diffuser 133 The first volute 134 is formed on the downstream side of ). In addition, the first inlet 132b is formed at the center of one end of the first diffuser 133 in the axial direction, and the first outlet 132c is formed at the downstream side of the first volute 134, respectively.
제1임펠러(131)는 축(125)에 결합되는 제1원판부(131a)와, 제1원판부(131a)의 전방면에 형성되는 복수 개의 제1날개부(131b)로 이루어진다. 제1원판부(131a)는 그 전방면에는 복수 개의 제1날개부(131b)가 원추 형상으로 형성되지만, 그 후방면은 배압을 받도록 평판모양으로 형성될 수 있다.The first impeller 131 includes a first disc portion 131a coupled to the shaft 125 and a plurality of first wing portions 131b formed on the front surface of the first disc portion 131a. The first disc portion 131a has a plurality of first wing portions 131b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
여기서, 제1원판부(131a)의 후방에는 축(125)에 결합된 제1 배압플레이트(미도시)가 소정이 간격만큼 이격되어 구비되고, 그 제1 배압플레이트에는 환형으로 된 제1 실링부재(미도시)가 구비될 수 있다. 이로써, 제1원판부의 후방에는 후술할 제2 임펠러 하우징(142)의 전방면과 제1 배압플레이트의 사이에 소정의 냉매가 채워지는 제1 배압공간(미도시)이 형성될 수 있다. 하지만, 제1입구(132b)를 통해 흡입되는 냉매의 압력은 그리 높지 않아 축(125)에 대한 추력이 크지 않을 수 있으므로 제1 배압공간은 배제될 수 있다.Here, a first back pressure plate (not shown) coupled to the shaft 125 is provided at the rear of the first disk part 131a and is spaced apart by a predetermined interval, and a first sealing member having an annular shape is attached to the first back pressure plate. (not shown) may be provided. Accordingly, a first back pressure space (not shown) filled with a predetermined refrigerant may be formed between the front surface of the second impeller housing 142 and the first back pressure plate at the rear of the first disc unit. However, since the pressure of the refrigerant sucked through the first inlet 132b is not so high, the thrust to the shaft 125 may not be large, so the first back pressure space may be excluded.
제2압축유닛(140)은 제2임펠러(141)로부터 토출된 냉매를 상기 제3임펠러(181)으로 제공 가능하게 하는 제2출구(142d)를 구비할 수 있다. 일례로, 후술하는 바와 같이, 제2출구(142d)는, 제2 임펠러 하우징(142)에 구비될 수 있다. 또한, 제3압축유닛(180)은, 유입 유로(182f)를 구비할 수 있다. 유입 유로(182f)는, 제2출구(142d)와 연통 가능하며, 제2임펠러(141)로부터 토출된 냉매를 제3임펠러(181)로 유입 가능하게 하는 유입 유로(182f)를 구비할 수 있다. The second compression unit 140 may have a second outlet 142d that enables the refrigerant discharged from the second impeller 141 to be provided to the third impeller 181 . For example, as will be described later, the second outlet 142d may be provided in the second impeller housing 142 . Also, the third compression unit 180 may include an inflow passage 182f. The inflow passage 182f may communicate with the second outlet 142d and may include an inflow passage 182f allowing the refrigerant discharged from the second impeller 141 to flow into the third impeller 181. .
제2출구(142d) 또는 상기 유입 유로(182f)에는 상기 제2임펠러(141)로부터 토출된 냉매를 상기 제3임펠러(181)로 유동을 가능 또는 차단하게 하는 제2밸브(191b)가 설치될 수 있다. A second valve 191b may be installed in the second outlet 142d or the inflow passage 182f to enable or block the flow of the refrigerant discharged from the second impeller 141 to the third impeller 181. can
제2밸브(191b)는, 제2임펠러(141)로부터 토출된 냉매를 제3임펠러(181)로 유동을 유입 또는 차단하는 유입 밸브로 이해될 수 있다. The second valve 191b may be understood as an inflow valve that introduces or blocks the flow of the refrigerant discharged from the second impeller 141 to the third impeller 181 .
도 1에는, 제2 볼류트에 제2출구(142d)가 구비되어 있으며, 유입 유로(182f)에 제2밸브(191b)가 설치되는 예가 도시된다. 하지만, 반드시 이러한 구조에 한정되는 것은 아니고, 제2밸브(191b)는 제2출구(142d) 측에 설치될 수도 있을 것이다. 1 shows an example in which the second outlet 142d is provided in the second volute and the second valve 191b is installed in the inflow passage 182f. However, it is not necessarily limited to this structure, and the second valve 191b may be installed on the side of the second outlet 142d.
한편, 제2 임펠러 하우징(142)의 내부에는 제2 임펠러(141)가 수용되는 제2 임펠러 수용공간(142a)이 형성되며, 제2 임펠러 하우징(142)의 일단에는 제1 임펠러 하우징(132)의 제1출구(132c)에 연결되어 1단 압축된 냉매가 흡입되는 제2 입구(142b)가 형성되고, 제2 임펠러 하우징(142)의 타단에는 토출관(116)이 연결되어 2단 압축된 냉매를 냉동사이클의 응축기로 안내하는 제2 토출구(142c)가 형성된다.Meanwhile, a second impeller accommodating space 142a in which the second impeller 141 is accommodated is formed inside the second impeller housing 142, and one end of the second impeller housing 142 has a first impeller housing 132 is connected to the first outlet 132c of the second inlet 142b through which the first-stage compressed refrigerant is sucked, and a discharge pipe 116 is connected to the other end of the second impeller housing 142 to form a second-stage compressed refrigerant. A second discharge port 142c is formed to guide the refrigerant to the condenser of the refrigerating cycle.
제2 입구(142b)와 제2 토출구(142c)의 사이에는 제2 임펠러(141)의 날개부(141b) 외주면과 일정 간격만큼 이격되어 제2 디퓨져(143)가 형성되고, 제2 디퓨져(143)의 후류측에는 제2 볼류트(144)가 형성된다. 그리고, 제2 디퓨져(143)의 축방향 일단의 중심에 제2 입구(142b)가, 제2 볼류트(144)의 후류측에 제2 토출구(142c)가 각각 형성된다.A second diffuser 143 is formed between the second inlet 142b and the second outlet 142c by being spaced apart from the outer circumferential surface of the wing 141b of the second impeller 141 by a predetermined interval, and the second diffuser 143 The second volute 144 is formed on the downstream side of ). In addition, the second inlet 142b is formed at the center of one end of the second diffuser 143 in the axial direction, and the second outlet 142c is formed at the downstream side of the second volute 144, respectively.
제2 임펠러(141)는 축(125)에 결합되는 제2원판부(141a)와, 제2원판부(141a)의 전방면에 형성되는 복수 개의 제2날개부(141b)로 이루어진다. 제2원판부(141a)는 그 전방면에는 복수 개의 제2날개부(141b)가 원추 형상으로 형성되지만, 그 후방면은 배압을 받도록 평판모양으로 형성될 수 있다.The second impeller 141 includes a second disk portion 141a coupled to the shaft 125 and a plurality of second wing portions 141b formed on the front surface of the second disk portion 141a. The second disc portion 141a has a plurality of second wing portions 141b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
여기서, 제2원판부(141a)의 후방에는 축(125)에 결합된 제2 배압플레이트(145)가 소정이 간격만큼 이격되어 구비되고, 그 제2 배압플레이트(145)에는 환형으로 된 제2실링홈(145a)이 형성되어 그 제2실링홈(145a)에 제2 실링부재(146)가 삽입될 수 있다. 이로써, 제2원판부(141a)의 후방에는 제2 배압플레이트(미도시)와 케이싱(110)의 전방면 사이에 소정의 냉매가 채워지는 제2 배압공간(미도시)이 형성된다. 그리고, 제2 배압공간으로 유입되는 냉매의 일부가 제2실링홈(미도시)으로 유입되어 제2 실링부재(미도시)를 밀어 올림에 따라, 제2 배압공간은 밀봉되게 된다.Here, a second back pressure plate 145 coupled to the shaft 125 is provided at the rear of the second disk part 141a and is spaced apart by a predetermined interval, and the second back pressure plate 145 has an annular second back plate 145. A sealing groove 145a is formed, and the second sealing member 146 may be inserted into the second sealing groove 145a. Thus, a second back pressure space (not shown) filled with a predetermined refrigerant is formed between the second back pressure plate (not shown) and the front surface of the casing 110 at the rear of the second disc portion 141a. In addition, as a part of the refrigerant flowing into the second back pressure space flows into the second sealing groove (not shown) and pushes up the second sealing member (not shown), the second back pressure space is sealed.
제2 배압공간은 후술할 배압유로가 연결되고, 배압유로에는 제2 배압공간의 압력이 압축기의 운전속도(즉, 압축비)에 따라 제2 배압공간의 압력을 가변시킬 수 있도록 배압유로를 선택적으로 개폐하는 배압 조절밸브가 설치될 수 있다.The second back pressure space is connected to a back pressure passage to be described later, and the back pressure passage is selectively connected to the back pressure passage so that the pressure in the second back pressure space can be varied according to the operating speed (ie, compression ratio) of the compressor. A back pressure control valve that opens and closes may be installed.
예를 들어, 배압유로는 제2 임펠러 하우징(142)과 케이싱(110)의 내부를 관통하여 형성될 수 있다. 즉, 제2 임펠러 하우징(142)의 벽체를 이루는 하우징의 내부에 제1 배압유로가 형성되고, 케이싱(110)의 전방측 프레임(112)의 내부에는 제1 배압유로와 연통되는 제2 배압유로가 형성될 수 있다. 물론, 배압유로는 토출관의 중간에서 분관되는 파이프 형태로 이루어질 수도 있으나, 배압유로가 임펠러 하우징과 전방측 프레임의 내부에 형성되는 것이 부품수를 줄여 제조비용을 절감할 수 있어 바람직할 수 있다.For example, the back pressure passage may be formed through the inside of the second impeller housing 142 and the casing 110 . That is, a first back pressure passage is formed inside the housing constituting the wall of the second impeller housing 142, and a second back pressure passage communicates with the first back pressure passage inside the front frame 112 of the casing 110. can be formed. Of course, the back pressure flow path may be formed in the form of a pipe branched from the middle of the discharge pipe, but it may be preferable to form the back pressure flow path inside the impeller housing and the front frame to reduce manufacturing cost by reducing the number of parts.
하지만, 경우에 따라서는 배압유로는 그 배압유로가 구비된 별도의 밸브프레임을 케이싱(110)의 전방면에 조립하여 형성할 수도 있다.However, in some cases, the back pressure passage may be formed by assembling a separate valve frame equipped with the back pressure passage to the front surface of the casing 110 .
제3압축유닛(180)은, 제2압축유닛(140)에 인접하도록 배치된다. The third compression unit 180 is disposed adjacent to the second compression unit 140 .
제3압축유닛(180)은, 케이싱(110)의 구동 유닛(120)이 배치된 위치와 반대편의 일측에 설치된다. The third compression unit 180 is installed on one side of the casing 110 opposite to the position where the drive unit 120 is disposed.
즉, 제3압축유닛(180)은 제3임펠러(181)가 제3 임펠러 하우징(182)에 수용되어 축(125)에 결합되게 된다. That is, in the third compression unit 180, the third impeller 181 is accommodated in the third impeller housing 182 and coupled to the shaft 125.
제3임펠러(181)는 도 1에 도시되는 바와 같이, 제1 및 제2임펠러(131, 141)와는 반대를 향하도록로 배치되어 있다. As shown in FIG. 1, the third impeller 181 is disposed to face opposite to the first and second impellers 131 and 141.
한편, 제3 임펠러 하우징(182)의 내부에는 제3임펠러(181)가 수용되는 제3 임펠러 수용공간(182a)이 형성되며, 제3 임펠러 하우징(182)의 일단에는 제2압축유닛(140)으로부터 토출된 냉매가 제공되는 제3입구(182b)가 형성되고, 제3 임펠러 하우징(182)의 하측에는 3단 압축된 냉매를 토출하는 제3토출구(182c)가 형성된다.Meanwhile, a third impeller receiving space 182a in which the third impeller 181 is accommodated is formed inside the third impeller housing 182, and at one end of the third impeller housing 182, the second compression unit 140 A third inlet 182b through which the refrigerant discharged from is provided is formed, and a third discharge port 182c for discharging the refrigerant compressed in three stages is formed on the lower side of the third impeller housing 182 .
제3 임펠러 수용공간(182a)은 제3임펠러(181)를 완전히 수용할 수 있도록 제3입구(182b)와 제3토출구(182c)를 제외한 밀폐형상으로 형성될 수도 있지만, 제3임펠러(181)의 배면측이 개방되고 그 개방된 면이 후술할 제2 임펠러 하우징(142)의 후방측면에 밀폐되는 반 밀폐형상으로 형성될 수도 있다.The third impeller accommodating space 182a may be formed in a closed shape except for the third inlet 182b and the third discharge port 182c so as to completely accommodate the third impeller 181, but the third impeller 181 It may be formed in a semi-enclosed shape in which the rear side of the is opened and the open side is sealed to the rear side of the second impeller housing 142 to be described later.
제3입구(182b)와 제3토출구(182c)의 사이에는 제3임펠러(181)의 날개부(181b) 외주면과 일정 간격만큼 이격되어 제3디퓨져(183)가 형성되고, 제3디퓨져(183)의 후류측에는 제3볼류트(184)가 형성된다. 그리고, 제3디퓨져(183)의 축방향 일단의 중심에 제3입구(182b)가, 제3볼류트(184)의 후류측에 제3토출구(182c)가 각각 형성된다.A third diffuser 183 is formed between the third inlet 182b and the third discharge port 182c by being spaced apart from the outer circumferential surface of the wing 181b of the third impeller 181 by a predetermined distance, and the third diffuser 183 A third volute 184 is formed on the downstream side of ). Also, a third inlet 182b is formed at the center of one end of the third diffuser 183 in the axial direction, and a third discharge port 182c is formed at the downstream side of the third volute 184, respectively.
제3임펠러(181)는 축(125)에 결합되는 제3원판부(181a)와, 제3원판부(181a)의 전방면에 형성되는 복수 개의 제3날개부(181b)로 이루어진다. 제3원판부(181a)는 그 전방면에는 복수 개의 제3날개부(181b)가 원추 형상으로 형성되지만, 그 후방면은 배압을 받도록 평판모양으로 형성될 수 있다.The third impeller 181 includes a third disc portion 181a coupled to the shaft 125 and a plurality of third wing portions 181b formed on the front surface of the third disc portion 181a. The third disc portion 181a has a plurality of third wing portions 181b formed in a conical shape on its front surface, but its rear surface may be formed in a flat plate shape to receive back pressure.
여기서, 제3원판부(181a)의 후방에는 축(125)에 결합된 배압플레이트(미도시)가 소정이 간격만큼 이격되어 구비되고, 그 배압플레이트에는 환형으로 된 실링부재(미도시)가 구비될 수 있다. 이로써, 제3원판부의 후방에는 후술할 제2 임펠러 하우징(142)의 후방면과 배압플레이트의 사이에 소정의 냉매가 채워지는 배압공간(미도시)이 형성될 수 있다. Here, a back pressure plate (not shown) coupled to the shaft 125 is spaced apart from each other by a predetermined interval at the rear of the third disc portion 181a, and an annular sealing member (not shown) is provided on the back pressure plate. It can be. Accordingly, a back pressure space (not shown) filled with a predetermined refrigerant may be formed between the rear surface of the second impeller housing 142 and the back pressure plate at the rear of the third disc unit.
제3압축유닛(180)은, 제3임펠러(181)로부터 토출된 냉매를 배출 가능하게 하는 제3볼류트(184)를 구비할 수 있다. 전술한 제1입구(132b)와, 제3볼류트(184) 사이에는 제2 바이패스 유로(182e)가 형성될 수 있다. The third compression unit 180 may include a third volute 184 capable of discharging the refrigerant discharged from the third impeller 181 . A second bypass passage 182e may be formed between the aforementioned first inlet 132b and the third volute 184 .
또한, 제2 바이패스 유로(182e)에는, 제3밸브(191c)가 설치될 수 있는데, 상기 제3밸브(191c)는 상기 제3임펠러(181)로부터 토출된 냉매가, 상기 제3볼류트(184)로부터 상기 제1입구(132b)로 유동되는 것을 가능 또는 차단하게 한다. In addition, a third valve 191c may be installed in the second bypass flow path 182e, and the third valve 191c allows the refrigerant discharged from the third impeller 181 to flow through the third volute. The flow from 184 to the first inlet 132b is allowed or blocked.
제3밸브(191c)는, 제2 바이패스 유로(182e)에 설치되는 제2 바이패스 밸브로 이해될 수 있다. The third valve 191c may be understood as a second bypass valve installed in the second bypass flow path 182e.
또한, 제3볼류트(184)에는 외부의 사이클과 연통되는 제3출구(182g)가 형성되고, 상기 제3출구(182g)에는 제4밸브(191d)가 설치되고, 상기 제4밸브(191d)는 상기 제3임펠러(181)로부터 토출된 냉매를 외부의 사이클로 배출되는 것을 가능 또는 차단하게 할 수 있다. In addition, a third outlet 182g communicating with an external cycle is formed in the third volute 184, a fourth valve 191d is installed in the third outlet 182g, and the fourth valve 191d ) may enable or block the refrigerant discharged from the third impeller 181 from being discharged to an external cycle.
제4밸브(191d)는 제3 바이패스 유로에 설치되는 제3 바이패스 밸브로 이해될 수 있다. The fourth valve 191d may be understood as a third bypass valve installed in the third bypass passage.
도 1에는 제3 임펠러 하우징(182)에서 좌측 방향으로 제3출구(182g)가 형성되는 예가 도시되는데, 제3출구(182g)는 외부의 사이클과 연통될 수 있으며, 제3출구(182g)에는 제4밸브(191d)가 설치되어 있는 예가 도시된다. 1 shows an example in which a third outlet 182g is formed in the left direction in the third impeller housing 182, the third outlet 182g may communicate with an external cycle, and the third outlet 182g has An example in which the fourth valve 191d is installed is shown.
본 발명은, 이와 같이, 제3볼류트(184)에는 외부의 사이클과 연통되는 제3출구(182g)가 형성되고, 상기 제3출구(182g)에는 제4밸브(191d)가 설치되며, 제3출구(182g)는 외부의 사이클과 연통될 수 있으며, 제3출구(182g)에는 제4밸브(191d)가 설치되어 있는 구성에 의해, 압력비 15이상에서, 10 % 내지 100 %의 부분 부하의 유량 범위를 갖도록 1 내지 3단의 모든 압축부가 순차적으로 압축하지 않고 1, 2단의 압축부만 차례로 압축하고 3단의 압축부는 흡입 또는 사이클로 바이패스 하여 운전 범위를 확보할 수 있게 한다.In this way, in the present invention, a third outlet 182g communicating with an external cycle is formed in the third volute 184, a fourth valve 191d is installed in the third outlet 182g, and The third outlet (182g) may communicate with an external cycle, and by the configuration in which the fourth valve (191d) is installed at the third outlet (182g), at a pressure ratio of 15 or more, at a partial load of 10% to 100% To have a flow rate range, all compression units in stages 1 to 3 do not compress sequentially, but only compression units in stages 1 and 2 are sequentially compressed, and the compression unit in 3 stages is bypassed with suction or cycle to secure an operating range.
전술한 바와 같이, 본 발명의 터보 압축기(100)는 복수 개의 임펠러()131, 141, 181)가 구동 유닛(120)(또는 케이싱(110))을 기준으로 축방향 일측에 연이어 설치되는 다단 구조의 터보 압축기(100)를 예로 들어 설명한다.As described above, the turbo compressor 100 of the present invention has a multi-stage structure in which a plurality of impellers 131, 141, and 181 are successively installed on one side in the axial direction with respect to the driving unit 120 (or casing 110). The turbo compressor 100 of will be described as an example.
도 1에 도시되는 바와 같이, 제3 임펠러 하우징(182)의 내부에는 제3 임펠러(181)가 수용되는 제3 임펠러 수용공간(182a)이 형성되며, 제3 임펠러 하우징(182)의 일단에는 유입 유로(182f)가 구비되어 제2압축유닛(140)으로부터 토출된 냉매를 제공받을 수 있게 하고, 제3 임펠러 하우징(182)의 타단에는 제3임펠러(181)에 의해 압축된 냉매를 배출하는 제3출구(182g) 및 제3토출구(182c)가 형성된다.As shown in FIG. 1, a third impeller accommodating space 182a in which the third impeller 181 is accommodated is formed inside the third impeller housing 182, and one end of the third impeller housing 182 is inlet A flow path 182f is provided to receive the refrigerant discharged from the second compression unit 140, and the other end of the third impeller housing 182 discharges the refrigerant compressed by the third impeller 181. A third outlet 182g and a third outlet 182c are formed.
한편, 구동 유닛(120)에는 제1입구(132b)와 연통 가능한 냉매 유입 유로(182f)가 구비될 수 있는데, 냉매 유입 유로(182f)에는 제5밸브(191e)가 연결될 수 있다. 냉매 유입 유로(182f)는 일례로, 적어도 일 방향을 따라서 형성될 수 있다. Meanwhile, the drive unit 120 may include a refrigerant inlet passage 182f capable of communicating with the first inlet 132b, and a fifth valve 191e may be connected to the refrigerant inlet passage 182f. The refrigerant inlet passage 182f may be formed along at least one direction, for example.
제5밸브(191e)는, 증발기로부터의 냉매를 터보 압축기(100)의 내부로 공급하는 인젝션 밸브로 이해될 수 있다. The fifth valve 191e may be understood as an injection valve that supplies refrigerant from the evaporator to the inside of the turbo compressor 100 .
도 1을 참조하면, 구동 유닛(120)의 스테이터(121)에 냉매 유입 유로(182f)가 형성되어 있는 예가 도시되는데, 일례로, 냉매 유입 유로(182f)는 스테이터(121)의 대각선 방향으로 형성되는 예가 도시되나 반드시 이러한 구조에 한정되는 것은 아니다. 1, an example in which a refrigerant inlet passage 182f is formed in the stator 121 of the driving unit 120 is shown. For example, the refrigerant inlet passage 182f is formed in a diagonal direction of the stator 121. Examples are shown, but are not necessarily limited to these structures.
또한, 도 1에는 케이싱(110)에 냉매 유입 유로(182f)에 연통되는 유입구가 형성되고, 유입구에 제5밸브(191e)가 설치되어 있는 예가 도시된다. 1 shows an example in which an inlet communicating with the refrigerant inlet passage 182f is formed in the casing 110 and a fifth valve 191e is installed in the inlet.
제5밸브(191e)에 의해, 증발기로부터 배출된 냉매가 터보 압축기(100)의 내부로 유입 또는 차단하게 할 수 있다. The fifth valve 191e allows the refrigerant discharged from the evaporator to flow into or block the turbo compressor 100 .
케이싱(110)의 전방측 프레임(112)에는 반경방향으로 소정의 깊이를 가지는 밸브공간(미도시)이 형성되고, 배압밸브(미도시)가 삽입 설치될 수 있으며, 밸브공간과 배압밸브의 사이에는 그 배압밸브를 탄력 지지하는 밸브스프링(미도시)이 설치될 수 있다.A valve space (not shown) having a predetermined depth in the radial direction is formed in the front frame 112 of the casing 110, a back pressure valve (not shown) may be inserted and installed, and between the valve space and the back pressure valve A valve spring (not shown) may be installed to elastically support the back pressure valve.
또한, 제1 배압구멍(미도시)의 일측에는 밸브공간을 케이싱(110)의 내부공간과 연통시키는 제2 배압구멍(미도시)이 형성될 수 있다. 제2 배압구멍은 제1 배압구멍보다 안쪽, 즉 배압밸브가 압력에 의해 개방되는 경우 제1 배압구멍보다 더 높은 압력을 받았을 때 열릴 수 있도록 제1 배압구멍보다 더 중심쪽에 위치하도록 형성된다. 하지만, 경우에 따라서는 제2 배압구멍은 제1 배압구멍과 동일한 위치, 즉 제1 배압구멍과 제2배압구멍이 동시에 개폐되는 위치에 형성될 수도 있고, 제1 배압구멍 보다 더 바깥쪽에 형성될 수도 있다.In addition, a second back pressure hole (not shown) may be formed at one side of the first back pressure hole (not shown) to communicate the valve space with the inner space of the casing 110 . The second back pressure hole is formed to be located more centrally than the first back pressure hole so that it can be opened when a higher pressure than the first back pressure hole is received when the back pressure valve is opened by pressure. However, in some cases, the second back pressure hole may be formed at the same position as the first back pressure hole, that is, at a position where the first back pressure hole and the second back pressure hole are simultaneously opened and closed, or may be formed further outside the first back pressure hole. may be
배압밸브는 볼밸브 또는 피스톤 밸브로 이루어질 수 있다. 이러한 배압밸브는 배압유로를 통해 유입되는 냉매의 압력에 의한 힘과 탄성부재의 탄성력에 의한 힘의 차이에 따라 3개의 위치를 가질 수 있다. 즉, 배압밸브는 제1 배압구멍과 제2 배압구멍이 모두 닫히는 제1 위치, 제1배압구멍이 열리고 제2 배압구멍은 닫히는 제2 위치, 그리고 제1 배압구멍과 제2 배압구멍이 모두 열리는 제3 위치를 가지도록 형성될 수 있다.The back pressure valve may be composed of a ball valve or a piston valve. The back pressure valve may have three positions depending on the difference between the force due to the pressure of the refrigerant flowing through the back pressure passage and the force due to the elastic force of the elastic member. That is, the back pressure valve has a first position where both the first back pressure hole and the second back pressure hole are closed, a second position where the first back pressure hole is open and the second back pressure hole is closed, and both the first back pressure hole and the second back pressure hole are open. It may be formed to have a third position.
이를 위해, 밸브스프링은 압축코일 스프링으로 이루어져 그 배압밸브의 안쪽면과 밸브공간 사이에 설치될 수도 있고, 경우에 따라서는 밸브스프링이 인장코일스프링으로 이루어져 그 배압밸브의 바깥쪽과 밸브공간 사이에 설치될 수도 있다.To this end, the valve spring is composed of a compression coil spring and may be installed between the inner surface of the back pressure valve and the valve space. In some cases, the valve spring is composed of a tension coil spring and is installed between the outside of the back pressure valve and the valve space. may be installed.
한편, 전술한 실시예에서는 제1 배압유로가 제2압축유닛(140)의 토출측, 즉 제2 토출구에 연결되는 것이나, 경우에 따라서는 배압유로가 제1압축유닛의 토출측에 연결될 수도 있다. 이 경우에도 밸브공간 및 배압밸브 등 기본적인 구성은 전술한 실시예와 동일하게 형성할 수도 있다.Meanwhile, in the above-described embodiment, the first back pressure passage is connected to the discharge side of the second compression unit 140, that is, to the second discharge port, but in some cases, the back pressure passage may be connected to the discharge side of the first compression unit. Even in this case, basic configurations such as the valve space and the back pressure valve may be formed in the same manner as in the above-described embodiment.
상기와 같은 본 실시예에 의한 터보 압축기(100)는 다음과 같이 동작될 수 있다.The turbo compressor 100 according to the present embodiment as described above may be operated as follows.
즉, 구동 유닛(120)에 전원이 인가되면, 스테이터(121)와 로터(122) 사이의 유도 전류에 의해 회전력이 발생되고, 이 회전력에 의해 축(125)이 로터(122)와 함께 회전을 하게 된다. 축(125)에 의해 제1임펠러(131)와, 제2임펠러(141), 및 제3임펠러(181)에 구동 유닛(120)의 회전력이 전달되고, 제1임펠러(131)와 제2 임펠러(141)와 제3임펠러(181)가 각각의 임펠러 수용공간(132a, 142a, 182a)에서 동시에 회전을 하게 된다.That is, when power is applied to the driving unit 120, rotational force is generated by an induced current between the stator 121 and the rotor 122, and the rotational force causes the shaft 125 to rotate together with the rotor 122. will do The rotational force of the driving unit 120 is transmitted to the first impeller 131, the second impeller 141, and the third impeller 181 by the shaft 125, and the first impeller 131 and the second impeller 141 and the third impeller 181 rotate simultaneously in the respective impeller receiving spaces 132a, 142a, and 182a.
그러면 냉동사이클의 증발기를 통과한 냉매가 흡입관과 제1입구(132b)를 통해 제1 임펠러 수용공간(132a)으로 유입되고, 이 냉매는 제1임펠러(131)의 날개부(131b)를 따라 이동하면서 정압이 상승하며 동시에 원심력을 가지고 제1디퓨져(133)를 통과하게 된다.Then, the refrigerant passing through the evaporator of the refrigeration cycle flows into the first impeller accommodation space 132a through the suction pipe and the first inlet 132b, and the refrigerant moves along the wing 131b of the first impeller 131. While doing so, the static pressure rises and at the same time passes through the first diffuser 133 with centrifugal force.
그러면, 제1디퓨져(133)를 통과하는 냉매는 그 제1디퓨져(133)에서 원심력에 의해 운동에너지가 압력수두의 상승으로 이어지고, 원심 압축된 고온 고압의 냉매는 제1볼류트(134)에서 모아져 제1출구(132c)를 통해 토출된다.Then, the kinetic energy of the refrigerant passing through the first diffuser 133 leads to an increase in the pressure head by the centrifugal force in the first diffuser 133, and the centrifugally compressed high-temperature and high-pressure refrigerant flows in the first volute 134. It is collected and discharged through the first outlet 132c.
그러면, 제1출구(132c)에서 토출되는 냉매는 제2 임펠러 하우징(142)의 제2 입구(142b)를 통해 제2 임펠러(141)로 전달되면서, 제2 임펠러(141)의 내부에서 다시 정압이 상승하며 동시에 원심력을 가지고 제2 디퓨져(143)를 통과하게 된다.Then, while the refrigerant discharged from the first outlet 132c is transferred to the second impeller 141 through the second inlet 142b of the second impeller housing 142, the static pressure is restored inside the second impeller 141. As it rises, it passes through the second diffuser 143 with centrifugal force.
그러면, 제2디퓨져(143)를 통과하는 냉매는 원심력에 의해 원하는 압력까지 압축되고, 이 2단 압축된 고온고압의 냉매는 제2 볼류트(144)에서 모아져 제2 토출구(142c)와 토출관(미도시)을 통해 응축기로 토출되는 일련의 과정을 반복하게 된다.Then, the refrigerant passing through the second diffuser 143 is compressed to a desired pressure by the centrifugal force, and the high-temperature, high-pressure refrigerant compressed in two stages is collected in the second volute 144 and passed through the second outlet 142c and the discharge pipe. Through (not shown), a series of processes of being discharged to the condenser are repeated.
한편, 제2디퓨져(143)를 통과하고 제2볼류트(144)에서 모아진 냉매의 일부는 제3압축유닛(180)으로 제공된다. 제3압축유닛(180)으로 제공되는 냉매는 전술한 제3압축유닛(180)의 유입 유로(182f)를 따라서 유동하여 제3입구(182b)를 통해서 제3 임펠러 수용공간(182a)으로 유입되게 된다. Meanwhile, some of the refrigerant passing through the second diffuser 143 and collected in the second volute 144 is provided to the third compression unit 180 . The refrigerant supplied to the third compression unit 180 flows along the inflow passage 182f of the third compression unit 180 and flows into the third impeller receiving space 182a through the third inlet 182b. do.
그 후, 제3 임펠러(181)로 전달되면서, 제3 임펠러(181)의 내부에서 다시 정압이 상승하며 동시에 원심력을 가지고 제2 디퓨져(183)를 통과하게 된다.Then, while being transmitted to the third impeller 181, the static pressure rises again inside the third impeller 181 and at the same time passes through the second diffuser 183 with centrifugal force.
그러면, 제3디퓨져(183)를 통과하는 냉매는 원심력에 의해 원하는 압력까지 압축되고, 이 3단 압축된 고온고압의 냉매는 제3볼류트(184)에서 모아진 냉매의 일부는 제3 토출구(182c)와 토출관(미도시)을 통해 응축기로 토출되는 일련의 과정을 반복하게 된다.Then, the refrigerant passing through the third diffuser 183 is compressed to a desired pressure by centrifugal force, and the high-temperature, high-pressure refrigerant compressed in three stages is collected in the third volute 184 and part of the refrigerant is discharged through the third discharge port 182c. ) and a series of processes of being discharged to the condenser through a discharge pipe (not shown) are repeated.
제3볼류트(184)에서 모아진 냉매의 다른 일부는 제3출구(182g)를 통해 외부의 사이클로 제공될 수 있다. Another part of the refrigerant collected in the third volute 184 may be supplied to an external cycle through the third outlet 182g.
또한, 제3볼류트(184)에서 모아진 냉매의 또 다른 일부는 후술하는 제어부(170)에 의해 제2 바이패스 유로(182e)를 유동하여 통해 제1압축유닛(130)으로 다시 제공될 수 있다. In addition, another part of the refrigerant collected in the third volute 184 may be provided again to the first compression unit 130 by flowing through the second bypass passage 182e by the controller 170 to be described later. .
이때, 제1임펠러(131)와 제2 임펠러(141)는 각 임펠러 하우징(132, 142)의 제1입구(132b)와 제2 입구(142b)를 통해 흡입되는 냉매에 의해 후방쪽으로 밀리는 추력을 받게 된다. 특히, 제2 임펠러(141)의 경우는 제1임펠러(131)에 의해 1단 압축된 냉매가 제2 입구(142b)를 통해 유입됨에 따라 상당히 큰 후방향 추력을 받게 된다. 이러한 후방향 추력은 케이싱(110)의 내부에 구비되는 제1 스러스트 베어링(153)과 제2 스러스트 베어링(154)에 의해 저지되어 제1임펠러(131)와 제2 임펠러(141)가 축(125)과 함께 후방쪽으로 밀리는 것이 억제된다.At this time, the first impeller 131 and the second impeller 141 provide thrust pushed backward by the refrigerant sucked through the first inlet 132b and the second inlet 142b of each of the impeller housings 132 and 142. You will receive. In particular, in the case of the second impeller 141, as the refrigerant compressed in one stage by the first impeller 131 flows in through the second inlet 142b, it receives a considerably large backward thrust. This backward thrust is prevented by the first thrust bearing 153 and the second thrust bearing 154 provided inside the casing 110, so that the first impeller 131 and the second impeller 141 are connected to the shaft 125. ), and pushing toward the rear is suppressed.
앞서 설명한 바와 같이, 제1임펠러(131)와 제2 임펠러(141)가 구동 유닛(120)을 기준으로 한 쪽에 몰려서 설치되는 경우에는 축방향 후방쪽으로는 상당히 큰 추력을 받게 되어 그만큼 스러스트 베어링의 단면적을 넓게 확보하여야 압축기의 신뢰성을 유지할 수 있다. 그러나, 이는 터보 압축기(100)의 크기가 증대될 뿐만 아니라 스러스트 베어링에서의 마찰손실이 증가하면서 압축기 효율이 저하될 수 있다. 또, 고속운전시 구동 유닛(120)의 부하가 증가하여 발열량이 높아지나 이를 효과적으로 냉각하지 못하거나 별도의 냉각장치가 필요하게 되어 전체적으로 제조비용이 증가하게 될 수 있다.As described above, when the first impeller 131 and the second impeller 141 are installed on one side with respect to the driving unit 120, a considerably large thrust is received toward the rear in the axial direction, thereby reducing the cross-sectional area of the thrust bearing. must be widely secured to maintain the reliability of the compressor. However, this increases the size of the turbo compressor 100 and increases the frictional loss in the thrust bearing, thereby degrading the efficiency of the compressor. In addition, during high-speed operation, the load of the drive unit 120 increases and the amount of heat generated increases, but this may not be effectively cooled or a separate cooling device may be required, resulting in an overall increase in manufacturing cost.
이를 감안하여, 제1임펠러(131)와 제2 임펠러(141)가 후방으로 추력을 받고, 제3임펠러(181)도 후방으로 추력을 받아, 제1 및 제2임펠러(131, 141)와, 제3임펠러(181)의 추력은 서로 상쇄될 수 있으며, 이로 인해 스러스트 베어링에 가해지는 하중을 줄일 수 있다. 그러면, 스러스트 베어링의 크기를 줄일 수 있고, 스러스트 베어링에 의한 마찰손실을 줄여 압축기 효율을 높일 수 있다.In view of this, the first impeller 131 and the second impeller 141 receive thrust to the rear, and the third impeller 181 also receives thrust to the rear, so that the first and second impellers 131 and 141, Thrust forces of the third impeller 181 may be offset with each other, thereby reducing the load applied to the thrust bearing. Then, the size of the thrust bearing can be reduced, and the efficiency of the compressor can be increased by reducing the frictional loss caused by the thrust bearing.
또한, 고속운전시 구동 유닛(120)으로부터 발생되는 발열량이 증가할 수 있으나, 바이패스되는 냉매의 일부를 케이싱(110)의 내부공간으로 유도하여 구동 유닛(120)을 냉각하게 되면 구동 유닛(120)의 성능을 높여 압축기 효율을 향상시킬 수 있다.In addition, although the amount of heat generated from the drive unit 120 may increase during high-speed operation, when a portion of the bypassed refrigerant is induced into the inner space of the casing 110 to cool the drive unit 120, the drive unit 120 ) to improve compressor efficiency.
도 4는 제어부(170)의, 구동 유닛(120), 제1 내지 제3압축유닛(130, 140, 180), 및 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)과 전기적 연결 관계를 도시하는 블록도이다. 4 shows the control unit 170, the drive unit 120, the first to third compression units 130, 140, 180, and the first to fifth valves 191a, 191b, 191c, 191d, 191e and electrical It is a block diagram showing the connection relationship.
도 4에 도시되는 바와 같이, 본 발명의 터보 압축기(100)는 제어부(170)를 더 포함할 수 있다. As shown in FIG. 4 , the turbo compressor 100 of the present invention may further include a controller 170.
제어부(170)는, 터보 압축기(100)의 목표 유량, 운전가능 유량, 목표 압력비 및 운전 가능 압력비에 근거하여 터보 압축기(100)를 운전하게 하거나 정지하게 한다. The controller 170 causes the turbo compressor 100 to operate or stop based on the target flow rate, the operable flow rate, the target pressure ratio, and the operable pressure ratio of the turbo compressor 100 .
일례로, 제어부(170)는, CPU 등이 장착된, 컨트롤러나 기판 등을 포함하여 구성될 수 있으나, 반드시 이에 한정되는 것은 아니다. 또한, 제어부(170)는 후술하는 제어 방법과 관련된 다양한 로직이나 프로그램 등을 저장하고 활용할 수 있는 구성으로 이해될 수 있다. As an example, the control unit 170 may include a controller or board on which a CPU or the like is mounted, but is not necessarily limited thereto. In addition, the control unit 170 may be understood as a configuration capable of storing and utilizing various logics or programs related to a control method described below.
제어부(170)는, 구동 유닛(120), 제1 내지 제3압축유닛(130, 140, 180), 및 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)와 각각 전기적으로 연결되며, 이러한 예가 도 4에 도시된다.The control unit 170 is electrically connected to the drive unit 120, the first to third compression units 130, 140, and 180, and the first to fifth valves 191a, 191b, 191c, 191d, and 191e, respectively. , and an example of this is shown in FIG.
제어부(170)는, 터보 압축기(100)의 저유량 고압력비 운전, 저유량 중압력비 운전 또는 대유량 저압력비 운전하는 각각의 경우에, 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)를 온(on) 또는 오프(off)하거나, 제2 또는 제3압축유닛(140, 180)이 냉매의 압축을 수행하게 함으로써 부하에 대응하여 운전하게 할 수 있다. The control unit 170 controls the first to fifth valves 191a, 191b, 191c, 191d, in each case of low-flow/high-pressure ratio operation, low-flow/medium-pressure ratio operation, or high-flow/low-pressure ratio operation of the turbo compressor 100. 191e may be turned on or off, or the second or third compression unit 140 or 180 may compress the refrigerant to operate in response to a load.
한편, 본 발명의 터보 압축기 제어 방법(S100, S200, S300)은, 제어부(170)에 의해 터보 압축기(100)의 목표 유량, 운전가능 유량, 목표 압력비 및 운전 가능 압력비에 근거하여 터보 압축기(100)를 운전하게 하거나 정지하게 한다. On the other hand, in the turbocompressor control method (S100, S200, S300) of the present invention, the turbocompressor 100 based on the target flow rate, operable flow rate, target pressure ratio, and operable pressure ratio of the turbo compressor 100 by the control unit 170 ) drive or stop.
본 발명의 터보 압축기 제어 방법(S100, S200, S300)은, 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하는 단계(S10, S210, S310), 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하는 단계(S20, S220, S320), 서지 예상 여부를 판단하는 단계(S50, S250, S350) 및 냉방 또는 난방을 행할지를 판단하는 단계(S30, S230, S330)를 포함한다. The turbo compressor control method (S100, S200, S300) of the present invention includes the step of determining whether the target flow rate is greater than the operable flow rate (S10, S210, S310), and the step of determining whether the target pressure ratio is greater than the operable pressure ratio. (S20, S220, S320), determining whether a surge is expected (S50, S250, S350), and determining whether to perform cooling or heating (S30, S230, S330).
또한, 본 발명의 터보 압축기 제어 방법(S100, S200, S300)은, 터보 압축기(100)의 저유량 고압력비 운전, 저유량 중압력비 운전 또는 대유량 저압력비 운전하는 각각의 경우에, 제어부(170)의 제어 동작에 의해, 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)를 온 또는 오프하거나, 제2 또는 제3압축유닛이 냉매의 압축을 수행하게 함으로써 부하에 대응하여 운전하게 할 수 있다. In addition, in the turbo compressor control method (S100, S200, S300) of the present invention, in each case of low flow high pressure ratio operation, low flow medium pressure ratio operation or high flow low pressure ratio operation of the turbo compressor 100, the control unit 170 ), the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned on or off, or the second or third compression unit compresses the refrigerant, thereby operating in response to the load. can do
제어부(170)에 의해 본 발명의 터보 압축기 제어 방법(S100, S200, S300)이 수행되는 예에 대하여 이하의, 도 5 내지 도 7의 순서도를 참조하여 서술하기로 한다. An example in which the turbo compressor control method (S100, S200, and S300) of the present invention is performed by the controller 170 will be described with reference to flowcharts of FIGS. 5 to 7 below.
도 5에는 본 발명의 터보 압축기(100)의 저유량 고압력비 운전을 목표로 하는 동작(S100)을 하는 순서도가 도시된다. 5 is a flow chart of an operation (S100) aimed at low flow rate and high pressure ratio operation of the turbo compressor 100 of the present invention.
제어부(170)는 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하여(S10), 목표 유량이 운전 가능 유량 보다 큰 경우(예)는 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하고(S20), 목표 유량이 운전 가능 유량 보다 작은 경우(아니오)는 냉방을 할지 난방을 할지 판단한다(S30). The controller 170 determines whether the target flow rate is greater than the operable flow rate (S10), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S20), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S30).
냉방을 하도록 결정하게 되면, 터보 압축기(100)의 동작은 정지하게 된다(S35). When it is decided to perform cooling, the operation of the turbo compressor 100 is stopped (S35).
반면, 난방을 하도록 결정하게 되면 인젝션 부하의 대응 가능 여부를 판단하여(S40), 인젝션 부하가 대응 가능하다면(예) 제5밸브(191e)를 온(on) 상태로 하여(S43) 부하에 따른 대응운전을 하게 된다(S70). On the other hand, when it is decided to perform heating, it is determined whether the injection load can be responded to (S40), and if the injection load can be responded to (eg), the fifth valve 191e is turned on (S43) according to the load A response operation is performed (S70).
목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하여(S20), 목표 압력비가 운전 가능 압력비 보다 큰(예) 경우에는 서지의 발생 여부에 대해 예상하게 된다(S50). It is determined whether the target pressure ratio is greater than the operable pressure ratio (S20), and if the target pressure ratio is greater than the operable pressure ratio (Yes), whether or not a surge will occur is predicted (S50).
반면, 목표 압력비가 운전 가능 압력비 보다 작은(아니오) 경우에는 제3압축유닛(180)이 동작하게 된다(S55). 제3압축유닛(180)이 동작하게 되면, 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)를 오프(off) 상태로 하는데(S57), 이 경우 도 2에서의 토출 2가 수행되게 되며 또한, 부하에 따른 대응운전을 하게 된다(S70).On the other hand, when the target pressure ratio is smaller than the operable pressure ratio (No), the third compression unit 180 operates (S55). When the third compression unit 180 operates, the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned off (S57). In this case, discharge 2 in FIG. It is performed, and corresponding operation according to the load is performed (S70).
서지가 발생될 것으로 예상되면(예) 제3밸브(191c)를 온(on) 상태로 하여(S60) 부하에 따른 대응운전을 하게 된다(S70). When it is expected that a surge will occur (Yes), the third valve 191c is turned on (S60) and corresponding operation according to the load is performed (S70).
반면, 서지의 발생하지 않을 것으로 예상되면(아니오) 제3압축유닛(180)이 동작하게 된다(S55). 제3압축유닛(180)이 동작하게 되면, 제1 내지 제5밸브(191a, 191b, 191c, 191d, 191e)를 오프(off) 상태로 하는데(S57), 이 경우 도 2에서의 토출 2가 수행되게 되며 또한, 부하에 따른 대응운전을 하게 된다(S70). On the other hand, when it is expected that no surge will occur (No), the third compression unit 180 operates (S55). When the third compression unit 180 operates, the first to fifth valves 191a, 191b, 191c, 191d, and 191e are turned off (S57). In this case, discharge 2 in FIG. It is performed, and corresponding operation according to the load is performed (S70).
도 6에는 본 발명의 터보 압축기(100)의 저유량 중압력비 운전을 목표로 하는 동작(S200)을 하는 순서도가 도시된다. FIG. 6 is a flowchart of an operation (S200) aimed at low flow rate and medium pressure ratio operation of the turbo compressor 100 according to the present invention.
제어부(170)는 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하여(S210), 목표 유량이 운전 가능 유량 보다 큰 경우(예)는 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하고(S220), 목표 유량이 운전 가능 유량 보다 작은 경우(아니오)는 냉방을 할지 난방을 할지 판단한다(S230). The controller 170 determines whether the target flow rate is greater than the operable flow rate (S210), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S220), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S230).
냉방을 하도록 결정하게 되면, 터보 압축기(100)의 동작은 정지하게 된다(S235). When it is decided to perform cooling, the operation of the turbo compressor 100 is stopped (S235).
반면, 난방을 하도록 결정하게 되면 인젝션 부하의 대응 가능 여부를 판단하여(S240), 인젝션 부하가 대응 가능하다면(예) 제5밸브(191e)를 온(on) 상태로 하여(S243) 부하에 따른 대응운전을 하게 된다(S270). On the other hand, when it is decided to perform heating, it is determined whether the injection load can be responded to (S240), and if the injection load can be responded to (eg), the fifth valve 191e is turned on (S243) according to the load A response operation is performed (S270).
목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하여(S220), 목표 압력비가 운전 가능 압력비 보다 큰(예) 경우에는 서지의 발생 여부에 대해 예상하게 된다(S250). It is determined whether the target pressure ratio is greater than the operable pressure ratio (S220), and if the target pressure ratio is greater than the operable pressure ratio (Yes), whether or not a surge will occur is predicted (S250).
반면, 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하여(S220), 목표 압력비가 운전 가능 압력비 보다 작은(아니오) 경우에는 제2압축유닛(140)이 동작하게 된다(S255). 제2압축유닛(140)이 동작하게 되면, 제2 및 제3밸브(191c)를 오프(off) 상태로 하는데(S257), 이 경우 도 2에서의 토출 1이 수행되게 되며 또한, 부하에 따른 대응운전을 하게 된다(S270).On the other hand, it is determined whether the target pressure ratio is greater than the operable pressure ratio (S220), and if the target pressure ratio is less than the operable pressure ratio (No), the second compression unit 140 operates (S255). When the second compression unit 140 operates, the second and third valves 191c are turned off (S257). In this case, discharge 1 in FIG. 2 is performed, and according to the load A response operation is performed (S270).
또한, 서지의 발생할 것으로 예상되면(예) 제3밸브(191c)를 온(on) 상태로 하여(S260) 부하에 따른 대응운전을 하게 된다(S270). In addition, when it is expected that a surge will occur (Yes), the third valve 191c is turned on (S260) and corresponding operation according to the load is performed (S270).
반면, 서지의 발생하지 않을 것으로 예상되면(아니오) 제2압축유닛(140)이 동작하게 된다(S255). 제2압축유닛(140)이 동작하게 되면, 제2 및 제3밸브(191c)를 오프(off) 상태로 하는데(S257), 이 경우 도 2에서의 토출 1이 수행되게 되며 또한, 부하에 따른 대응운전을 하게 된다(S270). On the other hand, when it is expected that no surge will occur (No), the second compression unit 140 operates (S255). When the second compression unit 140 operates, the second and third valves 191c are turned off (S257). In this case, discharge 1 in FIG. 2 is performed, and according to the load A response operation is performed (S270).
또한, 제2압축유닛(140)이 동작하게 되면(S255), 제3압축유닛(180)에서 제2밸브(191b)가 오프(off)되며, 제1밸브(191a)는 온(on) 상태에 있으며, 도 2에서의 토출 2가 수행되거나 제4밸브(191d)가 온(on) 상태가 되어 부하 대응 운전을 가능하게 할 수 있다(S256). In addition, when the second compression unit 140 operates (S255), the second valve 191b is turned off in the third compression unit 180, and the first valve 191a is turned on. , discharge 2 in FIG. 2 is performed or the fourth valve 191d is turned on to enable load response operation (S256).
이로 인해, 도 2에서의 토출 2 및 토출 1의 압력차이에 의하여 전체 시스템 토출 역류 방지될 수 있고, 시스템 부해 대응 및 냉매의 유로에서의 서지가 방지되게 된다. 이를 위해, 역류 방지 밸브(일례로, 체크 밸브)와 차압 밸브가 설치될 수 있다. Due to this, by the pressure difference between discharge 2 and discharge 1 in FIG. 2 , backflow of discharge from the entire system can be prevented, and damage to the system and surge in the refrigerant flow path can be prevented. To this end, a non-return valve (for example, a check valve) and a differential pressure valve may be installed.
도 7에는 본 발명의 터보 압축기(100)의 대유량 저압력비 운전을 목표로 하는 동작(S300)을 하는 순서도가 도시된다. 7 shows a flow chart of an operation (S300) aimed at driving the turbo compressor 100 with a high flow rate and a low pressure ratio according to the present invention.
제어부(170)는 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하여(S310), 목표 유량이 운전 가능 유량 보다 큰 경우(예)는 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하고(S320), 목표 유량이 운전 가능 유량 보다 작은 경우(아니오)는 냉방을 할지 난방을 할지 판단한다(S330). The controller 170 determines whether the target flow rate is greater than the operable flow rate (S310), and if the target flow rate is greater than the operable flow rate (Yes), determines whether the target pressure ratio is greater than the operable pressure ratio (S320), If the target flow rate is smaller than the operable flow rate (No), it is determined whether to perform cooling or heating (S330).
냉방을 하도록 결정하게 되면, 제3압축유닛(180)이 유량 대응 가능여부를 판단하게 하며(S333), 대응이 가능하지 않으면(아니오), 터보 압축기(100)의 동작은 정지하게 된다(S335). 반면, 제3압축유닛(180)의 유량 대응이 가능하면(예), 제3압축유닛(180)에서 제2밸브(191b)가 오프(off)되며, 제1밸브(191a)는 온(on) 상태에 있으며, 도 2에서의 토출 2가 수행되거나 제4밸브(191d)가 온(on) 상태가 되어 부하 대응 운전을 가능하게 할 수 있다(S356).When it is decided to perform cooling, the third compression unit 180 determines whether or not it is possible to respond to the flow rate (S333), and if the response is not possible (No), the operation of the turbo compressor 100 is stopped (S335). . On the other hand, if the third compression unit 180 can respond to the flow rate (yes), the second valve 191b in the third compression unit 180 is turned off, and the first valve 191a is turned on. ) state, discharge 2 in FIG. 2 is performed or the fourth valve 191d is turned on to enable load response operation (S356).
반면, 난방을 하도록 결정하게 되면 인젝션 부하의 대응 가능 여부를 판단하여(S340), 인젝션 부하가 대응 가능하다면(예) 제5밸브(191e)를 온(on) 상태로 하여(S343) 부하에 따른 대응운전을 하게 되고(S370), 인젝션 부하가 대응 가능하지 않다면(아니오) 동작이 정지된다(S335). On the other hand, when it is decided to perform heating, it is determined whether the injection load can be responded to (S340), and if the injection load can be responded to (eg), the fifth valve 191e is turned on (S343) according to the load Corresponding operation is performed (S370), and if the injection load is not responsive (No), the operation is stopped (S335).
한편, 목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하여(S320), 목표 압력비가 운전 가능 압력비 보다 큰(예) 경우에는 서지의 발생 여부에 대해 예상하게 된다(S350). Meanwhile, it is determined whether the target pressure ratio is greater than the operable pressure ratio (S320), and if the target pressure ratio is greater than the operable pressure ratio (Yes), whether or not a surge will occur is predicted (S350).
서지의 발생할 것으로 예상되면(예) 제3밸브(191c)를 온(on) 상태로 하여(S360) 부하에 따른 대응운전을 하게 된다(S370). When a surge is expected to occur (Yes), the third valve 191c is turned on (S360) and corresponding operation is performed according to the load (S370).
반면, 서지의 발생하지 않을 것으로 예상되면(아니오) 제2압축유닛(140)이 동작하게 된다(S355). 제2압축유닛(140)이 동작하게 되면, 제2 및 제3밸브(191b, 191c)를 오프(off) 상태로 하는데, 이 경우 도 2에서의 토출 1이 수행되게 되며(S357), 또한, 부하에 따른 대응운전을 하게 된다(S370). On the other hand, when it is expected that no surge will occur (No), the second compression unit 140 operates (S355). When the second compression unit 140 operates, the second and third valves 191b and 191c are turned off. In this case, discharge 1 in FIG. 2 is performed (S357), and Corresponding operation according to the load is performed (S370).
또한, 제2압축유닛(140)이 동작하게 되면(S355), 제3압축유닛(180)에서 제2밸브(191b)가 오프(off)되며, 제1밸브(191a)는 온(on) 상태에 있으며, 도 2에서의 토출 2가 수행되거나 제4밸브(191d)가 온(on) 상태가 되어 부하 대응 운전을 가능하게 할 수 있다(S356). In addition, when the second compression unit 140 operates (S355), the second valve 191b is turned off in the third compression unit 180, and the first valve 191a is turned on. , discharge 2 in FIG. 2 is performed or the fourth valve 191d is turned on to enable load response operation (S356).
이로 인해, 도 2에서의 토출 2 및 토출 1의 압력차이에 의하여 전체 시스템 토출 역류 방지될 수 있고, 시스템 부해 대응 및 냉매의 유로에서의 서지가 방지되게 된다. 이를 위해, 역류 방지 밸브(일례로, 체크 밸브)와 차압 밸브가 설치될 수 있다.Due to this, by the pressure difference between discharge 2 and discharge 1 in FIG. 2 , backflow of discharge from the entire system can be prevented, and damage to the system and surge in the refrigerant flow path can be prevented. To this end, a non-return valve (for example, a check valve) and a differential pressure valve may be installed.
이상에서 설명한 터보 압축기(100) 및 이를 제어하는 방법(S100, S200, S300)은 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The turbo compressor 100 described above and the method for controlling it (S100, S200, S300) are not limited to the configuration and method of the above-described embodiments, but the embodiments are all of the embodiments so that various modifications can be made. Alternatively, some of them may be selectively combined.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential characteristics of the present invention. Accordingly, the above detailed description should not be construed as limiting in all respects and should be considered illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.
본 발명은 터보 압축기 및 이를 제어하는 방법에 이용될 수 있다.The present invention can be used for a turbo compressor and a method for controlling the same.

Claims (20)

  1. 냉매의 압축을 위한 회전 동력을 발생 가능하게 하는 구동 유닛;a driving unit capable of generating rotational power for compression of the refrigerant;
    일 방향으로 연장되며, 상기 구동 유닛으로부터 발생된 동력에 의해 회전 가능하도록 상기 구동 유닛에 설치되는 축; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit;
    상기 축의 일 측에서 상기 축에 설치되는 제1 내지 제3압축유닛을 포함하고,Including first to third compression units installed on the shaft at one side of the shaft,
    상기 제1압축유닛은, 증발기로부터 배출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제1 임펠러를 구비하며, The first compression unit includes a first impeller rotating by power from the driving unit to suck in the refrigerant discharged from the evaporator, compress the sucked refrigerant, and enable discharge,
    상기 제2압축유닛은, 상기 제1압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제2임펠러를 구비하며,The second compression unit includes a second impeller rotating by power from the drive unit to suck in the refrigerant discharged from the first compression unit and compress the sucked refrigerant to be discharged;
    상기 제3압축유닛은, 상기 제2압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 외부로 토출하거나 상기 제1압축유닛으로 바이패스 가능하게 하는 제3임펠러를 구비하는 것을 특징으로 하는 터보 압축기.The third compression unit includes a third impeller that sucks in the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges it to the outside or bypasses the first compression unit. turbo compressor.
  2. 제1항에 있어서,According to claim 1,
    상기 제1압축유닛은, 상기 증발기로부터 배출된 냉매가 흡입 가능한 제1입구를 구비하며, 상기 제1입구에는 상기 제3임펠러에 냉매의 제공을 가능하게 하도록 연통되는 제1 바이패스 유로가 연결되며, 상기 제1 바이패스 유로에는 상기 제1입구로부터 상기 제3임펠러로의 유동을 가능 또는 차단하게 하는 제1밸브가 설치되는 것을 특징으로 하는 터보 압축기.The first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and a first bypass flow path communicating to enable supply of refrigerant to the third impeller is connected to the first inlet. , A turbocompressor, characterized in that a first valve is installed in the first bypass passage to enable or block the flow from the first inlet to the third impeller.
  3. 제2항에 있어서, According to claim 2,
    상기 제1압축유닛은, 상기 제1임펠러를 수용 가능하게 하는 제1 임펠러 하우징을 구비하며, 상기 제1입구는 상기 제1 임펠러 하우징에서 축과 나란한 방향으로 일 측에 형성되는 것을 특징으로 하는 터보 압축기.The first compression unit has a first impeller housing capable of accommodating the first impeller, and the first inlet is turbo, characterized in that formed on one side of the first impeller housing in a direction parallel to the axis compressor.
  4. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 제2압축유닛은, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 제공 가능하게 하는 제2출구를 구비하며, The second compression unit has a second outlet that enables the refrigerant discharged from the second impeller to be supplied to the third impeller,
    상기 제3압축유닛은, 상기 제2출구와 연통 가능하며, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유입 가능하게 하는 유입 유로를 구비하며,The third compression unit is capable of communicating with the second outlet and has an inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller,
    상기 제2출구 또는 상기 유입 유로에는 제2밸브가 설치되고, 상기 제2밸브는, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유동을 가능 또는 차단하게 하는 것을 특징으로 하는 터보 압축기. A second valve is installed at the second outlet or the inflow passage, and the second valve enables or blocks the flow of the refrigerant discharged from the second impeller to the third impeller.
  5. 제4항에 있어서, According to claim 4,
    상기 제3압축유닛은, 상기 제3임펠러의 측부에 형성되어 상기 제3임펠러로부터 토출된 냉매를 모아서 배출 가능하게 하는 제3볼류트를 구비하며,The third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller,
    상기 제1입구 및 상기 제3볼류트 사이에는 제2 바이패스 유로가 형성되는 것을 특징으로 하는 터보 압축기.A turbo compressor, characterized in that a second bypass passage is formed between the first inlet and the third volute.
  6. 제5항에 있어서,According to claim 5,
    상기 제2 바이패스 유로에는 제3밸브가 설치되고, 상기 제3밸브는 상기 제3임펠러로부터 토출된 냉매가, 상기 제3 볼류트로부터 상기 제1입구로 유동되는 것을 가능 또는 차단하게 하는 것을 특징으로 하는 터보 압축기.A third valve is installed in the second bypass passage, and the third valve enables or blocks the flow of the refrigerant discharged from the third impeller from the third volute to the first inlet. turbo compressor made with.
  7. 제5항에 있어서,According to claim 5,
    상기 제3볼류트에는 외부의 사이클과 연통되는 제3출구가 형성되고, 상기 제3출구에는 제4밸브가 설치되고, 상기 제4밸브는 상기 제3임펠러로부터 토출된 냉매를 외부의 사이클로 배출되는 것을 가능 또는 차단하게 하는 것을 특징으로 하는 터보 압축기.A third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. A turbocompressor, characterized in that enabling or blocking it.
  8. 제2항에 있어서,According to claim 2,
    상기 구동 유닛에는, 상기 제1입구와 연통 가능한 냉매 유입 유로가 구비되고, 상기 냉매 유입 유로에는 상기 증발기로부터 배출된 냉매의 유입을 가능 또는 차단하게 하는 제5밸브가 연결되는 것을 특징으로 하는 터보 압축기.The drive unit is provided with a refrigerant inlet passage capable of communicating with the first inlet, and a fifth valve that enables or blocks the inflow of the refrigerant discharged from the evaporator is connected to the refrigerant inlet passage. .
  9. 냉매의 압축을 위한 회전 동력을 발생 가능하게 하는 구동 유닛;a driving unit capable of generating rotational power for compression of the refrigerant;
    일 방향으로 연장되며, 상기 구동 유닛으로부터 발생된 동력에 의해 회전 가능하도록 상기 구동 유닛에 설치되는 축; a shaft extending in one direction and installed in the driving unit to be rotatable by power generated from the driving unit;
    상기 축의 일 측에서 상기 축에 설치되는 제1 내지 제3압축유닛; 및first to third compression units installed on the shaft at one side of the shaft; and
    상기 구동 유닛에 전기적으로 연결되어 상기 제1 내지 제3압축유닛의 동작을 제어하는 제어부를 포함하고, A control unit electrically connected to the driving unit to control operations of the first to third compression units;
    상기 제1압축유닛은, 증발기로부터 배출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제1 임펠러를 구비하며, The first compression unit includes a first impeller rotating by power from the driving unit to suck in the refrigerant discharged from the evaporator, compress the sucked refrigerant, and enable discharge,
    상기 제2압축유닛은, 상기 제1압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 토출 가능하게 하도록 상기 구동 유닛으로부터의 동력에 의해 회전하는 제2임펠러를 구비하며,The second compression unit includes a second impeller rotating by power from the drive unit to suck in the refrigerant discharged from the first compression unit and compress the sucked refrigerant to be discharged;
    상기 제3압축유닛은, 상기 제2압축유닛으로부터 토출된 냉매를 흡입하고 흡입된 냉매를 압축하여 외부로 토출하거나 상기 제1압축유닛으로 바이패스 가능하게 하는 제3임펠러를 구비하는 것을 특징으로 하는 터보 압축기.The third compression unit includes a third impeller that sucks in the refrigerant discharged from the second compression unit, compresses the sucked refrigerant, and discharges it to the outside or bypasses the first compression unit. turbo compressor.
  10. 제9항에 있어서,According to claim 9,
    상기 제1압축유닛은, 상기 증발기로부터 배출된 냉매가 흡입 가능한 제1입구를 구비하며, 상기 제1입구에는 상기 제3임펠러에 냉매의 제공을 가능하게 하도록 연통되는 제1 바이패스 유로가 연결되며, 상기 제1 바이패스 유로에는 상기 제1입구로부터 상기 제3임펠로로의 유동을 가능 또는 차단하게 하는 제1밸브가 설치되는 것을 특징으로 하는 터보 압축기.The first compression unit has a first inlet through which the refrigerant discharged from the evaporator can be sucked, and a first bypass flow path communicating to enable supply of refrigerant to the third impeller is connected to the first inlet. , A turbocompressor, characterized in that a first valve is installed in the first bypass passage to enable or block the flow from the first inlet to the third impeller.
  11. 제9항 또는 제10항에 있어서,The method of claim 9 or 10,
    상기 제2압축유닛은, 상기 제2임펠러로부터 토출된 냉매를 상기 제3압축유닛으로 제공 가능하게 하는 제2출구를 구비하며, The second compression unit has a second outlet enabling the supply of the refrigerant discharged from the second impeller to the third compression unit,
    상기 제3압축유닛은, 상기 제2출구와 연통 가능하며, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유입 가능하게 하는 유입 유로를 구비하며,The third compression unit is capable of communicating with the second outlet and has an inflow passage allowing the refrigerant discharged from the second impeller to flow into the third impeller,
    상기 제2출구 또는 상기 유입 유로에는 제2밸브가 설치되고, 상기 제2밸브는, 상기 제2임펠러로부터 토출된 냉매를 상기 제3임펠러로 유동을 가능 또는 차단하게 하는 것을 특징으로 하는 터보 압축기. A second valve is installed at the second outlet or the inflow passage, and the second valve enables or blocks the flow of the refrigerant discharged from the second impeller to the third impeller.
  12. 제10항에 있어서, According to claim 10,
    상기 제3압축유닛은, 상기 제3임펠러의 측부에 형성되어 상기 제3임펠러로부터 토출된 냉매를 모아서 배출 가능하게 하는 제3볼류트를 구비하며,The third compression unit includes a third volute formed on a side of the third impeller to collect and discharge the refrigerant discharged from the third impeller,
    상기 제1입구 및 상기 제3볼류트 사이에는 제2 바이패스 유로가 형성되는 것을 특징으로 하는 터보 압축기.A turbo compressor, characterized in that a second bypass passage is formed between the first inlet and the third volute.
  13. 제11항에 있어서,According to claim 11,
    상기 제어부는, The control unit,
    상기 제2밸브에 전기적으로 연결되고, electrically connected to the second valve;
    목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제2밸브가 오프(off) 상태가 되도록 제어하는 것을 특징으로 하는 터보 압축기.A turbocompressor characterized in that the second valve is controlled to be in an off state when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected.
  14. 제12항에 있어서,According to claim 12,
    상기 제2 바이패스 유로에는 제3밸브가 설치되고, 상기 제3밸브는 상기 제3임펠러로부터 토출된 냉매가, 상기 제3 볼류트로부터 상기 제1입구로 유동되는 것을 가능 또는 차단하게 하는 것을 특징으로 하는 터보 압축기.A third valve is installed in the second bypass passage, and the third valve enables or blocks the flow of the refrigerant discharged from the third impeller from the third volute to the first inlet. turbo compressor made with.
  15. 제14항에 있어서, According to claim 14,
    상기 제어부는, The control unit,
    상기 제3밸브에 전기적으로 연결되고, electrically connected to the third valve,
    목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제3밸브가 오프(off)되고, The third valve is turned off when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected,
    목표 압력비가 운전가능 압력비 보다 큰 경우나 서지가 예상되는 경우에 제3밸브가 온(on) 상태가 되도록 제어하는 것을 특징으로 하는 터보 압축기.A turbocompressor characterized in that the third valve is controlled to be in an on state when the target pressure ratio is greater than the operable pressure ratio or when a surge is expected.
  16. 제12항에 있어서,According to claim 12,
    상기 제3볼류트에는 외부의 사이클과 연통되는 제3출구가 형성되고, 상기 제3출구에는 제4밸브가 설치되고, 상기 제4밸브는 상기 제3임펠러로부터 토출된 냉매를 외부의 사이클로 배출되는 것을 가능 또는 차단하게 하고,A third outlet communicating with an external cycle is formed in the third volute, a fourth valve is installed at the third outlet, and the fourth valve discharges the refrigerant discharged from the third impeller to an external cycle. to enable or block
    상기 제어부는, The control unit,
    상기 제4밸브에 전기적으로 연결되고, electrically connected to the fourth valve,
    목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제4밸브가 오프(off) 상태가 되도록 제어하는 것을 특징으로 하는 터보 압축기.A turbocompressor characterized in that the fourth valve is controlled to be in an off state when the target pressure ratio is not greater than the operable pressure ratio or when a surge is not expected.
  17. 제12항에 있어서,According to claim 12,
    상기 구동 유닛에는, 상기 제1입구와 연통 가능한 냉매 유입 유로가 구비되고, 상기 냉매 유입 유로에는 상기 증발기로부터 배출된 냉매의 유입을 가능 또는 차단하게 하는 제5밸브가 설치되고,The driving unit is provided with a refrigerant inlet passage capable of communicating with the first inlet, and a fifth valve is installed in the refrigerant inlet passage to enable or block the inflow of the refrigerant discharged from the evaporator,
    상기 제어부는, The control unit,
    상기 제5밸브에 전기적으로 연결되고, electrically connected to the fifth valve,
    목표 압력비가 운전가능 압력비 보다 크지 않은 경우나 서지가 예상되지 않는 경우에 제5밸브가 오프(off) 상태가 되도록 제어하고,Control the fifth valve to be off when the target pressure ratio is not greater than the operable pressure ratio or when surge is not expected,
    목표 유량이 운전가능 유량 보다 크지 않고 난방을 수행하며, 인젝션 부하의 대응이 가능한 경우에 제5밸브가 온(on) 상태가 되도록 제어하는 것을 특징으로 하는 터보 압축기.A turbocompressor characterized in that the fifth valve is controlled to be turned on when the target flow rate is not greater than the operable flow rate, heating is performed, and it is possible to respond to the injection load.
  18. 목표 유량이 운전 가능 유량 보다 큰지 여부를 판단하는 단계;Determining whether the target flow rate is greater than the operable flow rate;
    목표 압력비가 운전 가능 압력비 보다 큰지 여부를 판단하는 단계;determining whether the target pressure ratio is greater than the operable pressure ratio;
    서지 예상 여부를 판단하는 단계; 및 Determining whether a surge is expected; and
    냉방 또는 난방을 행할지를 판단하는 단계를 포함하는 것을 특징으로 하는 터보 압축기 제어 방법.A turbocompressor control method comprising the step of determining whether to perform cooling or heating.
  19. 제18항에 있어서,According to claim 18,
    목표 압력비가 운전 가능 압력비 보다 작은 경우에, 제3압축유닛이 동작하게 되며, 상기 제3압축유닛이 동작하게 되면, 제1 내지 제5밸브를 오프(off) 상태로 하여, 냉매의 토출을 수행하게 하도록 부하에 따른 대응운전을 하는 것을 특징으로 하는 터보 압축기 제어 방법.When the target pressure ratio is smaller than the operable pressure ratio, the third compression unit operates, and when the third compression unit operates, the first to fifth valves are turned off to discharge the refrigerant A method of controlling a turbo compressor, characterized in that for corresponding operation according to the load so as to do so.
  20. 제18항에 있어서,According to claim 18,
    서지가 발생하지 않을 것으로 예상되면, 제2압축유닛을 동작하게 하고, 상기 제2압축유닛이 동작하게 되면, 제2 및 제3밸브를 오프(off) 상태로 하여, 냉매의 토출을 수행하게 하도록 부하에 따른 대응운전을 하는 것을 특징으로 하는 터보 압축기 제어 방법.When the surge is not expected to occur, the second compression unit is operated, and when the second compression unit is operated, the second and third valves are turned off to discharge the refrigerant A method of controlling a turbo compressor, characterized in that for corresponding operation according to the load.
PCT/KR2022/006567 2021-05-12 2022-05-09 Turbocompressor and method for controlling same WO2022240096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22807744.2A EP4339464A1 (en) 2021-05-12 2022-05-09 Turbocompressor and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0061528 2021-05-12
KR1020210061528A KR102548667B1 (en) 2021-05-12 2021-05-12 Turbo Compressor and Method of Control the same

Publications (1)

Publication Number Publication Date
WO2022240096A1 true WO2022240096A1 (en) 2022-11-17

Family

ID=84029285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006567 WO2022240096A1 (en) 2021-05-12 2022-05-09 Turbocompressor and method for controlling same

Country Status (3)

Country Link
EP (1) EP4339464A1 (en)
KR (1) KR102548667B1 (en)
WO (1) WO2022240096A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089287A (en) * 1996-09-17 1998-04-07 Hitachi Ltd Turbocopressor and method for controlling its displacement
JP2000291597A (en) * 1999-04-01 2000-10-17 Ebara Corp Capacity control device in multi-stage compressor for refrigerator
US7293954B2 (en) 2004-12-30 2007-11-13 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor for turbo chiller, turbo chiller, and control method therefor
KR20100037122A (en) * 2007-07-19 2010-04-08 가부시키가이샤 아이에이치아이 Gas compression device and method of controlling gas compression device
KR20180115575A (en) * 2017-04-13 2018-10-23 엘지전자 주식회사 Turbo compressor
KR20190105792A (en) * 2018-03-06 2019-09-18 한화파워시스템 주식회사 Turbo compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270797A (en) * 2008-05-09 2009-11-19 Daikin Ind Ltd Refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089287A (en) * 1996-09-17 1998-04-07 Hitachi Ltd Turbocopressor and method for controlling its displacement
JP2000291597A (en) * 1999-04-01 2000-10-17 Ebara Corp Capacity control device in multi-stage compressor for refrigerator
US7293954B2 (en) 2004-12-30 2007-11-13 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor for turbo chiller, turbo chiller, and control method therefor
KR20100037122A (en) * 2007-07-19 2010-04-08 가부시키가이샤 아이에이치아이 Gas compression device and method of controlling gas compression device
KR20180115575A (en) * 2017-04-13 2018-10-23 엘지전자 주식회사 Turbo compressor
KR20190105792A (en) * 2018-03-06 2019-09-18 한화파워시스템 주식회사 Turbo compressor

Also Published As

Publication number Publication date
EP4339464A1 (en) 2024-03-20
KR20220153925A (en) 2022-11-21
KR102548667B1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
RU2225520C2 (en) Turbine engine
WO2019221417A1 (en) Turbo compressor
US5048288A (en) Combined turbine stator cooling and turbine tip clearance control
US3866417A (en) Gas turbine engine augmenter liner coolant flow control system
WO2018131827A1 (en) Turbo compressor
WO2010101426A2 (en) Air compressor, and flow control method for an air compressor
WO2014126364A1 (en) Self-driven apparatus for charging expanded air
US7121813B2 (en) Reverse rotation preventing structure of centrifugal compressor
WO2018147574A1 (en) Linear compressor
WO2022240096A1 (en) Turbocompressor and method for controlling same
WO2016148328A1 (en) Compressor system
WO2019117631A1 (en) Gas heat pump system
WO2015163661A1 (en) Intake device, power generator, external combustion system using intake device and power generator, internal combustion system using intake device and power generator, and air hybrid power generation system using intake device and power generator
WO2021045361A1 (en) Rotary compressor and home appliance including same
JPH07189740A (en) Gas turbine cooling system
WO2022260208A1 (en) Turbo compressor and refrigeration cycle apparatus including same
WO2023003220A1 (en) Turbo compressor
WO2021215652A1 (en) Compressor
WO2021215734A1 (en) Compressor
WO2020111654A1 (en) Turbo compressor capable of operating in surge region
WO2020122615A1 (en) Air conditioner
EP3990835A1 (en) Air conditioner
WO2022103005A1 (en) Compressor and refrigeration cycle device having same
WO2022149669A1 (en) Linear compressor
WO2022149671A1 (en) Linear compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022807744

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807744

Country of ref document: EP

Effective date: 20231212