WO2022239758A1 - Steel sheet for hot stamping and hot stamped molded body - Google Patents
Steel sheet for hot stamping and hot stamped molded body Download PDFInfo
- Publication number
- WO2022239758A1 WO2022239758A1 PCT/JP2022/019758 JP2022019758W WO2022239758A1 WO 2022239758 A1 WO2022239758 A1 WO 2022239758A1 JP 2022019758 W JP2022019758 W JP 2022019758W WO 2022239758 A1 WO2022239758 A1 WO 2022239758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- content
- ferrite
- stamped
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 94
- 239000010959 steel Substances 0.000 title claims abstract description 94
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 85
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 66
- 239000013078 crystal Substances 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 20
- 229910001562 pearlite Inorganic materials 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 229910052785 arsenic Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 abstract description 18
- 235000019362 perlite Nutrition 0.000 abstract description 2
- 239000010451 perlite Substances 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 71
- 238000005096 rolling process Methods 0.000 description 62
- 239000010410 layer Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 25
- 238000007747 plating Methods 0.000 description 23
- 230000009467 reduction Effects 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910000734 martensite Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 230000000717 retained effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000000593 degrading effect Effects 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001563 bainite Inorganic materials 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910007567 Zn-Ni Inorganic materials 0.000 description 3
- 229910007614 Zn—Ni Inorganic materials 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a steel sheet for hot stamping and a hot stamped product.
- This application claims priority based on Japanese Patent Application No. 2021-081621 filed in Japan on May 13, 2021, the contents of which are incorporated herein.
- hot stamping is also known as a method for forming high-strength steel sheets.
- a high-strength steel sheet is press-formed in a high temperature range of 700° C. or higher, and quenched inside or outside the press die.
- forming is performed in a high temperature range where the strength of the steel sheet decreases, so forming defects such as those that occur in cold pressing can be suppressed.
- a structure having martensite as the main phase is obtained by quenching after molding, high strength can be obtained. Therefore, hot-stamped products having a tensile strength of about 1500 MPa are widely used worldwide.
- Patent Document 1 discloses a steel sheet that improves hardenability and material formability and is particularly suitable for forming parts such as gears by cold forging such as thickening, and a method for manufacturing the same.
- the inventors of the present invention have found that it is necessary to further improve the bendability of automobile components with improved tensile strength in order to obtain a higher effect of reducing the weight of the vehicle body.
- An object of the present invention is to provide a hot stamped article having high strength and excellent bendability, and a steel sheet for hot stamping from which the hot stamped article can be produced.
- a steel sheet for hot stamping according to one aspect of the present invention has a chemical composition, in mass%, C: more than 0.40%, 0.70% or less, Si: 0.010 to 1.30%, Mn: 0.10-0.60%, P: 0.100% or less, S: 0.0100% or less, N: 0.0140% or less, O: 0.0200% or less, Al: 0.0010 to 0.500%, Cr: 0.010 to 0.80%, Nb: 0 to 0.100%, Ti: 0 to 0.100%, B: 0 to 0.0100%, Mo: 0 to 1.00%, Co: 0 to 2.00%, Ni: 0% or more and less than 3.00%, Cu: 0 to 1.00%, V: 0 to 1.00%, W: 0 to 1.000%, Ca: 0-0.010%, Mg: 0-1.000%, REM: 0 to 1.000%, Sb: 0 to 1.000%, Zr: 0 to
- a hot stamped article has a chemical composition, in mass %, C: more than 0.40%, 0.70% or less, Si: 0.010 to 1.30%, Mn: 0.10-0.60%, P: 0.100% or less, S: 0.0100% or less, N: 0.0140% or less, O: 0.0200% or less, Al: 0.0010 to 0.500%, Cr: 0.010 to 0.80%, Nb: 0 to 0.100%, Ti: 0 to 0.100%, B: 0 to 0.0100%, Mo: 0 to 1.00%, Co: 0 to 2.00%, Ni: 0% or more and less than 3.00%, Cu: 0 to 1.00%, V: 0 to 1.00%, W: 0 to 1.000%, Ca: 0-0.010%, Mg: 0-1.000%, REM: 0 to 1.000%, Sb: 0 to 1.000%, Zr: 0 to 1.000%, Sn: 0-1.000% and As:
- the present inventors studied a method for obtaining the above hot-stamped molded product.
- the present inventors set the Mn content to 0.60% or less in the chemical composition of the steel sheet for hot stamping, and in the metal structure, the ferrite orientation consisting of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> It has been found that the above-described hot-stamped compact can be obtained by reducing the pole density of the groups and increasing the number ratio of ferrite containing carbides in the crystal grains.
- a hot-stamping steel sheet and a hot-stamping compact according to the present embodiment based on the above findings will be described below.
- the lower limit value and the upper limit value are included in the numerical limitation range described below between "-”. Numerical values indicated as “less than” and “greater than” do not include the value within the numerical range. All percentages in the chemical composition are percentages by weight.
- the steel sheet for hot stamping has a chemical composition in mass% of C: more than 0.40% and 0.70% or less, Si: 0.010 to 1.30%, Mn: 0.10 to 0.60%, P: 0.100% or less, S: 0.0100% or less, N: 0.0140% or less, O: 0.0200% or less, Al: 0.0010 to 0.500%, Cr: 0.010-0.80% and the balance consists of Fe and impurities.
- C more than 0.40% and 0.70% or less
- Si 0.010 to 1.30%
- Mn 0.10 to 0.60%
- P 0.100% or less
- S 0.0100% or less
- N 0.0140% or less
- O 0.0200% or less
- Al 0.0010 to 0.500%
- Cr 0.010-0.80%
- the balance consists of Fe and impurities.
- C more than 0.40%, 0.70% or less C greatly contributes to improving the strength of the hot-stamped product. If the C content is 0.40% or less, it becomes difficult to obtain sufficient strength in the hot-stamped product. Therefore, the C content should be more than 0.40%. It is preferably 0.42% or more, more preferably 0.45% or more, and still more preferably 0.47% or more. On the other hand, if the C content exceeds 0.70%, coarse carbides are formed, degrading the bendability of the hot-stamped product. Therefore, the C content should be 0.70% or less. It is preferably 0.65% or less, more preferably 0.60% or less.
- Si 0.010-1.30%
- Si is an element that improves the deformability of hot-stamped products by bonding with oxygen and suppressing the formation of oxides that act as fracture starting points. If the Si content is less than 0.010%, coarse oxides are formed in the hot-stamped product, making it impossible to obtain the desired bendability. Therefore, the Si content is set to 0.010% or more. It is preferably 0.05% or more, more preferably 0.10% or more. On the other hand, if the Si content exceeds 1.30%, coarse oxides are formed, degrading the bendability of the hot stamped product. Therefore, the Si content should be 1.30% or less. It is preferably less than 1.00%, more preferably 0.50% or less.
- Mn 0.10-0.60% Mn stabilizes austenite and improves the hardenability of the steel sheet. If the Mn content is less than 0.10%, sufficient hardenability cannot be obtained. Therefore, the Mn content is set to 0.10% or more. It is preferably 0.20% or more, more preferably 0.30% or more. On the other hand, if the Mn content exceeds 0.60%, cracking due to Mn segregation tends to occur unless the manufacturing method is appropriately controlled, and excellent bendability cannot be obtained in the hot stamped product. Therefore, the Mn content is set to 0.60% or less. It is preferably 0.55% or less, more preferably 0.50% or less.
- the P content is set to 0.100% or less. It is preferably 0.080% or less, more preferably 0.020% or less. Although the lower limit of the P content is not particularly limited, it may be 0%. However, if the P content is reduced to less than 0.0001%, the cost for removing P will increase significantly, which is economically undesirable. Therefore, the P content may be 0.0001% or more.
- S 0.0100% or less S forms coarse inclusions and deteriorates the bendability of the hot stamped product. Therefore, the lower the S content, the better. In particular, when the S content exceeds 0.0100%, the formability of the steel sheet and the bendability of the hot-stamped product are significantly deteriorated. Therefore, the S content should be 0.0100% or less. It is preferably 0.0050% or less, more preferably 0.0010% or less. Although the lower limit of the S content is not particularly limited, it may be 0%. However, if the S content is reduced to less than 0.0001%, the deS cost will increase significantly, which is economically undesirable. Therefore, the S content may be 0.0001% or more.
- N 0.0140% or less N forms coarse nitrides and deteriorates the bendability of the hot-stamped product. Therefore, the lower the N content, the better. In particular, when the N content exceeds 0.0140%, the formability of the steel sheet is remarkably deteriorated. Therefore, the N content is made 0.0140% or less. It is preferably 0.0100% or less or 0.0070% or less, more preferably 0.0040% or less. Although the lower limit of the N content is not particularly limited, it may be 0%. However, if the N content is reduced to less than 0.0001%, the N removal cost will increase significantly, which is economically unfavorable. Therefore, the N content may be 0.0001% or more.
- O 0.0200% or less O forms coarse oxides in the steel and deteriorates the bendability of the hot stamped product. Therefore, the lower the O content, the better. In particular, when the O content exceeds 0.0200%, the bendability of the hot-stamped product is significantly deteriorated. Therefore, the O content is set to 0.0200% or less. It is preferably 0.0150% or less, more preferably 0.0100% or less, and more preferably 0.0060% or less. Although the lower limit of the O content is not particularly limited, it may be 0%. However, if the O content is reduced to less than 0.0001%, the manufacturing cost will increase significantly, which is economically undesirable. Therefore, the O content may be 0.0001% or more.
- Al 0.0010-0.500%
- Al is an element that deoxidizes molten steel and suppresses the formation of oxides that serve as starting points for fracture, thereby improving deformability and enhancing the bendability of hot stamped products. If the Al content is less than 0.0010%, deoxidation is not sufficiently performed, and coarse oxides are formed, making it impossible to obtain the above effects. Therefore, the Al content is set to 0.0010% or more. It is preferably 0.010% or more, more preferably 0.030% or more. On the other hand, if the Al content exceeds 0.500%, coarse oxides are formed in the steel, and the bendability of the hot-stamped product is lowered. Therefore, the Al content is set to 0.500% or less. It is preferably 0.450% or less, more preferably 0.350% or less.
- Cr 0.010-0.80% Cr dissolves in the prior austenite grains during heating during hot stamping, thereby increasing the strength of the hot stamped compact. If the Cr content is less than 0.010%, this effect cannot be obtained. Therefore, the Cr content is set to 0.010% or more. It is preferably 0.10% or more, more preferably 0.20% or more. On the other hand, when the Cr content exceeds 0.80%, coarse carbides are formed, which deteriorates the bendability of the hot-stamped product. Therefore, the Cr content is set to 0.80% or less. It is preferably 0.60% or less, more preferably 0.40% or less.
- the rest of the chemical composition of the steel sheet for hot stamping according to the present embodiment may be Fe and impurities.
- impurities include elements that are unavoidably mixed from steel raw materials or scraps and/or during the steelmaking process, or elements that are allowed within a range that does not impair the properties of the hot stamped body according to the present embodiment.
- the steel sheet for hot stamping according to the present embodiment may contain the following elements as arbitrary elements instead of part of Fe.
- the content is 0% when the following optional elements are not contained.
- Nb 0-0.100% Nb forms carbonitrides in steel and improves the strength of hot stamped bodies through precipitation strengthening.
- the Nb content is preferably 0.001% or more.
- the Nb content is set to 0.100% or less.
- Ti 0-0.100%
- Nb forms carbonitrides in steel and improves the strength of hot-stamped products by precipitation strengthening.
- the Ti content is preferably 0.010% or more.
- the Ti content exceeds 0.100%, a large amount of carbonitrides are formed in the steel, and the bendability of the hot stamped product is lowered. Therefore, the Ti content is set to 0.100% or less.
- B 0 to 0.0100% B improves the hardenability of steel and improves the strength of hot-stamped products.
- the B content is preferably 0.0015% or more.
- the B content is set to 0.0100% or less.
- Mo 0-1.00% Mo improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, it is preferable to set the Mo content to 0.05% or more. On the other hand, when the Mo content is more than 1.00%, coarse carbides are formed, degrading the bendability of the hot-stamped product. Therefore, Mo content shall be 1.00% or less.
- Co 0-2.00% Co improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to ensure this effect, the Co content is preferably 0.05% or more. On the other hand, if the Co content exceeds 2.00%, coarse carbides are formed, degrading the bendability of the hot stamped product. Therefore, the Co content is set to 2.00% or less.
- Ni 0% or more and less than 3.00% Ni improves the hardenability of the steel sheet and improves the strength of the hot-stamped product.
- the Ni content is preferably 0.01% or more.
- the Ni content is set to less than 3.00%.
- Cu 0-1.00% Cu, like Ni, improves the hardenability of the steel sheet and improves the strength of the hot-stamped product.
- the Cu content is preferably 0.01% or more.
- the Cu content is set to 1.00% or less.
- V 0-1.00% V improves the hardenability of the steel sheet and improves the strength of the hot-stamped product.
- the V content is preferably 0.01% or more.
- the V content is set to 1.00% or less.
- W 0-1.000% W improves the hardenability of the steel sheet and improves the strength of the hot-stamped product.
- the W content is preferably 0.001% or more.
- the W content is set to 1.000% or less.
- Ca 0-0.010%
- Ca suppresses the formation of oxides, which act as starting points for fracture, thereby improving deformability and enhancing the bendability of the hot-stamped product.
- the Ca content is preferably 0.001% or more.
- the Ca content is set to 0.010% or less.
- Mg 0-1.000% Mg improves the deformability by suppressing the formation of oxides that act as starting points for fracture, and increases the bendability of the hot-stamped product.
- the Mg content is preferably 0.001% or more.
- the Mg content is set to 1.000% or less.
- REM 0-1.000% REM improves deformability by suppressing the formation of oxides, which act as starting points for fracture, and enhances the bendability of hot-stamped products.
- the REM content is preferably 0.001% or more.
- the REM content is set to 1.000% or less.
- REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids, and the content of REM refers to the total content of these elements.
- Sb 0 to 1.000% Sb improves the deformability by suppressing the formation of oxides, which act as starting points for fracture, and increases the bendability of the hot stamped product.
- the Sb content is preferably 0.005% or more.
- the Sb content is set to 1.000% or less.
- Zr 0 to 1.000% Zr improves the deformability by suppressing the formation of oxides that act as starting points for fracture, thereby enhancing the bendability of the hot stamped product.
- the Zr content is preferably 0.001% or more.
- the Zr content is set to 1.000% or less.
- Sn 0-1.000% Sn improves the deformability by suppressing the formation of oxides, which act as starting points for fracture, and increases the bendability of the hot stamped product.
- the Sn content is preferably 0.001% or more.
- the above effect is saturated even if it is contained in a large amount, so the Sn content is made 1.000% or less.
- the As content is preferably 0.001% or more.
- the content of As is set to 0.100% or less.
- the chemical composition of the hot stamping steel sheet mentioned above can be measured by a general analysis method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
- C and S can be measured using a combustion-infrared absorption method
- N can be measured using an inert gas fusion-thermal conductivity method
- O can be measured using an inert gas fusion-nondispersive infrared absorption method.
- the coating layer may be removed by mechanical grinding, and then the chemical composition may be analyzed.
- the metal structure of the steel sheet for hot stamping according to this embodiment will be described.
- the average value of the pole density of the orientation group consisting of ⁇ 100 ⁇ 011> to ⁇ 223 ⁇ 110> of ferrite is 10.0 or less, and among all ferrites, the crystal A metal in which the number ratio of ferrite containing carbides having an equivalent circle diameter of 0.2 ⁇ m or more in grains is 20% or more, and the area ratio is 10 to 90% pearlite and 10 to 90% ferrite. have an organization; Each rule will be explained below.
- the depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface area) defines the metallographic structure.
- the reason is that the metallographic structure at this position shows the typical metallographic structure of the steel plate.
- the average value of the pole density of the orientation group consisting of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> of ferrite is 10.0 or less.
- the average grain size of the prior austenite in the hot stamped compact is set to a predetermined value. It cannot be controlled and a hot-stamped product with excellent bendability cannot be obtained.
- the average value of the pole density of the ferrite orientation group consisting of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> is preferably 9.0 or less, more preferably 7.0 or less, and further preferably 6.0 or less, 5.0 or less is even more preferable.
- the lower limit of the pole density of the ferrite orientation group consisting of ⁇ 100 ⁇ 011> to ⁇ 223 ⁇ 110> is not particularly limited, but may be 0.1 or more.
- the orientation group consisting of ⁇ 100 ⁇ 011> to ⁇ 223 ⁇ 110> includes ⁇ 100 ⁇ 011>, ⁇ 116 ⁇ 110>, ⁇ 114 ⁇ 110>, ⁇ 112 ⁇ 110>, The ⁇ 223 ⁇ ⁇ 110> crystallographic orientation is included.
- the pole density of the orientation group consisting of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> of ferrite is measured by a device combining a scanning electron microscope and an EBSD analysis device and OIM Analysis (registered A crystal orientation distribution function (ODF: Orientation Distribution Function) that displays a three-dimensional texture calculated by calculating orientation data measured by an EBSD (Electron Back Scattering Diffraction) method using a spherical harmonic function using a trademark).
- OIM Analysis registered A crystal orientation distribution function (ODF: Orientation Distribution Function) that displays a three-dimensional texture calculated by calculating orientation data measured by an EBSD (Electron Back Scattering Diffraction) method using a spherical harmonic function using a trademark).
- OIM Analysis registered A crystal orientation distribution function (ODF: Orientation Distribution Function) that displays a three-dimensional texture calculated by calculating orientation data measured by an EBSD (Electron Back Scattering Diffraction) method using a spher
- ⁇ hkl ⁇ represents a crystal plane parallel to the rolling plane
- ⁇ uvw> represents a crystal direction parallel to the rolling direction. That is, ⁇ hkl ⁇ uvw> indicates a crystal in which ⁇ hkl ⁇ is oriented in the plate surface normal direction and ⁇ uvw> is oriented in the rolling direction.
- the ratio of the number of ferrites containing carbides having an equivalent circle diameter of 0.2 ⁇ m or more in crystal grains is 20% or more.
- the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more in the crystal grains is less than 20% among all ferrites, the prior austenite grains can be regulated in the hot stamped compact. As a result, it is impossible to obtain a hot-stamped article having excellent bendability.
- the carbides in the crystal grains are converted to former austenite when heated before hot stamping. It functions favorably as a starting point for grains.
- the prior austenite grains are uniformly dispersed in the metallographic structure of the hot-stamped compact and the grains are regulated.
- the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more in crystal grains is preferably 40% or more, preferably 50% or more, and more preferably 60% or more.
- the upper limit of the number ratio of ferrite containing carbides having an equivalent circle diameter of 0.2 ⁇ m or more in crystal grains in all ferrite is not particularly defined, it may be 90% or less.
- Method for measuring the number ratio of ferrite containing carbide A plate parallel to the rolling direction is measured from an arbitrary position 50 mm or more away from the end face of the hot stamping steel plate (if the sample cannot be taken from this position, avoid the end). Samples are collected so that the thick cross-section is the observation surface. The viewing surface is then finished by electropolishing. After that, observe 10 or more fields of view at a magnification of 20,000 times for the area from 1/8 the thickness to 3/8 the thickness from the surface so that the 1/4 depth position from the surface can be observed. do.
- the equivalent circle diameter of each carbide is determined from the area of each carbide observed in the ferrite crystal grains by image analysis.
- the number of ferrite crystal grains containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more is calculated. The obtained value is divided by the total number of ferrite crystal grains and multiplied by 100 to obtain the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more in the crystal grains.
- particles having an equivalent circle diameter of 0.2 to 30 ⁇ m are regarded as carbides.
- the ferrite area ratio is set to 10% or more, and the pearlite area ratio is set to 90% or less.
- the area ratio of ferrite is preferably 20% or more, more preferably 40% or more.
- the area ratio of pearlite is preferably 80% or less, more preferably 60% or less.
- the area ratio of ferrite is set to 90% or less, and the area ratio of pearlite is set to 10% or more.
- the area ratio of ferrite is preferably 70% or less, more preferably 60% or less.
- the area ratio of pearlite is preferably 30% or more, more preferably 40% or more.
- the residual structure is one or more of martensite, lower bainite, retained austenite and tempered martensite.
- the area ratio of the residual tissue may be 20% or less.
- Method for measuring metallographic structure of hot stamping steel plate A plate parallel to the rolling direction from an arbitrary position 50 mm or more away from the end face of the hot stamping steel plate (if the sample cannot be taken from this position, avoid the end) A sample is cut so that a thick section can be observed.
- the size of the sample depends on the measuring device, it should be a size that allows observation of about 10 mm in the rolling direction.
- a mirror finish is achieved using a liquid in which diamond powder with a particle size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water. , finish polishing by electropolishing. Then, at any position in the longitudinal direction of the sample cross section, so that the 1/4 depth position of the plate thickness can be observed from the surface, the length is 50 ⁇ m, and the thickness is 1/8 depth from the surface to the plate thickness from the surface. Tissues are observed in the 3/8 depth region using an apparatus consisting of a thermal field emission scanning electron microscope (JEOL JSM-7001F) and an EBSD detector (TSL DVC5 detector).
- JEOL JSM-7001F thermal field emission scanning electron microscope
- TSL DVC5 detector EBSD detector
- the scanning electron microscope used shall be equipped with a two-electron detector.
- the sample In a vacuum of 9.6 ⁇ 10 ⁇ 5 Pa or less, the sample is irradiated with an electron beam at an acceleration voltage of 15 kV and an irradiation current level of 13, and a secondary electron image is taken with a scanning electron microscope.
- the area where cementite is precipitated in lamellar form inside the grain is judged to be pearlite.
- the area ratio of pearlite is obtained. Lath-like grains are determined as lower bainite, martensite and tempered martensite. Then, the same field of view is subjected to EBSD analysis using an EBSD analysis device at an analysis speed of 200 to 300 points/second. The area ratio of ferrite is calculated using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device.
- the steel sheet for hot stamping may have a plating layer formed on its surface for the purpose of improving corrosion resistance after hot stamping.
- the plating layer may be either an electroplating layer or a hot dipping layer.
- the electroplated layer includes, for example, an electrogalvanized layer, an electroplated Zn—Ni alloy layer, and the like.
- the hot-dip plating layer is, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, a hot-dip aluminum plating layer, a hot-dip Zn--Al alloy plating layer, a hot-dip Zn--Al--Mg alloy-plating layer, or a hot-dip Zn---Al--Mg--Si. Including alloy plating layer, etc.
- the coating amount of the plating layer is not particularly limited, and a general coating amount may be used.
- the thickness of the hot stamping steel sheet according to the present embodiment is not particularly limited, it is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
- the hot-stamped product according to this embodiment has the same chemical composition as that of the hot-stamping steel plate described above.
- the method for measuring the chemical composition may be the same method as for the steel plate for hot stamping.
- the prior austenite grains are regulated. That is, the hot stamped body according to the present embodiment has a metal structure in which the average grain size of the prior austenite grains is 5 to 25 ⁇ m and the standard deviation of the grain size of the prior austenite grains is 0.1 to 2.0 ⁇ m. have.
- a depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) ) specifies the metal structure in The reason is that the metallographic structure at this position exhibits the typical metallographic structure of hot stamped compacts. The metal structure will be described below.
- the average grain size of prior austenite grains is 5 to 25 ⁇ m
- the standard deviation of the grain size of prior austenite grains is 0.1 to 2.0 ⁇ m
- Flexibility can be improved. If the average grain size of the prior austenite grains or the standard deviation of the grain size of the prior austenite grains is outside the above range, the hot-stamped product cannot have excellent bendability.
- the average grain size of the prior austenite grains is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more. Moreover, the average grain size of the prior austenite grains is preferably 20 ⁇ m or less.
- the standard deviation of the grain size of prior austenite grains is set to 2.0 ⁇ m or less. It is more preferably 1.2 ⁇ m or less, still more preferably 1.1 ⁇ m or less, and still more preferably 0.4 ⁇ m or less. In actual operation, it is difficult to make the standard deviation of the grain size of prior austenite grains less than 0.1 ⁇ m, so the practical lower limit is 0.1 ⁇ m or more.
- the hot stamped product can have better bendability. Therefore, the area ratio of prior austenite grains having an average grain size of 0.5 to 3.0 ⁇ m may be 60% or less. It is more preferably 50% or less, and still more preferably 40% or less.
- a mirror finish is achieved using a liquid in which diamond powder with a particle size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water. , finish polishing is performed using electropolishing.
- a device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) for a region of 100 ⁇ m in length and 100 ⁇ m in the thickness direction in the area of the thickness.
- EBSD analysis is performed at an analysis speed of 200 to 300 points/second by irradiating the sample with an electron beam at an acceleration voltage of 15 kV and an irradiation current level of 13 in a vacuum of 9.6 ⁇ 10 ⁇ 5 Pa or less.
- the crystal orientation of the prior austenite grains was calculated from the crystal orientation relationship between the general prior austenite grains and the crystal grains having a body-centered structure after transformation. Calculate the average grain size of the grains.
- the method for calculating the crystal orientation of the prior austenite grains is not particularly limited, but for example, the following method may be used.
- the crystal orientation of the prior austenite grains is calculated by the method described in Non-Patent Document 1, and the crystal orientation of the prior austenite at each coordinate of the EBSD-measured region is specified.
- a crystal orientation map of prior austenite grains is created. An average value of the shortest diameter and the longest diameter is calculated for one of the prior austenite grains included in the observation field, and the average value is taken as the grain size of the prior austenite grain.
- the average grain size of the prior austenite grains in the field of view is obtained by dividing the sum of the grain sizes of the obtained prior austenite grains by the total number of the prior austenite grains whose grain sizes are measured.
- the standard deviation of the grain size of the prior austenite grains is obtained.
- the standard deviation is calculated by excluding the minimum and maximum values of the prior austenite grain size.
- the metal structure of the hot stamped product is not particularly limited as long as the desired strength and bendability can be obtained after hot stamping. , pearlite: 0-30%, and retained austenite: 0-5%.
- the metallographic structure of the hot-stamped product may be measured by the following method.
- Measurement method of metallographic structure of hot stamped product Cut out the sample so that can be observed. After polishing the cross-section of this sample using #600 to #1500 silicon carbide paper, it is finished to a mirror surface using a liquid in which diamond powder with a grain size of 1 to 6 ⁇ m is dispersed in a diluted solution such as alcohol or pure water. , Nital etching. A length of 100 ⁇ m, a depth of 1/8 of the plate thickness from the surface to 3/ of the plate thickness from the surface, at any position in the longitudinal direction of the sample cross section so that the position of 1/4 of the plate thickness from the surface can be observed. Multiple fields of view are photographed using a thermal field emission scanning electron microscope (JEOL JSM-7001F) in an 8-depth region.
- JEOL JSM-7001F thermal field emission scanning electron microscope
- the area ratio of each tissue is obtained by calculating the number of grid points corresponding to each tissue and dividing it by the total number of grid points. The larger the total number of grid points, the more accurately the area ratio can be calculated.
- the grid spacing is 2 ⁇ m ⁇ 2 ⁇ m, and the total number of grid points is 1,500.
- a region in which cementite is precipitated in a lamellar shape within grains is determined to be pearlite.
- a region with low brightness and no substructure is judged to be ferrite.
- Regions with high brightness and in which the substructure is not revealed by etching are judged to be martensite and retained austenite.
- a region that does not correspond to any of the above is determined to be bainite.
- the area ratio of martensite is obtained by subtracting the area ratio of retained austenite obtained by EBSD analysis, which will be described later, from the area ratio of martensite and retained austenite obtained from the above photograph.
- the area ratio of retained austenite is measured by backscattered electron diffraction (EBSD).
- EBSD backscattered electron diffraction
- the electropolishing in order to remove the mechanical polishing distortion of the viewing surface, it is sufficient to polish the observation surface by a minimum of 20 ⁇ m and a maximum of 50 ⁇ m. 30 ⁇ m or less is preferable in consideration of sagging at the edge.
- Measurement with EBSD is performed at an acceleration voltage of 15 to 25 kV, at intervals of at least 0.25 ⁇ m or less, and in the range of 150 ⁇ m or more in the plate thickness direction and 250 ⁇ m or more in the rolling direction Obtain crystal orientation information at each measurement point. .
- those with a crystal structure of fcc are determined to be retained austenite using the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device.
- the area ratio of retained austenite is obtained by calculating the ratio of measurement points determined to be retained austenite.
- the measurement interval should be narrow and the measurement range should be wide.
- the measurement interval when the measurement interval is less than 0.01 ⁇ m, adjacent points interfere with the spread width of the electron beam. Therefore, the measurement interval should be 0.01 ⁇ m or more. Also, the maximum measurement range is 200 ⁇ m in the sheet thickness direction and 400 ⁇ m in the sheet width direction.
- an EBSD apparatus composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the apparatus is 9.6 ⁇ 10 ⁇ 5 Pa or less, the irradiation current level is 13, and the electron beam irradiation level is 62.
- a plating layer may be formed on the surface of the hot-stamped body according to the present embodiment for the purpose of improving corrosion resistance after hot-stamping.
- the plating layer may be either an electroplating layer or a hot dipping layer.
- the electroplated layer includes, for example, an electrogalvanized layer, an electroplated Zn—Ni alloy layer, and the like.
- the hot-dip plating layer is, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, a hot-dip aluminum plating layer, a hot-dip Zn--Al alloy plating layer, a hot-dip Zn--Al--Mg alloy-plating layer, or a hot-dip Zn---Al--Mg--Si. Including alloy plating layer, etc.
- the coating amount of the plating layer is not particularly limited, and a general coating amount may be used.
- the plate thickness of the hot-stamped body according to the present embodiment is not particularly limited, it is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
- the hot stamped product according to this embodiment has a tensile (maximum) strength of 2200 MPa or more. It is preferably 2400 MPa or more, more preferably 2550 MPa or more. Tensile strength is determined according to the test method described in JIS Z 2241:2011 by preparing a No. 5 test piece described in JIS Z 2241:2011 from a position as flat as possible on the hot-stamped molded body.
- the hot stamped product according to the present embodiment preferably has a maximum bending angle of 20° or more obtained by a bending test based on the VDA standard (VDA238-100) specified by the German Automobile Manufacturers Association.
- VDA238-100 VDA238-100
- the conditions for the bending test are as follows.
- Test piece size 60 mm (rolling direction) x 30 mm (direction parallel to plate width direction)
- Test piece plate thickness 1.6 mm
- Bending ridgeline direction parallel to sheet width direction
- Test method roll support, punch pushing Roll diameter: ⁇ 30 mm
- Punch shape: tip R 0.4 mm
- the steel slab (steel material) to be hot rolled may be a steel slab manufactured by a conventional method, for example, a steel slab manufactured by a general method such as continuous casting slabs or thin slab casters.
- Hot rolling includes rough rolling and finish rolling.
- finish rolling the slab after rough rolling is rolled by a plurality of finish rolling mills.
- rolling one pass before the final pass of finish rolling is performed in a temperature range of 900 to 1050° C. with a rolling reduction of 10 to 25%.
- a final pass is performed in a temperature range of 850° C. or more and less than 1000° C. at a rolling reduction (final rolling reduction) of 6% or more.
- the reduction ratio of the rolling one pass before the final pass is given by ⁇ (t 0 ⁇ t 1 )/t 0 ⁇ 100(%).
- the final rolling reduction is ⁇ (t 1 ⁇ t 2 )/ t 1 ⁇ 100 ( %).
- the reduction ratio of rolling one pass before the final pass is set to 10 to 25%, dislocations in the austenite are reduced, and the reduction ratio of the subsequent final pass (final reduction ratio) is set to 6% or more.
- a small amount of dislocations can be introduced into the austenite grains. Since the dislocations introduced into the austenite grains function as starting points for the precipitation of carbides, it is presumed that as a result, a desired amount of ferrite containing carbides can be formed in the crystal grains.
- the dislocations in the austenite before the final rolling disappear together with the dislocations introduced in the final pass. Therefore, unless the rolling reduction in the rolling one pass before the final pass is controlled within the above range, the number of carbide precipitation starting points decreases.
- the reduction in rolling one pass before the final pass is less than 10% or more than 25%, recrystallization of austenite in the final pass is suppressed and the desired texture cannot be obtained.
- the reduction in rolling one pass before the final pass is preferably 13% or more, more preferably 16% or more, and even more preferably 18% or more.
- the rolling temperature one pass before the final pass is preferably 910° C. or higher, more preferably 930° C. or higher.
- the rolling temperature one pass before the final pass exceeds 1050° C., the austenite grains are coarsened and ferrite transformation is suppressed, and a predetermined amount of ferrite cannot be obtained in the hot stamping steel sheet.
- the rolling temperature one pass before the final pass is preferably 1040° C. or lower, more preferably 1020° C. or lower.
- the rolling reduction of the final pass is less than 6%
- the number of dislocations introduced is reduced, and the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more in the crystal grains is reduced by a predetermined amount. You can't control it.
- the final rolling reduction is preferably 8% or more, more preferably 10% or more, and even more preferably 12% or more.
- the upper limit of the final rolling reduction is not particularly specified, it may be less than 40%.
- the rolling temperature in the final pass is preferably 860°C or higher, more preferably 870°C or higher.
- the rolling temperature of the final pass is 1000° C. or higher, the austenite grains are coarsened and the ferrite transformation is suppressed, and a predetermined amount of ferrite cannot be obtained in the hot stamped steel sheet.
- the rolling temperature in the final pass is preferably 980° C. or lower, more preferably 960° C. or lower.
- the heating temperature and holding time of the billet before hot rolling are not particularly limited, but it is preferable to hold the billet in a temperature range of 1200°C or higher for 20 minutes or longer.
- the steel sheet for hot stamping After finishing rolling, it is preferable to wind the steel sheet in a temperature range of 400 to 750°C. If the coiling temperature is less than 400° C., the steel sheet for hot stamping has a pearlite area ratio of more than 90% and a ferrite area ratio of less than 10%.
- the winding temperature is preferably 450°C or higher, more preferably 530°C or higher.
- the area ratio of pearlite is less than 10% and the area ratio of ferrite is more than 90% in the steel sheet for hot stamping.
- the winding temperature is preferably 700°C or lower, more preferably 660°C or lower.
- cold rolling may be performed as necessary.
- the plating described above may be formed after finishing rolling or after cold rolling.
- pickling may be performed between hot rolling and cold rolling.
- cold rolling a normal cumulative reduction rate, eg, 30 to 90%, may be used.
- temper rolling may be performed under normal conditions.
- hot-rolled steel sheet annealing may be performed by heating the hot-rolled steel sheet to a temperature range of 730° C. or lower.
- the steel sheet for hot stamping according to the present embodiment can be manufactured.
- a method for manufacturing a hot-stamped body according to the present embodiment which can be manufactured using the above-described hot-stamping steel sheet, will be described.
- the method for manufacturing the hot stamped body according to this embodiment is not particularly limited, but for example, the following manufacturing method may be used.
- the steel plate for hot stamping described above is heated to a temperature range of 800°C or higher. If the heating temperature is less than 800° C., coarse carbides remain during heating, and the bendability of the hot-stamped product may deteriorate.
- the heating temperature is preferably 820° C. or higher, more preferably 860° C. or higher.
- the heating temperature is preferably 1000° C. or lower, more preferably 960° C. or lower, and even more preferably 930° C. or lower.
- the holding time at the above heating temperature is preferably 1.0 to 10.0 minutes. If the holding time is less than 1.0 minute, coarse carbides may remain and the bendability of the hot stamped product may deteriorate. On the other hand, when the holding time is more than 10.0 minutes, decarburization is promoted in the surface layer of the steel sheet, and the strength of the hot-stamped product may decrease.
- the average heating rate up to the above heating temperature is preferably 1.0°C/s or more.
- the average heating rate is less than 1.0° C./s, decarburization is promoted in the surface layer of the steel sheet, and the strength of the hot-stamped product is lowered.
- the upper limit is not particularly defined, since it is difficult to exceed 1000° C./s in actual operation, 1000° C./s or less is the substantial upper limit.
- hot stamping is performed. After hot stamping, for example, it is preferable to cool down to a temperature range of 300° C. or less at an average cooling rate of 10° C./s or more. If the average cooling rate is less than 10°C/s, the strength may be insufficient. Although the upper limit is not particularly defined, since it is difficult to exceed 1000° C./s in actual operation, 1000° C./s or less is the substantial upper limit. It should be noted that preheating, that is, heating in two stages is not preferable in the heating at the time of hot stamping.
- the hot-stamped product according to the present embodiment can be obtained by the preferred manufacturing method described above.
- a tempering treatment may be performed at 150 to 600° C. after hot stamp molding.
- a part of the hot-stamped body may be tempered by laser irradiation or the like to provide a partially softened region. Weldability improves in the softened region. For example, if spot welding is performed after softening the end of the hot stamped body, the difference in strength between the softened end and the spot-welded part of the end can be reduced. Destruction can be suppressed.
- the conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
- a billet produced by casting molten steel having the chemical composition shown in Tables 1A to 1D is heated and held in a temperature range of 1200 ° C. or higher for 20 minutes or more, and then hot rolled under the conditions shown in Tables 2A to 2G. and coiled, and subjected to cold rolling, hot-rolled sheet annealing, pickling and plating as required.
- steel sheets for hot stamping shown in Tables 2A to 2G were obtained.
- No. marked with "*" was used. Except for No. 195, in the rolling one pass before the final pass, rolling was performed with a higher rolling reduction than the previous pass (two passes before the final pass).
- steel plate No. In No. 149 hot-rolled sheet annealing was performed by heating and holding in a temperature range of 730°C or less.
- Steel plate no. 150 was not cold rolled.
- Steel plate no. 151 formed an electrogalvanized layer on the surface.
- Steel plate no. 152 formed an electric Zn-Ni alloy plating layer on the surface.
- Steel plate no. 153 formed a hot-dip galvanized layer on the surface.
- Steel plate no. 154 formed an alloyed hot-dip galvanized layer on the surface.
- Steel plate no. 155 formed a hot-dip aluminum plating layer on the surface.
- Steel plate no. 156 formed a hot-dip Zn-Al alloy plating layer on the surface.
- polar density in Tables 2A to 2G indicates “average value of extreme density of ferrite orientation group consisting of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110>", and "ferrite containing carbides”
- the number ratio indicates “the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 ⁇ m or more in crystal grains among all ferrites”.
- the obtained steel sheets for hot stamping were subjected to hot stamping under the conditions shown in Tables 3A to 3G to obtain hot stamped bodies shown in Tables 3A to 3G.
- Manufacturing No. 186 was tempered at 150 to 600°C after hot stamping.
- Manufacturing No. In No. 187 a partially softened region was formed by irradiating and tempering a part of the hot-stamped body.
- Manufacturing No. 188 was heated to the heating temperature shown in Table 3G, cooled to a temperature range of 250° C. or lower, then heated to 900° C. and then hot stamped, thereby cooling at the average cooling rate shown in Table 3G.
- the metal structure is, in terms of area%, ferrite: 0 to 50%, bainite and martensite: 0 to 100%, pearlite: 0 to 30%, and retained austenite: It consisted of 0-5%.
- the method for measuring the metal structure of the hot stamping steel plate and the method for measuring the metal structure and mechanical properties of the hot stamped product were as described above.
- the tensile strength of the hot stamped product was 2200 MPa or more, it was judged to have high strength and was judged to be acceptable.
- the maximum bending angle is 20 ° or more, it is judged to have excellent bendability and is judged to be acceptable, and if the maximum bending angle is less than 20 °, it is judged to be unacceptable because it does not have excellent bendability. did.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本願は、2021年5月13日に、日本に出願された特願2021-081621号に基づき優先権を主張し、その内容をここに援用する。 TECHNICAL FIELD The present invention relates to a steel sheet for hot stamping and a hot stamped product.
This application claims priority based on Japanese Patent Application No. 2021-081621 filed in Japan on May 13, 2021, the contents of which are incorporated herein.
[1]本発明の一態様に係るホットスタンプ用鋼板は、化学組成が、質量%で、
C :0.40%超、0.70%以下、
Si:0.010~1.30%、
Mn:0.10~0.60%、
P :0.100%以下、
S :0.0100%以下、
N :0.0140%以下、
O :0.0200%以下、
Al:0.0010~0.500%、
Cr:0.010~0.80%、
Nb:0~0.100%、
Ti:0~0.100%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0%以上、3.00%未満、
Cu:0~1.00%、
V :0~1.00%、
W :0~1.000%、
Ca:0~0.010%、
Mg:0~1.000%、
REM:0~1.000%、
Sb:0~1.000%、
Zr:0~1.000%、
Sn:0~1.000%、および
As:0~0.100%
を含有し、残部がFeおよび不純物からなり、
フェライトの{100}<011>~{223}<110>からなる方位群の極密度の平均値が10.0以下であり、
全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含む前記フェライトの個数割合が20%以上であり、
面積率で、パーライトが10~90%であり、フェライトが10~90%である金属組織を有する。
[2]上記[1]に記載のホットスタンプ用鋼板は、前記化学組成が、質量%で、
Nb:0.001~0.100%、
Ti:0.010~0.100%、
B :0.0015~0.0100%、
Mo:0.05~1.00%、
Co:0.05~2.00%、
Ni:0.01%以上、3.00%未満、
Cu:0.01~1.00%、
V :0.01~1.00%、
W :0.001~1.000%、
Ca:0.001~0.010%、
Mg:0.001~1.000%、
REM:0.001~1.000%、
Sb:0.005~1.000%、
Zr:0.001~1.000%、
Sn:0.001~1.000%、および
As:0.001~0.100%
からなる群から選択される1種または2種以上を含有してもよい。
[3]本発明の別の態様に係るホットスタンプ成形体は、化学組成が、質量%で、
C :0.40%超、0.70%以下、
Si:0.010~1.30%、
Mn:0.10~0.60%、
P :0.100%以下、
S :0.0100%以下、
N :0.0140%以下、
O :0.0200%以下、
Al:0.0010~0.500%、
Cr:0.010~0.80%、
Nb:0~0.100%、
Ti:0~0.100%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0%以上、3.00%未満、
Cu:0~1.00%、
V :0~1.00%、
W :0~1.000%、
Ca:0~0.010%、
Mg:0~1.000%、
REM:0~1.000%、
Sb:0~1.000%、
Zr:0~1.000%、
Sn:0~1.000%、および
As:0~0.100%
を含有し、残部がFeおよび不純物からなり、
旧オーステナイト粒の平均粒径が5~25μmであり、前記旧オーステナイト粒の粒径の標準偏差が0.1~2.0μmである金属組織を有し、
引張強さが2200MPa以上である。
[4]上記[3]に記載のホットスタンプ成形体は、前記化学組成が、質量%で、
Nb:0.001~0.100%、
Ti:0.010~0.100%、
B :0.0015~0.0100%、
Mo:0.05~1.00%、
Co:0.05~2.00%、
Ni:0.01%以上、3.00%未満、
Cu:0.01~1.00%、
V :0.01~1.00%、
W :0.001~1.000%、
Ca:0.001~0.010%、
Mg:0.001~1.000%、
REM:0.001~1.000%、
Sb:0.005~1.000%、
Zr:0.001~1.000%、
Sn:0.001~1.000%、および
As:0.001~0.100%
からなる群から選択される1種または2種以上を含有してもよい。
[5]上記[3]または[4]に記載のホットスタンプ成形体は、平均粒径が0.5~3.0μmである前記旧オーステナイト粒の面積率が60%以下であってもよい。 The gist of the present invention is as follows.
[1] A steel sheet for hot stamping according to one aspect of the present invention has a chemical composition, in mass%,
C: more than 0.40%, 0.70% or less,
Si: 0.010 to 1.30%,
Mn: 0.10-0.60%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0140% or less,
O: 0.0200% or less,
Al: 0.0010 to 0.500%,
Cr: 0.010 to 0.80%,
Nb: 0 to 0.100%,
Ti: 0 to 0.100%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0% or more and less than 3.00%,
Cu: 0 to 1.00%,
V: 0 to 1.00%,
W: 0 to 1.000%,
Ca: 0-0.010%,
Mg: 0-1.000%,
REM: 0 to 1.000%,
Sb: 0 to 1.000%,
Zr: 0 to 1.000%,
Sn: 0-1.000% and As: 0-0.100%
and the balance consists of Fe and impurities,
The average value of the pole density of the ferrite orientation group consisting of {100} <011> to {223} <110> is 10.0 or less,
Among all ferrite, the number ratio of the ferrite containing carbide having an equivalent circle diameter of 0.2 μm or more in the crystal grain is 20% or more,
It has a metal structure with an area ratio of 10 to 90% pearlite and 10 to 90% ferrite.
[2] The steel sheet for hot stamping according to [1] above, wherein the chemical composition is, in mass%,
Nb: 0.001 to 0.100%,
Ti: 0.010 to 0.100%,
B: 0.0015 to 0.0100%,
Mo: 0.05-1.00%,
Co: 0.05 to 2.00%,
Ni: 0.01% or more and less than 3.00%,
Cu: 0.01 to 1.00%,
V: 0.01 to 1.00%,
W: 0.001 to 1.000%,
Ca: 0.001-0.010%,
Mg: 0.001-1.000%,
REM: 0.001 to 1.000%,
Sb: 0.005 to 1.000%,
Zr: 0.001 to 1.000%,
Sn: 0.001-1.000% and As: 0.001-0.100%
It may contain one or more selected from the group consisting of.
[3] A hot stamped article according to another aspect of the present invention has a chemical composition, in mass %,
C: more than 0.40%, 0.70% or less,
Si: 0.010 to 1.30%,
Mn: 0.10-0.60%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0140% or less,
O: 0.0200% or less,
Al: 0.0010 to 0.500%,
Cr: 0.010 to 0.80%,
Nb: 0 to 0.100%,
Ti: 0 to 0.100%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0% or more and less than 3.00%,
Cu: 0 to 1.00%,
V: 0 to 1.00%,
W: 0 to 1.000%,
Ca: 0-0.010%,
Mg: 0-1.000%,
REM: 0 to 1.000%,
Sb: 0 to 1.000%,
Zr: 0 to 1.000%,
Sn: 0-1.000% and As: 0-0.100%
and the balance consists of Fe and impurities,
Having a metal structure in which the average grain size of the prior austenite grains is 5 to 25 μm and the standard deviation of the grain size of the prior austenite grains is 0.1 to 2.0 μm,
Tensile strength is 2200 MPa or more.
[4] The hot stamped article according to [3] above, wherein the chemical composition is, in mass%,
Nb: 0.001 to 0.100%,
Ti: 0.010 to 0.100%,
B: 0.0015 to 0.0100%,
Mo: 0.05-1.00%,
Co: 0.05 to 2.00%,
Ni: 0.01% or more and less than 3.00%,
Cu: 0.01 to 1.00%,
V: 0.01 to 1.00%,
W: 0.001 to 1.000%,
Ca: 0.001-0.010%,
Mg: 0.001-1.000%,
REM: 0.001 to 1.000%,
Sb: 0.005 to 1.000%,
Zr: 0.001 to 1.000%,
Sn: 0.001-1.000% and As: 0.001-0.100%
It may contain one or more selected from the group consisting of.
[5] In the hot stamped product described in [3] or [4] above, the area ratio of the prior austenite grains having an average grain size of 0.5 to 3.0 μm may be 60% or less.
なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての%は全て質量%を示す。 A hot-stamping steel sheet and a hot-stamping compact according to the present embodiment based on the above findings will be described below. First, reasons for limiting the chemical composition of the steel sheet for hot stamping according to the present embodiment will be described.
In addition, the lower limit value and the upper limit value are included in the numerical limitation range described below between "-". Numerical values indicated as "less than" and "greater than" do not include the value within the numerical range. All percentages in the chemical composition are percentages by weight.
Cは、ホットスタンプ成形体の強度の向上に大きく寄与する。C含有量が0.40%以下では、ホットスタンプ成形体において十分な強度を得ることが困難となる。そのため、C含有量は、0.40%超とする。好ましくは0.42%以上であり、より好ましくは0.45%以上であり、より一層好ましくは0.47%以上である。
一方、C含有量が0.70%超では、粗大な炭化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、C含有量は、0.70%以下とする。好ましくは0.65%以下であり、より好ましくは0.60%以下である。 C: more than 0.40%, 0.70% or less C greatly contributes to improving the strength of the hot-stamped product. If the C content is 0.40% or less, it becomes difficult to obtain sufficient strength in the hot-stamped product. Therefore, the C content should be more than 0.40%. It is preferably 0.42% or more, more preferably 0.45% or more, and still more preferably 0.47% or more.
On the other hand, if the C content exceeds 0.70%, coarse carbides are formed, degrading the bendability of the hot-stamped product. Therefore, the C content should be 0.70% or less. It is preferably 0.65% or less, more preferably 0.60% or less.
Siは、酸素と結合して破壊の起点となる酸化物の生成を抑制することで、ホットスタンプ成形体の変形能を向上する元素である。Si含有量が0.010%未満では、ホットスタンプ成形体において粗大な酸化物が形成して、所望の曲げ性を得ることができない。そのため、Si含有量は0.010%以上とする。好ましくは0.05%以上であり、より好ましくは0.10%以上である。
一方、Si含有量が1.30%超では、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Si含有量は、1.30%以下とする。好ましくは1.00%未満であり、より好ましくは0.50%以下である。 Si: 0.010-1.30%
Si is an element that improves the deformability of hot-stamped products by bonding with oxygen and suppressing the formation of oxides that act as fracture starting points. If the Si content is less than 0.010%, coarse oxides are formed in the hot-stamped product, making it impossible to obtain the desired bendability. Therefore, the Si content is set to 0.010% or more. It is preferably 0.05% or more, more preferably 0.10% or more.
On the other hand, if the Si content exceeds 1.30%, coarse oxides are formed, degrading the bendability of the hot stamped product. Therefore, the Si content should be 1.30% or less. It is preferably less than 1.00%, more preferably 0.50% or less.
Mnは、オーステナイトを安定化させて鋼板の焼入れ性を向上する。Mn含有量が0.10%未満では、十分な焼入れ性が得られない。そのため、Mn含有量は0.10%以上とする。好ましくは0.20%以上であり、より好ましくは0.30%以上である。
一方、Mn含有量が0.60%超では、製造方法を適切に制御しなければMn偏析に起因する割れが発生しやすくなり、ホットスタンプ成形体において優れた曲げ性を得ることができない。そのため、Mn含有量は0.60%以下とする。好ましくは0.55%以下であり、より好ましくは0.50%以下である。 Mn: 0.10-0.60%
Mn stabilizes austenite and improves the hardenability of the steel sheet. If the Mn content is less than 0.10%, sufficient hardenability cannot be obtained. Therefore, the Mn content is set to 0.10% or more. It is preferably 0.20% or more, more preferably 0.30% or more.
On the other hand, if the Mn content exceeds 0.60%, cracking due to Mn segregation tends to occur unless the manufacturing method is appropriately controlled, and excellent bendability cannot be obtained in the hot stamped product. Therefore, the Mn content is set to 0.60% or less. It is preferably 0.55% or less, more preferably 0.50% or less.
Pは、鋼板の粒界に偏析して、ホットスタンプ成形体の曲げ性を劣化させたりする。そのため、P含有量は低ければ低いほど好ましい。特に、P含有量が0.100%超であると、鋼板の加工性およびホットスタンプ成形体の曲げ性が著しく劣化する。そのため、P含有量は0.100%以下とする。好ましくは0.080%以下であり、より好ましくは0.020%以下である。
P含有量の下限は特に限定しないが、0%であってもよい。ただし、P含有量を0.0001%未満に低減すると、脱Pコストが大幅に上昇し、経済的に好ましくない。そのため、P含有量は0.0001%以上としてもよい。 P: 0.100% or less P segregates at the grain boundary of the steel sheet and deteriorates the bendability of the hot-stamped product. Therefore, the lower the P content, the better. In particular, when the P content exceeds 0.100%, the workability of the steel sheet and the bendability of the hot-stamped product are significantly deteriorated. Therefore, the P content is set to 0.100% or less. It is preferably 0.080% or less, more preferably 0.020% or less.
Although the lower limit of the P content is not particularly limited, it may be 0%. However, if the P content is reduced to less than 0.0001%, the cost for removing P will increase significantly, which is economically undesirable. Therefore, the P content may be 0.0001% or more.
Sは、粗大な介在物を形成して、ホットスタンプ成形体の曲げ性を劣化させたりする。このため、S含有量は低ければ低いほど好ましい。特に、S含有量が0.0100%超であると、鋼板の成形性およびホットスタンプ成形体の曲げ性が著しく劣化する。そのため、S含有量は0.0100%以下とする。好ましくは0.0050%以下であり、より好ましくは0.0010%以下である。
S含有量の下限は特に限定しないが、0%であってもよい。ただし、S含有量を0.0001%未満に低減すると、脱Sコストが大幅に上昇し、経済的に好ましくない。そのため、S含有量は0.0001%以上としてもよい。 S: 0.0100% or less S forms coarse inclusions and deteriorates the bendability of the hot stamped product. Therefore, the lower the S content, the better. In particular, when the S content exceeds 0.0100%, the formability of the steel sheet and the bendability of the hot-stamped product are significantly deteriorated. Therefore, the S content should be 0.0100% or less. It is preferably 0.0050% or less, more preferably 0.0010% or less.
Although the lower limit of the S content is not particularly limited, it may be 0%. However, if the S content is reduced to less than 0.0001%, the deS cost will increase significantly, which is economically undesirable. Therefore, the S content may be 0.0001% or more.
Nは、粗大な窒化物を形成して、ホットスタンプ成形体の曲げ性を劣化させたりする。このため、N含有量は低ければ低いほど好ましい。特に、N含有量が0.0140%超であると、鋼板の成形性が著しく劣化する。そのため、N含有量は0.0140%以下とする。好ましくは0.0100%以下または0.0070%以下であり、より好ましくは0.0040%以下である。
N含有量の下限は特に限定しないが、0%であってもよい。ただし、N含有量を0.0001%未満に低減すると、脱Nコストが大幅に上昇し、経済的に好ましくない。そのため、N含有量は0.0001%以上としてもよい。 N: 0.0140% or less N forms coarse nitrides and deteriorates the bendability of the hot-stamped product. Therefore, the lower the N content, the better. In particular, when the N content exceeds 0.0140%, the formability of the steel sheet is remarkably deteriorated. Therefore, the N content is made 0.0140% or less. It is preferably 0.0100% or less or 0.0070% or less, more preferably 0.0040% or less.
Although the lower limit of the N content is not particularly limited, it may be 0%. However, if the N content is reduced to less than 0.0001%, the N removal cost will increase significantly, which is economically unfavorable. Therefore, the N content may be 0.0001% or more.
Oは、鋼中に粗大な酸化物を形成し、ホットスタンプ成形体の曲げ性を劣化させる。このため、O含有量は低ければ低いほど好ましい。特に、O含有量が0.0200%超であると、ホットスタンプ成形体の曲げ性が著しく劣化する。そのため、O含有量は0.0200%以下とする。好ましくは0.0150%以下であり、より好ましくは0.0100%以下であり、より好ましくは0.0060%以下である。
O含有量の下限は特に限定しないが、0%であってもよい。ただし、O含有量を0.0001%未満に低減すると、製造コストが大幅に上昇し、経済的に好ましくない。そのため、O含有量は0.0001%以上としてもよい。 O: 0.0200% or less O forms coarse oxides in the steel and deteriorates the bendability of the hot stamped product. Therefore, the lower the O content, the better. In particular, when the O content exceeds 0.0200%, the bendability of the hot-stamped product is significantly deteriorated. Therefore, the O content is set to 0.0200% or less. It is preferably 0.0150% or less, more preferably 0.0100% or less, and more preferably 0.0060% or less.
Although the lower limit of the O content is not particularly limited, it may be 0%. However, if the O content is reduced to less than 0.0001%, the manufacturing cost will increase significantly, which is economically undesirable. Therefore, the O content may be 0.0001% or more.
Alは、溶鋼を脱酸して、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める元素である。Al含有量が0.0010%未満では、脱酸が十分に行われず、粗大な酸化物が生成して、上記効果を得ることができない。そのため、Al含有量は0.0010%以上とする。好ましくは0.010%以上であり、より好ましくは0.030%以上である。
一方、Al含有量が0.500%を超えると、鋼中に粗大な酸化物が生成し、ホットスタンプ成形体の曲げ性が低下する。そのため、Al含有量は0.500%以下とする。好ましくは0.450%以下であり、より好ましくは0.350%以下である。 Al: 0.0010-0.500%
Al is an element that deoxidizes molten steel and suppresses the formation of oxides that serve as starting points for fracture, thereby improving deformability and enhancing the bendability of hot stamped products. If the Al content is less than 0.0010%, deoxidation is not sufficiently performed, and coarse oxides are formed, making it impossible to obtain the above effects. Therefore, the Al content is set to 0.0010% or more. It is preferably 0.010% or more, more preferably 0.030% or more.
On the other hand, if the Al content exceeds 0.500%, coarse oxides are formed in the steel, and the bendability of the hot-stamped product is lowered. Therefore, the Al content is set to 0.500% or less. It is preferably 0.450% or less, more preferably 0.350% or less.
Crは、ホットスタンプ時の加熱において旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める。Cr含有量が0.010%未満では、この効果を得ることができない。そのため、Cr含有量は0.010%以上とする。好ましくは0.10%以上であり、より好ましくは0.20%以上である。
一方、Cr含有量が0.80%超であると、粗大な炭化物を形成してホットスタンプ成形体の曲げ性が劣化する。そのため、Cr含有量は0.80%以下とする。好ましくは0.60%以下であり、より好ましくは0.40%以下である。 Cr: 0.010-0.80%
Cr dissolves in the prior austenite grains during heating during hot stamping, thereby increasing the strength of the hot stamped compact. If the Cr content is less than 0.010%, this effect cannot be obtained. Therefore, the Cr content is set to 0.010% or more. It is preferably 0.10% or more, more preferably 0.20% or more.
On the other hand, when the Cr content exceeds 0.80%, coarse carbides are formed, which deteriorates the bendability of the hot-stamped product. Therefore, the Cr content is set to 0.80% or less. It is preferably 0.60% or less, more preferably 0.40% or less.
Nbは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上させる。この効果を得るためには、Nb含有量は0.001%以上とすることが好ましい。
一方、Nb含有量が0.100%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の曲げ性が低下する。そのため、Nb含有量は0.100%以下とする。 Nb: 0-0.100%
Nb forms carbonitrides in steel and improves the strength of hot stamped bodies through precipitation strengthening. In order to obtain this effect, the Nb content is preferably 0.001% or more.
On the other hand, if the Nb content exceeds 0.100%, a large amount of carbonitrides are formed in the steel, and the bendability of the hot-stamped product is lowered. Therefore, the Nb content is set to 0.100% or less.
Tiは、Nb同様、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上させる。この効果を得るためには、Ti含有量は0.010%以上とすることが好ましい。
一方、Ti含有量が0.100%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の曲げ性が低下する。そのため、Ti含有量は0.100%以下とする。 Ti: 0-0.100%
Ti, like Nb, forms carbonitrides in steel and improves the strength of hot-stamped products by precipitation strengthening. In order to obtain this effect, the Ti content is preferably 0.010% or more.
On the other hand, when the Ti content exceeds 0.100%, a large amount of carbonitrides are formed in the steel, and the bendability of the hot stamped product is lowered. Therefore, the Ti content is set to 0.100% or less.
Bは、鋼の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、B含有量は0.0015%以上とすることが好ましい。
一方、B含有量が0.0100%超であると、粗大な炭化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、B含有量は0.0100%以下とする。 B: 0 to 0.0100%
B improves the hardenability of steel and improves the strength of hot-stamped products. In order to obtain this effect, the B content is preferably 0.0015% or more.
On the other hand, when the B content is more than 0.0100%, coarse carbides are formed and the bendability of the hot stamped product is deteriorated. Therefore, the B content is set to 0.0100% or less.
Moは、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、Mo含有量を0.05%以上とすることが好ましい。
一方、Mo含有量が1.00%超であると、粗大な炭化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Mo含有量は、1.00%以下とする。 Mo: 0-1.00%
Mo improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, it is preferable to set the Mo content to 0.05% or more.
On the other hand, when the Mo content is more than 1.00%, coarse carbides are formed, degrading the bendability of the hot-stamped product. Therefore, Mo content shall be 1.00% or less.
Coは、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を確実に発揮させるためには、Co含有量は0.05%以上とすることが好ましい。
一方、Co含有量が2.00%を超えると、粗大な炭化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Co含有量は2.00%以下とする。 Co: 0-2.00%
Co improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to ensure this effect, the Co content is preferably 0.05% or more.
On the other hand, if the Co content exceeds 2.00%, coarse carbides are formed, degrading the bendability of the hot stamped product. Therefore, the Co content is set to 2.00% or less.
Niは、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、Ni含有量は0.01%以上とすることが好ましい。
一方、Ni含有量が3.00%以上であると、偏析が助長されてホットスタンプ成形体の曲げ性が劣化する。そのため、Ni含有量は3.00%未満とする。 Ni: 0% or more and less than 3.00% Ni improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, the Ni content is preferably 0.01% or more.
On the other hand, when the Ni content is 3.00% or more, the segregation is promoted and the bendability of the hot stamped product is deteriorated. Therefore, the Ni content is set to less than 3.00%.
Cuは、Ni同様、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、Cu含有量は0.01%以上とすることが好ましい。
一方、Cu含有量が1.00%超であると、偏析が助長されてホットスタンプ成形体の曲げ性が劣化する。そのため、Cu含有量は1.00%以下とする。 Cu: 0-1.00%
Cu, like Ni, improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, the Cu content is preferably 0.01% or more.
On the other hand, when the Cu content exceeds 1.00%, segregation is promoted and the bendability of the hot stamped product is deteriorated. Therefore, the Cu content is set to 1.00% or less.
Vは、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、V含有量は、0.01%以上とすることが好ましい。
一方で、V含有量が1.00%超であると、炭窒化物が多量に析出し、ホットスタンプ成形体の曲げ性が劣化する。そのため、V含有量は1.00%以下とする。 V: 0-1.00%
V improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, the V content is preferably 0.01% or more.
On the other hand, if the V content exceeds 1.00%, a large amount of carbonitrides precipitate, and the bendability of the hot-stamped body deteriorates. Therefore, the V content is set to 1.00% or less.
Wは、鋼板の焼き入れ性を向上させてホットスタンプ成形体の強度を向上させる。この効果を得るためには、W含有量は0.001%以上とすることが好ましい。
一方、W含有量が1.000%超であると、偏析が助長されてホットスタンプ成形体の曲げ性が劣化する。そのため、W含有量は1.000%以下とする。 W: 0-1.000%
W improves the hardenability of the steel sheet and improves the strength of the hot-stamped product. In order to obtain this effect, the W content is preferably 0.001% or more.
On the other hand, when the W content exceeds 1.000%, the segregation is promoted and the bendability of the hot stamped product is deteriorated. Therefore, the W content is set to 1.000% or less.
Caは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を得るためには、Ca含有量を0.001%以上とすることが好ましい。
一方、Ca含有量が0.010%超であると、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Ca含有量は0.010%以下とする。 Ca: 0-0.010%
Ca suppresses the formation of oxides, which act as starting points for fracture, thereby improving deformability and enhancing the bendability of the hot-stamped product. In order to obtain this effect, the Ca content is preferably 0.001% or more.
On the other hand, when the Ca content exceeds 0.010%, coarse oxides are formed, which deteriorates the bendability of the hot stamped product. Therefore, the Ca content is set to 0.010% or less.
Mgは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を得るためには、Mg含有量は0.001%以上とすることが好ましい。
一方、Mg含有量が1.000%超であると、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Mg含有量は1.000%以下とする。 Mg: 0-1.000%
Mg improves the deformability by suppressing the formation of oxides that act as starting points for fracture, and increases the bendability of the hot-stamped product. In order to obtain this effect, the Mg content is preferably 0.001% or more.
On the other hand, if the Mg content is more than 1.000%, coarse oxides are formed, degrading the bendability of the hot-stamped product. Therefore, the Mg content is set to 1.000% or less.
REMは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を得るためには、REM含有量を0.001%以上とすることが好ましい。
一方、REM含有量が1.000%超であると、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、REM含有量は1.000%以下とする。
なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。 REM: 0-1.000%
REM improves deformability by suppressing the formation of oxides, which act as starting points for fracture, and enhances the bendability of hot-stamped products. To obtain this effect, the REM content is preferably 0.001% or more.
On the other hand, when the REM content is more than 1.000%, coarse oxides are formed, which deteriorates the bendability of the hot stamped product. Therefore, the REM content is set to 1.000% or less.
In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids, and the content of REM refers to the total content of these elements.
Sbは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を得るためには、Sb含有量は0.005%以上とすることが好ましい。
一方、Sb含有量が1.000%超であると、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Sb含有量は1.000%以下とする。 Sb: 0 to 1.000%
Sb improves the deformability by suppressing the formation of oxides, which act as starting points for fracture, and increases the bendability of the hot stamped product. In order to obtain this effect, the Sb content is preferably 0.005% or more.
On the other hand, if the Sb content is more than 1.000%, coarse oxides are formed, degrading the bendability of the hot-stamped product. Therefore, the Sb content is set to 1.000% or less.
Zrは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を得るためは、Zr含有量は0.001%以上とすることが好ましい。
一方、Zr含有量を1.000%超とすると、粗大な酸化物が生成してホットスタンプ成形体の曲げ性が劣化する。そのため、Zr含有量は1.000%以下とする。 Zr: 0 to 1.000%
Zr improves the deformability by suppressing the formation of oxides that act as starting points for fracture, thereby enhancing the bendability of the hot stamped product. In order to obtain this effect, the Zr content is preferably 0.001% or more.
On the other hand, if the Zr content exceeds 1.000%, coarse oxides are formed, degrading the bendability of the hot stamped product. Therefore, the Zr content is set to 1.000% or less.
Snは、破壊の起点となる酸化物の生成を抑制することで変形能を向上し、ホットスタンプ成形体の曲げ性を高める。この効果を確実に得る場合、Sn含有量は0.001%以上とすることが好ましい。
一方、多量に含有させても上記効果は飽和するため、Sn含有量は1.000%以下とする。 Sn: 0-1.000%
Sn improves the deformability by suppressing the formation of oxides, which act as starting points for fracture, and increases the bendability of the hot stamped product. In order to reliably obtain this effect, the Sn content is preferably 0.001% or more.
On the other hand, the above effect is saturated even if it is contained in a large amount, so the Sn content is made 1.000% or less.
Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、ホットスタンプ成形体の曲げ性を高める。この効果を確実に得る場合、As含有量を0.001%以上とすることが好ましい。
一方、多量に含有させても上記効果は飽和するため、As含有量は0.100%以下とする。 As: 0-0.100%
As lowers the austenite single phase temperature, refines the prior austenite grains, and increases the bendability of the hot-stamped product. In order to reliably obtain this effect, the As content is preferably 0.001% or more.
On the other hand, even if the content of As is large, the above effect is saturated, so the content of As is set to 0.100% or less.
本実施形態に係るホットスタンプ用鋼板は、フェライトの{100}<011>~{223}<110>からなる方位群の極密度の平均値が10.0以下であり、全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含む前記フェライトの個数割合が20%以上であり、面積率で、パーライトが10~90%であり、フェライトが10~90%である金属組織を有する。以下、各規定について説明する。
なお、本実施形態では、圧延方向に平行な板厚断面の、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。 Next, the metal structure of the steel sheet for hot stamping according to this embodiment will be described.
In the steel sheet for hot stamping according to the present embodiment, the average value of the pole density of the orientation group consisting of {100}<011> to {223}<110> of ferrite is 10.0 or less, and among all ferrites, the crystal A metal in which the number ratio of ferrite containing carbides having an equivalent circle diameter of 0.2 μm or more in grains is 20% or more, and the area ratio is 10 to 90% pearlite and 10 to 90% ferrite. have an organization; Each rule will be explained below.
In this embodiment, in the plate thickness cross section parallel to the rolling direction, the depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface area) defines the metallographic structure. The reason is that the metallographic structure at this position shows the typical metallographic structure of the steel plate.
フェライトの{100}<011>~{223}<110>からなる方位群の極密度の平均値が10.0超であると、ホットスタンプ成形体において旧オーステナイトの平均粒径を所定の値に制御することができず、曲げ性に優れるホットスタンプ成形体を得ることができない。フェライトの{100}<011>~{223}<110>からなる方位群の極密度の平均値は、9.0以下が好ましく、7.0以下がより好ましく、6.0以下がさらに好ましく、5.0以下がより一層好ましい。フェライトの{100}<011>~{223}<110>からなる方位群の極密度の下限値は特に限定しないが、0.1以上としてもよい。 "The average value of the pole density of the orientation group consisting of {100} <011> to {223} <110> of ferrite is 10.0 or less"
When the average value of the pole density of the ferrite orientation group consisting of {100} <011> to {223} <110> is more than 10.0, the average grain size of the prior austenite in the hot stamped compact is set to a predetermined value. It cannot be controlled and a hot-stamped product with excellent bendability cannot be obtained. The average value of the pole density of the ferrite orientation group consisting of {100} <011> to {223} <110> is preferably 9.0 or less, more preferably 7.0 or less, and further preferably 6.0 or less, 5.0 or less is even more preferable. The lower limit of the pole density of the ferrite orientation group consisting of {100}<011> to {223}<110> is not particularly limited, but may be 0.1 or more.
フェライトの{100}<011>~{223}<110>からなる方位群の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置およびTSL社製のOIM Analysis(登録商標)を用いて、EBSD(Electron Back Scattering Diffraction)法で測定した方位データを、球面調和関数を用いて計算して算出した3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から求めることができる。表面から板厚の1/4深さ位置が観察できるように、測定領域は、表面から板厚1/8位置~表面から板厚3/8位置の領域とする。測定ピッチは5μm/stepとする。 Measurement method of the pole density The pole density of the orientation group consisting of {100} <011> to {223} <110> of ferrite is measured by a device combining a scanning electron microscope and an EBSD analysis device and OIM Analysis (registered A crystal orientation distribution function (ODF: Orientation Distribution Function) that displays a three-dimensional texture calculated by calculating orientation data measured by an EBSD (Electron Back Scattering Diffraction) method using a spherical harmonic function using a trademark). can be obtained from The measurement area is from 1/8th of the thickness to 3/8th of the thickness from the surface so that the depth of 1/4th of the thickness from the surface can be observed. A measurement pitch is 5 μm/step.
全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含むフェライトの個数割合が20%未満であると、ホットスタンプ成形体において旧オーステナイト粒を整粒化することができず、結果として曲げ性に優れるホットスタンプ成形体を得ることができない。全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含むフェライトの個数割合を20%以上とすることで、ホットスタンプ前の加熱時に、結晶粒内の炭化物が旧オーステナイト粒の起点として好ましく機能する。その結果、ホットスタンプ成形体の金属組織において、旧オーステナイト粒が均一に分散し、整粒化すると推定される。全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含むフェライトの個数割合は40%以上が好ましく、50%以上が好ましく、60%以上がより一層好ましい。全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含むフェライトの個数割合の上限は特に規定しないが、90%以下としてもよい。 "Among all ferrites, the ratio of the number of ferrites containing carbides having an equivalent circle diameter of 0.2 μm or more in crystal grains is 20% or more"
When the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 μm or more in the crystal grains is less than 20% among all ferrites, the prior austenite grains can be regulated in the hot stamped compact. As a result, it is impossible to obtain a hot-stamped article having excellent bendability. By setting the number ratio of ferrite containing carbides having an equivalent circle diameter of 0.2 μm or more in the crystal grains to 20% or more among all ferrites, the carbides in the crystal grains are converted to former austenite when heated before hot stamping. It functions favorably as a starting point for grains. As a result, it is presumed that the prior austenite grains are uniformly dispersed in the metallographic structure of the hot-stamped compact and the grains are regulated. Among all ferrites, the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 μm or more in crystal grains is preferably 40% or more, preferably 50% or more, and more preferably 60% or more. Although the upper limit of the number ratio of ferrite containing carbides having an equivalent circle diameter of 0.2 μm or more in crystal grains in all ferrite is not particularly defined, it may be 90% or less.
ホットスタンプ用鋼板の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から、圧延方向に平行な板厚断面が観察面となるように試料を採取する。次に、観察面を電界研磨によって仕上げる。その後、表面から板厚の1/4深さ位置が観察できるように、表面から板厚1/8深さ~表面から板厚3/8深さの領域を、倍率20000倍で10視野以上観察する。後述の金属組織の測定方法によりフェライトと同定された結晶粒について、画像解析により、フェライトの結晶粒内に観察された各炭化物の面積から、各炭化物の円相当径を求める。観察されたフェライトの全結晶粒のうち、円相当径が0.2μm以上である炭化物を含むフェライトの結晶粒の個数を算出する。得られた値をフェライトの全結晶粒の個数で除して、100倍することで、結晶粒内に円相当径が0.2μm以上である炭化物を含むフェライトの個数割合を得る。
なお、本実施形態では、円相当径が0.2~30μmの粒子を炭化物とみなす。 Method for measuring the number ratio of ferrite containing carbide A plate parallel to the rolling direction is measured from an arbitrary position 50 mm or more away from the end face of the hot stamping steel plate (if the sample cannot be taken from this position, avoid the end). Samples are collected so that the thick cross-section is the observation surface. The viewing surface is then finished by electropolishing. After that, observe 10 or more fields of view at a magnification of 20,000 times for the area from 1/8 the thickness to 3/8 the thickness from the surface so that the 1/4 depth position from the surface can be observed. do. For crystal grains identified as ferrite by the metal structure measurement method described below, the equivalent circle diameter of each carbide is determined from the area of each carbide observed in the ferrite crystal grains by image analysis. Among all observed ferrite crystal grains, the number of ferrite crystal grains containing carbide having an equivalent circle diameter of 0.2 μm or more is calculated. The obtained value is divided by the total number of ferrite crystal grains and multiplied by 100 to obtain the number ratio of ferrite containing carbide having an equivalent circle diameter of 0.2 μm or more in the crystal grains.
In this embodiment, particles having an equivalent circle diameter of 0.2 to 30 μm are regarded as carbides.
「フェライトが10~90面積%」
フェライトの面積率が10%未満、パーライトの面積率が90%超であると、ホットスタンプ工程において、パーライトが優先的に旧オーステナイトの起点となり、旧オーステナイト粒の整粒化効果を得ることができなくなる。そのため、フェライト面積率は10%以上とし、パーライトの面積率は90%以下とする。フェライトの面積率は、好ましくは20%以上であり、より好ましくは40%以上である。パーライトの面積率は、好ましくは80%以下であり、より好ましくは60%以下である。
一方、フェライトの面積率が90%超、パーライトの面積率が10%未満であると、パーライト中に炭素が濃化しすぎてオーステナイトへと変態する温度が低くなる。その結果、ホットスタンプ工程において低温で変態開始して旧オーステナイト粒が粗大化しやすくなり、旧オーステナイト粒の整粒化効果を得ることができなくなる。そのため、フェライトの面積率は90%以下とし、パーライトの面積率は10%以上とする。フェライトの面積率は好ましくは70%以下であり、より好ましくは60%以下である。パーライトの面積率は、好ましくは30%以上であり、より好ましくは40%以上である。 "Perlite is 10 to 90 area %"
"Ferrite is 10 to 90 area %"
When the area ratio of ferrite is less than 10% and the area ratio of pearlite is more than 90%, pearlite preferentially serves as a starting point for prior austenite in the hot stamping process, and an effect of regulating prior austenite grains can be obtained. Gone. Therefore, the ferrite area ratio is set to 10% or more, and the pearlite area ratio is set to 90% or less. The area ratio of ferrite is preferably 20% or more, more preferably 40% or more. The area ratio of pearlite is preferably 80% or less, more preferably 60% or less.
On the other hand, when the area ratio of ferrite is more than 90% and the area ratio of pearlite is less than 10%, the carbon in the pearlite becomes too concentrated and the temperature at which the pearlite transforms into austenite becomes low. As a result, the transformation starts at a low temperature in the hot stamping process, and the prior austenite grains tend to coarsen, making it impossible to obtain the effect of regulating the prior austenite grains. Therefore, the area ratio of ferrite is set to 90% or less, and the area ratio of pearlite is set to 10% or more. The area ratio of ferrite is preferably 70% or less, more preferably 60% or less. The area ratio of pearlite is preferably 30% or more, more preferably 40% or more.
ホットスタンプ用鋼板の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から、圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。 Method for measuring metallographic structure of hot stamping steel plate A plate parallel to the rolling direction from an arbitrary position 50 mm or more away from the end face of the hot stamping steel plate (if the sample cannot be taken from this position, avoid the end) A sample is cut so that a thick section can be observed. Although the size of the sample depends on the measuring device, it should be a size that allows observation of about 10 mm in the rolling direction.
なお、本実施形態では、板面に直角な断面の、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織を規定する。その理由は、この位置における金属組織が、ホットスタンプ成形体の代表的な金属組織を示すからである。以下、金属組織について説明する。 Next, a hot-stamped product according to the present embodiment, which is obtained by hot-stamping the steel plate for hot-stamping, will be described. The hot-stamped product according to this embodiment has the same chemical composition as that of the hot-stamping steel plate described above. The method for measuring the chemical composition may be the same method as for the steel plate for hot stamping. In addition, in the metal structure of the hot-stamped compact according to the present embodiment, the prior austenite grains are regulated. That is, the hot stamped body according to the present embodiment has a metal structure in which the average grain size of the prior austenite grains is 5 to 25 μm and the standard deviation of the grain size of the prior austenite grains is 0.1 to 2.0 μm. have.
In the present embodiment, in a cross section perpendicular to the plate surface, a depth position of 1/4 of the plate thickness from the surface (1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) ) specifies the metal structure in The reason is that the metallographic structure at this position exhibits the typical metallographic structure of hot stamped compacts. The metal structure will be described below.
「旧オーステナイト粒の粒径の標準偏差が0.1~2.0μm」
ホットスタンプ成形体の金属組織において、旧オーステナイト粒の平均粒径を5~25μmとし、且つ旧オーステナイト粒の粒径の標準偏差を0.1~2.0μmとすることで、ホットスタンプ成形体の曲げ性を向上することができる。旧オーステナイト粒の平均粒径または旧オーステナイト粒の粒径の標準偏差が上記範囲外であると、ホットスタンプ成形体において優れた曲げ性を得ることができない。 "The average grain size of prior austenite grains is 5 to 25 μm"
"The standard deviation of the grain size of prior austenite grains is 0.1 to 2.0 μm"
In the metal structure of the hot stamped body, the average grain size of the prior austenite grains is 5 to 25 μm, and the standard deviation of the grain size of the prior austenite grains is 0.1 to 2.0 μm. Flexibility can be improved. If the average grain size of the prior austenite grains or the standard deviation of the grain size of the prior austenite grains is outside the above range, the hot-stamped product cannot have excellent bendability.
旧オーステナイト粒の粒径の標準偏差を2.0μm以下とすることで、ホットスタンプ成形体において優れた曲げ性を得ることができる。そのため、旧オーステナイト粒の粒径の標準偏差は2.0μm以下とする。より好ましくは1.2μm以下であり、より一層好ましくは1.1μm以下であり、さらに好ましくは0.4μm以下である。
実操業上、旧オーステナイト粒の粒径の標準偏差を0.1μm未満とすることは難しいので、実質の下限は0.1μm以上となる。 The average grain size of the prior austenite grains is preferably 10 μm or more, more preferably 15 μm or more. Moreover, the average grain size of the prior austenite grains is preferably 20 μm or less.
By setting the standard deviation of the grain size of the prior austenite grains to 2.0 μm or less, excellent bendability can be obtained in the hot-stamped product. Therefore, the standard deviation of the grain size of prior austenite grains is set to 2.0 μm or less. It is more preferably 1.2 μm or less, still more preferably 1.1 μm or less, and still more preferably 0.4 μm or less.
In actual operation, it is difficult to make the standard deviation of the grain size of prior austenite grains less than 0.1 μm, so the practical lower limit is 0.1 μm or more.
次に、旧オーステナイト粒の平均結晶粒径の測定方法について説明する。ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から、圧延方向に平行な板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。上記サンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げ、電解研磨を用いて仕上げ研磨を施す。 Method for Measuring Average Grain Size of Prior Austenite Grains and Standard Deviation of Grain Size Next, a method for measuring the average grain size of prior austenite grains will be described. Cut out a sample from an arbitrary position 50 mm or more away from the end face of the hot stamped product (if the sample cannot be taken from this position, avoid the end) so that the thickness cross section parallel to the rolling direction can be observed. . Although the size of the sample depends on the measuring device, it should be a size that allows observation of about 10 mm in the rolling direction. After polishing the cross section of the above sample using #600 to #1500 silicon carbide paper, a mirror finish is achieved using a liquid in which diamond powder with a particle size of 1 to 6 μm is dispersed in a diluted solution such as alcohol or pure water. , finish polishing is performed using electropolishing.
平均粒径が0.5~3.0μmである旧オーステナイト粒の面積を測定視野全体の面積で除した値を算出することで、平均粒径が0.5~3.0μmである旧オーステナイト粒の面積率を得る。 By calculating the standard deviation from the grain size of the prior austenite grains, the standard deviation of the grain size of the prior austenite grains is obtained. At this time, in order to eliminate the influence of locally generated fine grains and coarse grains, the standard deviation is calculated by excluding the minimum and maximum values of the prior austenite grain size.
By calculating the value obtained by dividing the area of the prior austenite grains with an average grain size of 0.5 to 3.0 μm by the area of the entire measurement field, the prior austenite grains with an average grain size of 0.5 to 3.0 μm to obtain the area ratio of
ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から、板面に直角な断面が観察できるようにサンプルを切り出す。このサンプルの断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げ、ナイタールエッチングを施す。表面から板厚の1/4深さ位置が観察できるように、サンプル断面の長手方向の任意の位置における、長さ100μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域において、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)を用いて複数視野の写真を撮影する。撮影写真上に等間隔の格子を描き、格子点における組織を同定する。各組織に該当する格子点数を求め、総格子点数で除することにより、各組織の面積率を得る。総格子点数が多いほど面積率を正確に求めることができる。本実施形態では、格子間隔は2μm×2μmとし、総格子点数は1500点とする。 Measurement method of metallographic structure of hot stamped product Cut out the sample so that can be observed. After polishing the cross-section of this sample using #600 to #1500 silicon carbide paper, it is finished to a mirror surface using a liquid in which diamond powder with a grain size of 1 to 6 μm is dispersed in a diluted solution such as alcohol or pure water. , Nital etching. A length of 100 μm, a depth of 1/8 of the plate thickness from the surface to 3/ of the plate thickness from the surface, at any position in the longitudinal direction of the sample cross section so that the position of 1/4 of the plate thickness from the surface can be observed. Multiple fields of view are photographed using a thermal field emission scanning electron microscope (JEOL JSM-7001F) in an 8-depth region. An equidistant grid is drawn on the photograph to identify the tissue at the grid points. The area ratio of each tissue is obtained by calculating the number of grid points corresponding to each tissue and dividing it by the total number of grid points. The larger the total number of grid points, the more accurately the area ratio can be calculated. In this embodiment, the grid spacing is 2 μm×2 μm, and the total number of grid points is 1,500.
マルテンサイトの面積率については、上記の撮影写真から求めたマルテンサイトおよび残留オーステナイトの面積率から、後述のEBSD解析により求めた残留オーステナイトの面積率を差し引くことで得る。 A region in which cementite is precipitated in a lamellar shape within grains is determined to be pearlite. A region with low brightness and no substructure is judged to be ferrite. Regions with high brightness and in which the substructure is not revealed by etching are judged to be martensite and retained austenite. A region that does not correspond to any of the above is determined to be bainite.
The area ratio of martensite is obtained by subtracting the area ratio of retained austenite obtained by EBSD analysis, which will be described later, from the area ratio of martensite and retained austenite obtained from the above photograph.
試験片板厚:1.6mm
曲げ稜線:板幅方向に平行な方向
試験方法:ロール支持、ポンチ押し込み
ロール径:φ30mm
ポンチ形状:先端R=0.4mm
ロール間距離:2.0×板厚(mm)+0.5mm
押し込み速度:20mm/min
試験機:SHIMADZU AUTOGRAPH 20kN Test piece size: 60 mm (rolling direction) x 30 mm (direction parallel to plate width direction)
Test piece plate thickness: 1.6 mm
Bending ridgeline: direction parallel to sheet width direction Test method: roll support, punch pushing Roll diameter: φ30 mm
Punch shape: tip R = 0.4 mm
Distance between rolls: 2.0 x plate thickness (mm) + 0.5 mm
Pushing speed: 20mm/min
Testing machine: SHIMADZU AUTOGRAPH 20kN
本実施形態に係るホットスタンプ用鋼板の製造方法では、上述した金属組織を有するホットスタンプ用鋼板を得るために、熱間圧延における仕上げ圧延の最終パスの1パス前の圧延の圧下率を高く設定する。 Next, a method for manufacturing a steel sheet for hot stamping according to this embodiment will be described.
In the method for manufacturing a steel sheet for hot stamping according to the present embodiment, in order to obtain a steel sheet for hot stamping having the above-described metal structure, the reduction ratio of the rolling one pass before the final pass of the finish rolling in hot rolling is set high. do.
通常、仕上げ圧延では、パス毎に圧下率を徐々に下げて圧延が行われる。しかし、本実施形態では、仕上げ圧延の最終パスの1パス前の圧延では、その前のパス(最終パスの2パス前)よりも圧下率を高めて、上述の圧下率で圧延を行う。これにより、所望の金属組織を得ることができる。 By setting the reduction ratio of rolling one pass before the final pass to 10 to 25%, dislocations in the austenite are reduced, and the reduction ratio of the subsequent final pass (final reduction ratio) is set to 6% or more. , a small amount of dislocations can be introduced into the austenite grains. Since the dislocations introduced into the austenite grains function as starting points for the precipitation of carbides, it is presumed that as a result, a desired amount of ferrite containing carbides can be formed in the crystal grains. The dislocations in the austenite before the final rolling disappear together with the dislocations introduced in the final pass. Therefore, unless the rolling reduction in the rolling one pass before the final pass is controlled within the above range, the number of carbide precipitation starting points decreases. It is presumed that
Normally, in finish rolling, rolling is performed by gradually decreasing the rolling reduction for each pass. However, in this embodiment, in the rolling one pass before the final pass of the finish rolling, the rolling reduction is set higher than that of the previous pass (two passes before the final pass), and the rolling is performed at the above rolling reduction. Thereby, a desired metal structure can be obtained.
一方、最終パスの1パス前の圧延温度が1050℃超であると、オーステナイト粒が粗大化してフェライト変態が抑制されて、ホットスタンプ用鋼板において所定量のフェライトを得ることができない。最終パスの1パス前の圧延温度は、好ましくは1040℃以下であり、より好ましくは1020℃以下である。 If the rolling temperature one pass before the final pass is less than 900° C., recrystallization of austenite in the final pass is suppressed and a desired texture cannot be obtained. The rolling temperature one pass before the final pass is preferably 910° C. or higher, more preferably 930° C. or higher.
On the other hand, if the rolling temperature one pass before the final pass exceeds 1050° C., the austenite grains are coarsened and ferrite transformation is suppressed, and a predetermined amount of ferrite cannot be obtained in the hot stamping steel sheet. The rolling temperature one pass before the final pass is preferably 1040° C. or lower, more preferably 1020° C. or lower.
一方、最終パスの圧延温度が1000℃以上であると、オーステナイト粒が粗大化してフェライト変態が抑制されて、ホットスタンプ鋼板において所定量のフェライトを得ることができない。最終パスの圧延温度は、好ましくは980以下であり、より好ましくは960℃以下である。 If the rolling temperature of the final pass is less than 850°C, the austenite grains become too fine and the ferrite transformation is excessively promoted, so that the desired amount of pearlite cannot be obtained in the hot stamped steel sheet. The rolling temperature in the final pass is preferably 860°C or higher, more preferably 870°C or higher.
On the other hand, if the rolling temperature of the final pass is 1000° C. or higher, the austenite grains are coarsened and the ferrite transformation is suppressed, and a predetermined amount of ferrite cannot be obtained in the hot stamped steel sheet. The rolling temperature in the final pass is preferably 980° C. or lower, more preferably 960° C. or lower.
一方、巻き取り温度が750℃超であると、ホットスタンプ用鋼板においてパーライトの面積率が10%未満、フェライトの面積率が90%超となる。巻取り温度は、好ましくは700℃以下であり、より好ましくは660℃以下である。 After finishing rolling, it is preferable to wind the steel sheet in a temperature range of 400 to 750°C. If the coiling temperature is less than 400° C., the steel sheet for hot stamping has a pearlite area ratio of more than 90% and a ferrite area ratio of less than 10%. The winding temperature is preferably 450°C or higher, more preferably 530°C or higher.
On the other hand, when the coiling temperature is higher than 750° C., the area ratio of pearlite is less than 10% and the area ratio of ferrite is more than 90% in the steel sheet for hot stamping. The winding temperature is preferably 700°C or lower, more preferably 660°C or lower.
なお、ホットスタンプ時の加熱において、予備加熱すること、すなわち2段階の加熱を行うことは好ましくない。ホットスタンプ用鋼板の段階で作りこんだ粒界における炭素の偏析領域が解消され、旧オーステナイト粒を均一に分散して生成させることができず、結果として旧オーステナイト粒の標準偏差を所望の範囲内に制御することができないためである。 After heating and holding as described above, hot stamping is performed. After hot stamping, for example, it is preferable to cool down to a temperature range of 300° C. or less at an average cooling rate of 10° C./s or more. If the average cooling rate is less than 10°C/s, the strength may be insufficient. Although the upper limit is not particularly defined, since it is difficult to exceed 1000° C./s in actual operation, 1000° C./s or less is the substantial upper limit.
It should be noted that preheating, that is, heating in two stages is not preferable in the heating at the time of hot stamping. The carbon segregation region in the grain boundary created at the stage of the hot stamping steel plate is eliminated, and the prior austenite grains cannot be uniformly dispersed and generated, and as a result, the standard deviation of the prior austenite grains is within the desired range. This is because it cannot be fully controlled.
鋼板No.150は、冷間圧延を行わなかった。
鋼板No.151は、表面に電気亜鉛めっき層を形成した。
鋼板No.152は、表面に電気Zn-Ni合金めっき層を形成した。
鋼板No.153は、表面に溶融亜鉛めっき層を形成した。
鋼板No.154は、表面に合金化溶融亜鉛めっき層を形成した。
鋼板No.155は、表面に溶融アルミニウムめっき層を形成した。
鋼板No.156は、表面に溶融Zn-Al合金めっき層を形成した。
鋼板No.157は、表面に溶融Zn-Al-Mg合金めっき層を形成した。
鋼板No.158は、表面に溶融Zn-Al-Mg-Si合金めっき層を形成した。
鋼板No.195は、仕上げ圧延において、パス毎に圧下率を徐々に下げて圧延を行った。 In addition, steel plate No. In No. 149, hot-rolled sheet annealing was performed by heating and holding in a temperature range of 730°C or less.
Steel plate no. 150 was not cold rolled.
Steel plate no. 151 formed an electrogalvanized layer on the surface.
Steel plate no. 152 formed an electric Zn-Ni alloy plating layer on the surface.
Steel plate no. 153 formed a hot-dip galvanized layer on the surface.
Steel plate no. 154 formed an alloyed hot-dip galvanized layer on the surface.
Steel plate no. 155 formed a hot-dip aluminum plating layer on the surface.
Steel plate no. 156 formed a hot-dip Zn-Al alloy plating layer on the surface.
Steel plate no. 157 formed a hot-dip Zn-Al-Mg alloy plating layer on the surface.
Steel plate no. 158 formed a hot-dip Zn-Al-Mg-Si alloy plating layer on the surface.
Steel plate no. In No. 195, rolling was performed by gradually lowering the rolling reduction for each pass in the finish rolling.
製造No.186は、ホットスタンプ後に150~600℃で焼戻し処理を行った。
製造No.187は、ホットスタンプ成形体の一部分をレーザー照射して焼戻すことで、部分軟化領域を形成した。
製造No.188は、表3Gに記載の加熱温度まで加熱した後、250℃以下の温度域まで冷却し、その後900℃まで加熱してからホットスタンプすることで、表3G中の平均冷却速度で冷却した。 The obtained steel sheets for hot stamping were subjected to hot stamping under the conditions shown in Tables 3A to 3G to obtain hot stamped bodies shown in Tables 3A to 3G.
Manufacturing No. 186 was tempered at 150 to 600°C after hot stamping.
Manufacturing No. In No. 187, a partially softened region was formed by irradiating and tempering a part of the hot-stamped body.
Manufacturing No. 188 was heated to the heating temperature shown in Table 3G, cooled to a temperature range of 250° C. or lower, then heated to 900° C. and then hot stamped, thereby cooling at the average cooling rate shown in Table 3G.
Claims (5)
- 化学組成が、質量%で、
C :0.40%超、0.70%以下、
Si:0.010~1.30%、
Mn:0.10~0.60%、
P :0.100%以下、
S :0.0100%以下、
N :0.0140%以下、
O :0.0200%以下、
Al:0.0010~0.500%、
Cr:0.010~0.80%、
Nb:0~0.100%、
Ti:0~0.100%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0%以上、3.00%未満、
Cu:0~1.00%、
V :0~1.00%、
W :0~1.000%、
Ca:0~0.010%、
Mg:0~1.000%、
REM:0~1.000%、
Sb:0~1.000%、
Zr:0~1.000%、
Sn:0~1.000%、および
As:0~0.100%
を含有し、残部がFeおよび不純物からなり、
フェライトの{100}<011>~{223}<110>からなる方位群の極密度の平均値が10.0以下であり、
全フェライトのうち、結晶粒内に円相当径が0.2μm以上である炭化物を含む前記フェライトの個数割合が20%以上であり、
面積率で、パーライトが10~90%であり、フェライトが10~90%である金属組織を有することを特徴とする、ホットスタンプ用鋼板。 The chemical composition, in mass %,
C: more than 0.40%, 0.70% or less,
Si: 0.010 to 1.30%,
Mn: 0.10-0.60%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0140% or less,
O: 0.0200% or less,
Al: 0.0010 to 0.500%,
Cr: 0.010 to 0.80%,
Nb: 0 to 0.100%,
Ti: 0 to 0.100%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0% or more and less than 3.00%,
Cu: 0 to 1.00%,
V: 0 to 1.00%,
W: 0 to 1.000%,
Ca: 0-0.010%,
Mg: 0-1.000%,
REM: 0 to 1.000%,
Sb: 0 to 1.000%,
Zr: 0 to 1.000%,
Sn: 0-1.000% and As: 0-0.100%
and the balance consists of Fe and impurities,
The average value of the pole density of the ferrite orientation group consisting of {100} <011> to {223} <110> is 10.0 or less,
Among all ferrite, the number ratio of the ferrite containing carbide having an equivalent circle diameter of 0.2 μm or more in the crystal grain is 20% or more,
A steel sheet for hot stamping, characterized by having a metallographic structure in which pearlite is 10 to 90% and ferrite is 10 to 90% in terms of area ratio. - 前記化学組成が、質量%で、
Nb:0.001~0.100%、
Ti:0.010~0.100%、
B :0.0015~0.0100%、
Mo:0.05~1.00%、
Co:0.05~2.00%、
Ni:0.01%以上、3.00%未満、
Cu:0.01~1.00%、
V :0.01~1.00%、
W :0.001~1.000%、
Ca:0.001~0.010%、
Mg:0.001~1.000%、
REM:0.001~1.000%、
Sb:0.005~1.000%、
Zr:0.001~1.000%、
Sn:0.001~1.000%、および
As:0.001~0.100%
からなる群から選択される1種または2種以上を含有することを特徴とする、請求項1に記載のホットスタンプ用鋼板。 The chemical composition, in mass %,
Nb: 0.001 to 0.100%,
Ti: 0.010 to 0.100%,
B: 0.0015 to 0.0100%,
Mo: 0.05-1.00%,
Co: 0.05 to 2.00%,
Ni: 0.01% or more and less than 3.00%,
Cu: 0.01 to 1.00%,
V: 0.01 to 1.00%,
W: 0.001 to 1.000%,
Ca: 0.001-0.010%,
Mg: 0.001-1.000%,
REM: 0.001 to 1.000%,
Sb: 0.005 to 1.000%,
Zr: 0.001 to 1.000%,
Sn: 0.001-1.000% and As: 0.001-0.100%
The steel sheet for hot stamping according to claim 1, characterized by containing one or more selected from the group consisting of: - 化学組成が、質量%で、
C :0.40%超、0.70%以下、
Si:0.010~1.30%、
Mn:0.10~0.60%、
P :0.100%以下、
S :0.0100%以下、
N :0.0140%以下、
O :0.0200%以下、
Al:0.0010~0.500%、
Cr:0.010~0.80%、
Nb:0~0.100%、
Ti:0~0.100%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0%以上、3.00%未満、
Cu:0~1.00%、
V :0~1.00%、
W :0~1.000%、
Ca:0~0.010%、
Mg:0~1.000%、
REM:0~1.000%、
Sb:0~1.000%、
Zr:0~1.000%、
Sn:0~1.000%、および
As:0~0.100%
を含有し、残部がFeおよび不純物からなり、
旧オーステナイト粒の平均粒径が5~25μmであり、前記旧オーステナイト粒の粒径の標準偏差が0.1~2.0μmである金属組織を有し、
引張強さが2200MPa以上であることを特徴とする、ホットスタンプ成形体。 The chemical composition, in mass %,
C: more than 0.40%, 0.70% or less,
Si: 0.010 to 1.30%,
Mn: 0.10-0.60%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0140% or less,
O: 0.0200% or less,
Al: 0.0010 to 0.500%,
Cr: 0.010 to 0.80%,
Nb: 0 to 0.100%,
Ti: 0 to 0.100%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0% or more and less than 3.00%,
Cu: 0 to 1.00%,
V: 0 to 1.00%,
W: 0 to 1.000%,
Ca: 0-0.010%,
Mg: 0-1.000%,
REM: 0 to 1.000%,
Sb: 0 to 1.000%,
Zr: 0 to 1.000%,
Sn: 0-1.000% and As: 0-0.100%
and the balance consists of Fe and impurities,
Having a metal structure in which the average grain size of the prior austenite grains is 5 to 25 μm and the standard deviation of the grain size of the prior austenite grains is 0.1 to 2.0 μm,
A hot-stamped article characterized by having a tensile strength of 2200 MPa or more. - 前記化学組成が、質量%で、
Nb:0.001~0.100%、
Ti:0.010~0.100%、
B :0.0015~0.0100%、
Mo:0.05~1.00%、
Co:0.05~2.00%、
Ni:0.01%以上、3.00%未満、
Cu:0.01~1.00%、
V :0.01~1.00%、
W :0.001~1.000%、
Ca:0.001~0.010%、
Mg:0.001~1.000%、
REM:0.001~1.000%、
Sb:0.005~1.000%、
Zr:0.001~1.000%、
Sn:0.001~1.000%、および
As:0.001~0.100%
からなる群から選択される1種または2種以上を含有することを特徴とする、請求項3に記載のホットスタンプ成形体。 The chemical composition, in mass %,
Nb: 0.001 to 0.100%,
Ti: 0.010 to 0.100%,
B: 0.0015 to 0.0100%,
Mo: 0.05-1.00%,
Co: 0.05 to 2.00%,
Ni: 0.01% or more and less than 3.00%,
Cu: 0.01 to 1.00%,
V: 0.01 to 1.00%,
W: 0.001 to 1.000%,
Ca: 0.001-0.010%,
Mg: 0.001-1.000%,
REM: 0.001 to 1.000%,
Sb: 0.005 to 1.000%,
Zr: 0.001 to 1.000%,
Sn: 0.001-1.000% and As: 0.001-0.100%
4. The hot-stamped article according to claim 3, comprising one or more selected from the group consisting of: - 平均粒径が0.5~3.0μmである前記旧オーステナイト粒の面積率が60%以下であることを特徴とする、請求項3または4に記載のホットスタンプ成形体。 The hot stamped product according to claim 3 or 4, characterized in that the area ratio of the prior austenite grains having an average grain size of 0.5 to 3.0 µm is 60% or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237031597A KR20230146611A (en) | 2021-05-13 | 2022-05-10 | Steel sheets for hot stamping and hot stamping molded bodies |
EP22807458.9A EP4299769A1 (en) | 2021-05-13 | 2022-05-10 | Steel sheet for hot stamping and hot stamped molded body |
CN202280022199.0A CN116997671A (en) | 2021-05-13 | 2022-05-10 | Steel sheet for hot stamping and hot stamped steel |
MX2023010466A MX2023010466A (en) | 2021-05-13 | 2022-05-10 | Steel sheet for hot stamping and hot stamped molded body. |
US18/285,505 US20240183017A1 (en) | 2021-05-13 | 2022-05-10 | Steel sheet for hot stamping and hot-stamping formed body |
JP2023521200A JP7549277B2 (en) | 2021-05-13 | 2022-05-10 | Steel sheets for hot stamping and hot stamped products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-081621 | 2021-05-13 | ||
JP2021081621 | 2021-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239758A1 true WO2022239758A1 (en) | 2022-11-17 |
Family
ID=84029634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/019758 WO2022239758A1 (en) | 2021-05-13 | 2022-05-10 | Steel sheet for hot stamping and hot stamped molded body |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240183017A1 (en) |
EP (1) | EP4299769A1 (en) |
JP (1) | JP7549277B2 (en) |
KR (1) | KR20230146611A (en) |
CN (1) | CN116997671A (en) |
MX (1) | MX2023010466A (en) |
WO (1) | WO2022239758A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007111080A1 (en) * | 2006-03-28 | 2007-10-04 | Jfe Steel Corporation | Hot-rolled ultrasoft high-carbon steel plate and process for production thereof |
JP2009068081A (en) * | 2007-09-14 | 2009-04-02 | Jfe Steel Kk | Extremely soft high-carbon hot rolled steel sheet |
WO2012133540A1 (en) * | 2011-03-28 | 2012-10-04 | 新日本製鐵株式会社 | Hot-rolled steel sheet and production method therefor |
WO2016190396A1 (en) | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
WO2018151273A1 (en) * | 2017-02-16 | 2018-08-23 | 新日鐵住金株式会社 | Hot rolled steel sheet and method for manufacturing same |
JP2021081621A (en) | 2019-11-20 | 2021-05-27 | キヤノン株式会社 | Lighting device, method for controlling the same, and imaging system |
-
2022
- 2022-05-10 WO PCT/JP2022/019758 patent/WO2022239758A1/en active Application Filing
- 2022-05-10 US US18/285,505 patent/US20240183017A1/en active Pending
- 2022-05-10 CN CN202280022199.0A patent/CN116997671A/en active Pending
- 2022-05-10 JP JP2023521200A patent/JP7549277B2/en active Active
- 2022-05-10 MX MX2023010466A patent/MX2023010466A/en unknown
- 2022-05-10 KR KR1020237031597A patent/KR20230146611A/en unknown
- 2022-05-10 EP EP22807458.9A patent/EP4299769A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007111080A1 (en) * | 2006-03-28 | 2007-10-04 | Jfe Steel Corporation | Hot-rolled ultrasoft high-carbon steel plate and process for production thereof |
JP2009068081A (en) * | 2007-09-14 | 2009-04-02 | Jfe Steel Kk | Extremely soft high-carbon hot rolled steel sheet |
WO2012133540A1 (en) * | 2011-03-28 | 2012-10-04 | 新日本製鐵株式会社 | Hot-rolled steel sheet and production method therefor |
WO2016190396A1 (en) | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
WO2018151273A1 (en) * | 2017-02-16 | 2018-08-23 | 新日鐵住金株式会社 | Hot rolled steel sheet and method for manufacturing same |
JP2021081621A (en) | 2019-11-20 | 2021-05-27 | キヤノン株式会社 | Lighting device, method for controlling the same, and imaging system |
Non-Patent Citations (1)
Title |
---|
ACTA MATERIALIA, vol. 58, 2010, pages 6393 - 6403 |
Also Published As
Publication number | Publication date |
---|---|
EP4299769A1 (en) | 2024-01-03 |
MX2023010466A (en) | 2023-09-14 |
CN116997671A (en) | 2023-11-03 |
US20240183017A1 (en) | 2024-06-06 |
JP7549277B2 (en) | 2024-09-11 |
JPWO2022239758A1 (en) | 2022-11-17 |
KR20230146611A (en) | 2023-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102186320B1 (en) | Steel plate and plated steel plate | |
JP7436917B2 (en) | Steel plates for hot stamping and hot stamping molded bodies | |
CN113840936B (en) | Hot stamp-molded body | |
CN115003841B (en) | Steel sheet, component, and method for producing same | |
CN113544302B (en) | High-strength steel sheet and method for producing same | |
WO2022239731A1 (en) | Steel sheet for hot stamping and hot stamping molded body | |
JP7436916B2 (en) | hot stamp molded body | |
CN113906152B (en) | Hot-pressed molded body | |
CN117940597A (en) | Hot rolled steel sheet | |
JP7319571B2 (en) | hot stamped body | |
CN118591650A (en) | Hot rolled steel sheet | |
JP7564464B2 (en) | Hot-rolled steel sheets | |
KR20230035624A (en) | hot rolled steel | |
WO2022239758A1 (en) | Steel sheet for hot stamping and hot stamped molded body | |
CN115003835A (en) | Hot rolled steel plate | |
JP7188584B2 (en) | hot stamped body | |
CN114787405B (en) | Hot-pressed molded body | |
JP7188583B2 (en) | Steel plate for hot stamping | |
CN116113508B (en) | Hot rolled steel sheet | |
JP7397380B2 (en) | Steel plates for hot stamping and hot stamping molded bodies | |
KR102658729B1 (en) | hot stamp molding body | |
WO2023189183A1 (en) | Hot-stamp-formed article | |
WO2023234337A1 (en) | Hot-stamp formed article | |
CN117616144A (en) | Cold-rolled steel sheet and method for producing same | |
CN115427601A (en) | Steel sheet for hot pressing and hot-pressed molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807458 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023521200 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/010466 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20237031597 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237031597 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280022199.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301005912 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317064261 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022807458 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18285505 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022807458 Country of ref document: EP Effective date: 20230927 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |