WO2022239780A1 - Sulfur-containing compound and high molecular weight material - Google Patents

Sulfur-containing compound and high molecular weight material Download PDF

Info

Publication number
WO2022239780A1
WO2022239780A1 PCT/JP2022/019860 JP2022019860W WO2022239780A1 WO 2022239780 A1 WO2022239780 A1 WO 2022239780A1 JP 2022019860 W JP2022019860 W JP 2022019860W WO 2022239780 A1 WO2022239780 A1 WO 2022239780A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
functional group
compound
site
containing compound
Prior art date
Application number
PCT/JP2022/019860
Other languages
French (fr)
Japanese (ja)
Inventor
裕一郎 小林
浩靖 山口
佑輝 山岸
顕義 堀口
大輝 北野
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2023521210A priority Critical patent/JPWO2022239780A1/ja
Publication of WO2022239780A1 publication Critical patent/WO2022239780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides

Definitions

  • the present invention relates to sulfur-containing compounds and polymeric materials.
  • Non-Patent Document 1 discloses a method for producing a sulfur polymer by copolymerization with a vinyl monomer or a dithiol monomer. Since the sulfur polymer obtained by such a method becomes soluble in general-purpose organic solvents such as chloroform and tetrahydrofuran, improvement in processability can be expected.
  • Non-Patent Document 2 proposes an inverse vulcanization method including a step of copolymerizing a polyfunctional vinyl monomer and sulfur, which is expected to yield a more stable sulfur polymer.
  • Sulfur polymers are expected to be applied in various fields because they exhibit properties different from those of general-purpose resins. It can be said that the synthesis of sulfur polymers is indispensable for the development of the industrial world. However, since sulfur polymers undergo depolymerization when stored at room temperature, for example, they are poor in stability, and it has never been easy to obtain novel sulfur polymers that exist stably.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a novel sulfur-containing compound with excellent stability and a polymer material containing the sulfur-containing compound.
  • the present inventors have found that the above object can be achieved by introducing a site containing a specific functional group into the sulfur segment, and have completed the present invention. .
  • Item 1 A sulfur-containing compound, Formula (1) below in the molecule - (S) m - (1) (In formula (1), m represents a number of 1 or more) A first portion represented by at least one second site containing a functional group F capable of interacting with other molecules and/or ions; A sulfur-containing compound, wherein the second portion is covalently bonded to the sulfur of the first portion.
  • Item 2 Item 2. The sulfur-containing compound according to item 1, wherein the interaction is at least one selected from the group consisting of non-covalent bonds and coordinate bonds.
  • Item 3 Item 3.
  • Item 4 Item 3.
  • Item 5 Item 5.
  • Item 6 Item 5.
  • Item 7 The sulfur-containing compound according to any one of Items 1 to 6, A sulfur-containing polymeric material in which at least two or more sulfur-containing compounds form an intermolecular interaction via the functional group F.
  • the sulfur-containing compound of the present invention is a novel sulfur compound or sulfur polymer with excellent stability.
  • Example 1 is an outline of the synthesis scheme of LS-bpy obtained in Example 1-1.
  • (a) and (b) are the 1 H-NMR spectrum and 13 C-NMR spectrum of LS-bpy obtained in Example 1-1, respectively. It is the MALDI-TOF MS spectrum of LS-bpy obtained in Example 1-1.
  • 1 is the result of GPC measurement of the polymeric material obtained in Example 1-2.
  • (a) and (b) are test results for confirming the formation of a coordinate bond between the bipyridine site (bpy site) in LS-bpy obtained in Example 1-2 and Cu.
  • 1 is an outline of a synthesis scheme of a sulfur-UPy compound obtained in Example 2-1 or Example 2-2.
  • FIG. 1 1 H-NMR spectra of sulfur-UPy compounds obtained in Examples 2-1 and 2-2.
  • Fig. 2 shows MALDI-TOF MS spectra of sulfur-UPy compounds obtained in Examples 2-1 and 2-2.
  • (a) and (b) are FT-IR spectra and solid-state 1 H-NMR spectra for confirming whether groups derived from Upy-NCO in sulfur-UPy form hydrogen bonds.
  • 1 is an outline of the synthesis scheme of Poly(LS-bpy) obtained in Example 3.
  • FIG. (a) and (b) are the results of 1 H-NMR spectrum and 13 C-NMR spectrum of Poly(LS-bpy) obtained in Example 3, respectively.
  • 4 is a MALDI-TOF MS spectrum of Poly(LS-bpy) obtained in Example 3.
  • FIG. 1 is an outline of the synthesis scheme of Poly(LS-bpy) obtained in Example 3.
  • FIG. (a) and (b) are the results of 1 H-NMR spectrum and 13 C-
  • FIG. 1 is an outline of the synthesis scheme of Poly(LS-BnNHCOS) obtained in Example 4.
  • FIG. 4 is an FT-IR spectrum of Poly(LS-BnNHCOS) obtained in Example 4.
  • FIG. 1 is the result of 1 H-NMR spectrum of Poly(LS-BnNHCOS) obtained in Example 4.
  • FIG. 4 shows the results of GPC measurement of Poly(LS-BnNHCOS) obtained in Example 4.
  • FIG. 1 is an outline of the synthesis scheme of Poly(S-Upy) obtained in Example 5.
  • FIG. 2 shows the results of GPC measurement of Poly(S-Upy) obtained in Example 5 in DMSO and chloroform.
  • the sulfur-containing compound of the present invention has the following formula (1) in the molecule - (S) m - (1) (In formula (1), m represents a number of 1 or more) and at least one second site containing a functional group F capable of interacting with other molecules and/or ions, wherein the second site is the first site It is covalently bonded to the sulfur of the site. That is, the sulfur-containing compound of the present invention has a first site and a second site covalently bonded to the first site in the molecule.
  • Such a sulfur-containing compound has excellent stability and is a novel sulfur polymer.
  • the sulfur-containing compound of the present invention can form a polymer material having a so-called supramolecular structure by directly or indirectly interacting between molecules. It is expected to exhibit functions not found in polymers.
  • the sulfur-containing compound of the present invention can have a supramolecular structure, and thus can form a polymeric material that appears to have a high molecular weight.
  • the sulfur-containing compound can have one or more first sites in the molecule.
  • the sulfur-containing compound has two or more first moieties, for example, the first moieties are repeating structural units of the sulfur-containing compound.
  • the first site can be called a "sulfur segment" because it is represented by the above formula (1).
  • m is not particularly limited as long as it is a number of 1 or more.
  • m is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and particularly preferably 5 or more.
  • the upper limit of m is not particularly limited, for example, it can be 10000 or less, preferably 5000 or less, more preferably 3000 or less, further preferably 1000 or less, and 500 or less. It is particularly preferred to have m can also be 10 or less.
  • the value of m can be calculated by MALDI-TOF MS spectrum.
  • the sulfur-containing compound can have one or more second moieties in the molecule.
  • the sulfur-containing compound has two or more second moieties, for example, the second moieties are repeating structural units of the sulfur-containing compound.
  • the second site includes a functional group F (hereinafter sometimes simply referred to as "functional group F") capable of interacting with other molecules and/or ions.
  • “Other molecules” as used herein can mean, for example, the sulfur-containing compounds of the present invention. That is, the sulfur-containing compound of the present invention can form intermolecular interactions via the functional group F.
  • “ion” here can mean an ion of metal M, which will be described later.
  • the "interaction" as used herein can include, for example, at least one selected from the group consisting of non-covalent bonds and coordinate bonds.
  • the type of non-covalent bond is not particularly limited, for example, a wide range of known non-covalent bonds can be mentioned, specifically hydrogen bond, hydrophobic interaction, electrostatic interaction, dipole interaction, ionic bond , ⁇ -electron interaction, host-guest interaction, and the like.
  • the non-covalent bond is preferably a hydrogen bond from the viewpoint of facilitating molecular design.
  • the functional group F is not particularly limited as long as it can form the interaction. At least one functional group F is present in the second site, and two or more may be present. When the second site has multiple functional groups F, the multiple functional groups F may all be the same, or some or all of them may be different. Moreover, when the second site has a plurality of functional groups F, the types of interactions caused by the functional groups F may all be the same, or some or all of them may be different.
  • the "functional group F capable of interacting with other molecules and/or ions” includes, for example, a functional group based on a polydentate ligand.
  • the functional group F is a functional group based on a polydentate ligand, the functional group F is likely to form an interaction due to the coordinate bond described above. More specifically, when the functional group F is a functional group based on a polydentate ligand, the functional group F is likely to form a coordinate bond with ions.
  • the functional group F is a functional group based on a polydentate ligand
  • examples of the polydentate ligand include known bidentate ligands, tridentate ligands, hexadentate ligands and hexadentate ligands.
  • polydentate ligands exceeding Specific examples include pyridine compounds or derivatives thereof, bipyridine compounds or derivatives thereof, terpyridine compounds or derivatives thereof, carboxylic acid compounds or derivatives thereof, dicarboxylic acid compounds or derivatives thereof, tricarboxylic acid compounds or derivatives thereof, Tetra or higher carboxylic acid compounds or derivatives thereof, imidazole compounds or derivatives thereof, diimidazole compounds or derivatives thereof, triazole compounds or derivatives thereof, tetratriazole compounds or derivatives thereof can be mentioned.
  • the functional group F is a functional group based on a multidentate ligand
  • the functional group F is a functional group based on bipyridine or a derivative thereof. is preferably
  • the second site can be formed by, for example, the polydentate ligand B described later. That is, the second site can be a structural unit based on the polydentate ligand B.
  • the "functional group F capable of interacting with other molecules and/or ions” is a group having the property of non-covalent bonding of various types described above.
  • the groups having the property of non-covalent bonding of the functional group F exclude functional groups based on the aforementioned polydentate ligands.
  • the functional group F capable of interacting with other molecules and/or ions is a group having the property of non-covalent bonding
  • the functional group F can be, for example, a group having hydrogen bonding properties.
  • the functional group F having hydrogen-bonding properties is referred to as "hydrogen-bonding functional group F”.
  • the functional group F having hydrogen bonding properties is not particularly limited, and for example, a wide range of known functional groups having hydrogen bonding properties can be mentioned.
  • Specific examples of the functional group F having hydrogen bonding properties include an amide group, an amino group, a carboxyl group, a hydroxyl group, an isocyanate group, a thioisocyanate group, a carbamide-derived group, a ureido-derived group, a pyrimidine ring-derived group, and the like. can be mentioned.
  • the second site can be formed by, for example, a hydrogen-bonding compound C described later. That is, the second site can be a structural unit based on the hydrogen-bonding compound C.
  • the second site can be composed only of the functional group F, or can be composed of a group containing the functional group F.
  • the functional group F is a functional group based on a polydentate ligand
  • the second site preferably consists of the functional group F only.
  • the sulfur-containing compound has at least one first site and at least one second site in the molecule.
  • the sulfur-containing compound according to the present invention can be a molecule having a structure in which the second site is covalently bonded to one or both ends of the first site.
  • the sulfur-containing compound of this aspect is referred to as "main chain type supramolecular sulfur polymer”.
  • the main chain type supramolecular sulfur polymer has a structure in which the second site is covalently bonded to one end of the first site (hereinafter abbreviated as “structure a”), and both ends of the first site to which the second site is covalently bonded (hereinafter abbreviated as “structure b”).
  • structure a structure in which the second site is covalently bonded to one end of the first site
  • structure b both ends of the first site to which the second site is covalently bonded
  • backbone-type supramolecular sulfur polymers have one primary site and one or two secondary sites in the molecule.
  • the group bonded to the end opposite to the end to which the second portion of the first portion is covalently bonded is not particularly limited, and a hydrogen atom , alkali metal ions such as sodium, and the like.
  • the type of the second site is not particularly limited as long as it has the functional group F. It is preferable to have at least one selected from the group consisting of binding functional groups F.
  • the second sites at both ends can be the same, or can be of different types.
  • the second sites at both ends are preferably the same from the viewpoint of ease of production and easy formation of a supramolecular structure due to interactions such as coordinate bonds, which will be described later.
  • the type of the second site is not particularly limited as long as it has the functional group F. It is preferable to have at least one selected from the group consisting of binding functional groups F.
  • the second site is usually present covalently bonded to the terminal sulfur atom of the first site.
  • the mass average molecular weight (Mw) is preferably 100 to 1,000,000, more preferably 500 to 100,000. It is preferably from 1,000 to 10,000.
  • the weight average molecular weight (Mw) referred to in this specification is a value obtained by gel permeation chromatography (GPC) measurement.
  • the sulfur-containing compound according to the present invention can also have a structure other than the main chain type supramolecular sulfur polymer. Specifically, the sulfur-containing compound according to the present invention can also have, as a repeating unit, a structure in which the second portion is covalently bonded to one end of the first portion.
  • the sulfur-containing compound of this aspect is referred to as "side chain type supramolecular sulfur polymer”.
  • a side chain type supramolecular sulfur polymer is formed by repeating a structure in which a first site (one end of a sulfur segment) is bonded to a second site. Therefore, when the first site is denoted as "M1" and the second site is denoted as "M2", the side chain type supramolecular sulfur polymer has (M1-M2) units as repeating structural units.
  • the side chain type supramolecular sulfur polymer has the (M1-M2) unit as a repeating structural unit
  • the side chain type supramolecular sulfur polymer molecule has at least the first site and the second site. Includes two or more.
  • the second site contained in the side chain type supramolecular sulfur polymer molecule may be of one type alone, or may be of two or more different types.
  • the second site in the side chain type supramolecular sulfur polymer is usually present covalently bonded to the terminal sulfur atom of the first site.
  • the type of the second site is not particularly limited as long as it has the functional group F.
  • the functional group based on the above-mentioned multidentate ligand and the hydrogen-bonding functional group F It is preferable to have at least one selected from the group consisting of
  • the side chain type supramolecular sulfur polymer can be formed only with two or more first sites and two or more second sites, or two or more first sites unless the effects of the present invention are impaired. And it can also have structural units other than two or more second moieties.
  • the side chain type supramolecular sulfur polymer preferably contains 70 mol% or more of the first site and the second site, more preferably 80 mol% or more, further preferably 90 mol% or more, and 95 mol % or more is particularly preferable.
  • the weight average molecular weight (Mw) is preferably 100 to 1,000,000, more preferably 500 to 100,000. It is preferably from 1,000 to 10,000.
  • the sulfur-containing compound according to the present invention is usually a linear compound, and may have a branched structure as necessary. can.
  • the method for producing the sulfur-containing compound of the present invention is not particularly limited.
  • the sulfur-containing polymer material of the present invention can be obtained by step 1 of obtaining sulfur segments by reacting a sulfur source and a metal source, and sulfur It can be produced by a production method comprising step 2 of obtaining a contained compound.
  • Step 1 is a step for producing a sulfur segment by reacting a sulfur source and a metal source.
  • the sulfur source used in step 1 is a raw material capable of giving a sulfur polymer.
  • the sulfur source is a raw material capable of providing the "-(S) m -" site represented by the above formula (1). Therefore, the sulfur source may be sulfur alone or a compound containing a sulfur atom.
  • the sulfur source preferably contains elemental sulfur in that it is easy to provide -(S) m - sites.
  • Examples of simple sulfur include cyclic sulfur composed of sulfur atoms, and typically an eight-membered ring of sulfur can be used as a sulfur source.
  • a sulfur source can be produced by a known method, or can be obtained from commercial products.
  • the sulfur source can also be, for example, a sulfur polymer.
  • Such sulfur polymers can be produced by known methods, or can be obtained from commercial products.
  • examples of metal sources include alkali metals and alkali metal compounds.
  • the alkali metal is not particularly limited, and examples thereof include sodium, potassium, and lithium, with sodium being preferred.
  • examples of alkali metal compounds include sulfides of alkali metals, among which sodium sulfide is preferred.
  • the alkali metal compound may be a hydrate.
  • the metal source is preferably an alkali metal compound, more preferably an alkali metal sulfide, and particularly preferably sodium sulfide, in that the reaction is simple and large-scale synthesis is possible.
  • the method of reacting the sulfur source and the metal source is not particularly limited, and for example, a method of mixing the sulfur source and the metal source in a solvent can be mentioned.
  • a solvent used in the reaction, its type is not particularly limited, and various organic solvents other than water can be used.
  • the metal source is an alkali metal compound, particularly an alkali metal sulfide
  • the reaction of step 1 preferably uses an aqueous solvent, particularly water.
  • the metal source is an alkali metal, it is preferable to use an organic solvent in the reaction of step 1, and it is particularly preferable to use a polar solvent such as dimethylacetamide.
  • step 1 the ratio of the sulfur source and the metal source used is not particularly limited. Mole.
  • the reaction temperature when reacting the sulfur source and the metal source in step 1 is not particularly limited, and can be, for example, 0 to 200°C, preferably 15 to 80°C.
  • the reaction time between the sulfur source and the metal source is also not particularly limited, and can be, for example, 10 minutes to 48 hours, preferably 30 minutes to 24 hours.
  • the reaction can be performed, for example, under an inert gas atmosphere such as nitrogen.
  • the reaction product obtained can be subjected to the next step 2 without purification treatment, etc., or the reaction product obtained in step 1 can be subjected to appropriate post-treatment as necessary. After performing, it can be subjected to the next step 2.
  • Post-treatment is not particularly limited, and a wide range of known purification methods, separation methods, and the like can be employed. Examples thereof include a method of purifying the reaction product obtained in step 1 by filtration, and a method of separating the solid content by removing the solvent by drying treatment of the reaction product obtained in step 1.
  • the reactant obtained by step 1 above contains a sulfur segment.
  • the sulfur segment is "-(S) m - (m is 1 or more)" as represented by the above formula (1), and is a component that becomes the first site in the sulfur-containing compound of the present invention. be. Both ends of the sulfur segment are, for example, hydrogen atoms or metal salts (eg, sodium salts).
  • Step 2 is a step for obtaining a sulfur-containing compound by reacting the sulfur segment obtained in Step 1 with a compound having a functional group F.
  • a compound having functional group F can be the second site in the resulting sulfur-containing compound.
  • the functional group F is the same as described above. Therefore, as the functional group F, functional groups based on polydentate ligands and functional groups having hydrogen bonding properties can be mentioned.
  • Examples of compounds having a functional group F include various polydentate ligands.
  • the resulting sulfur-containing compound is formed with, for example, a second site having a functional group F capable of coordinating.
  • polydentate ligand B The polydentate ligand as a compound having a functional group F is hereinafter referred to as "polydentate ligand B".
  • multidentate ligand B examples include a wide range of known bidentate ligands, tridentate ligands, hexadentate ligands, and multidentate ligands exceeding hexadentate.
  • Bipyridine derivatives and terpyridine derivatives include, for example, structures in which at least one hydrogen atom in one or two or more pyridine rings out of a plurality of pyridine rings is substituted with another substituent.
  • the type of the substituent is not particularly limited as long as it does not interfere with coordination bonding, and specific examples thereof include hydrocarbon groups (eg, having 1 to 10 carbon atoms).
  • the polydentate ligand B is preferably a compound capable of reacting with the terminal sulfur atom of the sulfur segment.
  • a compound substituted with a halogen atom, a compound having an isocyanate group, a compound having an epoxy group, a compound having a carbonyl chloride, and the like are preferable.
  • polydentate ligand B examples include bipyridine having a halogen atom or a derivative thereof, terpyridine having a halogen atom or a derivative thereof, and typically 4-(Chloromethyl)-4'-methyl- 2,2'-bipyridyl, 4,4'-Bis(chloromethyl)-2,2'-bipyridyl and the like can be mentioned.
  • Halogen atoms other than chlorine atoms may be used, but chlorine atoms are preferred from the viewpoint of reactivity.
  • polydentate ligand B examples include the compounds represented by B-1 to B-34 below.
  • the multidentate ligand B is, for example, a bipyridine having a halogen atom or a derivative thereof, or a terpyridine having a halogen atom or a derivative thereof, in the reaction in step 2, the halogen atom is eliminated to form a sulfur atom at the end of the sulfur segment.
  • the multidentate ligand B has one halogen atom, the aforementioned backbone-type supramolecular sulfur polymer is produced, and such backbone-type supramolecular sulfur polymer usually has structure b.
  • the polydentate ligand B has two halogen atoms, the aforementioned side chain type supramolecular sulfur polymer can be produced.
  • Examples of compounds having a functional group F include, in addition to the multidentate ligand B, compounds having a hydrogen-bonding functional group F.
  • the resulting sulfur-containing compound is formed with, for example, a second site having a functional group F capable of hydrogen bonding.
  • a compound having a hydrogen-bonding functional group F is hereinafter referred to as a "hydrogen-bonding compound C".
  • Hydrogen-bonding compound C does not have functional groups based on polydentate ligands.
  • the hydrogen-bonding compound C a wide range of known compounds having a functional group F having hydrogen-bonding properties can be cited.
  • Specific examples of the functional group F having hydrogen bonding properties include an amide group, an amino group, a carboxyl group, a hydroxyl group, an isocyanate group, a thioisocyanate group, a carbamide-derived group, a ureido-derived group, a pyrimidine ring-derived group, and the like. can be mentioned.
  • the hydrogen-bonding compound C is preferably a compound that has a functional group F that has hydrogen-bonding properties, and that the functional group F can react with the terminal sulfur atom of the sulfur segment.
  • the hydrogen-bonding compound C is a compound having a functional group F having hydrogen-bonding properties and having a group other than the functional group F capable of reacting with the terminal sulfur atom of the sulfur segment. is also preferred. Therefore, examples of the hydrogen-bonding compound C include compounds having a polycondensable group and compounds having a radically polymerizable double bond.
  • the hydrogen-bonding compound C is a compound having a polycondensable group
  • examples of such polycondensable group include an amino group, a carboxyl group, a hydroxyl group, and an isocyanate group, among which an isocyanate group.
  • the hydrogen-bonding compound C is preferably a compound having an isocyanate group.
  • These polycondensable groups can also function as hydrogen-bonding functional groups F after reacting with sulfur segments.
  • the hydrogen-bonding compound C has a functional group F in addition to the polycondensable group, the functional group F can also function as the hydrogen-bonding functional group F.
  • the hydrogen-bonding compound C when the hydrogen-bonding compound C is a compound having a polycondensable group, the compound may have at least two, preferably three or more hydrogen-bonding functional groups F in the molecule. may have 10 or less, preferably 8 or less, more preferably 5 or less functional groups F.
  • hydrogen-bonding compound C is a compound having a polycondensable group
  • typical examples include compounds represented by the following formulas (C-1) and (C-2).
  • the hydrogen-bonding compound C is a compound having a polycondensable group
  • the polycondensation reaction proceeds between the polycondensable group and the sulfur atom at the end of the sulfur segment. Therefore, when there is one polycondensable group in the hydrogen-bonding compound C, the aforementioned main-chain supramolecular sulfur polymer is produced, and such a main-chain supramolecular sulfur polymer usually has structures a and/or or has structure b, preferably structure b. Further, when the number of polycondensable groups in the hydrogen-bonding compound C is two, the aforementioned side chain type supramolecular sulfur polymer can be produced.
  • the hydrogen-bonding compound C is a compound having a radically polymerizable group
  • the compound includes, in addition to the functional group F, radically polymerizable compounds such as an allyl group, an acryloyl group, a methacryloyl group, and a styryl group.
  • the hydrogen-bonding compound C is a compound having a radically polymerizable group
  • the compound represented by the following formula (C-3) can be typically mentioned.
  • the radical polymerization reaction proceeds between the radically polymerizable group and the sulfur atom at the end of the sulfur segment. Therefore, when there is one radically polymerizable group in the hydrogen-bonding compound C, the main chain type supramolecular sulfur polymer described above is produced, and such main chain type supramolecular sulfur polymer usually has the structure b. . Moreover, when there are two radically polymerizable groups in the hydrogen-bonding compound C, the aforementioned side chain type supramolecular sulfur polymer can be produced.
  • step 2 the method of reacting the sulfur segment obtained in step 1 with a compound having a functional group F (i.e., polydentate ligand B or hydrogen-bonding compound C) is not particularly limited. Among them, a method of mixing the sulfur segment obtained in step 1 and a compound having a functional group F can be mentioned.
  • a compound having a functional group F i.e., polydentate ligand B or hydrogen-bonding compound C
  • the compound having a functional group F is a multidentate ligand B
  • solvents that phase-separate from water include various non-aqueous organic solvents, such as halogen-based hydrocarbon solvents such as chloroform.
  • the compound having the functional group F is a hydrogen-bonding compound C
  • a method of adding the hydrogen-bonding compound C to an aqueous solvent in which sulfur segments are present can be used.
  • aqueous solvents include water, alcohol compounds having 1 to 3 carbon atoms, amide solvents, and the like.
  • the ratio of the compound having the functional group F to the sulfur segment obtained in step 1 is not particularly limited.
  • the amount of the compound having the functional group F is preferably used per 1 mol of the sulfur segment. is 0.1 to 20 mol, more preferably 2 to 3 mol.
  • the compound having the functional group F used in step 2 can be one or two or more.
  • the polydentate ligand B and the hydrogen-bonding compound C can be used in combination.
  • the temperature at which the sulfur segment and the compound having the functional group F are reacted is not particularly limited, and can be, for example, 0 to 200°C, preferably 10 to 170°C, more preferably 15 to 80°C. .
  • the reaction time between the sulfur source and the metal source is also not particularly limited, and can be, for example, 10 minutes to 48 hours, preferably 30 minutes to 24 hours.
  • the reaction can be performed, for example, under an inert gas atmosphere such as nitrogen.
  • the target sulfur-containing compound can be obtained by performing appropriate purification treatment as necessary.
  • the sulfur-containing compound produced in step 2 can be further reacted with a compound having a functional group F.
  • a new sulfur-containing compound can be generated by reacting the initially generated sulfur-containing compound with a compound having an additional functional group F.
  • the compound with additional functional group F can be a different type of compound than the compound with functional group F to be reacted first.
  • the sulfur-containing polymeric material of the present invention can contain the sulfur-containing compounds of the present invention described above.
  • at least two or more sulfur-containing compounds can form intermolecular interactions via the functional group F.
  • the coordinate bond will cause the sulfur-containing compound can form intermolecular interactions.
  • a multidentate ligand present in a sulfur-containing compound coordinates to a metal ion, and the metal ion is coordinated to a multidentate ligand of another sulfur-containing compound.
  • the molecules of the sulfur-containing compound form associations via the metal ions, forming a so-called supramolecular polymer (“coordination-bonded main chain-type supramolecular sulfur polymer” in FIG. 1 described later or in FIG. 10”)
  • the aggregate can be easily disassembled by using a compound that breaks coordinate bonds, such as EDTA.
  • the metal ion to which the multidentate ligand coordinates is not particularly limited as long as it is a metal that can be coordinated by the multidentate ligand.
  • Examples thereof include various transition metal ions. Ions of Cu, Fe, Co, Mn, Al, etc. Among them, divalent copper ions and the like are preferable.
  • the functional group F at the second site of the sulfur-containing compound is a functional group having hydrogen bonding properties
  • a hydrogen bond is generated by the functional group F between one sulfur-containing compound and another sulfur-containing compound,
  • associations between molecules of the sulfur-containing compound are formed to form a so-called supramolecular polymer.
  • the sulfur-containing polymer material of the present invention contains a sulfur-containing compound having structure b in the main chain type supramolecular sulfur polymer described above, functional groups F at both ends of the sulfur-containing compound molecule and other sulfur-containing The functional group F of the compound molecule interacts directly or indirectly via the metal ion to form an aggregate. Then, the aggregates are successively associated with other sulfur-containing compounds through interactions similar to each other, whereby the sulfur-containing polymeric material can form a supramolecular structure.
  • the sulfur-containing polymeric material can comprise structure a in addition to structure b, where sulfur-containing compounds of structure a are located at one or both ends of the supramolecular structure.
  • the sulfur-containing polymer material of the present invention contains the above-mentioned side chain type supramolecular sulfur polymer
  • the functional group F in the repeating structural unit of the sulfur-containing compound molecule and the repeating structural unit of another sulfur-containing compound molecule Direct or indirect interaction occurs between the functional groups F in the sulfur-containing polymeric material, whereby the sulfur-containing polymer material can form a supramolecular structure (“Hydrogen-bonded side chain-type supramolecular sulfur polymer ”).
  • the sulfur-containing polymer material of the present invention forms a supramolecular structure, so that it can appear to be a material with a high molecular weight.
  • the apparent weight average molecular weight of the sulfur-containing polymeric material is preferably 200 to 1,000,000, more preferably 500 to 500,000, and preferably 1,000 to 100,000. More preferred.
  • the sulfur-containing polymer material of the present invention can be said to be a novel sulfur polymer that has never existed before, because associations between molecules of sulfur-containing compounds are easily formed.
  • the sulfur-containing polymer material of the present invention is resistant to depolymerization due to the formation of associations between molecules of sulfur-containing compounds, is excellent in stability, and tends to have an apparent high molecular weight.
  • the formation of aggregates between molecules of the sulfur-containing compound makes it easier for the sulfur segments to exhibit features compared to conventional sulfur polymers, improving various physical properties.
  • the sulfur-containing polymeric material can also contain various additives as long as the effects of the present invention are not hindered.
  • additives include light stabilizers, antioxidants, preservatives, fillers such as inorganic particles, flame retardants, pigments, colorants, antifungal agents, and lubricants.
  • light stabilizers such as light stabilizers, antioxidants, preservatives, fillers such as inorganic particles, flame retardants, pigments, colorants, antifungal agents, and lubricants.
  • fillers such as inorganic particles, flame retardants, pigments, colorants, antifungal agents, and lubricants.
  • One or more of these additives may be contained in the water absorbent resin dispersion.
  • the sulfur-containing polymeric material may be, for example, solid, liquid such as paste, or a solution or dispersion.
  • solid liquid such as paste, or a solution or dispersion.
  • the sulfur-containing polymeric material is solid, its shape is not particularly limited. It may have an ellipsoidal shape, a curved shape, or the like.
  • the sulfur-containing polymeric material of the present invention is excellent in stability and workability, so it can be used for various purposes.
  • the sulfur-containing polymeric material of the present invention can be suitably used for applications such as electronic members, battery materials, optical members, packaging materials, adhesive materials, and drug-carrying materials.
  • Example 1-1 Synthesis of LS-bpy
  • LS-bpy was synthesized by binding sites (second site) having functional groups F based on bipyridine sites to both ends of a sulfur segment (first site).
  • sulfur 300 mg, 1.17 mmol
  • Na 2 S pentahydrate 295 mg, 1.76 mmol
  • FIGS. 2(a) and (b) respectively show the results of 1 H-NMR measurement and 13 C-NMR measurement of LS-bpy obtained in Example 1-1.
  • the upper spectrum of both NMR measurements is bpy-Cl for comparison, and the lower spectrum is LS-bpy obtained in Example 1-1.
  • LS-bpy obtained in Example 1-1 shows that the proton g or carbon k of the methylene chain linked to sulfur is shifted upfield compared to Bpy-Cl. Recognize.
  • FIG. 3 shows the MALDI-TOF MS spectrum of LS-bpy obtained in Example 1-1.
  • the molecular weight of LS-bpy was detected in this spectrum.
  • Example 1-2 Synthesis of LS-bpy
  • a polymeric material (a main-chain supramolecular sulfur polymer having coordinate bonds) was produced using LS-bpy obtained in Example 1-1.
  • LS-bpy (20 mg, 43 ⁇ mol) obtained in Example 1-1 and Cu(NO 3 ) 2 trihydrate (26 mg, 108 ⁇ mol) were mixed in 900 ⁇ L of acetonitrile at room temperature (25°C). After stirring for one day, the polymer material was obtained by drying under reduced pressure.
  • FIG. 4 shows the results of GPC measurement in CHCl 3 of the polymer material obtained in Example 1-2.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • 5(a) and (b) are test results for confirming that a coordination bond is formed between the bipyridine site (bpy site) in LS-bpy and Cu.
  • -Vis spectrum measurement results In this measurement, a sample was prepared by adding an appropriate amount of 0.99 mM Cu(NO 3 ) 2.3H 2 O DMSO solution to a 23 ⁇ M LS-bpy DMSO solution, and the UV-Vis spectrum of this sample was measured. . In this UV-Vis spectrum, new peaks were observed at 302 nm and 510 nm, suggesting that LS-bpy has a structure in which LS-bpy and Cu are linked by coordinate bonds.
  • We mixed LS-Bn see scheme in FIG.
  • Example 1-2 1) with Cu to see if this coordination bond formation occurred only at the bpy sites, but no new peaks were observed ((b ) see figure).
  • Example 1-2 Since the polymer material obtained in Example 1-2 is formed by the coordinate bond between the bpy site and Cu, it is expected that the polymer can be decomposed by dissociating the coordinate bond. Therefore, a sample was prepared by adding an excessive amount of ethylenediaminetetraacetic acid (EDTA) to the polymeric material obtained in Example 1-2 in DMSO and stirring, and GPC measurement was performed on this sample. As a result, it was confirmed that the peak of the polymeric material disappeared, indicating that the polymeric material obtained in Example 1-2 could be easily decomposed by adding EDTA.
  • EDTA ethylenediaminetetraacetic acid
  • Example 2-1 synthesis of sulfur-UPy compound
  • a sulfur-UPy compound formed by binding a site (second site) having a urea-derived group as a functional group F to both ends of a sulfur segment (first site) is synthesized.
  • sulfur 375 mg, 1.47 mmol
  • Na 83 mg, 3.62 mmol
  • a ureidopyrimidinone having an isocyanate group (Upy-NCO, 944 mg) was added to the reactant, stirred at 70°C for 12 hours under a nitrogen atmosphere, and then returned to room temperature. The resulting precipitate was filtered off and dried under reduced pressure. By doing so, a sulfur-UPy compound was obtained.
  • Example 2-2 Synthesis of sulfur-UPy compound
  • a sulfur-UPy compound formed by binding a site (second site) having a urea-derived group as a functional group F to both ends of a sulfur segment (first site) is synthesized.
  • a solution was prepared by dissolving sulfur (133 mg, 0.59 mmol) and Na 2 S pentahydrate (295 mg, 1.76 mmol) in 5 mL of water.
  • 40 mL of a chloroform solution of ureidopyrimidinone (Upy-NCO, 944 mg) having an isocyanate group was added, and the mixture was stirred at 40° C.
  • FIG. 7 shows the results of 1 H-NMR measurement of the sulfur-UPy compounds obtained in Examples 2-1 and 2-2.
  • the upper spectrum of this NMR measurement is Upy-NCO for comparison
  • the middle spectrum is the sulfur-UPy compound obtained in Example 2-1
  • the lower spectrum is the sulfur- obtained in Example 2-2.
  • UPy compound From this NMR spectrum, a downfield shift of the region A (protons of the methylene chain bound to the NCO group) shown in the figure was observed in both of them as compared with UPy-NCO.
  • FIG. 8 shows the MALDI-TOF MS spectra of the sulfur-UPy compounds obtained in Examples 2-1 and 2-2.
  • the molecular weight of sulfur-UPy was detected in this spectrum. Elemental analysis of the sulfur content of sulfur-UPy confirmed that the number of sulfur atoms was 2.1 (ie, the chain length m of the sulfur segment in the first site was about 2.1).
  • sulfur-UPy compound (hereinafter sometimes simply referred to as "sulfur-UPy”) was synthesized.
  • Example 3 Synthesis of Poly(LS-bpy)
  • a structural unit formed by binding a site (second site) having a functional group F based on a bipyridine site to one end of a sulfur segment (first site) is used as a repeating unit.
  • Poly(LS-bpy) was synthesized. First, sulfur (300 mg, 1.17 mmol) and Na 2 S pentahydrate (295 mg, 1.76 mmol) were stirred in 2 mL of water at 25° C. for 24 hours to obtain a reactant, and then the reaction A sulfur solution was prepared by filtering the material.
  • FIG. 12 shows the MALDI-TOF MS spectrum of Poly(LS-bpy) obtained in Example 3. Repeats corresponding to the molecular weights of bpy (183) and sulfur (32), which are repeating units in the polymer, were confirmed in this spectrum.
  • FIG. 13 shows the results of GPC measurement in DMSO of Poly(LS-bpy) obtained in Example 3. From this result, the molecular weight is calculated as polyethylene glycol, the number average molecular weight is 1900, and the weight average molecular weight is 1,900. 2400, with a PDI of 1.26.
  • UV-Vis spectroscopy was performed to confirm the formation of a coordinate bond between the bipyridine site (bpy site) in Poly(LS-bpy) and Cu.
  • a sample was prepared by adding an appropriate amount of 1.16 mM Cu(NO 3 ) 2 .3H 2 O DMSO solution to 3.81 ⁇ M Poly(LS-bpy) DMSO solution. Vis spectra were measured. In this UV-Vis spectrum, a new peak was observed at 470 nm, suggesting the formation of a polymeric material having a structure in which the bpy sites of Poly (LS-bpy) are linked to Cu via coordinate bonds. .
  • the GPC measurement results of a polymer material having a structure in which the bpy sites of Poly(LS-bpy) are linked to Cu by coordination bonds are shown.
  • the polymer material had a peak on the higher molecular weight side than Poly(LS-bpy) alone.
  • the highest molecular weight peak had a number average molecular weight of 22,000, a weight average molecular weight of 46,000, and a PDI of 2.17 in terms of polyethylene glycol.
  • These molecular weights are much higher than the molecular weights of sulfur polymers reported so far (about 3000), and by introducing the concept of supramolecules into sulfur polymers, we have achieved high molecular weight sulfur polymers.
  • Example 4 Synthesis of Poly(LS-BnNHCOS)
  • a structural unit formed by binding a site (second site) having an isocyanate-derived group as a functional group F to one end of a sulfur segment (first site) is used as a repeating unit.
  • Poly(LS-BnNHCOS) was synthesized. First, sulfur (2.58 g, 10.1 mmol) and Na 2 S pentahydrate (3.40 g, 20.2 mmol) were added to 60 mL of water at 25° C., stirred for 24 hours, filtered, The resulting filtrate was freeze-dried to obtain a solid (a polymer consisting of -(S) m -segments).
  • FIG. 15 shows the FT-IR spectrum of the resulting pale orange solid.
  • FIG. 16 shows the results of 1 H-NMR measurement of the pale orange solid obtained in Example 4.
  • the lower spectrum of this NMR measurement is that of BndiNCO for comparison, and the upper spectrum is that of the pale orange solid obtained in Example 4. Broadening of all protons was observed from this NMR spectrum compared to BndiNCO.
  • the results were similar for LS-bpy and Poly(LS-bpy). From the above, it was found that the desired Poly(LS-BnNHCOS) was synthesized.
  • FIG. 17 shows the results of GPC measurement of Poly(LS-BnNHCOS) in DMSO.
  • Poly(LS-BnNHCOS) has a peak on the higher molecular weight side than BndiNCO. , PDI was found to be 1.16. This molecular weight is much higher than the molecular weight of sulfur polymers reported so far (about 3000), and these results also indicate that BndiNCO reacts through polycondensation of —(S) m — with BndiNCO. As a result, it was found that the desired Poly (LS-BnNHCOS) was synthesized.
  • Poly(LS-BnNHCOS) was poorly soluble in chloroform, but easily dissolved in chloroform containing trifluoroacetic acid. As described above, it was easily dissolved in chloroform in the presence of trifluoroacetic acid, so Poly(LS-BnNHCOS) has hydrogen bonds formed between side chains by thioisocyanate, and these hydrogen bonds are formed by trifluoroacetic acid. presumed to have been dissolved. That is, it was suggested that Poly(LS-BnNHCOS) is a hydrogen bond type side chain type supramolecular sulfur polymer.
  • FIG. 19 shows the results of GPC measurement of Poly(S-Upy) in DMSO and chloroform.
  • a high molecular weight peak was confirmed in all measurement solvents, indicating that the desired Poly (S-Upy) was obtained.
  • Poly(S-Upy) generated a large amount of insoluble matter in DMSO and chloroform. This indicates that hydrogen bonding was formed between the polymers, that is, Poly(S-Upy) forms a polymeric material with a supramolecular structure induced by hydrogen bonding. It was suggested.
  • the mass average molecular weight (Mw) was measured using a gel permeation chromatograph (GPC) device under the following measurement conditions.
  • Measurement condition ⁇ Measurement device name: Tosoh DP-8020 pump, CO-8020 column oven, UV-8020 ultraviolet detector, RI-8020 refractive-index detector ⁇ Column: 2 TSKgel GMHHR-M ⁇ Column temperature: 40°C - Solvent CHCl3 or Flow rate: Po 1.0 mL/min when using CHCl 3 as solvent, 3.0 mL/min when using DMSO Standard samples: polystyrene standards when CHCl3 was used as solvent , polyethylene glycol standards when DMSO was used

Abstract

Provided are a new sulfur-containing compound having excellent stability and a high molecular weight material containing said sulfur-containing compound. The sulfur-containing compound according to the present invention has, in the molecule, at least one each of a first portion represented by formula (1): -(S)n- (in formula (1), m represents a number equal to or more than 2) and a second portion including a functional group F capable of interacting with another molecule and/or ion. The second portion forms a covalent bond with sulfur in the first portion. The sulfur-containing compound according to the present invention is a new sulfur polymer that had not existed hitherto.

Description

硫黄含有化合物及び高分子材料Sulfur-containing compounds and polymeric materials
 本発明は、硫黄含有化合物及び高分子材料に関する。 The present invention relates to sulfur-containing compounds and polymeric materials.
 硫黄は年間700万トンが地上廃棄されていることから、近年では、その硫黄の有効活用が強く求められている。その一つの方法として、硫黄を用いたポリマー材料が注目されている。硫黄(S)は加熱することで8員環が開裂してラジカルが発生することから、加熱するだけで硫黄の重合反応を進行させることができる。このため、硫黄の重合は非常に簡便である反面、得られた硫黄ポリマーは、室温で解重合が起きやすいことから安定性に乏しい材料である。従って、高分子量の硫黄ポリマーを得ることは容易ではなく、加えて、硫黄ポリマーは汎用の有機溶媒に不溶であるので、加工性にも乏しい材料である。 Since 7 million tons of sulfur are dumped on the ground every year, in recent years, there is a strong demand for effective utilization of that sulfur. Polymer materials using sulfur are attracting attention as one of the methods. When sulfur (S 8 ) is heated, the 8-membered ring is cleaved to generate radicals, so that the polymerization reaction of sulfur can proceed only by heating. Therefore, although the polymerization of sulfur is very simple, the obtained sulfur polymer is a material with poor stability because depolymerization easily occurs at room temperature. Therefore, it is not easy to obtain high molecular weight sulfur polymers, and in addition, sulfur polymers are insoluble in common organic solvents, making them poorly processable materials.
 この観点から、硫黄ポリマーを得るための方法が盛んに検討されており、また、硫黄ポリマーの特性を向上させる検討も広く行われている。例えば、最近では、ハロゲン化合物を用いた縮合重合法、チオール化合物を用いた挿入反応法、ビニル化合物と硫黄との共重合法等、種々の提案がなされている。 From this point of view, methods for obtaining sulfur polymers are being actively investigated, and studies are also being widely conducted to improve the properties of sulfur polymers. For example, recently, various proposals have been made, such as a condensation polymerization method using a halogen compound, an insertion reaction method using a thiol compound, and a copolymerization method of a vinyl compound and sulfur.
 非特許文献1には、ビニルモノマー又はジチオールモノマーとの共重合法によって硫黄ポリマーを製造する方法が開示されている。斯かる方法で得られる硫黄ポリマーは、クロロホルム及びテトラヒドロフラン等の汎用有機溶媒に可溶となるから、加工性の向上が期待できる。また、非特許文献2には、多官能性ビニルモノマーと硫黄とを共重合する工程を含む逆加硫法が提案されており、より安定な硫黄ポリマーが得られることが期待されている。 Non-Patent Document 1 discloses a method for producing a sulfur polymer by copolymerization with a vinyl monomer or a dithiol monomer. Since the sulfur polymer obtained by such a method becomes soluble in general-purpose organic solvents such as chloroform and tetrahydrofuran, improvement in processability can be expected. In addition, Non-Patent Document 2 proposes an inverse vulcanization method including a step of copolymerizing a polyfunctional vinyl monomer and sulfur, which is expected to yield a more stable sulfur polymer.
 硫黄ポリマーは、汎用樹脂とは異なる特性を示すことから、種々の分野に応用されることが期待されており、前述の硫黄の有効活用という観点と合わせて、その利用価値が極めて高く、新規の硫黄ポリマーを合成することは、産業界の発展に欠かせないといえる。しかしながら、硫黄ポリマーは、例えば、室温で静置保管すると解重合が起こるため、安定性に乏しく、安定的に存在する新規な硫黄ポリマーを得ることは決して容易ではなかった。 Sulfur polymers are expected to be applied in various fields because they exhibit properties different from those of general-purpose resins. It can be said that the synthesis of sulfur polymers is indispensable for the development of the industrial world. However, since sulfur polymers undergo depolymerization when stored at room temperature, for example, they are poor in stability, and it has never been easy to obtain novel sulfur polymers that exist stably.
 本発明は、上記に鑑みてなされたものであり、安定性に優れる新規な硫黄含有化合物及び該硫黄含有化合物を含む高分子材料を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a novel sulfur-containing compound with excellent stability and a polymer material containing the sulfur-containing compound.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、硫黄セグメントに特定の官能基を含む部位を導入することにより上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at achieving the above object, the present inventors have found that the above object can be achieved by introducing a site containing a specific functional group into the sulfur segment, and have completed the present invention. .
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
硫黄含有化合物であって、
分子中に下記式(1)
-(S)-   (1)
(式(1)中、mは1以上の数を表す)
で表される第1の部位と、
他の分子及び/又はイオンと相互作用可能な官能基Fを含む第2の部位とを少なくとも1個ずつ有し、
前記第2の部位は前記第1の部位の硫黄と共有結合している、硫黄含有化合物。
項2
前記相互作用が、非共有結合及び配位結合からなる群より選ばれる少なくとも1種である、項1に記載の硫黄含有化合物。
項3
前記官能基Fが多座配位子に基づく官能基である、項1又は2に記載の硫黄含有化合物。
項4
前記官能基Fは水素結合性を有する、項1又は2に記載の硫黄含有化合物。
項5
前記第1の部位の片末端又は両末端に前記第2の部位が共有結合した構造を有する分子である、項1~4のいずれか1項に記載の硫黄含有化合物。
項6
前記第1の部位の片末端に前記第2の部位が共有結合した構造を繰り返し単位として有する、項1~4のいずれか1項に記載の硫黄含有化合物。
項7
項1~6のいずれか1項に記載の硫黄含有化合物を含み、
少なくとも二以上の硫黄含有化合物どうしが前記官能基Fを介して分子間相互作用を形成している、硫黄含有高分子材料。
That is, the present invention includes, for example, the subject matter described in the following sections.
Item 1
A sulfur-containing compound,
Formula (1) below in the molecule
- (S) m - (1)
(In formula (1), m represents a number of 1 or more)
A first portion represented by
at least one second site containing a functional group F capable of interacting with other molecules and/or ions;
A sulfur-containing compound, wherein the second portion is covalently bonded to the sulfur of the first portion.
Item 2
Item 2. The sulfur-containing compound according to item 1, wherein the interaction is at least one selected from the group consisting of non-covalent bonds and coordinate bonds.
Item 3
Item 3. The sulfur-containing compound according to item 1 or 2, wherein the functional group F is a functional group based on a polydentate ligand.
Item 4
Item 3. The sulfur-containing compound according to Item 1 or 2, wherein the functional group F has hydrogen bonding properties.
Item 5
Item 5. The sulfur-containing compound according to any one of Items 1 to 4, which is a molecule having a structure in which the second portion is covalently bonded to one or both ends of the first portion.
Item 6
Item 5. The sulfur-containing compound according to any one of Items 1 to 4, which has a structure in which the second portion is covalently bonded to one end of the first portion as a repeating unit.
Item 7
The sulfur-containing compound according to any one of Items 1 to 6,
A sulfur-containing polymeric material in which at least two or more sulfur-containing compounds form an intermolecular interaction via the functional group F.
 本発明の硫黄含有化合物は、安定性に優れる新規な硫黄化合物又は硫黄ポリマーである。 The sulfur-containing compound of the present invention is a novel sulfur compound or sulfur polymer with excellent stability.
実施例1-1で得たLS-bpyの合成スキームの概略である。1 is an outline of the synthesis scheme of LS-bpy obtained in Example 1-1. (a)及び(b)はそれぞれ、実施例1-1で得られたLS-bpyのH-NMRスペクトル及び13C-NMRスペクトルである。(a) and (b) are the 1 H-NMR spectrum and 13 C-NMR spectrum of LS-bpy obtained in Example 1-1, respectively. 実施例1-1で得られたLS-bpyのMALDI-TOF MSスペクトルである。It is the MALDI-TOF MS spectrum of LS-bpy obtained in Example 1-1. 実施例1-2で得られた高分子材料のGPC測定結果である。1 is the result of GPC measurement of the polymeric material obtained in Example 1-2. (a)及び(b)は、実施例1-2で得られたLS-bpy中のビピリジン部位(bpy部位)とCuとの配位結合が形成していることを確認するための試験結果である。(a) and (b) are test results for confirming the formation of a coordinate bond between the bipyridine site (bpy site) in LS-bpy obtained in Example 1-2 and Cu. be. 実施例2-1又は実施例2-2で得た硫黄-UPy化合物の合成スキームの概略である。1 is an outline of a synthesis scheme of a sulfur-UPy compound obtained in Example 2-1 or Example 2-2. 実施例2-1及び実施例2-2で得られた硫黄-UPy化合物のH-NMRスペクトルである。 1 H-NMR spectra of sulfur-UPy compounds obtained in Examples 2-1 and 2-2. 実施例2-1及び2-2で得られた硫黄-UPy化合物のMALDI-TOF MSスペクトルである。Fig. 2 shows MALDI-TOF MS spectra of sulfur-UPy compounds obtained in Examples 2-1 and 2-2. (a)、(b)は、硫黄-UPy中のUpy-NCO由来の基が水素結合を形成しているかどうかを確認するためのFT-IRスペクトルと固体H-NMRスペクトルである。(a) and (b) are FT-IR spectra and solid-state 1 H-NMR spectra for confirming whether groups derived from Upy-NCO in sulfur-UPy form hydrogen bonds. 実施例3で得たPoly(LS-bpy)の合成スキームの概略である。1 is an outline of the synthesis scheme of Poly(LS-bpy) obtained in Example 3. FIG. (a)及び(b)はそれぞれ、実施例3で得られたPoly(LS-bpy)のH-NMRスペクトル及び13C-NMRスペクトルの結果である。(a) and (b) are the results of 1 H-NMR spectrum and 13 C-NMR spectrum of Poly(LS-bpy) obtained in Example 3, respectively. 実施例3で得られたPoly(LS-bpy)のMALDI-TOF MSスペクトルである。4 is a MALDI-TOF MS spectrum of Poly(LS-bpy) obtained in Example 3. FIG. 実施例3で得られたPoly(LS-bpy)のGPC測定結果である。2 shows the results of GPC measurement of Poly(LS-bpy) obtained in Example 3. FIG. 実施例4で得たPoly(LS-BnNHCOS)の合成スキームの概略である。1 is an outline of the synthesis scheme of Poly(LS-BnNHCOS) obtained in Example 4. FIG. 実施例4で得たPoly(LS-BnNHCOS)のFT-IRスペクトルである。4 is an FT-IR spectrum of Poly(LS-BnNHCOS) obtained in Example 4. FIG. 実施例4で得たPoly(LS-BnNHCOS)のH-NMRスペクトルの結果である。1 is the result of 1 H-NMR spectrum of Poly(LS-BnNHCOS) obtained in Example 4. FIG. 実施例4で得たPoly(LS-BnNHCOS)のGPC測定結果である。4 shows the results of GPC measurement of Poly(LS-BnNHCOS) obtained in Example 4. FIG. 実施例5で得たPoly(S-Upy)の合成スキームの概略である。1 is an outline of the synthesis scheme of Poly(S-Upy) obtained in Example 5. FIG. 実施例5で得たPoly(S-Upy)のDMSO中、及び、クロロホルム中におけるGPC測定結果である。2 shows the results of GPC measurement of Poly(S-Upy) obtained in Example 5 in DMSO and chloroform.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, the expressions "contain" and "include" include the concepts of "contain", "include", "substantially consist of" and "consist only of".
1.硫黄含有化合物
 本発明の硫黄含有化合物は、分子中に下記式(1)
-(S)-   (1)
(式(1)中、mは1以上の数を表す)
で表される第1の部位と、他の分子及び/又はイオンと相互作用可能な官能基Fを含む第2の部位とを少なくとも1個ずつ有し、前記第2の部位は前記第1の部位の硫黄と共有結合している。すなわち、本発明の硫黄含有化合物は、分子内に第1の部位と、該第1の部位に共有結合する第2の部位を有する。
1. Sulfur-containing compound The sulfur-containing compound of the present invention has the following formula (1) in the molecule
- (S) m - (1)
(In formula (1), m represents a number of 1 or more)
and at least one second site containing a functional group F capable of interacting with other molecules and/or ions, wherein the second site is the first site It is covalently bonded to the sulfur of the site. That is, the sulfur-containing compound of the present invention has a first site and a second site covalently bonded to the first site in the molecule.
 斯かる硫黄含有化合物は、安定性に優れ、新規な硫黄ポリマーである。特に、後記するように、本発明の硫黄含有化合物は、分子間で直接又は間接的に相互作用がはたらくことで、いわゆる超分子構造を有する高分子材料を形成することができることから、従来の硫黄ポリマーにない機能を発現することが期待される。また、本発明の硫黄含有化合物は超分子構造を有し得ることで、見かけ上は高分子量となる高分子材料を形成することができる。 Such a sulfur-containing compound has excellent stability and is a novel sulfur polymer. In particular, as will be described later, the sulfur-containing compound of the present invention can form a polymer material having a so-called supramolecular structure by directly or indirectly interacting between molecules. It is expected to exhibit functions not found in polymers. In addition, the sulfur-containing compound of the present invention can have a supramolecular structure, and thus can form a polymeric material that appears to have a high molecular weight.
 (第1の部位)
 硫黄含有化合物は、分子中に第1の部位を一つ又は二以上有することができる。硫黄含有化合物が第1の部位を二以上有する場合は、例えば、第1の部位は、硫黄含有化合物の繰り返しの構造単位である。第1の部位は、前記式(1)で表されることから「硫黄セグメント」と言うことができる。
(first part)
The sulfur-containing compound can have one or more first sites in the molecule. When the sulfur-containing compound has two or more first moieties, for example, the first moieties are repeating structural units of the sulfur-containing compound. The first site can be called a "sulfur segment" because it is represented by the above formula (1).
 前記式(1)において、mは1以上の数である限り特に限定されない。mは2以上であることが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましく、5以上であることが特に好ましい。また、mの上限は特に限定されず、例えば、10000以下とすることができ、5000以下であることが好ましく、3000以下であることがより好ましく、1000以下であることがさらに好ましく、500以下であることが特に好ましい。mは10以下とすることもできる。mの値は、MALDI-TOF MSスペクトルによって算出することができる。 In the above formula (1), m is not particularly limited as long as it is a number of 1 or more. m is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and particularly preferably 5 or more. Further, the upper limit of m is not particularly limited, for example, it can be 10000 or less, preferably 5000 or less, more preferably 3000 or less, further preferably 1000 or less, and 500 or less. It is particularly preferred to have m can also be 10 or less. The value of m can be calculated by MALDI-TOF MS spectrum.
 (第2の部位)
 硫黄含有化合物は、分子中に第2の部位を一つ又は二以上有することができる。硫黄含有化合物が第2の部位を二以上有する場合は、例えば、第2の部位は、硫黄含有化合物の繰り返しの構造単位である。
(Second part)
The sulfur-containing compound can have one or more second moieties in the molecule. When the sulfur-containing compound has two or more second moieties, for example, the second moieties are repeating structural units of the sulfur-containing compound.
 第2の部位は、他の分子及び/又はイオンと相互作用可能な官能基F(以下、単に「官能基F」と表記することがある)を含む。ここでいう「他の分子」とは、例えば、本発明の硫黄含有化合物のことを意味することができる。すなわち、本発明の硫黄含有化合物は、官能基Fを介して分子間で相互作用を形成することができる。他方、ここでいう「イオン」は、後記する金属Mのイオンを意味することができる。 The second site includes a functional group F (hereinafter sometimes simply referred to as "functional group F") capable of interacting with other molecules and/or ions. "Other molecules" as used herein can mean, for example, the sulfur-containing compounds of the present invention. That is, the sulfur-containing compound of the present invention can form intermolecular interactions via the functional group F. On the other hand, "ion" here can mean an ion of metal M, which will be described later.
 また、ここでいう「相互作用」は、例えば、非共有結合及び配位結合からなる群より選ばれる少なくとも1種を挙げることができる。非共有結合の種類は特に限定されず、例えば、公知の非共有結合を広く挙げることができ、具体的には、水素結合、疎水性相互作用、静電相互作用、双極子相互作用、イオン結合、π電子相互作用、ホスト-ゲスト相互作用等を挙げることができる。中でも分子設計が容易である等の観点から、非共有結合は、水素結合であることが好ましい。 In addition, the "interaction" as used herein can include, for example, at least one selected from the group consisting of non-covalent bonds and coordinate bonds. The type of non-covalent bond is not particularly limited, for example, a wide range of known non-covalent bonds can be mentioned, specifically hydrogen bond, hydrophobic interaction, electrostatic interaction, dipole interaction, ionic bond , π-electron interaction, host-guest interaction, and the like. Among them, the non-covalent bond is preferably a hydrogen bond from the viewpoint of facilitating molecular design.
 第2の部位において、官能基Fは、前記相互作用を形成することができる限り特に限定されない。第2の部位には、官能基Fが少なくとも一つ存在し、二以上存在することもできる。第2の部位が官能基Fを複数有する場合、複数ある官能基Fはすべて同一とすることができ、あるいは一部又はすべてが異なっていてもよい。また、第2の部位が官能基Fを複数有する場合、各官能基Fによって生じる相互作用の種類はすべて同一であってもよいし、あるいは、一部又はすべてが異なっていてもよい。 In the second site, the functional group F is not particularly limited as long as it can form the interaction. At least one functional group F is present in the second site, and two or more may be present. When the second site has multiple functional groups F, the multiple functional groups F may all be the same, or some or all of them may be different. Moreover, when the second site has a plurality of functional groups F, the types of interactions caused by the functional groups F may all be the same, or some or all of them may be different.
 本発明に係る硫黄含有化合物の一実施形態において、「他の分子及び/又はイオンと相互作用可能な官能基F」としては、例えば、多座配位子に基づく官能基を挙げることができる。官能基Fが多座配位子に基づく官能基である場合、官能基Fは前述の配位結合による相互作用を形成しやすくなる。より具体的には、官能基Fが多座配位子に基づく官能基である場合、官能基Fはイオンと配位結合をしやすい。 In one embodiment of the sulfur-containing compound according to the present invention, the "functional group F capable of interacting with other molecules and/or ions" includes, for example, a functional group based on a polydentate ligand. When the functional group F is a functional group based on a polydentate ligand, the functional group F is likely to form an interaction due to the coordinate bond described above. More specifically, when the functional group F is a functional group based on a polydentate ligand, the functional group F is likely to form a coordinate bond with ions.
 官能基Fが多座配位子に基づく官能基である場合、多座配位子としては、例えば、公知の二座配位子、三座配位子、六座配位子及び六座を超える多座配位子等を広く挙げることができる。多座配位子として具体的には、ピリジン化合物又はその誘導体、ビピリジン化合物又はその誘導体、ターピリジン化合物又はその誘導体、カルボン酸化合物又はその誘導体、ジカルボン酸化合物又はその誘導体、トリカルボン酸化合物又はその誘導体、テトラ以上のカルボン酸化合物又はその誘導体、イミダゾール化合物又はその誘導体、ジイミダゾール化合物又はその誘導体、トリアゾール化合物又はその誘導体、テトラトリアゾール化合物又はその誘導体を挙げることができる。 When the functional group F is a functional group based on a polydentate ligand, examples of the polydentate ligand include known bidentate ligands, tridentate ligands, hexadentate ligands and hexadentate ligands. A wide range of polydentate ligands exceeding Specific examples of polydentate ligands include pyridine compounds or derivatives thereof, bipyridine compounds or derivatives thereof, terpyridine compounds or derivatives thereof, carboxylic acid compounds or derivatives thereof, dicarboxylic acid compounds or derivatives thereof, tricarboxylic acid compounds or derivatives thereof, Tetra or higher carboxylic acid compounds or derivatives thereof, imidazole compounds or derivatives thereof, diimidazole compounds or derivatives thereof, triazole compounds or derivatives thereof, tetratriazole compounds or derivatives thereof can be mentioned.
 硫黄含有化合物の製造が容易で、配位結合を形成しやすいという観点から、官能基Fが多座配位子に基づく官能基である場合、官能基Fは、ビピリジン又はその誘導体に基づく官能基であることが好ましい。 From the viewpoint of easy production of sulfur-containing compounds and easy formation of coordinate bonds, when the functional group F is a functional group based on a multidentate ligand, the functional group F is a functional group based on bipyridine or a derivative thereof. is preferably
 第2の部位が有する官能基Fが多座配位子に基づく官能基である場合、当該第2の部位は、例えば、後記する多座配位子Bによって形成することができる。すなわち、第2の部位は、多座配位子Bに基づく構造単位とすることができる。 When the functional group F possessed by the second site is a functional group based on a polydentate ligand, the second site can be formed by, for example, the polydentate ligand B described later. That is, the second site can be a structural unit based on the polydentate ligand B.
 本発明に係る硫黄含有化合物の他の一実施形態において、「他の分子及び/又はイオンと相互作用可能な官能基F」としては、前述の各種の非共有結合する性質を有する基とすることもできる。官能基Fが非共有結合する性質を有する基は、前述の多座配位子に基づく官能基を除く。 In another embodiment of the sulfur-containing compound according to the present invention, the "functional group F capable of interacting with other molecules and/or ions" is a group having the property of non-covalent bonding of various types described above. can also The groups having the property of non-covalent bonding of the functional group F exclude functional groups based on the aforementioned polydentate ligands.
 「他の分子及び/又はイオンと相互作用可能な官能基F」が非共有結合する性質を有する基である場合、官能基Fは、例えば、水素結合性を有する基とすることができる。以下、水素結合性を有する官能基Fを「水素結合性官能基F」と表記する。 When the "functional group F capable of interacting with other molecules and/or ions" is a group having the property of non-covalent bonding, the functional group F can be, for example, a group having hydrogen bonding properties. Hereinafter, the functional group F having hydrogen-bonding properties is referred to as "hydrogen-bonding functional group F".
 水素結合性を有する官能基Fとしては特に限定されず、例えば、公知の水素結合性を有する官能基を広く挙げることができる。具体的に水素結合性を有する官能基Fとしては、アミド基、アミノ基、カルボキシ基、ヒドロキシル基、イソシアネート基、チオイソシアネート基、カルバミド由来の基、ウレイド由来の基、ピリミジン環由来の基等を挙げることができる。 The functional group F having hydrogen bonding properties is not particularly limited, and for example, a wide range of known functional groups having hydrogen bonding properties can be mentioned. Specific examples of the functional group F having hydrogen bonding properties include an amide group, an amino group, a carboxyl group, a hydroxyl group, an isocyanate group, a thioisocyanate group, a carbamide-derived group, a ureido-derived group, a pyrimidine ring-derived group, and the like. can be mentioned.
 第2の部位が有する官能基Fが水素結合性官能基Fである場合、当該第2の部位は、例えば、後記する水素結合性化合物Cによって形成することができる。すなわち、第2の部位は、水素結合性化合物Cに基づく構造単位とすることができる。 When the functional group F possessed by the second site is a hydrogen-bonding functional group F, the second site can be formed by, for example, a hydrogen-bonding compound C described later. That is, the second site can be a structural unit based on the hydrogen-bonding compound C.
 本発明明に係る硫黄含有化合物において、第2の部位は、官能基Fのみから構成することができ、あるいは、官能基Fを含む基で構成することもできる。例えば、官能基Fが多座配位子に基づく官能基である場合は、第2の部位は、官能基Fのみから構成することが好ましい。 In the sulfur-containing compound according to the present invention, the second site can be composed only of the functional group F, or can be composed of a group containing the functional group F. For example, when the functional group F is a functional group based on a polydentate ligand, the second site preferably consists of the functional group F only.
 (硫黄含有化合物)
 硫黄含有化合物は、分子中に少なくとも一つの第1の部位と、少なくとも一つの第2の部位とを有する。
(Sulfur-containing compound)
The sulfur-containing compound has at least one first site and at least one second site in the molecule.
 本発明に係る硫黄含有化合物は、前記第1の部位の片末端又は両末端に前記第2の部位が共有結合した構造を有する分子とすることができる。以下、この態様の硫黄含有化合物を「主鎖型超分子硫黄ポリマー」と表記する。 The sulfur-containing compound according to the present invention can be a molecule having a structure in which the second site is covalently bonded to one or both ends of the first site. Hereinafter, the sulfur-containing compound of this aspect is referred to as "main chain type supramolecular sulfur polymer".
 主鎖型超分子硫黄ポリマーは、前記第1の部位の片末端に前記第2の部位が共有結合した構造(以下、「構造a」と略記する)、及び、前記第1の部位の両末端に前記第2の部位が共有結合した構造(以下、「構造b」と略記する)を挙げることができる。従って、主鎖型超分子硫黄ポリマーは、分子中に一つの第1の部位と、一つ又は二つの第2の部位とを有する。 The main chain type supramolecular sulfur polymer has a structure in which the second site is covalently bonded to one end of the first site (hereinafter abbreviated as "structure a"), and both ends of the first site to which the second site is covalently bonded (hereinafter abbreviated as “structure b”). Thus, backbone-type supramolecular sulfur polymers have one primary site and one or two secondary sites in the molecule.
 主鎖型超分子硫黄ポリマーが前記構造aを有する場合、前記第1の部位の前記第2の部位が共有結合した末端と逆側の末端に結合している基は特に限定されず、水素原子、ナトリウム等のアルカリ金属イオン等を挙げることができる。 When the main chain-type supramolecular sulfur polymer has the structure a, the group bonded to the end opposite to the end to which the second portion of the first portion is covalently bonded is not particularly limited, and a hydrogen atom , alkali metal ions such as sodium, and the like.
 主鎖型超分子硫黄ポリマーが前記構造aを有する場合、第2の部位の種類は、前記官能基Fを有する限り特に限定されず、中でも、前述の多座配位子に基づく官能基及び水素結合性官能基Fからなる群より選ばれる少なくとも一つを有することが好ましい。 When the main-chain supramolecular sulfur polymer has the structure a, the type of the second site is not particularly limited as long as it has the functional group F. It is preferable to have at least one selected from the group consisting of binding functional groups F.
 主鎖型超分子硫黄ポリマーが前記構造bを有する場合、両末端の第2の部位は同一とすることができ、あるいは、異なる種類とすることができる。製造が容易であり、後記する配位結合等の相互作用による超分子構造が形成されやすいという点で、両末端の第2の部位は同一であることが好ましい。 When the main chain-type supramolecular sulfur polymer has the structure b, the second sites at both ends can be the same, or can be of different types. The second sites at both ends are preferably the same from the viewpoint of ease of production and easy formation of a supramolecular structure due to interactions such as coordinate bonds, which will be described later.
 主鎖型超分子硫黄ポリマーが前記構造bを有する場合、第2の部位の種類は、前記官能基Fを有する限り特に限定されず、中でも、前述の多座配位子に基づく官能基及び水素結合性官能基Fからなる群より選ばれる少なくとも一つを有することが好ましい。 When the main-chain supramolecular sulfur polymer has the structure b, the type of the second site is not particularly limited as long as it has the functional group F. It is preferable to have at least one selected from the group consisting of binding functional groups F.
 主鎖型超分子硫黄ポリマーが前記構造a及び構造bのいずれであっても、通常、第2の部位は、第1の部位の末端の硫黄原子に共有結合して存在する。 Regardless of whether the main-chain supramolecular sulfur polymer has structure a or structure b, the second site is usually present covalently bonded to the terminal sulfur atom of the first site.
 本発明に係る硫黄含有化合物が主鎖型超分子硫黄ポリマーである場合、質量平均分子量(Mw)は、100~1,000,000であることが好ましく、500~100,000であることがより好ましく、1,000~10,000であることがさらに好ましい。尚、本明細書でいう重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)測定による値である。 When the sulfur-containing compound according to the present invention is a main chain type supramolecular sulfur polymer, the mass average molecular weight (Mw) is preferably 100 to 1,000,000, more preferably 500 to 100,000. It is preferably from 1,000 to 10,000. The weight average molecular weight (Mw) referred to in this specification is a value obtained by gel permeation chromatography (GPC) measurement.
 本発明に係る硫黄含有化合物は、前記主鎖型超分子硫黄ポリマー以外の構造を有することもできる。具体的に、本発明に係る硫黄含有化合物は、前記第1の部位の片末端に前記第2の部位が共有結合した構造を繰り返し単位として有することもできる。以下、この態様の硫黄含有化合物を「側鎖型超分子硫黄ポリマー」と表記する。 The sulfur-containing compound according to the present invention can also have a structure other than the main chain type supramolecular sulfur polymer. Specifically, the sulfur-containing compound according to the present invention can also have, as a repeating unit, a structure in which the second portion is covalently bonded to one end of the first portion. Hereinafter, the sulfur-containing compound of this aspect is referred to as "side chain type supramolecular sulfur polymer".
 側鎖型超分子硫黄ポリマーは、第1の部位(硫黄セグメントの一端)に第2の部位が結合した構造が繰り返されて形成される。従って、第1の部位を「M1」、第2の部位を「M2」と表記した場合に、側鎖型超分子硫黄ポリマーは、(M1-M2)単位を繰り返し構造単位として有する。 A side chain type supramolecular sulfur polymer is formed by repeating a structure in which a first site (one end of a sulfur segment) is bonded to a second site. Therefore, when the first site is denoted as "M1" and the second site is denoted as "M2", the side chain type supramolecular sulfur polymer has (M1-M2) units as repeating structural units.
 側鎖型超分子硫黄ポリマーは、上記(M1-M2)単位を繰り返し構造単位として有することから、側鎖型超分子硫黄ポリマー分子中には、前記第1の部位及び前記第2の部位が少なくとも二以上含まれる。側鎖型超分子硫黄ポリマー分子中に含まれる第2の部位は1種単独であってもよいし、異なる2種以上であってもよい。 Since the side chain type supramolecular sulfur polymer has the (M1-M2) unit as a repeating structural unit, the side chain type supramolecular sulfur polymer molecule has at least the first site and the second site. Includes two or more. The second site contained in the side chain type supramolecular sulfur polymer molecule may be of one type alone, or may be of two or more different types.
 側鎖型超分子硫黄ポリマーにおける第2の部位は、通常、第1の部位の末端の硫黄原子に共有結合して存在する。 The second site in the side chain type supramolecular sulfur polymer is usually present covalently bonded to the terminal sulfur atom of the first site.
 側鎖型超分子硫黄ポリマーにおいて、前記第2の部位の種類は、前記官能基Fを有する限り特に限定されず、中でも、前述の多座配位子に基づく官能基及び水素結合性官能基Fからなる群より選ばれる少なくとも一つを有することが好ましい。 In the side chain-type supramolecular sulfur polymer, the type of the second site is not particularly limited as long as it has the functional group F. Among them, the functional group based on the above-mentioned multidentate ligand and the hydrogen-bonding functional group F It is preferable to have at least one selected from the group consisting of
 側鎖型超分子硫黄ポリマーは、二以上の第1の部位と二以上の第2の部位のみで形成することができ、あるいは、本発明の効果が阻害されない限り、二以上の第1の部位及び二以上の第2の部位以外の構造単位を有することもできる。側鎖型超分子硫黄ポリマーは、第1の部位と第2の部位を70モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましく、95モル%以上含むことが特に好ましい。 The side chain type supramolecular sulfur polymer can be formed only with two or more first sites and two or more second sites, or two or more first sites unless the effects of the present invention are impaired. And it can also have structural units other than two or more second moieties. The side chain type supramolecular sulfur polymer preferably contains 70 mol% or more of the first site and the second site, more preferably 80 mol% or more, further preferably 90 mol% or more, and 95 mol % or more is particularly preferable.
 本発明に係る硫黄含有化合物が側鎖型超分子硫黄ポリマーである場合、質量平均分子量(Mw)は、100~1,000,000であることが好ましく、500~100,000であることがより好ましく、1,000~10,000であることがさらに好ましい。 When the sulfur-containing compound according to the present invention is a side chain type supramolecular sulfur polymer, the weight average molecular weight (Mw) is preferably 100 to 1,000,000, more preferably 500 to 100,000. It is preferably from 1,000 to 10,000.
 本発明に係る硫黄含有化合物は、主鎖型超分子硫黄ポリマー及び側鎖型超分子硫黄ポリマーいずれにあっても、通常は直鎖状の化合物であり、必要に応じて分岐構造を有することもできる。 The sulfur-containing compound according to the present invention, whether it is a main chain type supramolecular sulfur polymer or a side chain type supramolecular sulfur polymer, is usually a linear compound, and may have a branched structure as necessary. can.
2.硫黄含有化合物の製造方法
 本発明の硫黄含有化合物を製造する方法は特に限定されない。例えば、本発明の硫黄含有高分子材料は、硫黄源と金属源との反応によって硫黄セグメントを得る工程1と、該工程1で得られた硫黄セグメントと官能基Fを有する化合物との反応によって硫黄含有化合物を得る工程2とを備える製造方法によって製造され得る。
2. Method for Producing Sulfur-Containing Compound The method for producing the sulfur-containing compound of the present invention is not particularly limited. For example, the sulfur-containing polymer material of the present invention can be obtained by step 1 of obtaining sulfur segments by reacting a sulfur source and a metal source, and sulfur It can be produced by a production method comprising step 2 of obtaining a contained compound.
 工程1は、硫黄源と、金属源との反応によって硫黄セグメントを生成させるための工程である。 Step 1 is a step for producing a sulfur segment by reacting a sulfur source and a metal source.
 工程1で使用する硫黄源は、硫黄ポリマーを与えることができる原料である。例えば、硫黄源は前記式(1)で表される「-(S)-」部位を与えることができる原料である。従って、硫黄源は、硫黄単体であっても良いし、硫黄原子を含む化合物であってもよい。-(S)-部位を与えやすいという点で、硫黄源は硫黄単体を含むことが好ましい。 The sulfur source used in step 1 is a raw material capable of giving a sulfur polymer. For example, the sulfur source is a raw material capable of providing the "-(S) m -" site represented by the above formula (1). Therefore, the sulfur source may be sulfur alone or a compound containing a sulfur atom. The sulfur source preferably contains elemental sulfur in that it is easy to provide -(S) m - sites.
 硫黄単体としては、例えば、硫黄原子で構成される環状硫黄を挙げることができ、代表的には、硫黄の8員環を硫黄源として用いることができる。斯かる硫黄源は、公知の方法で製造することができ、あるいは、市販品から入手することも可能である。 Examples of simple sulfur include cyclic sulfur composed of sulfur atoms, and typically an eight-membered ring of sulfur can be used as a sulfur source. Such a sulfur source can be produced by a known method, or can be obtained from commercial products.
 また、硫黄源は、例えば、硫黄ポリマーとすることもできる。斯かる硫黄ポリマーは、公知の方法で製造することができ、あるいは、市販品から入手することも可能である。 The sulfur source can also be, for example, a sulfur polymer. Such sulfur polymers can be produced by known methods, or can be obtained from commercial products.
 工程1において、金属源としては、例えば、アルカリ金属、アルカリ金属の化合物を挙げることができる。アルカリ金属としては特に限定されず、例えば、ナトリウム、カリウム、リチウムを挙げることができ、中でナトリウムであることが好ましい。また、アルカリ金属の化合物としては、アルカリ金属の硫化物等を挙げることができ、中でも硫化ナトリウムであることが好ましい。アルカリ金属の化合物は水和物であってもよい。 In step 1, examples of metal sources include alkali metals and alkali metal compounds. The alkali metal is not particularly limited, and examples thereof include sodium, potassium, and lithium, with sodium being preferred. Examples of alkali metal compounds include sulfides of alkali metals, among which sodium sulfide is preferred. The alkali metal compound may be a hydrate.
 金属源は、反応が簡便で大量合成が可能であるという点で、アルカリ金属の化合物であることが好ましく、アルカリ金属の硫化物であることがより好ましく、硫化ナトリウムであることが特に好ましい。 The metal source is preferably an alkali metal compound, more preferably an alkali metal sulfide, and particularly preferably sodium sulfide, in that the reaction is simple and large-scale synthesis is possible.
 工程1において、硫黄源と金属源とを反応させる方法は特に限定されず、例えば、溶媒中で、硫黄源と金属源とを混合する方法を挙げることができる。当該反応で溶媒を使用する場合、その種類は特に限定されず、水の他、各種の有機溶媒を使用することができる。金属源がアルカリ金属の化合物である場合、特にアルカリ金属の硫化物である場合、工程1の反応では水系溶媒を使用することが好ましく、特に水を使用することが好ましい。また、金属源がアルカリ金属である場合、工程1の反応では有機溶媒を使用することが好ましく、特にジメチルアセトアミド等の極性溶媒を使用することが好ましい。 In step 1, the method of reacting the sulfur source and the metal source is not particularly limited, and for example, a method of mixing the sulfur source and the metal source in a solvent can be mentioned. When a solvent is used in the reaction, its type is not particularly limited, and various organic solvents other than water can be used. When the metal source is an alkali metal compound, particularly an alkali metal sulfide, the reaction of step 1 preferably uses an aqueous solvent, particularly water. Further, when the metal source is an alkali metal, it is preferable to use an organic solvent in the reaction of step 1, and it is particularly preferable to use a polar solvent such as dimethylacetamide.
 工程1において、硫黄源と金属源との使用割合は特に限定されず、例えば、硫黄源1モルに対し、金属源の使用量は、好ましくは0.1~20モル、より好ましくは1~3モルである。 In step 1, the ratio of the sulfur source and the metal source used is not particularly limited. Mole.
 工程1において、硫黄源と金属源とを反応させるときの反応温度は特に限定されず、例えば、0~200℃、好ましくは、15~80℃とすることができる。硫黄源と金属源との反応時間も特に限定されず、例えば、10分~48時間、好ましくは30分~24時間とすることができる。反応は、例えば、窒素等の不活性ガス雰囲気下で行うことができる。 The reaction temperature when reacting the sulfur source and the metal source in step 1 is not particularly limited, and can be, for example, 0 to 200°C, preferably 15 to 80°C. The reaction time between the sulfur source and the metal source is also not particularly limited, and can be, for example, 10 minutes to 48 hours, preferably 30 minutes to 24 hours. The reaction can be performed, for example, under an inert gas atmosphere such as nitrogen.
 工程1の反応の後、得られた反応物の精製処理等は行わずに次の工程2に供することができ、あるいは、必要に応じて工程1で得られた反応物を適宜の後処理を行ってから、次の工程2に供することができる。後処理としては特に限定されず、公知の精製方法及び分離方法等を広く採用することができる。例えば、工程1で得られた反応物をろ過により精製する方法、工程1で得られた反応物の乾燥処理により溶媒を除去することにより固形分を分離する方法等を挙げることができる。 After the reaction in step 1, the reaction product obtained can be subjected to the next step 2 without purification treatment, etc., or the reaction product obtained in step 1 can be subjected to appropriate post-treatment as necessary. After performing, it can be subjected to the next step 2. Post-treatment is not particularly limited, and a wide range of known purification methods, separation methods, and the like can be employed. Examples thereof include a method of purifying the reaction product obtained in step 1 by filtration, and a method of separating the solid content by removing the solvent by drying treatment of the reaction product obtained in step 1.
 以上の工程1によって得られる反応物は、硫黄セグメントを含む。当該硫黄セグメントは、前記式(1)で表されるように「-(S)-(mは1以上)」であって、本発明の硫黄含有化合物において、第1の部位となる成分である。硫黄セグメントの両末端は、例えば、水素原子もしくは金属塩(例えば、ナトリウム塩)である。 The reactant obtained by step 1 above contains a sulfur segment. The sulfur segment is "-(S) m - (m is 1 or more)" as represented by the above formula (1), and is a component that becomes the first site in the sulfur-containing compound of the present invention. be. Both ends of the sulfur segment are, for example, hydrogen atoms or metal salts (eg, sodium salts).
 工程2は、工程1で得られた硫黄セグメントと、官能基Fを有する化合物との反応によって硫黄含有化合物を得るための工程である。官能基Fを有する化合物は、得られる硫黄含有化合物において、第2の部位となり得る。 Step 2 is a step for obtaining a sulfur-containing compound by reacting the sulfur segment obtained in Step 1 with a compound having a functional group F. A compound having functional group F can be the second site in the resulting sulfur-containing compound.
 官能基Fを有する化合物において、官能基Fは前述と同様である。従って、官能基Fとしては、多座配位子に基づく官能基、水素結合性を有する官能基を挙げることができる。 In the compound having a functional group F, the functional group F is the same as described above. Therefore, as the functional group F, functional groups based on polydentate ligands and functional groups having hydrogen bonding properties can be mentioned.
 官能基Fを有する化合物としては、例えば、各種の多座配位子を挙げることができる。この場合、得られる硫黄含有化合物には、例えば、配位結合可能な官能基Fを有する第2の部位が形成される。 Examples of compounds having a functional group F include various polydentate ligands. In this case, the resulting sulfur-containing compound is formed with, for example, a second site having a functional group F capable of coordinating.
 以下、官能基Fを有する化合物としての多座配位子を「多座配位子B」と表記する。 The polydentate ligand as a compound having a functional group F is hereinafter referred to as "polydentate ligand B".
 多座配位子Bとしては、例えば、公知の二座配位子、三座配位子、六座配位子及び六座を超える多座配位子等を広く挙げることができ、例えば、ピリジン化合物又はその誘導体、ビピリジン化合物又はその誘導体、ターピリジン化合物又はその誘導体、カルボン酸化合物又はその誘導体、ジカルボン酸化合物又はその誘導体、トリカルボン酸化合物又はその誘導体、テトラ以上のカルボン酸化合物又はその誘導体、イミダゾール化合物又はその誘導体、ジイミダゾール化合物又はその誘導体、トリアゾール化合物又はその誘導体、テトラトリアゾール化合物又はその誘導体を挙げることができる。ビピリジン誘導体及びターピリジン誘導体は、例えば、複数あるピリジン環のうちの一つ又は二以上のピリジン環において、少なくとも一つの水素原子が他の置換基で置換された構造を挙げることができる。当該置換基の種類は、例えば、配位結合が阻害されない限りは特に限定されず、具体的には、炭化水素基(例えば、炭素数1~10)等を挙げることができる。 Examples of the multidentate ligand B include a wide range of known bidentate ligands, tridentate ligands, hexadentate ligands, and multidentate ligands exceeding hexadentate. pyridine compound or derivative thereof, bipyridine compound or derivative thereof, terpyridine compound or derivative thereof, carboxylic acid compound or derivative thereof, dicarboxylic acid compound or derivative thereof, tricarboxylic acid compound or derivative thereof, tetra- or higher carboxylic acid compound or derivative thereof, imidazole compounds or derivatives thereof, diimidazole compounds or derivatives thereof, triazole compounds or derivatives thereof, tetratriazole compounds or derivatives thereof. Bipyridine derivatives and terpyridine derivatives include, for example, structures in which at least one hydrogen atom in one or two or more pyridine rings out of a plurality of pyridine rings is substituted with another substituent. The type of the substituent is not particularly limited as long as it does not interfere with coordination bonding, and specific examples thereof include hydrocarbon groups (eg, having 1 to 10 carbon atoms).
 中でも、多座配位子Bは、硫黄セグメントの末端の硫黄原子と反応することができる化合物であることが好ましい。斯かる化合物としてはハロゲン原子で置換された化合物、イソシアネート基を有する化合物、エポキシ基を有する化合物、カルボニルクロリドを有する化合物等が好ましい。多座配位子Bの具体例としては、ハロゲン原子を有するビピリジン又はその誘導体、ハロゲン原子を有するターピリジン又はその誘導体を挙げることができ、代表的には4-(Chloromethyl)-4'-methyl-2,2'-bipyridyl、4,4'-Bis(chloromethyl)-2,2'-bipyridyl等を挙げることができる。ハロゲン原子としては、塩素原子以外であってもよいが、反応性の観点から塩素原子であることが好ましい。 Among them, the polydentate ligand B is preferably a compound capable of reacting with the terminal sulfur atom of the sulfur segment. As such a compound, a compound substituted with a halogen atom, a compound having an isocyanate group, a compound having an epoxy group, a compound having a carbonyl chloride, and the like are preferable. Specific examples of the polydentate ligand B include bipyridine having a halogen atom or a derivative thereof, terpyridine having a halogen atom or a derivative thereof, and typically 4-(Chloromethyl)-4'-methyl- 2,2'-bipyridyl, 4,4'-Bis(chloromethyl)-2,2'-bipyridyl and the like can be mentioned. Halogen atoms other than chlorine atoms may be used, but chlorine atoms are preferred from the viewpoint of reactivity.
 その他、多座配位子Bの具体例としては、下記のB-1~B-34で表される化合物を挙げることができる。 In addition, specific examples of the polydentate ligand B include the compounds represented by B-1 to B-34 below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 多座配位子Bが、例えば、ハロゲン原子を有するビピリジン又はその誘導体、ハロゲン原子を有するターピリジン又はその誘導体である場合、工程2での反応では、ハロゲン原子が脱離して硫黄セグメント末端の硫黄原子に結合し得る。従って、多座配位子Bがハロゲン原子を1個有する場合は、前述の主鎖型超分子硫黄ポリマーが生成し、斯かる主鎖型超分子硫黄ポリマーは通常は構造bを有する。また、多座配位子Bがハロゲン原子を2個有する場合は、前述の側鎖型超分子硫黄ポリマーが生成し得る。 When the multidentate ligand B is, for example, a bipyridine having a halogen atom or a derivative thereof, or a terpyridine having a halogen atom or a derivative thereof, in the reaction in step 2, the halogen atom is eliminated to form a sulfur atom at the end of the sulfur segment. can be bound to Therefore, when the multidentate ligand B has one halogen atom, the aforementioned backbone-type supramolecular sulfur polymer is produced, and such backbone-type supramolecular sulfur polymer usually has structure b. Moreover, when the polydentate ligand B has two halogen atoms, the aforementioned side chain type supramolecular sulfur polymer can be produced.
 官能基Fを有する化合物としては、多座配位子B以外に、例えば、水素結合性官能基Fを有する化合物を挙げることができる。この場合、得られる硫黄含有化合物には、例えば、水素結合可能な官能基Fを有する第2の部位が形成される。 Examples of compounds having a functional group F include, in addition to the multidentate ligand B, compounds having a hydrogen-bonding functional group F. In this case, the resulting sulfur-containing compound is formed with, for example, a second site having a functional group F capable of hydrogen bonding.
 以下、水素結合性官能基Fを有する化合物を「水素結合性化合物C」と表記する。水素結合性化合物Cは、多座配位子に基づく官能基は有さない。 A compound having a hydrogen-bonding functional group F is hereinafter referred to as a "hydrogen-bonding compound C". Hydrogen-bonding compound C does not have functional groups based on polydentate ligands.
 水素結合性化合物Cとしては、公知の水素結合性を有する官能基Fを有する化合物を広く挙げることができる。具体的に水素結合性を有する官能基Fとしては、アミド基、アミノ基、カルボキシ基、ヒドロキシル基、イソシアネート基、チオイソシアネート基、カルバミド由来の基、ウレイド由来の基、ピリミジン環由来の基等を挙げることができる。 As the hydrogen-bonding compound C, a wide range of known compounds having a functional group F having hydrogen-bonding properties can be cited. Specific examples of the functional group F having hydrogen bonding properties include an amide group, an amino group, a carboxyl group, a hydroxyl group, an isocyanate group, a thioisocyanate group, a carbamide-derived group, a ureido-derived group, a pyrimidine ring-derived group, and the like. can be mentioned.
 水素結合性化合物Cとしては、水素結合性を有する官能基Fを有し、かつ、当該官能基Fが硫黄セグメントの末端の硫黄原子と反応することができる化合物であることが好ましい。あるいは、水素結合性化合物Cとしては、水素結合性を有する官能基Fを有し、かつ、当該官能基F以外に硫黄セグメントの末端の硫黄原子と反応することができる基を有する化合物であることも好ましい。従って、水素結合性化合物Cとしては、例えば、重縮合性の基を有する化合物、ラジカル重合性の二重結合を有する化合物を挙げることができる。 The hydrogen-bonding compound C is preferably a compound that has a functional group F that has hydrogen-bonding properties, and that the functional group F can react with the terminal sulfur atom of the sulfur segment. Alternatively, the hydrogen-bonding compound C is a compound having a functional group F having hydrogen-bonding properties and having a group other than the functional group F capable of reacting with the terminal sulfur atom of the sulfur segment. is also preferred. Therefore, examples of the hydrogen-bonding compound C include compounds having a polycondensable group and compounds having a radically polymerizable double bond.
 水素結合性化合物Cが重縮合性の基を有する化合物である場合、斯かる重縮合性の基としては、アミノ基、カルボキシ基、ヒドロキシル基、イソシアネート基を挙げることができ、中でもイソシアネート基であることが好ましい(すなわち、水素結合性化合物Cはイソシアネート基を有する化合物であることが好ましい)。これらの重縮合性の基は、硫黄セグメントと反応した後は水素結合性官能基Fとしても機能し得る。もちろん、水素結合性化合物Cが重縮合性の基以外に官能基Fを有する場合は、当該官能基Fも水素結合性官能基Fとしても機能し得る。従って、水素結合性化合物Cが重縮合性の基を有する化合物である場合、当該化合物は分子中に少なくとも水素結合性官能基Fを二以上、好ましくは三以上有することができ、また、水素結合性官能基Fを10以下、好ましくは8以下、より好ましくは5以下有することができる。 When the hydrogen-bonding compound C is a compound having a polycondensable group, examples of such polycondensable group include an amino group, a carboxyl group, a hydroxyl group, and an isocyanate group, among which an isocyanate group. (that is, the hydrogen-bonding compound C is preferably a compound having an isocyanate group). These polycondensable groups can also function as hydrogen-bonding functional groups F after reacting with sulfur segments. Of course, when the hydrogen-bonding compound C has a functional group F in addition to the polycondensable group, the functional group F can also function as the hydrogen-bonding functional group F. Therefore, when the hydrogen-bonding compound C is a compound having a polycondensable group, the compound may have at least two, preferably three or more hydrogen-bonding functional groups F in the molecule. may have 10 or less, preferably 8 or less, more preferably 5 or less functional groups F.
 水素結合性化合物Cが重縮合性の基を有する化合物である場合、代表的には下記式(C-1)、(C-2)で表される化合物を挙げることができる。 When the hydrogen-bonding compound C is a compound having a polycondensable group, typical examples include compounds represented by the following formulas (C-1) and (C-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 水素結合性化合物Cが重縮合性の基を有する化合物である場合、工程2での反応では、重縮合性の基と、硫黄セグメント末端の硫黄原子とで重縮合反応が進行する。従って、水素結合性化合物Cにおける重縮合性の基が1個である場合は、前述の主鎖型超分子硫黄ポリマーが生成し、斯かる主鎖型超分子硫黄ポリマーは通常は構造a及び/又は構造b、好ましくは構造bを有する。また、水素結合性化合物Cにおける重縮合性の基が2個である場合は、前述の側鎖型超分子硫黄ポリマーが生成し得る。 When the hydrogen-bonding compound C is a compound having a polycondensable group, in the reaction in step 2, the polycondensation reaction proceeds between the polycondensable group and the sulfur atom at the end of the sulfur segment. Therefore, when there is one polycondensable group in the hydrogen-bonding compound C, the aforementioned main-chain supramolecular sulfur polymer is produced, and such a main-chain supramolecular sulfur polymer usually has structures a and/or or has structure b, preferably structure b. Further, when the number of polycondensable groups in the hydrogen-bonding compound C is two, the aforementioned side chain type supramolecular sulfur polymer can be produced.
 水素結合性化合物Cがラジカル重合性の基を有する化合物である場合、当該化合物は、官能基Fのほか、アリル基、アクリロイル基、メタクリロイル基、スチリル基等のラジカル重合性を有する化合物が挙げられる。 When the hydrogen-bonding compound C is a compound having a radically polymerizable group, the compound includes, in addition to the functional group F, radically polymerizable compounds such as an allyl group, an acryloyl group, a methacryloyl group, and a styryl group. .
 水素結合性化合物Cがラジカル重合性の基を有する化合物である場合、代表的には下記式(C-3)で表される化合物を挙げることができる。 When the hydrogen-bonding compound C is a compound having a radically polymerizable group, the compound represented by the following formula (C-3) can be typically mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 水素結合性化合物Cがラジカル重合性の基を有する化合物である場合、工程2での反応では、ラジカル重合の基と、硫黄セグメント末端の硫黄原子とでラジカル重合反応が進行する。従って、水素結合性化合物Cにおけるラジカル重合性の基が1個である場合は、前述の主鎖型超分子硫黄ポリマーが生成し、斯かる主鎖型超分子硫黄ポリマーは通常は構造bを有する。また、水素結合性化合物Cにおけるラジカル重合性の基が2個である場合は、前述の側鎖型超分子硫黄ポリマーが生成し得る。 When the hydrogen-bonding compound C is a compound having a radically polymerizable group, in the reaction in step 2, the radical polymerization reaction proceeds between the radically polymerizable group and the sulfur atom at the end of the sulfur segment. Therefore, when there is one radically polymerizable group in the hydrogen-bonding compound C, the main chain type supramolecular sulfur polymer described above is produced, and such main chain type supramolecular sulfur polymer usually has the structure b. . Moreover, when there are two radically polymerizable groups in the hydrogen-bonding compound C, the aforementioned side chain type supramolecular sulfur polymer can be produced.
 工程2において、工程1で得られた硫黄セグメントと、官能基Fを有する化合物(すなわち、多座配位子B又は水素結合性化合物C)との反応の方法は特に限定されず、例えば、溶媒中で、工程1で得られた硫黄セグメントと官能基Fを有する化合物とを混合する方法を挙げることができる。 In step 2, the method of reacting the sulfur segment obtained in step 1 with a compound having a functional group F (i.e., polydentate ligand B or hydrogen-bonding compound C) is not particularly limited. Among them, a method of mixing the sulfur segment obtained in step 1 and a compound having a functional group F can be mentioned.
 例えば、官能基Fを有する化合物が多座配位子Bである場合は、界面反応を採用することが好ましい。具体的には、硫黄セグメントが存在する水中に、水とは相分離する溶媒に溶解させた多座配位子Bの溶液を添加し、官能基Fを有する化合物と多座配位子Bとを各溶媒相の界面で反応させる方法を挙げることができる。水と相分離する溶媒としては、各種非水系有機溶媒を挙げることができ、例えば、クロロホルム等のハロゲン系炭化水素溶媒を挙げることができる。 For example, when the compound having a functional group F is a multidentate ligand B, it is preferable to employ an interfacial reaction. Specifically, a solution of multidentate ligand B dissolved in a solvent that phase separates from water is added to water in which sulfur segments are present, and a compound having a functional group F and multidentate ligand B are added. is reacted at the interface of each solvent phase. Examples of solvents that phase-separate from water include various non-aqueous organic solvents, such as halogen-based hydrocarbon solvents such as chloroform.
 また、官能基Fを有する化合物が水素結合性化合物Cである場合は、硫黄セグメントが存在する水系溶媒中に水素結合性化合物Cを添加する方法が挙げられる。水系溶媒としては、水、炭素数1~3のアルコール化合物、アミド系溶媒等を挙げることができる。 Further, when the compound having the functional group F is a hydrogen-bonding compound C, a method of adding the hydrogen-bonding compound C to an aqueous solvent in which sulfur segments are present can be used. Examples of aqueous solvents include water, alcohol compounds having 1 to 3 carbon atoms, amide solvents, and the like.
 工程2において、工程1で得られた硫黄セグメントと官能基Fを有する化合物との使用割合は特に限定されず、例えば、硫黄セグメント1モルに対し、官能基Fを有する化合物の使用量は、好ましくは0.1~20モル、より好ましくは2~3モルである。工程2で使用する官能基Fを有する化合物は1種又は2種以上とすることができ、例えば、多座配位子Bと水素結合性化合物Cとを組み合わせて使用することもできる。 In step 2, the ratio of the compound having the functional group F to the sulfur segment obtained in step 1 is not particularly limited. For example, the amount of the compound having the functional group F is preferably used per 1 mol of the sulfur segment. is 0.1 to 20 mol, more preferably 2 to 3 mol. The compound having the functional group F used in step 2 can be one or two or more. For example, the polydentate ligand B and the hydrogen-bonding compound C can be used in combination.
 工程2において、硫黄セグメントと官能基Fを有する化合物とを反応させる温度は特に限定されず、例えば、0~200℃、好ましくは10~170℃、より好ましくは15~80℃とすることができる。硫黄源と金属源との反応時間も特に限定されず、例えば、10分~48時間、好ましくは30分~24時間とすることができる。反応は、例えば、窒素等の不活性ガス雰囲気下で行うことができる。 In step 2, the temperature at which the sulfur segment and the compound having the functional group F are reacted is not particularly limited, and can be, for example, 0 to 200°C, preferably 10 to 170°C, more preferably 15 to 80°C. . The reaction time between the sulfur source and the metal source is also not particularly limited, and can be, for example, 10 minutes to 48 hours, preferably 30 minutes to 24 hours. The reaction can be performed, for example, under an inert gas atmosphere such as nitrogen.
 工程2の反応の後、必要に応じて適宜の精製処理を行うことで、目的の硫黄含有化合物が得られる。 After the reaction in step 2, the target sulfur-containing compound can be obtained by performing appropriate purification treatment as necessary.
 また、硫黄含有化合物の製造方法では、工程2において生成した硫黄含有化合物にさらに官能基Fを有する化合物を反応させることもできる。具体的には、最初に生成した硫黄含有化合物に、追加の官能基Fを有する化合物を反応させることで、新たな硫黄含有化合物が生成し得る。追加の官能基Fを有する化合物は、最初の反応させる官能基Fを有する化合物とは異なる種類の化合物とすることができる。 In addition, in the method for producing a sulfur-containing compound, the sulfur-containing compound produced in step 2 can be further reacted with a compound having a functional group F. Specifically, a new sulfur-containing compound can be generated by reacting the initially generated sulfur-containing compound with a compound having an additional functional group F. The compound with additional functional group F can be a different type of compound than the compound with functional group F to be reacted first.
3.硫黄含有高分子材料
 本発明の硫黄含有高分子材料は、前述の本発明の硫黄含有化合物を含むことができる。特に、本発明の硫黄含有高分子材料において、少なくとも二以上の硫黄含有化合物が、前記官能基Fを介して分子間相互作用を形成することができる。
3. Sulfur-Containing Polymeric Material The sulfur-containing polymeric material of the present invention can contain the sulfur-containing compounds of the present invention described above. In particular, in the sulfur-containing polymeric material of the present invention, at least two or more sulfur-containing compounds can form intermolecular interactions via the functional group F.
 例えば、硫黄含有化合物の第2の部位における官能基Fが多座配位子に基づく基である場合であって、硫黄含有高分子材料が金属イオンを含む場合、配位結合によって、硫黄含有化合物は分子間相互作用を形成することができる。具体的に硫黄含有化合物中に存在する多座配位子が金属イオンに配位すると共に当該金属イオンには、別の硫黄含有化合物の多座配位子が配位する。これによって、硫黄含有化合物の分子どうしが金属イオンを介して会合体を形成し、いわゆる超分子ポリマーが形成される(後記する図1の「配位結合型主鎖型超分子硫黄ポリマー」あるいは図10を参照」)当該会合体は、例えば、EDTA等の配位結合を解消させる化合物を用いることによって容易に分解させることができる。 For example, if the functional group F in the second site of the sulfur-containing compound is a group based on a polydentate ligand, and the sulfur-containing polymeric material contains metal ions, the coordinate bond will cause the sulfur-containing compound can form intermolecular interactions. Specifically, a multidentate ligand present in a sulfur-containing compound coordinates to a metal ion, and the metal ion is coordinated to a multidentate ligand of another sulfur-containing compound. As a result, the molecules of the sulfur-containing compound form associations via the metal ions, forming a so-called supramolecular polymer (“coordination-bonded main chain-type supramolecular sulfur polymer” in FIG. 1 described later or in FIG. 10”) The aggregate can be easily disassembled by using a compound that breaks coordinate bonds, such as EDTA.
 多座配位子が配位する金属イオンとしては、多座配位子が配位できる金属である限り特に限定されず、例えば、各種の遷移金属イオンを挙げることができ、代表的には、Cu、Fe、Co、Mn、Al等のイオンであり、中でも2価の銅イオン等が好ましい。 The metal ion to which the multidentate ligand coordinates is not particularly limited as long as it is a metal that can be coordinated by the multidentate ligand. Examples thereof include various transition metal ions. Ions of Cu, Fe, Co, Mn, Al, etc. Among them, divalent copper ions and the like are preferable.
 また、硫黄含有化合物の第2の部位における官能基Fが水素結合性を有する官能基である場合、一つの硫黄含有化合物と他の硫黄含有化合物との間に官能基Fによる水素結合が生じ、これにより、硫黄含有化合物の分子どうしの会合体が形成され、いわゆる超分子ポリマーが形成される。 Further, when the functional group F at the second site of the sulfur-containing compound is a functional group having hydrogen bonding properties, a hydrogen bond is generated by the functional group F between one sulfur-containing compound and another sulfur-containing compound, As a result, associations between molecules of the sulfur-containing compound are formed to form a so-called supramolecular polymer.
 例えば、本発明の硫黄含有高分子材料が、前述の主鎖型超分子硫黄ポリマーにおける構造bである硫黄含有化合物を含む場合、硫黄含有化合物分子の両末端の官能基Fと、他の硫黄含有化合物分子の官能基Fとが直接又は前記金属イオンを介して間接的に相互作用して会合体が形成される。そして、この会合体がさらに他の硫黄含有化合物と同様な相互作用によって次々に会合していくことで、硫黄含有高分子材料は超分子構造を形成し得る。硫黄含有高分子材料は、構造bに加えて構造aを含むことができ、この場合、超分子構造の片末端又は両末端には構造aの硫黄含有化合物が配置される。 For example, when the sulfur-containing polymer material of the present invention contains a sulfur-containing compound having structure b in the main chain type supramolecular sulfur polymer described above, functional groups F at both ends of the sulfur-containing compound molecule and other sulfur-containing The functional group F of the compound molecule interacts directly or indirectly via the metal ion to form an aggregate. Then, the aggregates are successively associated with other sulfur-containing compounds through interactions similar to each other, whereby the sulfur-containing polymeric material can form a supramolecular structure. The sulfur-containing polymeric material can comprise structure a in addition to structure b, where sulfur-containing compounds of structure a are located at one or both ends of the supramolecular structure.
 また、本発明の硫黄含有高分子材料が、前述の側鎖型超分子硫黄ポリマーを含む場合、硫黄含有化合物分子の繰り返し構造単位中の官能基Fと、他の硫黄含有化合物分子の繰り返し構造単位中の官能基F間で直接又は間接的に相互作用が生じ、これにより、硫黄含有高分子材料は超分子構造を形成し得る(後記する図14の「水素結合型側鎖型超分子硫黄ポリマー」を参照」)。 Further, when the sulfur-containing polymer material of the present invention contains the above-mentioned side chain type supramolecular sulfur polymer, the functional group F in the repeating structural unit of the sulfur-containing compound molecule and the repeating structural unit of another sulfur-containing compound molecule Direct or indirect interaction occurs between the functional groups F in the sulfur-containing polymeric material, whereby the sulfur-containing polymer material can form a supramolecular structure (“Hydrogen-bonded side chain-type supramolecular sulfur polymer ”).
 以上のように本発明の硫黄含有高分子材料は、超分子構造が形成されるので、見かけ上の高分子量の材料となり得る。硫黄含有高分子材料の見かけ上の質量平均分子量は、200~1,000,000であることが好ましく、500~500,000であることがより好ましく、1,000~100,000であることがさらに好ましい。 As described above, the sulfur-containing polymer material of the present invention forms a supramolecular structure, so that it can appear to be a material with a high molecular weight. The apparent weight average molecular weight of the sulfur-containing polymeric material is preferably 200 to 1,000,000, more preferably 500 to 500,000, and preferably 1,000 to 100,000. More preferred.
 本発明の硫黄含有高分子材料は、硫黄含有化合物の分子どうしの会合体が容易に形成されることで、従来にない新規硫黄ポリマーであるといえる。また、本発明の硫黄含有高分子材料は、硫黄含有化合物の分子どうしの会合体が形成されることで、解重合が起こりにくく、安定性にも優れ、見かけ上の高分子量化しやすいものである、さらに、硫黄含有化合物の分子どうしの会合体が形成されることで、従来の硫黄ポリマーに比べて硫黄セグメントによる特長が発現しやすく、種々の物性が向上するものである。 The sulfur-containing polymer material of the present invention can be said to be a novel sulfur polymer that has never existed before, because associations between molecules of sulfur-containing compounds are easily formed. In addition, the sulfur-containing polymer material of the present invention is resistant to depolymerization due to the formation of associations between molecules of sulfur-containing compounds, is excellent in stability, and tends to have an apparent high molecular weight. Furthermore, the formation of aggregates between molecules of the sulfur-containing compound makes it easier for the sulfur segments to exhibit features compared to conventional sulfur polymers, improving various physical properties.
 硫黄含有高分子材料は、本発明の効果が阻害されない限り、各種添加剤を含むこともできる。添加剤としては、例えば、光安定剤、酸化防止剤、防腐剤、無機粒子等の充填剤、難燃剤、顔料、着色剤、防カビ剤、滑剤等が挙げられる。これらの添加剤は1種又は2種以上が吸水性樹脂分散液に含まれていてもよい。 The sulfur-containing polymeric material can also contain various additives as long as the effects of the present invention are not hindered. Examples of additives include light stabilizers, antioxidants, preservatives, fillers such as inorganic particles, flame retardants, pigments, colorants, antifungal agents, and lubricants. One or more of these additives may be contained in the water absorbent resin dispersion.
 硫黄含有高分子材料は、例えば、固体状であってもよいし、ペースト状等の液状であってもよいし、溶液又は分散体であってもよい。硫黄含有高分子材料が固体状である場合、その形状も特に制限されず、例えば、粉末状、顆粒状、ペレット状、繊維状、板状、フィルム状、ブロック状、シート状、棒状、球状、楕円球状、歪曲状等の形状を有し得る。 The sulfur-containing polymeric material may be, for example, solid, liquid such as paste, or a solution or dispersion. When the sulfur-containing polymeric material is solid, its shape is not particularly limited. It may have an ellipsoidal shape, a curved shape, or the like.
 本発明の硫黄含有高分子材料は、安定性及び加工性に優れることから、各種用途に使用することができる。例えば、電子部材、電池材料、光学部材、包装材料、接着材料、薬剤担持材料、等の用途に本発明の硫黄含有高分子材料を好適に使用することができる。 The sulfur-containing polymeric material of the present invention is excellent in stability and workability, so it can be used for various purposes. For example, the sulfur-containing polymeric material of the present invention can be suitably used for applications such as electronic members, battery materials, optical members, packaging materials, adhesive materials, and drug-carrying materials.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the embodiments of these examples.
 (実施例1-1;LS-bpyの合成)
 図1に示す反応スキームに従って、硫黄セグメント(第1の部位)の両末端にビピリジン部位に基づく官能基Fを有する部位(第2の部位)が結合して形成されるLS-bpyを合成した。まず、硫黄(300mg、1.17mmol)と、NaSの五水和物(295mg、1.76mmol)とを25℃の水2mL中で24時間撹拌して反応物を得た後、この反応物をろ過することで硫黄溶液を調製した。得られた硫黄溶液に、bpyCl(4-(Chloromethyl)-4'-methyl-2,2'-bipyridyl、847mg、3.87mmol)を2mLのクロロホルムに溶解した溶液を添加し、室温(25℃)にて40時間撹拌し、界面反応を進行させた。その後、クロロホルム層を回収して得た後、このクロロホルム層に硫酸マグネシウムを加えて乾燥し、カラムクロマトグラフィーにて精製することで、LS-bpyを得た。
(Example 1-1; Synthesis of LS-bpy)
According to the reaction scheme shown in FIG. 1, LS-bpy was synthesized by binding sites (second site) having functional groups F based on bipyridine sites to both ends of a sulfur segment (first site). First, sulfur (300 mg, 1.17 mmol) and Na 2 S pentahydrate (295 mg, 1.76 mmol) were stirred in 2 mL of water at 25° C. for 24 hours to obtain a reactant, and then the reaction A sulfur solution was prepared by filtering the material. A solution of bpyCl (4-(Chloromethyl)-4'-methyl-2,2'-bipyridyl, 847 mg, 3.87 mmol) dissolved in 2 mL of chloroform was added to the resulting sulfur solution, and the mixture was stirred at room temperature (25°C). for 40 hours to allow the interfacial reaction to proceed. Then, after collecting and obtaining a chloroform layer, magnesium sulfate was added to the chloroform layer to dry it, followed by purification by column chromatography to obtain LS-bpy.
 図2(a)及び(b)はそれぞれ、実施例1-1で得られたLS-bpyのH-NMR測定及び13C-NMR測定の結果を示している。両NMR測定の上段のスペクトルは比較であるbpy-Clであり、下段のスペクトルが実施例1-1で得られたLS-bpyである。両NMRスペクトルから、実施例1-1で得られたLS-bpyは、Bpy-Clと比較して、硫黄と連結しているメチレン鎖のプロトンg又はカーボンkが高磁場シフトしていることがわかる。 FIGS. 2(a) and (b) respectively show the results of 1 H-NMR measurement and 13 C-NMR measurement of LS-bpy obtained in Example 1-1. The upper spectrum of both NMR measurements is bpy-Cl for comparison, and the lower spectrum is LS-bpy obtained in Example 1-1. From both NMR spectra, LS-bpy obtained in Example 1-1 shows that the proton g or carbon k of the methylene chain linked to sulfur is shifted upfield compared to Bpy-Cl. Recognize.
 図3は、実施例1-1で得られたLS-bpyのMALDI-TOF MSスペクトルを示す。このスペクトル中には、LS-bpyの分子量が検出された。LS-bpyの硫黄量を元素分析したところ、n=3.0(即ち、第1の部位の硫黄セグメントの鎖長mが3)であることが確認された。 FIG. 3 shows the MALDI-TOF MS spectrum of LS-bpy obtained in Example 1-1. The molecular weight of LS-bpy was detected in this spectrum. Elemental analysis of the sulfur content of LS-bpy confirmed n=3.0 (ie, the chain length m of the sulfur segment in the first site was 3).
 以上の結果から、目的のLS-bpyが合成できていることが確認された。 From the above results, it was confirmed that the desired LS-bpy was synthesized.
 (実施例1-2;LS-bpyの合成)
 図1に示す反応スキームに従って、実施例1-1で得られたLS-bpyを用いた高分子材料(配位結合を有する主鎖型超分子硫黄ポリマー)を製造した。具体的に、実施例1-1で得られたLS-bpy(20mg、43μmol)とCu(NOの三水和物(26mg、108μmol)とを900μLのアセトニトリル中、室温(25℃)で1日撹拌した後、減圧乾燥することで高分子材料を得た。
(Example 1-2; Synthesis of LS-bpy)
According to the reaction scheme shown in FIG. 1, a polymeric material (a main-chain supramolecular sulfur polymer having coordinate bonds) was produced using LS-bpy obtained in Example 1-1. Specifically, LS-bpy (20 mg, 43 μmol) obtained in Example 1-1 and Cu(NO 3 ) 2 trihydrate (26 mg, 108 μmol) were mixed in 900 μL of acetonitrile at room temperature (25°C). After stirring for one day, the polymer material was obtained by drying under reduced pressure.
 図4は、実施例1-2で得られた高分子材料のCHCl中のGPC測定結果を示している。この結果、実施例1-2で得られた高分子材料は、LS-bpy単独よりも高分子量側にピークが観測され、ポリエチレングリコール換算で数平均分子量(Mn)は3700、質量平均分子量(Mw)は4600、PDIは1.26であることが確認された。この分子量はこれまでに報告されている硫黄ポリマーの分子量(3000程度)とほぼ同等であった。一般的に超分子は希釈条件では解離に平衡が偏るため、高濃度条件では今回観測された分子量よりも大きいポリマーが形成していることが予想される。 FIG. 4 shows the results of GPC measurement in CHCl 3 of the polymer material obtained in Example 1-2. As a result, in the polymer material obtained in Example 1-2, a peak was observed on the higher molecular weight side than LS-bpy alone, the number average molecular weight (Mn) in terms of polyethylene glycol was 3700, and the weight average molecular weight (Mw ) was 4600 and the PDI was 1.26. This molecular weight was almost the same as the molecular weight of sulfur polymers reported so far (about 3000). In general, the equilibrium of supramolecules is biased toward dissociation under dilute conditions, so it is expected that polymers with molecular weights larger than those observed in this study are formed under high concentration conditions.
 図5(a)及び(b)は、LS-bpy中のビピリジン部位(bpy部位)とCuとの配位結合が形成していることを確認するための試験結果であって、具体的にUV-Visスペクトル測定の結果を示している。この測定では、23μMのLS-bpyのDMSO溶液に0.99mMのCu(NO・3HOのDMSO溶液を適量添加してサンプルを調製し、このサンプルのUV-Visスペクトルを測定した。このUV-Visスペクトルでは、302nm及び510nmに新たなピークが観測されたことから、LS-bpyがCuとの配位結合で連結した構造を有することが示唆された。この配位結合形成がbpy部位のみで起こるかどうかであるかを確かめるためにLS-Bn(図1のスキームを参照)とCuとを混合したが、新たなピークは観測されなかった((b)図を参照)。このことから、実施例1-2で得られた高分子材料は、bpy部位とCuとの配位結合にて連結されていることが示唆された。即ち、LS-bpy分子中のメチル化されたビピリジン由来の基(官能基F)とCuとの配位結合が形成されると共に、このCuには、他のLS-bpy分子中のメチル化されたビピリジン由来の基が配位した構造を有しているものと推察される。 5(a) and (b) are test results for confirming that a coordination bond is formed between the bipyridine site (bpy site) in LS-bpy and Cu. -Vis spectrum measurement results. In this measurement, a sample was prepared by adding an appropriate amount of 0.99 mM Cu(NO 3 ) 2.3H 2 O DMSO solution to a 23 μM LS-bpy DMSO solution, and the UV-Vis spectrum of this sample was measured. . In this UV-Vis spectrum, new peaks were observed at 302 nm and 510 nm, suggesting that LS-bpy has a structure in which LS-bpy and Cu are linked by coordinate bonds. We mixed LS-Bn (see scheme in FIG. 1) with Cu to see if this coordination bond formation occurred only at the bpy sites, but no new peaks were observed ((b ) see figure). This suggested that the polymer material obtained in Example 1-2 was linked by coordination bonds between the bpy sites and Cu. That is, a coordinate bond is formed between the methylated bipyridine-derived group (functional group F) in the LS-bpy molecule and Cu. It is presumed to have a structure in which groups derived from bipyridine are coordinated.
 実施例1-2で得られた高分子材料がbpy部位とCuとの配位結合によって形成されていることから、この配位結合を解離させることでポリマーを分解できることが予想される。そこで、DMSO中、実施例1-2で得られた高分子材料にエチレンジアミン四酢酸(EDTA)を過剰量添加し、撹拌することでサンプルを調製し、このサンプルのGPC測定を行った。この結果、高分子材料のピークが消失したことが確認されたことから、実施例1-2で得られた高分子材料は、EDTAを加えることで容易に分解できることが示された。 Since the polymer material obtained in Example 1-2 is formed by the coordinate bond between the bpy site and Cu, it is expected that the polymer can be decomposed by dissociating the coordinate bond. Therefore, a sample was prepared by adding an excessive amount of ethylenediaminetetraacetic acid (EDTA) to the polymeric material obtained in Example 1-2 in DMSO and stirring, and GPC measurement was performed on this sample. As a result, it was confirmed that the peak of the polymeric material disappeared, indicating that the polymeric material obtained in Example 1-2 could be easily decomposed by adding EDTA.
 (実施例2-1;硫黄-UPy化合物の合成)
 図6に示す反応スキームに従って、硫黄セグメント(第1の部位)の両末端に官能基Fとして尿素由来の基を有する部位(第2の部位)が結合して形成される硫黄-UPy化合物を合成した。まず、硫黄(375mg、1.47mmol)を乾燥ジメチルアセトアミド(30mL)に添加し、そこへNa(83mg、3.62mmol)を加え、窒素雰囲気下にて70℃で7時間撹拌して反応物を得た。この反応物にイソシアネート基を持つウレイドピリミジノン(Upy-NCO、944mg)を加え、窒素雰囲気下にて70℃で12時間撹拌した後、室温に戻し、生じた沈殿をろ別し、減圧乾燥することで、硫黄-UPy化合物を得た。
(Example 2-1; synthesis of sulfur-UPy compound)
According to the reaction scheme shown in FIG. 6, a sulfur-UPy compound formed by binding a site (second site) having a urea-derived group as a functional group F to both ends of a sulfur segment (first site) is synthesized. did. First, sulfur (375 mg, 1.47 mmol) was added to dry dimethylacetamide (30 mL), to which Na (83 mg, 3.62 mmol) was added, and the reaction was stirred at 70° C. for 7 hours under nitrogen atmosphere. Obtained. A ureidopyrimidinone having an isocyanate group (Upy-NCO, 944 mg) was added to the reactant, stirred at 70°C for 12 hours under a nitrogen atmosphere, and then returned to room temperature. The resulting precipitate was filtered off and dried under reduced pressure. By doing so, a sulfur-UPy compound was obtained.
 (実施例2-2;硫黄-UPy化合物の合成)
 図6に示す反応スキームに従って、硫黄セグメント(第1の部位)の両末端に官能基Fとして尿素由来の基を有する部位(第2の部位)が結合して形成される硫黄-UPy化合物を合成した。まず、硫黄(133mg、0.59mmol)と、とNaSの五水和物(295mg、1.76mmol)とを水5mL中に溶解して溶液を調製した。この溶液に、イソシアネート基を有するウレイドピリミジノン(Upy-NCO、944mg)のクロロホルム溶液40mLを添加し、40℃にて12時間撹拌して界面反応を進行させた。この反応中に水層とクロロホルム層との間に不溶物が生じたので、吸引濾過にて不溶物をろ別し、これを減圧乾燥することで、硫黄-UPy化合物を得た。
(Example 2-2; Synthesis of sulfur-UPy compound)
According to the reaction scheme shown in FIG. 6, a sulfur-UPy compound formed by binding a site (second site) having a urea-derived group as a functional group F to both ends of a sulfur segment (first site) is synthesized. did. First, a solution was prepared by dissolving sulfur (133 mg, 0.59 mmol) and Na 2 S pentahydrate (295 mg, 1.76 mmol) in 5 mL of water. To this solution, 40 mL of a chloroform solution of ureidopyrimidinone (Upy-NCO, 944 mg) having an isocyanate group was added, and the mixture was stirred at 40° C. for 12 hours to allow interfacial reaction to proceed. During this reaction, insoluble matter was generated between the aqueous layer and the chloroform layer, so the insoluble matter was separated by suction filtration and dried under reduced pressure to obtain a sulfur-UPy compound.
 図7は実施例2-1及び実施例2-2で得られた硫黄-UPy化合物のH-NMR測定の結果を示している。このNMR測定の上段のスペクトルは比較であるUpy-NCOであり、中段のスペクトルが実施例2-1で得られた硫黄-UPy化合物であり、下段が実施例2-2で得られた硫黄-UPy化合物である。このNMRスペクトルから、UPy-NCOと比較して、両者ともに、図中に示した領域A(NCO基に結合するメチレン鎖のプロトン)の低磁場シフトが観測された。 FIG. 7 shows the results of 1 H-NMR measurement of the sulfur-UPy compounds obtained in Examples 2-1 and 2-2. The upper spectrum of this NMR measurement is Upy-NCO for comparison, the middle spectrum is the sulfur-UPy compound obtained in Example 2-1, and the lower spectrum is the sulfur- obtained in Example 2-2. UPy compound. From this NMR spectrum, a downfield shift of the region A (protons of the methylene chain bound to the NCO group) shown in the figure was observed in both of them as compared with UPy-NCO.
 図8は、実施例2-1及び2-2で得られた硫黄-UPy化合物のMALDI-TOF MSスペクトルを示す。このスペクトル中には、硫黄-UPyの分子量が検出された。硫黄-UPyの硫黄量を元素分析したところ、硫黄原子の数は2.1(即ち、第1の部位の硫黄セグメントの鎖長mが約2.1)であることが確認された。 FIG. 8 shows the MALDI-TOF MS spectra of the sulfur-UPy compounds obtained in Examples 2-1 and 2-2. The molecular weight of sulfur-UPy was detected in this spectrum. Elemental analysis of the sulfur content of sulfur-UPy confirmed that the number of sulfur atoms was 2.1 (ie, the chain length m of the sulfur segment in the first site was about 2.1).
 以上の結果から、目的の硫黄-UPy化合物(以下、単に「硫黄-UPy」と表記することがある)が合成できていることが確認された。 From the above results, it was confirmed that the desired sulfur-UPy compound (hereinafter sometimes simply referred to as "sulfur-UPy") was synthesized.
 図9(a)、(b)は、硫黄-UPy中のUpy-NCO由来の基が水素結合を形成しているかどうかを確認するための試験結果であって、具体的に(a)はIRスペクトル、(b)は固体H-NMRスペクトルを示している。IRスペクトルでは、3220及び3145cm-1にピークが観測され、固体H-NMRスペクトルでは、10~14ppmに3つのピークが観測された。これらはUpy-NCO由来の基が水素結合を形成していることを示唆している。また、実施例2-1及び2-2で得られた硫黄-UPyはクロロホルムに難溶であったが、水素結合を切断することが知られているトリフルオロ酢酸を含んだクロロホルムには容易に溶解した。 9(a) and (b) are test results for confirming whether groups derived from Upy-NCO in sulfur-UPy form hydrogen bonds. Specifically, (a) is IR Spectra, (b) shows the solid-state 1 H-NMR spectrum. Peaks were observed at 3220 and 3145 cm −1 in the IR spectrum, and three peaks were observed at 10-14 ppm in the solid state 1 H-NMR spectrum. These suggest that groups derived from Upy-NCO form hydrogen bonds. In addition, the sulfur-UPy obtained in Examples 2-1 and 2-2 was poorly soluble in chloroform, but easily dissolved in chloroform containing trifluoroacetic acid, which is known to break hydrogen bonds. Dissolved.
 以上の結果から、実施例2-1及び2-2で得られた硫黄-UPyは、分子間水素結合によって形成された会合体からなる高分子材料を形成していることがわかった。 From the above results, it was found that the sulfur-UPy obtained in Examples 2-1 and 2-2 formed a polymer material consisting of aggregates formed by intermolecular hydrogen bonds.
 (実施例3;Poly(LS-bpy)の合成)
 図10に示す反応スキームに従って、硫黄セグメント(第1の部位)の片末端にビピリジン部位に基づく官能基Fを有する部位(第2の部位)が結合して形成される構造単位を繰り返し単位とするPoly(LS-bpy)を合成した。まず、硫黄(300mg、1.17mmol)と、NaSの五水和物(295mg、1.76mmol)とを25℃の水2mL中で24時間撹拌して反応物を得た後、この反応物をろ過することで硫黄溶液を調製した。得られた硫黄溶液に、bpy-diCl(4,4'-Bis(chloromethyl)-2,2'-bipyridyl(bpyCl)、979mg、3.87mmol)を2mLのクロロホルムに溶解した溶液を添加し、室温(25℃)にて40時間撹拌し、界面反応を進行させた。その後、クロロホルム層を回収して得た後、このクロロホルム層に硫酸マグネシウムを加えて乾燥し、カラムクロマトグラフィーにて精製することで、Poly(LS-bpy)を得た。
(Example 3; Synthesis of Poly(LS-bpy))
According to the reaction scheme shown in FIG. 10, a structural unit formed by binding a site (second site) having a functional group F based on a bipyridine site to one end of a sulfur segment (first site) is used as a repeating unit. Poly(LS-bpy) was synthesized. First, sulfur (300 mg, 1.17 mmol) and Na 2 S pentahydrate (295 mg, 1.76 mmol) were stirred in 2 mL of water at 25° C. for 24 hours to obtain a reactant, and then the reaction A sulfur solution was prepared by filtering the material. A solution of bpy-diCl (4,4'-Bis(chloromethyl)-2,2'-bipyridyl(bpyCl), 979 mg, 3.87 mmol) dissolved in 2 mL of chloroform was added to the resulting sulfur solution, and the mixture was cooled to room temperature. The mixture was stirred at (25° C.) for 40 hours to allow the interfacial reaction to proceed. Then, after collecting and obtaining a chloroform layer, magnesium sulfate was added to the chloroform layer to dry it, followed by purification by column chromatography to obtain Poly(LS-bpy).
 図11(a)及び(b)はそれぞれ、実施例3で得られたPoly(LS-bpy)のH-NMR測定及び13C-NMR測定の結果を示している。両NMR測定の上段のスペクトルは比較であるBpy-diClであり、下段のスペクトルが実施例3で得られたPoly(LS-bpy)である。H-NMRスペクトルから、実施例3で得られたPoly(LS-bpy)は、Bpy-diClと比較して、硫黄と連結しているメチレン鎖のプロトンdの高磁場シフト及び全プロトンのブロード化が確認された。13C-NMRスペクトルから、硫黄と連結しているメチレン鎖のカーボンfの高磁場シフトが確認された。これらの結果は実施例1-1で得られたLS-bpyと同様であることから、目的のPoly(LS-bpy)の合成が強く示唆された。 11(a) and (b) show the results of 1 H-NMR measurement and 13 C-NMR measurement of Poly(LS-bpy) obtained in Example 3, respectively. The upper spectrum of both NMR measurements is Bpy-diCl for comparison, and the lower spectrum is Poly(LS-bpy) obtained in Example 3. From the 1 H-NMR spectrum, Poly(LS-bpy) obtained in Example 3 exhibits an upfield shift of proton d of the sulfur-linked methylene chain and broadening of all protons compared to Bpy-diCl. conversion was confirmed. The 13 C-NMR spectrum confirmed the upfield shift of the sulfur-linked methylene chain carbon f. Since these results were similar to those of LS-bpy obtained in Example 1-1, synthesis of the desired Poly(LS-bpy) was strongly suggested.
 図12は、実施例3で得られたPoly(LS-bpy)のMALDI-TOF MSスペクトルを示す。このスペクトル中には、ポリマー中の繰り返しユニットである、bpy(183)と硫黄(32)の分子量に該当する繰り返しが確認された。 FIG. 12 shows the MALDI-TOF MS spectrum of Poly(LS-bpy) obtained in Example 3. Repeats corresponding to the molecular weights of bpy (183) and sulfur (32), which are repeating units in the polymer, were confirmed in this spectrum.
 図13は、実施例3で得られたPoly(LS-bpy)のDMSO中でのGPC測定結果を示しており、この結果から、分子量はポリエチレングリコール換算で数平均分子量が1900、質量平均分子量が2400、PDIが1.26であることが確認された。 FIG. 13 shows the results of GPC measurement in DMSO of Poly(LS-bpy) obtained in Example 3. From this result, the molecular weight is calculated as polyethylene glycol, the number average molecular weight is 1900, and the weight average molecular weight is 1,900. 2400, with a PDI of 1.26.
 以上の結果から、目的のPoly(LS-bpy)が合成できていることが確認された。 From the above results, it was confirmed that the desired Poly (LS-bpy) was synthesized.
 また、Poly(LS-bpy)中のビピリジン部位(bpy部位)とCuとの配位結合が形成していることを確認するためにUV-Visスペクトル測定を行った。この測定では、3.81μMのPoly(LS-bpy)のDMSO溶液に1.16mMのCu(NO・3HOのDMSO溶液を適量添加してサンプルを調製し、このサンプルのUV-Visスペクトルを測定した。このUV-Visスペクトルでは、470nmに新たなピークが観測されたことから、Poly(LS-bpy)のbpy部位がCuとの配位結合で連結した構造を有する高分子材料の形成が示唆された。 In addition, UV-Vis spectroscopy was performed to confirm the formation of a coordinate bond between the bipyridine site (bpy site) in Poly(LS-bpy) and Cu. In this measurement, a sample was prepared by adding an appropriate amount of 1.16 mM Cu(NO 3 ) 2 .3H 2 O DMSO solution to 3.81 μM Poly(LS-bpy) DMSO solution. Vis spectra were measured. In this UV-Vis spectrum, a new peak was observed at 470 nm, suggesting the formation of a polymeric material having a structure in which the bpy sites of Poly (LS-bpy) are linked to Cu via coordinate bonds. .
 図13に示すGPC結果の最下段にはPoly(LS-bpy)のbpy部位がCuとの配位結合で連結した構造を有する高分子材料のGPC測定結果を示している。注目すべきことに、当該高分子材料は、Poly(LS-bpy)単独よりも高分子量側にピークが観測された。最も高い分子量のピークはポリエチレングリコール換算で数平均分子量が22000、質量平均分子量が46000、PDIが2.17であった。これらの分子量はこれまでに報告されている硫黄ポリマーの分子量(約3000)よりも遥かに高い値となり、硫黄ポリマーに超分子の概念を導入することによって硫黄ポリマーの高分子量化を達成した。即ち、Poly(LS-bpy)分子中のメチル化されたビピリジン由来の基(官能基F)とCuとの配位結合が形成されると共に、このCuには、他のPoly(LS-bpy)分子中のメチル化されたビピリジン由来の基が配位した構造を有しているものと推察される。 At the bottom of the GPC results shown in FIG. 13, the GPC measurement results of a polymer material having a structure in which the bpy sites of Poly(LS-bpy) are linked to Cu by coordination bonds are shown. Remarkably, the polymer material had a peak on the higher molecular weight side than Poly(LS-bpy) alone. The highest molecular weight peak had a number average molecular weight of 22,000, a weight average molecular weight of 46,000, and a PDI of 2.17 in terms of polyethylene glycol. These molecular weights are much higher than the molecular weights of sulfur polymers reported so far (about 3000), and by introducing the concept of supramolecules into sulfur polymers, we have achieved high molecular weight sulfur polymers. That is, a coordinate bond is formed between the methylated bipyridine-derived group (functional group F) in the Poly(LS-bpy) molecule and Cu, and this Cu has another Poly(LS-bpy) It is presumed to have a structure in which methylated bipyridine-derived groups in the molecule are coordinated.
 (実施例4;Poly(LS-BnNHCOS)の合成)
 図14に示す反応スキームに従って、硫黄セグメント(第1の部位)の片末端に官能基Fとしてイソシアネート由来の基を有する部位(第2の部位)が結合して形成される構造単位を繰り返し単位とするPoly(LS-BnNHCOS)を合成した。まず、硫黄(2.58g、10.1mmol)と、とNaSの五水和物(3.40g、20.2mmol)とを25℃の水60mL中に加え、24時間攪拌後にろ過し、得られたろ液を凍結乾燥することで固形物(-(S)-セグメンをからなるポリマー)を得た。この固形物(524mg、3.01mmol)を脱水DMF(60mL)に溶解した後、m-キシリレンジイソシアナート(BndiNCO)、472μL、3.01mmol)を加え、窒素雰囲気下、25℃にて20時間撹拌することで反応物を得た。得られた反応物をろ過した後、DMFを留去すること、薄橙色固体を得た。
(Example 4; Synthesis of Poly(LS-BnNHCOS))
According to the reaction scheme shown in FIG. 14, a structural unit formed by binding a site (second site) having an isocyanate-derived group as a functional group F to one end of a sulfur segment (first site) is used as a repeating unit. Poly(LS-BnNHCOS) was synthesized. First, sulfur (2.58 g, 10.1 mmol) and Na 2 S pentahydrate (3.40 g, 20.2 mmol) were added to 60 mL of water at 25° C., stirred for 24 hours, filtered, The resulting filtrate was freeze-dried to obtain a solid (a polymer consisting of -(S) m -segments). After dissolving this solid (524 mg, 3.01 mmol) in dehydrated DMF (60 mL), m-xylylene diisocyanate (BndiNCO, 472 μL, 3.01 mmol) was added, and the mixture was stirred at 25° C. for 20 hours under a nitrogen atmosphere. A reactant was obtained by stirring. After filtering the resulting reactant, DMF was distilled off to obtain a pale orange solid.
 図15は、得られた薄橙色固体のFT-IRスペクトルを示している。このFT-IRスペクトルにおいて、原料であるBndiNCO中に観測される2250cm-1付近のイソシアネート由来のピークが消失し、1620cm-1に-C=O、3310cm-1に-NH、690cm-1にC-Sに由来するピークが観測された。これらの結果からモノマーであるBndiNCOが反応で消費されて反応が進行したことが示唆された。 FIG. 15 shows the FT-IR spectrum of the resulting pale orange solid. In this FT-IR spectrum, the isocyanate-derived peak near 2250 cm −1 observed in the raw material BndiNCO disappeared, and −C═O at 1620 cm −1 , −NH at 3310 cm −1 , and C at 690 cm −1 . A peak derived from -S was observed. These results suggested that the monomer BndiNCO was consumed in the reaction and the reaction proceeded.
 図16は、実施例4で得られた薄橙色固体のH-NMR測定の結果を示している。このNMR測定の下段のスペクトルは比較であるBndiNCOであり、上段のスペクトルが実施例4で得られた薄橙色固体である。このNMRスペクトルから、BndiNCOと比較して、全てのプロトンのブロード化が観測された。この結果はLS-bpy及びPoly(LS-bpy)と同様であった。以上より、目的のPoly(LS-BnNHCOS)が合成できていることがわかった。 FIG. 16 shows the results of 1 H-NMR measurement of the pale orange solid obtained in Example 4. The lower spectrum of this NMR measurement is that of BndiNCO for comparison, and the upper spectrum is that of the pale orange solid obtained in Example 4. Broadening of all protons was observed from this NMR spectrum compared to BndiNCO. The results were similar for LS-bpy and Poly(LS-bpy). From the above, it was found that the desired Poly(LS-BnNHCOS) was synthesized.
 図17は、Poly(LS-BnNHCOS)のDMSO中でのGPC測定結果を示している。このGPC測定において、Poly(LS-BnNHCOS)は、BndiNCOよりも高分子量側にピークが認められ、Poly(LS-BnNHCOS)の分子量は、ポリエチレングリコール換算で数平均分子量が7000、質量平均分子量が8100、PDIが1.16であることが確認された。この分子量はこれまでに報告されている硫黄ポリマーの分子量(約3000)よりも遥かに高い値となり、これらの結果からも、-(S)-とBndiNCOとの重縮合によって、BndiNCOが反応して、目的のPoly(LS-BnNHCOS)が合成できていることがわかった。 FIG. 17 shows the results of GPC measurement of Poly(LS-BnNHCOS) in DMSO. In this GPC measurement, Poly(LS-BnNHCOS) has a peak on the higher molecular weight side than BndiNCO. , PDI was found to be 1.16. This molecular weight is much higher than the molecular weight of sulfur polymers reported so far (about 3000), and these results also indicate that BndiNCO reacts through polycondensation of —(S) m — with BndiNCO. As a result, it was found that the desired Poly (LS-BnNHCOS) was synthesized.
 得られたPoly(LS-BnNHCOS)はクロロホルムに難溶であったが、トリフルオロ酢酸を含んだクロロホルムには容易に溶解した。上記のようにトリフルオロ酢酸存在下ではクロロホルムには容易に溶解したことから、Poly(LS-BnNHCOS)は側鎖間でチオイソシアネートによる水素結合が形成されており、この水素結合はトリフルオロ酢酸によって解消されたものと推認される。即ち、Poly(LS-BnNHCOS)は水素結合型側鎖型超分子硫黄ポリマーであることが示唆された。 The obtained Poly(LS-BnNHCOS) was poorly soluble in chloroform, but easily dissolved in chloroform containing trifluoroacetic acid. As described above, it was easily dissolved in chloroform in the presence of trifluoroacetic acid, so Poly(LS-BnNHCOS) has hydrogen bonds formed between side chains by thioisocyanate, and these hydrogen bonds are formed by trifluoroacetic acid. presumed to have been dissolved. That is, it was suggested that Poly(LS-BnNHCOS) is a hydrogen bond type side chain type supramolecular sulfur polymer.
 (実施例5)
 図18の反応スキームに従って、硫黄セグメント(第1の部位)の片末端に水素結合性官能基Fを有する部位(第2の部位)が結合して形成される構造単位を繰り返し単位とするPoly(S-Upy)を合成した。硫黄(1.01g、3.89mmol)と、公知の方法で合成したUPy-HDI-HEMA(165.3mg、0.389mmol)とを窒素雰囲気下、160℃で24時間撹拌することでPoly(S-Upy)を得た。
(Example 5)
According to the reaction scheme of FIG. 18, Poly (Poly ( S-Upy) was synthesized. Poly(S -Upy).
 図19は、Poly(S-Upy)のDMSO中、及び、クロロホルム中におけるGPC測定結果を示している。この結果、いずれの測定溶媒においても高分子量体のピークが確認されたことから、目的のPoly(S-Upy)が得られていることがわかった。なお、本測定において、Poly(S-Upy)はDMSO及びクロロホルムに対して不溶分が多量に発生した。このことは、ポリマー間で水素結合が形成されたことを示しており、即ち、Poly(S-Upy)は、水素結合によって誘発される超分子構造を有する高分子材料を形成していることが示唆された。 FIG. 19 shows the results of GPC measurement of Poly(S-Upy) in DMSO and chloroform. As a result, a high molecular weight peak was confirmed in all measurement solvents, indicating that the desired Poly (S-Upy) was obtained. In this measurement, Poly(S-Upy) generated a large amount of insoluble matter in DMSO and chloroform. This indicates that hydrogen bonding was formed between the polymers, that is, Poly(S-Upy) forms a polymeric material with a supramolecular structure induced by hydrogen bonding. It was suggested.
 (質量平均分子量の測定方法)
 質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)装置を用い、下記の測定条件で測定した。
(測定条件)
・測定装置名:Tosoh DP-8020 pump、CO-8020 column oven、UV-8020 ultraviolet detector、RI-8020 refractive-index detector
・カラム:TSKgel GMHHR-Mを2本使用
・カラム温度:40℃
・溶媒CHCl又はDMSO
・流速:溶媒としてCHClを使用したときはポ1.0mL/min、DMSOを使用したときは3.0mL/min
・標準サンプル:溶媒としてCHClを使用したときはポリスチレンスタンダード、DMSOを使用したときはポリエチレングリコールスタンダード
(Method for measuring mass average molecular weight)
The mass average molecular weight (Mw) was measured using a gel permeation chromatograph (GPC) device under the following measurement conditions.
(Measurement condition)
・Measurement device name: Tosoh DP-8020 pump, CO-8020 column oven, UV-8020 ultraviolet detector, RI-8020 refractive-index detector
・Column: 2 TSKgel GMHHR-M ・Column temperature: 40°C
- Solvent CHCl3 or DMSO
Flow rate: Po 1.0 mL/min when using CHCl 3 as solvent, 3.0 mL/min when using DMSO
Standard samples: polystyrene standards when CHCl3 was used as solvent , polyethylene glycol standards when DMSO was used

Claims (7)

  1. 硫黄含有化合物であって、
    分子中に下記式(1)
    -(S)-   (1)
    (式(1)中、mは1以上の数を表す)
    で表される第1の部位と、
    他の分子及び/又はイオンと相互作用可能な官能基Fを含む第2の部位とを少なくとも1個ずつ有し、
    前記第2の部位は前記第1の部位の硫黄と共有結合している、硫黄含有化合物。
    A sulfur-containing compound,
    Formula (1) below in the molecule
    - (S) m - (1)
    (In formula (1), m represents a number of 1 or more)
    A first portion represented by
    at least one second site containing a functional group F capable of interacting with other molecules and/or ions;
    A sulfur-containing compound, wherein the second portion is covalently bonded to the sulfur of the first portion.
  2. 前記相互作用が、非共有結合及び配位結合からなる群より選ばれる少なくとも1種である、請求項1に記載の硫黄含有化合物。 2. The sulfur-containing compound according to claim 1, wherein said interaction is at least one selected from the group consisting of non-covalent bonds and coordinate bonds.
  3. 前記官能基Fが多座配位子に基づく官能基である、請求項1に記載の硫黄含有化合物。 2. A sulfur-containing compound according to claim 1, wherein said functional group F is a functional group based on a polydentate ligand.
  4. 前記官能基Fは水素結合性を有する、請求項1に記載の硫黄含有化合物。 2. The sulfur-containing compound according to claim 1, wherein said functional group F has hydrogen bonding properties.
  5. 前記第1の部位の片末端又は両末端に前記第2の部位が共有結合した構造を有する分子である、請求項1~4のいずれか1項に記載の硫黄含有化合物。 The sulfur-containing compound according to any one of claims 1 to 4, which is a molecule having a structure in which the second site is covalently bonded to one or both ends of the first site.
  6. 前記第1の部位の片末端に前記第2の部位が共有結合した構造を繰り返し単位として有する、請求項1~4のいずれか1項に記載の硫黄含有化合物。 5. The sulfur-containing compound according to any one of claims 1 to 4, having a structure in which the second site is covalently bonded to one end of the first site as a repeating unit.
  7. 請求項1~4のいずれか1項に記載の硫黄含有化合物を含み、
    少なくとも二以上の硫黄含有化合物どうしが前記官能基Fを介して分子間相互作用を形成している、硫黄含有高分子材料。
    comprising a sulfur-containing compound according to any one of claims 1 to 4,
    A sulfur-containing polymeric material in which at least two or more sulfur-containing compounds form an intermolecular interaction via the functional group F.
PCT/JP2022/019860 2021-05-10 2022-05-10 Sulfur-containing compound and high molecular weight material WO2022239780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521210A JPWO2022239780A1 (en) 2021-05-10 2022-05-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080034 2021-05-10
JP2021080034 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239780A1 true WO2022239780A1 (en) 2022-11-17

Family

ID=84029666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019860 WO2022239780A1 (en) 2021-05-10 2022-05-10 Sulfur-containing compound and high molecular weight material

Country Status (2)

Country Link
JP (1) JPWO2022239780A1 (en)
WO (1) WO2022239780A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100037A1 (en) * 2015-07-13 2018-04-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur and epoxy functional styrenics
WO2021158730A1 (en) * 2020-02-05 2021-08-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Sulfur-based functional prepolymers for polyurethanes and polymeric materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100037A1 (en) * 2015-07-13 2018-04-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Copolymerization of elemental sulfur and epoxy functional styrenics
WO2021158730A1 (en) * 2020-02-05 2021-08-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Sulfur-based functional prepolymers for polyurethanes and polymeric materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERK HASAN, BALCI BURCU, ERTAN SALIH, KAYA MURAT, CIHANER ATILLA: "Functionalized polysulfide copolymers with 4-vinylpyridine via inverse vulcanization", MATERIALS TODAY COMMUNICATIONS, ELSEVIER LTD, GB, vol. 19, 1 June 2019 (2019-06-01), GB , pages 336 - 341, XP093005308, ISSN: 2352-4928, DOI: 10.1016/j.mtcomm.2019.02.014 *
PEIYAO YAN; WEI ZHAO; BOWEN ZHANG; LIANG JIANG; SAMUEL PETCHER; JESSICA A. SMITH; DOUGLAS J. PARKER; ANDREW I. COOPER; JINGXIN LEI: "Inverse Vulcanized Polymers with Shape Memory, Enhanced Mechanical Properties, and Vitrimer Behavior", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 132, no. 32, 4 June 2020 (2020-06-04), DE , pages 13473 - 13480, XP071381101, ISSN: 0044-8249, DOI: 10.1002/ange.202004311 *
YAMAGISHI YUKI, YUICHIRO KOBAYASHI, AKIYOSHI HORIGUCHI, DAIKI KITANO, HIROYASU YAMAGUCHI: "Supramolecular Polysulfide Polymers with Metal-Ligand Interactions", CHEMISTRYSELECT, vol. 7, no. 5, 3 February 2022 (2022-02-03), pages e202103991, XP093005310, DOI: 10.1002/slct.202103991 *

Also Published As

Publication number Publication date
JPWO2022239780A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Agrawal et al. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 2. New series of conjugated rigid-rod polyquinolines and polyanthrazolines
Chujo et al. Iron (II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel
Schubert et al. Metallo‐supramolecular graft copolymers: a novel approach toward polymer‐analogous reactions
Ge et al. Synthesis and UCST-type phase behavior of α-helical polypeptides with Y-shaped and imidazolium pendants
Cai et al. Preparation of jellyfish-shaped amphiphilic block-graft copolymers consisting of a poly (ε-caprolactone)-block-poly (pentafluorostyrene) ring and poly (ethylene glycol) lateral brushes
WO2012035328A1 (en) Polymers, their method of manufacture and use thereof
Ghanem A facile synthesis of a novel triptycene-containing A–B monomer: precursor to polymers of intrinsic microporosity
Abd‐El‐Aziz et al. First ring‐opening metathesis polymerization of norbornenes containing cationic iron moieties
Jiang et al. A bifunctionalized [3] rotaxane and its incorporation into a mechanically interlocked polymer
WO2022239780A1 (en) Sulfur-containing compound and high molecular weight material
Ohno et al. Solvent effect on the complex formation of poly (methacrylic acid) with proton‐accepting polymers
Winter et al. Advancing the Solid State Properties of Metallo‐Supramolecular Materials: Poly (ε‐caprolactone) Modified π‐Conjugated Bis (terpyridine) s and their Zn (II) Based Metallo‐Polymers
Kaya et al. Schiff base substitute polyphenol and its metal complexes derived from o‐vanillin with 2, 3‐diaminopyridine: synthesis, characterization, thermal, and conductivity properties
US20070299232A1 (en) Polycarbosilane and Method for Producing Same
Simionescu et al. Synthesis and characterization of poly (azomethine) s with rotaxane architecture
Chen et al. Synthesis of selenide-containing polymers by multicomponent polymerization based on γ-butyroselenolactone
Aamer et al. Synthesis, dynamic light scattering, and luminescence properties of copolymers containing iridium (III) bisterpyridine in the side chain
Wen et al. Synthesis and properties of novel soluble polyamides containing both fluorene or xanthene cardo moieties and fluorinated phenoxy pendant groups
Huang et al. High glass-transition temperature and organosoluble novel arylene ether polymers
Mehdipour‐Ataei et al. Synthesis, characterization and properties of novel polyamides containing ferrocene unit and flexible spacers
CN113105631B (en) Sulfonamide polymer and preparation method thereof
Zhou et al. Synthesis and characterization of tris (2, 2′‐bipyridine) ruthenium‐cored star‐shaped polymers via RAFT polymerization
Jin et al. Synthesis of conjugated polymers bearing pendant bipyridine ruthenium complexes
Meng et al. Aromatic disulfide polymers back to macrocyclic disulfide oligomers via cyclo-depolymerization reaction
Qiao et al. Synthesis and characterization of hyperbranched polyurethane-benzyltetrazole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521210

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE