WO2022239791A1 - Measuring sensor - Google Patents

Measuring sensor Download PDF

Info

Publication number
WO2022239791A1
WO2022239791A1 PCT/JP2022/019895 JP2022019895W WO2022239791A1 WO 2022239791 A1 WO2022239791 A1 WO 2022239791A1 JP 2022019895 W JP2022019895 W JP 2022019895W WO 2022239791 A1 WO2022239791 A1 WO 2022239791A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
channel
measurement sensor
cross
idt electrode
Prior art date
Application number
PCT/JP2022/019895
Other languages
French (fr)
Japanese (ja)
Inventor
崇宏 砂田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023521217A priority Critical patent/JPWO2022239791A1/ja
Publication of WO2022239791A1 publication Critical patent/WO2022239791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a measurement sensor capable of measuring properties of a sample liquid or components contained in the sample liquid.
  • Patent Document 1 discloses a technique that can measure the properties of a sample liquid or the components contained in the sample liquid.
  • a measurement sensor includes: at least one piezoelectric substrate; a first detection unit having a first IDT electrode arranged on the at least one piezoelectric substrate and having a plurality of electrode fingers arranged in one direction; a second detection unit on at least one piezoelectric substrate and having a second IDT electrode in which a plurality of electrode fingers are aligned along the virtual straight line overlapping in one direction; a channel member having a channel.
  • FIG. 1 is a schematic diagram of a measurement sensor according to a first embodiment
  • FIG. 1 is a schematic diagram of a measuring device according to a first embodiment
  • FIG. FIG. 2 is a plan view showing a configuration of part of the measurement sensor shown in FIG. 1
  • FIG. 2 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 1
  • FIG. 2 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 1 taken along section line II'
  • FIG. 2 is a plan view showing a configuration of part of the measurement sensor shown in FIG. 1
  • FIG. 5 is a schematic diagram of a measurement sensor according to a second embodiment
  • FIG. 8 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 7;
  • FIG. 8 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 7 taken along section line II';
  • FIG. 11 is a schematic diagram of a measurement sensor according to a third embodiment;
  • FIG. 11 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 10;
  • FIG. 11 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 10 taken along section line II';
  • FIG. 1 shows an outline of a measurement sensor 1 according to one embodiment of the present disclosure.
  • any direction of the measurement sensor 1 may be upward or downward, an orthogonal coordinate system xyz is defined below for the sake of convenience.
  • terms such as the upper surface and the lower surface are used, with the positive side in the z direction being the upper side.
  • “height” means, for example, the distance along the Z-axis between any two points.
  • the term “width” refers to the distance along the Y-axis between any two points.
  • the measurement sensor 1 can detect the first substance, which is a specific substance, as a target from the sample liquid that is the object of measurement.
  • the measurement sensor 1 can output a signal that changes due to detection of the first substance.
  • a change in the signal output by the measurement sensor 1 indicates, for example, information on a change in phase, frequency, voltage value, current value, weight value, or the like.
  • the measurement sensor 1 of the present disclosure may be connectable with a control device 2 that controls the measurement sensor 1 .
  • the measuring sensor 1 has an external terminal 3 .
  • the control device 2 has a connection terminal 4 .
  • the measurement sensor 1 may be arranged in the control device 2 so that the external terminal 3 and the connection terminal 4 are connected.
  • the measurement sensor 1 can, for example, output a signal to the control device 2 that changes due to the detection of the first substance.
  • the outline of the control device 2 is shown in FIG.
  • the measurement sensor 1 of the present disclosure is a surface acoustic wave sensor that detects the first substance based on the phase change of surface acoustic waves.
  • the output of the measurement sensor 1 may be the amount of change in the phase difference of the surface acoustic waves.
  • the phase difference is the difference between the phase of the transmitted surface acoustic wave and the phase of the received surface acoustic wave.
  • the amount of change in phase difference is a value that indicates how much the phase difference has changed due to the presence of the first substance.
  • the measurement sensor 1 includes a channel member 5 and a sensor substrate 7, as shown in FIG.
  • the measurement sensor 1 comprises at least one piezoelectric substrate 8 located on a sensor substrate 7 .
  • the measurement sensor 1 further comprises a first detector 9 positioned on the piezoelectric substrate 8 and a second detector 10 positioned on the piezoelectric substrate 8 .
  • the external terminals 3 may be located on the sensor substrate 7 .
  • the channel member 5 has a channel 6 through which the specimen liquid flows. A part or all of the sensor substrate 7 and the piezoelectric substrate 8 may be exposed to the channel 6 .
  • FIG. 3 is a plan view showing the configuration of part of the measurement sensor shown in FIG.
  • the sensor substrate 7 includes an insulating substrate 11 , conductive substrate wiring arranged on the insulating substrate 11 , and external terminals 3 .
  • the external terminals 3 and the board wiring are electrically connected to each other.
  • the insulating substrate 11 is made of, for example, a resin material or a ceramic material.
  • the piezoelectric substrate 8 is composed of, for example, a lithium tantalate (LiTaO 3 ) single crystal, a lithium niobate (LiNbO 3 ) single crystal, or a piezoelectric single crystal such as quartz.
  • the planar shape and various dimensions of the piezoelectric substrate 8 may be appropriately set.
  • the thickness of the piezoelectric substrate 8 can be set to 0.3 mm to 1.0 mm, for example.
  • the first detection unit 9 can detect the presence of the first substance.
  • the second detection unit 10 may detect the presence of the first substance, or may not detect the presence of the first substance. For example, when the second detection unit 10 does not detect the presence of the first substance, by analyzing the signal from the first detection unit 9 using the detection result of the second detection unit 10 as a reference line, the presence of the first substance is detected. It can be detected with high accuracy.
  • the first detection section 9 and the second detection section 10 may be positioned on one piezoelectric substrate 8 or may be positioned on independent and separate piezoelectric substrates 8 .
  • the respective piezoelectric substrates 8 may be positioned on one sensor substrate 7, or may be independent. may be located on separate sensor substrates 7 .
  • the first detection unit 9 and the second detection unit 10 are located on independent and separate piezoelectric substrates 8, and the respective piezoelectric substrates 8 are independent and separate sensor substrates.
  • the measurement sensor 1 has a first piezoelectric substrate on which the first detection section 9 is located and a second piezoelectric substrate on which the second detection section 10 is located.
  • a part of the first detection unit 9 and the second detection unit 10 may be positioned within the channel 6 , or all of them may be positioned within the channel 6 . In this embodiment, all of them are located within the channel 6 .
  • the first detection unit 9 includes a first IDT (Inter Digital Transducer) electrode 91 having a plurality of electrode fingers. A plurality of electrode fingers of the first IDT electrode 91 are arranged along one direction A. As shown in FIG.
  • the second detection unit 10 includes a second IDT (Inter Digital Transducer) electrode 101 having a plurality of electrode fingers.
  • the first IDT electrode 91 may be composed of one IDT electrode, or may be composed of a first input IDT electrode 91a and a first output IDT electrode 91b. In this embodiment, the first IDT electrode 91 is composed of a first input IDT electrode 91a and a first output IDT electrode 91b.
  • the second IDT electrode 101 may be composed of one IDT electrode, or may be composed of a second input IDT electrode 101a and a second output IDT electrode 101b.
  • the second IDT electrode 101 is composed of a second input IDT electrode 101a and a second output IDT electrode 101b.
  • a part of the first IDT (Inter Digital Transducer) electrode 91 and the second IDT (Inter Digital Transducer) electrode 101 may be positioned within the channel 6, or all of them may be positioned within the channel 6. may In this embodiment, the first IDT electrode 91 and the second IDT electrode 101 are all positioned within the channel 6 .
  • the first IDT electrode 91 can generate surface acoustic waves.
  • surface acoustic waves are generated along one direction A, which is the direction in which the plurality of electrode fingers are arranged.
  • the first IDT electrode 91 includes, for example, a first input IDT electrode 91a and a first output IDT electrode 91b
  • the first IDT electrode 91 has a surface acoustic wave current between the first input IDT electrode 91a and the first output IDT electrode 91b. can be generated.
  • the first input IDT electrode 91a receives an electrical signal and converts the electrical signal into a surface acoustic wave.
  • the first output IDT electrode 91b receives the surface acoustic wave generated by the first input IDT electrode 91a, converts the received surface acoustic wave into an electric signal, and outputs the electric signal.
  • the second IDT electrode 101 can generate a surface acoustic wave.
  • surface acoustic waves are generated along the direction in which the plurality of electrode fingers are arranged.
  • the first IDT electrode 101 may generate a surface acoustic wave current between the first input IDT electrode 101a and the first output IDT electrode 101b. can be generated.
  • the second input IDT electrode 101a receives an electrical signal and converts the electrical signal into a surface acoustic wave.
  • the first output IDT electrode 101b receives the surface acoustic wave generated by the first input IDT electrode 91a, converts the received surface acoustic wave into an electric signal, and outputs the electric signal.
  • the first IDT electrode 91 and the second IDT electrode 101 are made of metal material such as gold, chromium, or titanium, for example.
  • the first IDT electrode 91 and the second IDT electrode 101 may be single-layer electrodes or may be electrodes composed of a plurality of layers.
  • the first detection section 9 may further include a first waveguide 92 and the second detection section 10 may further include a second waveguide 102 .
  • the first waveguide 92 is a propagation path for surface acoustic waves generated by the first IDT electrode 91 .
  • the second waveguide 102 is a propagation path for surface acoustic waves generated by the second IDT electrode 101 .
  • the first IDT electrode 91 includes a first input IDT electrode 91a and a first output IDT electrode 91b
  • the first waveguide 92 is formed between the first input IDT electrode 91a and the first output IDT electrode 91a on the upper surface of the piezoelectric substrate 8. It is located in the area sandwiched between the electrodes 91b.
  • the second waveguide 102 is formed on the upper surface of the piezoelectric substrate 8 by the second input IDT electrode 101a and the second IDT electrode 101b. It is positioned in a region sandwiched between the output IDT electrodes 101b.
  • a part of the first waveguide 92 and the second waveguide 102 may be located in the flow channel 6, or all of them may be located in the flow channel 6. In this embodiment, all of the first waveguide 92 and the second waveguide 102 are exposed to the channel 6 .
  • a second substance which is a substance that reacts with the first substance, is fixed to the first detection unit 9 .
  • the second substance may be fixed to the second detection section 10 or may not be fixed to the second detection section 10 .
  • the second substance is not immobilized.
  • the second substance is fixed to the first waveguide 92 in the first detection section 9 .
  • the second substance may be fixed to the second waveguide 102 .
  • the viscosity or density of the sample liquid in contact with the first detection unit 9 changes, and the surface acoustic wave generated by the first IDT electrode 91 changes. Phase changes. This phase change allows the measurement sensor 1 to detect the presence of the first substance. A signal resulting from detection of the first substance is output from the measurement sensor 1 to the control device 2 .
  • the amount of phase change of the surface acoustic wave depends on the first substance and the second substance. Therefore, it is possible not only to detect the first substance, but also to measure the content or concentration of the first substance.
  • the second waveguide 102 is not fixed with the second substance. That is, since the reaction between the first substance and the second substance does not occur in the second waveguide 102 , the phase change of the surface acoustic wave caused by the reaction between the first substance and the second substance is does not occur. Therefore, by taking the difference between the signal acquired by the second detection unit 10 and the signal acquired by the first detection unit 9, it is possible to acquire the change in the signal caused by the reaction between the first substance and the second substance. .
  • the reaction between the first substance and the second substance may be any reaction that causes a change in the output of the measurement sensor 1.
  • Examples of such reactions include reactions in which the first substance and the second substance are bound by oxidation-reduction reactions, enzymatic reactions, antigen-antibody reactions, chemical adsorption, intermolecular interactions, or ionic interactions, or enzymatic reactions. It may be a reaction that generates a second substance, which is a new substance, by, for example.
  • the second substance fixed to the first waveguide 92 and/or the second waveguide 102 may be appropriately selected according to the first substance.
  • the first substance is a specific protein, DNA, or cell in the specimen fluid
  • the second substance may be an antibody, peptide, aptamer, or the like.
  • an antibody for example, an antigen can be used as the second substance.
  • an enzyme can be used as the second substance, for example.
  • the measurement sensor 1 may further have one or more detection units having the same configuration as the first detection unit 9 or the second detection unit 10.
  • the measurement sensor 1 may have a connection conductor 12.
  • the first IDT electrode 91 and the substrate wiring are electrically connected to each other by the connection conductor 12 .
  • the second IDT electrode 101 and the substrate wiring are electrically connected to each other by the connection conductor 12 .
  • the connection conductor 12 may be located across the sensor substrate 7 and the piezoelectric substrate 8 .
  • the sensor substrate 7, the piezoelectric substrate 8, the first detection section 9, and the second detection section 10 can be manufactured by a well-known manufacturing method.
  • the channel 6 can function as a passageway for the specimen liquid.
  • the channel member 5 has a supply port 13 that is open to the upper surface of the channel member 5 and that supplies the sample liquid to the channel 6, and a discharge port 14 that discharges the sample liquid.
  • the measurement sensor 1 acquires signal changes in the first detection unit 9 and the second detection unit 10 when the sample liquid supplied from the supply port 13 reaches the first detection unit 9 and the second detection unit 10. , and then the specimen liquid is discharged from the discharge port 14 .
  • the channel member 5 may further include a substrate opening 15 that opens to the outside on the upper or lower surface of the channel member 5 .
  • the number of substrate openings 15 may be one, or two or more.
  • the sensor substrate 7 may be positioned on the channel member 5 .
  • the sensor substrate 7 may be positioned on the flow path member 5 so that the first detection section 9 and the second detection section 10 are exposed to the flow path 6 from the substrate opening 15 .
  • the sensor substrate 7 may be positioned so as to cover the substrate opening 15 in plan view of the measurement sensor 1 . That is, the substrate opening 15 may be closed by the sensor substrate 7 and the channel 6 may be surrounded by the channel member 5 and the sensor substrate 7 .
  • At least one of the supply port 13 and the discharge port 14 may be located on a different plane from the plane on which the first detection unit 9 and the second detection unit 10 are located.
  • being positioned in different planes means being positioned in planes having different z-coordinates. That is, it can be said that at least one of the supply port 13 and the discharge port 14 is positioned on a plane having a different z-coordinate from that of the first detection unit 9 and the second detection unit 10 .
  • the supply port 13 or the discharge port 14 may be positioned on a surface above or below the surface on which the first detection unit 9 and the second detection unit 10 are positioned. . In this embodiment, it is positioned downward. As a result, even if air bubbles flow into the flow path 6, the air bubbles are less likely to remain in the first detection section 9 or the second detection section 10, and the detection accuracy can be improved.
  • the channel member 5 may be composed of one member, or may be composed of a combination of two or more members.
  • the flow path member 5 is composed of a base material 16 and a thin film 17 provided so as to face the base material 16 .
  • the number of thin films 17 may be one, or two or more.
  • the first thin film 171 , the substrate 16 , and the second thin film 172 are arranged in this order from the upper surface of the flow path member 5 .
  • the base material 16 and the thin film 17 may be adhered with an adhesive. By forming a part of the surface forming the flow path with the thin film 17, the thickness of the measurement sensor 1 can be made thinner than when the entire flow path is formed with the base material 16.
  • the base material 16 may be formed by a conventionally known technique such as vacuum forming.
  • the thin film 17 may be formed by conventionally known techniques such as solution film formation and melt film formation.
  • the channel member 5 is made of a hydrophobic material.
  • the channel member 5 may be made of a resin having a contact angle with water of 60 degrees or more, for example.
  • the contact angle with water of the material forming the flow path member 5 can be obtained, for example, by a substrate glass surface wettability test method (JIS R 3257:1999).
  • the resin include polycarbonate, cycloolefin polymer, polymethylmethacrylate resin, and polydimethylsiloxane.
  • the flow path member 5 according to one embodiment is made of polymethyl methacrylate resin.
  • the plurality of electrode fingers of the second IDT electrode 101 are arranged along a virtual straight line B that overlaps in one direction A. As a result, the amount of the sample liquid required for the sample liquid to reach both the first detection unit 9 having the first IDT electrode 91 and the second detection unit 10 having the second IDT electrode 101 is reduced. Measurements can be made in quantity.
  • FIG. 4 is a schematic diagram showing a configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
  • FIG. 5 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 1 taken along the section line II'.
  • FIG. 6 is a plan view showing the configuration of part of the measurement sensor shown in FIG. Specifically, in the measurement sensor 1 shown in FIG. 1, it is a plan view showing the first detection section 9, the second detection section 10, and the flow path 6 as a perspective view.
  • cross section C the cross section orthogonal to the fluid flow direction in the channel 6 is referred to as "cross section C".
  • section C the section of the flow path parallel to the y-axis and z-axis in FIGS. 4 to 6 is referred to as "section C".
  • the height from the upper end to the lower end of the flow channel is defined as "the height of the flow channel”.
  • the length represented by the z-coordinate range of the flow path at any x value is defined as the "height of the flow path”.
  • the length from end to end of the channel at the same height of any cross-section C be the “width of the channel”.
  • the length represented by the range of the y-coordinate of the cross section C at an arbitrary z-value is defined as the "channel width”.
  • the direction in which the fluid flows in the channel 6 may be any direction along the virtual straight line B, and may be substantially parallel along the virtual straight line B, for example.
  • the amount of sample liquid required for the sample liquid to reach both the first detection section 9 and the second detection section 10 can be reduced, and measurement can be performed with a small amount of sample liquid.
  • the angular difference between the directional vector of the surface acoustic wave in the first detection unit 9 and the directional vector of the surface acoustic wave in the second detection unit 10 can be set to 0° or 180°, for example. In this embodiment, the angle difference is 0°.
  • a region of the channel 6 in which the first IDT electrode 91 and the second IDT electrode 101 are arranged may have a linear shape extending along the imaginary straight line B.
  • the linear shape extending along the imaginary straight line B is a shape in which the length along the imaginary straight line B is longer than the length along the other direction, and the shortest distance between arbitrary cross sections C It refers to the shape that connects.
  • the width of the channel 6 in the region where the first IDT electrode 91 and the second IDT electrode 101 are arranged inside may be constant or different. In this embodiment, there are areas where the width of the flow path 6 is different.
  • the flow path 6 has a first area 18 where the first detection section 9 is located, a third area 20, and a second area 19 where the second detection section 10 is located. may At this time, the first area 18, the third area 20, and the second area 19 may be positioned in order.
  • the first area 18, the second area 19, and the third area 20 can be distinguished by the width of the channel 6.
  • the first area 18, the third area 20, and the second area 19 are connected in order.
  • the channel 6 further has a fourth region 21 and a fifth region 22, the fourth region 21 and the first region 18 may be positioned in order, and the second region 19 and the fifth region 22 may be positioned in order. .
  • the fourth region 21 and the first region 18 and the second region 19 and the fifth region 22 can be distinguished by the width of the channel 6 .
  • the fourth region 21 and the first region 18 are connected in order
  • the third region 20 and the second region 19 are connected in order
  • the second region 19 and the fifth region 22 are connected in order. ing.
  • the width of the channel 6 in the first region 18 is greater than the width of the channel 6 in the third region 20.
  • the average value of the widths of the flow channels 6 in the first region 18 is equal to that in the third region 20 means that the width of the flow channel 6 is larger than the average value of the width of the flow channel 6 in the first region 18, even if there is a location where the width of the flow channel 6 in the first region 18 is locally smaller than the width of the flow channel 6 in the third region 20 good.
  • the width of the channel 6 in the first region 18 is greater than the width of the channel 6 in the third region 20 at all locations.
  • the width of the flow channel 6 in the second region 19 is larger than the width of the flow channel 6 in the third region 20.
  • the average value of the widths of the flow channels 6 in the second region 19 means that the width of the flow channel 6 is larger than the average value of the width of the flow channel 6 in the second region 19, even if there is a location where the width of the flow channel 6 in the second region 19 is locally smaller than the width of the flow channel 6 in the third region 20 good.
  • the width of the channel 6 in the second region 19 is greater than the width of the channel 6 in the third region 20 at all locations.
  • the first detection unit 9 and the second detection unit 10 are installed in the flow path 6 . Since it becomes easier to position the entire second detection unit 10, the non-defective product rate can be improved.
  • the first detection unit 9 and the second detection unit 10 are positioned in the first region 18 and the second region 19 where the width of the flow channel 6 is large, between the first region 18 and the second region 19, the flow channel A third region 20 having a small width of 6 may be used. With such a configuration, the volume of the third region 20 can be reduced, so the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10 can be reduced. Measurements can be made with sample fluid volume.
  • the first region 18 may be arranged closer to the supply port 13 than the second region 19 . That is, by arranging the supply port 13, the first region 18, the third region 20, the second region 19, and the discharge port 14 in order, the sample liquid supplied from the supply port 13 is distributed between the first region 18 and the third region 20. , the second region 19 and discharged from the discharge port 14 .
  • the width of the channel 6 in the first region 18 and the width of the channel 6 in the second region 19 may be the same or different. In this embodiment, the width of the channel 6 in the first region 18 and the width of the channel 6 in the second region 19 are equal.
  • the first area 18, the second area 19, and the third area 20 may each have a linear shape extending along the imaginary straight line B. At this time, it can be understood that the first area 18, the third area 20, and the second area 19 are positioned along the imaginary straight line B in this order.
  • the volume of the third region 20 may be smaller than the volume of the first region 18. Also, the volume of the third region 20 may be smaller than the volume of the second region 19 . As a result, the amount of sample liquid required for the sample liquid to reach both the first detection section 9 and the second detection section 10 can be reduced, and measurement can be performed with a small amount of sample liquid.
  • the area of the cross section C of the third region 20 may be smaller than the area of the cross section C of the first region 18 . Also, the area of the cross section C of the third region 20 may be smaller than the area of the cross section C of the second region 19 .
  • the area of the cross section C of the first region 18 and the area of the cross section C of the second region 19 may be the same or different. In this embodiment, the area of the cross section C of the first region 18 and the area of the cross section C of the second region 19 are equal.
  • the first region 18 includes a first end 18a and a first base connected to the first end 18a and located further away from the third region 20 than the first end 18a, as shown in FIG. 18b. That is, it can be said that the first base portion 18b, the first end portion 18a, and the third region 20 are arranged in this order.
  • the area of the cross section C of the first end portion 18a may be smaller than the area of the cross section C of the first base portion 18b. As a result, the volume of the first region 18 is reduced, the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10 is reduced, and measurement is performed with a small amount of sample liquid. be able to.
  • the area of the cross section C of the first end portion 18a may decrease as the third region 20 is approached. That is, the area of the cross section C of the first end portion 18a is the largest in the area of the cross section C of the portion connected to the first base portion 18b, and the cross section C of the end of the first end portion 18a on the side of the third region 20 is It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the first base portion 18b toward the end of the first end portion 18a on the third region 20 side. As a result, even when bubbles flow into the first region 18, the cross-sectional area of the flow path 6 gradually decreases from the first base portion 18b toward the third region 20, so that the bubbles flow toward the third region 20. air bubbles are less likely to remain in the first region 18, and detection accuracy can be improved.
  • the width of the flow path 6 at the first end portion 18a may decrease as the third region 20 is approached. That is, the width of the channel 6 at the first end 18a is the largest at the portion connected to the first base 18b, and the width at the end of the first end 18a on the third region 20 side is the largest. The width of the channel 6 is the smallest, and the width of the channel 6 gradually decreases from the portion connected to the first base portion 18b toward the end of the first end portion 18a on the side of the third region 20. It can be said that it is good. As a result, even if bubbles flow into the first region 18, the bubbles tend to flow toward the third region 20, making it difficult for the bubbles to remain in the first region 18, thereby improving detection accuracy.
  • the height of the flow path 6 at the first end portion 18a may decrease as the third region 20 is approached. That is, the height of the flow path 6 at the first end 18a is the highest at the portion connected to the first base 18b, and The height of the flow path 6 is the smallest, and the height of the flow path 6 gradually decreases from the portion connected to the first base portion 18b toward the end of the first end portion 18a on the side of the third region 20 It can be said that it is acceptable. As a result, even if bubbles flow into the first region 18, the bubbles tend to flow toward the third region 20, making it difficult for the bubbles to remain in the first region 18, thereby improving detection accuracy.
  • the height of the channel 6 at the first end portion 18a is such that, of the z-coordinates of the upper end and the lower end of the channel 6 of the first end portion 18a, the z-coordinate of the upper end becomes smaller while the z-coordinate of the lower end does not change. may be smaller by Alternatively, the height of the channel 6 at the first end portion 18a is such that, of the z-coordinates of the upper end and the lower end of the channel 6 of the first end portion 18a, the z-coordinate at the upper end does not change and the z-coordinate at the lower end increases.
  • the height of the channel 6 at the first end 18a may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the channel 6 at the first end 18a.
  • the z-coordinate of the lower end of the flow channel 6 of the first end portion 18a does not change, and the z-coordinate of the upper end becomes smaller, thereby decreasing the height of the flow channel 6 of the first end portion 18a. ing.
  • the volume of the first region 18 may be equal to the volume of the second region 19.
  • the volume of the sample liquid located in the first region 18, that is, the sample liquid that contacts the first detection unit 9, and the sample liquid that is located in the second region 19, that is, the volume of the sample liquid that contacts the second detection unit 10 are equal. good too.
  • the second area 19 may have the same configuration as the first area 18.
  • the second region 19 has a second end and a second base connected to the second end and located further away from the third region 20 than the second end. That is, it can be said that the third region 20, the second end, and the second base are arranged in this order.
  • the area of the cross section C of the second end may be smaller than the area of the cross section C of the second base. This reduces the volume of the second region 19, reduces the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10, and performs measurement with a small amount of sample liquid. be able to.
  • the area of the cross section C of the second end may decrease as the third region 20 is approached. That is, with respect to the area of the cross section C of the second end, the area of the cross section C of the portion connected to the second base is the largest, and the cross section C of the end of the second end on the side of the third region 20 is the smallest. It can be said that the area of the cross section C may gradually decrease from the portion connected to the second base toward the end of the second end on the third region 20 side. As a result, the sample liquid flows gently from the third region 20 to the second region 19, and air bubbles are less likely to occur, thereby improving the measurement accuracy.
  • the width of the flow path 6 at the second end may decrease as it approaches the third region 20 . That is, the width of the channel 6 at the second end is the largest at the portion connected to the second base, and the width of the channel 6 at the end of the second end on the third region 20 side is the largest. It can be said that the width of the channel 6 may gradually decrease from the portion where the width is the smallest and is connected to the second base toward the end of the second end on the third region 20 side. As a result, the sample liquid flows gently from the third region 20 to the second region 19, bubbles are less likely to occur, and measurement accuracy can be improved.
  • the height of the channel 6 at the second end may decrease as it approaches the third linear region. That is, the height of the channel 6 at the second end is the highest in the portion connected to the second base, and the height of the channel 6 at the end of the second end on the third region 20 side is the highest.
  • the height of the flow path 6 may gradually decrease from the portion where the height of the channel 6 is the lowest and is connected to the second base toward the end of the second end on the side of the third region 20. It can be said. As a result, the sample liquid flows gently from the third region 20 to the second region 19, and air bubbles are less likely to occur, thereby improving the detection accuracy.
  • the height of the channel 6 at the second end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the second end.
  • the height of the channel 6 at the second end is such that, of the z-coordinates of the upper end and the lower end of the channel 6 at the second end, the z-coordinate of the upper end does not change and the z-coordinate of the lower end increases.
  • the height of the second end channel 6 may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the second end channel 6 .
  • the z-coordinate of the lower end of the channel 6 of the second end remains unchanged, and the z-coordinate of the upper end becomes smaller, so that the height of the channel 6 of the second end becomes smaller.
  • the first region 18 has a third end located opposite the first end 18a and connected to the third end and closer to the first base 18b than the third end. It may have a third base located. That is, it can be said that they are arranged in the order of the third end, the third base, the first base 18b, and the first end 18a, and are connected in the order of the fourth region 21, the third end, and the third base. It can also be said.
  • the area of the cross section C of the third end may be smaller than the area of the cross section C of the third base.
  • the area of the cross section C of the third end portion may decrease as the distance from the third base portion increases. That is, the area of the cross section C of the third end is the largest in the area of the cross section C of the portion connected to the third base, and the cross section C of the end of the third end connected to the fourth region 21 is the largest. It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the third base toward the end of the third end connected to the fourth region 21 . As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
  • the width of the flow path 6 at the third end may decrease as it approaches the fourth region 21 . That is, the width of the channel 6 at the third end is the largest in the portion connected to the third base, and the width of the channel 6 at the end of the third end 27e on the side of the fourth region 21 is the largest. It can be said that the width of the flow path 6 may gradually decrease from the portion where the width of is the smallest and is connected to the third base portion toward the end of the third end portion on the side of the fourth region 21 . As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
  • the height of the channel 6 at the third end may decrease as it approaches the fourth region 21 . That is, the height of the channel 6 at the third end is the highest in the portion connected to the third base, and the height of the channel 6 at the end of the third end on the side of the fourth region 21 is the highest.
  • the height of the flow path 6 may be gradually reduced from the portion where the height of the channel 6 is the lowest and connected to the third base toward the end of the third end on the side of the fourth region 21. It can be said. As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
  • the height of the channel 6 at the third end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the third end.
  • the height of the channel 6 at the third end is such that, of the z-coordinates of the upper end and the lower end of the channel 6 at the third end, the z-coordinate of the upper end does not change and the z-coordinate of the lower end increases. It may be smaller by Alternatively, the height of the third end channel 6 may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the third end channel 6 .
  • the z-coordinate of the lower end of the channel 6 at the third end remains unchanged, and the z-coordinate of the upper end becomes smaller, thereby reducing the height of the channel 6 at the third end.
  • the second region 19 has a fourth end located opposite the second end and a second end connected to the fourth end and located closer to the second base than the fourth end. It may have four bases. That is, it can be said that they are arranged in the order of the second end, the second base, the fourth base, and the fourth end, and it can be said that they are connected in the order of the fourth base, the fourth end, and the fifth region 22 . .
  • the area of the cross section C of the fourth end may be smaller than the area of the cross section C of the fourth base. This reduces the volume of the second region 19, reduces the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10, and performs measurement with a small amount of sample liquid. be able to.
  • the area of the cross section C of the fourth end portion may decrease as the distance from the fourth base portion increases. That is, with respect to the area of the cross section C of the fourth end, the area of the cross section C of the portion connected to the fourth base is the largest, and the cross section C of the end of the fourth end connected to the fifth region 22 has the largest area. It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the fourth base toward the end of the fourth end connected to the fifth region 22 . As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
  • the width of the channel 6 at the fourth end may decrease as it approaches the fifth region 22 . That is, the width of the channel 6 at the fourth end is the largest at the portion connected to the fourth base, and the width of the channel 6 at the end of the fourth end on the fifth region 22 side is the largest. It can be said that the width of the channel 6 may gradually decrease from the portion where the width is the smallest and is connected to the fourth base toward the end of the fourth end on the fifth region 22 side. As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
  • the height of the channel 6 at the fourth end may decrease as it approaches the fifth region 22 . That is, the height of the channel 6 at the fourth end is the highest in the portion connected to the fourth base, and the height of the channel 6 at the end of the fourth end on the side of the fifth region 22 is the highest.
  • the height of the flow path 6 may gradually decrease from the portion where the height of the channel 6 is the lowest and is connected to the fourth base toward the end of the fourth end on the side of the fifth region 22. It can be said. As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
  • the height of the channel 6 at the fourth end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the fourth end.
  • the z-coordinate of the top edge may decrease by increasing the z-coordinate of the bottom edge without changing, or it may decrease by varying both the top and bottom edges.
  • the z-coordinate of the lower end of the channel 6 of the fourth end remains unchanged, and the z-coordinate of the upper end becomes smaller, so that the height of the channel 6 of the fourth end becomes smaller.
  • the first base 18b and the third base may or may not be connected to each other, but are not connected to each other in this embodiment.
  • the second base portion and the fourth base portion may or may not be connected to each other, but are not connected to each other in this embodiment.
  • the first detector 9 may be positioned between the first base 18b and the third base.
  • the second detector 10 may be positioned between the second base and the fourth base.
  • FIG. 8 is a schematic diagram showing a configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
  • FIG. 9 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 7 taken along the section line II'.
  • the measurement sensor 1 of the second embodiment differs from the above embodiments in that the sensor substrate 7 and the piezoelectric substrate 8 are positioned on the lower surface of the flow path member 5 . Further, the measurement sensor 1 of the second embodiment differs from the above embodiments in that the substrate opening 15 of the channel member 5 is positioned on the lower surface of the channel member 5 . That is, part or all of the sensor substrate 7 and the piezoelectric substrate 8 are exposed from the bottom surface of the flow path member 5 to the flow path 6 , and the first detection section 9 and the second detection section 10 are located on the bottom surface of the flow path member 5 . are exposed to the flow path 6 from the
  • FIG. 11 is a schematic diagram showing the configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
  • FIG. 12 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 10, taken along line II'.
  • the measurement sensor 1 of the second embodiment differs from the above embodiments in that the sensor substrate 7 and the piezoelectric substrate 8 are positioned on the lower surface of the flow path member 5, as shown in FIG. Further, the measurement sensor 1 of the second embodiment differs from the above embodiments in that the substrate opening 15 of the channel member 5 is positioned on the lower surface of the channel member 5 . That is, part or all of the sensor substrate 7 and the piezoelectric substrate 8 are exposed from the bottom surface of the flow path member 5 to the flow path 6 , and the first detection section 9 and the second detection section 10 are located on the bottom surface of the flow path member 5 . are exposed to the flow path 6 from the
  • the measurement sensor 1 of the third embodiment includes the first and second embodiments, the first end 18a, the second end, the third end and the fourth end.
  • the height of the channel 6 is reduced by increasing the z-coordinate of the lower end without changing the z-coordinate of the upper end.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This measuring sensor includes: at least one piezoelectric substrate; a first detecting portion including a first IDT electrode which is disposed on the piezoelectric substrate and in which a plurality of electrode fingers are arranged in one direction; a second detecting portion including a second IDT electrode which is disposed on the piezoelectric substrate and in which a plurality of electrode fingers are arranged along a virtual straight line overlapping said one direction; and a flow passage member including a flow passage inside which the first IDT electrode and the second IDT electrode are arranged.

Description

測定センサmeasurement sensor
 本発明は、検体液の性質あるいは検体液に含まれる成分を測定することが可能な測定センサに関するものである。 The present invention relates to a measurement sensor capable of measuring properties of a sample liquid or components contained in the sample liquid.
 特許文献1には、検体液の性質あるいは検体液に含まれる成分を測定することが可能な技術が開示されている。 Patent Document 1 discloses a technique that can measure the properties of a sample liquid or the components contained in the sample liquid.
日本国2008-286606号公報Japan 2008-286606
 本開示の一態様に係る測定センサは、少なくとも1つの圧電基板と、前記少なくとも1つの圧電基板上に配され、複数の電極指が一方向に並ぶ第1IDT電極を有する第1検出部と、前記少なくとも1つの圧電基板上であって、前記一方向に重なる仮想直線に沿う複数の電極指が並ぶ第2IDT電極を有する第2検出部と、前記第1IDT電極および前記第2IDT電極が内部で並ぶ流路を有する流路部材と、を備える。 A measurement sensor according to an aspect of the present disclosure includes: at least one piezoelectric substrate; a first detection unit having a first IDT electrode arranged on the at least one piezoelectric substrate and having a plurality of electrode fingers arranged in one direction; a second detection unit on at least one piezoelectric substrate and having a second IDT electrode in which a plurality of electrode fingers are aligned along the virtual straight line overlapping in one direction; a channel member having a channel.
第1実施形態に係る測定センサの模式図である。1 is a schematic diagram of a measurement sensor according to a first embodiment; FIG. 第1実施形態に係る測定装置の模式図である。1 is a schematic diagram of a measuring device according to a first embodiment; FIG. 図1に示した測定センサの一部の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of part of the measurement sensor shown in FIG. 1; 図1に示した測定センサの一部の構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 1; 図1に示した測定センサの一部の切断面線I-I´の断面図である。FIG. 2 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 1 taken along section line II'; 図1に示した測定センサの一部の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of part of the measurement sensor shown in FIG. 1; 第2実施形態に係る測定センサの模式図である。FIG. 5 is a schematic diagram of a measurement sensor according to a second embodiment; 図7に示した測定センサの一部の構成を示す模式図である。FIG. 8 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 7; 図7に示した測定センサの一部の切断面線I-I´の断面図である。FIG. 8 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 7 taken along section line II'; 第3実施形態に係る測定センサの模式図である。FIG. 11 is a schematic diagram of a measurement sensor according to a third embodiment; 図10に示した測定センサの一部の構成を示す模式図である。FIG. 11 is a schematic diagram showing a configuration of part of the measurement sensor shown in FIG. 10; 図10に示した測定センサの一部の切断面線I-I´の断面図である。FIG. 11 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 10 taken along section line II';
 〔実施形態1〕
 以下、図面を適宜に用いて、本発明の一実施形態に係る測定センサについて説明する。
[Embodiment 1]
Hereinafter, a measurement sensor according to an embodiment of the present invention will be described with appropriate use of the drawings.
 図1に、本開示の一実施形態に係る測定センサ1の概略を示す。 FIG. 1 shows an outline of a measurement sensor 1 according to one embodiment of the present disclosure.
 測定センサ1は、いずれの方向が上方または下方とされてもよいが、以下では、便宜的に、直交座標系xyzを定義する。本明細書中では、z方向の正側を上方として、上面または下面などの用語を用いるものとする。なお、本明細書中で「高さ」とは、例えば、任意の2点間のZ軸に沿った距離をいう。また、本明細書中で、「幅」とは、任意の2点間のY軸に沿った距離をいう。 Although any direction of the measurement sensor 1 may be upward or downward, an orthogonal coordinate system xyz is defined below for the sake of convenience. In this specification, terms such as the upper surface and the lower surface are used, with the positive side in the z direction being the upper side. In this specification, "height" means, for example, the distance along the Z-axis between any two points. In this specification, the term "width" refers to the distance along the Y-axis between any two points.
 測定センサ1は、測定対象である検体液から、特定の物質である第1物質を標的として検出することができる。測定センサ1は、第1物質の検出に起因して変化する信号を出力することができる。測定センサ1が出力する信号の変化は、例えば、位相、周波数、電圧値、電流値、または重量値などの変化の情報を示している。 The measurement sensor 1 can detect the first substance, which is a specific substance, as a target from the sample liquid that is the object of measurement. The measurement sensor 1 can output a signal that changes due to detection of the first substance. A change in the signal output by the measurement sensor 1 indicates, for example, information on a change in phase, frequency, voltage value, current value, weight value, or the like.
 本開示の測定センサ1は、測定センサ1を制御する制御装置2と接続可能であってもよい。この場合、測定センサ1は、外部端子3を有している。制御装置2は接続端子4を有している。測定センサ1は、外部端子3と接続端子4が接続するように制御装置2に配されていてもよい。測定センサ1は、例えば、第1物質の検出に起因して変化する信号を制御装置2に出力することができる。 The measurement sensor 1 of the present disclosure may be connectable with a control device 2 that controls the measurement sensor 1 . In this case, the measuring sensor 1 has an external terminal 3 . The control device 2 has a connection terminal 4 . The measurement sensor 1 may be arranged in the control device 2 so that the external terminal 3 and the connection terminal 4 are connected. The measurement sensor 1 can, for example, output a signal to the control device 2 that changes due to the detection of the first substance.
 図2に、制御装置2の概略を示す。 The outline of the control device 2 is shown in FIG.
 本開示の測定センサ1は、表面弾性波の位相変化に基づいて第1物質の検出を行なう表面弾性波センサである。この場合、測定センサ1の出力は、表面弾性波の位相差の変化量であってもよい。ここで、位相差とは、発信した表面弾性波の位相と受信した表面弾性波の位相の差である。位相差の変化量とは、第1物質の存在によって、位相差がどの程度変化したかを表す値である。 The measurement sensor 1 of the present disclosure is a surface acoustic wave sensor that detects the first substance based on the phase change of surface acoustic waves. In this case, the output of the measurement sensor 1 may be the amount of change in the phase difference of the surface acoustic waves. Here, the phase difference is the difference between the phase of the transmitted surface acoustic wave and the phase of the received surface acoustic wave. The amount of change in phase difference is a value that indicates how much the phase difference has changed due to the presence of the first substance.
 測定センサ1は、図1に示すように、流路部材5と、センサ基板7を備える。測定センサ1は、センサ基板7上に位置した圧電基板8を少なくとも1つ備える。測定センサ1は、さらに、圧電基板8上に位置した第1検出部9と、圧電基板8上に位置した第2検出部10と、を備える。外部端子3は、センサ基板7に位置していてもよい。 The measurement sensor 1 includes a channel member 5 and a sensor substrate 7, as shown in FIG. The measurement sensor 1 comprises at least one piezoelectric substrate 8 located on a sensor substrate 7 . The measurement sensor 1 further comprises a first detector 9 positioned on the piezoelectric substrate 8 and a second detector 10 positioned on the piezoelectric substrate 8 . The external terminals 3 may be located on the sensor substrate 7 .
 流路部材5は、検体液が流れる流路6を有する。センサ基板7および圧電基板8は、その一部または全てが流路6に露出していてもよい。 The channel member 5 has a channel 6 through which the specimen liquid flows. A part or all of the sensor substrate 7 and the piezoelectric substrate 8 may be exposed to the channel 6 .
 図3は、図1に示した測定センサの一部の構成を示す平面図である。図3に示すように、センサ基板7は、絶縁基板11と、絶縁基板11上に配置された導電性の基板配線と、外部端子3と、を備える。外部端子3と基板配線は、互いに電気的に接続している。絶縁基板11は、例えば、樹脂材料またはセラミック材料などで構成されている。 FIG. 3 is a plan view showing the configuration of part of the measurement sensor shown in FIG. As shown in FIG. 3 , the sensor substrate 7 includes an insulating substrate 11 , conductive substrate wiring arranged on the insulating substrate 11 , and external terminals 3 . The external terminals 3 and the board wiring are electrically connected to each other. The insulating substrate 11 is made of, for example, a resin material or a ceramic material.
 圧電基板8は、例えば、タンタル酸リチウム(LiTaO)単結晶、ニオブ酸リチウム(LiNbO)単結晶または水晶などの圧電性を有する単結晶により構成される。圧電基板8の平面形状および各種寸法は適宜に設定されてよい。圧電基板8の厚みは、例えば、0.3mm~1.0mmに設定できる。 The piezoelectric substrate 8 is composed of, for example, a lithium tantalate (LiTaO 3 ) single crystal, a lithium niobate (LiNbO 3 ) single crystal, or a piezoelectric single crystal such as quartz. The planar shape and various dimensions of the piezoelectric substrate 8 may be appropriately set. The thickness of the piezoelectric substrate 8 can be set to 0.3 mm to 1.0 mm, for example.
 第1検出部9は、第1物質の存在を検出することができる。第2検出部10は、第1物質の存在を検出することができてもよいし、第1物質の存在を検出しなくてもよい。例えば、第2検出部10が第1物質の存在を検出しない場合、第2検出部10の検出結果を基準線として第1検出部9からの信号を解析することで、第1物質の存在を精度高く検出できる。 The first detection unit 9 can detect the presence of the first substance. The second detection unit 10 may detect the presence of the first substance, or may not detect the presence of the first substance. For example, when the second detection unit 10 does not detect the presence of the first substance, by analyzing the signal from the first detection unit 9 using the detection result of the second detection unit 10 as a reference line, the presence of the first substance is detected. It can be detected with high accuracy.
 第1検出部9および第2検出部10は、1つの圧電基板8上に位置してもよいし、独立した別々の圧電基板8上に位置してもよい。また、第1検出部9および第2検出部10が、独立した別々の圧電基板8上に位置する場合、それぞれの圧電基板8は、1つのセンサ基板7上に位置してもよいし、独立した別々のセンサ基板7上に位置してもよい。本実施形態では、図3に示すように、第1検出部9および、第2検出部10は独立した別々の圧電基板8上に位置し、それぞれの圧電基板8は、独立した別々のセンサ基板7上に位置している。すなわち、本実施形態では、測定センサ1は、第1検出部9が位置する第1圧電基板と、第2検出部10が位置する第2圧電基板と、を有する。 The first detection section 9 and the second detection section 10 may be positioned on one piezoelectric substrate 8 or may be positioned on independent and separate piezoelectric substrates 8 . In addition, when the first detection unit 9 and the second detection unit 10 are positioned on independent and separate piezoelectric substrates 8, the respective piezoelectric substrates 8 may be positioned on one sensor substrate 7, or may be independent. may be located on separate sensor substrates 7 . In this embodiment, as shown in FIG. 3, the first detection unit 9 and the second detection unit 10 are located on independent and separate piezoelectric substrates 8, and the respective piezoelectric substrates 8 are independent and separate sensor substrates. Located on 7. That is, in the present embodiment, the measurement sensor 1 has a first piezoelectric substrate on which the first detection section 9 is located and a second piezoelectric substrate on which the second detection section 10 is located.
 第1検出部9、および、第2検出部10は、その一部が流路6内に位置してもよいし、その全てが流路6内に位置してもよい。本実施形態では、その全てが流路6内に位置している。 A part of the first detection unit 9 and the second detection unit 10 may be positioned within the channel 6 , or all of them may be positioned within the channel 6 . In this embodiment, all of them are located within the channel 6 .
 第1検出部9は、複数の電極指を有する第1IDT(Inter Digital Transducer)電極91を備える。第1IDT電極91が有する複数の電極指は、一方向Aに沿って並んでいる。第2検出部10は、複数の電極指を有する第2IDT(Inter Digital Transducer)電極101を備える。第1IDT電極91は、1つのIDT電極で構成されていてもよいが、第1入力IDT電極91aおよび第1出力IDT電極91bで構成されていてもよい。本実施形態では、第1IDT電極91は、第1入力IDT電極91aおよび第1出力IDT電極91bで構成されている。また、第2IDT電極101は、1つのIDT電極で構成されていてもよいが、第2入力IDT電極101aおよび第2出力IDT電極101bで構成されていてもよい。本実施形態では、第2IDT電極101は、第2入力IDT電極101aおよび第2出力IDT電極101bで構成されている。 The first detection unit 9 includes a first IDT (Inter Digital Transducer) electrode 91 having a plurality of electrode fingers. A plurality of electrode fingers of the first IDT electrode 91 are arranged along one direction A. As shown in FIG. The second detection unit 10 includes a second IDT (Inter Digital Transducer) electrode 101 having a plurality of electrode fingers. The first IDT electrode 91 may be composed of one IDT electrode, or may be composed of a first input IDT electrode 91a and a first output IDT electrode 91b. In this embodiment, the first IDT electrode 91 is composed of a first input IDT electrode 91a and a first output IDT electrode 91b. Further, the second IDT electrode 101 may be composed of one IDT electrode, or may be composed of a second input IDT electrode 101a and a second output IDT electrode 101b. In this embodiment, the second IDT electrode 101 is composed of a second input IDT electrode 101a and a second output IDT electrode 101b.
 第1IDT(Inter Digital Transducer)電極91、および、第2IDT(Inter Digital Transducer)電極101は、その一部が流路6内に位置してもよいし、その全てが流路6内に位置していてもよい。本実施形態では、第1IDT電極91、および、第2IDT電極101は、その全てが流路6内に位置している。 A part of the first IDT (Inter Digital Transducer) electrode 91 and the second IDT (Inter Digital Transducer) electrode 101 may be positioned within the channel 6, or all of them may be positioned within the channel 6. may In this embodiment, the first IDT electrode 91 and the second IDT electrode 101 are all positioned within the channel 6 .
 第1IDT電極91は、表面弾性波を発生させることができる。第1IDT電極91において、表面弾性波は、複数の電極指が並ぶ方向である一方向Aに沿って発生する。第1IDT電極91が、例えば、第1入力IDT電極91aおよび第1出力IDT電極91bを備える場合、第1IDT電極91は、第1入力IDT電極91aおよび第1出力IDT電極91bの間に表面弾性波を発生させることができる。第1入力IDT電極91aは、電気信号が入力され、入力された電気信号を表面弾性波に変換するものである。第1出力IDT電極91bは、第1入力IDT電極91aが発生させた表面弾性波を受信し、受信した表面弾性波を電気信号に変換して出力するものである。 The first IDT electrode 91 can generate surface acoustic waves. In the first IDT electrode 91, surface acoustic waves are generated along one direction A, which is the direction in which the plurality of electrode fingers are arranged. When the first IDT electrode 91 includes, for example, a first input IDT electrode 91a and a first output IDT electrode 91b, the first IDT electrode 91 has a surface acoustic wave current between the first input IDT electrode 91a and the first output IDT electrode 91b. can be generated. The first input IDT electrode 91a receives an electrical signal and converts the electrical signal into a surface acoustic wave. The first output IDT electrode 91b receives the surface acoustic wave generated by the first input IDT electrode 91a, converts the received surface acoustic wave into an electric signal, and outputs the electric signal.
 また、第2IDT電極101は、表面弾性波を発生させることができる。第2IDT電極101において、表面弾性波は、複数の電極指が並ぶ方向に沿って発生する。第2IDT電極101が、例えば、第1入力IDT電極101aおよび第1出力IDT電極101bを備える場合、第1IDT電極101は、第1入力IDT電極101aおよび第1出力IDT電極101bの間に表面弾性波を発生させることができる。第2入力IDT電極101aは、電気信号が入力され、入力された電気信号を表面弾性波に変換するものである。第1出力IDT電極101bは、第1入力IDT電極91aが発生させた表面弾性波を受信し、受信した表面弾性波を電気信号に変換して出力するものである。 Also, the second IDT electrode 101 can generate a surface acoustic wave. In the second IDT electrode 101, surface acoustic waves are generated along the direction in which the plurality of electrode fingers are arranged. When the second IDT electrode 101 comprises, for example, a first input IDT electrode 101a and a first output IDT electrode 101b, the first IDT electrode 101 may generate a surface acoustic wave current between the first input IDT electrode 101a and the first output IDT electrode 101b. can be generated. The second input IDT electrode 101a receives an electrical signal and converts the electrical signal into a surface acoustic wave. The first output IDT electrode 101b receives the surface acoustic wave generated by the first input IDT electrode 91a, converts the received surface acoustic wave into an electric signal, and outputs the electric signal.
 第1IDT電極91および第2IDT電極101は、例えば、金、クロムまたはチタンなどの金属材料で構成される。第1IDT電極91および第2IDT電極101は、単層の電極であってもよいし、複数の層で構成された電極であってもよい。 The first IDT electrode 91 and the second IDT electrode 101 are made of metal material such as gold, chromium, or titanium, for example. The first IDT electrode 91 and the second IDT electrode 101 may be single-layer electrodes or may be electrodes composed of a plurality of layers.
 第1検出部9は第1導波路92をさらに備え、第2検出部10は第2導波路102をさらに備えていてもよい。第1導波路92は、第1IDT電極91発生させた表面弾性波の伝播路である。第2導波路102は、第2IDT電極101が発生させた表面弾性波の伝播路である。例えば、第1IDT電極91が、第1入力IDT電極91aおよび第1出力IDT電極91bを備える場合、第1導波路92は、圧電基板8の上面のうち第1入力IDT電極91aおよび第1出力IDT電極91bに挟まれた領域に位置している。また、例えば、第2IDT電極101が、第2入力IDT電極101aおよび第2出力IDT電極101bを備える場合、第2導波路102は、圧電基板8の上面のうち第2入力IDT電極101aおよび第2出力IDT電極101bに挟まれた領域に位置している。 The first detection section 9 may further include a first waveguide 92 and the second detection section 10 may further include a second waveguide 102 . The first waveguide 92 is a propagation path for surface acoustic waves generated by the first IDT electrode 91 . The second waveguide 102 is a propagation path for surface acoustic waves generated by the second IDT electrode 101 . For example, when the first IDT electrode 91 includes a first input IDT electrode 91a and a first output IDT electrode 91b, the first waveguide 92 is formed between the first input IDT electrode 91a and the first output IDT electrode 91a on the upper surface of the piezoelectric substrate 8. It is located in the area sandwiched between the electrodes 91b. Further, for example, when the second IDT electrode 101 includes the second input IDT electrode 101a and the second output IDT electrode 101b, the second waveguide 102 is formed on the upper surface of the piezoelectric substrate 8 by the second input IDT electrode 101a and the second IDT electrode 101b. It is positioned in a region sandwiched between the output IDT electrodes 101b.
 第1導波路92および第2導波路102は、その一部が流路6に位置してもよいし、その全てが流路6に位置してもよい。本実施形態では、第1導波路92および第2導波路102の全てが流路6に露出している場合である。 A part of the first waveguide 92 and the second waveguide 102 may be located in the flow channel 6, or all of them may be located in the flow channel 6. In this embodiment, all of the first waveguide 92 and the second waveguide 102 are exposed to the channel 6 .
 第1検出部9には、第1物質と反応する物質である、第2物質が固定されている。第2物質は、第2検出部10に固定されていてもよいし、第2検出部10に固定されていなくてもよい。本実施形態では、第2物質が固定されていない場合である。ここで、第1検出部9において、第2物質は第1導波路92に固定されている。また、第2検出部10に第2物質が固定されている場合、第2物質は第2導波路102に固定されていてもよい。 A second substance, which is a substance that reacts with the first substance, is fixed to the first detection unit 9 . The second substance may be fixed to the second detection section 10 or may not be fixed to the second detection section 10 . In this embodiment, the second substance is not immobilized. Here, the second substance is fixed to the first waveguide 92 in the first detection section 9 . Moreover, when the second substance is fixed to the second detection section 10 , the second substance may be fixed to the second waveguide 102 .
 第1検出部9において第1物質と第2物質とが反応することにより、例えば、第1検出部9に接する検体液の粘度または密度が変化し、第1IDT電極91が発生させる表面弾性波の位相が変化する。この位相の変化により、測定センサ1は、第1物質の存在を検知することができる。そして、第1物質の検知に起因した信号が、測定センサ1から制御装置2へ出力される。 When the first substance and the second substance react in the first detection unit 9, for example, the viscosity or density of the sample liquid in contact with the first detection unit 9 changes, and the surface acoustic wave generated by the first IDT electrode 91 changes. Phase changes. This phase change allows the measurement sensor 1 to detect the presence of the first substance. A signal resulting from detection of the first substance is output from the measurement sensor 1 to the control device 2 .
 第1物質と第2物質との反応が大きく、第1検出部9に接する検体液の粘度または密度の変化が大きいほど、位相変化量は大きくなる。言い換えれば、表面弾性波の位相変化量は、第1物質および第2物質に依存する。そのため、第1物質を検出するだけでなく、第1物質の含有量または濃度などを測定することができる。 The greater the reaction between the first substance and the second substance and the greater the change in the viscosity or density of the sample liquid in contact with the first detection unit 9, the greater the phase change amount. In other words, the amount of phase change of the surface acoustic wave depends on the first substance and the second substance. Therefore, it is possible not only to detect the first substance, but also to measure the content or concentration of the first substance.
 本実施形態において第2導波路102は、第1導波路92と異なり、第2物質が固定されていない。すなわち、第2導波路102では、上記の第1物質と第2物質の反応が起こらないため、第1物質と第2物質の反応に起因する表面弾性波の位相変化は、第2IDT電極101では発生しない。そのため、第1検出部9で取得した信号から、第2検出部10で取得した信号の差を取ることで、第1物質と第2物質の反応に起因する信号の変化を取得することができる。 In the present embodiment, unlike the first waveguide 92, the second waveguide 102 is not fixed with the second substance. That is, since the reaction between the first substance and the second substance does not occur in the second waveguide 102 , the phase change of the surface acoustic wave caused by the reaction between the first substance and the second substance is does not occur. Therefore, by taking the difference between the signal acquired by the second detection unit 10 and the signal acquired by the first detection unit 9, it is possible to acquire the change in the signal caused by the reaction between the first substance and the second substance. .
 第1物質と第2物質との反応は、測定センサ1の出力に変化をもたらす反応であればよい。このような反応として、例えば、酸化還元反応、酵素反応、抗原抗体反応、化学吸着、分子間相互作用、またはイオン間相互作用などによって第1物質と第2物質とが結合する反応、あるいは酵素反応等によって新たな物質である第2物質を生成する反応であってもよい。 The reaction between the first substance and the second substance may be any reaction that causes a change in the output of the measurement sensor 1. Examples of such reactions include reactions in which the first substance and the second substance are bound by oxidation-reduction reactions, enzymatic reactions, antigen-antibody reactions, chemical adsorption, intermolecular interactions, or ionic interactions, or enzymatic reactions. It may be a reaction that generates a second substance, which is a new substance, by, for example.
 第1導波路92および/または第2導波路102に固定される第2物質は、第1物質に応じて適宜選択すればよい。例えば、第1物質が検体液中の特定のたんぱく質、DNA、または細胞などである場合は、第2物質は、抗体、ペプチド、またはアプタマーなどを用いてもよい。第1物質が抗体である場合は、例えば、第2物質として抗原を用いることができる。第1物質が基質である場合は、例えば、第2物質として酵素を用いることができる。 The second substance fixed to the first waveguide 92 and/or the second waveguide 102 may be appropriately selected according to the first substance. For example, if the first substance is a specific protein, DNA, or cell in the specimen fluid, the second substance may be an antibody, peptide, aptamer, or the like. When the first substance is an antibody, for example, an antigen can be used as the second substance. When the first substance is a substrate, an enzyme can be used as the second substance, for example.
 測定センサ1は、第1検出部9または第2検出部10と同様の構成を有する検出部を、さらに1つ以上有していてもよい。 The measurement sensor 1 may further have one or more detection units having the same configuration as the first detection unit 9 or the second detection unit 10.
 測定センサ1は、接続導体12を有していてもよい。第1IDT電極91と基板配線とは、接続導体12によって、互いに電気的に接続される。第2IDT電極101と基板配線とは、接続導体12によって、互いに電気的に接続される。接続導体12は、センサ基板7および圧電基板8上に跨って位置していてもよい。 The measurement sensor 1 may have a connection conductor 12. The first IDT electrode 91 and the substrate wiring are electrically connected to each other by the connection conductor 12 . The second IDT electrode 101 and the substrate wiring are electrically connected to each other by the connection conductor 12 . The connection conductor 12 may be located across the sensor substrate 7 and the piezoelectric substrate 8 .
 センサ基板7、圧電基板8、第1検出部9、および第2検出部10は、周知の製法で製造することができる。 The sensor substrate 7, the piezoelectric substrate 8, the first detection section 9, and the second detection section 10 can be manufactured by a well-known manufacturing method.
 流路6は、検体液の通り道として機能することができる。流路部材5は、流路部材5の上面に開口し、流路6に検体液を供給する供給口13および検体液を排出する排出口14を有している。測定センサ1は、供給口13から供給された検体液が第1検出部9および第2検出部10に到達したときの、第1検出部9および第2検出部10における信号の変化を取得し、その後、排出口14から検体液を排出する。 The channel 6 can function as a passageway for the specimen liquid. The channel member 5 has a supply port 13 that is open to the upper surface of the channel member 5 and that supplies the sample liquid to the channel 6, and a discharge port 14 that discharges the sample liquid. The measurement sensor 1 acquires signal changes in the first detection unit 9 and the second detection unit 10 when the sample liquid supplied from the supply port 13 reaches the first detection unit 9 and the second detection unit 10. , and then the specimen liquid is discharged from the discharge port 14 .
 流路部材5は、さらに、外部に開口する基板開口部15を、流路部材5の上面または下面に備えていてもよい。基板開口部15は、1つであってもよいし、2つ以上あってもよい。 The channel member 5 may further include a substrate opening 15 that opens to the outside on the upper or lower surface of the channel member 5 . The number of substrate openings 15 may be one, or two or more.
 センサ基板7は、流路部材5上に位置してもよい。センサ基板7は、第1検出部9および、第2検出部10が、基板開口部15から、流路6に露出するように、流路部材5上に位置していてもよい。このとき、センサ基板7は、測定センサ1の平面視において、基板開口部15を覆うように、位置していてもよい。すなわち、基板開口部15は、センサ基板7によって閉塞され、流路6は、流路部材5とセンサ基板7に囲まれていてもよい。 The sensor substrate 7 may be positioned on the channel member 5 . The sensor substrate 7 may be positioned on the flow path member 5 so that the first detection section 9 and the second detection section 10 are exposed to the flow path 6 from the substrate opening 15 . At this time, the sensor substrate 7 may be positioned so as to cover the substrate opening 15 in plan view of the measurement sensor 1 . That is, the substrate opening 15 may be closed by the sensor substrate 7 and the channel 6 may be surrounded by the channel member 5 and the sensor substrate 7 .
 供給口13および排出口14の少なくともいずれかは、第1検出部9および第2検出部10の位置する面と異なる面に位置していてもよい。ここで、異なる面に位置するとは、異なるz座標を有する面に位置することを意味する。すなわち、供給口13および排出口14の少なくともいずれかは、第1検出部9および第2検出部10と異なるz座標を有する面に位置しているといえる。供給口13または排出口14は、第1検出部9および第2検出部10の位置する面よりも上方に位置する面に位置してもよいし、下方に位置する面に位置してもよい。本実施形態では、下方に位置している。これにより、流路6内に気泡が流れ込んだ場合であっても、第1検出部9または第2検出部10に気泡が留まりにくくなり、検出精度を高めることができる。 At least one of the supply port 13 and the discharge port 14 may be located on a different plane from the plane on which the first detection unit 9 and the second detection unit 10 are located. Here, being positioned in different planes means being positioned in planes having different z-coordinates. That is, it can be said that at least one of the supply port 13 and the discharge port 14 is positioned on a plane having a different z-coordinate from that of the first detection unit 9 and the second detection unit 10 . The supply port 13 or the discharge port 14 may be positioned on a surface above or below the surface on which the first detection unit 9 and the second detection unit 10 are positioned. . In this embodiment, it is positioned downward. As a result, even if air bubbles flow into the flow path 6, the air bubbles are less likely to remain in the first detection section 9 or the second detection section 10, and the detection accuracy can be improved.
 流路部材5は1つの部材から構成されてもよいし、2つ以上の部材を組み合わせて構成されていてもよい。本実施形態では、流路部材5は、基材16と、当該基材16に対向するように設けられた薄膜17とにより構成されている。薄膜17は1枚であってもよいし、2枚以上あってもよい。本実施形態では、流路部材5の上面から、第1薄膜171、基材16、第2薄膜172の順に並んでいる。基材16と薄膜17は、接着剤によって接着されていてもよい。流路を構成する面の一部を薄膜17で形成することにより、流路全体を基材16で形成する場合より測定センサ1の厚さを薄くすることができる。なお、基材16は、真空成形など、従来公知の技術によって形成されればよい。薄膜17は、溶液成膜や、溶融成膜など、従来公知の技術によって形成されればよい。 The channel member 5 may be composed of one member, or may be composed of a combination of two or more members. In this embodiment, the flow path member 5 is composed of a base material 16 and a thin film 17 provided so as to face the base material 16 . The number of thin films 17 may be one, or two or more. In this embodiment, the first thin film 171 , the substrate 16 , and the second thin film 172 are arranged in this order from the upper surface of the flow path member 5 . The base material 16 and the thin film 17 may be adhered with an adhesive. By forming a part of the surface forming the flow path with the thin film 17, the thickness of the measurement sensor 1 can be made thinner than when the entire flow path is formed with the base material 16. FIG. In addition, the base material 16 may be formed by a conventionally known technique such as vacuum forming. The thin film 17 may be formed by conventionally known techniques such as solution film formation and melt film formation.
 流路部材5の材料としては、室温で流路6の形状を保つことができる材料であれば何を用いてもよいが、例えば、樹脂材料を用いることができる。一実施形態に係る流路部材5は、疎水性材料で形成されている。具体的には、流路部材5は、例えば、水との接触角が60度以上の樹脂で形成されていてもよい。流路部材5を形成する材料の水との接触角は、例えば、基板ガラス表面のぬれ性試験方法(JIS R 3257:1999)によって求めることができる。前記樹脂は、例えば、ポリカーボネート、シクロオレフィンポリマー、ポリメタクリル酸メチル樹脂、およびポリジメチルシロキサンなどである。一実施形態に係る流路部材5は、ポリメタクリル酸メチル樹脂で構成されている。 Any material can be used as the material for the flow channel member 5 as long as it can maintain the shape of the flow channel 6 at room temperature. For example, a resin material can be used. The channel member 5 according to one embodiment is made of a hydrophobic material. Specifically, the channel member 5 may be made of a resin having a contact angle with water of 60 degrees or more, for example. The contact angle with water of the material forming the flow path member 5 can be obtained, for example, by a substrate glass surface wettability test method (JIS R 3257:1999). Examples of the resin include polycarbonate, cycloolefin polymer, polymethylmethacrylate resin, and polydimethylsiloxane. The flow path member 5 according to one embodiment is made of polymethyl methacrylate resin.
 図4~6に示すように、第2IDT電極101の複数の電極指は、一方向Aに重なる仮想直線Bに沿うように並んでいる。これにより、第1IDT電極91を有する第1検出部9、および、第2IDT電極101を有する第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 As shown in FIGS. 4 to 6, the plurality of electrode fingers of the second IDT electrode 101 are arranged along a virtual straight line B that overlaps in one direction A. As a result, the amount of the sample liquid required for the sample liquid to reach both the first detection unit 9 having the first IDT electrode 91 and the second detection unit 10 having the second IDT electrode 101 is reduced. Measurements can be made in quantity.
 図4は、図1に示した測定センサ1の一部の構成を示す模式図である。具体的には、図1に示した測定センサ1の流路6を抜き出して記載した模式図である。 FIG. 4 is a schematic diagram showing a configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
 図5は、図1に示した測定センサの一部の切断面線I-I´の断面図である。 FIG. 5 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 1 taken along the section line II'.
 図6は、図1に示した測定センサの一部の構成を示す平面図である。具体的には、図1に示した測定センサ1において、第1検出部9、第2検出部10、および、流路6を透視図として記載した平面図である。 FIG. 6 is a plan view showing the configuration of part of the measurement sensor shown in FIG. Specifically, in the measurement sensor 1 shown in FIG. 1, it is a plan view showing the first detection section 9, the second detection section 10, and the flow path 6 as a perspective view.
 本開示において、特に指定のない場合、流路6において流体の流れる方向と直交する断面のことを「断面C」とする。具体的には、図4~図6におけるy軸およびz軸に平行となる流路の断面のことを、「断面C」とする。流路の上端から下端までの高さのことを、「流路の高さ」とする。具体的には、図4~図6における、任意のx値における流路のz座標の範囲であらわされる長さのことを「流路の高さ」とする。任意の断面Cの、同一の高さにおける流路の端から端までの長さを「流路の幅」とする。具体的には、図4A~Cにおいて任意のz値における断面Cのy座標の範囲で表される長さのことを「流路の幅」とする。 In the present disclosure, unless otherwise specified, the cross section orthogonal to the fluid flow direction in the channel 6 is referred to as "cross section C". Specifically, the section of the flow path parallel to the y-axis and z-axis in FIGS. 4 to 6 is referred to as "section C". The height from the upper end to the lower end of the flow channel is defined as "the height of the flow channel". Specifically, in FIGS. 4 to 6, the length represented by the z-coordinate range of the flow path at any x value is defined as the "height of the flow path". Let the length from end to end of the channel at the same height of any cross-section C be the “width of the channel”. Specifically, in FIGS. 4A to 4C, the length represented by the range of the y-coordinate of the cross section C at an arbitrary z-value is defined as the "channel width".
 流路6内において流体の流れる方向は、仮想直線Bに沿った方向であればよく、例えば、仮想直線Bに沿って略平行であってもよい。これにより、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The direction in which the fluid flows in the channel 6 may be any direction along the virtual straight line B, and may be substantially parallel along the virtual straight line B, for example. As a result, the amount of sample liquid required for the sample liquid to reach both the first detection section 9 and the second detection section 10 can be reduced, and measurement can be performed with a small amount of sample liquid.
 第1検出部9における表面弾性波の方向ベクトルと、第2検出部10における表面弾性波の方向ベクトルとの角度差は、例えば、0°または180°の関係に設定できる。本実施形態では、角度差が0°の関係である。 The angular difference between the directional vector of the surface acoustic wave in the first detection unit 9 and the directional vector of the surface acoustic wave in the second detection unit 10 can be set to 0° or 180°, for example. In this embodiment, the angle difference is 0°.
 流路6のうち第1IDT電極91および第2IDT電極101が内部に並ぶ領域は、仮想直線Bに沿って伸びた直線形状を有していてもよい。ここで、仮想直線Bに沿って伸びた直線形状とは、仮想直線Bに沿った長さが、他の方向に沿った長さよりも長い形状であって、任意の断面C同士を最短距離で結ぶ形状のことをいう。 A region of the channel 6 in which the first IDT electrode 91 and the second IDT electrode 101 are arranged may have a linear shape extending along the imaginary straight line B. Here, the linear shape extending along the imaginary straight line B is a shape in which the length along the imaginary straight line B is longer than the length along the other direction, and the shortest distance between arbitrary cross sections C It refers to the shape that connects.
 第1IDT電極91および第2IDT電極101が内部に並ぶ領域における流路6の幅は一定であっても、異なっていてもよいが。本実施形態では流路6の幅が異なる領域がある。 Although the width of the channel 6 in the region where the first IDT electrode 91 and the second IDT electrode 101 are arranged inside may be constant or different. In this embodiment, there are areas where the width of the flow path 6 is different.
 図4~6に示すように、流路6は、第1検出部9が位置する第1領域18、第3領域20、および、第2検出部10が位置する第2領域19を有していてもよい。このとき、第1領域18、第3領域20、第2領域19は、順に位置していてもよい。 As shown in FIGS. 4 to 6, the flow path 6 has a first area 18 where the first detection section 9 is located, a third area 20, and a second area 19 where the second detection section 10 is located. may At this time, the first area 18, the third area 20, and the second area 19 may be positioned in order.
 第1領域18、第2領域19、および第3領域20は、流路6の幅の大小によって区別されうる。本実施形態では、第1領域18、第3領域20、第2領域19は順に接続している。 The first area 18, the second area 19, and the third area 20 can be distinguished by the width of the channel 6. In this embodiment, the first area 18, the third area 20, and the second area 19 are connected in order.
 流路6は、さらに第4領域21および第5領域22を有し、第4領域21および第1領域18は順に位置し、第2領域19および第5領域22は順に位置していてもよい。第4領域21ならびに第1領域18、および、第2領域19ならびに第5領域22は、流路6の幅の大小によって区別されうる。本実施形態では、第4領域21および第1領域18は順に接続しており、第3領域20および第2領域19は順に接続しており、第2領域19および第5領域22は順に接続している。 The channel 6 further has a fourth region 21 and a fifth region 22, the fourth region 21 and the first region 18 may be positioned in order, and the second region 19 and the fifth region 22 may be positioned in order. . The fourth region 21 and the first region 18 and the second region 19 and the fifth region 22 can be distinguished by the width of the channel 6 . In this embodiment, the fourth region 21 and the first region 18 are connected in order, the third region 20 and the second region 19 are connected in order, and the second region 19 and the fifth region 22 are connected in order. ing.
 第1領域18の流路6の幅は第3領域20の流路6の幅よりも大きい。ここで、第1領域18の流路6の幅が、第3領域20の流路6の幅よりも大きいとは、第1領域18の流路6の幅の平均値が、第3領域20の流路6の幅の平均値よりも大きいことを意味し、局所的に第1領域18の流路6の幅が、第3領域20の流路6の幅よりも小さい箇所があってもよい。本実施形態では、すべての箇所において、第1領域18の流路6の幅は、第3領域20の流路6の幅よりも大きい。 The width of the channel 6 in the first region 18 is greater than the width of the channel 6 in the third region 20. Here, when the width of the flow channel 6 in the first region 18 is greater than the width of the flow channel 6 in the third region 20, the average value of the widths of the flow channels 6 in the first region 18 is equal to that in the third region 20 means that the width of the flow channel 6 is larger than the average value of the width of the flow channel 6 in the first region 18, even if there is a location where the width of the flow channel 6 in the first region 18 is locally smaller than the width of the flow channel 6 in the third region 20 good. In this embodiment, the width of the channel 6 in the first region 18 is greater than the width of the channel 6 in the third region 20 at all locations.
 第2領域19の流路6の幅は第3領域20の流路6の幅よりも大きい。ここで、第2領域19の流路6の幅が、第3領域20の流路6の幅よりも大きいとは、第2領域19の流路6の幅の平均値が、第3領域20の流路6の幅の平均値よりも大きいことを意味し、局所的に第2領域19の流路6の幅が、第3領域20の流路6の幅よりも小さい箇所があってもよい。本実施形態では、すべての箇所において、第2領域19の流路6の幅は、第3領域20の流路6の幅よりも大きい。 The width of the flow channel 6 in the second region 19 is larger than the width of the flow channel 6 in the third region 20. Here, when the width of the flow channel 6 in the second region 19 is larger than the width of the flow channel 6 in the third region 20, the average value of the widths of the flow channels 6 in the second region 19 means that the width of the flow channel 6 is larger than the average value of the width of the flow channel 6 in the second region 19, even if there is a location where the width of the flow channel 6 in the second region 19 is locally smaller than the width of the flow channel 6 in the third region 20 good. In this embodiment, the width of the channel 6 in the second region 19 is greater than the width of the channel 6 in the third region 20 at all locations.
 これにより、測定センサ1を組み立てる際に第1検出部9および第2検出部10の設置位置が指定の位置に対してずれた場合であっても、流路6内に第1検出部9および第2検出部10のすべてを位置させられやすくなるため、良品率を向上させることができる。また、第1検出部9および第2検出部10は流路6の幅が大きい第1領域18および第2領域19に位置させつつ、第1領域18および第2領域19の間は、流路6の幅が小さい第3領域20としてもよい。このような構成により、第3領域20の容積を減らすことがでるので、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 As a result, even if the installation positions of the first detection unit 9 and the second detection unit 10 deviate from the designated positions when assembling the measurement sensor 1 , the first detection unit 9 and the second detection unit 10 are installed in the flow path 6 . Since it becomes easier to position the entire second detection unit 10, the non-defective product rate can be improved. In addition, while the first detection unit 9 and the second detection unit 10 are positioned in the first region 18 and the second region 19 where the width of the flow channel 6 is large, between the first region 18 and the second region 19, the flow channel A third region 20 having a small width of 6 may be used. With such a configuration, the volume of the third region 20 can be reduced, so the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10 can be reduced. Measurements can be made with sample fluid volume.
 第1領域18は、第2領域19と比較して、供給口13の近くに配されていてもよい。すなわち、供給口13、第1領域18、第3領域20、第2領域19および排出口14が順に並ぶことにより、供給口13から供給された検体液は、第1領域18、第3領域20、第2領域19の順に流れ、排出口14から排出されるように構成できる。 The first region 18 may be arranged closer to the supply port 13 than the second region 19 . That is, by arranging the supply port 13, the first region 18, the third region 20, the second region 19, and the discharge port 14 in order, the sample liquid supplied from the supply port 13 is distributed between the first region 18 and the third region 20. , the second region 19 and discharged from the discharge port 14 .
 第1領域18の流路6の幅と、第2領域19の流路6の幅は、同じでもよいし、異なっていてもよい。本実施形態では、第1領域18の流路6の幅と、第2領域19の流路6の幅は等しい。 The width of the channel 6 in the first region 18 and the width of the channel 6 in the second region 19 may be the same or different. In this embodiment, the width of the channel 6 in the first region 18 and the width of the channel 6 in the second region 19 are equal.
 第1領域18、第2領域19、および第3領域20は、それぞれが仮想直線Bに沿って伸びた直線形状を有していてもよい。このとき、第1領域18、第3領域20、第2領域19は、仮想直線Bに沿って、順に位置していると理解できる。 The first area 18, the second area 19, and the third area 20 may each have a linear shape extending along the imaginary straight line B. At this time, it can be understood that the first area 18, the third area 20, and the second area 19 are positioned along the imaginary straight line B in this order.
 第3領域20の容積は、第1領域18の容積より小さくてもよい。また、第3領域20の容積は、第2領域19の容積よりも小さくてもよい。これにより、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The volume of the third region 20 may be smaller than the volume of the first region 18. Also, the volume of the third region 20 may be smaller than the volume of the second region 19 . As a result, the amount of sample liquid required for the sample liquid to reach both the first detection section 9 and the second detection section 10 can be reduced, and measurement can be performed with a small amount of sample liquid.
 第3領域20の断面Cの面積は、第1領域18の断面Cの面積より小さくてもよい。また、第3領域20の断面Cの面積は、第2領域19の断面Cの面積より小さくてもよい。第3領域20の断面Cの面積を、第1領域18および/または第2領域19の断面Cの面積よりも小さくすることにより、第1領域18に存在する検体液と、第2領域19に存在する検体液との混合を低減し、検出精度を高めることができる。 The area of the cross section C of the third region 20 may be smaller than the area of the cross section C of the first region 18 . Also, the area of the cross section C of the third region 20 may be smaller than the area of the cross section C of the second region 19 . By making the area of the cross section C of the third region 20 smaller than the area of the cross section C of the first region 18 and/or the second region 19, the specimen liquid existing in the first region 18 and the second region 19 Mixing with the existing specimen liquid can be reduced, and detection accuracy can be improved.
 第1領域18の断面Cの面積と、第2領域19の断面Cの面積は、同じでもよいし、異なっていてもよい。本実施形態では、第1領域18の断面Cの面積と、第2領域19の断面Cの面積とは等しい。 The area of the cross section C of the first region 18 and the area of the cross section C of the second region 19 may be the same or different. In this embodiment, the area of the cross section C of the first region 18 and the area of the cross section C of the second region 19 are equal.
 第1領域18は、図5に示すように、第1端部18aと、第1端部18aに接続し且つ第1端部18aと比較して第3領域20から離れて位置した第1基部18bを有している。すなわち、第1基部18b、第1端部18a、第3領域20は、この順に並んでいるといえる。 The first region 18 includes a first end 18a and a first base connected to the first end 18a and located further away from the third region 20 than the first end 18a, as shown in FIG. 18b. That is, it can be said that the first base portion 18b, the first end portion 18a, and the third region 20 are arranged in this order.
 第1端部18aの断面Cの面積は、第1基部18bの断面Cの面積と比較して小さくてもよい。これにより、第1領域18の体積を減らし、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The area of the cross section C of the first end portion 18a may be smaller than the area of the cross section C of the first base portion 18b. As a result, the volume of the first region 18 is reduced, the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10 is reduced, and measurement is performed with a small amount of sample liquid. be able to.
 第1端部18aの断面Cの面積は、第3領域20に近づくにつれ小さくなってもよい。すなわち、第1端部18aの断面Cの面積は、第1基部18bと接続している部分の断面Cの面積がもっとも大きく、第3領域20側の第1端部18aの端の断面Cがもっとも小さく、第1基部18bと接続している部分から、第3領域20側の第1端部18aの端に向けて、断面Cの面積は徐々に小さくなっていてもよいといえる。これにより、第1領域18内に気泡が流れ込んだ場合でも、第1基部18bから第3領域20に向けてなだらかに流路6の断面積が小さくなることで、気泡は第3領域20に向けて流れやすくなり、第1領域18内に気泡が留まりにくくなり、検出精度を高めることができる。 The area of the cross section C of the first end portion 18a may decrease as the third region 20 is approached. That is, the area of the cross section C of the first end portion 18a is the largest in the area of the cross section C of the portion connected to the first base portion 18b, and the cross section C of the end of the first end portion 18a on the side of the third region 20 is It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the first base portion 18b toward the end of the first end portion 18a on the third region 20 side. As a result, even when bubbles flow into the first region 18, the cross-sectional area of the flow path 6 gradually decreases from the first base portion 18b toward the third region 20, so that the bubbles flow toward the third region 20. air bubbles are less likely to remain in the first region 18, and detection accuracy can be improved.
 また、第1端部18aの流路6の幅は、第3領域20に近づくにつれ小さくなっていてもよい。すなわち、第1端部18aの流路6の幅は、第1基部18bと接続している部分の流路6の幅がもっとも大きく、第3領域20側の第1端部18aの端の流路6の幅がもっとも小さく、第1基部18bと接続している部分から、第3領域20側の第1端部18aの端に向けて、流路6の幅は徐々に小さくなっていてもよいといえる。これにより、第1領域18内に気泡が流れ込んだ場合でも、気泡は第3領域20に向けて流れやすくなり、第1領域18内に気泡が留まりにくくなり、検出精度を高めることができる。 Also, the width of the flow path 6 at the first end portion 18a may decrease as the third region 20 is approached. That is, the width of the channel 6 at the first end 18a is the largest at the portion connected to the first base 18b, and the width at the end of the first end 18a on the third region 20 side is the largest. The width of the channel 6 is the smallest, and the width of the channel 6 gradually decreases from the portion connected to the first base portion 18b toward the end of the first end portion 18a on the side of the third region 20. It can be said that it is good. As a result, even if bubbles flow into the first region 18, the bubbles tend to flow toward the third region 20, making it difficult for the bubbles to remain in the first region 18, thereby improving detection accuracy.
 また、第1端部18aの流路6の高さは、第3領域20に近づくにつれて小さくなっていてもよい。すなわち、第1端部18aの流路6の高さは、第1基部18bと接続している部分の流路6の高さがもっとも大きく、第3領域20側の第1端部18aの端の流路6の高さがもっとも小さく、第1基部18bと接続している部分から、第3領域20側の第1端部18aの端に向けて、流路6の高さは徐々に小さくなっていてもよいといえる。これにより、第1領域18内に気泡が流れ込んだ場合でも、気泡は第3領域20に向けて流れやすくなり、第1領域18内に気泡が留まりにくくなり、検出精度を高めることができる。 Also, the height of the flow path 6 at the first end portion 18a may decrease as the third region 20 is approached. That is, the height of the flow path 6 at the first end 18a is the highest at the portion connected to the first base 18b, and The height of the flow path 6 is the smallest, and the height of the flow path 6 gradually decreases from the portion connected to the first base portion 18b toward the end of the first end portion 18a on the side of the third region 20 It can be said that it is acceptable. As a result, even if bubbles flow into the first region 18, the bubbles tend to flow toward the third region 20, making it difficult for the bubbles to remain in the first region 18, thereby improving detection accuracy.
 第1端部18aの流路6の高さは、第1端部18aの流路6の上端および下端のz座標のうち、下端のz座標は変化せずに上端のz座標が小さくなることによって小さくなってもよい。もしくは、第1端部18aの流路6の高さは、第1端部18aの流路6の上端および下端のz座標のうち、上端のz座標は変化せずに下端のz座標が大きくなることによって小さくなってもよい。または、第1端部18aの流路6の高さは、第1端部18aの流路6の上端および下端のz座標のうち、上端および下端の双方が変化することによって小さくなってもよい。本実施形態では、第1端部18aの流路6の下端のz座標は変化せずに、上端のz座標が小さくなることによって、第1端部18aの流路6の高さが小さくなっている。 The height of the channel 6 at the first end portion 18a is such that, of the z-coordinates of the upper end and the lower end of the channel 6 of the first end portion 18a, the z-coordinate of the upper end becomes smaller while the z-coordinate of the lower end does not change. may be smaller by Alternatively, the height of the channel 6 at the first end portion 18a is such that, of the z-coordinates of the upper end and the lower end of the channel 6 of the first end portion 18a, the z-coordinate at the upper end does not change and the z-coordinate at the lower end increases. It may become smaller by becoming Alternatively, the height of the channel 6 at the first end 18a may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the channel 6 at the first end 18a. . In the present embodiment, the z-coordinate of the lower end of the flow channel 6 of the first end portion 18a does not change, and the z-coordinate of the upper end becomes smaller, thereby decreasing the height of the flow channel 6 of the first end portion 18a. ing.
 ここで、第1領域18の体積は、第2領域19の体積と等しくてもよい。第1領域18に位置する検体液、すなわち第1検出部9に接する検体液の体積と、第2領域19に位置する検体液、すなわち第2検出部10に接する検体液の体積とが等しくてもよい。第1検出部9に接する検体液の体積と、第2検出部10に接する検体液の体積とが等しくなることにより、測定精度を高めることができる。 Here, the volume of the first region 18 may be equal to the volume of the second region 19. The volume of the sample liquid located in the first region 18, that is, the sample liquid that contacts the first detection unit 9, and the sample liquid that is located in the second region 19, that is, the volume of the sample liquid that contacts the second detection unit 10 are equal. good too. By equalizing the volume of the sample liquid in contact with the first detection section 9 and the volume of the sample liquid in contact with the second detection section 10, the measurement accuracy can be improved.
 ここで、第2領域19は、前記第1領域18と同等の構成を有していてもよい。 Here, the second area 19 may have the same configuration as the first area 18.
 第2領域19は、第2端部と、第2端部に接続し第2端部と比較して第3領域20から離れて位置した第2基部を有している。すなわち、第3領域20、第2端部、第2基部は、この順に並んでいるといえる。 The second region 19 has a second end and a second base connected to the second end and located further away from the third region 20 than the second end. That is, it can be said that the third region 20, the second end, and the second base are arranged in this order.
 第2端部の断面Cの面積は、第2基部の断面Cの面積と比較して小さくてもよい。これにより、第2領域19の体積を減らし、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The area of the cross section C of the second end may be smaller than the area of the cross section C of the second base. This reduces the volume of the second region 19, reduces the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10, and performs measurement with a small amount of sample liquid. be able to.
 第2端部の断面Cの面積は、第3領域20に近づくにつれ小さくなってもよい。すなわち、第2端部の断面Cの面積は、第2基部と接続している部分の断面Cの面積がもっとも大きく、第3領域20側の第2端部の端の断面Cがもっとも小さく、第2基部と接続している部分から、第3領域20側の第2端部の端に向けて、断面Cの面積は徐々に小さくなっていてもよいといえる。これにより、検体液が第3領域20から第2領域19へ検体液が緩やかに流れるようになり、気泡が生じにくくなり、測定精度を高めることができる。 The area of the cross section C of the second end may decrease as the third region 20 is approached. That is, with respect to the area of the cross section C of the second end, the area of the cross section C of the portion connected to the second base is the largest, and the cross section C of the end of the second end on the side of the third region 20 is the smallest. It can be said that the area of the cross section C may gradually decrease from the portion connected to the second base toward the end of the second end on the third region 20 side. As a result, the sample liquid flows gently from the third region 20 to the second region 19, and air bubbles are less likely to occur, thereby improving the measurement accuracy.
 また、第2端部の流路6の幅は、第3領域20に近づくにつれ小さくなっていてもよい。すなわち、第2端部の流路6の幅は、第2基部と接続している部分の流路6の幅がもっとも大きく、第3領域20側の第2端部の端の流路6の幅がもっとも小さく、第2基部と接続している部分から、第3領域20側の第2端部の端に向けて、流路6の幅は徐々に小さくなっていてもよいといえる。これにより、検体液が第3領域20から第2領域19へ検体液が緩やかに流れるようになり、気泡がにくくなり、測定精度を高めることができる。 Also, the width of the flow path 6 at the second end may decrease as it approaches the third region 20 . That is, the width of the channel 6 at the second end is the largest at the portion connected to the second base, and the width of the channel 6 at the end of the second end on the third region 20 side is the largest. It can be said that the width of the channel 6 may gradually decrease from the portion where the width is the smallest and is connected to the second base toward the end of the second end on the third region 20 side. As a result, the sample liquid flows gently from the third region 20 to the second region 19, bubbles are less likely to occur, and measurement accuracy can be improved.
 また、第2端部の流路6の高さは、第3直線領域に近づくにつれて小さくなっていてもよい。すなわち、第2端部の流路6の高さは、第2基部と接続している部分の流路6の高さがもっとも高く、第3領域20側の第2端部の端の流路6の高さがもっとも低く、第2基部と接続している部分から、第3領域20側の第2端部の端に向けて、流路6の高さは徐々に小さくなっていてもよいといえる。これにより、検体液が第3領域20から第2領域19へ検体液が緩やかに流れるようになり、気泡が生じにくくなり、検出精度を高めることができる。 Also, the height of the channel 6 at the second end may decrease as it approaches the third linear region. That is, the height of the channel 6 at the second end is the highest in the portion connected to the second base, and the height of the channel 6 at the end of the second end on the third region 20 side is the highest. The height of the flow path 6 may gradually decrease from the portion where the height of the channel 6 is the lowest and is connected to the second base toward the end of the second end on the side of the third region 20. It can be said. As a result, the sample liquid flows gently from the third region 20 to the second region 19, and air bubbles are less likely to occur, thereby improving the detection accuracy.
 第2端部の流路6の高さは、第2端部の流路6の上端および下端のz座標のうち、下端のz座標は変化せずに上端のz座標が小さくなることによって小さくなってもよい。もしくは、第2端部の流路6の高さは、第2端部の流路6の上端および下端のz座標のうち、上端のz座標は変化せずに下端のz座標が大きくなることによって小さくなってもよい。または、第2端部の流路6の高さは、第2端部の流路6の上端および下端のz座標のうち、上端および下端の双方が変化することによって小さくなってもよい。本実施形態では、第2端部の流路6の下端のz座標は変化せずに、上端のz座標が小さくなることによって、第2端部の流路6高さが小さくなっている。 The height of the channel 6 at the second end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the second end. You can become Alternatively, the height of the channel 6 at the second end is such that, of the z-coordinates of the upper end and the lower end of the channel 6 at the second end, the z-coordinate of the upper end does not change and the z-coordinate of the lower end increases. may be smaller by Alternatively, the height of the second end channel 6 may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the second end channel 6 . In this embodiment, the z-coordinate of the lower end of the channel 6 of the second end remains unchanged, and the z-coordinate of the upper end becomes smaller, so that the height of the channel 6 of the second end becomes smaller.
 さらに、第1領域18は、第1端部18aと対向するように位置した第3端部と、第3端部に接続しかつ、第3端部と比較して第1基部18bの近くに位置した第3基部を有していてもよい。すなわち、第3端部、第3基部、第1基部18b、第1端部18aの順に並んでいるといえ、また、第4領域21、第3端部、第3基部の順に接続しているともいえる。 In addition, the first region 18 has a third end located opposite the first end 18a and connected to the third end and closer to the first base 18b than the third end. It may have a third base located. That is, it can be said that they are arranged in the order of the third end, the third base, the first base 18b, and the first end 18a, and are connected in the order of the fourth region 21, the third end, and the third base. It can also be said.
 第3端部の断面Cの面積は、第3基部の断面Cの面積と比較して小さくてもよい。これにより、第1領域18の体積を減らし、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The area of the cross section C of the third end may be smaller than the area of the cross section C of the third base. As a result, the volume of the first region 18 is reduced, the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10 is reduced, and measurement is performed with a small amount of sample liquid. be able to.
 第3端部の断面Cの面積は、第3基部から離れるにつれ小さくなってもよい。すなわち、第3端部の断面Cの面積は、第3基部と接続している部分の断面Cの面積がもっとも大きく、第4領域21と接続している第3端部の端の断面Cがもっとも小さく、第3基部と接続している部分から、第4領域21と接続している第3端部の端に向けて、断面Cの面積は徐々に小さくなっていてもよいといえる。これにより、検体液が第4領域21から第1領域18へ緩やかに流れるようになり、気泡が生じにくくなり、検出精度を高めることができる。 The area of the cross section C of the third end portion may decrease as the distance from the third base portion increases. That is, the area of the cross section C of the third end is the largest in the area of the cross section C of the portion connected to the third base, and the cross section C of the end of the third end connected to the fourth region 21 is the largest. It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the third base toward the end of the third end connected to the fourth region 21 . As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
 また、第3端部の流路6の幅は、第4領域21に近づくにつれ小さくなっていてもよい。すなわち、第3端部の流路6の幅は、第3基部と接続している部分の流路6の幅がもっとも大きく、第4領域21側の第3端部27eの端の流路6の幅がもっとも小さく、第3基部と接続している部分から、第4領域21側の第3端部の端に向けて、流路6の幅は徐々に小さくなっていてもよいといえる。これにより、検体液が第4領域21から第1領域18へ緩やかに流れるようになり、気泡が生じにくくなり、検出精度を高めることができる。 Also, the width of the flow path 6 at the third end may decrease as it approaches the fourth region 21 . That is, the width of the channel 6 at the third end is the largest in the portion connected to the third base, and the width of the channel 6 at the end of the third end 27e on the side of the fourth region 21 is the largest. It can be said that the width of the flow path 6 may gradually decrease from the portion where the width of is the smallest and is connected to the third base portion toward the end of the third end portion on the side of the fourth region 21 . As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
 また、第3端部の流路6の高さは、第4領域21に近づくにつれて小さくなっていてもよい。すなわち、第3端部の流路6の高さは、第3基部と接続している部分の流路6の高さがもっとも高く、第4領域21側の第3端部の端の流路6の高さがもっとも低く、第3基部と接続している部分から、第4領域21側の第3端部の端に向けて、流路6の高さは徐々に小さくなっていてもよいといえる。これにより、検体液が第4領域21から第1領域18へ緩やかに流れるようになり、気泡が生じにくくなり、検出精度を高めることができる。 Also, the height of the channel 6 at the third end may decrease as it approaches the fourth region 21 . That is, the height of the channel 6 at the third end is the highest in the portion connected to the third base, and the height of the channel 6 at the end of the third end on the side of the fourth region 21 is the highest. The height of the flow path 6 may be gradually reduced from the portion where the height of the channel 6 is the lowest and connected to the third base toward the end of the third end on the side of the fourth region 21. It can be said. As a result, the sample liquid flows gently from the fourth region 21 to the first region 18, making it difficult for air bubbles to be generated, and the detection accuracy can be improved.
 第3端部の流路6の高さは、第3端部の流路6の上端および下端のz座標のうち、下端のz座標は変化せずに上端のz座標が小さくなることによって小さくなってもよい。もしくはく、第3端部の流路6の高さは、第3端部の流路6の上端および下端のz座標のうち、上端のz座標は変化せずに下端のz座標が大きくなることによって小さくなってもよい。または、第3端部の流路6の高さは、第3端部の流路6の上端および下端のz座標のうち、上端および下端の双方が変化することによって小さくなってもよい。本実施形態では、第3端部の流路6の下端のz座標は変化せずに、上端のz座標が小さくなることによって、第3端部の流路6高さが小さくなっている。 The height of the channel 6 at the third end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the third end. You can become Alternatively, the height of the channel 6 at the third end is such that, of the z-coordinates of the upper end and the lower end of the channel 6 at the third end, the z-coordinate of the upper end does not change and the z-coordinate of the lower end increases. It may be smaller by Alternatively, the height of the third end channel 6 may be reduced by changing both the upper and lower z-coordinates of the upper and lower ends of the third end channel 6 . In the present embodiment, the z-coordinate of the lower end of the channel 6 at the third end remains unchanged, and the z-coordinate of the upper end becomes smaller, thereby reducing the height of the channel 6 at the third end.
 さらに、第2領域19は、第2端部と対向するように位置した第4端部と、第4端部に接続しかつ第4端部と比較して第2基部の近くに位置した第4基部を有していてもよい。すなわち、第2端部、第2基部、第4基部、第4端部の順に並んでいるといえ、また、第4基部、第4端部、第5領域22の順に接続しているともいえる。 Further, the second region 19 has a fourth end located opposite the second end and a second end connected to the fourth end and located closer to the second base than the fourth end. It may have four bases. That is, it can be said that they are arranged in the order of the second end, the second base, the fourth base, and the fourth end, and it can be said that they are connected in the order of the fourth base, the fourth end, and the fifth region 22 . .
 第4端部の断面Cの面積は、第4基部の断面Cの面積と比較して小さくてもよい。これにより、第2領域19の体積を減らし、第1検出部9および第2検出部10の双方に検体液が到達するために必要な検体液量を低減し、少ない検体液量で測定を行うことができる。 The area of the cross section C of the fourth end may be smaller than the area of the cross section C of the fourth base. This reduces the volume of the second region 19, reduces the amount of sample liquid required for the sample liquid to reach both the first detection unit 9 and the second detection unit 10, and performs measurement with a small amount of sample liquid. be able to.
 第4端部の断面Cの面積は、第4基部から離れるにつれ小さくなってもよい。すなわち、第4端部の断面Cの面積は、第4基部と接続している部分の断面Cの面積がもっとも大きく、第5領域22と接続している第4端部の端の断面Cがもっとも小さく、第4基部と接続している部分から、第5領域22と接続している第4端部の端に向けて、断面Cの面積は徐々に小さくなっていてもよいといえる。これにより、第2領域19内に気泡が流れ込んだ場合でも、気泡は第5領域22に向けて流れやすくなり、第2領域19内に気泡が留まりにくくなり、測定精度を高めることができる。 The area of the cross section C of the fourth end portion may decrease as the distance from the fourth base portion increases. That is, with respect to the area of the cross section C of the fourth end, the area of the cross section C of the portion connected to the fourth base is the largest, and the cross section C of the end of the fourth end connected to the fifth region 22 has the largest area. It can be said that the area of the cross section C may gradually decrease from the smallest portion connected to the fourth base toward the end of the fourth end connected to the fifth region 22 . As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
 また、第4端部の流路6の幅は、第5領域22に近づくにつれ小さくなっていてもよい。すなわち、第4端部の流路6の幅は、第4基部と接続している部分の流路6の幅がもっとも大きく、第5領域22側の第4端部の端の流路6の幅がもっとも小さく、第4基部と接続している部分から、第5領域22側の第4端部の端に向けて、流路6の幅は徐々に小さくなっていてもよいといえる。これにより、第2領域19内に気泡が流れ込んだ場合でも、気泡は第5領域22に向けて流れやすくなり、第2領域19内に気泡が留まりにくくなり、測定精度を高めることができる。 Also, the width of the channel 6 at the fourth end may decrease as it approaches the fifth region 22 . That is, the width of the channel 6 at the fourth end is the largest at the portion connected to the fourth base, and the width of the channel 6 at the end of the fourth end on the fifth region 22 side is the largest. It can be said that the width of the channel 6 may gradually decrease from the portion where the width is the smallest and is connected to the fourth base toward the end of the fourth end on the fifth region 22 side. As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
 また、第4端部の流路6の高さは、第5領域22に近づくにつれて小さくなっていてもよい。すなわち、第4端部の流路6の高さは、第4基部と接続している部分の流路6の高さがもっとも高く、第5領域22側の第4端部の端の流路6の高さがもっとも低く、第4基部と接続している部分から、第5領域22側の第4端部の端に向けて、流路6の高さは徐々に小さくなっていてもよいといえる。これにより、第2領域19内に気泡が流れ込んだ場合でも、気泡は第5領域22に向けて流れやすくなり、第2領域19内に気泡が留まりにくくなり、測定精度を高めることができる。 Also, the height of the channel 6 at the fourth end may decrease as it approaches the fifth region 22 . That is, the height of the channel 6 at the fourth end is the highest in the portion connected to the fourth base, and the height of the channel 6 at the end of the fourth end on the side of the fifth region 22 is the highest. The height of the flow path 6 may gradually decrease from the portion where the height of the channel 6 is the lowest and is connected to the fourth base toward the end of the fourth end on the side of the fifth region 22. It can be said. As a result, even when bubbles flow into the second region 19, the bubbles tend to flow toward the fifth region 22, making it difficult for the bubbles to remain in the second region 19, thereby improving measurement accuracy.
 第4端部の流路6の高さは、第4端部の流路6の上端および下端のz座標のうち、下端のz座標は変化せずに上端のz座標が小さくなることによって小さくなってもよく、上端のz座標は変化せずに下端のz座標が大きくなることによって小さくなってもよく、上端および下端の双方が変化することによって小さくなってもよい。本実施形態では、第4端部の流路6の下端のz座標は変化せずに、上端のz座標が小さくなることによって、第4端部の流路6高さが小さくなっている。 The height of the channel 6 at the fourth end is reduced by decreasing the z-coordinate of the upper end without changing the z-coordinate of the lower end among the z-coordinates of the upper end and the lower end of the channel 6 of the fourth end. , the z-coordinate of the top edge may decrease by increasing the z-coordinate of the bottom edge without changing, or it may decrease by varying both the top and bottom edges. In the present embodiment, the z-coordinate of the lower end of the channel 6 of the fourth end remains unchanged, and the z-coordinate of the upper end becomes smaller, so that the height of the channel 6 of the fourth end becomes smaller.
 第1基部18bおよび第3基部は互いに接続していてもよく、互いに接続していなくてもよいが、本実施形態では互いに接続していない。また、第2基部および第4基部は互いに接続していてもよく、互いに接続していなくてもよいが、本実施形態では互いに接続していない。このとき、第1検出部9は、第1基部18bおよび第3基部の間に位置していてもよい。第2検出部10は、第2基部、第4基部の間に位置していてもよい。 The first base 18b and the third base may or may not be connected to each other, but are not connected to each other in this embodiment. Also, the second base portion and the fourth base portion may or may not be connected to each other, but are not connected to each other in this embodiment. At this time, the first detector 9 may be positioned between the first base 18b and the third base. The second detector 10 may be positioned between the second base and the fourth base.
 〔実施形態2〕
 図7、図8および、図9に、第2実施形態のセンサ装置の概略を示す。
[Embodiment 2]
7, 8 and 9 show an outline of the sensor device of the second embodiment.
 図8は、図7に示した測定センサ1の一部の構成を示す模式図である。具体的には、図1に示した測定センサ1の流路6を抜き出して記載した模式図である。 FIG. 8 is a schematic diagram showing a configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
 図9は、図7に示した測定センサの一部の切断面線I-I´の断面図である。 FIG. 9 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 7 taken along the section line II'.
 図9に示すように、第2実施形態の測定センサ1は、上記の実施形態とは、センサ基板7および圧電基板8が、流路部材5の下面に位置している点で異なる。また、第2実施形態の測定センサ1は、上記の実施形態とは、流路部材5の基板開口部15が、流路部材5の下面に位置している点で異なる。すなわち、センサ基板7および圧電基板8の一部または全ては流路部材5の下面から流路6に露出しており、第1検出部9および第2検出部10は、流路部材5の下面から流路6に露出している。 As shown in FIG. 9 , the measurement sensor 1 of the second embodiment differs from the above embodiments in that the sensor substrate 7 and the piezoelectric substrate 8 are positioned on the lower surface of the flow path member 5 . Further, the measurement sensor 1 of the second embodiment differs from the above embodiments in that the substrate opening 15 of the channel member 5 is positioned on the lower surface of the channel member 5 . That is, part or all of the sensor substrate 7 and the piezoelectric substrate 8 are exposed from the bottom surface of the flow path member 5 to the flow path 6 , and the first detection section 9 and the second detection section 10 are located on the bottom surface of the flow path member 5 . are exposed to the flow path 6 from the
 〔実施形態3〕
 図10、図11および、図12に、第3実施形態のセンサ装置の概略を示す。
[Embodiment 3]
10, 11 and 12 schematically show the sensor device of the third embodiment.
 図11は、図10に示した測定センサ1の一部の構成を示す模式図である。具体的には、図1に示した測定センサ1の流路6を抜き出して記載した模式図である。 FIG. 11 is a schematic diagram showing the configuration of part of the measurement sensor 1 shown in FIG. Specifically, it is a schematic diagram extracting and describing the flow path 6 of the measurement sensor 1 shown in FIG.
 図12は、図10に示した測定センサの一部の切断面線I-I´の断面図である。 FIG. 12 is a cross-sectional view of a portion of the measurement sensor shown in FIG. 10, taken along line II'.
 第2実施形態の測定センサ1は、上記の実施形態とは、図11に示すように、センサ基板7および圧電基板8が、流路部材5の下面に位置している点で異なる。また、第2実施形態の測定センサ1は、上記の実施形態とは、流路部材5の基板開口部15が、流路部材5の下面に位置している点で異なる。すなわち、センサ基板7および圧電基板8の一部または全ては流路部材5の下面から流路6に露出しており、第1検出部9および第2検出部10は、流路部材5の下面から流路6に露出している。 The measurement sensor 1 of the second embodiment differs from the above embodiments in that the sensor substrate 7 and the piezoelectric substrate 8 are positioned on the lower surface of the flow path member 5, as shown in FIG. Further, the measurement sensor 1 of the second embodiment differs from the above embodiments in that the substrate opening 15 of the channel member 5 is positioned on the lower surface of the channel member 5 . That is, part or all of the sensor substrate 7 and the piezoelectric substrate 8 are exposed from the bottom surface of the flow path member 5 to the flow path 6 , and the first detection section 9 and the second detection section 10 are located on the bottom surface of the flow path member 5 . are exposed to the flow path 6 from the
 さらに、第3実施形態の測定センサ1は、図12に示すように、第1実施形態および第2実施形態と、第1端部18a、第2端部、第3端部および第4端部の流路6の高さが、上端のz座標は変化せずに、下端のz座標が大きくなることによって、小さくなっている点が異なる。 Furthermore, as shown in FIG. 12, the measurement sensor 1 of the third embodiment includes the first and second embodiments, the first end 18a, the second end, the third end and the fourth end. The height of the channel 6 is reduced by increasing the z-coordinate of the lower end without changing the z-coordinate of the upper end.
 〔付記事項〕
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
[Additional notes]
The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to each embodiment described above. That is, the invention according to the present disclosure can be variously modified within the scope shown in the present disclosure, and the embodiments obtained by appropriately combining the technical means disclosed in different embodiments can also be applied to the invention according to the present disclosure. Included in the technical scope. In other words, it should be noted that a person skilled in the art can easily make various variations or modifications based on this disclosure. Also, note that these variations or modifications are included within the scope of this disclosure.
  1・・・測定センサ
  2・・・制御装置
  3・・・外部端子
  4・・・接続端子
  5・・・流路部材
  6・・・流路
  7・・・センサ基板
  8・・・圧電基板
  9・・・第1検出部
 91・・・第1IDT(Inter Digital Transducer)電極
 92・・・第1導波路
 10・・・第2検出部
101・・・第2IDT(Inter Digital Transducer)電極
102・・・第2導波路
 11・・・絶縁基板
 12・・・接続導体
 13・・・供給口
 14・・・排出口
 15・・・基板開口部
 16・・・基材
 17・・・薄膜
171・・・第1薄膜
172・・・第2薄膜
 18・・・第1領域
 19・・・第2領域
 20・・・第3領域
 21・・・第4領域
 22・・・第5領域
 18a・・第1端部
 18b・・第1基部
DESCRIPTION OF SYMBOLS 1... Measurement sensor 2... Control device 3... External terminal 4... Connection terminal 5... Flow path member 6... Flow path 7... Sensor substrate 8... Piezoelectric substrate 9 First detection section 91 First IDT (Inter Digital Transducer) electrode 92 First waveguide 10 Second detection section 101 Second IDT (Inter Digital Transducer) electrode 102 - 2nd waveguide 11... Insulating substrate 12... Connection conductor 13... Supply port 14... Discharge port 15... Substrate opening part 16... Base material 17... Thin film 171... First thin film 172 Second thin film 18 First region 19 Second region 20 Third region 21 Fourth region 22 Fifth region 18a Third 1 end 18b... 1st base

Claims (11)

  1.  少なくとも1つの圧電基板と、
     前記少なくとも1つの圧電基板上に配され、複数の電極指が一方向に並ぶ第1IDT電極を有する第1検出部と、
     前記少なくとも1つの圧電基板上に配され、前記一方向に重なる仮想直線に沿う複数の 電極指が並ぶ第2IDT電極を有する第2検出部と、
     前記第1IDT電極および前記第2IDT電極が内部で並ぶ流路を有する流路部材と、を備える、測定センサ。
    at least one piezoelectric substrate;
    a first detection unit having a first IDT electrode arranged on the at least one piezoelectric substrate and having a plurality of electrode fingers aligned in one direction;
    a second detection unit having a second IDT electrode arranged on the at least one piezoelectric substrate and having a plurality of electrode fingers aligned along the imaginary straight lines overlapping in one direction;
    a flow path member having a flow path in which the first IDT electrode and the second IDT electrode are arranged.
  2.  前記流路は、
      前記第1検出部が位置した第1領域と、
      前記第2検出部が位置した第2領域と、
      前記第1領域および前記第2領域の間に位置した第3領域と、を有し、
     前記第3領域の流路の幅は、前記第1領域の流路の幅よりも小さく、
     前記第3領域の流路の幅は、前記第2領域の流路の幅よりも小さい、請求項1に記載の測定センサ。
    The flow path is
    a first region where the first detection unit is located;
    a second region where the second detection unit is located;
    a third region positioned between the first region and the second region;
    the width of the channel in the third region is smaller than the width of the channel in the first region;
    The measurement sensor according to claim 1, wherein the width of the channel in the third region is smaller than the width of the channel in the second region.
  3.  前記第1領域は、第1端部と、前記第1端部に接続し、且つ前記第1端部と比較して前記第3領域から離れて位置した第1基部を有し、
     前記第1端部の、流体の流れる方向に直交する断面の断面積は、前記第1基部の前記断面積と比較して、小さい、請求項2に記載の測定センサ。
    the first region has a first end and a first base connected to the first end and spaced apart from the third region relative to the first end;
    3. The measurement sensor of claim 2, wherein the cross-sectional area of the cross-section perpendicular to the direction of fluid flow of the first end is small compared to the cross-sectional area of the first base.
  4.  前記第1端部の前記断面積は、第3領域に近づくにつれて小さくなる、請求項3に記載の測定センサ。 The measurement sensor according to claim 3, wherein said cross-sectional area of said first end decreases as it approaches a third region.
  5.  前記第1端部の幅は、第3領域に近づくにつれて小さくなる、請求項3または4のいずれかに記載の測定センサ。 The measurement sensor according to claim 3 or 4, wherein the width of the first end decreases as it approaches the third area.
  6.  前記第1端部の高さは、第3領域に近づくにつれて小さくなる、請求項3~5のいずれかに記載の測定センサ。 The measurement sensor according to any one of claims 3 to 5, wherein the height of said first end decreases as it approaches the third area.
  7.  前記第2領域は、第2端部と、前記第2端部に接続し、且つ前記第2端部と比較して前記第3領域から離れて位置した第2基部を有し、
     前記第2端部の、流体の流れる方向に直交する断面の断面積は、前記第2基部の前記断面の断面積と比較して、小さい、請求項2~6のいずれかに記載の測定センサ。
    the second region has a second end and a second base connected to the second end and spaced apart from the third region relative to the second end;
    The measurement sensor according to any one of claims 2 to 6, wherein the cross-sectional area of the cross section perpendicular to the direction of fluid flow of the second end is smaller than the cross-sectional area of the cross section of the second base. .
  8.  前記第1検出部は、測定対象である検体液中の第1物質と反応する第2物質が固定されている、請求項1~7のいずれかに記載の測定センサ。 The measurement sensor according to any one of claims 1 to 7, wherein a second substance that reacts with the first substance in the sample liquid to be measured is immobilized on the first detection section.
  9.  前記流路部材は、前記流路に検体液を供給する供給口と、前記検体液を排出する排出口と、をさらに有し、
    前記供給口、前記第1検出部、前記第2検出部、および、前記排出口は、順に並んでいる、請求項1~8のいずれかに記載の測定センサ。
    The channel member further has a supply port for supplying the sample liquid to the channel and a discharge port for discharging the sample liquid,
    The measurement sensor according to any one of claims 1 to 8, wherein said supply port, said first detection section, said second detection section, and said discharge port are arranged in order.
  10.  前記供給口および前記排出口の少なくともいずれかは、前記第1検出部および前記第2検出部の位置する面と異なる面に位置している、請求項9に記載の測定センサ。 The measurement sensor according to claim 9, wherein at least one of the supply port and the discharge port is located on a different plane from the plane on which the first detection section and the second detection section are located.
  11.  前記少なくとも1つの圧電基板は、前記第1検出部が配された第1圧電基板と、前記第2検出部が配された第2圧電基板と、を有する、請求項1~10のいずれかに記載の測定センサ。 11. Any one of claims 1 to 10, wherein the at least one piezoelectric substrate comprises a first piezoelectric substrate on which the first detection section is arranged and a second piezoelectric substrate on which the second detection section is arranged. Measurement sensor as described.
PCT/JP2022/019895 2021-05-14 2022-05-11 Measuring sensor WO2022239791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521217A JPWO2022239791A1 (en) 2021-05-14 2022-05-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082543 2021-05-14
JP2021-082543 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239791A1 true WO2022239791A1 (en) 2022-11-17

Family

ID=84029693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019895 WO2022239791A1 (en) 2021-05-14 2022-05-11 Measuring sensor

Country Status (2)

Country Link
JP (1) JPWO2022239791A1 (en)
WO (1) WO2022239791A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214792A (en) * 2005-02-02 2006-08-17 Seiko Instruments Inc Microreactor, and device, method and program for measuring dissociation constant
WO2014119069A1 (en) * 2013-01-30 2014-08-07 京セラ株式会社 Sensor device
JP2019509488A (en) * 2016-03-11 2019-04-04 コーボ ユーエス,インコーポレイティド BAW sensor fluidic device with increased dynamic measurement range

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214792A (en) * 2005-02-02 2006-08-17 Seiko Instruments Inc Microreactor, and device, method and program for measuring dissociation constant
WO2014119069A1 (en) * 2013-01-30 2014-08-07 京セラ株式会社 Sensor device
JP2019509488A (en) * 2016-03-11 2019-04-04 コーボ ユーエス,インコーポレイティド BAW sensor fluidic device with increased dynamic measurement range

Also Published As

Publication number Publication date
JPWO2022239791A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US10551375B2 (en) Analyte sensor and analyte sensing method
US10533971B2 (en) Biosensor
US20100236322A1 (en) Surface Acoustic Wave Element and Equipment for Measuring Characteristics of Liquid Material
JP2021028639A (en) Sensor apparatus
US10241082B2 (en) Analyte sensor and analyte sensing method
US10533973B2 (en) Sensor apparatus
JP6154569B2 (en) Surface acoustic wave sensor
CN105934667B (en) Sensor device
US9678042B2 (en) Surface acoustic wave sensor
WO2022239791A1 (en) Measuring sensor
JP6322875B2 (en) Surface acoustic wave sensor
JP4228993B2 (en) Flow cell type QCM sensor
JP6492376B2 (en) Surface acoustic wave sensor
JP4223997B2 (en) Microsensor for analysis
Nagayama et al. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor
KR20130055308A (en) Bio-sensor
JP6466533B2 (en) Sample sensor and sample sensing method
JP6391653B2 (en) Sample sensor and sample sensing method
JP6193956B2 (en) Sample sensor and sample sensing method
JP2020145586A (en) Crystal oscillator and sensing sensor
Fukuura et al. Biosensor
KR20200060874A (en) Electrochemical sensor
JPWO2014192393A1 (en) Sample sensor and sample sensing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE