WO2022239843A1 - In-liquid substance separation membrane using octosilicate material and production method for same - Google Patents

In-liquid substance separation membrane using octosilicate material and production method for same Download PDF

Info

Publication number
WO2022239843A1
WO2022239843A1 PCT/JP2022/020111 JP2022020111W WO2022239843A1 WO 2022239843 A1 WO2022239843 A1 WO 2022239843A1 JP 2022020111 W JP2022020111 W JP 2022020111W WO 2022239843 A1 WO2022239843 A1 WO 2022239843A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
separation membrane
substance
particles
plate
Prior art date
Application number
PCT/JP2022/020111
Other languages
French (fr)
Japanese (ja)
Inventor
敬三 中川
卓司 新谷
朋久 吉岡
裕丈 北川
紀之 高熊
Original Assignee
国立大学法人神戸大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 日産化学株式会社 filed Critical 国立大学法人神戸大学
Priority to JP2023521248A priority Critical patent/JPWO2022239843A1/ja
Publication of WO2022239843A1 publication Critical patent/WO2022239843A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material

Definitions

  • the present invention relates to a liquid-substance separation membrane compact using plate-like particles, which is a release layer material due to delamination of a layered compound, and a method for producing the same.
  • the present invention relates to a separation membrane made of an octosilicate material that can efficiently remove substances (eg, ionic substances) in liquids.
  • the present invention has high chemical resistance due to the separation membrane component, high solvent permeation rate of the solution containing the substance to be separated in the membrane, and efficiently separates substances in the liquid (for example, ionic organic substances).
  • An object of the present invention is to provide a separation membrane molded article and a method for producing the same.
  • the molded article for separating substances in liquid according to the first aspect wherein the layered compound is ilaite;
  • the submerged substance separation membrane is a composite film of ilaite and graphene oxide.
  • the film is formed from an aqueous dispersion of the plate-like particles (A) containing (a) and (b) used for delamination of the layered compound, and the plate-like particles (A) in the aqueous dispersion are Separation of substances in liquid according to any one of the first aspect to the third aspect, wherein the 90% cumulative particle size value in the laser diffraction particle size distribution is 1.5 to 10 times the average value of the particle size distribution.
  • the liquid-substance separation membrane is formed from an aqueous dispersion of plate-like particles (A) containing the above (a) and (b) used for delamination of the layered compound, and the aqueous dispersion A plate having an average particle size of 10 to 10,000 nm as measured by a liquid dynamic light scattering method, and having the above (a) and (b) both in the range of 0.01 to 50.0% by mass with respect to (A).
  • any one of the first to fourth aspects which is the shaped particles (A)
  • the substrate (B) is at least one porous substrate selected from the group consisting of cellulose, synthetic polymers, and ceramics.
  • liquid-substance separation membrane molded product described above, As a seventh aspect, the submerged substance separation membrane molded article according to the sixth aspect, wherein the cellulose is nitrocellulose, carboxymethyl cellulose, or hydroxyethyl cellulose; As an eighth aspect, in liquid according to the sixth aspect, wherein the synthetic polymer is polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, or polymethacrylic acid.
  • the synthetic polymer is polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, or polymethacrylic acid.
  • the liquid-submerged substance separation membrane compact according to the sixth aspect wherein the ceramic is silica, alumina, or mullite;
  • the first aspect to the ninth aspect wherein the liquid-substance separation membrane is formed on the surface of the substrate (B), and the liquid-substance separation membrane has a thickness of 1.5 nm to 10 ⁇ m.
  • the liquid-submerged substance separation membrane molded article according to any one of As an eleventh aspect, any one of the first aspect to the tenth aspect, wherein the solvent permeation rate of the solution containing the substance to be separated is 0.1 to 100 L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1
  • the molded body for separating substances in liquid according to any one of the first aspect to the eleventh aspect wherein the substance removal rate of the solution containing the substance to be separated is 15 to 99%
  • the submerged substance separation membrane compact according to any one of the first to twelfth aspects, wherein the substance to be separated is an ionic compound
  • the molded article for separating substances in liquid according to the twelfth aspect wherein the ionic compound is an organic compound having at least a sulfonate ion or a carboxylate ion;
  • the ionic compound is an organic compound having at least a sulfonate ion or a carboxylate ion;
  • a method for producing a liquid-substance separation membrane molded product according to any one of the 15th aspects As a seventeenth aspect, the step (vi) forms a plate-like particle (A) layer on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the step (v). and laminating a graphene oxide layer on the layer using an aqueous dispersion of graphene oxide.
  • a method for producing a material separation membrane molded article As an eighteenth aspect, the step (vi) of forming a film on the surface of the substrate (B) using the dispersion of the plate-like particles (A) obtained in the step (v) is performed by suction filtration or pressure filtration.
  • the method for manufacturing the liquid-substance separation membrane molded article according to the sixteenth or seventeenth aspect As a nineteenth aspect, between the (v) step and the (vi) step, further (v-0) step, (v-0) step:
  • the dispersion containing the plate-like particles (A) obtained in step (v) is Both the quaternary ammonium ions (a) having ⁇ 2 and the anionic surfactant (b) having ammonium ions are reduced to the range of 0.01 to 15.0% by mass with respect to the plate-like particles (A)
  • the method for producing a molded article for separating a substance in liquid according to the sixteenth or seventeenth aspect which adds a step of obtaining a dispersion containing the plate-like particles (A), and as a twentieth aspect, (v-0)
  • the step is the following (v-1) step, (v-1) step: the dispersion containing the plate-like particles (A) obtained in step (v) is subjected to ultracentrifugation at
  • ultrafiltration membranes are widely used, and ultrafiltration membranes filter out molecules with a certain molecular weight using the pores in the membrane, allowing the solvent to pass out of the system, thereby filtering out substances in the liquid. It is a system that separates
  • the principle of ultrafiltration membranes limits the amount of liquid that can pass through the pores, limiting the amount of liquid that can be filtered.
  • filtering out substances from liquids is also widely practiced.
  • the filter has a high liquid flow rate, it has a coarse mesh diameter and cannot remove ionic substances dissolved in the liquid.
  • the present invention is a liquid-substance separation membrane molded article, and is a separation membrane molded article capable of removing a substance (eg, an ionic component) from a solution.
  • the liquid-substance separation membrane molded article of the present invention has a liquid-substance separation membrane in which a substance having a function of separation is contained in a structure in which one or more layers are laminated on a base material that serves as a coarse support.
  • Submerged substance separation membranes are required to play a role in preventing substances contained in a solution (such as ionic components) from crawling between separated substances and reaching the base material.
  • the separation membrane substance having negative ions is used to prevent passage between the separation membrane substances due to the electrical repulsion, so that only the solution (or solvent) that does not contain the substance to be separated passes through and the substance to be separated (e.g., ionic substance) It is removed.
  • the material having a separation function is plate-like particles that are peeled layer material by delamination of a layered compound (e.g., octosilicate material).
  • a layered compound e.g., octosilicate material.
  • a layered compound is a laminate of plate-like substances, and alkali metal ions are inserted between the layers of the plate-like substances to electrically connect the plate-like substances.
  • a bulky compound such as quaternary ammonium ions
  • the electrical bonding force is rapidly reduced. Delamination of the material takes place, resulting in a single sheet of platy material.
  • This plate-like substance can be called plate-like particles, and is formed into a dispersion liquid of plate-like particles by exfoliating the layers while being dispersed in the medium or by dispersing the plate-like particles in the medium.
  • the anionic surfactant during delamination is also used to improve the dispersibility when dispersing in the medium.
  • plate-like particles e.g., octosilicate material
  • silanol groups when plate-like particles (e.g., octosilicate material) contain silanol groups, this is sufficient when a dispersion liquid is formed due to the repulsive force between the negative charges of the silanol groups and the negative charges of the anionic surfactant. This is to obtain good dispersibility.
  • Nanosheets which are exfoliated plate-like substances, are also called nanosheets, and the thickness of a single layer is several nanometers.
  • plate-like particles having a narrow particle size distribution and a uniform particle size can be obtained by dispersing in an anionic surfactant aqueous solution in a wet gel state after delamination by a quaternary ammonium compound. was formed on a substrate to obtain a liquid-substance separation membrane molding having high separation performance and high solution-permeability.
  • FIG. 1 is a schematic diagram showing the process of forming a liquid-substance separation membrane containing plate-like particles (A) on a substrate (supporting membrane) by suction filtration.
  • FIG. 2 is a schematic diagram showing a water permeability test of a separation membrane molded body and an evaluation test method for separation performance.
  • 3 is a scanning electron micrograph of the surface of the separation membrane molded product obtained in Example 1.
  • FIG. The magnification is 10,000 times.
  • FIG. 4 is a scanning electron micrograph of a cross section of the separation membrane molded product obtained in Example 1.
  • FIG. The magnification is 50,000 times.
  • FIG. 5 shows the results of X-ray diffraction measurement of the separation membrane molded product obtained in Example 1. In FIG. FIG.
  • FIG. 6 is a graph showing the water permeability and pigment rejection of EB (Evans Blue) and Acid Red 265 of the separation membrane molded articles obtained in Example 1 and Comparative Example 1.
  • FIG. FIG. 7 shows the water permeability and dye rejection of two types of separation membrane molded bodies formed by using the aqueous dispersion of the Ialite nanosheets obtained in Example 1 before and after ultracentrifugation.
  • FIG. 8 shows a separation membrane molded article containing Iialite nanosheets obtained in Example 1, a separation membrane molded article containing niobic acid (HNb 3 O 8 ) nanosheets, and a separation membrane molded article containing GO (graphene oxide) nanosheets. It is a graph showing each water permeability and dye blocking rate.
  • FIG. 1 is a diagram showing the blocking performance of an anionic dye using the separation membrane molded article obtained in Example 1.
  • FIG. 1 is a diagram showing the results of molecular weight cut-off measurement of polyethylene glycol, which is a non-polar molecule, using the separation membrane molded article obtained in Example 1.
  • FIG. 4 is a graph showing the water permeability evaluation using the molded body for separating substances in liquid containing ialite and graphene oxide obtained in Example 2 at a mass ratio of 1:1, and the salt blocking rate of a salt-containing aqueous solution.
  • 2 is a graph showing the water permeability evaluation using a molded body for separating substances in liquid containing ialite and graphene oxide obtained in Example 2 at a mass ratio of 1:0.1 and the salt blocking rate of a salt-containing aqueous solution. .
  • the submerged substance separation membrane molded product of the present invention is a submerged substance separation membrane molded product for separating a substance to be separated from a solution containing the substance to be separated, or for obtaining a solution in which the substance to be separated is concentrated or diluted. be.
  • the liquid-substance separation membrane molded product is a membrane that can separate a substance dissolved in a solvent (a polar solvent or a non-polar solvent, such as an aqueous solvent or an organic solvent) into a solvent and a substance. It means a molded body with a separation that allows separation, concentration or dilution of substances in the solution.
  • the present invention includes completely separating the substance to be separated and the solvent from the solution containing the substance to be separated. This means that two types of solutions are obtained, one with increasing substance concentration. Further, by optionally changing the membrane permeation speed of the solution containing the substance to be separated in the separation and concentration step, it is possible to obtain a plurality of solutions in which the concentration of the substance to be separated in the solvent changes stepwise.
  • the plate-like particles (A), which are the component (A) used in the present invention, can be used in the form of a dispersion.
  • the plate-like particles (A) are dispersed in a dispersion medium containing a liquid medium, a quaternary ammonium ion (a), and an anionic surfactant (b) having ammonium ions, and the above (a) and (b) at least partly covered or adsorbed by one or both of (A), or one or both of (a) and (b) interposed between plate-like particles (A). state.
  • the liquid-substance separation membrane containing the plate-like particles (A) or the aqueous dispersion forming the same has a Na ion concentration of 0.1% by mass (1000 ppm) or less, or 0.01% by mass (100 ppm) or less. It is preferably a membrane or an aqueous dispersion. Further, the concentration of the plate-like particles (A) in the dispersion can be 30% by mass or less, 0.01 to 30% by mass, or 0.1 to 30% by mass.
  • the average major axis and the width perpendicular to the maximum major axis of the plate-like particles (A) can be measured by transmission electron microscope observation.
  • the value of [maximum length (nm)/width (nm) perpendicular to the maximum length] of the plate-like particles (A) can be called an aspect ratio, and is in the range of 1.0 to 10.0.
  • the width (nm) perpendicular to the maximum major axis of the plate-like particles (A) can be 50 to 10,000 nm, 50 to 5,000 nm, or 50 to 3,000 nm on average.
  • the average thickness of the plate-like particles (A) can be measured by observing the coated surface of the substrate when the dispersion is applied using an AFM (atomic force microscope).
  • the plate-like particles (A) have an average thickness of 0.7 to 100 nm, or 0.7 to 40 nm.
  • AFM observation a sample obtained by dropping a dispersion having a tabular particle concentration of 1% by mass or less onto a substrate such as mica and drying it can be used. Natural drying is preferable for drying the sample, but heating may be used.
  • a sample coated on a substrate using the Langmuir-Blodgett method can also be used for AFM measurement.
  • the average particle size of the plate-like particles (A) can be measured as the average particle size of the plate-like particles (A) in the dispersion by a dynamic light scattering method.
  • the concentration of the dispersion liquid (concentration of plate-like particles) at the time of measurement can be 30% by mass or less.
  • a release layer material obtained by delamination of a layered compound can be used.
  • Layered compounds include, for example, layered polysilicates, clay minerals, manganates, titanates, niobic acid, niobates, GO (graphene oxide), and the like.
  • clay minerals include smectite and vermiculite.
  • layered polysilicates include kanemite, macatite, kenyaite, and ilaite (Ilerite is also called ialite, ailite, and ailaite).
  • octosilicate materials such as ilaite can be preferably used.
  • Ilayite has a chemical formula of Na 2 O.8SiO 2 .nH 2 O, has a planar silicic acid skeleton, and has silanol groups between the layers.
  • the layered compound, ilaite does not exist in nature, so it is artificially synthesized.
  • Ilayite is prepared, for example, by placing an aqueous solution of colloidal silica and sodium hydroxide mixed (SiO 2 /Na 2 O molar ratio is, for example, 4.0) or water glass in a hermetically sealed container and subjecting it to a hydrothermal reaction of about 90 to 150°C. By performing, it is possible to synthesize.
  • the Na ions in the dispersion are Na ions released from the layered compound (interlayers) when the Na ions present between the layers of the layered silicate are ion-exchanged with quaternary ammonium ions (a), In the state as it is, it will be present in a large amount in the dispersion liquid, but it is discharged out of the system by the method described later.
  • a low concentration of Na ions in the dispersion is desirable to prevent re-layering of the release layer material.
  • the Na ion concentration in the dispersion can be 1000 ppm or less, or 100 ppm or less, such as 0.1-1000 ppm, 1-1000 ppm, 0.1-100 ppm, or 1-100 ppm.
  • the quaternary ammonium ion Since the quaternary ammonium ion has a role as a release agent that spreads the interlayers of the layered compound, it preferably has a bulky organic group, and on the other hand, it preferably has high solubility. Therefore, in the present invention, the total number of carbon atoms is 13 to 45, or 13 to 23, or 15 to 45, or 15 to 25, and has 1 to 2 alkyl groups having 10 to 20 carbon atoms. A quaternary ammonium ion (a) is used.
  • Examples of such quaternary ammonium ions (a) include hexadecyltrimethylammonium ion, didecyldimethylammonium ion, dimethyldioctadecylammonium ion, and lauryltrimethylammonium ion.
  • lauryltrimethylammonium ion can be preferably used.
  • Counter ions for the ammonium ion include chloride ion and bromide ion.
  • the concentration of the quaternary ammonium ion (a) in the dispersion liquid is 30% by mass or less, or 10% by mass or less, and is 0.001 to 30% by mass, 0.001 to 20% by mass, or 0.001 It can be up to 10% by mass.
  • the anionic surfactant (b) having an ammonium ion is a surfactant composed of a hydrophobic group and a hydrophilic group, and is a compound in which the hydrophilic group portion is composed of a pair of an anion and an ammonium ion. It is preferable to use a compound that does not contain sodium ions or potassium ions.
  • the anionic surfactant (b) having an ammonium ion is preferably a compound containing, for example, a relatively long-chain alkyl group having about 8 to 12 carbon atoms as a hydrophobic group, and also contains an aromatic ring. It is preferably a compound that does not have
  • anionic surfactant (b) having an ammonium ion examples include ammonium octanoate, ammonium decanoate, ammonium laurate, ammonium stearate, ammonium hexanesulfonate, ammonium octanesulfonate, ammonium decanesulfonate, and dodecanesulfone.
  • ammonium lauryl sulfate (ammonium dodecyl sulfate) can be preferably used.
  • the concentration of the anionic surfactant (b) containing ammonium ions in the dispersion can be 0.01 to 20% by mass.
  • a quaternary ammonium ion (a) having 1 to 2 alkyl groups with 10 to 20 carbon atoms and an anionic surfactant (b) having an ammonium ion are essentially used.
  • the anionic surfactant (b) having ammonium ions is not added, when an anionic surfactant having sodium ions or an anionic surfactant having potassium ions is used instead of ammonium ions, the interlayer Peeling does not proceed, or the peeling layer material that has been delaminated tends to form a layered structure again, so that the transparency of the dispersion decreases (that is, the absorbance of the dispersion does not decrease).
  • the labyrinth for separating the substances in the liquid becomes insufficient, and the sufficient separation of the substances in the liquid (for example, the ions in the liquid) does not occur. can also occur.
  • the dispersion of the present invention is characterized by high transparency.
  • the absorbance is 0.1 under the conditions of an optical path length of 1 cm and a wavelength of 620 nm. or less, and in particular can be 0.015 or less.
  • the layered compound can usually be produced as a dispersion liquid in which the concentration of the plate-like particles (A) is in the range of 30% by mass or less.
  • the dispersion medium (liquid medium) for the plate-like particles (A) may be an aqueous medium such as water or an organic solvent.
  • the aqueous medium can be replaced with an organic solvent. Solvent replacement can be performed by an evaporation method or an ultrafiltration method.
  • organic solvent examples include methanol, ethanol, n-propanol, isopropanol, butanol, diacetone alcohol, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl.
  • ether acetate propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, Ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether
  • the liquid-substance separation membrane of the present invention may be in the form of a composite membrane including a multi-layer body in which a plurality of layers of exfoliated material (plate-like particles (A)) are laminated by delamination of a layered compound.
  • the layers to be laminated may be layers of the same release layer material or layers of other release layer materials.
  • the content of the layered compound (or peeling layer substance) contained in each layer is 1 in mass ratio when the plate-like particles (A) contained in the bottom layer is 1. :0.01 to 1:10, preferably 1:0.05 to 1:5, more preferably 1:0.1 to 1:1.
  • the present invention provides the following steps (i) to (vi): (i) Step: An aqueous dispersion of a silicic acid compound is hydrothermally treated at a temperature of 90 to 150° C., and the resulting layered compound is separated and washed with water.
  • This is a method for manufacturing a separation membrane molded article.
  • Ilayite is a layered compound that does not exist in nature, and can be synthesized, for example, by subjecting an aqueous solution of a silicic acid compound to a hydrothermal reaction at 90 to 150°C.
  • Silicic acid compounds include silicates such as sodium silicate and potassium silicate.
  • the silicic acid compound aqueous solution has a SiO 2 /M 2 O molar ratio of 3.5 to 4.0 (where M represents Na and K), and a silicic acid compound concentration of about 10 to 30% by mass.
  • An aqueous sodium silicate solution is preferred.
  • the hydrothermal conditions are preferably 90 to 150° C., particularly 90 to 130° C.
  • Ilaite can be synthesized by static heating for 1 to 24 days, or 1 to 12 days.
  • the solid material obtained by the hydrothermal reaction can be separated, washed with water and dried to recover ilaite.
  • the solid substance obtained by the hydrothermal reaction may be separated, washed with water, and then recovered as an aqueous slurry suspended in water without drying.
  • the reaction system may be stirred at the beginning of the reaction to make the reaction system uniform, but static heating is preferred for particle growth of ilaite.
  • Fine islayite can be synthesized by adding fine seed crystals (seed particles) of islayite itself to an aqueous sodium silicate solution.
  • the layered compound in step (i) is produced by pulverizing the layered material as a raw material, as in the synthesis of fine ailaite described above, and adding the pulverized layered material as seed particles to an aqueous silicate solution, A layered compound produced by hydrothermal treatment at 90 to 130° C. for 6 to 72 hours can be used. These layered compounds are fine layered compounds unlike layered substances. Furthermore, by adjusting the concentration of the fine layered compound to 30% by mass or less, an aqueous dispersion of the layered compound can be produced.
  • aqueous dispersion of the layered compound in step (i) can also be obtained by dispersing at a concentration of 30% by mass or less.
  • the fine layered compound is specifically the aqueous silicate solution, or a suspension obtained by adding unpulverized or pulverized layered substances as seed crystals (seed particles) to the aqueous silicate solution. , 90 to 150° C., particularly 90 to 130° C. for 1 to 24 days, and particularly 110° C. for 1 to 12 days in a static state for hydrothermal reaction.
  • the seed crystals (seed particles) added to the silicate aqueous solution when producing the fine layered compound are not limited in particle diameter, and are 0.1 to 10% by mass, or 0.1 to 10% by mass, based on the mass of the silicate. It is preferably added in the range of 1 to 5% by mass, or 0.1 to 2% by mass.
  • the width (nm) perpendicular to the maximum length (nm) is on average 50 nm to 10000 nm, 50 nm to 5000 nm, or 50 nm to 3000 nm.
  • the average major axis (nm) and the width (nm) perpendicular to the maximum major axis (nm) can be measured by observation with a transmission electron microscope.
  • the average particle size of the fine layered compound as measured by a dynamic light scattering method can be 10 nm to 500000 nm, 20 nm to 300000 nm, 100 nm to 10000 nm, or 200 nm to 5000 nm.
  • Seed crystals can be obtained by pulverizing a layered material (Ilayite here) as a raw material. Grinding can be carried out, for example, by ball milling. Grinding is carried out, for example, using a planetary ball milling device. A planetary ball mill can grind a container containing hard balls (for example, zirconia balls) and ilaite by rotating and revolving. This planetary ball milling can perform two stages of pulverization, and preliminary pulverization is performed first, and then fine pulverization is performed to obtain ilaite as seed crystals (seed particles). Grinding can be wet or dry, but dry grinding is preferably used. Islayite obtained separately can be used as the seed crystal (seed particle), or a part of the previous batch can be added, or the material remaining in the reaction vessel can be used for continuous batch production. .
  • the aqueous dispersion of the layered compound obtained in the step (i) has a total number of carbon atoms of 15 to 45 and 1 to 2 alkyl groups of 10 to 20 carbon atoms.
  • quaternary ammonium ions (a) are added in an amount that is 1 to 20 times the ion exchange capacity of the layered compound, and heated at 40 to 100° C. for 1 to 100 hours.
  • the above (iii) step is a step of adding pure water to the liquid obtained in the (ii) step and removing the sodium ion-containing liquid out of the system so that the sodium ion concentration in the liquid is 1000 ppm or less.
  • the sodium ions present between the layers of the layered compound are replaced with quaternary ammonium ions, and the sodium ions released in the liquid are removed from the system to prevent re-substitution with sodium ions,
  • the interlayers are expanded with quaternary ammonium ions, allowing layered compounds to be delaminated.
  • Methods for removing sodium ions include ultrafiltration, decantation, and solid-liquid separation using a filter.
  • step (iv) disperses the wet gel contained in the one obtained in step (iii) in an anionic surfactant (b) aqueous solution having an ammonium ion concentration of 0.01 to 20% by mass, After that, there is a step of adding ammonia so that the pH in the liquid becomes 9.0 to 12.0. Addition of the anionic surfactant (b) having ammonium ions coats the release layer material caused by delamination, or the anionic surfactant (b) intervenes between the release layer materials. In this way, it is possible to prevent the release layer material caused by the delamination occurring in the subsequent step (v) from returning to the form of the stratified compound.
  • This step (iv) can be carried out under ultrasonic irradiation or stirring in order to sufficiently coat the surface of the release layer material (here, ilaite) with the anionic surfactant (b) having ammonium ions. .
  • the above step (v) is a step of heating the liquid obtained in the step (iv) at 40 to 100° C. for 1 to 100 hours.
  • the plate-like particles (A) which are delamination substances due to delamination of a layered compound, wherein the laser diffraction particle size distribution of the plate-like particles (A) in the aqueous dispersion shows a 90% cumulative particle size value is 1.5 to 10 times, or 1.5 to 6.0 times, or 1.5 to 5.0 times, or 1.5 to 3.0 times the mean value of the particle size distribution.
  • the plate-like particles (A) have a particle size range of 0.1 ⁇ m to 10 ⁇ m as measured by a laser diffraction method, the particle size distribution is narrow, and aggregates do not exist.
  • the average particle size of the aqueous dispersion measured by dynamic light scattering is 10 to 10,000 nm, and the above (a) and (b) are both 0.01 to 3.0% by mass with respect to (A). plate-like particles (A) or a dispersion thereof.
  • the plate-like particles (A ) containing a quaternary ammonium ion (a) having a total number of carbon atoms of 15 to 45 and having 1 to 2 alkyl groups of 10 to 20 carbon atoms and an anionic surfactant having an ammonium ion a step of forming a film on a substrate (B) from plate-like particles (A) in which the content of the agent (b) is both reduced to a range of 0.01 to 15.0% by mass relative to (A); can be added.
  • Examples of methods for reducing the contents of (a) and (b) above to within the range of 0.01 to 15.0% by mass relative to (A) include centrifugation and ultrafiltration.
  • step (v-1) A dispersion of plate-like particles (A) is subjected to ultracentrifugation at 20000 to 60000 G, and 1 alkyl group having a total number of carbon atoms of 15 to 45 and 10 to 20 carbon atoms. Reduce the content of both the quaternary ammonium ion (a) having two and the anionic surfactant (b) having an ammonium ion to the range of 0.01 to 15.0% by mass with respect to (A) A step of obtaining a dispersion of plate-like particles (A) can be added.
  • liquid-substance separation comprising a liquid-substance separation membrane containing plate-like particles (A) in a range of 0.01 to 5.0% by mass and a substrate (B) supporting the liquid-substance separation membrane It can be made into a film molding.
  • the (vi) step is a step of forming a film on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the (v) step.
  • step (vi) is a dispersion of plate-like particles (A) obtained in step (v)
  • the dispersion of plate-like particles (A) obtained in step (v-0) or (v-1) is used.
  • the step of forming the liquid-substance separation membrane in the above step (vi) includes, on the substrate (B) surface, (v) forming a plate-like particle (A) layer using the dispersion of the plate-like particles (A) obtained in step; and laminating the layer of release layer material using.
  • step (v-0) or (v-1) is included between step (v) and step (vi)
  • step (vi) is a dispersion of plate-like particles (A) obtained in step (v)
  • the dispersion of plate-like particles (A) obtained in step (v-0) or (v-1) is used.
  • the dispersion of the release layer material obtained by delamination of the stratiform compound the dispersion of the plate-like particles (A) obtained in the above step (v), (v-0) or (v-1) may be used.
  • a dispersion containing a release layer material obtained by delamination of the layered compounds described above, either commercially available or prepared by known methods, can be used.
  • the layer to be stacked is preferably a graphene oxide layer using a graphene oxide dispersion.
  • the content of the release layer substance contained in each layer is The mass ratio is 1:0.01 to 1:10, preferably 1:0.05 to 1:5, and more preferably 1:0.1 when the plate-like particles (A) contained in the lowermost layer are taken as 1. to 1:1.
  • At least one porous substrate selected from the group consisting of cellulose, synthetic polymers, and ceramics can be used as the substrate (B).
  • cellulose include nitrocellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and the like.
  • Synthetic polymers include polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, and the like.
  • Ceramics include silica, alumina, mullite, and the like.
  • a liquid-substance separation membrane is formed on the surface of the substrate (B) using a dispersion containing the plate-like particles (A)
  • suction filtration or pressure filtration is preferably performed.
  • the substrate (B) is a material that becomes a support film (support).
  • the substrate (B) is set in a filtration device, and the plate-like particles (A) obtained in the step (v) are dispersed from above. Liquid is injected and suction filtration or pressure filtration is performed.
  • the dispersibility of the plate-like particles (A) is preferably enhanced before it is poured into a filtering device. For example, ultrasonic irradiation and stirring can be performed for about 0.1 to 1 hour.
  • a liquid-substance separation membrane can be similarly formed by using the dispersion liquid of the plate-like particles (A) obtained in the step (v-0) or (v-1).
  • the substrate (B) surface is coated using the dispersion liquid of the plate-like particles (A) obtained in the step (v), (v-0) or (v-1)
  • After forming a layer of plate-like particles (A) on top drying if necessary, injecting a dispersion containing a release layer material from above, performing suction filtration or pressure filtration, and laminating the release layer material. can be done. It is preferable to enhance the dispersibility of the dispersion of the release layer material before injecting it into the filtering device. For example, ultrasonic irradiation and stirring can be performed for about 0.1 to 1 hour.
  • the substrate (B) is an organic material such as cellulose, polyethersulfone, or synthetic polymer
  • it is immersed in pure water for about 0.1 to 12 hours to impart hydrophilicity and filtered. It is preferable to set it in the device.
  • Substrate (B) can be formed on one side or both sides thereof with a liquid-substance (for example, ion) separation membrane containing plate-like particles (A).
  • the base material (B) is a support, and the film thickness of the base material (B) itself can be arbitrarily set from several ⁇ m to several mm. For example, it can be set to about 1 ⁇ m to 10 mm, or about 10 ⁇ m to 1 mm.
  • the liquid-substance separation membrane that functions as a separation layer formed on the surface of the substrate (B) can be set to the following values as the film thickness of the liquid-substance separation membrane itself.
  • the film thickness of the submerged substance (eg, ion) separation membrane on the substrate (B) surface can be set to the following values on one side.
  • the plate-like particles (A) constituting the liquid-substance separation membrane must be formed in multiple layers (for example, It is preferable that two or more layers are formed, and the film thickness can be set to 1.5 nm or more, for example.
  • the lower limit of the film thickness of the liquid-substance separation membrane can be set to, for example, 1.5 nm, 40 nm, and 50 nm
  • the upper limit of the film thickness can be set to 100 nm, 500 nm, 1 ⁇ m, and 10 ⁇ m. Therefore, the film thickness can be set to, for example, 1.5 nm to 10 ⁇ m, 40 nm to 1 ⁇ m, 50 nm to 500 nm, 1.5 nm to 100 nm, 1.5 nm to 500 nm, 50 nm to 10 ⁇ m, 50 nm to 1 ⁇ m, 50 nm to 100 nm, etc. .
  • the solvent that dissolves the substance is a polar solvent or a non-polar solvent, and can be an aqueous solvent or an organic solvent.
  • the permeation rate of the solvent (aqueous solvent or organic solvent) containing the substance is 0.1 to 100 L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1 , or 5 to 25 L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1 .
  • the substance removal rate of the solvent (aqueous solvent or organic solvent) containing the substance to be separated can be 15 to 99%, 15 to 99%, or 80 to 99%.
  • the substance to be separated can be an ionic compound in a solvent (aqueous solvent or organic solvent).
  • a solvent aqueous solvent or organic solvent
  • ionic compounds include organic compounds having at least sulfonate ions or carboxylate ions.
  • a liquid-substance separation membrane containing the plate-like particles (A) and its support is separated from a tank containing an aqueous solution containing a water-soluble ionic organic compound using a pump.
  • the liquid was poured into a cell loaded with a submerged substance (ion) separation membrane molded body containing the base material (B), and passed through the submerged substance (ion) separation membrane to reduce the water-soluble ionic organic compound. It is possible to separate the aqueous solution and the aqueous solution in which the water-soluble ionic organic compound is concentrated without passing through the submerged substance (ion) separation membrane. Therefore, it is also a method for removing water-soluble ionic organic compounds in an aqueous solution and a method for concentrating water-soluble ionic organic compounds.
  • the pump pressure is 1.0 to 5.0 atmospheres, and the liquid flow rate is 1.0 ml/min.
  • Water-soluble ionic organic compounds can be concentrated to 10 ppm.
  • the aqueous solvent permeation rate is 6 to 8 L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1 , and stable water permeation can be carried out for 13 hours.
  • the film thickness is 100 nm, and the plate-like particles (A) at that time have a lamination amount of 1 mg on the substrate (B).
  • water-soluble ionic organic compounds examples include organic compounds having at least sulfonate ions or carboxylate ions, and these can have a dye structure.
  • Compounds having a sulfonate structure include Evans Blue and Acid Red 265, which have the following structures.
  • Evans Blue has a blocking rate of 96%
  • Acid Red 265 has a blocking rate of 15-40%.
  • a liquid-substance separation membrane molded article capable of concentrating one kind of solute molecule from a solution containing two or more kinds of solute molecules having different molecular weights.
  • a solution in which two types of molecules with different molecular weights are dissolved as solutes it is possible to concentrate molecules with large molecular weights by preventing passage of molecules with large molecular weights through the membrane and allowing molecules with small molecular weights to pass through the membrane.
  • a compact liquid-substance separation membrane molded product can be obtained.
  • solute molecules having a molecular weight difference of 1.3 times or more, or 1.5 times or more can be concentrated.
  • a quaternary ammonium ion (a) having 15 to 45 carbon atoms in total and 1 to 2 alkyl groups having 10 to 20 carbon atoms and an anionic surfactant having an ammonium ion agent (b), having an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10000 nm, and (maximum major axis/width perpendicular to the maximum major axis) 1.0 to 10.0
  • a liquid-substance separation membrane molded article containing a liquid-substance separation membrane containing plate-like particles (A), which are delamination substances due to delamination, and a substrate (B) supporting the liquid-substance separation membrane The plate-like particles (A) are in the form of an aqueous dispersion of
  • Dynamic light scattering method Measured with Zetasizer Nano S (trade name, manufactured by Spectris Co., Ltd.). Laser diffraction particle size distribution measurement: Measured with SALD-7500 manufactured by Shimadzu Corporation. Transmission electron microscope: JEM-1010 (trade name) manufactured by JEOL Ltd. was used. Average major axis: From 200 particle images taken using a transmission electron microscope JEM-1010 manufactured by JEOL Ltd., the average major axis and the maximum major axis/width perpendicular to the maximum major axis were calculated. Ultraviolet-visible-near-infrared spectrophotometer: V630 manufactured by JASCO Corporation was used.
  • X-ray diffraction D2 PHASER manufactured by Buruker was used. (Method for evaluating water permeability of separation membrane) S. Kawada et al. , Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 451, p. 33-37, evaluation was made using a cross-flow water permeation device. Ultrapure water purified by an ultrapure water production device (“milli-Q (registered trademark) manufactured by Direct Merck) is passed through a water permeation device under conditions of a primary side (supply side) pressure of 0.1 to 0.5 MPa. The water permeation rate was obtained by dividing the water permeation rate per unit time by the effective membrane area and pressure.
  • ultrapure water production device (“milli-Q (registered trademark) manufactured by Direct Merck) is passed through a water permeation device under conditions of a primary side (supply side) pressure of 0.1 to 0.5 MPa. The water permeation rate was obtained by
  • Example 1 Synthesis of Ilayite
  • Water glass SiO 2 : Na 2 O: H 2 O molar ratio is 3.8: 1: 39.8: 1:39.
  • SiO 2 concentration is 23.05% by mass
  • Na 2 O concentration is 6.25% by mass
  • SUS316 3L stainless steel
  • the obtained ilaite had a major axis of 845.0 nm, a width perpendicular to the maximum major axis of 686.6 nm, an average thickness of 38.1 nm, and a ratio of (maximum major axis/width perpendicular to the maximum major axis) of 1.2. It was confirmed by XRD that the product was ilaite (PDF card No. 00-048-0655).
  • the concentration of lauryltrimethylammonium chloride in the islayite water dispersion was 1.2 wt %, and the solid content concentration (1000° C. firing residue) of the water dispersion was 1.6 wt %.
  • the mixture was diluted with 521 g of pure water so that the solid concentration of islayite was 0.1 wt % and the ammonium dodecyl sulfate concentration was 1.5 wt %.
  • Aqueous ammonia was added thereto to adjust the pH to 10.1.
  • the solution obtained here is heated at 60° C. for 24 hours under stirring with a stirrer to give a colloidal solution (aqueous dispersion of ilaite nanosheets) of nanosheets (plate-like particles A) in which the ilaite nanoparticles are delaminated. got The average particle size of the resulting aqueous dispersion of ilaite nanosheets was 760 nm as determined by dynamic light scattering.
  • the 90% cumulative particle size value of the obtained aqueous dispersion of ilaite nanosheets was 3.3 ⁇ m in the laser diffraction particle size distribution, and the average particle size was 1.3 ⁇ m in the laser diffraction particle size distribution. Therefore, (90% cumulative particle size value)/(average particle size value) was 2.5.
  • the average thickness of the exfoliated nanosheets (plate-like particles A) was 1.5 nm, measured by a method of applying the resulting aqueous dispersion onto a substrate, drying it, and then observing it with an AFM (atomic force microscope).
  • a sample obtained by drying the obtained aqueous dispersion at room temperature was dried at 100°C for 60 minutes, and then subjected to TG measurement (thermogravimetric measurement) to measure the weight change from 100°C to 800°C. From 220° C. to 500° C., the weight loss occurs in two stages, and is believed to be the first decomposition of the surfactant (20% decrease by mass) followed by the decomposition of the quaternary ammonium (14% decrease by mass).
  • the weight ratio of nanosheets (plate-like particles A): quaternary ammonium ions (a): anionic surfactant (b) is 66:14:20, and the quaternary ammonium ions (a) are nanosheets (plate-like
  • the content of the anionic surfactant (b) was 30.3% by mass based on the nanosheet (plate-like particles A).
  • the resulting aqueous dispersion of islayite nanosheets was supplied onto a polyethersulfone (PES) supporting substrate and suction filtered to form an islayite nanosheet laminate on the supporting substrate. Even after the filtration of the aqueous dispersion of islayite nanosheets was completed, suction filtration (reduced pressure filtration) was continued to remove moisture contained in the laminate of islayite nanosheets, thereby enhancing the adhesion between the layers.
  • the concentration and amount of the aqueous dispersion of islayite nanosheets to be supplied onto the supporting substrate are appropriately adjusted according to the thickness of the islayite nanosheet laminate to be formed.
  • separation membranes were also produced in which the solid content of the ilaite nanosheets in the laminate was adjusted to 0.5 mg or 2 mg.
  • a SEM (scanning electron microscope) image of the cross-sectional structure of a separation membrane having a solid content of 1 mg of islayite nanosheets revealed PES (polyethersulfone, molecular weight cutoff of 100 kDa, membrane area of 17.3 ⁇ 10 ⁇ 4 m 2 ).
  • the separation membrane according to the present invention can be said to have high structural stability in water.
  • Example 2 An aqueous dispersion of graphene oxide (GO) (manufactured by Sigma-Aldrich, product name: Graphene oxide, 4 mg/mL) was supplied onto the ilaite nanosheet laminate obtained in Example 1 above, followed by suction filtration to obtain ilaite. A graphene oxide (GO) layer was laminated on the nanosheet to prepare a liquid-substance separation membrane, which is a composite membrane of the ilaite nanosheet and graphene oxide (GO), on the substrate (B).
  • GO graphene oxide
  • Example 1 In the process of producing the aqueous dispersion of islayite nanosheets in Example 1, free sodium ions were removed from the system by filtration with a membrane filter, and then the wet powder was dried at 40° C. to obtain an islayite powder.
  • An aqueous dispersion of ilaite nanosheets was obtained in the same manner as in Example 1 except that 12 g of the obtained powder was added to 1174 g of water together with 14 g of lauryltrimethylammonium chloride.
  • the obtained aqueous dispersion had a 90% cumulative particle size value of 45.8 ⁇ m in the laser diffraction particle size distribution, and an average particle size value of 3.6 ⁇ m in the laser diffraction particle size distribution.
  • Cumulative particle size value)/(average particle size value) was 12.7. Separation membranes were obtained in the same manner as in Example 1, except that the solid content of the exfoliated ilaite nanoparticles contained in the laminate was adjusted to 5 mg, 7.5 mg, and 10 mg.
  • FIG. 2 shows a schematic diagram showing a water permeability test of a separation membrane and an evaluation test method for separation performance.
  • An aqueous solution containing the substance to be separated (Evans Blue or Acid Red 265 in Example 1) dissolved therein is supplied from the supply liquid tank to the separation membrane molded body unit through a pump, and the liquid-substance separation membrane is placed in the substance concentrate tank.
  • the rejection rate of the substance to be separated was 0% (0%, the color of the aqueous solution containing the substance to be separated and the separated water stored in the separation water tank was the same) with only the support substrate, the aqueous dispersion of ilaite nanosheets was used. All of the laminated separation membrane molded bodies exhibited dye-blocking properties (substance-removing properties).
  • AR is the separation of Example 1 according to the results of calculating the water permeability rate according to the above water permeability evaluation method of the separation membranes of Example 1 and Comparative Example 1 and the above solute blocking performance test Table 1 and FIG. 6 show the results of calculating the rejection rate (%) of the film only test).
  • the left axis indicates water permeability (L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1 ), which is indicated by vertical bars in the graph, the right axis indicates dye blocking rate, and the horizontal axis is indicated by * ⁇ in the graph. indicates the loading amount of nanosheets per support film area of 9.6 ⁇ 10 ⁇ 4 m 2 .
  • Example 1 In the graph of Example 1 shown on the left, * indicates the blocking rate of Evans Blue, and ⁇ indicates the blocking rate of Acid Red 265. In the graph of Comparative Example 1 shown on the right side, * indicates the rejection rate of Evans blue.
  • the membrane prepared in Comparative Example 1 had a water permeability of 0.32 L ⁇ m ⁇ 2 ⁇ h ⁇ 1 ⁇ bar ⁇ 1 when the nanosheet loading was 10 mg, and an EB (Evans blue) blocking property of 72%. rice field.
  • the concentration was 10 times lower than that of Comparative Example 1 and the loading amount of the nanosheet was 1 mg
  • the water permeability was 13 L ⁇ m ⁇ 2 ⁇ h ⁇ 1 ⁇ bar ⁇ 1 .
  • the separation membrane molded article of Example 1 exhibits higher water permeability and pigment blocking property (pigment separation property) than the separation membrane molded article of Comparative Example 1. Therefore, the separation membrane molded article of the present invention is excellent. It has excellent separation properties and high solvent permeability.
  • FIG. 4 shows a scanning electron micrograph of a cross section of the separation membrane (1 mg load) on the substrate obtained in Example 1. As shown in FIG. It was confirmed that a film containing 1 mg of laminated nanosheets made of plate-like particles (A) had a thickness of approximately 100 nm.
  • FIG. 5 shows, in order from the top, the X-ray diffraction diagram of ilaite before delamination, which is the raw material of the present invention, the X-ray diffraction diagram when the separation membrane laminated with the nanosheets of delaminated ilaite of the present invention is in a wet state, and the present invention.
  • X-ray diffractogram of a separation membrane laminated with delaminated ilaite nanosheets in a dry state X-ray diffractogram of a substrate (polyethersulfone) in a wet state, substrate in a dry state (polyethersulfone ) shows an X-ray diffraction pattern.
  • Ultracentrifugation removes the exfoliating agent component of the layered compound, and the peak derived from delaminated ialite becomes clear, and the structure of the separation membrane containing ialite nanosheets is stable even in a wet state (in water). I found out.
  • FIG. 7 shows the results showing the water permeability and the dye blocking rate of the dispersion film molded article produced using the aqueous dispersion of Iaryte nanosheets obtained in Example 1.
  • the right vertical axis of the graph indicates the dye blocking rate (%)
  • the left vertical axis indicates the water permeability (L ⁇ m ⁇ 2 ⁇ hr ⁇ 1 ⁇ bar ⁇ 1 )
  • the horizontal axis represents the support membrane area 9.6 ⁇ 10 ⁇ Nanosheet loading (mg) per 4 m 2 is shown.
  • the graph on the left side of the dotted line is the test result using a separation membrane molded article formed on a support membrane (polyethersulfone) using an aqueous dispersion of Iaryte nanosheets that has not been subjected to ultracentrifugation, and the graph on the right side of the dotted line. It is a test result using a molecular film molded article formed on an indicator film (polyethersulfone) using an aqueous dispersion of Ialite nanosheets ultracentrifuged at 40,000 G.
  • (*) in the graph indicates the rejection rate of Evans Blue
  • ( ⁇ ) in the graph indicates the rejection rate of Acid Red 265, and the bar graph indicates the water permeability.
  • the left end of the graph shows the test results using only the support film (polyethersulfone) as a blank, the rejection rate of Evans Blue and Acid Red 265 is both zero, and the water permeability is 95 (L m -2 hr -1 ⁇ bar ⁇ 1 ).
  • both the liquid-submerged substance separation membrane compacts produced using the aqueous dispersion of Iialite nanosheets before and after ultracentrifugation are capable of separating BE and AR. It can be used as a liquid-substance separation membrane because it can be used and has water permeability.
  • the separation membrane formed by using the aqueous dispersion of Iaryte nanosheets before ultracentrifugation increases the performance of separating two types of substances as the loading capacity of the nanosheets increases. , the permeability (ie throughput) decreased.
  • the separation membrane formed using the aqueous dispersion of Iaryte nanosheets after ultracentrifugation has a high performance in separating two types of substances despite a low loading capacity, and the water permeability (i.e., throughput) is also high. You can see that it is higher than the load amount.
  • nanosheets can be obtained by using an aqueous dispersion of ialite nanosheets that has been subjected to ultracentrifugation and the amount of quaternary ammonium and surfactant is set to 15% by mass or less (for example, 0.01 to 15.0% by mass) relative to ialite. It can be understood that even if the content is low, two kinds of substances having different molecular weights can be efficiently separated, and a membrane for separating substances in liquid having high water permeability to the solvent in which the solutes are dissolved can be obtained. That is, it is possible to more efficiently separate and concentrate the substances in the liquid from the treatment liquid containing the substances to be separated.
  • FIG. 8 shows the results of water permeability and dye blocking rate.
  • the right vertical axis of the graph shows the dye blocking rate (%)
  • the left vertical axis shows the water permeability (L m -2 hr -1 bar -1 )
  • the horizontal axis shows the same loading amount per support membrane area. The type of each nanosheet produced is shown.
  • FIG. 9 shows, in order from the top, the X-ray diffraction patterns of the ilaite nanosheets in a dry state, a state of storage at pH 7, a state of storage at pH 3, and a state of storage at pH 11.
  • FIG. 10 shows the results of measuring the anionic dye-blocking performance of the separation membrane molded product obtained in Example 1.
  • anionic dyes include Methyl Orange (molecular weight 327), Acid Red 265 (molecular weight 636), Brilliant Blue FCF (molecular weight 793), Evans Blue (molecular weight 961), Rose Bengal ( Rose Bengal, molecular weight 974) was used.
  • the loading amount of Ialite nanosheets per support film area of 9.6 ⁇ 10 ⁇ 4 m 2 is 0.1 mg for black ⁇ , 05 mg for black ⁇ , and 1.0 mg for black ⁇ .
  • the removal rate of methyl orange is 0-10%
  • the removal rate of Acid Red 265 is 0-18%
  • the removal rate of brilliant blue FCF is 0-30%
  • the removal rate of Evans blue is 75-99. % and the removal rate of Rose Bengal was 90-99%.
  • the aqueous solution of the material to be separated comprising the anionic dye was separated or passed through at a molecular weight of around 800. Therefore, in the separation of anionic substances in the separation membrane molded article obtained in Example 1, high separation selectivity at a molecular weight of around 800 is expected.
  • FIG. 11 shows the results of measuring the molecular weight cut off of the polyethylene glycol aqueous solution using the separation membrane molded article obtained in Example 1.
  • Nonionic substances were separated using an aqueous polyethylene glycol solution.
  • the loading amount of Ialite nanosheets per support film area of 9.6 ⁇ 10 ⁇ 4 m 2 is 0.1 mg for black ⁇ , 05 mg for black ⁇ , and 1.0 mg for black ⁇ .
  • Aqueous polyethylene glycol solutions having different molecular weights 200, 1000, 6000, 12000, 20000 and 35000) were passed through separation membrane molded bodies having different load capacities, and the respective removal rates were measured. Separation due to molecular weight difference was not sufficient with a loading of 0.1 mg.
  • the removal rate was 90% or more when the molecular weight was around 10,000, indicating separation. Therefore, it is considered that the molecular weight cut off of the separation membrane molded article obtained in Example 1 exists in the vicinity of 10,000 in the separation of nonionic substances.
  • the compound film of ialite and graphene oxide improves the rejection rate of salts. Do you get it.
  • a liquid-submerged substance separation membrane molded product that efficiently separates ionic organic substances or nonionic substances) and a method for producing the same.

Abstract

[Problem] To provide: an in-liquid substance separation membrane molded body that is made of highly chemical-resistant components, has a high membrane solvent permeation speed, and efficiently separates the substances (e.g., the ionic organic substances) in a liquid; and a production method for the in-liquid substance separation membrane molded body. [Solution] According to the present invention, an in-liquid substance separation membrane molded body includes: lamellar particles (A) that include a quaternary ammonium ion (a) that has a total of 15–45 carbon atoms and has one or two alkyl groups that have 10–20 carbon atoms and an anion surfactant (b) that has an ammonium ion, have an average thickness of 0.7–100 nm, an average length of 50–10,000 nm, and a (maximum length/width orthogonal to maximum length) ratio of 1.0–10.0, and are a separated layer substance formed by separating the layers of a layered compound; and a base material (B). The lamellar particles (A) are an aqueous dispersion of the lamellar particles (A) that includes (a) and (b) for the separation of the layers of the layered compound. The 90% cumulative particle size value for a laser diffraction particle size distribution of the lamellar particles (A) of the aqueous dispersion is 1.5–10 times the average value for the particle size distribution.

Description

オクトシリケート材料を用いた液中物質分離膜及びその製造方法Submerged substance separation membrane using octosilicate material and its manufacturing method
 本発明は層状化合物の層間剥離による剥離層物質である板状粒子を用いた液中物質分離膜成形体、及びそれらの製造方法に関する。 The present invention relates to a liquid-substance separation membrane compact using plate-like particles, which is a release layer material due to delamination of a layered compound, and a method for producing the same.
 溶液中の物質(例えばイオン成分)を選択的に除去する目的で膜技術を利用する試みがなされている。環境技術や資源再利用の観点から注目されている。
 例えば金属イオン輸送性リガンドを含有した金属イオン分離膜を用いて水性溶液から重金属イオンを除去することが開示されている(特許文献1参照)。高分子膜がセルロース誘導体であり、リガンドとしてケンプ酸デシルアミドやケンプ酸ドデシルアミド等のケンプ酸誘導体を用いて、膜を介して銅イオン、鉛イオン、水銀イオン、マグネシウムイオン、カルシウムイオン等を輸送する能力を有する事が記載されている。
 また、層状化合物の層間剥離による剥離層物質から形成された板状物質の分散液と、その分散液を用いたガス分離膜が開示されている(特許文献2参照)。
Attempts have been made to use membrane technology to selectively remove substances (eg, ionic components) in solution. It is attracting attention from the viewpoint of environmental technology and resource reuse.
For example, it has been disclosed to remove heavy metal ions from an aqueous solution using a metal ion separation membrane containing a metal ion transporting ligand (see Patent Document 1). The polymer membrane is a cellulose derivative, and kemp acid derivatives such as kemp acid decylamide and kemp acid dodecylamide are used as ligands to transport copper ions, lead ions, mercury ions, magnesium ions, calcium ions, etc. through the membrane. It is stated that he has the ability.
Further, a dispersion of a plate-like material formed from a peeling layer material by delamination of a layered compound and a gas separation membrane using the dispersion have been disclosed (see Patent Document 2).
特開平10-290927号JP-A-10-290927 国際公開第2020/153352号パンフレットWO 2020/153352 pamphlet
 本発明は液体中の物質(例えばイオン性物質)を効率よく除去することができるオクトシリケート材料による分離膜に関する。また、本発明は、分離膜成分により耐薬品性が高く、膜中の被分離物質を含む溶液の溶媒透過速度が高く、液中の物質(例えばイオン性有機物)を効率よく分離する液中物質分離膜成形体と、その製造方法を提供することを目的とする。 The present invention relates to a separation membrane made of an octosilicate material that can efficiently remove substances (eg, ionic substances) in liquids. In addition, the present invention has high chemical resistance due to the separation membrane component, high solvent permeation rate of the solution containing the substance to be separated in the membrane, and efficiently separates substances in the liquid (for example, ionic organic substances). An object of the present invention is to provide a separation membrane molded article and a method for producing the same.
 本発明は第1観点として、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)と、アンモニウムイオンを有する陰イオン界面活性剤(b)とを含み、平均厚さ0.7~100nm、平均長径50~10,000nm、及び(最大長径/最大長径に直行する幅)=1.0~10.0を有し、層状化合物の層間剥離による層剥離物質である板状粒子(A)を含む液中物質分離膜と、該液中物質分離膜を支持する基材(B)とを含む液中物質分離膜成形体、
 第2観点として、上記層状化合物が、アイラアイトである、第1観点に記載の液中物質分離膜成形体、
 第3観点として、上記液中物質分離膜が、アイラアイトと酸化グラフェンの複合膜である、第1観点又は第2観点に記載の液中物質分離膜成形体
 第4観点として、上記液中物質分離膜は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液から形成されてなり、該水性分散液中の板状粒子(A)のレーザー回折式粒子径分布で90%積算粒子径値が、該粒子径分布の平均値の1.5~10倍である第1観点乃至第3観点の何れか1つに記載の液中物質分離膜成形体、
 第5観点として、上記液中物質分離膜は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液から形成されてなり、該水性分散液の動的光散乱法による平均粒子径が10~10、000nmであり、上記(a)と(b)が共に(A)に対して0.01~50.0質量%に範囲にある板状粒子(A)である第1観点乃至第4観点のいずれか一つに記載の液中物質分離膜成形体、
 第6観点として、上記基材(B)が、セルロース、合成高分子、及びセラミックスからなる群から選ばれる少なくとも1種の多孔質基材である第1観点乃至第5観点のいずれか一つに記載の液中物質分離膜成形体、
 第7観点として、上記セルロースが、ニトロセルロース、カルボキシメチルセルロース、又はヒドロキシエチルセルロースである第6観点に記載の液中物質分離膜成形体、
 第8観点として、上記合成高分子が、ポリエーテルスルホン、ポリサルホン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリエチレンビニルアルコール、ポリビニルアルコール、ポリアクリル酸、又はポリメタクリル酸である第6観点に記載の液中物質分離膜成形体、
 第9観点として、上記セラミックスが、シリカ、アルミナ、又はムライトである第6観点に記載の液中物質分離膜成形体、
 第10観点として、上記液中物質分離膜は上記基材(B)表面上に形成されてなり、該液中物質分離膜は1.5nm~10μmの膜厚を有する第1観点乃至第9観点の何れか一つに記載の液中物質分離膜成形体、
 第11観点として、被分離物質を含む溶液の溶媒の透過速度が、0.1~100L・m-2・hr―1・bar―1である第1観点乃至第10観点のいずれか一つに記載の液中物質分離膜成形体、
 第12観点として、被分離物質を含む溶液の物質除去率が15~99%である第1観点乃至第11観点のいずれか一つに記載の液中物質分離膜成形体、
 第13観点として、被分離物質がイオン性化合物である第1観点乃至第12観点の何れか一つに記載の液中物質分離膜成形体、
 第13観点として、上記イオン性化合物が少なくともスルホン酸イオン、又はカルボン酸イオンを有する有機化合物である第12観点に記載の液中物質分離膜成形体、
 第15観点として、被分離物質を含む溶液が、被分離物質と、該被分離物質とは分子量の異なる少なくとも1種以上の溶質分子を含む溶液であって、該溶液中の被分離物質を濃縮する用の第1観点乃至第14観点の何れか一つに記載の液中物質分離膜成形体、
 第16観点として、
下記(i)工程乃至(vi)工程:
(i)工程:ケイ酸化合物水溶液を90~150℃の温度で水熱処理後に静置して得られた層状化合物を分離し水洗した湿式ゲルを水中に添加し、層状化合物の水性分散液を製造する工程、
(ii)工程:(i)工程で得られた水性分散液に、層状化合物のイオン交換容量の等倍~三倍量となる、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)を添加し、40~100℃で、12~48時間の加熱をする工程、
(iii)工程:(ii)工程で得られた液に純水を加え、液中のナトリウムイオン濃度が100ppm以下になるように、ナトリウムイオン含有液を系外に取り除く工程、
(iv)工程:(iii)工程に含まれる湿式ゲルを、濃度が0.01~1質量%のアンモニウムイオンを有する陰イオン界面活性剤(b)水溶液中に分散させた後、さらに、アンモニアを添加して液中のpHを9.0~12.0に調整する工程、
(v)工程:(iv)工程で得られた液を、40~90℃で、12~48時間の加熱を行い、板状粒子(A)の分散液を得る工程、
(vi)工程:基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて液中物質分離膜を製膜する工程、を含む
第1観点乃至第15観点のいずれか一つに記載の液中物質分離膜成形体の製造方法、
 第17観点として、前記(vi)工程が、基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて板状粒子(A)層を形成する工程と、該層の上に酸化グラフェンの水分散液を用いて酸化グラフェン層を積層する工程とを含む、液中物質分離膜を製膜する工程である、第16観点に記載の液中物質分離膜成形体の製造方法。
 第18観点として、基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて製膜する工程(vi)が、吸引ろ過又は加圧ろ過で行われる第16観点又は第17観点に記載の液中物質分離膜成形体の製造方法、
 第19観点として、(v)工程と(vi)工程の間に、更に(v-0)工程、
(v-0)工程:(v)工程で得られた板状粒子(A)を含む分散液を、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)が共に板状粒子(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)を含む分散液を得る工程、を追加する第16観点又は第17観点に記載の液中物質分離膜成形体の製造方法、及び
 第20観点として、(v-0)工程が、下記(v-1)工程、
(v-1)工程:(v)工程で得られた板状粒子(A)を含む分散液を20000~60000Gで超遠心処理を行い、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)が共に(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)を含む分散液を得る工程、である第19観点に記載の液中物質分離膜成形体の製造方法である。
As a first aspect of the present invention, a quaternary ammonium ion (a) having a total of 15 to 45 carbon atoms and 1 to 2 alkyl groups having 10 to 20 carbon atoms and an ammonium ion-containing anion and an ionic surfactant (b), having an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10,000 nm, and (maximum major axis/width perpendicular to the maximum major axis) = 1.0 to 10.0 and a liquid-substance separation membrane containing a plate-like particle (A) that is a delamination substance due to delamination of a layered compound, and a substrate (B) that supports the liquid-substance separation membrane. molding,
As a second aspect, the molded article for separating substances in liquid according to the first aspect, wherein the layered compound is ilaite;
As a third aspect, the submerged substance separation membrane is a composite film of ilaite and graphene oxide. The film is formed from an aqueous dispersion of the plate-like particles (A) containing (a) and (b) used for delamination of the layered compound, and the plate-like particles (A) in the aqueous dispersion are Separation of substances in liquid according to any one of the first aspect to the third aspect, wherein the 90% cumulative particle size value in the laser diffraction particle size distribution is 1.5 to 10 times the average value of the particle size distribution. membrane molded body,
As a fifth aspect, the liquid-substance separation membrane is formed from an aqueous dispersion of plate-like particles (A) containing the above (a) and (b) used for delamination of the layered compound, and the aqueous dispersion A plate having an average particle size of 10 to 10,000 nm as measured by a liquid dynamic light scattering method, and having the above (a) and (b) both in the range of 0.01 to 50.0% by mass with respect to (A). The liquid-substance separation membrane compact according to any one of the first to fourth aspects, which is the shaped particles (A),
As a sixth aspect, any one of the first to fifth aspects, wherein the substrate (B) is at least one porous substrate selected from the group consisting of cellulose, synthetic polymers, and ceramics. The liquid-substance separation membrane molded product described above,
As a seventh aspect, the submerged substance separation membrane molded article according to the sixth aspect, wherein the cellulose is nitrocellulose, carboxymethyl cellulose, or hydroxyethyl cellulose;
As an eighth aspect, in liquid according to the sixth aspect, wherein the synthetic polymer is polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, or polymethacrylic acid. material separation membrane molded body,
As a ninth aspect, the liquid-submerged substance separation membrane compact according to the sixth aspect, wherein the ceramic is silica, alumina, or mullite;
As a tenth aspect, the first aspect to the ninth aspect, wherein the liquid-substance separation membrane is formed on the surface of the substrate (B), and the liquid-substance separation membrane has a thickness of 1.5 nm to 10 μm. The liquid-submerged substance separation membrane molded article according to any one of
As an eleventh aspect, any one of the first aspect to the tenth aspect, wherein the solvent permeation rate of the solution containing the substance to be separated is 0.1 to 100 L·m −2 ·hr −1 ·bar −1 The liquid-substance separation membrane molded product described above,
As a twelfth aspect, the molded body for separating substances in liquid according to any one of the first aspect to the eleventh aspect, wherein the substance removal rate of the solution containing the substance to be separated is 15 to 99%;
As a thirteenth aspect, the submerged substance separation membrane compact according to any one of the first to twelfth aspects, wherein the substance to be separated is an ionic compound;
As a thirteenth aspect, the molded article for separating substances in liquid according to the twelfth aspect, wherein the ionic compound is an organic compound having at least a sulfonate ion or a carboxylate ion;
As a fifteenth aspect, the solution containing the substance to be separated is a solution containing the substance to be separated and at least one or more solute molecules having a molecular weight different from that of the substance to be separated, and the substance to be separated in the solution is concentrated. The liquid-substance separation membrane compact according to any one of the first to fourteenth aspects for
As a sixteenth point of view,
The following steps (i) to (vi):
(i) Step: An aqueous dispersion of a silicic acid compound is hydrothermally treated at a temperature of 90 to 150° C., and the resulting layered compound is separated and washed with water. the process of
(ii) step: adding to the aqueous dispersion obtained in step (i) a total carbon atom number of 15 to 45 and a carbon atom number of 10, which is 1 to 3 times the ion exchange capacity of the layered compound; adding a quaternary ammonium ion (a) having 1 to 2 alkyl groups of ∼20 and heating at 40 to 100°C for 12 to 48 hours;
(iii) step: adding pure water to the liquid obtained in step (ii), and removing the sodium ion-containing liquid from the system so that the sodium ion concentration in the liquid is 100 ppm or less;
(iv) step: after dispersing the wet gel included in step (iii) in an anionic surfactant (b) aqueous solution containing ammonium ions at a concentration of 0.01 to 1% by mass, ammonia is further added; adding to adjust the pH in the liquid to 9.0 to 12.0;
(v) step: a step of heating the liquid obtained in step (iv) at 40 to 90° C. for 12 to 48 hours to obtain a dispersion of plate-like particles (A);
(vi) Step: A first aspect including a step of forming a liquid-substance separation membrane on the surface of the substrate (B) using the dispersion of the plate-like particles (A) obtained in the (v) step. A method for producing a liquid-substance separation membrane molded product according to any one of the 15th aspects,
As a seventeenth aspect, the step (vi) forms a plate-like particle (A) layer on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the step (v). and laminating a graphene oxide layer on the layer using an aqueous dispersion of graphene oxide. A method for producing a material separation membrane molded article.
As an eighteenth aspect, the step (vi) of forming a film on the surface of the substrate (B) using the dispersion of the plate-like particles (A) obtained in the step (v) is performed by suction filtration or pressure filtration. The method for manufacturing the liquid-substance separation membrane molded article according to the sixteenth or seventeenth aspect,
As a nineteenth aspect, between the (v) step and the (vi) step, further (v-0) step,
(v-0) step: The dispersion containing the plate-like particles (A) obtained in step (v) is Both the quaternary ammonium ions (a) having ~2 and the anionic surfactant (b) having ammonium ions are reduced to the range of 0.01 to 15.0% by mass with respect to the plate-like particles (A) The method for producing a molded article for separating a substance in liquid according to the sixteenth or seventeenth aspect, which adds a step of obtaining a dispersion containing the plate-like particles (A), and as a twentieth aspect, (v-0) The step is the following (v-1) step,
(v-1) step: the dispersion containing the plate-like particles (A) obtained in step (v) is subjected to ultracentrifugation at 20,000 to 60,000 G, and the total number of carbon atoms is 15 to 45, and Both the quaternary ammonium ion (a) having 1 to 2 alkyl groups of number 10 to 20 and the anionic surfactant (b) having an ammonium ion are 0.01 to 15.0 masses relative to (A). % of the plate-like particles (A).
 現在、限外ろ過膜が広く利用されており、限外ろ過膜は膜中の細孔を利用してある程度の分子量を持った分子をふるい分け、溶媒を系外に通過させる事で液中の物質を分離するシステムである。しかし、限外ろ過膜はその原理から細孔を通過する液体量に制限があり、ろ過する通液量が限られている。
 一方、液体から物質をフィルターで除去する事も広く行われている。しかし、フィルターは通液量が高いがメッシュ径が粗く、液中に溶解しているイオン性物質の除去はできない。
Currently, ultrafiltration membranes are widely used, and ultrafiltration membranes filter out molecules with a certain molecular weight using the pores in the membrane, allowing the solvent to pass out of the system, thereby filtering out substances in the liquid. It is a system that separates However, the principle of ultrafiltration membranes limits the amount of liquid that can pass through the pores, limiting the amount of liquid that can be filtered.
On the other hand, filtering out substances from liquids is also widely practiced. However, although the filter has a high liquid flow rate, it has a coarse mesh diameter and cannot remove ionic substances dissolved in the liquid.
 本発明は液中物質分離膜成形体であり、溶液中から物質(例えばイオン性成分)を除去する事が可能な分離膜成形体である。
 本発明の液中物質分離膜成形体は、目の粗い支持体となる基材上に分離する役目を有する物質が、一層乃至多層にわたり積層された構造で含まれる液中物質分離膜を有する。液中物質分離膜は溶液に含まれる物質(例えばイオン性成分)が分離物質の間を掻い潜り基材に到達することを防ぐ役割を求められるが、その一つとして到達経路を迷路化する事で基材への到達を低下させることと、分子ふるい効果と、被分離物質がイオン性物質、例えばマイナスイオンを有しているイオン性物質の場合に、マイナスイオンを有している分離膜物質を用いて、その電気的な反発力により分離膜物質の間を通過する事を防止する事により被分離物質を含まない溶液(又は溶媒)だけが通過し被分離物質(例えばイオン性物質)が除去されるものである。
INDUSTRIAL APPLICABILITY The present invention is a liquid-substance separation membrane molded article, and is a separation membrane molded article capable of removing a substance (eg, an ionic component) from a solution.
The liquid-substance separation membrane molded article of the present invention has a liquid-substance separation membrane in which a substance having a function of separation is contained in a structure in which one or more layers are laminated on a base material that serves as a coarse support. Submerged substance separation membranes are required to play a role in preventing substances contained in a solution (such as ionic components) from crawling between separated substances and reaching the base material. a molecular sieve effect, and when the substance to be separated is an ionic substance, such as an ionic substance having negative ions, the separation membrane substance having negative ions is used to prevent passage between the separation membrane substances due to the electrical repulsion, so that only the solution (or solvent) that does not contain the substance to be separated passes through and the substance to be separated (e.g., ionic substance) It is removed.
 本発明では分離機能を有する物質(分離膜物質)が層状化合物(例えばオクトシリケート材料)の層間剥離による剥離層物質である板状粒子であるため、基材上に製膜が容易であり、膜の厚さを制御する事で層間の制御が容易である。従って、単に物質(例えばイオン性物質)を電気的に排除するだけでなく、分子径の異なる物質(例えばイオン性物質)を層間のサイズに従って分子径の大きさに従い排除(分離)する事も可能である。 In the present invention, the material having a separation function (separation membrane material) is plate-like particles that are peeled layer material by delamination of a layered compound (e.g., octosilicate material). By controlling the thickness of the layer, it is easy to control the interlayer. Therefore, it is possible not only to electrically eliminate substances (e.g. ionic substances), but also to eliminate (separate) substances with different molecular diameters (e.g. ionic substances) according to the size of the molecular diameter according to the size between layers. is.
 層状化合物は板状物質の積層体であり、板状物質の層間にアルカリ金属イオンが挿入されていて板状物質間を電気的に結合させている。この板状物質の層間をバルキーな化合物、例えば第4級アンモニウムイオンで広げる事により、電気的な結合力は急激に低下し、さらに陰イオン界面活性剤等を添加・加熱処理することで板状物質の層間剥離が行われ、1枚のシート状の板状物質となる。この板状物質は板状粒子と呼ぶことができ、媒体中に分散させたままで層間剥離することや媒体中に分散させることにより板状粒子の分散液を形成するものである。ここで層間剥離の際の陰イオン界面活性剤が、媒体中に分散する時に分散性を向上するためにも用いられる。これは板状粒子(例えばオクトシリケート材料)にシラノール基が含まれている場合に、シラノール基によるマイナスの電荷と、陰イオン界面活性剤のマイナスの電荷との反発力により分散液とした時に十分な分散性を得るためである。 A layered compound is a laminate of plate-like substances, and alkali metal ions are inserted between the layers of the plate-like substances to electrically connect the plate-like substances. By spreading the layers of this plate-like material with a bulky compound, such as quaternary ammonium ions, the electrical bonding force is rapidly reduced. Delamination of the material takes place, resulting in a single sheet of platy material. This plate-like substance can be called plate-like particles, and is formed into a dispersion liquid of plate-like particles by exfoliating the layers while being dispersed in the medium or by dispersing the plate-like particles in the medium. Here, the anionic surfactant during delamination is also used to improve the dispersibility when dispersing in the medium. When plate-like particles (e.g., octosilicate material) contain silanol groups, this is sufficient when a dispersion liquid is formed due to the repulsive force between the negative charges of the silanol groups and the negative charges of the anionic surfactant. This is to obtain good dispersibility.
 剥離した板状物質である板状粒子はナノシートとも呼ばれ、単層の厚みが数nmである。層状珪酸塩、例えばアイラアイトを剥離して得られたナノシートは薄状シリケートであり、シラノール基がマイナス電荷を有し高い親水性を有していて、膜を通過する溶液中のマイナスイオン性物質を電気的に反発して排除して、主に溶液の溶媒のみを通過して物質(例えばイオン性物質)を分離する事ができるものである。 Plate-like particles, which are exfoliated plate-like substances, are also called nanosheets, and the thickness of a single layer is several nanometers. Nanosheets obtained by exfoliating layered silicates, such as ilaite, are thin silicates, and the silanol groups are negatively charged and highly hydrophilic. It is possible to separate substances (for example, ionic substances) mainly by passing only the solvent of the solution through electrical repulsion and elimination.
 本発明では第4級アンモニウム化合物により層間が剥離した後に湿式ゲル状態で陰イオン界面活性剤水溶液中に分散する事により、粒子径分布が狭く、揃った粒子径の板状粒子が得られ、それらを基板上に製膜する事で、高い分離性能と高い溶液通過性能を有する液中物質分離膜成形体が得られた。 In the present invention, plate-like particles having a narrow particle size distribution and a uniform particle size can be obtained by dispersing in an anionic surfactant aqueous solution in a wet gel state after delamination by a quaternary ammonium compound. was formed on a substrate to obtain a liquid-substance separation membrane molding having high separation performance and high solution-permeability.
図1は板状粒子(A)を含む液中物質分離膜を基材(支持膜)上に吸引ろ過で製膜する工程を示した模式図である。FIG. 1 is a schematic diagram showing the process of forming a liquid-substance separation membrane containing plate-like particles (A) on a substrate (supporting membrane) by suction filtration. 図2は分離膜成形体の透水試験と分離性能の評価試験方法を示す模式図である。FIG. 2 is a schematic diagram showing a water permeability test of a separation membrane molded body and an evaluation test method for separation performance. 図3は実施例1で得られた分離膜成形体の表面の走査型電子顕微鏡写真である。倍率は1万倍である。3 is a scanning electron micrograph of the surface of the separation membrane molded product obtained in Example 1. FIG. The magnification is 10,000 times. 図4は実施例1で得られた分離膜成形体の断面の走査型電子顕微鏡写真である。倍率は5万倍である。FIG. 4 is a scanning electron micrograph of a cross section of the separation membrane molded product obtained in Example 1. FIG. The magnification is 50,000 times. 図5は実施例1で得られた分離膜成形体のX線回折測定結果を示したものである。FIG. 5 shows the results of X-ray diffraction measurement of the separation membrane molded product obtained in Example 1. In FIG. 図6は実施例1と比較例1で得られた分離膜成形体のEB(エバンスブルー)とアシッドレッド265の透水性能と色素阻止率を示したグラフである。FIG. 6 is a graph showing the water permeability and pigment rejection of EB (Evans Blue) and Acid Red 265 of the separation membrane molded articles obtained in Example 1 and Comparative Example 1. FIG. 図7は実施例1で得られたアイアライトナノシート水分散液を超遠心処理前と後の水分散液を用いて製膜した2種類の分離膜成形体の透水性能と色素阻止率を示したグラフである。FIG. 7 shows the water permeability and dye rejection of two types of separation membrane molded bodies formed by using the aqueous dispersion of the Ialite nanosheets obtained in Example 1 before and after ultracentrifugation. graph. 図8は実施例1で得られたアイアライトナノシートを含む分離膜成形体と、ニオブ酸(HNb)ナノシートを含む分離膜成形体と、GO(酸化グラフェン)ナノシートを含む分離膜成形体の各透水性能と色素阻止率を示すグラフである。FIG. 8 shows a separation membrane molded article containing Iialite nanosheets obtained in Example 1, a separation membrane molded article containing niobic acid (HNb 3 O 8 ) nanosheets, and a separation membrane molded article containing GO (graphene oxide) nanosheets. It is a graph showing each water permeability and dye blocking rate. 実施例1で得られた分離膜成形体を塩酸でpH3に調製した水溶液中に、又は水酸化ナトリウムでpH11に調製した水溶液中にそれぞれ2週間浸漬した後のアイアライトナノシート積層体のX線回折測定結果を示す図。X-ray diffraction of the Ialite nanosheet laminate after immersing the separation membrane molded product obtained in Example 1 in an aqueous solution adjusted to pH 3 with hydrochloric acid or in an aqueous solution adjusted to pH 11 with sodium hydroxide for 2 weeks. The figure which shows a measurement result. 実施例1で得られた分離膜成形体を用いたアニオン性色素の阻止性能を示す図である。1 is a diagram showing the blocking performance of an anionic dye using the separation membrane molded article obtained in Example 1. FIG. 実施例1で得られた分離膜成形体を用いた無極性分子であるポリエチレングリコールの分画分子量測定結果を示す図である。1 is a diagram showing the results of molecular weight cut-off measurement of polyethylene glycol, which is a non-polar molecule, using the separation membrane molded article obtained in Example 1. FIG. 実施例2で得られたアイアライトと酸化グラフェンを1:1の質量比で含む液中物質分離膜成形体を用いた透水性評価及び塩含有水溶液の塩阻止率を示したグラフである。4 is a graph showing the water permeability evaluation using the molded body for separating substances in liquid containing ialite and graphene oxide obtained in Example 2 at a mass ratio of 1:1, and the salt blocking rate of a salt-containing aqueous solution. 実施例2で得られたアイアライトと酸化グラフェンを1:0.1の質量比で含む液中物質分離膜成形体を用いた透水性評価及び塩含有水溶液の塩阻止率を示したグラフである。2 is a graph showing the water permeability evaluation using a molded body for separating substances in liquid containing ialite and graphene oxide obtained in Example 2 at a mass ratio of 1:0.1 and the salt blocking rate of a salt-containing aqueous solution. .
 本発明は総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)と、アンモニウムイオンを有する陰イオン界面活性剤(b)とを含み、平均厚さ0.7~100nm、平均長径50~10,000nm、及び(最大長径/最大長径に直行する幅)=1.0~10.0を有し、層状化合物の層間剥離による層剥離物質である板状粒子(A)を含む液中物質分離膜と、該液中物質分離膜を支持する基材(B)とを含む液中物質分離膜成形体である。
 本発明の液中物質分離膜成形体は、被分離物質を含む溶液から、被分離物質を分離する、又は被分離物質が濃縮若しくは希釈された溶液を得るための液中物質分離膜成形体である。
The present invention provides a quaternary ammonium ion (a) having 15 to 45 carbon atoms in total and 1 to 2 alkyl groups having 10 to 20 carbon atoms and an anionic surfactant having an ammonium ion ( b), having an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10,000 nm, and (maximum major axis/width perpendicular to the maximum major axis) = 1.0 to 10.0, of a layered compound It is a liquid-substance separation membrane molded article including a liquid-substance separation membrane containing plate-like particles (A) that are delamination substances due to delamination, and a substrate (B) that supports the liquid-substance separation membrane.
The submerged substance separation membrane molded product of the present invention is a submerged substance separation membrane molded product for separating a substance to be separated from a solution containing the substance to be separated, or for obtaining a solution in which the substance to be separated is concentrated or diluted. be.
 本発明において液中物質分離膜成形体は、溶媒(極性溶媒や無極性溶媒であって、例えば水性溶媒又は有機溶媒)中に溶解している物質を、溶媒と物質に分離する事のできる膜を備えた成形体を意味し、分離されたことにより溶液中の物質の分離や濃縮又は希釈を行えるものである。被分離物質を含む溶液から完全に被分離物質と溶媒に分離する事を本発明に包含するが、典型的には被分離物質が溶解した溶液から被分離物質濃度が低下した溶液と、被分離物質濃度が上昇した溶液との2種類の溶液が得られる事を意味する。また、分離濃縮工程で被分離物質を含む溶液の膜透過速度を任意に変化させる事で溶媒中の被分離物質濃度が段階的に変化した複数の溶液を得る事もできる。 In the present invention, the liquid-substance separation membrane molded product is a membrane that can separate a substance dissolved in a solvent (a polar solvent or a non-polar solvent, such as an aqueous solvent or an organic solvent) into a solvent and a substance. It means a molded body with a separation that allows separation, concentration or dilution of substances in the solution. The present invention includes completely separating the substance to be separated and the solvent from the solution containing the substance to be separated. This means that two types of solutions are obtained, one with increasing substance concentration. Further, by optionally changing the membrane permeation speed of the solution containing the substance to be separated in the separation and concentration step, it is possible to obtain a plurality of solutions in which the concentration of the substance to be separated in the solvent changes stepwise.
 本発明に用いられる(A)成分である板状粒子(A)は分散液の形態で用いる事ができる。板状粒子(A)は、液状媒体と第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)を含有する分散媒に分散した状態、前記(a)及び(b)の一方又は双方により少なくともその一部が被覆された或いは吸着してなる状態、板状粒子(A)同士の間に前記(a)及び(b)の一方又は双方が介在してなる状態のいずれの状態であってよい。 The plate-like particles (A), which are the component (A) used in the present invention, can be used in the form of a dispersion. The plate-like particles (A) are dispersed in a dispersion medium containing a liquid medium, a quaternary ammonium ion (a), and an anionic surfactant (b) having ammonium ions, and the above (a) and (b) at least partly covered or adsorbed by one or both of (A), or one or both of (a) and (b) interposed between plate-like particles (A). state.
 前記板状粒子(A)を含む液中物質分離膜又はそれを形成する水分散液は、0.1質量%(1000ppm)以下、又は0.01質量%(100ppm)以下のNaイオン濃度を有する膜又は水分散液であることが好ましい。
 また前記分散液中での板状粒子(A)の濃度は、30質量%以下、又は0.01~30質量%、又は0.1~30質量%とすることができる。
The liquid-substance separation membrane containing the plate-like particles (A) or the aqueous dispersion forming the same has a Na ion concentration of 0.1% by mass (1000 ppm) or less, or 0.01% by mass (100 ppm) or less. It is preferably a membrane or an aqueous dispersion.
Further, the concentration of the plate-like particles (A) in the dispersion can be 30% by mass or less, 0.01 to 30% by mass, or 0.1 to 30% by mass.
 前記板状粒子(A)の平均長径、及び最大長径に直行する幅は、透過型電子顕微鏡観察によって測定することができる。板状粒子(A)の〔最大長径(nm)/最大長径に直行する幅(nm)〕の値は、アスペクト比と呼ぶことができ、1.0~10.0を範囲にある。そして、板状粒子(A)の最大長径に直行する幅(nm)は平均50~10000nm、50~5000nm、又は50~3000nmとする事ができる。 The average major axis and the width perpendicular to the maximum major axis of the plate-like particles (A) can be measured by transmission electron microscope observation. The value of [maximum length (nm)/width (nm) perpendicular to the maximum length] of the plate-like particles (A) can be called an aspect ratio, and is in the range of 1.0 to 10.0. The width (nm) perpendicular to the maximum major axis of the plate-like particles (A) can be 50 to 10,000 nm, 50 to 5,000 nm, or 50 to 3,000 nm on average.
 また前記板状粒子(A)の平均厚さは、分散液を基板上に塗布したときの塗布面をAFM(原子間力顕微鏡)で観察することにより測定できる。前記板状粒子(A)の平均厚さは0.7~100nm、又は0.7~40nmである。AFMでの観察には、板状粒子の濃度が1質量%以下の分散液をマイカ等の基板上に滴下し乾燥させた試料を用いることができる。試料の乾燥は自然乾燥が好ましいが、加熱してもよい。その他、ラングミュア・ブロジェット法を用いて基板に塗布した試料をAFMの測定に用いることもできる。
 さらに板状粒子(A)の平均粒子径は、分散液中の板状粒子(A)の動的光散乱法による平均粒子径として測定することができる。このとき、測定する際の分散液の濃度(板状粒子の濃度)は、30質量%以下とすることができる。
Further, the average thickness of the plate-like particles (A) can be measured by observing the coated surface of the substrate when the dispersion is applied using an AFM (atomic force microscope). The plate-like particles (A) have an average thickness of 0.7 to 100 nm, or 0.7 to 40 nm. For AFM observation, a sample obtained by dropping a dispersion having a tabular particle concentration of 1% by mass or less onto a substrate such as mica and drying it can be used. Natural drying is preferable for drying the sample, but heating may be used. In addition, a sample coated on a substrate using the Langmuir-Blodgett method can also be used for AFM measurement.
Furthermore, the average particle size of the plate-like particles (A) can be measured as the average particle size of the plate-like particles (A) in the dispersion by a dynamic light scattering method. At this time, the concentration of the dispersion liquid (concentration of plate-like particles) at the time of measurement can be 30% by mass or less.
 上記板状粒子(A)は、層状化合物の層間剥離による剥離層物質を用いることができる。層状化合物は、例えば、層状ポリケイ酸塩、粘土鉱物、マンガン酸塩、チタン酸塩、ニオブ酸、ニオブ酸塩、GO(酸化グラフェン)等が挙げられる。粘土鉱物としてはスメクタイト、バーミキュライト等が挙げられる。層状ポリケイ酸塩としてはカネマイト、マカタイト、ケニヤアイト、アイラアイト(Ileriteはアイアライト、アイライト、アイラ-アイトとも呼ばれる。)等が挙げられる。 For the plate-like particles (A), a release layer material obtained by delamination of a layered compound can be used. Layered compounds include, for example, layered polysilicates, clay minerals, manganates, titanates, niobic acid, niobates, GO (graphene oxide), and the like. Examples of clay minerals include smectite and vermiculite. Examples of layered polysilicates include kanemite, macatite, kenyaite, and ilaite (Ilerite is also called ialite, ailite, and ailaite).
 これら層状化合物の中でも、アイラアイト等のオクトシリケート材料を好ましく用いることができる。アイラアイトは化学式NaO・8SiO・nHOを有し、平面上ケイ酸骨格を持ち、層間にシラノール基を有する。層状化合物、アイラアイトは天然には存在しないため、人工的に合成する。アイラアイトは、例えばコロイダルシリカと水酸化ナトリウムとを混合した水溶液(SiO/NaOモル比は例えば4.0)、又は水ガラスを密封容器に入れ、90~150℃程度の水熱反応を行うことにより、合成することができる。 Among these layered compounds, octosilicate materials such as ilaite can be preferably used. Ilayite has a chemical formula of Na 2 O.8SiO 2 .nH 2 O, has a planar silicic acid skeleton, and has silanol groups between the layers. The layered compound, ilaite, does not exist in nature, so it is artificially synthesized. Ilayite is prepared, for example, by placing an aqueous solution of colloidal silica and sodium hydroxide mixed (SiO 2 /Na 2 O molar ratio is, for example, 4.0) or water glass in a hermetically sealed container and subjecting it to a hydrothermal reaction of about 90 to 150°C. By performing, it is possible to synthesize.
 上記分散液中のNaイオンは、層状ケイ酸塩の層間に存在するNaイオンを第4級アンモニウムイオン(a)でイオン交換したときに、層状化合物(層間)から放出されるNaイオンであり、そのままの状態では分散液中に多量存在することとなるが、後述に説明する方法で系外に排出される。分散液中では剥離層物質の再層化を防ぐため、Naイオンを低濃度にすることが望ましい。例えば、分散液中のNaイオン濃度を1000ppm以下、又は100ppm以下、例えば0.1~1000ppm、1~1000ppm、0.1~100ppm、又は1~100ppmとすることができる。 The Na ions in the dispersion are Na ions released from the layered compound (interlayers) when the Na ions present between the layers of the layered silicate are ion-exchanged with quaternary ammonium ions (a), In the state as it is, it will be present in a large amount in the dispersion liquid, but it is discharged out of the system by the method described later. A low concentration of Na ions in the dispersion is desirable to prevent re-layering of the release layer material. For example, the Na ion concentration in the dispersion can be 1000 ppm or less, or 100 ppm or less, such as 0.1-1000 ppm, 1-1000 ppm, 0.1-100 ppm, or 1-100 ppm.
 上記第4級アンモニウムイオンは、層状化合物の層間を広げる剥離剤としての役割を有することから、かさ高い有機基を有することが好ましく、一方で溶解性が高いことが好ましい。そのため、本発明においては、総炭素原子数13~45、又は13~23、又は15~45、又は15~25であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)を用いる。 Since the quaternary ammonium ion has a role as a release agent that spreads the interlayers of the layered compound, it preferably has a bulky organic group, and on the other hand, it preferably has high solubility. Therefore, in the present invention, the total number of carbon atoms is 13 to 45, or 13 to 23, or 15 to 45, or 15 to 25, and has 1 to 2 alkyl groups having 10 to 20 carbon atoms. A quaternary ammonium ion (a) is used.
 このような第4級アンモニウムイオン(a)としては、例えば、ヘキサデシルトリメチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ジメチルジオクタデシルアンモニウム、ラウリルトリメチルアンモニウムイオン等が挙げられる。特に、ラウリルトリメチルアンモニウムイオンを好適に用いることができる。該アンモニウムイオンの対イオンとしては、塩素イオンや臭素イオンが挙げられる。 Examples of such quaternary ammonium ions (a) include hexadecyltrimethylammonium ion, didecyldimethylammonium ion, dimethyldioctadecylammonium ion, and lauryltrimethylammonium ion. In particular, lauryltrimethylammonium ion can be preferably used. Counter ions for the ammonium ion include chloride ion and bromide ion.
 上記第4級アンモニウムイオン(a)の分散液中の濃度は、30質量%以下、又は10質量%以下であり、0.001~30質量%、0.001~20質量%、又は0.001~10質量%とすることができる。 The concentration of the quaternary ammonium ion (a) in the dispersion liquid is 30% by mass or less, or 10% by mass or less, and is 0.001 to 30% by mass, 0.001 to 20% by mass, or 0.001 It can be up to 10% by mass.
 上記アンモニウムイオンを有する陰イオン界面活性剤(b)は、疎水基と親水基から構成される界面活性剤のうち、親水基部分がアニオンとアンモニウムイオンの対で構成された化合物であり、基本的にナトリウムイオンやカリウムイオンを含んでいない化合物を用いることが好適である。また上記アンモニウムイオンを有する陰イオン界面活性剤(b)は、例えば疎水基として炭素原子数が8乃至12程度の比較的長鎖のアルキル基を含む化合物であることが好ましく、また芳香環を含まない化合物であることが好ましい。 The anionic surfactant (b) having an ammonium ion is a surfactant composed of a hydrophobic group and a hydrophilic group, and is a compound in which the hydrophilic group portion is composed of a pair of an anion and an ammonium ion. It is preferable to use a compound that does not contain sodium ions or potassium ions. The anionic surfactant (b) having an ammonium ion is preferably a compound containing, for example, a relatively long-chain alkyl group having about 8 to 12 carbon atoms as a hydrophobic group, and also contains an aromatic ring. It is preferably a compound that does not have
 上記アンモニウムイオンを有する陰イオン界面活性剤(b)としては、例えばオクタン酸アンモニウム、デカン酸アンモニウム、ラウリン酸アンモニウム、ステアリン酸アンモニウム、ヘキサンスルホン酸アンモニウム、オクタンスルホン酸アンモニウム、デカンスルホン酸アンモニウム、ドデカンスルホン酸アンモニウム、ラウリル硫酸アンモニウム(ドデシル硫酸アンモニウム)、ミリスチル硫酸アンモニウム、ラウリルリン酸アンモニウム、トリポリリン酸アンモニウム等が挙げられる。中でもラウリル硫酸アンモニウム(ドデシル硫酸アンモニウム)を好ましく用いることができる。 Examples of the anionic surfactant (b) having an ammonium ion include ammonium octanoate, ammonium decanoate, ammonium laurate, ammonium stearate, ammonium hexanesulfonate, ammonium octanesulfonate, ammonium decanesulfonate, and dodecanesulfone. ammonium phosphate, ammonium lauryl sulfate (ammonium dodecyl sulfate), ammonium myristyl sulfate, ammonium lauryl phosphate, ammonium tripolyphosphate and the like. Among them, ammonium lauryl sulfate (ammonium dodecyl sulfate) can be preferably used.
 上記アンモニウムイオンを有する陰イオン界面活性剤(b)の分散液中の濃度は、0.01~20質量%とすることができる。 The concentration of the anionic surfactant (b) containing ammonium ions in the dispersion can be 0.01 to 20% by mass.
 本発明では、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)と、アンモニウムイオンを有する陰イオン界面活性剤(b)を必須として用いるものである。アンモニウムイオンを有する陰イオン界面活性剤(b)を添加しない場合、アンモニウムイオンに代えてナトリウムイオンを有する陰イオン界面活性剤や、カリウムイオンを有する陰イオン界面活性剤を用いた場合には、層間剥離が進行しない、若しくは、層間剥離した剥離層物質が再び層状構造を形成しやすくなるため、分散液の透明性が低下する(即ち、分散液の吸光度が低下しない。)という事態が生じ得る。また層間剥離が進行していない場合には、液中物質(例えば液中イオン)分離のための迷路化が不十分となり、十分な液中物質(例えば液中イオン)分離性が発現しないという事態も生じ得る。 In the present invention, a quaternary ammonium ion (a) having 1 to 2 alkyl groups with 10 to 20 carbon atoms and an anionic surfactant (b) having an ammonium ion are essentially used. When the anionic surfactant (b) having ammonium ions is not added, when an anionic surfactant having sodium ions or an anionic surfactant having potassium ions is used instead of ammonium ions, the interlayer Peeling does not proceed, or the peeling layer material that has been delaminated tends to form a layered structure again, so that the transparency of the dispersion decreases (that is, the absorbance of the dispersion does not decrease). In addition, when the delamination does not progress, the labyrinth for separating the substances in the liquid (for example, the ions in the liquid) becomes insufficient, and the sufficient separation of the substances in the liquid (for example, the ions in the liquid) does not occur. can also occur.
 本発明の分散液は透明性が高いことを特徴とし、例えば、板状粒子の濃度が0.1質量%の分散液にて、光路長1cm、波長620nmの条件において、その吸光度が0.1以下であり、特に0.015以下とすることができる。
 層状化合物は通常、板状粒子(A)の濃度が30質量%以下の濃度範囲の分散液で製造することができる。
The dispersion of the present invention is characterized by high transparency. For example, in a dispersion having a tabular particle concentration of 0.1% by mass, the absorbance is 0.1 under the conditions of an optical path length of 1 cm and a wavelength of 620 nm. or less, and in particular can be 0.015 or less.
The layered compound can usually be produced as a dispersion liquid in which the concentration of the plate-like particles (A) is in the range of 30% by mass or less.
 また、本発明の分散液は、板状粒子(A)の分散媒(液状媒体)を水などの水性媒体としてもよいし、有機溶媒とすることもでき、また水と有機溶媒の混合系とする事もできる。本発明の分散液を製造する際、水性媒体を有機溶媒に溶媒置換することができる。溶媒置換は蒸発法や限外濾過法で行うことができる。 In the dispersion of the present invention, the dispersion medium (liquid medium) for the plate-like particles (A) may be an aqueous medium such as water or an organic solvent. can also do When producing the dispersion of the present invention, the aqueous medium can be replaced with an organic solvent. Solvent replacement can be performed by an evaporation method or an ultrafiltration method.
 上記有機溶媒としてはメタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、ジアセトンアルコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、乳酸エチル、乳酸プロピル、乳酸イソプロピル、乳酸ブチル、乳酸イソブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、3-メトキシブチルアセテート、3-メトキシプロピルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、メチルプロピルケトン、メチルブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、N、N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、4-メチル-2-ペンタノール、及びγ-ブチロラクトン等を挙げることができる。これらの溶媒は単独で、または二種以上の組み合わせで使用することができる。 Examples of the organic solvent include methanol, ethanol, n-propanol, isopropanol, butanol, diacetone alcohol, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl. ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, Ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate , diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, ethyl lactate, propyl lactate, isopropyl lactate, butyl lactate, lactic acid isobutyl, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl acetate, ethyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propionate Propyl Acid, Isopropyl Propionate, Butyl Propionate, Isobutyl Propionate, Methyl Butyrate, Ethyl Butyrate, Propyl Butyrate, Isopropyl Butyrate, Butyl Butyrate, Isobutyrate Chill, methyl 3-methoxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, 3-methoxybutyl acetate, 3-methoxypropyl acetate, 3-methyl-3-methoxybutyl acetate, 3 -methyl-3-methoxybutyl propionate, 3-methyl-3-methoxybutyl butyrate, methyl acetoacetate, methyl propyl ketone, methyl butyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, N, N- Examples include dimethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 4-methyl-2-pentanol, and γ-butyrolactone. These solvents can be used alone or in combination of two or more.
 本発明の液中物質分離膜は、層状化合物の層間剥離による剥離層物質(板状粒子(A))の層を複数積層させた複層体を含む複合膜の形状であっても良い。積層させる層は、同じ剥離層物質の層であってもよいし、他の剥離層物質の層であってもよい。
 例えば、アイラアイト等のオクトシリケート材料の剥離層物質の層に、酸化グラフェンの層を積層させた積層体を含む複合膜が挙げられるが挙げられる。 複層体を含む複合膜の形状の場合、各層に含まれる層状化合物(又は剥離層物質)の含有量は、最下層に含まれる板状粒子(A)を1とした場合に質量比で1:0.01乃至1:10、好ましくは1:0.05乃至1:5、更に好ましくは1:0.1乃至1:1である。
The liquid-substance separation membrane of the present invention may be in the form of a composite membrane including a multi-layer body in which a plurality of layers of exfoliated material (plate-like particles (A)) are laminated by delamination of a layered compound. The layers to be laminated may be layers of the same release layer material or layers of other release layer materials.
For example, a composite film including a laminate in which a layer of graphene oxide is laminated on a layer of release layer material of an octosilicate material such as ilaite. In the case of the shape of a composite film including a multilayer body, the content of the layered compound (or peeling layer substance) contained in each layer is 1 in mass ratio when the plate-like particles (A) contained in the bottom layer is 1. :0.01 to 1:10, preferably 1:0.05 to 1:5, more preferably 1:0.1 to 1:1.
 本発明は、下記(i)工程乃至(vi)工程:
(i)工程:ケイ酸化合物水溶液を90~150℃の温度で水熱処理後に静置して得られた層状化合物を分離し水洗した湿式ゲルを水中に添加し、層状化合物の水性分散液を製造する工程、
(ii)工程:(i)工程で得られた水性分散液に、層状化合物のイオン交換容量の等倍~三倍量となる、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)を添加し、40~100℃で、12~48時間の加熱をする工程、
(iii)工程:(ii)工程で得られた液に純水を加え、液中のナトリウムイオン濃度が100ppm以下になるように、ナトリウムイオン含有液を系外に取り除く工程、
(iv)工程:(iii)工程に含まれる湿式ゲルを、濃度が0.01~1質量%のアンモニウムイオンを有する陰イオン界面活性剤(b)水溶液中に分散させた後、さらに、アンモニアを添加して液中のpHを9.0~12.0に調整する工程、
(v)工程:(iv)工程で得られた液を、40~90℃で、12~48時間の加熱を行い、板状粒子(A)の分散液を得る工程、
(vi)工程:基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて液中物質分離膜を製膜する工程、を含む液中イオン分離膜成形体の製造方法である。
The present invention provides the following steps (i) to (vi):
(i) Step: An aqueous dispersion of a silicic acid compound is hydrothermally treated at a temperature of 90 to 150° C., and the resulting layered compound is separated and washed with water. the process of
(ii) step: adding to the aqueous dispersion obtained in step (i) a total carbon atom number of 15 to 45 and a carbon atom number of 10, which is 1 to 3 times the ion exchange capacity of the layered compound; adding a quaternary ammonium ion (a) having 1 to 2 alkyl groups of ∼20 and heating at 40 to 100°C for 12 to 48 hours;
(iii) step: adding pure water to the liquid obtained in step (ii), and removing the sodium ion-containing liquid from the system so that the sodium ion concentration in the liquid is 100 ppm or less;
(iv) step: after dispersing the wet gel included in step (iii) in an anionic surfactant (b) aqueous solution containing ammonium ions at a concentration of 0.01 to 1% by mass, ammonia is further added; adding to adjust the pH in the liquid to 9.0 to 12.0;
(v) step: a step of heating the liquid obtained in step (iv) at 40 to 90° C. for 12 to 48 hours to obtain a dispersion of plate-like particles (A);
(vi) step: forming a liquid-substance separation membrane on the substrate (B) surface using the dispersion of the plate-like particles (A) obtained in the (v) step. This is a method for manufacturing a separation membrane molded article.
 上記(i)工程について、ここで用いる層状化合物としてアイラアイトを例示して説明する。アイラアイトは天然に存在しない層状化合物であり、例えば、ケイ酸化合物水溶液を90~150℃の水熱反応を行うことにより合成することができる。ケイ酸化合物としてはケイ酸ナトリウム、ケイ酸カリウム等のケイ酸塩が挙げられる。上記ケイ酸化合物水溶液としては、SiO/MOモル比として3.5~4.0(ただしMはNa、Kを表す。)、ケイ酸化合物の濃度が10~30質量%程度の、ケイ酸ナトリウム水溶液が好ましい。水熱条件は90~150℃、特に90~130℃が好ましく、1日~24日間、又は1日~12日間の静置加熱により、アイラアイトを合成することができる。 The above step (i) will be described by exemplifying ilaite as the layered compound used here. Ilayite is a layered compound that does not exist in nature, and can be synthesized, for example, by subjecting an aqueous solution of a silicic acid compound to a hydrothermal reaction at 90 to 150°C. Silicic acid compounds include silicates such as sodium silicate and potassium silicate. The silicic acid compound aqueous solution has a SiO 2 /M 2 O molar ratio of 3.5 to 4.0 (where M represents Na and K), and a silicic acid compound concentration of about 10 to 30% by mass. An aqueous sodium silicate solution is preferred. The hydrothermal conditions are preferably 90 to 150° C., particularly 90 to 130° C. Ilaite can be synthesized by static heating for 1 to 24 days, or 1 to 12 days.
 水熱反応により得られた固体物質を分離して水洗し、乾燥してアイラアイトを回収することができる。また層間剥離や分散を容易にするために、水熱反応により得られた固体物質を分離して水洗した後に、乾燥を経ずに、水中へ懸濁させた水性スラリーとして回収することもできる。水熱反応中は反応系を均一にするために反応初期に撹拌することもできるが、アイラアイトを粒子成長させるためには静置加熱が好ましい。
 微細なアイラアイトは、アイラアイト自体を微細な種晶(種粒子)として、ケイ酸ナトリウム水溶液中に添加することによって合成することができる。
The solid material obtained by the hydrothermal reaction can be separated, washed with water and dried to recover ilaite. In order to facilitate delamination and dispersion, the solid substance obtained by the hydrothermal reaction may be separated, washed with water, and then recovered as an aqueous slurry suspended in water without drying. During the hydrothermal reaction, the reaction system may be stirred at the beginning of the reaction to make the reaction system uniform, but static heating is preferred for particle growth of ilaite.
Fine islayite can be synthesized by adding fine seed crystals (seed particles) of islayite itself to an aqueous sodium silicate solution.
 (i)工程の層状化合物は、上記微細なアイラアイトの合成のように、好ましい態様として、原材料とする層状物質を粉砕し、この粉砕された層状物質を種粒子としてケイ酸塩水溶液に添加し、90~130℃で、6~72時間の水熱処理を行い、生成した層状化合物を用いることができる。これらの層状化合物は層状物質と異なり、微細な層状化合物になる。さらに、この微細な層状化合物の濃度を30質量%以下に調整することにより、層状化合物の水性分散液を製造することができる。 The layered compound in step (i) is produced by pulverizing the layered material as a raw material, as in the synthesis of fine ailaite described above, and adding the pulverized layered material as seed particles to an aqueous silicate solution, A layered compound produced by hydrothermal treatment at 90 to 130° C. for 6 to 72 hours can be used. These layered compounds are fine layered compounds unlike layered substances. Furthermore, by adjusting the concentration of the fine layered compound to 30% by mass or less, an aqueous dispersion of the layered compound can be produced.
 また、上記水熱処理の後に、水熱反応の媒体から未反応のケイ酸ナトリウムを除去して、静置して得られた層状化合物を分離して水洗して得た湿式ゲルを水中に添加し30質量%以下の濃度に分散させることで、(i)工程の層状化合物の水性分散液を得ることもできる。 After the above hydrothermal treatment, unreacted sodium silicate is removed from the hydrothermal reaction medium, and the layered compound obtained by standing still is separated and washed with water to obtain a wet gel, which is added to water. An aqueous dispersion of the layered compound in step (i) can also be obtained by dispersing at a concentration of 30% by mass or less.
 微細な層状化合物(特にはアイラアイト)は、具体的に上記ケイ酸塩水溶液、若しくは上記ケイ酸塩水溶液に、未粉砕又は粉砕された層状物質を種晶(種粒子)として添加した懸濁液を、90~150℃、特に90~130℃で、1日~24日間、特には110℃で1日~12日間程度の静置した状態での水熱反応によって得られる。微細な層状化合物を作製する際にケイ酸塩水溶液に添加する種晶(種粒子)は、粒子径に制限は無く、ケイ酸塩の質量に対して0.1~10質量%、又は0.1~5質量%、または0.1~2質量%の範囲で添加することが好ましい。 The fine layered compound (especially ilaite) is specifically the aqueous silicate solution, or a suspension obtained by adding unpulverized or pulverized layered substances as seed crystals (seed particles) to the aqueous silicate solution. , 90 to 150° C., particularly 90 to 130° C. for 1 to 24 days, and particularly 110° C. for 1 to 12 days in a static state for hydrothermal reaction. The seed crystals (seed particles) added to the silicate aqueous solution when producing the fine layered compound are not limited in particle diameter, and are 0.1 to 10% by mass, or 0.1 to 10% by mass, based on the mass of the silicate. It is preferably added in the range of 1 to 5% by mass, or 0.1 to 2% by mass.
 種晶(種粒子)として添加される粉砕された層状物質は、その動的光散乱法による粒子径が30~60nmであり、その〔(2θ=6.9~8.4°までの回折ピークの積分強度の総和)/(2θ=5~40°までの回折ピークの積分強度の総和)〕×100で示される粉末X線回折による結晶化度が5~15%であることが好ましい。
 種晶(種粒子)を加えて水熱反応により得られる(微細な)層状化合物(特にはアイラアイト)の粒子径は、平均長径100nm~100000nm、(最大長径/最大長径に直行する幅)=1.0~10.0、最大長径(nm)に直行する幅(nm)は平均50nm~10000nm、50nm~5000nm、又は50nm~3000nmである。上記平均長径(nm)、最大長径(nm)に直行する幅(nm)は、透過型電子顕微鏡観察によって測定することができる。
 また上記の微細な層状化合物の動的光散乱法による平均粒子径は、10nm~500000nm、20nm~300000nm、100nm~10000nm、又は200nm~5000nmとすることができる。
The pulverized layered material added as seed crystals (seed particles) has a particle size of 30 to 60 nm according to the dynamic light scattering method, and its [(2θ = 6.9 to 8.4 ° diffraction peak (sum of integrated intensities of diffraction peaks up to 2θ=5 to 40°)/(sum of integrated intensities of diffraction peaks up to 2θ=5 to 40°)]×100.
The particle size of the (fine) layered compound (especially ilaite) obtained by hydrothermal reaction with the addition of seed crystals (seed particles) has an average major axis of 100 nm to 100000 nm, (maximum major axis/width perpendicular to the maximum major axis)=1. .0 to 10.0, and the width (nm) perpendicular to the maximum length (nm) is on average 50 nm to 10000 nm, 50 nm to 5000 nm, or 50 nm to 3000 nm. The average major axis (nm) and the width (nm) perpendicular to the maximum major axis (nm) can be measured by observation with a transmission electron microscope.
Further, the average particle size of the fine layered compound as measured by a dynamic light scattering method can be 10 nm to 500000 nm, 20 nm to 300000 nm, 100 nm to 10000 nm, or 200 nm to 5000 nm.
 種晶(種粒子)(ここではアイラアイト)は、原材料とする層状物質(ここではアイラアイト)の粉砕によって得ることができる。粉砕は例えばボールミル粉砕により行うことができる。
 粉砕は例えば遊星型ボールミル粉砕装置を用いて行われる。遊星ボールミルは、硬質ボール(例えばジルコニアボール)とアイラアイトを入れた容器を、自転と公転とをさせることにより粉砕することができる。この遊星ボールミル粉砕は2段階の粉砕を行うことが可能であり、先に予備粉砕を行い、後から更に微粉砕を行うことで種晶(種粒子)としてのアイラアイトを得ることができる。粉砕は湿式でも乾式でも可能であるが、乾式粉砕を用いることが好ましい。
 上記種晶(種粒子)に用いるアイラアイトは別途入手したアイラアイトを用いることも、前バッチの一部を添加したり、反応容器に残存するものを用いて連続的にバッチ製造したりすることができる。
Seed crystals (seed particles) (Ilayite here) can be obtained by pulverizing a layered material (Ilayite here) as a raw material. Grinding can be carried out, for example, by ball milling.
Grinding is carried out, for example, using a planetary ball milling device. A planetary ball mill can grind a container containing hard balls (for example, zirconia balls) and ilaite by rotating and revolving. This planetary ball milling can perform two stages of pulverization, and preliminary pulverization is performed first, and then fine pulverization is performed to obtain ilaite as seed crystals (seed particles). Grinding can be wet or dry, but dry grinding is preferably used.
Islayite obtained separately can be used as the seed crystal (seed particle), or a part of the previous batch can be added, or the material remaining in the reaction vessel can be used for continuous batch production. .
 上記(ii)工程は、(i)工程で得られた層状化合物の水性分散液に、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)を層状化合物のイオン交換容量の等倍~20倍量となる量となる割合で添加し、40~100℃で、1~100時間加熱する工程である。 In the step (ii), the aqueous dispersion of the layered compound obtained in the step (i) has a total number of carbon atoms of 15 to 45 and 1 to 2 alkyl groups of 10 to 20 carbon atoms. In this step, quaternary ammonium ions (a) are added in an amount that is 1 to 20 times the ion exchange capacity of the layered compound, and heated at 40 to 100° C. for 1 to 100 hours.
 上記(iii)工程は(ii)工程で得られた液に純水を加え、該液中のナトリウムイオン濃度が1000ppm以下になるように、ナトリウムイオン含有液を系外に取り除く工程である。前記(ii)工程において、層状化合物の層間に存在するナトリウムイオンが、第4級アンモニウムイオンに置換され、液中に遊離したナトリウムイオンを系外に取り除くことにより、ナトリウムイオンによる再置換を防ぎ、層間が第4級アンモニウムイオンで拡張され、層状化合物を層間剥離することができる。ナトリウムイオンを取り除く方法は限外濾過法や、デカンテーション、フィルターによる固液分離法が挙げられる。 The above (iii) step is a step of adding pure water to the liquid obtained in the (ii) step and removing the sodium ion-containing liquid out of the system so that the sodium ion concentration in the liquid is 1000 ppm or less. In the step (ii), the sodium ions present between the layers of the layered compound are replaced with quaternary ammonium ions, and the sodium ions released in the liquid are removed from the system to prevent re-substitution with sodium ions, The interlayers are expanded with quaternary ammonium ions, allowing layered compounds to be delaminated. Methods for removing sodium ions include ultrafiltration, decantation, and solid-liquid separation using a filter.
 上記(iv)工程は(iii)工程で得られたものに含まれる湿式ゲルを、濃度が0.01~20質量%のアンモニウムイオンを有する陰イオン界面活性剤(b)水溶液中に分散させ、その後、さらに、液中のpHが9.0~12.0となるようにアンモニアを加える工程である。アンモニウムイオンを有する陰イオン界面活性剤(b)の添加により、層間剥離により生じた剥離層物質が被覆されること、或いは、陰イオン界面活性剤(b)が該剥離層物質同士に介在することで、続く(v)工程にて生じる層間剥離により生じる剥離層物質が再度、層状化合物の形態に戻ることを抑制することができる。
 この(iv)工程は、アンモニウムイオンを有する陰イオン界面活性剤(b)の剥離層物質(ここではアイラアイト)表面への被覆を十分に行うために超音波照射下や攪拌下で行うことができる。
The above step (iv) disperses the wet gel contained in the one obtained in step (iii) in an anionic surfactant (b) aqueous solution having an ammonium ion concentration of 0.01 to 20% by mass, After that, there is a step of adding ammonia so that the pH in the liquid becomes 9.0 to 12.0. Addition of the anionic surfactant (b) having ammonium ions coats the release layer material caused by delamination, or the anionic surfactant (b) intervenes between the release layer materials. In this way, it is possible to prevent the release layer material caused by the delamination occurring in the subsequent step (v) from returning to the form of the stratified compound.
This step (iv) can be carried out under ultrasonic irradiation or stirring in order to sufficiently coat the surface of the release layer material (here, ilaite) with the anionic surfactant (b) having ammonium ions. .
 上記(v)工程は(iv)工程で得られた液を40~100℃で、1~100時間加熱行う工程である。
 ここで得られた板状粒子(A)は、平均厚さ0.7~100nm、平均長径50~10,000nm、及び(最大長径/最大長径に直行する幅)=1.0~10.0を有し、層状化合物の層間剥離による層剥離物質である板状粒子(A)であって、水性分散液の板状粒子(A)のレーザー回折式粒子径分布で、90%積算粒子径値が該粒子径分布の平均値の1.5~10倍、又は1.5~6.0倍、又は1.5~5.0倍、又は1.5~3.0倍である。板状粒子(A)のレーザー回折法による粒子径範囲は0.1μm~10μmにあり、粒子径分布の広がりは狭く、凝集体が存在しない。
 また、水性分散液の動的光散乱法による平均粒子径が10~10、000nmであり、上記(a)と(b)が共に(A)に対して0.01~3.0質量%に範囲にある板状粒子(A)又はその分散液である。
The above step (v) is a step of heating the liquid obtained in the step (iv) at 40 to 100° C. for 1 to 100 hours.
The plate-like particles (A) obtained here have an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10,000 nm, and (maximum major axis/width perpendicular to the maximum major axis)=1.0 to 10.0. The plate-like particles (A) which are delamination substances due to delamination of a layered compound, wherein the laser diffraction particle size distribution of the plate-like particles (A) in the aqueous dispersion shows a 90% cumulative particle size value is 1.5 to 10 times, or 1.5 to 6.0 times, or 1.5 to 5.0 times, or 1.5 to 3.0 times the mean value of the particle size distribution. The plate-like particles (A) have a particle size range of 0.1 μm to 10 μm as measured by a laser diffraction method, the particle size distribution is narrow, and aggregates do not exist.
In addition, the average particle size of the aqueous dispersion measured by dynamic light scattering is 10 to 10,000 nm, and the above (a) and (b) are both 0.01 to 3.0% by mass with respect to (A). plate-like particles (A) or a dispersion thereof.
 本発明の液中物質分離膜成形体の製造方法では(v)工程と下記(vi)工程の間に、更に(v-0)工程、即ち(v)工程で得られた板状粒子(A)を含む分散液を総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)の含有量を共に(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)を基材(B)上に製膜する工程、を追加する事ができる。 In the method for producing a molded article for separating substances in liquid of the present invention, between the step (v) and the following step (vi), the plate-like particles (A ) containing a quaternary ammonium ion (a) having a total number of carbon atoms of 15 to 45 and having 1 to 2 alkyl groups of 10 to 20 carbon atoms and an anionic surfactant having an ammonium ion a step of forming a film on a substrate (B) from plate-like particles (A) in which the content of the agent (b) is both reduced to a range of 0.01 to 15.0% by mass relative to (A); can be added.
 上記(a)と(b)の含有量を共に(A)に対して0.01~15.0質量%の範囲に低減させる方法としては、遠心処理や限外ろ過処理が挙げられる。 Examples of methods for reducing the contents of (a) and (b) above to within the range of 0.01 to 15.0% by mass relative to (A) include centrifugation and ultrafiltration.
 本発明の液中物質分離膜成形体の製造方法では(v)工程と下記(vi)工程の間に、更に(v-1)工程、
(v-1)工程:板状粒子(A)の分散液を20000~60000Gで超遠心処理を行い、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)の含有量を共に(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)の分散液を得る工程、を追加する事ができる。
In the method for producing a molded article for separating substances in liquid of the present invention, between step (v) and step (vi) below, step (v-1),
(v-1) Step: A dispersion of plate-like particles (A) is subjected to ultracentrifugation at 20000 to 60000 G, and 1 alkyl group having a total number of carbon atoms of 15 to 45 and 10 to 20 carbon atoms. Reduce the content of both the quaternary ammonium ion (a) having two and the anionic surfactant (b) having an ammonium ion to the range of 0.01 to 15.0% by mass with respect to (A) A step of obtaining a dispersion of plate-like particles (A) can be added.
 超遠心処理により界面活性剤を低減させた板状粒子(A)の分散液と基材(B)とを用いて、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)の含有量が共に(A)に対して0.01~15.0質量%、又は0.01~5.0質量%の範囲にある板状粒子(A)を含む液中物質分離膜と、該液中物質分離膜を支持する基材(B)とを含む液中物質分離膜成形体にする事ができる。 Using a dispersion of plate-like particles (A) in which the surfactant has been reduced by ultracentrifugation and a base material (B), the total number of carbon atoms is 15 to 45 and The content of both the quaternary ammonium ion (a) having 1 to 2 alkyl groups and the anionic surfactant (b) having an ammonium ion is 0.01 to 15.0% by mass based on (A), Alternatively, liquid-substance separation comprising a liquid-substance separation membrane containing plate-like particles (A) in a range of 0.01 to 5.0% by mass and a substrate (B) supporting the liquid-substance separation membrane It can be made into a film molding.
 (vi)工程は基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて製膜する工程である。(v)工程と(vi)工程の間に(v-0)又は(v-1)工程を含む場合、(vi)工程では(v)工程で得られた板状粒子(A)の分散液に代えて、(v-0)又は(v-1)工程で得られた板状粒子(A)の分散液を使用する。 The (vi) step is a step of forming a film on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the (v) step. When step (v-0) or (v-1) is included between step (v) and step (vi), step (vi) is a dispersion of plate-like particles (A) obtained in step (v) Instead, the dispersion of plate-like particles (A) obtained in step (v-0) or (v-1) is used.
 基材(B)表面上に積層体を含む液中物質分離膜を成膜する場合、上記(vi)工程の液中物質分離膜を製膜する工程は、基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて板状粒子(A)層を形成する工程と、該層の上に層状化合物の層間剥離による剥離層物質の分散液を用いて剥離層物質の層を積層する工程とを含む。
 (v)工程と(vi)工程の間に(v-0)又は(v-1)工程を含む場合、(vi)工程では(v)工程で得られた板状粒子(A)の分散液に代えて、(v-0)又は(v-1)工程で得られた板状粒子(A)の分散液を使用する。
 層状化合物の層間剥離による剥離層物質の分散液としては、上記(v)工程、(v-0)又は(v-1)で得られた板状粒子(A)の分散液を使用してもよいし、市販の又は公知の方法で製造した上記層状化合物の層間剥離による剥離層物質を含む分散液を使用することができる。
 積層する層としては、好ましくは酸化グラフェンの分散液を用いた酸化グラフェン層が挙げられる。
When forming a liquid-substance separation membrane containing a laminate on the surface of the substrate (B), the step of forming the liquid-substance separation membrane in the above step (vi) includes, on the substrate (B) surface, (v) forming a plate-like particle (A) layer using the dispersion of the plate-like particles (A) obtained in step; and laminating the layer of release layer material using.
When step (v-0) or (v-1) is included between step (v) and step (vi), step (vi) is a dispersion of plate-like particles (A) obtained in step (v) Instead, the dispersion of plate-like particles (A) obtained in step (v-0) or (v-1) is used.
As the dispersion of the release layer material obtained by delamination of the stratiform compound, the dispersion of the plate-like particles (A) obtained in the above step (v), (v-0) or (v-1) may be used. Alternatively, a dispersion containing a release layer material obtained by delamination of the layered compounds described above, either commercially available or prepared by known methods, can be used.
The layer to be stacked is preferably a graphene oxide layer using a graphene oxide dispersion.
 積層体からなる膜を成膜する場合、各層に含まれる剥離層物質の含有量は、
最下層に含まれる板状粒子(A)を1とした場合に質量比で1:0.01乃至1:10、好ましくは1:0.05乃至1:5、更に好ましくは1:0.1乃至1:1である。
When forming a film consisting of a laminate, the content of the release layer substance contained in each layer is
The mass ratio is 1:0.01 to 1:10, preferably 1:0.05 to 1:5, and more preferably 1:0.1 when the plate-like particles (A) contained in the lowermost layer are taken as 1. to 1:1.
 基材(B)はセルロース、合成高分子、及びセラミックスからなる群から選ばれる少なくとも1種の多孔質基材を用いる事ができる。
 セルロースとしてはニトロセルロース、カルボキシメチルセルロース、又はヒドロキシエチルセルロース等が挙げられる。
 合成高分子としては、ポリエーテルスルホン、ポリサルホン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリエチレンビニルアルコール、ポリビニルアルコール、ポリアクリル酸、又はポリメタクリル酸等が挙げられる。
 セラミックスとしては、シリカ、アルミナ、又はムライト等が挙げられる。
At least one porous substrate selected from the group consisting of cellulose, synthetic polymers, and ceramics can be used as the substrate (B).
Examples of cellulose include nitrocellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and the like.
Synthetic polymers include polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, and the like.
Ceramics include silica, alumina, mullite, and the like.
 板状粒子(A)を含む分散液を用いて、液中物質分離膜を基材(B)表面上に製膜するときは、吸引ろ過又は加圧ろ過によって行う事が好ましい。
 基材(B)は支持膜(支持体)となる材料であり、ろ過装置に基材(B)をセットして、その上部から(v)工程で得られた板状粒子(A)の分散液を注入し、吸引ろ過又は加圧ろ過が行われる。板状粒子(A)の分散液はろ過装置に注入する前に分散性を高める事が好ましく、例えば超音波照射や攪拌等を0.1~1時間程度行う事ができる。(v-0)又は(v-1)工程で得られた板状粒子(A)の分散液を用いても、同様に液中物質分離膜を製膜することができる。
 液中物質分離膜が複合膜を含む場合、(v)、(v-0)又は(v-1)工程で得られた板状粒子(A)の分散液を用いて基材(B)表面上に板状粒子(A)層を形成した後、必要なら乾燥させ、その上から剥離層物質を含む分散液を注入して、吸引ろ過又は加圧ろ過を行い、剥離層物質を積層することができる。剥離層物質の分散液もろ過装置に注入する前に分散性を高める事が好ましく、例えば超音波照射や攪拌等を0.1~1時間程度行う事ができる。
When a liquid-substance separation membrane is formed on the surface of the substrate (B) using a dispersion containing the plate-like particles (A), suction filtration or pressure filtration is preferably performed.
The substrate (B) is a material that becomes a support film (support). The substrate (B) is set in a filtration device, and the plate-like particles (A) obtained in the step (v) are dispersed from above. Liquid is injected and suction filtration or pressure filtration is performed. The dispersibility of the plate-like particles (A) is preferably enhanced before it is poured into a filtering device. For example, ultrasonic irradiation and stirring can be performed for about 0.1 to 1 hour. A liquid-substance separation membrane can be similarly formed by using the dispersion liquid of the plate-like particles (A) obtained in the step (v-0) or (v-1).
When the liquid-substance separation membrane includes a composite membrane, the substrate (B) surface is coated using the dispersion liquid of the plate-like particles (A) obtained in the step (v), (v-0) or (v-1) After forming a layer of plate-like particles (A) on top, drying if necessary, injecting a dispersion containing a release layer material from above, performing suction filtration or pressure filtration, and laminating the release layer material. can be done. It is preferable to enhance the dispersibility of the dispersion of the release layer material before injecting it into the filtering device. For example, ultrasonic irradiation and stirring can be performed for about 0.1 to 1 hour.
 また、基材(B)がセルロース、ポリエーテルサルホン、合成高分子等の有機系材料である場合は、純水に0.1~12時間程度の浸水を行い、親水性を付与してろ過装置にセットする事が好ましい。
 基材(B)は片面、又は両面に板状粒子(A)を含む液中物質(例えばイオン)分離膜を製膜する事ができる。基材(B)は支持体であって基材(B)自身の膜厚は数μm~数mmの膜厚で任意に設定できる。例えば1μm~10mm、10μm~1mm程度に設定できる。
In addition, when the substrate (B) is an organic material such as cellulose, polyethersulfone, or synthetic polymer, it is immersed in pure water for about 0.1 to 12 hours to impart hydrophilicity and filtered. It is preferable to set it in the device.
Substrate (B) can be formed on one side or both sides thereof with a liquid-substance (for example, ion) separation membrane containing plate-like particles (A). The base material (B) is a support, and the film thickness of the base material (B) itself can be arbitrarily set from several μm to several mm. For example, it can be set to about 1 μm to 10 mm, or about 10 μm to 1 mm.
 基材(B)表面上に形成された分離層として機能する液中物質分離膜は、該液中物質分離膜自身の膜厚として以下の値に設定する事ができる。基材(B)表面上の液中物質(例えばイオン)分離膜の膜厚は片面上で以下の値に設定することができる。液中物質分離膜において板状粒子(A)が積層されることにより生じる分子ふるい効果が有効に機能するためには、液中物質分離膜を構成する板状粒子(A)が複数層(例えば2層以上)形成されることが好ましいく、例えば膜厚を1.5nm以上とする事ができる。液中物質分離膜の膜厚の下限値は例えば1.5nm、40nm、50nmとする事ができ、また膜厚の上限値は100nm、500nm、1μm、10μmとする事ができる。従って、膜厚は例えば1.5nm~10μm、40nm~1μm、50nm~500nm、1.5nm~100nm、1.5nm~500nm、50nm~10μm、50nm~1μm、50nm~100nm等に設定する事ができる。 The liquid-substance separation membrane that functions as a separation layer formed on the surface of the substrate (B) can be set to the following values as the film thickness of the liquid-substance separation membrane itself. The film thickness of the submerged substance (eg, ion) separation membrane on the substrate (B) surface can be set to the following values on one side. In order for the molecular sieving effect caused by stacking the plate-like particles (A) in the liquid-substance separation membrane to function effectively, the plate-like particles (A) constituting the liquid-substance separation membrane must be formed in multiple layers (for example, It is preferable that two or more layers are formed, and the film thickness can be set to 1.5 nm or more, for example. The lower limit of the film thickness of the liquid-substance separation membrane can be set to, for example, 1.5 nm, 40 nm, and 50 nm, and the upper limit of the film thickness can be set to 100 nm, 500 nm, 1 μm, and 10 μm. Therefore, the film thickness can be set to, for example, 1.5 nm to 10 μm, 40 nm to 1 μm, 50 nm to 500 nm, 1.5 nm to 100 nm, 1.5 nm to 500 nm, 50 nm to 10 μm, 50 nm to 1 μm, 50 nm to 100 nm, etc. .
 本発明では物質(除去する物質又は濃縮する物質)を溶解する溶媒は、極性溶媒や無極性溶媒であって、水性溶媒又は有機溶媒とする事ができる。 In the present invention, the solvent that dissolves the substance (the substance to be removed or the substance to be concentrated) is a polar solvent or a non-polar solvent, and can be an aqueous solvent or an organic solvent.
 本発明では物質を含む溶媒(水性溶媒又は有機溶媒)の透過速度は、0.1~100L・m-2・hr―1・bar―1、又は5~25L・m-2・hr―1・bar―1とする事ができる。
 本発明では被分離物質を含む溶媒(水性溶媒又は有機溶媒)の物質除去率は15~99%、15~99%、又は80~99%とする事ができる。
In the present invention, the permeation rate of the solvent (aqueous solvent or organic solvent) containing the substance is 0.1 to 100 L·m −2 ·hr −1 ·bar −1 , or 5 to 25 L·m −2 ·hr −1 · bar −1 .
In the present invention, the substance removal rate of the solvent (aqueous solvent or organic solvent) containing the substance to be separated can be 15 to 99%, 15 to 99%, or 80 to 99%.
 また、被分離物質は溶媒(水性溶媒又は有機溶媒)中のイオン性化合物とする事ができる。
 被分離物質が水性溶媒中のイオン性化合物である場合について以下に説明する。イオン性化合物としては少なくともスルホン酸イオン、又はカルボン酸イオンを有する有機化合物が挙げられる。
Also, the substance to be separated can be an ionic compound in a solvent (aqueous solvent or organic solvent).
A case where the substance to be separated is an ionic compound in an aqueous solvent will be described below. Examples of ionic compounds include organic compounds having at least sulfonate ions or carboxylate ions.
 液中物質の分離は、例えばイオン性物質の場合は水溶性イオン性有機化合物を含む水性溶液を入れたタンクからポンプを用いて板状粒子(A)を含む液中物質分離膜とそれを支持する基材(B)を含む液中物質(イオン)分離膜成形体が装填されたセルに注液して、液中物質(イオン)分離膜を通過して水溶性イオン性有機化合物が低減した水性溶液と、液中物質(イオン)分離膜を通過することなく水溶性イオン性有機化合物が濃縮された水性溶液とに、それぞれ分液する事ができる。従って、水性溶液中の水溶性イオン性有機化合物の除去方法でもあり、また水溶性イオン性有機化合物の濃縮方法でもある。 For example, in the case of an ionic substance, a liquid-substance separation membrane containing the plate-like particles (A) and its support is separated from a tank containing an aqueous solution containing a water-soluble ionic organic compound using a pump. The liquid was poured into a cell loaded with a submerged substance (ion) separation membrane molded body containing the base material (B), and passed through the submerged substance (ion) separation membrane to reduce the water-soluble ionic organic compound. It is possible to separate the aqueous solution and the aqueous solution in which the water-soluble ionic organic compound is concentrated without passing through the submerged substance (ion) separation membrane. Therefore, it is also a method for removing water-soluble ionic organic compounds in an aqueous solution and a method for concentrating water-soluble ionic organic compounds.
 典型的な例であるが、有効膜面積が2.54×10-4、ポンプ圧が1.0~5.0気圧であった時に、液体の流量が1.0ml/分の条件から水溶性イオン性有機化合物を10ppm濃縮する事ができる。上記ポンプ圧力を5~15気圧によっても水性溶媒透過速度が6~8L・m-2・hr―1・bar―1であり、安定した透水を13時間に渡り実施する事ができる。膜面積が9.6×10-4の時に膜厚100nmであり、その時の板状粒子(A)は基材(B)上で1mgの積層量である。 As a typical example, when the effective membrane area is 2.54×10 −4 m 2 , the pump pressure is 1.0 to 5.0 atmospheres, and the liquid flow rate is 1.0 ml/min. Water-soluble ionic organic compounds can be concentrated to 10 ppm. Even with the above pump pressure of 5 to 15 atm, the aqueous solvent permeation rate is 6 to 8 L·m −2 ·hr −1 ·bar −1 , and stable water permeation can be carried out for 13 hours. When the film area is 9.6×10 −4 m 2 , the film thickness is 100 nm, and the plate-like particles (A) at that time have a lamination amount of 1 mg on the substrate (B).
 上記水溶性イオン性有機化合物としては少なくともスルホン酸イオン、又はカルボン酸イオンを有する有機化合物が挙げられ、これらは染料構造を有する事ができる。
 スルホン酸塩構造を有する化合物としてエバンスブルー、アシッドレッド265が挙げられ、これらは以下の構造を示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Examples of the water-soluble ionic organic compounds include organic compounds having at least sulfonate ions or carboxylate ions, and these can have a dye structure.
Compounds having a sulfonate structure include Evans Blue and Acid Red 265, which have the following structures.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記条件からエバンスブルーは96%の阻止率が得られ、アシッドレッド265は15~40%の阻止率が得られる。 Under the above conditions, Evans Blue has a blocking rate of 96%, and Acid Red 265 has a blocking rate of 15-40%.
 本発明では分子量が異なる2種以上の溶質分子を含む溶液から1種の溶質分子を濃縮することが可能な液中物質分離膜成形体を得る事ができる。例えば2種類の分子量の異なる分子が溶質として溶存している溶液において、分子量の大きな分子の膜通過を阻止し、分子量が小さな分子を膜通過させることにより、分子量の大きな分子を濃縮することが可能な液中物質分離膜成形体が得られる。例えば1.3倍以上、又は1.5倍以上の分子量差を有する2種類以上の溶質分子を用いて、それらの中で最も分子量の大きな溶質分子を濃縮する事ができる。
 典型的には、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)と、アンモニウムイオンを有する陰イオン界面活性剤(b)とを含み、平均厚さ0.7~100nm、平均長径50~10000nm、及び(最大長径/最大長径に直行する幅)=1.0~10.0を有し、層状化合物の層間剥離による層剥離物質である板状粒子(A)を含む液中物質分離膜と、該液中物質分離膜を支持する基材(B)とを含む液中物質分離膜成形体において、
板状粒子(A)は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液の形態であり、該水性分散液の板状粒子(A)のレーザー回折式粒子径分布で90%積算粒子径値が、該粒子径分布の平均値の1.5~10倍であり、
板状粒子(A)は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液の形態であり、該水性分散液の動的光散乱法による平均粒子径が10~10000nmであり、上記(a)と(b)が共に(A)に対して0.01~15.0質量%の範囲にある板状粒子(A)を含む上記液中物質分離膜成形体を用いて、液中の2種以上の溶質分子から1種の溶質分子を濃縮する上記液中物質分離膜成形体である。
According to the present invention, it is possible to obtain a liquid-substance separation membrane molded article capable of concentrating one kind of solute molecule from a solution containing two or more kinds of solute molecules having different molecular weights. For example, in a solution in which two types of molecules with different molecular weights are dissolved as solutes, it is possible to concentrate molecules with large molecular weights by preventing passage of molecules with large molecular weights through the membrane and allowing molecules with small molecular weights to pass through the membrane. A compact liquid-substance separation membrane molded product can be obtained. For example, by using two or more kinds of solute molecules having a molecular weight difference of 1.3 times or more, or 1.5 times or more, the solute molecule having the largest molecular weight among them can be concentrated.
Typically, a quaternary ammonium ion (a) having 15 to 45 carbon atoms in total and 1 to 2 alkyl groups having 10 to 20 carbon atoms and an anionic surfactant having an ammonium ion agent (b), having an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10000 nm, and (maximum major axis/width perpendicular to the maximum major axis) = 1.0 to 10.0, In a liquid-substance separation membrane molded article containing a liquid-substance separation membrane containing plate-like particles (A), which are delamination substances due to delamination, and a substrate (B) supporting the liquid-substance separation membrane,
The plate-like particles (A) are in the form of an aqueous dispersion of the plate-like particles (A) containing the above (a) and (b) used for delamination of the layered compound, and the plate-like particles of the aqueous dispersion ( The 90% cumulative particle size value in the laser diffraction particle size distribution of A) is 1.5 to 10 times the average value of the particle size distribution,
The plate-like particles (A) are in the form of an aqueous dispersion of the plate-like particles (A) containing (a) and (b) used for delamination of the layered compound, and dynamic light scattering of the aqueous dispersion The above containing plate-like particles (A) having an average particle diameter of 10 to 10,000 nm according to the method, and both (a) and (b) being in the range of 0.01 to 15.0% by mass with respect to (A) The liquid-substance-separating membrane molded article is used to concentrate one kind of solute molecule from two or more kinds of solute molecules in a liquid.
(評価方法)
動的光散乱法:スペクトリス株式会社製 商品名ゼータサイザーナノSで測定した。
レーザー回折式粒度分布測定:島津製作所製 SALD-7500で測定した。
透過型電子顕微鏡:日本電子株式会社製 商品名JEM-1010を使用した。
平均長径:透過型電子顕微鏡 日本電子株式会社製 JEM-1010を用いて撮影した粒子像200個から平均長径と、最大長径/最大長径に直行する幅を算出した。
紫外可視近赤外分光光度計:日本分光株式会社製 V630を使用した。
X線回折:Buruker製 D2 PHASERを使用した。
(分離膜の透水性評価方法)
 S.Kawada et al., Colloids and Surfaces A: Physicochem. Eng.Aspects, 2014, vol.451,p.33-37に記載された方法に準じて、クロスフロー式の透水装置により評価した。超純水製造装置(「milli-Q(登録商標) Direct Merck社製)にて精製して得た超純水を、一次側(供給側)圧力0.1から0.5MPaの条件で透水装置に供給し、単位時間当たりの透水量を有効膜面積および圧力で除することにより、透水速度を求めた。
(溶質の阻止性能試験)
 溶質の阻止性試験には、エバンスブルー(EB)又はアシッドレッド265(AR)を10ppmの割合で溶解した水溶液を用いた。(分離膜の透水性評価方法)に示した試験装置にて、上記水溶液(40mL)を透過させ、透過液における溶質の濃度を紫外可視近赤外分光光度計により測定し、溶質の阻止率を算出した。
(塩の阻止性能試験)
 塩の阻止性試験には、硫酸ナトリウム又は塩化ナトリウムを500ppmの割合で溶解した水溶液を用いた。(分離膜の透水性評価方法)に示した試験装置にて、上記水溶液(40mL)を透過させ、透過液における塩の濃度をコンパクトナトリウムイオンメータ LAQUAtwin-Na-11(HORIBA)により測定し、塩の阻止率を算出した。
(Evaluation method)
Dynamic light scattering method: Measured with Zetasizer Nano S (trade name, manufactured by Spectris Co., Ltd.).
Laser diffraction particle size distribution measurement: Measured with SALD-7500 manufactured by Shimadzu Corporation.
Transmission electron microscope: JEM-1010 (trade name) manufactured by JEOL Ltd. was used.
Average major axis: From 200 particle images taken using a transmission electron microscope JEM-1010 manufactured by JEOL Ltd., the average major axis and the maximum major axis/width perpendicular to the maximum major axis were calculated.
Ultraviolet-visible-near-infrared spectrophotometer: V630 manufactured by JASCO Corporation was used.
X-ray diffraction: D2 PHASER manufactured by Buruker was used.
(Method for evaluating water permeability of separation membrane)
S. Kawada et al. , Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 451, p. 33-37, evaluation was made using a cross-flow water permeation device. Ultrapure water purified by an ultrapure water production device (“milli-Q (registered trademark) manufactured by Direct Merck) is passed through a water permeation device under conditions of a primary side (supply side) pressure of 0.1 to 0.5 MPa. The water permeation rate was obtained by dividing the water permeation rate per unit time by the effective membrane area and pressure.
(Solute blocking performance test)
An aqueous solution in which Evans Blue (EB) or Acid Red 265 (AR) was dissolved at a concentration of 10 ppm was used for the solute inhibition test. (Method for evaluating water permeability of separation membrane) The above aqueous solution (40 mL) is allowed to pass through, and the concentration of solute in the permeated liquid is measured with an ultraviolet-visible-near-infrared spectrophotometer. Calculated.
(Salt inhibition performance test)
An aqueous solution in which 500 ppm of sodium sulfate or sodium chloride was dissolved was used for the salt inhibition test. (Method for evaluating water permeability of separation membrane) The above aqueous solution (40 mL) is allowed to permeate, and the salt concentration in the permeate is measured with a compact sodium ion meter LAQUAtwin-Na-11 (HORIBA). was calculated.
(実施例1)
(アイラアイトの合成)
 市販の3号珪曹に、日産化学(株)製、商品名ST-Oを加えモル比調整した水ガラス(SiO:NaO:HOモル比は3.8:1:39.0、SiO濃度は23.05質量%、NaO濃度は6.25質量%)を3Lステンレス鋼(SUS316)製密閉容器に封入し、110℃で12日間静置加熱してアイラアイトを水熱合成した。尚、生成物がアイラアイトであることはXRDにて確認した(PDFカードNo.00-048-0655)。
 得られたアイラアイト22.2gを、遊星ボールミル(ヴァーダー・サイエンティフィック製、PM100)の窒化ケイ素製容器(容量500ml)に直径5mmのジルコニア製粉砕ボール811.1gとともに装入し、回転速度160rpmで1時間の乾式粉砕を空気雰囲気で行った。続いて、直径5mmの粉砕ボールを直径3mmのジルコニア製粉砕ボール811.1gと入れ替えた後、回転速度を220rpmに変更して1時間の乾式粉砕を空気雰囲気で行った。
 得られたアイラアイトの粉砕粒子24.0gを種晶(種粒子)として市販の3号珪曹に、日産化学(株)製、商品名ST-Oを加えモル比調整した水ガラス(SiO:NaO:HOモル比は4.0:1:39.0、SiO濃度は23.85質量%、NaO濃度は6.12質量%)2376.0gに添加し、これをSUS316製の密閉容器に封入して120℃で24時間加熱することで、動的光散乱径の個数基準中位径が832.8nmのアイラアイトのナノ粒子が得られた。得られたアイラアイトは長径845.0nm、最大長径に直行する幅が686.6nm、平均厚さ38.1nm、(最大長径/最大長径に直行する幅)の比が1.2であった。尚、生成物がアイラアイトであることはXRDにて確認した(PDFカードNo.00-048-0655)。
(Example 1)
(Synthesis of Ilayite)
Water glass (SiO 2 : Na 2 O: H 2 O molar ratio is 3.8: 1: 39.8: 1:39. 0, SiO 2 concentration is 23.05% by mass, and Na 2 O concentration is 6.25% by mass) was sealed in a 3L stainless steel (SUS316) sealed container and left to stand at 110°C for 12 days to heat ilaite in water. thermally synthesized. It was confirmed by XRD that the product was ilaite (PDF card No. 00-048-0655).
22.2 g of the obtained islaite was placed in a silicon nitride container (capacity: 500 ml) of a planetary ball mill (PM100, manufactured by Verder Scientific) together with 811.1 g of zirconia grinding balls having a diameter of 5 mm, and was rotated at a rotation speed of 160 rpm. Dry milling for 1 hour was performed in an air atmosphere. Subsequently, after replacing the grinding balls with a diameter of 5 mm with zirconia grinding balls with a diameter of 3 mm (811.1 g), the rotational speed was changed to 220 rpm and dry grinding was performed for 1 hour in an air atmosphere.
Using 24.0 g of the pulverized particles of the obtained ilaite as seed crystals (seed particles), water glass (SiO 2 : Na2O : H2O molar ratio is 4.0:1:39.0, SiO2 concentration is 23.85% by weight, Na2O concentration is 6.12% by weight. By encapsulating in a SUS316 sealed container and heating at 120° C. for 24 hours, ilaite nanoparticles having a number-based median diameter of dynamic light scattering diameter of 832.8 nm were obtained. The obtained ilaite had a major axis of 845.0 nm, a width perpendicular to the maximum major axis of 686.6 nm, an average thickness of 38.1 nm, and a ratio of (maximum major axis/width perpendicular to the maximum major axis) of 1.2. It was confirmed by XRD that the product was ilaite (PDF card No. 00-048-0655).
(アイラアイトナノシート水分散液の製造)
 上記アイラアイトナノ粒子0.8gを含む分散液とラウリルトリメチルアンモニウムクロリド0.96gを水78.2gに添加し、100℃で24時間の静置加熱をすることで、アイラアイトのシリケート層間のナトリウムイオンをラウリルトリメチルアンモニウムイオンで置換した。遊離したナトリウムイオンをメンブレンフィルターによるろ過により系外に除いた後、湿粉を回収して、水中に再度分散させることでイオン交換したアイラアイト水分散液を得た。この時のアイラアイト水分散液中のラウリルトリメチルアンモニウムクロリドの濃度は1.2wt%であり、水分散液の固形分濃度(1000℃焼成残分)は1.6wt%であった。
 イオン交換したアイラアイト水分散液37gに10wt%ドデシル硫酸アンモニウム水溶液30gを加えた後、アイラアイトの固形分濃度が0.1wt%、ドデシル硫酸アンモニウム濃度が1.5wt%となるよう521gの純水で希釈した。これにアンモニア水を加えてpHを10.1に調整した。ここで得られた溶液を60℃で24時間のスターラーでの撹拌下で加熱することで、アイラアイトのナノ粒子が層剥離したナノシート(板状粒子A)のコロイド溶液(アイラアイトナノシート水分散液)を得た。
 得られたアイラアイトナノシート水分散液の動的光散乱法による平均粒子径は760nmであった。また、得られたアイラアイトナノシート水分散液のレーザー回折式粒子径分布で90%積算粒子径値が3.3μmであり、レーザー回折式粒子径分布で平均粒子径値が1.3μmであったので、(90%積算粒子径値)/(平均粒子径値)=2.5であった。
 基板上に得られた水分散液を塗布し乾燥後にAFM(原子間力顕微鏡)で観察する方法により測定した、剥離したナノシート(板状粒子A)の平均厚さは1.5nmであった。
 得られた水分散液を室温で乾燥した試料を100℃60分間乾燥後にTG測定(熱重量測定)を行い、100℃から800℃の重量変化を測定した。220℃~500℃にかけて質量減少が2段階にあり、まず界面活性剤の分解(20質量%の減少)と、それに続く第4級アンモニウムの分解(14質量%の減少)であると考えられる。重量比でナノシート(板状粒子A):第4級アンモニウムイオン(a):陰イオン界面活性剤(b)=66:14:20であり、第4級アンモニウムイオン(a)がナノシート(板状粒子A)に対して21.2質量%、陰イオン界面活性剤(b)がナノシート(板状粒子A)に対して30.3質量%であった。
(Production of aqueous dispersion of ilaite nanosheets)
A dispersion containing 0.8 g of the above ilaite nanoparticles and 0.96 g of lauryltrimethylammonium chloride were added to 78.2 g of water and heated at 100° C. for 24 hours to remove sodium ions between the silicate layers of ilaite. was replaced by the lauryltrimethylammonium ion. After the liberated sodium ions were removed from the system by filtration with a membrane filter, the wet powder was collected and dispersed again in water to obtain an ion-exchanged aqueous dispersion of ilaite. At this time, the concentration of lauryltrimethylammonium chloride in the islayite water dispersion was 1.2 wt %, and the solid content concentration (1000° C. firing residue) of the water dispersion was 1.6 wt %.
After adding 30 g of a 10 wt % ammonium dodecylsulfate aqueous solution to 37 g of the ion-exchanged aqueous dispersion of islayite, the mixture was diluted with 521 g of pure water so that the solid concentration of islayite was 0.1 wt % and the ammonium dodecyl sulfate concentration was 1.5 wt %. Aqueous ammonia was added thereto to adjust the pH to 10.1. The solution obtained here is heated at 60° C. for 24 hours under stirring with a stirrer to give a colloidal solution (aqueous dispersion of ilaite nanosheets) of nanosheets (plate-like particles A) in which the ilaite nanoparticles are delaminated. got
The average particle size of the resulting aqueous dispersion of ilaite nanosheets was 760 nm as determined by dynamic light scattering. The 90% cumulative particle size value of the obtained aqueous dispersion of ilaite nanosheets was 3.3 μm in the laser diffraction particle size distribution, and the average particle size was 1.3 μm in the laser diffraction particle size distribution. Therefore, (90% cumulative particle size value)/(average particle size value) was 2.5.
The average thickness of the exfoliated nanosheets (plate-like particles A) was 1.5 nm, measured by a method of applying the resulting aqueous dispersion onto a substrate, drying it, and then observing it with an AFM (atomic force microscope).
A sample obtained by drying the obtained aqueous dispersion at room temperature was dried at 100°C for 60 minutes, and then subjected to TG measurement (thermogravimetric measurement) to measure the weight change from 100°C to 800°C. From 220° C. to 500° C., the weight loss occurs in two stages, and is believed to be the first decomposition of the surfactant (20% decrease by mass) followed by the decomposition of the quaternary ammonium (14% decrease by mass). The weight ratio of nanosheets (plate-like particles A): quaternary ammonium ions (a): anionic surfactant (b) is 66:14:20, and the quaternary ammonium ions (a) are nanosheets (plate-like The content of the anionic surfactant (b) was 30.3% by mass based on the nanosheet (plate-like particles A).
(アイラアイトナノシート分離膜の作製)
 ポリエーテルスルホン(PES)製支持基材上に、得られたアイラアイトナノシート水分散液を供給して吸引ろ過し、支持基材上にアイラアイトナノシート積層体を形成した。なお、アイラアイトナノシート水分散液のろ過が終了後も吸引ろ過(減圧ろ過)を継続し、アイラアイトナノシート積層体に含まれる水分を除去し、層間の密着性を高めた。支持基材上に供給するアイラアイトナノシート水分散液の濃度と量は、形成するアイラアイトナノシート積層体の厚みに応じ適宜調整し、例えば100nmの厚みのアイラアイトナノシート積層体を形成する場合は、アイラアイトナノシートの固形分が1mgとなるよう、上記アイラアイトナノシート水分散液1.25mLを超純水50mLに混合した溶液を供給した。この他にも、積層体中のアイラアイトナノシートの固形分が0.5mg又は2mgとなるよう調整した分離膜も作製した。
 アイラアイトナノシート固形分が1mgである分離膜の断面構造をSEM(走査型電子顕微鏡)により撮影した画像から、PES(ポリエーテルスルホン、分画分子量100kDa、膜面積17.3×10-4)製の支持基材と約100nmの厚みのナノシート(NS)積層体(液中物質分離膜)から構成される積層構造が観察された。
 板状粒子(A)からなるアイラアイトナノシートを含む液中物質分離膜を基材(ポリエーテルスルホン支持膜)上に吸引ろ過で製膜する工程を図1に示す。
 得られた分離膜のX線回折測定結果から、作製した分離膜では2θ=9.6°に回折ピークが観測され、これはアイラアイトナノシート積層体の層間距離が0.92nmであったことを示している。また、同分離膜を超純水に72時間浸漬した後にX線回折を測定したところ、2θ=9.1°に回折ピークが観測され、これは湿潤状態でのアイラアイトナノシート積層体の層間距離は0.97nmであったことを示している。乾燥状態と湿潤状態で測定したそれぞれの層間距離が同程度であることから、本発明に係る分離膜は水中での構造安定性が高い膜といえる。
(Preparation of Islayite Nanosheet Separation Membrane)
The resulting aqueous dispersion of islayite nanosheets was supplied onto a polyethersulfone (PES) supporting substrate and suction filtered to form an islayite nanosheet laminate on the supporting substrate. Even after the filtration of the aqueous dispersion of islayite nanosheets was completed, suction filtration (reduced pressure filtration) was continued to remove moisture contained in the laminate of islayite nanosheets, thereby enhancing the adhesion between the layers. The concentration and amount of the aqueous dispersion of islayite nanosheets to be supplied onto the supporting substrate are appropriately adjusted according to the thickness of the islayite nanosheet laminate to be formed. A solution obtained by mixing 1.25 mL of the above aqueous dispersion of islayite nanosheets with 50 mL of ultrapure water was supplied so that the solid content of the islayite nanosheets was 1 mg. In addition, separation membranes were also produced in which the solid content of the ilaite nanosheets in the laminate was adjusted to 0.5 mg or 2 mg.
A SEM (scanning electron microscope) image of the cross-sectional structure of a separation membrane having a solid content of 1 mg of islayite nanosheets revealed PES (polyethersulfone, molecular weight cutoff of 100 kDa, membrane area of 17.3×10 −4 m 2 ). ) and a nanosheet (NS) laminate (liquid-substance separation membrane) with a thickness of about 100 nm was observed.
FIG. 1 shows a process of forming a liquid-substance separation membrane containing ilaite nanosheets composed of plate-like particles (A) on a substrate (polyethersulfone support membrane) by suction filtration.
From the result of X-ray diffraction measurement of the obtained separation membrane, a diffraction peak was observed at 2θ=9.6° in the prepared separation membrane, which indicates that the interlayer distance of the ilaite nanosheet laminate was 0.92 nm. showing. Further, when the same separation membrane was immersed in ultrapure water for 72 hours and then X-ray diffraction was measured, a diffraction peak was observed at 2θ = 9.1°, which indicates the interlayer distance of the ilaite nanosheet laminate in a wet state. is 0.97 nm. Since the interlayer distances measured in the dry state and the wet state are approximately the same, the separation membrane according to the present invention can be said to have high structural stability in water.
(実施例2)
 上記実施例1で得られたアイラアイトナノシート積層体上に、酸化グラフェン(GO)の水分散液(シグマアルドリッチ社製、製品名Graphene oxide、4mg/mL)を供給して吸引ろ過し、アイラアイトナノシート上に酸化グラフェン(GO)層を積層して基材(B)上にアイラアイトナノシートと酸化グラフェン(GO)の複合膜である液中物質分離膜を作製した。なお、酸化グラフェン(GO)の水分散液のろ過が終了後も吸引ろ過(減圧ろ過)を継続し、酸化グラフェン(GO)を含む積層体に含まれる水分を除去し、層間の密着性を高めた。酸化グラフェン(GO)が、アイラアイトを1とした場合に質量比で1:1で積層した液中物質分離膜成形体と、1:0.1で積層した液中物質分離膜成形体をそれぞれ作成した。
(Example 2)
An aqueous dispersion of graphene oxide (GO) (manufactured by Sigma-Aldrich, product name: Graphene oxide, 4 mg/mL) was supplied onto the ilaite nanosheet laminate obtained in Example 1 above, followed by suction filtration to obtain ilaite. A graphene oxide (GO) layer was laminated on the nanosheet to prepare a liquid-substance separation membrane, which is a composite membrane of the ilaite nanosheet and graphene oxide (GO), on the substrate (B). Even after the filtration of the aqueous dispersion of graphene oxide (GO) is completed, suction filtration (reduced-pressure filtration) is continued to remove moisture contained in the laminate containing graphene oxide (GO) and increase the adhesion between the layers. rice field. Graphene oxide (GO) was laminated at a mass ratio of 1:1 to 1:1, and a liquid-borne substance separation membrane compact was laminated at a mass ratio of 1:0.1. did.
(比較例1)
 実施例1におけるアイラアイトナノシート水分散液の製造過程で、遊離したナトリウムイオンをメンブレンフィルターによるろ過により系外に除いた後、湿粉を40℃で乾燥させることでアイラアイト粉末を得た。得られた粉末12gを用いてラウリルトリメチルアンモニウムクロリド14gと共に水1174gに添加したこと以外は実施例1と同様に行いアイラアイトナノシート水分散液を得た。
 得られた水性分散液のレーザー回折式粒子径分布で90%積算粒子径値が45.8μmであり、レーザー回折式粒子径分布で平均粒子径値が3.6μmであったので、(90%積算粒子径値)/(平均粒子径値)=12.7であった。
 積層体中に含まれる剥離したアイラアイトのナノ粒子の固形分が5mg、7.5mg、10mgとなるようにしたこと以外は実施例1と同様に行い分離膜を得た。
(Comparative example 1)
In the process of producing the aqueous dispersion of islayite nanosheets in Example 1, free sodium ions were removed from the system by filtration with a membrane filter, and then the wet powder was dried at 40° C. to obtain an islayite powder. An aqueous dispersion of ilaite nanosheets was obtained in the same manner as in Example 1 except that 12 g of the obtained powder was added to 1174 g of water together with 14 g of lauryltrimethylammonium chloride.
The obtained aqueous dispersion had a 90% cumulative particle size value of 45.8 μm in the laser diffraction particle size distribution, and an average particle size value of 3.6 μm in the laser diffraction particle size distribution. Cumulative particle size value)/(average particle size value) was 12.7.
Separation membranes were obtained in the same manner as in Example 1, except that the solid content of the exfoliated ilaite nanoparticles contained in the laminate was adjusted to 5 mg, 7.5 mg, and 10 mg.
(分離膜の性能評価)
 分離膜の透水試験と分離性能の評価試験方法を示す模式図を図2に示す。被分離物質(実施例1ではエバンスブルー又はアシッドレッド265)を溶解した被分離物質含有水溶液が供給液タンクからポンプを通じて分離膜成形体ユニットに供給され、物質濃縮液タンクに液中物質分離膜を通過しなかった被分離物質(実施例1ではエバンスブルー又はアシッドレッド265)が濃縮された液(被分離対象液よりも濃色の溶液であり、紫外可視吸収スペクトルにより被分離物質の吸光度が高い溶液)と、分離水タンクに液中物質分離膜を通過した分離水(無色又は被分離対象液よりも淡色の溶液であり、紫外可視吸収スペクトルにより被分離物質の吸光度が検出できない又は低い溶液)がそれぞれ貯液された。結果として被分離物質含有水溶液から被分離物質を分離し、一方で被分離物質を濃縮する事ができた。
 また、分離膜成形体ユニットの代わりに実施例1に用いたポリエーテルスルホン(PES)製支持基材を用いて同様の試験を行った。支持基材のみでは被分離物質の阻止率が0%(ゼロ%、被分離物質含有水溶液と分離水タンクに貯液された分離水が同じ色)であったものの、アイラアイトナノシート水分散液を積層した分離膜成形体ではいずれでも色素阻止性(物質除去性)が発現した。
(Performance evaluation of separation membrane)
FIG. 2 shows a schematic diagram showing a water permeability test of a separation membrane and an evaluation test method for separation performance. An aqueous solution containing the substance to be separated (Evans Blue or Acid Red 265 in Example 1) dissolved therein is supplied from the supply liquid tank to the separation membrane molded body unit through a pump, and the liquid-substance separation membrane is placed in the substance concentrate tank. A liquid in which the substance to be separated (Evans Blue or Acid Red 265 in Example 1) that did not pass through was concentrated (a solution with a darker color than the liquid to be separated, and the absorbance of the substance to be separated is high according to the ultraviolet-visible absorption spectrum. solution) and separated water that has passed through the submerged substance separation membrane in the separated water tank (a solution that is colorless or lighter in color than the liquid to be separated, and the absorbance of the substance to be separated cannot be detected by the ultraviolet-visible absorption spectrum or is low) were each stored. As a result, it was possible to separate the substances to be separated from the aqueous solution containing the substances to be separated, while concentrating the substances to be separated.
Further, the same test was conducted using the polyethersulfone (PES) support substrate used in Example 1 instead of the separation membrane molded product unit. Although the rejection rate of the substance to be separated was 0% (0%, the color of the aqueous solution containing the substance to be separated and the separated water stored in the separation water tank was the same) with only the support substrate, the aqueous dispersion of ilaite nanosheets was used. All of the laminated separation membrane molded bodies exhibited dye-blocking properties (substance-removing properties).
 実施例1及び比較例1の分離膜の上記透水性評価方法に従い透水速度を算出した結果および上記溶質の阻止性能試験に従いEB(エバンスブルー)及びAR(アシッドレッド265、ARは実施例1の分離膜のみ試験)の阻止率(%)を算出した結果を表1及び図6に示す。図6において左軸は透水性(L・m-2・hr―1・bar―1)を示しグラフでは縦棒で示し、右軸は色素阻止率を示しグラフでは*△印で示し、横軸は支持膜面積9.6×10-4あたりのナノシートの積載量を示したものである。
 左側に示した実施例1のグラフで*はエバンスブルーの阻止率を示し、△はアシッドレッド265の阻止率を示した。
 また、右側に示した比較例1のグラフで*はエバンスブルーの阻止率を示した。
 比較例1で作製した膜ではナノシート積載量が10mgの時に透水性が0.32L・m-2・h-1・bar-1であり、加えてEB(エバンスブルー)阻止性が72%であった。これに対し、本発明に係る分離膜では、比較例1より10倍薄い濃度でナノシート積載量が1mgで作製したにもかかわらず、透水性が13L・m-2・h-1・bar-1であり、EB(エバンスブルー)阻止性は95%であった。また、EB(エバンスブルー)よりも分子量の小さいAR(アシッドレッド265)阻止性は本発明では30%であった。図6より、実施例1の分離膜成形体は、比較例1の分離膜成形体に比べ高い透水性、色素阻止性(色素分離性)を示すことから、本発明の分離膜成形体は優れた分離性と高い溶媒透過性を有するものである。
EB (Evans Blue) and AR (Acid Red 265, AR is the separation of Example 1 according to the results of calculating the water permeability rate according to the above water permeability evaluation method of the separation membranes of Example 1 and Comparative Example 1 and the above solute blocking performance test Table 1 and FIG. 6 show the results of calculating the rejection rate (%) of the film only test). In FIG. 6, the left axis indicates water permeability (L · m −2 · hr −1 · bar −1 ), which is indicated by vertical bars in the graph, the right axis indicates dye blocking rate, and the horizontal axis is indicated by *Δ in the graph. indicates the loading amount of nanosheets per support film area of 9.6×10 −4 m 2 .
In the graph of Example 1 shown on the left, * indicates the blocking rate of Evans Blue, and Δ indicates the blocking rate of Acid Red 265.
In the graph of Comparative Example 1 shown on the right side, * indicates the rejection rate of Evans blue.
The membrane prepared in Comparative Example 1 had a water permeability of 0.32 L·m −2 ·h −1 ·bar −1 when the nanosheet loading was 10 mg, and an EB (Evans blue) blocking property of 72%. rice field. On the other hand, in the separation membrane according to the present invention, although the concentration was 10 times lower than that of Comparative Example 1 and the loading amount of the nanosheet was 1 mg, the water permeability was 13 L·m −2 ·h −1 ·bar −1 . and EB (Evans blue) inhibition was 95%. In addition, AR (Acid Red 265), which has a molecular weight smaller than that of EB (Evans Blue), was inhibited by 30% in the present invention. As shown in FIG. 6, the separation membrane molded article of Example 1 exhibits higher water permeability and pigment blocking property (pigment separation property) than the separation membrane molded article of Comparative Example 1. Therefore, the separation membrane molded article of the present invention is excellent. It has excellent separation properties and high solvent permeability.
 実施例1で得られた基材上の分離膜の表面の走査型電子顕微鏡写真を図3に示す。膜表面は滑らかで波状の模様が観測された。
 実施例1で得られた基材上の分離膜(積載量1mg)の断面の走査型電子顕微鏡写真を図4に示す。板状粒子(A)からなるナノシートの積層量1mgを含む膜では膜厚がほぼ100nmである事が確認された。
A scanning electron micrograph of the surface of the separation membrane on the substrate obtained in Example 1 is shown in FIG. The film surface was smooth and had a wavy pattern.
FIG. 4 shows a scanning electron micrograph of a cross section of the separation membrane (1 mg load) on the substrate obtained in Example 1. As shown in FIG. It was confirmed that a film containing 1 mg of laminated nanosheets made of plate-like particles (A) had a thickness of approximately 100 nm.
 実施例1で得られたアイラアイトナノシート水分散液を40000Gで超遠心処理し第4級アンモニウムと界面活性剤量をアイアライトに対して15質量%以下に低減した後に形成した分離膜のX線回折測定結果を図5に示す。乾燥状態の分離膜の測定結果(dry)では、膜中でのナノシートの積層に由来するピークが観察された(▼印)。また、分離膜に水を添加して測定した結果(wet)と比較し積層に由来するピーク位置がシフトしていないことから、得られた分離膜は水中においても構造安定性が高い事が示された。図5は上から順に、本件の原料である層間剥離前のアイラアイトのX線回折図、本件の層間剥離したアイラアイトのナノシートを積層させた分離膜が湿潤状態であるときのX線回折図、本件の層間剥離したアイラアイトのナノシートを積層させた分離膜が乾燥状態であるときのX線回折図、湿潤状態の基材(ポリエーテルスルホン)のX線回折図、乾燥状態の基材(ポリエーテルスルホン)のX線回折図を示す。超遠心処理により層状化合物の剥離剤成分が除去されて層間剥離されたアイアライト由来のピークが明確になるとともに、アイアライトナノシートを含む分離膜は湿潤状態(水中)でも構造が安定している事が分かった。 X-ray of the separation membrane formed after the aqueous dispersion of islayite nanosheets obtained in Example 1 was subjected to ultracentrifugation at 40,000 G to reduce the amount of quaternary ammonium and surfactant to 15% by mass or less relative to the amount of ialite. Diffraction measurement results are shown in FIG. In the measurement result of the separation membrane in a dry state (dry), a peak derived from stacking of nanosheets in the membrane was observed (marked ▼). In addition, compared to the measurement results (wet) obtained by adding water to the separation membrane, the peak position derived from lamination did not shift, indicating that the obtained separation membrane has high structural stability even in water. was done. FIG. 5 shows, in order from the top, the X-ray diffraction diagram of ilaite before delamination, which is the raw material of the present invention, the X-ray diffraction diagram when the separation membrane laminated with the nanosheets of delaminated ilaite of the present invention is in a wet state, and the present invention. X-ray diffractogram of a separation membrane laminated with delaminated ilaite nanosheets in a dry state, X-ray diffractogram of a substrate (polyethersulfone) in a wet state, substrate in a dry state (polyethersulfone ) shows an X-ray diffraction pattern. Ultracentrifugation removes the exfoliating agent component of the layered compound, and the peak derived from delaminated ialite becomes clear, and the structure of the separation membrane containing ialite nanosheets is stable even in a wet state (in water). I found out.
 実施例1で得られたアイアライトナノシート水分散液を用いて製造された分散膜成形体の透水性能と色素阻止率を示す結果を図7に示す。グラフ右縦軸は色素阻止率(%)を示し、左縦軸は透水性能(L・m-2・hr―1・bar―1)を示し、横軸は支持膜面積9.6×10-4あたりのナノシートの積載量(mg)を示す。点線よりグラフ左側は超遠心処理を行っていないアイアライトナノシート水分散液を用いて支持膜(ポリエーテルスルホン)上に製膜した分離膜成形体を用いた試験結果であり、点線よりグラフ右側は40000Gで超遠心処理したアイアライトナノシート水分散液を用いて指示膜(ポリエーテルスルホン)上に製膜した分子膜成形体を用いた試験結果である。グラフの(*)はエバンスブルーの阻止率を示し、グラフの(△)はアシッドレッド265の阻止率を示し、棒グラフは透水性能を示したものである。グラフ左端はブランクとして支持膜(ポリエーテルスルホン)のみを用いた試験結果を示し、エバンスブルーとアシッドレッド265の阻止率は共にゼロであり、透水率は95(L・m-2・hr―1・bar―1)であった。
 図7に示された結果から、超遠心処理前又は超遠心処理後のアイアライトナノシート水分散液を用いて製造した液中物質分離膜成形体は、いずれも、BE及びARを分離することができ、かつ、透水性を有するものであるので、液中物質分離膜として使用できる。
 また、図7に示された結果から、超遠心処理前のアイアライトナノシート水分散液を用いて製膜した分離膜はナノシートの積載量の上昇と共に2種類の物質を分離する性能は増大するものの、透水性能(即ち処理量)は低下した。一方、超遠心処理後のアイアライトナノシート水分散液を用いて製膜した分離膜は、低い積載量にも関わらず2種類の物質を分離する性能が高く、透水性能(即ち処理量)も高積載量の時に比べて高い事がわかる。つまり、超遠心処理し第4級アンモニウムと界面活性剤量をアイアライトに対して15質量%以下(例えば0.01~15.0質量%)にしたアイアライトナノシート水分散液を用いる事によりナノシート含有量を低くしても、分子量が異なる2種類の物質を効率よく分離し、しかもそれら溶質が溶存している溶媒の透水性の高い液中物質分離膜を得られることが理解できる。即ち、被分離物質を含む処理液体からより効率よく液中物質を分離濃縮する事が可能である。
FIG. 7 shows the results showing the water permeability and the dye blocking rate of the dispersion film molded article produced using the aqueous dispersion of Iaryte nanosheets obtained in Example 1. In FIG. The right vertical axis of the graph indicates the dye blocking rate (%), the left vertical axis indicates the water permeability (L·m −2 ·hr −1 ·bar −1 ), and the horizontal axis represents the support membrane area 9.6×10 Nanosheet loading (mg) per 4 m 2 is shown. The graph on the left side of the dotted line is the test result using a separation membrane molded article formed on a support membrane (polyethersulfone) using an aqueous dispersion of Iaryte nanosheets that has not been subjected to ultracentrifugation, and the graph on the right side of the dotted line. It is a test result using a molecular film molded article formed on an indicator film (polyethersulfone) using an aqueous dispersion of Ialite nanosheets ultracentrifuged at 40,000 G. (*) in the graph indicates the rejection rate of Evans Blue, (Δ) in the graph indicates the rejection rate of Acid Red 265, and the bar graph indicates the water permeability. The left end of the graph shows the test results using only the support film (polyethersulfone) as a blank, the rejection rate of Evans Blue and Acid Red 265 is both zero, and the water permeability is 95 (L m -2 hr -1・bar −1 ).
From the results shown in FIG. 7, both the liquid-submerged substance separation membrane compacts produced using the aqueous dispersion of Iialite nanosheets before and after ultracentrifugation are capable of separating BE and AR. It can be used as a liquid-substance separation membrane because it can be used and has water permeability.
In addition, from the results shown in FIG. 7, the separation membrane formed by using the aqueous dispersion of Iaryte nanosheets before ultracentrifugation increases the performance of separating two types of substances as the loading capacity of the nanosheets increases. , the permeability (ie throughput) decreased. On the other hand, the separation membrane formed using the aqueous dispersion of Iaryte nanosheets after ultracentrifugation has a high performance in separating two types of substances despite a low loading capacity, and the water permeability (i.e., throughput) is also high. You can see that it is higher than the load amount. That is, nanosheets can be obtained by using an aqueous dispersion of ialite nanosheets that has been subjected to ultracentrifugation and the amount of quaternary ammonium and surfactant is set to 15% by mass or less (for example, 0.01 to 15.0% by mass) relative to ialite. It can be understood that even if the content is low, two kinds of substances having different molecular weights can be efficiently separated, and a membrane for separating substances in liquid having high water permeability to the solvent in which the solutes are dissolved can be obtained. That is, it is possible to more efficiently separate and concentrate the substances in the liquid from the treatment liquid containing the substances to be separated.
 実施例1で用いたアイアライトナノシートと、その他の板状粒子であるニオブ酸(HNb)ナノシートと、GO(酸化グラフェン)ナノシートとを用いて得られた分離膜を有する分離膜成形体の透水性能と色素阻止率の結果を図8に示す。グラフ右縦軸は色素阻止率(%)を示し、左縦軸は透水性能(L・m-2・hr―1・bar―1)を示し、横軸は支持膜面積あたり同一積載量で積載された各ナノシートの種類を示した。グラフの(*)はエバンスブルー(EB)の阻止率を示し、グラフの(△)はアシッドレッド265(AR)の阻止率を示し、棒グラフは透水性能を示したものである。
アイアライトナノシートを含む分離膜成形体は、ニオブ酸(HNb)ナノシートを含む分離膜成形体や、GO(酸化グラフェン)ナノシートを含む分離膜成形体に比べて分子量が異なる2種類の物質(EB及びAR)を効率よく分離し、しかもそれら溶質が溶存している液体の透水性能(即ち処理量)が高い事が分かる。即ち、被分離物質を含む処理液体から効率よく液中物質を分離濃縮する事が可能である。
A separation membrane compact having a separation membrane obtained by using the Iialite nanosheets used in Example 1, niobic acid (HNb 3 O 8 ) nanosheets, which are other plate-like particles, and GO (graphene oxide) nanosheets. FIG. 8 shows the results of water permeability and dye blocking rate. The right vertical axis of the graph shows the dye blocking rate (%), the left vertical axis shows the water permeability (L m -2 hr -1 bar -1 ), and the horizontal axis shows the same loading amount per support membrane area. The type of each nanosheet produced is shown. (*) in the graph indicates the rejection rate of Evans Blue (EB), (Δ) in the graph indicates the rejection rate of Acid Red 265 (AR), and the bar graph indicates the water permeability.
Separation membrane molded articles containing Iialite nanosheets are two types of substances with different molecular weights than separation membrane molded articles containing niobic acid (HNb 3 O 8 ) nanosheets and separation membrane molded articles containing GO (graphene oxide) nanosheets. It can be seen that (EB and AR) are efficiently separated and that the liquid in which these solutes are dissolved has a high water permeability (that is, throughput). That is, it is possible to efficiently separate and concentrate the substances in the liquid from the treatment liquid containing the substances to be separated.
 実施例1で得られた分離膜成形体を塩酸でpH3に調製した水溶液中、又は水酸化ナトリウムでpH11に調製した水溶液中にそれぞれ2週間浸漬した後のアイアライトナノシート積層体のX線回折測定結果を図9に示す。X線の回折パターンは上記水溶液中に浸漬前後で構造変化がなくpH3~11の水溶液に対して安定である事が判った。図9において上から順に、乾燥状態、pH7で保存状態、pH3で保存状態、pH11で保存状態のアイラアイトナノシートのX線回折パターンであり、それぞれのアイラアイトナノシートに由来する特徴的なピークが、2θ(degree)=9.3°、9.2°、9.4°、9.3°であり、d(格子面間隔)はそれぞれ0.95nm、0.96nm、0.94nm、0.95nmであり構造変化がないことを確認した。 X-ray diffraction measurement of the Ialite nanosheet laminate after the separation membrane molded product obtained in Example 1 was immersed in an aqueous solution adjusted to pH 3 with hydrochloric acid or in an aqueous solution adjusted to pH 11 with sodium hydroxide for 2 weeks. The results are shown in FIG. The X-ray diffraction pattern shows no structural change before and after immersion in the above aqueous solution, indicating that it is stable in an aqueous solution of pH 3-11. FIG. 9 shows, in order from the top, the X-ray diffraction patterns of the ilaite nanosheets in a dry state, a state of storage at pH 7, a state of storage at pH 3, and a state of storage at pH 11. The characteristic peaks derived from each ilaite nanosheet are 2θ (degree) = 9.3°, 9.2°, 9.4°, 9.3°, and d (lattice spacing) is 0.95 nm, 0.96 nm, 0.94 nm, 0.95 nm, respectively. and confirmed that there was no structural change.
 実施例1で得られた分離膜成形体によるアニオン性色素阻止性能を測定した結果を図10に示す。アニオン性色素としてメチルオレンジ(Methyl Orange、分子量327)、アシッドレッド265(Acid Red265、分子量636)、ブリリアントブルーFCF(Brilliant Blue FCF、分子量793)、エバンスブルー(Evans Blue、分子量961)、ローズベンガル(Rose Bengal、分子量974)を用いた。支持膜面積9.6×10-4あたりのアイアライトナノシートの積載量が黒■は0.1mg、黒●は05mg、黒▲は1.0mgの結果である。メチルオレンジの除去率が0~10%であり、アシッドレッド265の除去率は0~18%であり、ブリリアントブルーFCFの除去率は0~30%であり、エバンスブルーの除去率は75~99%であり、ローズベンガルの除去率は90~99%であった。アイアライトナノシートの積載量を上記範囲で変化した成形体はそれぞれにおいて、アニオン性色素からなる被分離物水溶液は分子量が800付近で分離又は通過が行われている。従って、実施例1で得られた分離膜成形体におけるアニオン性物質の分離では、分子量800付近での高い分離選択性が期待される。 FIG. 10 shows the results of measuring the anionic dye-blocking performance of the separation membrane molded product obtained in Example 1. In FIG. Examples of anionic dyes include Methyl Orange (molecular weight 327), Acid Red 265 (molecular weight 636), Brilliant Blue FCF (molecular weight 793), Evans Blue (molecular weight 961), Rose Bengal ( Rose Bengal, molecular weight 974) was used. The loading amount of Ialite nanosheets per support film area of 9.6×10 −4 m 2 is 0.1 mg for black ▪, 05 mg for black ●, and 1.0 mg for black ▴. The removal rate of methyl orange is 0-10%, the removal rate of Acid Red 265 is 0-18%, the removal rate of brilliant blue FCF is 0-30%, and the removal rate of Evans blue is 75-99. % and the removal rate of Rose Bengal was 90-99%. In each of the molded articles in which the loading amount of the Iialite nanosheets was varied within the above range, the aqueous solution of the material to be separated comprising the anionic dye was separated or passed through at a molecular weight of around 800. Therefore, in the separation of anionic substances in the separation membrane molded article obtained in Example 1, high separation selectivity at a molecular weight of around 800 is expected.
 実施例1で得られた分離膜成形体を用いたポリエチレングリコール水溶液の分画分子量測定結果を図11に示す。ポリエチレングリコール水溶液を用いて非イオン性物質の分離を行ったものである。支持膜面積9.6×10-4あたりのアイアライトナノシートの積載量が黒■は0.1mg、黒●は05mg、黒▲は1.0mgの結果である。異なる分子量(200、1000、6000、12000、20000、35000)を有するポリエチレングリコール水溶液をそれぞれ積載量の異なる分離膜成形体に通液してそれぞれの除去率を測定した。積載量0.1mgでは分子量差による分離が十分ではなかった。積載量が0.5mgの場合と、1.0mgの場合では分子量が10000付近で除去率が90%以上となり、分離されている事が示された。従って、実施例1で得られた分離膜成形体の非イオン性物質の分離における当該膜の分画分子量は10000付近に存在すると考えらえる。 FIG. 11 shows the results of measuring the molecular weight cut off of the polyethylene glycol aqueous solution using the separation membrane molded article obtained in Example 1. As shown in FIG. Nonionic substances were separated using an aqueous polyethylene glycol solution. The loading amount of Ialite nanosheets per support film area of 9.6×10 −4 m 2 is 0.1 mg for black ▪, 05 mg for black ●, and 1.0 mg for black ▴. Aqueous polyethylene glycol solutions having different molecular weights (200, 1000, 6000, 12000, 20000 and 35000) were passed through separation membrane molded bodies having different load capacities, and the respective removal rates were measured. Separation due to molecular weight difference was not sufficient with a loading of 0.1 mg. When the loading amount was 0.5 mg and 1.0 mg, the removal rate was 90% or more when the molecular weight was around 10,000, indicating separation. Therefore, it is considered that the molecular weight cut off of the separation membrane molded article obtained in Example 1 exists in the vicinity of 10,000 in the separation of nonionic substances.
 実施例2で得られたアイアライトナノシートに酸化グラフェンの層が1:1の質量比で積層した液中物質分離膜を有する液中物質分離膜成形体を用いた塩含有水溶液の透水性評価及び塩成分の分離試験の結果を図12に示す。表12中、棒グラフは透水性能を表し、黒◆は硫酸ナトリウム、黒×は塩化ナトリウムの塩阻止率を表す。 Evaluation of water permeability of a salt-containing aqueous solution using a liquid-substance separation membrane molded body having a liquid-substance separation membrane in which a graphene oxide layer is laminated at a mass ratio of 1:1 on the ialite nanosheet obtained in Example 2, and The results of the salt component separation test are shown in FIG. In Table 12, the bar graph represents water permeability, black diamond represents sodium sulfate, and black x represents salt rejection of sodium chloride.
 実施例2で得られたアイアライトナノシートナノシートに酸化グラフェン層が1:0.1の質量比で積層した液中物質分離膜を含む液中物質分離膜成形体を用いた塩含有水溶液の透水性評価及び塩成分の分離試験の結果を図13に示す。表13中、棒グラフは透水性能を表し、黒◆は硫酸ナトリウム、黒×は塩化ナトリウムの塩阻止率を表す。 Permeability of a salt-containing aqueous solution using a liquid-substance separation membrane formed body containing a liquid-substance separation membrane in which a graphene oxide layer is laminated on the Ialite nanosheet nanosheet obtained in Example 2 at a mass ratio of 1:0.1 The results of the evaluation and the salt component separation test are shown in FIG. In Table 13, the bar graph represents water permeability, black diamond represents sodium sulfate, and black x represents salt rejection of sodium chloride.
 図12及び図13より、アイアライト単独膜の場合、酸化グラフェン(GO)単独膜の場合と比べて、アイアライトと酸化グラフェンの複合膜とする事で塩類の阻止率が向上していることが分かった。 12 and 13, in the case of the ialite single film, compared with the case of the graphene oxide (GO) single film, the compound film of ialite and graphene oxide improves the rejection rate of salts. Do you get it.
 液体中の被分離物質(例えばイオン性物質)を効率よく除去することができる分離膜であり、分離膜成分は耐薬品性が高く、膜中の溶媒透過速度が高く、液中の物質(例えばイオン性有機物、又は非イオン性物質)を効率よく分離する液中物質分離膜成形体とその製造方法を提供する。 It is a separation membrane that can efficiently remove substances to be separated (e.g., ionic substances) in a liquid. Disclosed is a liquid-submerged substance separation membrane molded product that efficiently separates ionic organic substances or nonionic substances) and a method for producing the same.

Claims (20)

  1.  総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)と、アンモニウムイオンを有する陰イオン界面活性剤(b)とを含み、平均厚さ0.7~100nm、平均長径50~10,000nm、及び(最大長径/最大長径に直行する幅)=1.0~10.0を有し、層状化合物の層間剥離による層剥離物質である板状粒子(A)を含む液中物質分離膜と、該液中物質分離膜を支持する基材(B)とを含む液中物質分離膜成形体。 A quaternary ammonium ion (a) having 15 to 45 carbon atoms in total and 1 to 2 alkyl groups having 10 to 20 carbon atoms and an anionic surfactant (b) having an ammonium ion having an average thickness of 0.7 to 100 nm, an average major axis of 50 to 10,000 nm, and (maximum major axis/width perpendicular to the maximum major axis) = 1.0 to 10.0, due to delamination of the layered compound A liquid-substance separation membrane molded article comprising a liquid-substance separation membrane containing plate-like particles (A) which are delamination substances, and a substrate (B) supporting the liquid-substance separation membrane.
  2. 上記層状化合物が、アイラアイトである、請求項1に記載の液中物質分離膜成形体。 2. The molded article for separating substances in liquid according to claim 1, wherein the layered compound is ilaite.
  3. 前記液中物質分離膜が、アイラアイトと酸化グラフェンの複合膜である、請求項1又は請求項2に記載の液中物質分離膜成形体。 3. The molded article for separating substances in liquid according to claim 1, wherein the membrane for separating substances in liquid is a composite film of ilaite and graphene oxide.
  4. 上記液中物質分離膜は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液から形成されてなり、該水性分散液中の板状粒子(A)のレーザー回折式粒子径分布で90%積算粒子径値が、該粒子径分布の平均値の1.5~10倍である請求項1乃至請求項3のいずれか1項に記載の液中物質分離膜成形体。 The liquid-substance separation membrane is formed from an aqueous dispersion of plate-like particles (A) containing the above (a) and (b) used for delamination of the layered compound. 4. The method according to any one of claims 1 to 3, wherein the 90% cumulative particle size value in the laser diffraction particle size distribution of the particles (A) is 1.5 to 10 times the average value of the particle size distribution. Submerged substance separation membrane molding.
  5. 上記液中物質分離膜は、上記層状化合物の層間剥離に用いる上記(a)と(b)を含む板状粒子(A)の水性分散液から形成されてなり、該水性分散液の動的光散乱法による平均粒子径が10~10、000nmであり、上記(a)と(b)が共に(A)に対して0.01~50.0質量%に範囲にある板状粒子(A)である請求項1乃至請求項4のいずれか1項に記載の液中物質分離膜成形体。 The liquid-substance separation membrane is formed from an aqueous dispersion of plate-like particles (A) containing the above (a) and (b) used for delamination of the layered compound. Plate-like particles (A) having an average particle diameter of 10 to 10,000 nm as determined by a scattering method, and having both (a) and (b) in the range of 0.01 to 50.0% by mass with respect to (A) 5. The molded article for separating substances in liquid according to claim 1, wherein
  6. 上記基材(B)が、セルロース、合成高分子、及びセラミックスからなる群から選ばれる少なくとも1種の多孔質基材である請求項1乃至請求項5のいずれか1項に記載の液中物質分離膜成形体。 6. The submerged substance according to any one of claims 1 to 5, wherein the substrate (B) is at least one porous substrate selected from the group consisting of cellulose, synthetic polymers, and ceramics. Separation membrane compact.
  7. 上記セルロースが、ニトロセルロース、カルボキシメチルセルロース、又はヒドロキシエチルセルロースである請求項6に記載の液中物質分離膜成形体。 7. The molded article for separating substances in liquid according to claim 6, wherein the cellulose is nitrocellulose, carboxymethyl cellulose or hydroxyethyl cellulose.
  8. 上記合成高分子が、ポリエーテルスルホン、ポリサルホン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリエチレンビニルアルコール、ポリビニルアルコール、ポリアクリル酸、又はポリメタクリル酸である請求項6に記載の液中物質分離膜成形体。 7. The liquid-submerged substance separation membrane molded article according to claim 6, wherein the synthetic polymer is polyethersulfone, polysulfone, polyvinylidene fluoride, polyvinylidene chloride, polyethylene vinyl alcohol, polyvinyl alcohol, polyacrylic acid, or polymethacrylic acid. .
  9. 上記セラミックスが、シリカ、アルミナ、又はムライトである請求項6に記載の液中物質分離膜成形体。 7. The molded article for separating substances in liquid according to claim 6, wherein the ceramic is silica, alumina or mullite.
  10. 上記液中物質分離膜は基材(B)表面上に形成されてなり、上記液中物質分離膜は1.5nm~10μmの膜厚を有する請求項1乃至請求項9の何れか1項に記載の液中物質分離膜成形体。 The liquid-substance separation membrane is formed on the surface of the substrate (B), and the liquid-substance separation membrane has a thickness of 1.5 nm to 10 μm. The liquid-substance separation membrane molded product described above.
  11. 被分離物質を含む溶液の溶媒の透過速度が、0.1~100L・m-2・hr―1・bar―1である請求項1乃至請求項10のいずれか1項に記載の液中物質分離膜成形体。 The substance-in-liquid according to any one of claims 1 to 10, wherein the solvent permeation rate of the solution containing the substance to be separated is 0.1 to 100 L·m −2 ·hr −1 ·bar −1 . Separation membrane compact.
  12. 被分離物質を含む溶液の物質除去率が15~99%である請求項1乃至請求項11のいずれか1項に記載の液中物質分離膜成形体。 12. The molded product for separating substances in liquid according to any one of claims 1 to 11, wherein the substance removal rate of the solution containing the substance to be separated is 15 to 99%.
  13. 被分離物質がイオン性化合物である請求項1乃至請求項12の何れか1項に記載の液中物質分離膜成形体。 13. The molded product for separating substances in liquid according to any one of claims 1 to 12, wherein the substance to be separated is an ionic compound.
  14. 上記イオン性化合物が少なくともスルホン酸イオン、又はカルボン酸イオンを有する有機化合物である請求項13に記載の液中物質分離膜成形体。 14. The molded article for separating substances in liquid according to claim 13, wherein the ionic compound is an organic compound having at least sulfonate ions or carboxylate ions.
  15. 被分離物質を含む溶液が、被分離物質と、該被分離物質とは分子量の異なる少なくとも1種以上の溶質分子を含む溶液であって、該溶液中の被分離物質を濃縮する用の、請求項1乃至請求項14の何れか1項に記載の液中物質分離膜成形体。 A solution containing a substance to be separated is a solution containing a substance to be separated and at least one or more solute molecules having a molecular weight different from that of the substance to be separated, and for concentrating the substance to be separated in the solution. 15. The molded product for separating substances in liquid according to any one of claims 1 to 14.
  16. 下記(i)工程乃至(vi)工程:
    (i)工程:ケイ酸化合物水溶液を90~150℃の温度で水熱処理後に静置して得られた層状化合物を分離し水洗した湿式ゲルを水中に添加し、層状化合物の水性分散液を製造する工程、
    (ii)工程:(i)工程で得られた水性分散液に、層状化合物のイオン交換容量の等倍~三倍量となる、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)を添加し、40~100℃で、12~48時間の加熱をする工程、
    (iii)工程:(ii)工程で得られた液に純水を加え、液中のナトリウムイオン濃度が100ppm以下になるように、ナトリウムイオン含有液を系外に取り除く工程、
    (iv)工程:(iii)工程に含まれる湿式ゲルを、濃度が0.01~1質量%のアンモニウムイオンを有する陰イオン界面活性剤(b)水溶液中に分散させた後、さらに、アンモニアを添加して液中のpHを9.0~12.0に調整する工程、
    (v)工程:(iv)工程で得られた液を、40~90℃で、12~48時間の加熱を行い、板状粒子(A)の分散液を得る工程、
    (vi)工程:基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて液中物質分離膜を製膜する工程、を含む
    請求項1乃至請求項15のいずれか1項に記載の液中物質分離膜成形体の製造方法。
    The following steps (i) to (vi):
    (i) Step: An aqueous dispersion of a silicic acid compound is hydrothermally treated at a temperature of 90 to 150° C., and the resulting layered compound is separated and washed with water. the process of
    (ii) step: adding to the aqueous dispersion obtained in step (i) a total carbon atom number of 15 to 45 and a carbon atom number of 10, which is 1 to 3 times the ion exchange capacity of the layered compound; adding a quaternary ammonium ion (a) having 1 to 2 alkyl groups of ∼20 and heating at 40 to 100°C for 12 to 48 hours;
    (iii) step: adding pure water to the liquid obtained in step (ii), and removing the sodium ion-containing liquid from the system so that the sodium ion concentration in the liquid is 100 ppm or less;
    (iv) step: after dispersing the wet gel included in step (iii) in an anionic surfactant (b) aqueous solution containing ammonium ions at a concentration of 0.01 to 1% by mass, ammonia is further added; adding to adjust the pH in the liquid to 9.0 to 12.0;
    (v) step: a step of heating the liquid obtained in step (iv) at 40 to 90° C. for 12 to 48 hours to obtain a dispersion of plate-like particles (A);
    (vi) Step: Forming a liquid-substance separation membrane on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the (v) step. 16. The method for manufacturing a liquid-substance separation membrane molded product according to any one of claims 1 to 15.
  17. 前記(vi)工程が、基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて板状粒子(A)層を形成する工程と、該層の上に酸化グラフェンの分散液を用いて酸化グラフェン層を積層する工程とを含む、液中物質分離膜を製膜する工程である、請求項16に記載の液中物質分離膜成形体の製造方法。 The step (vi) is a step of forming a plate-like particle (A) layer on the surface of the substrate (B) using the dispersion liquid of the plate-like particles (A) obtained in the step (v); 17. The article for separating substances in liquid according to claim 16, which is a step of forming a substance separation membrane in liquid, comprising a step of laminating a graphene oxide layer on the layer using a graphene oxide dispersion. Production method.
  18. 基材(B)表面上に、(v)工程で得られた板状粒子(A)の分散液を用いて製膜する工程(vi)が、吸引ろ過又は加圧ろ過で行われる請求項16又は請求項17に記載の液中物質分離膜成形体の製造方法。 16. The step (vi) of forming a film on the surface of the substrate (B) using the dispersion of the plate-like particles (A) obtained in the step (v) is performed by suction filtration or pressure filtration. Alternatively, the method for manufacturing a liquid-substance separation membrane molded article according to claim 17.
  19. (v)工程と(vi)工程の間に、更に(v-0)工程、
    (v-0)工程:(v)工程で得られた板状粒子(A)を含む分散液を、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)の含有量を共に板状粒子(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)を含む分散液を得る工程、を追加する請求項16又は請求項17に記載の液中物質分離膜成形体の製造方法。
    (v) Between the step and (vi) step, further (v-0) step,
    (v-0) step: The dispersion containing the plate-like particles (A) obtained in step (v) is The content of the quaternary ammonium ions (a) having ~2 and the anionic surfactant (b) having ammonium ions are both in the range of 0.01 to 15.0% by mass based on the plate-like particles (A) 18. The method for manufacturing a liquid-submerged substance separation membrane molded product according to claim 16 or 17, further comprising a step of obtaining a dispersion containing the plate-like particles (A) reduced to .
  20. (v-0)工程が、下記(v-1)工程、
    (v-1)工程:(v)工程で得られた板状粒子(A)を含む分散液を20000~60000Gで超遠心処理を行い、総炭素原子数15~45であり、且つ、炭素原子数10~20のアルキル基を1~2個有する第4級アンモニウムイオン(a)とアンモニウムイオンを有する陰イオン界面活性剤(b)の含有量を共に(A)に対して0.01~15.0質量%の範囲に低減させた板状粒子(A)を含む分散液を得る工程、である請求項19に記載の液中物質分離膜成形体の製造方法。
    (v-0) step is the following (v-1) step,
    (v-1) step: the dispersion containing the plate-like particles (A) obtained in step (v) is subjected to ultracentrifugation at 20,000 to 60,000 G, and the total number of carbon atoms is 15 to 45, and The content of both the quaternary ammonium ion (a) having 1 to 2 alkyl groups of number 10 to 20 and the anionic surfactant (b) having an ammonium ion is 0.01 to 15 with respect to (A) 20. The method for manufacturing a liquid-submerged substance separation membrane molded product according to claim 19, which is a step of obtaining a dispersion liquid containing the plate-like particles (A) reduced to a range of 0.0% by mass.
PCT/JP2022/020111 2021-05-13 2022-05-12 In-liquid substance separation membrane using octosilicate material and production method for same WO2022239843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521248A JPWO2022239843A1 (en) 2021-05-13 2022-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-081783 2021-05-13
JP2021081783 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022239843A1 true WO2022239843A1 (en) 2022-11-17

Family

ID=84028344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020111 WO2022239843A1 (en) 2021-05-13 2022-05-12 In-liquid substance separation membrane using octosilicate material and production method for same

Country Status (3)

Country Link
JP (1) JPWO2022239843A1 (en)
TW (1) TW202337552A (en)
WO (1) WO2022239843A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199502A (en) * 2023-02-27 2023-06-02 武汉理工大学 Alumina ceramic plate film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105684A (en) * 2015-12-11 2017-06-15 株式会社ホージュン Organoclay and manufacturing method therefor
JP2020011861A (en) * 2018-07-17 2020-01-23 公立大学法人大阪 Organic matter-containing layered silicic acid compound and method for producing the same
WO2020153352A1 (en) * 2019-01-21 2020-07-30 公立大学法人大阪 Exfoliated layer liquid dispersion of layered compound, and transparent substrate using same
JP2021059468A (en) * 2019-10-04 2021-04-15 公立大学法人大阪 Silicic acid nanosheet dispersion and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105684A (en) * 2015-12-11 2017-06-15 株式会社ホージュン Organoclay and manufacturing method therefor
JP2020011861A (en) * 2018-07-17 2020-01-23 公立大学法人大阪 Organic matter-containing layered silicic acid compound and method for producing the same
WO2020153352A1 (en) * 2019-01-21 2020-07-30 公立大学法人大阪 Exfoliated layer liquid dispersion of layered compound, and transparent substrate using same
JP2021059468A (en) * 2019-10-04 2021-04-15 公立大学法人大阪 Silicic acid nanosheet dispersion and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199502A (en) * 2023-02-27 2023-06-02 武汉理工大学 Alumina ceramic plate film and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2022239843A1 (en) 2022-11-17
TW202337552A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
JP5615800B2 (en) Inorganic material made from spherical particles of a specific size and having metal nanoparticles trapped in a mesostructured matrix
EP1893531B1 (en) Inorganic material comprising metal nanoparticles trapped in a mesostructured matrix
TWI361171B (en)
JP5437751B2 (en) Dispersion containing layered inorganic compound and method for producing the same
JP5672726B2 (en) Organic solvent dispersion blended with flaky perovskite oxide particles, method for producing the same, perovskite oxide thin film using the same, and method for producing the same
KR101633530B1 (en) Chain-shaped Silica-based Hollow Fine Particles and Process for Producing Same, Coating Fluid for Transparent Coating Film Formation Containing the Fine Particles, and Substrate with Transparent Coating Film
WO2022239843A1 (en) In-liquid substance separation membrane using octosilicate material and production method for same
US10213748B2 (en) Pore opened zeolite nanosheets and their suspensions and methods and uses related thereto
KR20110110221A (en) Composite particles, process for producig the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles
WO2009060144A2 (en) Crystallised material containing silicon with hierarchised and organised porosity
Petrakli et al. α‐Alumina nanospheres from nano‐dispersed boehmite synthesized by a wet chemical route
CN108975378A (en) A kind of dysprosia raw powder's production technology
JP5659371B2 (en) Organic solvent dispersion blended with flaky titanium oxide, method for producing the same, titanium oxide film using the same, and method for producing the same
Mallakpoura et al. Modification of clay with L-leucine and TiO2 with silane coupling agent for preparation of poly (vinyl alcohol)/organo-nanoclay/modified TiO2 nanocomposites film
KR101516675B1 (en) Silica based nano sheet, dispersion sol of silica based nano sheet and method for preparing thereof
Zhu et al. Oriented printable layered double hydroxide thin films via facile filtration
JP5486534B2 (en) Gas barrier sheet containing nanosheet of layered inorganic compound
Manne et al. Thin films and nanolaminates incorporating organic/inorganic interfaces
JP7148853B1 (en) Gas barrier film-forming composition, gas barrier film, and method for producing the same
JP2018177634A (en) Inorganic nanosheet dispersion and method for producing same
Zlaoui et al. Performance improvement of reduced graphene oxide blended PVDF ultrafiltration membrane
Arita et al. Size and size distribution balance the dispersion of colloidal CeO 2 nanoparticles in organic solvents
KR101284186B1 (en) Preparation of cellulose particles from sea algae as a raw material and the transparent film by a coating with them
Maeda et al. Preparation of mesostructured silica/anodic alumina composite membranes in mild conditions using acetic acid
JP5397807B2 (en) Synthetic smectite, method for producing the same, and composite film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521248

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE