WO2022239645A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2022239645A1
WO2022239645A1 PCT/JP2022/018954 JP2022018954W WO2022239645A1 WO 2022239645 A1 WO2022239645 A1 WO 2022239645A1 JP 2022018954 W JP2022018954 W JP 2022018954W WO 2022239645 A1 WO2022239645 A1 WO 2022239645A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
gas
gas introduction
oxygen
reference gas
Prior art date
Application number
PCT/JP2022/018954
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 市川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2023520960A priority Critical patent/JP7495012B2/en
Publication of WO2022239645A1 publication Critical patent/WO2022239645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to a gas sensor that detects the concentration of a specific gas in gas to be measured.
  • the gas sensor element includes a pump cell for adjusting the oxygen concentration in the gas to be measured and a sensor cell for detecting a specific gas such as NOx. It is heated using a built-in heater or the like so as to reach the temperature.
  • the pump cell control unit adjusts, for example, the application time of the voltage for removal, and controls such that enough reducing gas is generated to remove oxygen.
  • the reducing gas generated in the pump cell will contain surplus gas in addition to the gas consumed by the reaction with oxygen occluded by the electrodes of the sensor cell. Excess reducing gas is usually removed by reaction with oxygen supplied from the reference electrode side through the solid electrolyte body.
  • a gas sensor in which a sensor cell and a pump cell are formed on different solid electrolyte bodies.
  • the reference gas introduction path for introducing the oxygen-containing reference gas arranged on the reference electrode side of the sensor cell and the reference gas introduction path on the reference electrode side of the pump cell are separately provided.
  • the thickness of the element is restricted from the viewpoint of element assembly, and the reference gas introduction path on the sensor cell side with a smaller output becomes smaller than that on the pump cell side.
  • An object of the present disclosure is to provide a gas sensor capable of quickly removing reducing gas generated in early activation control and starting detection of a specific gas without delay.
  • a gas sensor that detects the concentration of a specific gas contained in a gas to be measured, a gas chamber to be measured into which the gas to be measured is introduced; a first solid electrolyte body and a second solid electrolyte body facing each other with the gas chamber to be measured interposed therebetween; a first reference gas introduction path and a second reference gas introduction path into which a reference gas containing oxygen is introduced;
  • the first solid electrolyte body has a pump electrode on the surface thereof facing the gas chamber to be measured, and a first reference electrode on the surface thereof facing the first reference gas introduction path.
  • a pump cell for adjusting oxygen concentration for adjusting oxygen concentration; a sensor electrode on the surface facing the gas chamber to be measured of the second solid electrolyte body, a second reference electrode on the surface facing the second reference gas introduction path, and an output based on the specific gas a sensor cell that produces
  • the voltage applied to the pump cell when the sensor is started is controlled to a starting voltage higher than the normal control voltage, and the reducing gas generated in the measured gas chamber by the decomposition of the water contained in the measured gas is used.
  • an early activation control unit for removing oxygen occluded in the sensor electrode
  • the second reference gas introduction path is configured to indicate a limit amount of oxygen supplied from the second reference gas introduction path toward the sensor electrode when the sensor is started, as a current value flowing through the second solid electrolyte body.
  • the gas sensor is formed to have a limit current value of 20 ⁇ A or more.
  • reducing gas when a start-up voltage higher than the normal control voltage is applied to the pump cell of the gas sensor by the early activation control section, reducing gas is generated due to decomposition of water in the gas chamber to be measured.
  • the reducing gas is supplied to the sensor cell and consumed to reduce and remove oxygen stored in the sensor electrode.
  • the excess reducing gas is sequentially removed by ionizing the oxygen in the second reference gas introduction path at the second reference electrode and supplying the ionized gas through the second solid electrolyte.
  • the second reference gas introduction path has an oxygen limit current value of 20 ⁇ A or more, which indicates the limit amount of oxygen supplied to the sensor electrode when the sensor is started, as a current value flowing through the second solid electrolyte body.
  • the amount of oxygen corresponding to the amount of reducing gas generated can be supplied from the second reference gas introduction passage.
  • FIG. 1 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element and a sensor control unit, which are main parts of a gas sensor, in Embodiment 1; 2 is a longitudinal sectional view showing the overall configuration of the gas sensor in Embodiment 1, FIG. 3 is a diagram showing the relationship between the oxygen supply amount and the activation time during early activation control of the gas sensor in the first embodiment; FIG. 4 is a diagram showing the relationship between the amount of hydrogen generated and the activation time during early activation control of the gas sensor in Embodiment 1; FIG.
  • 5 is a diagram showing the temporal transition of the pump current value flowing during early activation control of the gas sensor in the first embodiment
  • 6 is a longitudinal cross-sectional view showing the detailed configuration of the sensor element in Embodiment 1, and is a cross-sectional view taken along line aa in FIG. 7 is a cross-sectional view in the direction perpendicular to the axis showing the detailed configuration of the sensor element in Embodiment 1
  • 8 is a diagram showing the time transition of the NOx output during early activation control of the gas sensor in Embodiment
  • 9 is a diagram showing the time transition of the NOx output during early activation control of the gas sensor in Embodiment 1, FIG.
  • FIG. 10 is a diagram showing the relationship between the oxygen supply amount and the activation time during early activation control of the gas sensor in Embodiment 1;
  • FIG. 11 is a diagram showing changes in NOx output over time during early activation control based on the amount of hydrogen generated by the gas sensor in the first embodiment;
  • 12 is a flow chart showing the procedure of sensor control by the sensor control unit in the first embodiment,
  • FIG. 13 is a cross-sectional view in the width direction showing the main configuration of the sensor element in Embodiment 2;
  • 14 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element in Embodiment 3
  • 15 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element in a modification of Embodiment 3, FIG.
  • 16 is an end view showing the configuration of the main parts of the sensor element and a longitudinal cross-sectional view of the bb line cross-sectional view thereof in a modification of Embodiment 3; 17A and 17B are an end view and a longitudinal cross-sectional view taken along the line cc of the sensor element in a modified example of the third embodiment.
  • FIG. 1 A first embodiment of a gas sensor will be described with reference to FIGS. 1 to 12.
  • FIG. 1 and 2 the gas sensor 1 of the present embodiment is installed, for example, in an exhaust gas passage of an internal combustion engine such as a vehicle engine, and detects the concentration of a specific gas contained in the gas to be measured. Configured as a sensor.
  • the gas to be measured in this case is the exhaust gas G flowing through the exhaust gas passage, and the concentration of NOx (that is, nitrogen oxides) in the exhaust gas G, for example, is detected as the specific gas.
  • the exhaust gas G introduced into the gas sensor 1 contains, for example, water present in the exhaust gas passage.
  • the gas sensor 1 includes a measured gas chamber 2 into which exhaust gas G is introduced as a measured gas, a first solid electrolyte body 11 and a second solid electrolyte body 12 facing each other across the measured gas chamber 2, A first reference gas introduction passage 31 and a second reference gas introduction passage 32 into which the atmosphere A is introduced as a reference gas, a pump cell 4 formed using the first solid electrolyte body 11, and a second solid electrolyte body 12 are used.
  • a sensor element 1 ⁇ /b>A having a sensor cell 5 formed by
  • the exhaust gas G flows from the tip side of the sensor element 1A (that is, the left end side in the figure) to the atmosphere A. is introduced into the inside of the sensor element 1A from the base end side (that is, the right end side in the figure).
  • the direction of gas flow in the measured gas chamber 2 is the same as the direction in which the exhaust gas G is introduced.
  • the sensor element 1A is provided with a heater 6 so that the pump cell 4 and the sensor cell 5 can be heated to temperatures suitable for detection.
  • the sensor control unit 10 is provided with a detection control unit 102 for controlling the operation of the sensor element 1A during normal detection, and is provided with a heater control unit 103 for controlling the operation of the heater 6. It has become.
  • the pump cell 4 is composed of the first solid electrolyte body 11 and a pair of electrodes 41 and 42 on its surface. Specifically, a pump electrode 41 is provided on the surface of the first solid electrolyte body 11 facing the gas chamber 2 to be measured, and a first reference electrode 42 is provided on the surface facing the first reference gas introduction passage 31. , to adjust the oxygen concentration in the gas chamber 2 to be measured.
  • the sensor cell 5 is composed of the second solid electrolyte body 12 and a pair of electrodes 51 and 52 on the surface thereof. Specifically, a sensor electrode 51 is provided on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured, and a second reference electrode 52 is provided on the surface facing the second reference gas introduction path 32. , produces an output based on the NOx in the exhaust gas G.
  • the first solid electrolyte body 11 is arranged between the measured gas chamber 2 and the first reference gas introduction path 31, and the second solid electrolyte body 12 is disposed between the measured gas chamber 2 and the second reference gas introduction path. It is located between 32.
  • the measured gas chamber 2 and the first reference gas introduction path 31 or the second reference gas introduction path 32 are connected via the first solid electrolyte body 11 or the second solid electrolyte body 12, which is an ion conductor. It is possible to adjust the gas concentration or detect the gas concentration by conducting ionic conduction between and.
  • a predetermined voltage is applied to the pair of electrodes 41 and 42, so that oxygen (ie, O 2 ) in the exhaust gas G is decomposed into oxide ions (ie, O 2 ⁇ ) at the pump electrode 41. Then, it passes through the first solid electrolyte body 11 and moves toward the first reference electrode 42 , becomes oxygen again, and is discharged to the first reference gas introduction passage 31 . Due to this pumping action, the inside of the gas chamber 2 to be measured is adjusted to a predetermined low oxygen concentration, and the influence of oxygen on the sensor cell 5 located downstream of the pump cell 4 can be eliminated or minimized.
  • NOx reaching the sensor electrode 51 is decomposed into nitrogen (that is, N 2 ) and oxygen, and a predetermined voltage is applied between the pair of electrodes 51 and 52 to decompose and ionize the oxygen. .
  • These oxide ions permeate the second solid electrolyte body 12 , move toward the second reference electrode 52 , become oxygen again, and are discharged to the second reference gas introduction passage 32 .
  • the current output of the sensor cell 5 corresponds to the NOx concentration, and based on this relationship, the concentration of the specific gas can be detected.
  • the sensor element 1A preferably includes a monitor cell 50 arranged in parallel with the sensor cell 5 in addition to the pump cell 4 and the sensor cell 5, and can be configured to detect oxygen remaining in the exhaust gas G.
  • the monitor cell 50 has a monitor electrode 53 on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured as a pair of electrodes 53 and 52 formed on the surface of the second solid electrolyte body 12. It has a second reference electrode 52 common to the sensor cell 5 on the surface facing the two-reference gas introduction path 32 . In the monitor cell 50, NOx is not decomposed, and a current caused only by residual oxygen flows.
  • the sensor control unit 10 uses the early activation control unit 101 to perform early activation control.
  • the early activation control unit 101 controls the voltage applied to the pump cell 4 at the time of starting the sensor to a starting voltage V2 higher than the normal control voltage V1.
  • the oxygen stored in the sensor electrode 51 can be quickly removed by using the reducing gas generated in the gas chamber 2 under measurement due to the decomposition of the water contained in the gas under measurement.
  • the early activation control is controlled to generate sufficient reducing gas to remove the occluded oxygen.
  • the second reference gas introduction path 32 is configured such that the reducing gas does not stay in the sensor electrode 51 and is removed by oxygen supply from the second reference electrode 52 side.
  • the second reference gas introduction path 32 has a limit amount of oxygen supplied from the second reference gas introduction path 32 toward the sensor electrode 51 (hereinafter referred to as the oxygen supply amount as appropriate) when the sensor is started. is formed to be 20 ⁇ A or more.
  • the oxygen limiting current value indicating the oxygen supply amount is determined based on, for example, the channel structure of the second reference gas introduction channel 32 and the like.
  • the activation time (unit: seconds) indicating the time required for element activation is reduced, and the removal of oxygen and the removal of reducing gas during early activation control can be performed in a well-balanced manner.
  • the oxygen limiting current value which indicates the amount of oxygen supplied when the sensor is started, is less than 20 ⁇ A, the supply of oxygen for removing the reducing gas is insufficient, and the reducing gas stays, resulting in a longer activation time and premature activation. may not be done well.
  • the activation time can be the time required from the start of the early activation control until the sensor output converges within a predetermined threshold range, as will be described later.
  • the second reference gas introduction path 32 is configured so that the oxygen limiting current value, which indicates the amount of oxygen supplied when the sensor is started, is 2500 ⁇ A or less. If the oxygen limit current value exceeds 2500 ⁇ A, for example, the space portion that becomes the second reference gas introduction path 32 becomes large, and there is a possibility that the strength required in assembling the device may not be satisfied.
  • Sufficient oxygen is supplied to the generated reducing gas by setting the amount of oxygen supplied from the second reference gas introduction passage 32 within the range defined by the upper and lower limits of the oxygen limit current value described above, It is possible to quickly remove the reducing gas and achieve early activation while suppressing a decrease in element strength.
  • oxygen contained in the exhaust gas G is decomposed at the pump electrode 41 of the pump cell 4, and, for example, water vapor contained in the exhaust gas G is decomposed to generate hydrogen (that is, H 2 ) as a reducing gas.
  • Oxygen stored in the sensor electrode 51 reacts with hydrogen supplied from the pump cell 4 to become water (that is, H 2 O) and is removed.
  • the generated reducing gas is consumed in the sensor electrode 51 by reaction with oxygen stored therein, and is removed as water by reaction with oxygen supplied through the second solid electrolyte body 12 .
  • the amount of hydrogen generated as appropriate has a correlation with the activation time.
  • the operation of the pump cell 4 is controlled so that sufficient hydrogen is generated to remove the oxygen present.
  • the pump cell 4 is controlled so that the amount of hydrogen generated in the pump cell 4 is in the range of 2000 ⁇ A ⁇ s to 11000 ⁇ A ⁇ s.
  • the amount of hydrogen generated can be controlled, for example, by adjusting the start-up voltage V2 applied to the pump cell 4 and its application time.
  • the pump current value (unit: ⁇ A) flowing through the pump cell 4 is generated together with the output based on the oxygen contained in the exhaust gas G and the decomposition of water vapor. It appears as the sum of the outputs based on oxygen.
  • the output based on the latter of these continues until the control voltage is switched to the normal control voltage V1 at the timing when the early activation control ends (for example, time (t1) in the figure), and the total amount of hydrogen generated during that time, that is, ,
  • the amount of hydrogen generated at the start of the sensor can be calculated as a coulomb amount (unit: ⁇ A ⁇ s) corresponding to the hatched area in the figure (that is, the integrated value of the pump current value per unit time).
  • Equation 1 in FIG. 3 shows limiting current characteristics dependent on the amount of oxygen passing through the gas introduction passage 32 and reaching the second reference electrode 52.
  • FIG. 3 the limit amount of oxygen supplied to the sensor electrode 51 when the sensor is started is defined as an oxygen limit current value IL (unit: ⁇ A) using the current value flowing through the second solid electrolyte body 12 .
  • the oxygen limiting current value IL which indicates the oxygen supply amount at the time of starting the sensor, is governed by the movement of oxygen due to diffusion in the second reference gas introduction passage 32, and there is no change in environmental conditions such as oxygen concentration and temperature.
  • the oxygen supply amount (IL) is determined according to the channel cross-sectional area S or the channel length L indicating the channel structure of the second reference gas introduction channel 32 .
  • Formula 1: IL (4FP/RT).D.(S/L) .Ln [1-(PO2/P)] ⁇ 10 6 IL: oxygen supply amount ⁇ oxygen limit current value ( ⁇ A)
  • F Faraday constant
  • P atmospheric pressure (atm)
  • R gas constant
  • D diffusion coefficient
  • T temperature
  • S Channel cross-sectional area (m 2 )
  • L channel length (m)
  • PO2 Oxygen partial pressure (atm)
  • the oxygen supply amount (IL) increases as the ratio between the channel cross-sectional area S and the channel length L of the second reference gas introduction channel 32 increases.
  • the flow path length L is restricted by the length of the sensor element 1A, etc., so that the desired oxygen supply amount (IL) is obtained within the range of the flow path length L in the normal sensor element 1A.
  • the size of the cross-sectional area S of the flow path, etc. are preferably adjusted. As a result, it is possible to achieve both a sufficient amount of oxygen supply corresponding to the amount of hydrogen generated and the strength of the device.
  • the amount of oxygen supplied from the second reference electrode 52 side of the sensor cell 5 is By setting the value within the predetermined range, the early activation control by the early activation control unit 101 can be performed satisfactorily.
  • a gas sensor 1 as a NOx sensor has a cylindrical housing H, a sensor element 1A inserted and held inside the housing H, an element cover C1 and an atmosphere cover C2. Both ends of the sensor element 1A protrude outward from the housing H with the axial direction of the housing H being the longitudinal direction X (that is, the vertical direction in FIG. 2). It is housed inside the cover C2.
  • the element cover C1 is arranged to cover the outer peripheral side of the sensor element 1A on the distal end side (that is, the lower end side in FIG. 2), and the atmosphere cover C2 is arranged to cover the proximal end side of the sensor element 1A (that is, the upper end side in FIG. 2). ) is arranged to cover the outer peripheral side of the
  • the housing H is fixed to the passage wall of the exhaust gas passage (not shown), and the sensor element 1A projects into the exhaust gas passage on the tip side accommodated in the element cover C1.
  • the element cover C1 has, for example, a double-cylinder structure having a bottom surface. is provided with a gas flow hole C133. Further, a plurality of gas flow holes C21 are provided on the side surface of the cylindrical atmosphere cover C2.
  • the sensor element 1A has a front end housed in the element cover C1, which serves as a detection part exposed to the exhaust gas G, which is the gas to be measured, and uses the air A taken in from the base end housed in the atmosphere cover C2 as a reference gas. NOx in exhaust gas is detected.
  • a control signal or a detection signal to the detection section is input or output from an external sensor control section 10 via a lead wire L1 electrically connected to a terminal section on the base end side of the sensor element 1A.
  • the base end side of the sensor element 1A is clamped by a spring terminal portion L2 provided at the end portion of the lead wire L1.
  • the sensor element 1A is provided with a pump cell 4 and a sensor cell 5 as well as a monitor cell 50 in the detection section of the sensor element 1A, whose operation is controlled by the sensor control section 10.
  • the pump cell 4 is exposed to the exhaust gas G introduced into the measured gas chamber 2 and the atmosphere A introduced into the first reference gas introduction passage 31.
  • the sensor cell 5 and the monitor cell 50 are introduced into the measured gas chamber 2. and the atmosphere A introduced into the second reference gas introduction passage 32 .
  • the sensor element 1A has a built-in heater 6 whose operation is controlled by the sensor control section 10 so that the portion corresponding to the detection section can be heated to a predetermined temperature.
  • the sensor control unit 10 has an early activation control unit 101 that performs early activation control when the sensor is started, a detection control unit 102 that performs NOx detection control, and a heater control unit 103 that performs energization control of the heater 6. It controls the operation of element 1A.
  • the detection control section 102 has a pump cell control section 102A, a sensor cell detection section 102B, and a monitor cell detection section 102C.
  • 102 A of pump cell control parts detect the electric current which the pump cell 4 outputs while controlling the voltage applied to the pump cell 4 normally.
  • the sensor cell detector 102B detects the current output by the sensor cell 5
  • the monitor cell detector 102C detects the current output by the monitor cell 50.
  • FIG. Control by these units of the sensor control unit 10 will be described later.
  • the sensor element 1A is made of a laminate of ceramic layers.
  • a protective layer 15 is formed.
  • the sensor element 1A has a shielding layer 14, a second solid electrolyte body 12, a spacer layer 13, and a first solid electrolyte body 11, with the direction orthogonal to the longitudinal direction X (that is, the vertical direction in FIGS. 6 and 7) as the stacking direction. , and a heater insulating layer 61 constituting the heater 6 are arranged in this order.
  • the first solid electrolyte body 11 and the second solid electrolyte body 12 face each other across a spacer layer 13 in which a space forming the gas chamber 2 to be measured is formed.
  • a space that serves as the first reference gas introduction path 31 is formed in the layer 61 .
  • a space that serves as the second reference gas introduction path 32 is formed in the shielding layer 14 arranged outside the second solid electrolyte body 12 .
  • the measured gas chamber 2 is separated from the space in the element cover C1 (for example, see FIG. 2 above) in which the exhaust gas G exists through the diffusion resistance portion 21 embedded in the tip side of the spacer layer 13. are in communication.
  • the diffusion resistance portion 21 serving as a gas introduction portion is a porous body made of an insulating ceramic material such as alumina, and is adjusted so that the exhaust gas G is introduced under a predetermined diffusion resistance.
  • the first solid electrolyte body 11 and the second solid electrolyte body 12 are composed of a zirconia-based solid electrolyte material having oxide ion conductivity.
  • a zirconia-based solid electrolyte material for example, partially stabilized zirconia or stabilized zirconia containing a stabilizer such as yttria can be used.
  • a pump electrode 41 of the pump cell 4 is formed on the surface of the first solid electrolyte body 11 facing the gas chamber 2 to be measured.
  • the first reference electrode 42 of the pump cell 4 is formed.
  • a sensor electrode 51 of the sensor cell 5 is formed on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured.
  • a second reference electrode 52 of the sensor cell 5 is formed on the surface.
  • the spacer layer 13, the shield layer 14, and the heater insulating layer 61 are made of an insulating ceramic material such as alumina.
  • the porous protective layer 15 is for protecting the detection portion of the sensor element 1A from poisonous components and the like, and is made of porous ceramics adjusted to a porosity that does not hinder the introduction of the exhaust gas G. be able to.
  • a heating element 62 that generates heat when energized is embedded inside the heater insulating layer 61 that serves as the passage wall of the first reference gas introduction path 31 to constitute the heater 6 .
  • the heating elements 62 are arranged corresponding to the portions where the electrodes of the pump cell 4, the sensor cell 5 and the monitor cell 50 are formed, and are capable of heating the entire front end side of the element serving as the detection portion.
  • the second reference gas introduction path 32 in which the second reference electrode 52 is arranged, extends to the base end side of the sensor element 1A (that is, the right end side in FIG. 6), and the second reference gas introduction port opens at the end face thereof. 321 communicates with the space within the element cover C1 (see, for example, FIG. 2 above) where the atmosphere A is present.
  • the first reference gas introduction passage 31, in which the first reference electrode 42 of the pump cell 4 is arranged extends to the base end side of the sensor element 1A, and through a first reference gas introduction port 311 opened at the end surface thereof, is in communication with the atmosphere A.
  • Terminal portions 71 and 72 are provided on both surfaces in the stacking direction at the base end portion of the sensor element 1A. Specifically, the surface on the side of the second reference gas introduction path 32 (that is, the upper surface in FIG. 6) and the surface on the side of the first reference gas introduction path 31 (that is, the lower surface in FIG. 6) each have A plurality of terminal portions 71 and 72 are arranged and electrically connected to the spring terminal portion L2 (for example, see FIG. 2 described above) inside the atmosphere cover C2. Each terminal of the terminal portions 71 and 72 is electrically connected to an electrode constituting each cell of the detection portion or to the positive and negative terminals of the heating element 62 of the heater 6 via a lead portion.
  • the pump electrode 41 of the pump cell 4 is arranged on the upstream side in the gas flow direction of the exhaust gas G, and the sensor electrode 51 of the sensor cell 5 is arranged on the downstream side of the pump electrode 41.
  • the first reference electrode 42 of the pump cell 4 is positioned opposite the pump electrode 41 with the first solid electrolyte body 11 interposed therebetween, and the second reference electrode 52 of the sensor cell 5 is positioned with the second solid electrolyte body 12 interposed therebetween. It is located at a position facing the sensor electrode 51 .
  • the monitor electrode 53 of the monitor cell 50 is located at the same position as the sensor electrode 51 of the sensor cell 5 in the gas flow direction.
  • the sensor electrode 51 of the sensor cell 5 and the monitor electrode 53 of the monitor cell 50 are arranged adjacent to each other in a cross section orthogonal to the gas flow direction.
  • the second reference electrode 52 is common to the sensor cell 5 and the monitor cell 50 and arranged to face both the sensor electrode 51 and the monitor electrode 53 .
  • the heating element 62 of the heater 6 is embedded in the bottom wall of the first reference gas introduction passage 31 facing the first solid electrolyte body 11, forms a predetermined heater pattern, and can evenly heat the entire detection section. It's becoming
  • the electrodes of the pump cell 4, sensor cell 5 and monitor cell 50 can be porous cermet electrodes containing a noble metal or noble metal alloy material and a zirconia-based solid electrolyte.
  • the sensor electrode 51 of the sensor cell 5 can be constructed using an electrode material having decomposition activity for NOx to be detected.
  • Such a sensor electrode 51 is, for example, an electrode containing platinum and rhodium (hereinafter appropriately referred to as a Pt--Rh electrode), and has oxygen and NOx decomposition activity.
  • the pump electrode 41 of the pump cell 4 and the monitor electrode 53 of the monitor cell 50 are made of an electrode material that has oxygen decomposition activity but does not have NOx decomposition activity. electrodes). Also, the first reference electrode 42 and the second reference electrode 52 can be configured as, for example, electrodes containing platinum (hereinafter, appropriately referred to as Pt electrodes).
  • the sensor electrode 51 is not limited to the Pt--Rh electrode, and may be formed of an electrode material having a similar action.
  • an electrode material for example, an alloy material obtained by mixing platinum with a metal such as palladium (Pd), iron (Fe), cobalt (Co), or nickel (Ni) is used.
  • each cell of the sensor element 1A is in a low activation state, and it is desired to quickly raise the temperature to a predetermined activation temperature.
  • the sensor electrode 51 of the sensor cell 5 is a Pt—Rh electrode, rhodium is known to occlude oxygen.
  • the pump cell 4 is used to generate hydrogen as a reducing gas, thereby performing early activation control to remove the stored oxygen.
  • a starting voltage V2 higher than the normal control voltage V1 is applied to the pair of electrodes 41 and 42 of the pump cell 4.
  • oxygen in the exhaust gas G present in the gas chamber 2 to be measured is decomposed, and the water vapor is decomposed to generate hydrogen as a reducing gas.
  • the generated hydrogen is supplied to the sensor cell 5 located on the downstream side of the gas flow and consumed in the reaction with the oxygen occluded in the sensor electrode 51 .
  • Oxygen generated together with hydrogen by the decomposition of water vapor is decomposed at the pump electrode 41 .
  • the oxygen ionized at the pump electrode 41 moves inside the first solid electrolyte body 11 and is discharged from the first reference electrode 42 to the first reference gas introduction passage 31 .
  • the start-up voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 is such that the oxygen in the exhaust gas G is decomposed on the pump electrode 41 and the water vapor is decomposed to generate hydrogen which becomes a reducing gas. is set to a voltage that can be generated. At this time, oxygen generated together with hydrogen by decomposition of water vapor is decomposed on the pump electrode 41 and moves through the first solid electrolyte body 11 (for example, in FIG. 6 indicated by a solid line arrow), and is discharged to the first reference electrode 42 side.
  • control voltage V1 during normal operation is adjusted so that the oxygen concentration in the measured gas chamber 2 is equal to or lower than a predetermined concentration.
  • the magnitude of the control voltage V1 is, for example, 0.3 to 0.4 V, and the first solid electrolyte body 11 is the limit at which the current flowing through the pump cell 4 hardly changes even if the voltage applied to the pump cell 4 changes. It is determined within the range of voltage values that indicate current characteristics.
  • the starting voltage V2 is set higher than the control voltage V1, and is set as a voltage value higher than the voltage value indicating the limit current characteristic.
  • the startup voltage V2 of this embodiment can be set within a range of 0.5 to 2V, for example.
  • the amount of oxygen supplied to the sensor electrode 51 is expressed as the oxygen limiting current value IL defined by Equation 1, and the amount of hydrogen generation is It can be controlled based on the relationship between the pump current value flowing through the pump cell 4 and time.
  • the amount of oxygen supply is determined, for example, by the cross-sectional area S and length L of the second reference gas introduction passage 32 in Equation 1, so that the oxygen limiting current value IL is 20 ⁇ A or more, preferably 2500 ⁇ A or less. , so that both the removal of occluded oxygen and the removal of stagnant hydrogen can be suitably carried out at a desired hydrogen generation amount.
  • the amount of hydrogen generated is controlled to be in the range of 2000 ⁇ A ⁇ s or more and 11000 ⁇ A ⁇ s or less, and in combination with an appropriate amount of oxygen supply, the activation time during early activation control can be shortened.
  • the NOx concentration based on the output of the sensor cell 5 during early activation control is within a predetermined threshold range on the positive side or the negative side, and the time until it converges to approximately 0 is defined as the activation time.
  • the NOx output waveform and activation time are correlated with the oxygen supply amount. After the waveform swings from the negative side to the positive side at the end of the early activation control (t1), it gradually decreases. time) increases. This is because hydrogen stays in the gas chamber 2 to be measured, while oxygen is depleted in the second reference gas introduction passage 32 due to the supply of oxygen to the sensor electrode 51 side, and the oxygen concentration in the second reference gas introduction passage 32 decreases. due to that. Therefore, the difference between the oxygen partial pressure in the measured gas chamber 2 and the oxygen partial pressure in the second reference gas introduction passage 32 changes, and the electromotive force between the pair of electrodes 51 and 52 of the sensor cell 5 changes. , NOx output fluctuations.
  • the second reference gas introduction passage 32 is preferably configured so that the oxygen supply amount (oxygen limiting current value IL) is 40 ⁇ A or more, and a sufficient amount of oxygen is supplied to activate the oxygen. can save time.
  • the oxygen supply amount (oxygen limiting current value IL) increases, the spatial volume of the second reference gas introduction path 32 increases, which may reduce the strength of the element.
  • the sensor element 1A has the terminal portions 71 and 72 arranged at the proximal end where the second reference gas introduction path 32 opens, and is sandwiched between the spring terminal portions L2.
  • the upper limit of the oxygen supply amount (oxygen limiting current value IL) is preferably set to 2500 ⁇ A or less, more preferably 1000 ⁇ A or less, so as to ensure the device strength.
  • the hydrogen generation amount can be adjusted so as to achieve a desired activation time within the range of 5000 ⁇ A ⁇ s or more and 10000 ⁇ A ⁇ s or less.
  • the sensor control unit 10 is configured as, for example, a sensor control unit (hereinafter referred to as SCU) that controls the entire gas sensor 1, and an engine control unit (hereinafter referred to as ECU) that controls the entire vehicle engine. (referred to as ).
  • SCU sensor control unit
  • ECU engine control unit
  • the SCU includes an early activation control unit 101, a detection control unit 102, and a heater control unit 103 shown in FIG. 1, as well as a communication unit and a calculation unit (not shown).
  • the NOx concentration can be detected by going there, and the detection result can be output to the ECU at any time.
  • step S1 when the sensor control unit 10 starts control, first, in step S1, it is determined whether or not sensor activation is permitted, and if sensor activation is permitted, the process proceeds to step S2 and subsequent steps.
  • Step S2 corresponds to heater control by heater control section 103
  • steps S3 to S5 correspond to early activation control by early activation control section 101.
  • FIG. Steps S5 to S7 correspond to NOx detection control by the detection control section 102
  • step S6 corresponds to the pump cell control section 102A
  • step S7 corresponds to the sensor cell detection section 102B and the monitor cell detection section 102C.
  • step S1 the state of the sensor element 1A is checked before performing these controls, thereby preventing damage to the sensor element 1A and erroneous detection.
  • step S1 determines whether the SCU is activated or not. If the determination in step S1 is affirmative, the SCU is activated, the process proceeds to step S2, and energization of the sensor element 1A is started. If the determination in step S1 is negative, the process ends without starting the SCU.
  • step S2 energization control to the heater 6 is started, and the temperature of the solid electrolyte body and electrodes of the sensor element 1A is raised to a predetermined activation temperature.
  • This energization control can be performed by utilizing the fact that the impedance of each cell of the sensor element 1A changes with temperature, and controlling the amount of energization so that the detected impedance becomes a predetermined value. Specifically, until the impedance of the pump cell 4 reaches the activation determination impedance corresponding to a predetermined activation temperature, the energization duty of the heater 6 is set large (for example, 100%). can be performed by PI-controlling the energization duty of the heater 6 based on the deviation of . Impedance detection is not limited to the pump cell 4, and can be performed for other cells and the heater 6 as well.
  • step S2 After the power supply control to the heater 6 is started in step S2, the process proceeds to step S3, and early activation control by the early activation control unit 101 is started. Specifically, the voltage applied to the pair of electrodes 41 and 42 of the pump cell 4 is raised to the preset starting voltage V2.
  • step S4 it is determined whether or not a predetermined time has elapsed. If the determination in step S4 is affirmative, the process proceeds to step S5, and if the determination in step S4 is negative, step S4 is repeated until a predetermined period of time elapses.
  • the starting voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 is set higher (eg, 0.5 to 2 V) than the normal control voltage V1 (eg, 0.3 to 0.4 V). ).
  • the oxygen in the exhaust gas G is decomposed and the water vapor is decomposed to generate hydrogen as a reducing gas.
  • the generated hydrogen spreads in the gas chamber 2 to be measured, reaches the sensor cell 5, reacts with the oxygen occluded in the sensor electrode 51, and is removed.
  • the predetermined time in step S4 corresponds to the time from the start of the early activation control to the end of the early activation control (t1) in FIGS. become more.
  • the more hydrogen generated the longer the activation time. Therefore, it is desirable to set in advance in consideration of the desired hydrogen generation amount and activation time.
  • the lower limit of the predetermined time is, for example, 5 seconds or more, and may be, for example, 10 seconds or more so as to more reliably reach the activation temperature.
  • the upper limit of the predetermined time is a time that can be secured as a preparation time until the start of detection, for example, 30 seconds or less. good.
  • step S4 after a predetermined period of time has elapsed, the process proceeds to step S5, where the control by the early activation control unit 101 ends and the detection control unit 102 switches to normal control.
  • step S6 the pump cell control unit 102A is used to lower the startup voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 to a lower control voltage V1.
  • step S6 the output current of the sensor cell 5 is detected using the sensor cell detection section 102B, and the output current of the monitor cell 50 is detected using the monitor cell detection section 102C.
  • a predetermined voltage indicating limiting current characteristics is applied to the sensor cell 5 and the monitor cell 50. From the output current of the sensor cell 5 based on the residual oxygen and NOx in the gas chamber 2 to be measured, the output current of the monitor cell 50 based only on residual oxygen is determined. By subtracting the output current, the NOx concentration corrected for the influence of residual oxygen can be calculated.
  • the monitor cell 50 in the first embodiment is not provided, and the sensor electrode 51 and the second reference electrode 52 of the sensor cell 5 sandwich the second solid electrolyte body 12 and are equivalent to each other. located opposite to each other.
  • the sensor electrode 51 is arranged on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured. 41 are placed.
  • the sensor current based on residual oxygen and NOx in the sensor cell 5 is very small compared to the pump current based on oxygen discharged from the gas chamber 2 to be measured to the first reference gas introduction passage 31 by the pump cell 4. . Therefore, by providing the second reference gas introduction path 32 separately from the first reference gas introduction path 31, there are advantages such as being less susceptible to concentration fluctuations due to the discharge of oxygen. From the point of view, when the spatial volume of the second reference gas introduction passage 32 becomes small, as described above, there is a possibility that the oxygen supply amount during the early activation control cannot be sufficiently secured. Further, when the spatial volume of the first reference gas introduction passage 31 increases, the strength of the sensor element 1A may decrease as described above.
  • the second reference gas introduction path 32 is configured such that the cross-sectional shape of the flow path is a flat shape in which the height of the flow path (that is, the length in the stacking direction) is sufficiently small relative to the width of the flow path. This makes it easier to introduce the atmosphere A onto the second reference electrode 52 while suppressing the element thickness in the stacking direction. Further, it is desirable to sufficiently reduce the ratio of the channel height h of the second reference gas introduction path 32 to the thickness t of the shielding layer 14 in which the second reference gas introduction path 32 is formed. As a result, the thickness of the shielding layer 14, which serves as the channel wall of the second reference gas introduction channel 32, is secured, and the channel cross-sectional area S required for early activation control is secured while maintaining the element strength. of oxygen can be supplied.
  • the flow passage cross-sectional area S of the second reference gas introduction passage 32 is 0.007 mm 2 or more. It is desirable to be configured to be The cross-sectional area S of the flow path is represented by a region surrounded by a dotted line in FIG. Defined as cross-sectional areas in orthogonal directions. As a result, in a normal NOx sensor configuration (for example, see FIG. 2), it is possible to achieve a configuration that satisfies the lower limit value of 20 ⁇ A or more of the oxygen supply amount (IL) in FIG. 3 described above.
  • the cross-sectional area S of the second reference gas introduction path 32 is set to 80 mm 2 or less.
  • the upper limit value of the oxygen supply amount (IL) in FIG. 3 described above, 2500 ⁇ A or less can be satisfied.
  • the oxygen supply amount (IL) based on Equation 1 for the entire channel length L from the distal end side to the proximal end side of the second reference gas introduction channel 32, the same channel cross-sectional area S Also, the oxygen supply amount is obtained for each block with different temperature conditions, etc., and the total oxygen supply amount (IL) is calculated as the sum of them.
  • the channel length L is configured to be, for example, 20 mm or more and 40 mm or less.
  • the ratio (h/t) between the channel height h of the second reference gas introduction channel 32 and the thickness t of the shielding layer 14 in which the second reference gas introduction channel 32 is formed is, specifically, (h/t) ⁇ 1/4, preferably (h/t) ⁇ 1/5.
  • the thickness t of the shielding layer 14 at the position where the second reference gas introduction path 32 is formed is four to five times or more the height h of the flow path.
  • Sufficient element strength can be obtained even in a configuration in which is opened. From the viewpoint of highly satisfying the required cross-sectional area S of the flow path and the strength of the element required when assembling the element, it is preferable that 0.03 ⁇ (h/t) ⁇ 0.13. Preferably, it can be constructed so as to satisfy the relationship of 0.04 ⁇ (h/t) ⁇ 0.11.
  • FIG. 14 A third embodiment of the gas sensor will be described with reference to FIGS. 14 to 17.
  • FIG. 14 Since the basic structure of the gas sensor 1 of this embodiment is the same as that shown in FIGS. 1 and 2, illustration and description thereof will be omitted, and differences will be mainly described below.
  • the second A second reference gas introduction port 321 is formed at the base end of the reference gas introduction path 32 so as to penetrate through the shielding layer 14 in the stacking direction.
  • the second reference gas introduction port 321 is formed at a position adjacent to the terminal portion 71 arranged on the surface of the shielding layer 14 on the proximal side, and is located at the flow path end portion on the proximal side of the second reference gas introduction passage 32 . connected to. At this time, since the sensor element 1A does not have a space at the base end portion where the terminal portion 71 is arranged, it is possible to secure the element strength required when assembling the element.
  • the channel length L of the second reference gas introduction channel 32 is shorter than the configuration in which the second reference gas introduction port 321 opens at the end surface on the proximal end side, and the channel cross-sectional area S and the flow Since the ratio (S/L) of the path length L is increased, it becomes easier to secure the oxygen supply amount.
  • the cross-sectional area of the through hole is used for the portion passing through the second reference gas introduction port 321, and the cross-sectional area of the through hole and the cross section of the second reference gas introduction passage 32 are used as the flow passage cross-sectional area S. The area is used to calculate the oxygen supply amount.
  • a diffusion layer (hereinafter referred to as a A configuration in which a porous diffusion layer 33 is formed can also be used.
  • the element strength can be improved by the porous diffusion layer 33 . can.
  • the oxygen supply amount in the above equation 1 is calculated as follows: It will be reduced compared to the case of the space portion. If it is desired to increase the amount of oxygen supplied, the cross-sectional area S of the second reference gas introduction passage 32 can be increased, or the portion filled with the porous diffusion layer 33 can be reduced. In the latter case, the porous diffusion layer 33 may be arranged so as to include at least the base end portion where the terminal portion 71 is formed from the base end surface where the second reference gas introduction port 321 opens. It is possible to improve the ease of assembly by reinforcing the proximal end portion that is held during assembly.
  • the passage wall of the second reference gas introduction passage 32 may be provided with a reinforcing portion 34 in which a columnar reinforcing member is embedded.
  • the reinforcing portion 34 is formed to reduce the flow of the second reference gas introduction passage 32 from the vicinity of the base end surface where the second reference gas introduction port 321 opens to the portion including the base end portion where the terminal portion 71 is formed. Can be placed within the width of the road. Also in this way, it is possible to reinforce the base end part that is held when assembling the sensor element 1A, thereby improving the assembling efficiency.
  • the reinforcement part 34 has, for example, a higher strength than the shielding layer 14 that forms the flow path wall, and may be formed so that the strength at the end of the second reference gas introduction path 32 is improved. It may be the same ceramic material as or a different material. Further, here, the reinforcing member embedded in the reinforcing portion 34 is formed in a flat rectangular plate shape, but the shape, size, etc. can be changed as appropriate. Moreover, although the reinforcing member is embedded inside the flow path wall, for example, a configuration in which a part of the reinforcing member is exposed at the end surface where the second reference gas inlet 321 is formed may be employed.
  • a plurality of second reference gas introduction ports 321 may be opened in the width direction wall of the second reference gas introduction passage 32 .
  • the second reference gas introduction path 32 is not formed at the proximal end portion where the terminal portion 71 (see, for example, FIG. 15) is arranged, and the space portion serving as the second reference gas introduction path 32 is formed at the proximal end. It branches into two from the part and communicates with a plurality of second reference gas introduction ports 321 opened in both side walls.
  • the bifurcated path obliquely penetrates both side walls toward the base end, and the vicinity of the second reference gas inlet 321 is filled with the porous diffusion layer 33 .
  • the porous diffusion layer 33 may be filled in the entire second reference gas introduction path 32, or the configuration may be such that the porous diffusion layer 33 is not filled.
  • the porous diffusion layer 33 can be applied not only to the second reference gas introduction passage 32 shown in FIGS. 14 and 16, but also to the second reference gas introduction passage 32 shown in FIG. 14 or FIG. In that case, the porous diffusion layer 33 is provided at least at the second reference gas introduction port 321 and its vicinity, so that the strength of the opening can be improved.
  • the flow path shape of the second reference gas introduction path 32 is not limited to the illustrated one, and can be changed as appropriate.
  • the gas sensor 1 is used as a NOx sensor.
  • the configuration and shape of each part of the gas sensor 1 and the sensor element 1A are not limited to those shown in the drawings, and can be changed as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

[Solution] The present invention provides a gas sensor (1) comprising a first solid electrolyte (11) and a second solid electrolyte (12) facing each other across a gas chamber to be measured (2), a first reference gas introduction path (31) and a second reference gas introduction path (32) into which a reference gas (A) containing oxygen is introduced, a pump cell (4) having a pump electrode (41) and a first reference electrode (42), a sensor cell (5) having a sensor electrode (51) and a second reference electrode (52), and an early activation control unit (101) for controlling the pump cell (4), at the time of sensor startup, to a startup voltage (V2) higher than the normal control voltage (V1). The second reference gas introduction path (32) is formed so that the oxygen limit current value indicating, as a current value flowing through the second solid electrolyte (12), the limit value for oxygen fed from the second reference gas introduction path (32) to the sensor electrode (51), at the time of sensor startup, is 20 μA or above.

Description

ガスセンサgas sensor 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年5月12日に出願された特許出願番号2021-080944号に基づくもので、ここにその記載内容を援用する。 This application is based on Patent Application No. 2021-080944 filed on May 12, 2021, and the contents thereof are incorporated herein.
 本開示は、被測定ガス中の特定ガスの濃度を検出するガスセンサに関する。 The present disclosure relates to a gas sensor that detects the concentration of a specific gas in gas to be measured.
 例えば、車両用のガスセンサにおいては、始動時に速やかにガス検出を開始するために、固体電解質体を用いたガスセンサ素子の早期活性化が求められる。ガスセンサ素子は、被測定ガス中の酸素濃度を調整するためのポンプセルと、NOx等の特定ガスを検出するためのセンサセルとを備えており、ポンプセル及びセンサセルの固体電解質体及び電極は、所定の活性温度となるように、内蔵ヒータ等を用いて加熱される。 For example, in gas sensors for vehicles, early activation of the gas sensor element using a solid electrolyte body is required in order to start gas detection promptly at startup. The gas sensor element includes a pump cell for adjusting the oxygen concentration in the gas to be measured and a sensor cell for detecting a specific gas such as NOx. It is heated using a built-in heater or the like so as to reach the temperature.
 また、センサセルの電極材料にロジウムが含まれる場合には、始動前に酸素が電極材料に吸蔵されることに起因して、センサ出力が変動することが知られている。そこで、センサ出力の安定化のために、ポンプセルを用いた早期活性制御を行うことが提案されている。例えば、特許文献1には、ガス濃度の検出を行うセンサ始動時に、ポンプセルへの印加電圧を、吸蔵される酸素を除去するための除去用電圧とし、被測定ガス中の水分等の分解により、水素等の還元ガスを発生させるポンプセル制御部が開示されている。 In addition, it is known that when the electrode material of the sensor cell contains rhodium, the sensor output fluctuates due to oxygen being occluded by the electrode material before starting. Therefore, in order to stabilize the sensor output, it has been proposed to perform early activation control using a pump cell. For example, in Patent Document 1, when a sensor that detects gas concentration is started, the voltage applied to the pump cell is set to a removal voltage for removing occluded oxygen. A pump cell controller is disclosed for generating a reducing gas such as hydrogen.
特開2016-70922号公報JP 2016-70922 A
 特許文献1において、ポンプセル制御部は、例えば、除去用電圧の印加時間を調整して、酸素の除去に十分な還元ガスが発生するように制御する。その場合、ポンプセルにて発生する還元ガスは、センサセルの電極に吸蔵される酸素との反応により消費される分に加えて、余剰分を含むことになる。余剰分の還元ガスは、通常は、基準電極側から固体電解質体を介して供給される酸素との反応により除去される。 In Patent Literature 1, the pump cell control unit adjusts, for example, the application time of the voltage for removal, and controls such that enough reducing gas is generated to remove oxygen. In that case, the reducing gas generated in the pump cell will contain surplus gas in addition to the gas consumed by the reaction with oxygen occluded by the electrodes of the sensor cell. Excess reducing gas is usually removed by reaction with oxygen supplied from the reference electrode side through the solid electrolyte body.
 一方、センサセルとポンプセルとが、それぞれ異なる固体電解質体に形成されたガスセンサが知られている。この構成では、センサセルの基準電極側に配置され、酸素を含む基準ガスを導入するための基準ガス導入路と、ポンプセルの基準電極側の基準ガス導入路とが、別々に設けられる。その場合には、素子組付けの観点から素子厚さが制約され、出力の小さいセンサセル側の基準ガス導入路は、ポンプセル側よりも小さくなる。ところが、このセンサ構成に、上述した早期活性制御を適用すると、センサ電極における還元ガスの除去に時間がかかり、NOx検出開始に遅れが生じるおそれがあることが判明した。 On the other hand, a gas sensor is known in which a sensor cell and a pump cell are formed on different solid electrolyte bodies. In this configuration, the reference gas introduction path for introducing the oxygen-containing reference gas arranged on the reference electrode side of the sensor cell and the reference gas introduction path on the reference electrode side of the pump cell are separately provided. In that case, the thickness of the element is restricted from the viewpoint of element assembly, and the reference gas introduction path on the sensor cell side with a smaller output becomes smaller than that on the pump cell side. However, it has been found that if the above-described early activation control is applied to this sensor configuration, it will take time to remove the reducing gas from the sensor electrode, which may cause a delay in the start of NOx detection.
 本開示の目的は、早期活性制御において発生する還元ガスを速やかに除去し、特定ガスの検出を遅延なく開始することができるガスセンサを提供しようとするものである。 An object of the present disclosure is to provide a gas sensor capable of quickly removing reducing gas generated in early activation control and starting detection of a specific gas without delay.
 本開示の一態様は、
 被測定ガスに含まれる特定ガスの濃度を検出するガスセンサであって、
 上記被測定ガスが導入される被測定ガス室と、
 上記被測定ガス室を挟んで対向する第1固体電解質体及び第2固体電解質体と、
 酸素を含む基準ガスが導入される第1基準ガス導入路及び第2基準ガス導入路と、
 上記第1固体電解質体の上記被測定ガス室に面する表面にポンプ電極を有し、上記第1基準ガス導入路に面する表面に第1基準電極を有して、上記被測定ガス室の酸素濃度を調整するポンプセルと、
 上記第2固体電解質体の上記被測定ガス室に面する表面にセンサ電極を有し、上記第2基準ガス導入路に面する表面に第2基準電極を有して、上記特定ガスに基づく出力を生じるセンサセルと、
 センサ始動時に上記ポンプセルへ印加される電圧を、通常時の制御電圧よりも高い始動時電圧に制御し、上記被測定ガスに含まれる水の分解によって上記被測定ガス室に発生する還元ガスを用いて、上記センサ電極に吸蔵された酸素を除去する早期活性制御部と、を備えており、
 上記第2基準ガス導入路は、上記センサ始動時に、上記第2基準ガス導入路から上記センサ電極へ向けて供給される酸素の限界量を、上記第2固体電解質体を流れる電流値として示す酸素限界電流値が、20μA以上となるように形成されている、ガスセンサにある。
One aspect of the present disclosure is
A gas sensor that detects the concentration of a specific gas contained in a gas to be measured,
a gas chamber to be measured into which the gas to be measured is introduced;
a first solid electrolyte body and a second solid electrolyte body facing each other with the gas chamber to be measured interposed therebetween;
a first reference gas introduction path and a second reference gas introduction path into which a reference gas containing oxygen is introduced;
The first solid electrolyte body has a pump electrode on the surface thereof facing the gas chamber to be measured, and a first reference electrode on the surface thereof facing the first reference gas introduction path. a pump cell for adjusting oxygen concentration;
a sensor electrode on the surface facing the gas chamber to be measured of the second solid electrolyte body, a second reference electrode on the surface facing the second reference gas introduction path, and an output based on the specific gas a sensor cell that produces
The voltage applied to the pump cell when the sensor is started is controlled to a starting voltage higher than the normal control voltage, and the reducing gas generated in the measured gas chamber by the decomposition of the water contained in the measured gas is used. and an early activation control unit for removing oxygen occluded in the sensor electrode,
The second reference gas introduction path is configured to indicate a limit amount of oxygen supplied from the second reference gas introduction path toward the sensor electrode when the sensor is started, as a current value flowing through the second solid electrolyte body. The gas sensor is formed to have a limit current value of 20 μA or more.
 上記構成のガスセンサにおいて、早期活性制御部により、ガスセンサのポンプセルに、通常時の制御電圧よりも高い始動時電圧が印加されると、被測定ガス室内の水の分解により還元ガスが発生する。還元ガスは、センサセルへ供給されて、センサ電極に吸蔵されている酸素を還元除去するために消費される。余剰となった還元ガスは、第2基準ガス導入路内の酸素が第2基準電極でイオン化し、第2固体電解質を介して供給されることにより、順次除去される。このとき、吸蔵酸素の除去に十分な還元ガスが供給される一方で、素子厚の制約等から第2基準ガス導入路が小さくなると、第2基準ガス導入路からの酸素供給量が、還元ガスの発生量に対して不足して、活性化に遅れが生じることが判明した。これは、第2基準ガス導入路における酸素濃度が低下し、還元ガスがセンサ電極に滞留することによると考えられる。 In the gas sensor configured as described above, when a start-up voltage higher than the normal control voltage is applied to the pump cell of the gas sensor by the early activation control section, reducing gas is generated due to decomposition of water in the gas chamber to be measured. The reducing gas is supplied to the sensor cell and consumed to reduce and remove oxygen stored in the sensor electrode. The excess reducing gas is sequentially removed by ionizing the oxygen in the second reference gas introduction path at the second reference electrode and supplying the ionized gas through the second solid electrolyte. At this time, while sufficient reducing gas is supplied to remove the occluded oxygen, if the second reference gas introduction passage becomes small due to restrictions on the element thickness, etc., the amount of oxygen supplied from the second reference gas introduction passage becomes It was found that the activation was delayed due to the shortage of the generated amount. It is considered that this is because the oxygen concentration in the second reference gas introduction passage decreases and the reducing gas stays in the sensor electrode.
 上記構成のガスセンサは、第2基準ガス導入路が、センサ始動時にセンサ電極へ向けて供給される酸素の限界量を、第2固体電解質体を流れる電流値として示す酸素限界電流値が20μA以上となるように形成されることにより、還元ガスの発生量に対応させた酸素量を、第2基準ガス導入路から供給可能となる。これにより、還元ガスの滞留を抑制することができるので、発生する還元ガスを除去して早期活性化を図ることができ、被測定ガス中の特定ガスの検出を、速やかに開始することができる。 In the gas sensor having the above configuration, the second reference gas introduction path has an oxygen limit current value of 20 μA or more, which indicates the limit amount of oxygen supplied to the sensor electrode when the sensor is started, as a current value flowing through the second solid electrolyte body. As a result, the amount of oxygen corresponding to the amount of reducing gas generated can be supplied from the second reference gas introduction passage. As a result, it is possible to suppress the retention of the reducing gas, so that the generated reducing gas can be removed and activation can be achieved early, and the detection of the specific gas in the gas to be measured can be started promptly. .
 以上のごとく、上記態様によれば、早期活性制御において発生する還元ガスを速やかに除去し、特定ガスの検出を遅延なく開始することができるガスセンサを提供することができる。 As described above, according to the above aspect, it is possible to provide a gas sensor capable of quickly removing reducing gas generated in early activation control and starting detection of a specific gas without delay.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、ガスセンサの主要部であるセンサ素子及びセンサ制御部の概略構成を示す長手方向断面図であり、 図2は、実施形態1における、ガスセンサの全体構成を示す長手方向断面図であり、 図3は、実施形態1における、ガスセンサの早期活性制御時の酸素供給量と活性時間との関係を示す図であり、 図4は、実施形態1における、ガスセンサの早期活性制御時の水素発生量と活性時間との関係を示す図であり、 図5は、実施形態1における、ガスセンサの早期活性制御時に流れるポンプ電流値の時間推移を示す図であり、 図6は、実施形態1における、センサ素子の詳細構成を示す長手方向断面図で、図7のa-a線断面図であり、 図7は、実施形態1における、センサ素子の詳細構成を示す軸直方向断面図であり、 図8は、実施形態1における、ガスセンサの早期活性制御時のNOx出力の時間推移を示す図であり、 図9は、実施形態1における、実施形態1における、ガスセンサの早期活性制御時のNOx出力の時間推移を示す図であり、 図10は、実施形態1における、ガスセンサの早期活性制御時の酸素供給量と活性時間との関係を示す図であり、 図11は、実施形態1における、ガスセンサの水素発生量による早期活性制御時のNOx出力の時間推移の変化を示す図であり、 図12は、実施形態1における、センサ制御部によるセンサ制御の手順を示すフローチャート図であり、 図13は、実施形態2における、センサ素子の要部構成を示す幅方向断面図であり、 図14は、実施形態3における、センサ素子の概略構成を示す長手方向断面図であり、 図15は、実施形態3の変形例における、センサ素子の概略構成を示す長手方向断面図であり、 図16は、実施形態3の変形例における、センサ素子の要部構成を示す端面図及びそのb-b線断面図である長手方向断面図であり、 図17は、実施形態3の変形例における、センサ素子の要部構成を示す端面図及びそのc-c線断面図である長手方向断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
1 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element and a sensor control unit, which are main parts of a gas sensor, in Embodiment 1; 2 is a longitudinal sectional view showing the overall configuration of the gas sensor in Embodiment 1, FIG. 3 is a diagram showing the relationship between the oxygen supply amount and the activation time during early activation control of the gas sensor in the first embodiment; FIG. 4 is a diagram showing the relationship between the amount of hydrogen generated and the activation time during early activation control of the gas sensor in Embodiment 1; FIG. 5 is a diagram showing the temporal transition of the pump current value flowing during early activation control of the gas sensor in the first embodiment; 6 is a longitudinal cross-sectional view showing the detailed configuration of the sensor element in Embodiment 1, and is a cross-sectional view taken along line aa in FIG. 7 is a cross-sectional view in the direction perpendicular to the axis showing the detailed configuration of the sensor element in Embodiment 1, 8 is a diagram showing the time transition of the NOx output during early activation control of the gas sensor in Embodiment 1, 9 is a diagram showing the time transition of the NOx output during early activation control of the gas sensor in Embodiment 1, FIG. 10 is a diagram showing the relationship between the oxygen supply amount and the activation time during early activation control of the gas sensor in Embodiment 1; FIG. 11 is a diagram showing changes in NOx output over time during early activation control based on the amount of hydrogen generated by the gas sensor in the first embodiment; 12 is a flow chart showing the procedure of sensor control by the sensor control unit in the first embodiment, FIG. 13 is a cross-sectional view in the width direction showing the main configuration of the sensor element in Embodiment 2; 14 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element in Embodiment 3, 15 is a longitudinal cross-sectional view showing a schematic configuration of a sensor element in a modification of Embodiment 3, FIG. 16 is an end view showing the configuration of the main parts of the sensor element and a longitudinal cross-sectional view of the bb line cross-sectional view thereof in a modification of Embodiment 3; 17A and 17B are an end view and a longitudinal cross-sectional view taken along the line cc of the sensor element in a modified example of the third embodiment.
(実施形態1)
 ガスセンサに係る実施形態1について、図1~図12を参照して説明する。
 図1、図2に示すように、本形態のガスセンサ1は、例えば、車両用エンジン等の内燃機関の排ガス通路に設置されて、被測定ガスに含まれる特定ガスの濃度を検出する限界電流式センサとして構成される。その場合の被測定ガスは、排ガス通路を流通する排ガスGであり、特定ガスとして、例えば、排ガスG中のNOx(すなわち、窒素酸化物)の濃度が検出される。ガスセンサ1に導入される排ガスGには、例えば、排ガス通路に存在する水分等が含まれる。
(Embodiment 1)
A first embodiment of a gas sensor will be described with reference to FIGS. 1 to 12. FIG.
As shown in FIGS. 1 and 2, the gas sensor 1 of the present embodiment is installed, for example, in an exhaust gas passage of an internal combustion engine such as a vehicle engine, and detects the concentration of a specific gas contained in the gas to be measured. Configured as a sensor. The gas to be measured in this case is the exhaust gas G flowing through the exhaust gas passage, and the concentration of NOx (that is, nitrogen oxides) in the exhaust gas G, for example, is detected as the specific gas. The exhaust gas G introduced into the gas sensor 1 contains, for example, water present in the exhaust gas passage.
 図1において、ガスセンサ1は、排ガスGが被測定ガスとして導入される被測定ガス室2と、被測定ガス室2を挟んで対向する第1固体電解質体11及び第2固体電解質体12と、大気Aが基準ガスとして導入される第1基準ガス導入路31及び第2基準ガス導入路32と、第1固体電解質体11を用いて形成されるポンプセル4と、第2固体電解質体12を用いて形成されるセンサセル5とを備えるセンサ素子1Aと、早期活性制御部101を備えるセンサ制御部10と、を備えている。 In FIG. 1, the gas sensor 1 includes a measured gas chamber 2 into which exhaust gas G is introduced as a measured gas, a first solid electrolyte body 11 and a second solid electrolyte body 12 facing each other across the measured gas chamber 2, A first reference gas introduction passage 31 and a second reference gas introduction passage 32 into which the atmosphere A is introduced as a reference gas, a pump cell 4 formed using the first solid electrolyte body 11, and a second solid electrolyte body 12 are used. A sensor element 1</b>A having a sensor cell 5 formed by
 図1中に矢印で示すように、センサ素子1Aの長手方向X(すなわち、図中の左右方向)において、排ガスGはセンサ素子1Aの先端側(すなわち、図中の左端側)から、大気Aはセンサ素子1Aの基端側(すなわち、図中の右端側)から、その内部へ導入される。被測定ガス室2におけるガス流れ方向は、排ガスGの導入方向と同じ方向となる。 As indicated by the arrow in FIG. 1, in the longitudinal direction X of the sensor element 1A (that is, the horizontal direction in the figure), the exhaust gas G flows from the tip side of the sensor element 1A (that is, the left end side in the figure) to the atmosphere A. is introduced into the inside of the sensor element 1A from the base end side (that is, the right end side in the figure). The direction of gas flow in the measured gas chamber 2 is the same as the direction in which the exhaust gas G is introduced.
 好適には、センサ素子1Aにはヒータ6が設けられて、ポンプセル4及びセンサセル5を、検出に適した温度に加熱可能となっている。また、センサ制御部10には、検出制御部102が設けられて、通常の検出時のセンサ素子1Aの作動を制御する共に、ヒータ制御部103が設けられて、ヒータ6の作動を制御するようになっている。 Preferably, the sensor element 1A is provided with a heater 6 so that the pump cell 4 and the sensor cell 5 can be heated to temperatures suitable for detection. The sensor control unit 10 is provided with a detection control unit 102 for controlling the operation of the sensor element 1A during normal detection, and is provided with a heater control unit 103 for controlling the operation of the heater 6. It has become.
 ポンプセル4は、第1固体電解質体11とその表面の一対の電極41、42にて構成される。具体的には、第1固体電解質体11の被測定ガス室2に面する表面にポンプ電極41を有し、第1基準ガス導入路31に面する表面に第1基準電極42を有して、被測定ガス室2の酸素濃度を調整する。また、センサセル5は、第2固体電解質体12とその表面の一対の電極51、52にて構成される。具体的には、第2固体電解質体12の被測定ガス室2に面する表面にセンサ電極51を有し、第2基準ガス導入路32に面する表面に第2基準電極52を有して、排ガスG中のNOxに基づく出力を生じる。 The pump cell 4 is composed of the first solid electrolyte body 11 and a pair of electrodes 41 and 42 on its surface. Specifically, a pump electrode 41 is provided on the surface of the first solid electrolyte body 11 facing the gas chamber 2 to be measured, and a first reference electrode 42 is provided on the surface facing the first reference gas introduction passage 31. , to adjust the oxygen concentration in the gas chamber 2 to be measured. The sensor cell 5 is composed of the second solid electrolyte body 12 and a pair of electrodes 51 and 52 on the surface thereof. Specifically, a sensor electrode 51 is provided on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured, and a second reference electrode 52 is provided on the surface facing the second reference gas introduction path 32. , produces an output based on the NOx in the exhaust gas G.
 第1固体電解質体11は、被測定ガス室2と第1基準ガス導入路31との間に配置されており、第2固体電解質体12は、被測定ガス室2と第2基準ガス導入路32との間に配置されている。ポンプセル4とセンサセル5では、イオン伝導体である第1固体電解質体11又は第2固体電解質体12を介して、被測定ガス室2と第1基準ガス導入路31又は第2基準ガス導入路32との間でイオン伝導させることにより、ガス濃度を調整し又はガス濃度を検出することができる。 The first solid electrolyte body 11 is arranged between the measured gas chamber 2 and the first reference gas introduction path 31, and the second solid electrolyte body 12 is disposed between the measured gas chamber 2 and the second reference gas introduction path. It is located between 32. In the pump cell 4 and the sensor cell 5, the measured gas chamber 2 and the first reference gas introduction path 31 or the second reference gas introduction path 32 are connected via the first solid electrolyte body 11 or the second solid electrolyte body 12, which is an ion conductor. It is possible to adjust the gas concentration or detect the gas concentration by conducting ionic conduction between and.
 ポンプセル4では、一対の電極41、42に所定の電圧が印加されることにより、ポンプ電極41にて排ガスG中の酸素(すなわち、O2)が酸化物イオン(すなわち、O2-)に分解され、第1固体電解質体11を透過して第1基準電極42側へ移動し、再び酸素となって第1基準ガス導入路31へ排出される。このポンピング作用により、被測定ガス室2内が、所定の低酸素濃度に調整され、ポンプセル4の下流側に位置するセンサセル5における酸素の影響を排除又はごく小さくすることができる。センサセル5では、センサ電極51に到達したNOxが窒素(すなわち、N2)と酸素に分解され、一対の電極51、52間に所定の電圧が印加されることにより、酸素が分解されてイオン化する。この酸化物イオンが第2固体電解質体12を透過して第2基準電極52側へ移動し、再び酸素となって第2基準ガス導入路32へ排出される。このとき、センサセル5の電流出力はNOx濃度に応じたものとなり、この関係に基づいて、特定ガスの濃度を検出することができる。 In the pump cell 4, a predetermined voltage is applied to the pair of electrodes 41 and 42, so that oxygen (ie, O 2 ) in the exhaust gas G is decomposed into oxide ions (ie, O 2− ) at the pump electrode 41. Then, it passes through the first solid electrolyte body 11 and moves toward the first reference electrode 42 , becomes oxygen again, and is discharged to the first reference gas introduction passage 31 . Due to this pumping action, the inside of the gas chamber 2 to be measured is adjusted to a predetermined low oxygen concentration, and the influence of oxygen on the sensor cell 5 located downstream of the pump cell 4 can be eliminated or minimized. In the sensor cell 5, NOx reaching the sensor electrode 51 is decomposed into nitrogen (that is, N 2 ) and oxygen, and a predetermined voltage is applied between the pair of electrodes 51 and 52 to decompose and ionize the oxygen. . These oxide ions permeate the second solid electrolyte body 12 , move toward the second reference electrode 52 , become oxygen again, and are discharged to the second reference gas introduction passage 32 . At this time, the current output of the sensor cell 5 corresponds to the NOx concentration, and based on this relationship, the concentration of the specific gas can be detected.
 センサ素子1Aは、好適には、ポンプセル4及びセンサセル5に加えて、センサセル5と並設されるモニタセル50を備えて、排ガスGに残留する酸素を検出する構成とすることができる。モニタセル50は、第2固体電解質体12とその表面に形成される一対の電極53、52として、第2固体電解質体12の被測定ガス室2に面する表面にモニタ電極53を有し、第2基準ガス導入路32に面する表面に、センサセル5と共通の第2基準電極52を有する。モニタセル50では、NOxは分解されず、残留酸素のみに起因する電流が流れるように構成されることにより、モニタセル50の出力とセンサセル5の出力との差分値から、NOx濃度を精度よく検出できる。 The sensor element 1A preferably includes a monitor cell 50 arranged in parallel with the sensor cell 5 in addition to the pump cell 4 and the sensor cell 5, and can be configured to detect oxygen remaining in the exhaust gas G. The monitor cell 50 has a monitor electrode 53 on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured as a pair of electrodes 53 and 52 formed on the surface of the second solid electrolyte body 12. It has a second reference electrode 52 common to the sensor cell 5 on the surface facing the two-reference gas introduction path 32 . In the monitor cell 50, NOx is not decomposed, and a current caused only by residual oxygen flows.
 このような通常の特定ガスの検出制御に先立ち、センサ制御部10は、早期活性制御部101を用いて、早期活性制御を行う。早期活性制御部101は、センサ始動時にポンプセル4へ印加される電圧を、通常時の制御電圧V1よりも高い始動時電圧V2に制御する。この早期活性制御により、被測定ガスに含まれる水の分解によって被測定ガス室2に発生する還元ガスを用いて、センサ電極51に吸蔵された酸素を速やかに除去することができる。センサ始動時には、吸蔵された酸素を除去するのに十分な還元ガスが発生するように早期活性制御部が制御される。第2基準ガス導入路32は、その際に、センサ電極51に還元ガスが滞留せずに、第2基準電極52側からの酸素供給によって除去される構成となっている。 Prior to such normal specific gas detection control, the sensor control unit 10 uses the early activation control unit 101 to perform early activation control. The early activation control unit 101 controls the voltage applied to the pump cell 4 at the time of starting the sensor to a starting voltage V2 higher than the normal control voltage V1. With this early activation control, the oxygen stored in the sensor electrode 51 can be quickly removed by using the reducing gas generated in the gas chamber 2 under measurement due to the decomposition of the water contained in the gas under measurement. During sensor start-up, the early activation control is controlled to generate sufficient reducing gas to remove the occluded oxygen. At that time, the second reference gas introduction path 32 is configured such that the reducing gas does not stay in the sensor electrode 51 and is removed by oxygen supply from the second reference electrode 52 side.
 具体的には、第2基準ガス導入路32は、センサ始動時に、第2基準ガス導入路32からセンサ電極51へ向けて供給される酸素の限界量(以下、適宜、酸素供給量と称する)を示す酸素限界電流値が、20μA以上となるように形成されている。後述するように、酸素供給量を示す酸素限界電流値は、例えば、第2基準ガス導入路32の流路構造等に基づいて定まる。これにより、第2基準ガス導入路32からの酸素供給が制限される構成であっても、酸素の除去に使用されずに被測定ガス室2に滞留する還元ガスに対して、第2基準電極52側から十分な酸素が供給されて、還元ガスの滞留を抑制することが可能になる。 Specifically, the second reference gas introduction path 32 has a limit amount of oxygen supplied from the second reference gas introduction path 32 toward the sensor electrode 51 (hereinafter referred to as the oxygen supply amount as appropriate) when the sensor is started. is formed to be 20 μA or more. As will be described later, the oxygen limiting current value indicating the oxygen supply amount is determined based on, for example, the channel structure of the second reference gas introduction channel 32 and the like. As a result, even when the oxygen supply from the second reference gas introduction passage 32 is restricted, the reducing gas remaining in the measurement gas chamber 2 without being used for removing oxygen is prevented from the second reference electrode. Sufficient oxygen is supplied from the 52 side, making it possible to suppress retention of the reducing gas.
 このとき、図3に示すように、素子活性化に要する時間を示す活性時間(単位:秒)が低減し、早期活性制御時における酸素の除去と還元ガスの除去をバランスよく実施することができる。センサ始動時の酸素供給量を示す酸素限界電流値が、20μA未満であると、還元ガスの除去のための酸素供給が不足し、還元ガスの滞留が生じて活性時間が長くなり、早期活性化が良好になされないおそれがある。活性時間は、具体的には、後述するように、早期活性制御の開始からセンサ出力が所定の閾値範囲に収束するまでに要する時間とすることができる。 At this time, as shown in FIG. 3, the activation time (unit: seconds) indicating the time required for element activation is reduced, and the removal of oxygen and the removal of reducing gas during early activation control can be performed in a well-balanced manner. . If the oxygen limiting current value, which indicates the amount of oxygen supplied when the sensor is started, is less than 20 μA, the supply of oxygen for removing the reducing gas is insufficient, and the reducing gas stays, resulting in a longer activation time and premature activation. may not be done well. Specifically, the activation time can be the time required from the start of the early activation control until the sensor output converges within a predetermined threshold range, as will be described later.
 好適には、第2基準ガス導入路32は、センサ始動時の酸素供給量を示す酸素限界電流値が、2500μA以下となるように構成されることが望ましい。酸素限界電流値が2500μAを超えると、例えば、第2基準ガス導入路32となる空間部が大きくなって、素子組付けの際に要求される強度を満足しないおそれがある。第2基準ガス導入路32からの酸素供給量が、上述した酸素限界電流値の上下限値で規定される範囲内となることにより、発生させた還元ガスに対して十分な酸素を供給し、還元ガスを速やかに除去して早期活性化を図りつつ、素子強度の低下を抑制することができる。 Preferably, the second reference gas introduction path 32 is configured so that the oxygen limiting current value, which indicates the amount of oxygen supplied when the sensor is started, is 2500 μA or less. If the oxygen limit current value exceeds 2500 μA, for example, the space portion that becomes the second reference gas introduction path 32 becomes large, and there is a possibility that the strength required in assembling the device may not be satisfied. Sufficient oxygen is supplied to the generated reducing gas by setting the amount of oxygen supplied from the second reference gas introduction passage 32 within the range defined by the upper and lower limits of the oxygen limit current value described above, It is possible to quickly remove the reducing gas and achieve early activation while suppressing a decrease in element strength.
 早期活性制御時には、ポンプセル4のポンプ電極41において、排ガスGに含まれる酸素が分解すると共に、例えば、排ガスGに含まれる水蒸気の分解により、還元ガスとなる水素(すなわち、H2)が発生する。センサ電極51に吸蔵されている酸素は、ポンプセル4から供給される水素との反応により、水(すなわち、H2O)となって除去される。発生した還元ガスは、センサ電極51において吸蔵酸素との反応により消費されると共に、第2固体電解質体12を介して供給される酸素との反応により、水となって除去される。 During early activation control, oxygen contained in the exhaust gas G is decomposed at the pump electrode 41 of the pump cell 4, and, for example, water vapor contained in the exhaust gas G is decomposed to generate hydrogen (that is, H 2 ) as a reducing gas. . Oxygen stored in the sensor electrode 51 reacts with hydrogen supplied from the pump cell 4 to become water (that is, H 2 O) and is removed. The generated reducing gas is consumed in the sensor electrode 51 by reaction with oxygen stored therein, and is removed as water by reaction with oxygen supplied through the second solid electrolyte body 12 .
 図4、図5に示すように、センサ始動時に発生する水素の総量を示すクーロン量(以下、適宜、水素発生量と称する)は、活性時間と相関があり、早期活性制御部101は、吸蔵されている酸素の除去に十分な水素が発生するように、ポンプセル4の作動を制御する。好適には、ポンプセル4における水素発生量が、2000μA・s以上11000μA・s以下の範囲となるように、ポンプセル4が制御されることが望ましい。水素発生量が2000μA・s以上となるように制御することで、吸蔵酸素の除去に必要な量の水素を発生させ、11000μA・s以下とすることで、過剰な水素の除去に時間を要して活性時間が遅延することを回避できる。水素発生量は、例えば、ポンプセル4に印加される始動時電圧V2とその印加時間を調整することにより、制御することができる。 As shown in FIGS. 4 and 5, the amount of coulombs indicating the total amount of hydrogen generated when the sensor is started (hereinafter referred to as the amount of hydrogen generated as appropriate) has a correlation with the activation time. The operation of the pump cell 4 is controlled so that sufficient hydrogen is generated to remove the oxygen present. Preferably, the pump cell 4 is controlled so that the amount of hydrogen generated in the pump cell 4 is in the range of 2000 μA·s to 11000 μA·s. By controlling the amount of hydrogen generation to be 2000 μA s or more, the amount of hydrogen required to remove the occluded oxygen is generated, and by setting it to 11000 μA s or less, it takes time to remove excess hydrogen. delay in active time can be avoided. The amount of hydrogen generated can be controlled, for example, by adjusting the start-up voltage V2 applied to the pump cell 4 and its application time.
 図5において、早期活性制御時の始動時電圧V2の印加により、ポンプセル4を流れるポンプ電流値(単位:μA)は、排ガスGに含まれる酸素に基づく出力と、水蒸気の分解により水素と共に発生する酸素に基づく出力の和として表れる。このうちの後者に基づく出力は、早期活性制御が終了するタイミング(例えば、図中の時点(t1))で、通常時の制御電圧V1に切り替わるまで継続し、その間に発生する水素の総量、すなわち、センサ始動時の水素発生量は、図中に斜線で示す面積(すなわち、単位時間毎のポンプ電流値の積算値)に相当するクーロン量(単位:μA×s)として算出することができる。 In FIG. 5, due to the application of the start-up voltage V2 during early activation control, the pump current value (unit: μA) flowing through the pump cell 4 is generated together with the output based on the oxygen contained in the exhaust gas G and the decomposition of water vapor. It appears as the sum of the outputs based on oxygen. The output based on the latter of these continues until the control voltage is switched to the normal control voltage V1 at the timing when the early activation control ends (for example, time (t1) in the figure), and the total amount of hydrogen generated during that time, that is, , The amount of hydrogen generated at the start of the sensor can be calculated as a coulomb amount (unit: μA×s) corresponding to the hatched area in the figure (that is, the integrated value of the pump current value per unit time).
 図3中に式1として示すように、センサ始動時において、第2基準電極52側からセンサ電極51側へ向けて酸素が移動することにより第2固体電解質体12を流れる電流は、第2基準ガス導入路32を通過して第2基準電極52に到達する酸素量に依存する限界電流特性を示す。このとき、センサ始動時にセンサ電極51へ向けて供給される酸素の限界量を、第2固体電解質体12を流れる電流値を用いて、酸素限界電流値IL(単位:μA)と定義する。式1から、センサ始動時の酸素供給量を示す酸素限界電流値ILは、第2基準ガス導入路32内の酸素の拡散による移動に支配され、酸素濃度や温度等の環境条件の変化がないとき、第2基準ガス導入路32の流路構造を示す流路断面積S又は流路長さLに応じて、酸素供給量(IL)が定まる。
式1:IL=(4FP/RT)・D・(S/L)・Ln[1-(PO2/P)]×106
IL:酸素供給量≒酸素限界電流値(μA)
F:ファラデー定数
P:大気圧(atm)
R:気体定数
D:拡散係数
T:温度(K)
S: 流路断面積(m2
L:流路長さ(m)
O2:酸素分圧(atm)
As shown by Equation 1 in FIG. 3 shows limiting current characteristics dependent on the amount of oxygen passing through the gas introduction passage 32 and reaching the second reference electrode 52. FIG. At this time, the limit amount of oxygen supplied to the sensor electrode 51 when the sensor is started is defined as an oxygen limit current value IL (unit: μA) using the current value flowing through the second solid electrolyte body 12 . From Equation 1, the oxygen limiting current value IL, which indicates the oxygen supply amount at the time of starting the sensor, is governed by the movement of oxygen due to diffusion in the second reference gas introduction passage 32, and there is no change in environmental conditions such as oxygen concentration and temperature. At this time, the oxygen supply amount (IL) is determined according to the channel cross-sectional area S or the channel length L indicating the channel structure of the second reference gas introduction channel 32 .
Formula 1: IL=(4FP/RT).D.(S/L) .Ln [1-(PO2/P)]×10 6
IL: oxygen supply amount ≈ oxygen limit current value (μA)
F: Faraday constant P: atmospheric pressure (atm)
R: gas constant D: diffusion coefficient T: temperature (K)
S: Channel cross-sectional area (m 2 )
L: channel length (m)
PO2 : Oxygen partial pressure (atm)
 具体的には、第2基準ガス導入路32の流路断面積Sと流路長さLの比率が大きいほど、酸素供給量(IL)が大きくなる。このうち、流路長さLは、センサ素子1Aの長さ等に制約されるので、通常のセンサ素子1Aにおける流路長さLの範囲において、所望の酸素供給量(IL)となるように、流路断面積Sの大きさ等を調整することが望ましい。これにより、水素発生量に対応する十分な酸素供給量と素子強度を両立させることができる。 Specifically, the oxygen supply amount (IL) increases as the ratio between the channel cross-sectional area S and the channel length L of the second reference gas introduction channel 32 increases. Among these, the flow path length L is restricted by the length of the sensor element 1A, etc., so that the desired oxygen supply amount (IL) is obtained within the range of the flow path length L in the normal sensor element 1A. , the size of the cross-sectional area S of the flow path, etc. are preferably adjusted. As a result, it is possible to achieve both a sufficient amount of oxygen supply corresponding to the amount of hydrogen generated and the strength of the device.
 このように、ガスセンサ1のセンサ素子1Aが、複数の固体電解質体11、12と複数の基準ガス導入路31、32を有する構成において、センサセル5の第2基準電極52側からの酸素供給量を所定範囲とすることにより、早期活性制御部101による早期活性制御を良好に実施することができる。 In this manner, in the configuration in which the sensor element 1A of the gas sensor 1 has a plurality of solid electrolyte bodies 11 and 12 and a plurality of reference gas introduction paths 31 and 32, the amount of oxygen supplied from the second reference electrode 52 side of the sensor cell 5 is By setting the value within the predetermined range, the early activation control by the early activation control unit 101 can be performed satisfactorily.
 以下、ガスセンサ1の構成及び制御の詳細について説明する。
 図2において、NOxセンサとしてのガスセンサ1は、筒状のハウジングHと、その内側に挿通保持されるセンサ素子1Aと、素子カバーC1及び大気カバーC2とを有している。センサ素子1Aは、ハウジングHの軸方向を長手方向X(すなわち、図2の上下方向)として、その両端がハウジングHから外方に突出し、ハウジングHの両端にそれぞれ固定される素子カバーC1及び大気カバーC2の内側に収容される。素子カバーC1は、センサ素子1Aの先端側(すなわち、図2の下端側)の外周側を覆うように配置され、大気カバーC2は、センサ素子1Aの基端側(すなわち、図2の上端側)の外周側を覆うように配置される。
Details of the configuration and control of the gas sensor 1 will be described below.
In FIG. 2, a gas sensor 1 as a NOx sensor has a cylindrical housing H, a sensor element 1A inserted and held inside the housing H, an element cover C1 and an atmosphere cover C2. Both ends of the sensor element 1A protrude outward from the housing H with the axial direction of the housing H being the longitudinal direction X (that is, the vertical direction in FIG. 2). It is housed inside the cover C2. The element cover C1 is arranged to cover the outer peripheral side of the sensor element 1A on the distal end side (that is, the lower end side in FIG. 2), and the atmosphere cover C2 is arranged to cover the proximal end side of the sensor element 1A (that is, the upper end side in FIG. 2). ) is arranged to cover the outer peripheral side of the
 ハウジングHは、図示しない排ガス通路の通路壁に固定されており、センサ素子1Aは、素子カバーC1に収容される先端側が排ガス通路内に突出位置する。素子カバーC1は、例えば、底面を有する二重筒構造となっており、外側カバーC11及び内側カバーC12の側面には、それぞれ複数のガス流通孔C131、C132が設けられ、内側カバーC12の底面にはガス流通孔C133が設けられる。また、筒状の大気カバーC2には、側面に複数のガス流通孔C21が設けられる。これにより、排ガス通路を流通する排ガスGが、素子カバーC1の内部に取り込まれて、センサ素子1Aの先端側に到達すると共に、大気カバーC2の内部に取り込まれる大気Aが、センサ素子1Aの基端側に到達する。 The housing H is fixed to the passage wall of the exhaust gas passage (not shown), and the sensor element 1A projects into the exhaust gas passage on the tip side accommodated in the element cover C1. The element cover C1 has, for example, a double-cylinder structure having a bottom surface. is provided with a gas flow hole C133. Further, a plurality of gas flow holes C21 are provided on the side surface of the cylindrical atmosphere cover C2. As a result, the exhaust gas G flowing through the exhaust gas passage is taken into the element cover C1 and reaches the tip side of the sensor element 1A, and the air A taken into the atmosphere cover C2 is the base of the sensor element 1A. reach the end.
 センサ素子1Aは、素子カバーC1に収容される先端側が、被測定ガスである排ガスGに晒される検出部となり、大気カバーC2に収容される基端側から取り込まれる大気Aを基準ガスとして、特定ガスである排ガス中のNOxを検出する。検出部への制御信号又は検出信号は、センサ素子1Aの基端側の端子部に電気的に接続されるリード線L1を介して、外部のセンサ制御部10から入力又は出力される。センサ素子1Aの基端側は、リード線L1の端部に設けられるバネ端子部L2に挟持されている。 The sensor element 1A has a front end housed in the element cover C1, which serves as a detection part exposed to the exhaust gas G, which is the gas to be measured, and uses the air A taken in from the base end housed in the atmosphere cover C2 as a reference gas. NOx in exhaust gas is detected. A control signal or a detection signal to the detection section is input or output from an external sensor control section 10 via a lead wire L1 electrically connected to a terminal section on the base end side of the sensor element 1A. The base end side of the sensor element 1A is clamped by a spring terminal portion L2 provided at the end portion of the lead wire L1.
 図1において、センサ素子1Aの検出部には、ポンプセル4及びセンサセル5が設けられると共に、モニタセル50が設けられており、センサ制御部10によって作動が制御されるようになっている。ポンプセル4は、被測定ガス室2に導入される排ガスGと、第1基準ガス導入路31に導入される大気Aに晒されており、センサセル5及びモニタセル50は、被測定ガス室2に導入される排ガスGと、第2基準ガス導入路32に導入される大気Aに晒される。また、センサ素子1Aには、ヒータ6が内蔵されており、センサ制御部10によって作動が制御されて、検出部に対応する部位を所定温度に加熱可能となっている。 In FIG. 1, the sensor element 1A is provided with a pump cell 4 and a sensor cell 5 as well as a monitor cell 50 in the detection section of the sensor element 1A, whose operation is controlled by the sensor control section 10. The pump cell 4 is exposed to the exhaust gas G introduced into the measured gas chamber 2 and the atmosphere A introduced into the first reference gas introduction passage 31. The sensor cell 5 and the monitor cell 50 are introduced into the measured gas chamber 2. and the atmosphere A introduced into the second reference gas introduction passage 32 . Further, the sensor element 1A has a built-in heater 6 whose operation is controlled by the sensor control section 10 so that the portion corresponding to the detection section can be heated to a predetermined temperature.
 センサ制御部10は、センサ始動時に早期活性制御を行う早期活性制御部101と、NOx検出制御を行う検出制御部102と、ヒータ6の通電制御を行うヒータ制御部103とを有して、センサ素子1Aの作動を制御する。検出制御部102は、具体的には、図2に示すように、ポンプセル制御部102Aと、センサセル検出部102Bと、モニタセル検出部102Cとを有する。ポンプセル制御部102Aは、通常時にポンプセル4に印加する電圧を制御するとともに、ポンプセル4が出力する電流を検出する。センサセル検出部102Bは、センサセル5が出力する電流を検出し、モニタセル検出部102Cは、モニタセル50が出力する電流を検出する。センサ制御部10のこれら各部による制御については、後述する。 The sensor control unit 10 has an early activation control unit 101 that performs early activation control when the sensor is started, a detection control unit 102 that performs NOx detection control, and a heater control unit 103 that performs energization control of the heater 6. It controls the operation of element 1A. Specifically, as shown in FIG. 2, the detection control section 102 has a pump cell control section 102A, a sensor cell detection section 102B, and a monitor cell detection section 102C. 102 A of pump cell control parts detect the electric current which the pump cell 4 outputs while controlling the voltage applied to the pump cell 4 normally. The sensor cell detector 102B detects the current output by the sensor cell 5, and the monitor cell detector 102C detects the current output by the monitor cell 50. FIG. Control by these units of the sensor control unit 10 will be described later.
 図6、図7に詳細構成を示すように、センサ素子1Aは、セラミックス層の積層体からなり、検出部となる先端側(すなわち、図6の左端側)の外周全体を覆って、多孔質保護層15が形成されている。センサ素子1Aは、長手方向Xと直交する方向(すなわち、図6、図7の上下方向)を積層方向として、遮蔽層14、第2固体電解質体12、スペーサ層13、第1固体電解質体11、及び、ヒータ6を構成するヒータ絶縁層61が、この順で配置される。第1固体電解質体11と第2固体電解質体12は、被測定ガス室2となる空間が形成されるスペーサ層13を挟んで対向し、第1固体電解質体11の外側に配置されるヒータ絶縁層61には、第1基準ガス導入路31となる空間が形成される。第2固体電解質体12の外側に配置される遮蔽層14には、第2基準ガス導入路32となる空間が形成される。 As shown in detail in FIGS. 6 and 7, the sensor element 1A is made of a laminate of ceramic layers. A protective layer 15 is formed. The sensor element 1A has a shielding layer 14, a second solid electrolyte body 12, a spacer layer 13, and a first solid electrolyte body 11, with the direction orthogonal to the longitudinal direction X (that is, the vertical direction in FIGS. 6 and 7) as the stacking direction. , and a heater insulating layer 61 constituting the heater 6 are arranged in this order. The first solid electrolyte body 11 and the second solid electrolyte body 12 face each other across a spacer layer 13 in which a space forming the gas chamber 2 to be measured is formed. A space that serves as the first reference gas introduction path 31 is formed in the layer 61 . A space that serves as the second reference gas introduction path 32 is formed in the shielding layer 14 arranged outside the second solid electrolyte body 12 .
 図6において、被測定ガス室2は、スペーサ層13の先端側に埋設される拡散抵抗部21を介して、排ガスGが存在する素子カバーC1(例えば、上述の図2参照)内の空間と連通している。ガス導入部となる拡散抵抗部21は、アルミナ等の絶縁性セラミックス材料にて構成される多孔質体であり、所定の拡散抵抗下で排ガスGが導入されるように調整されている。 In FIG. 6, the measured gas chamber 2 is separated from the space in the element cover C1 (for example, see FIG. 2 above) in which the exhaust gas G exists through the diffusion resistance portion 21 embedded in the tip side of the spacer layer 13. are in communication. The diffusion resistance portion 21 serving as a gas introduction portion is a porous body made of an insulating ceramic material such as alumina, and is adjusted so that the exhaust gas G is introduced under a predetermined diffusion resistance.
 第1固体電解質体11及び第2固体電解質体12は、酸化物イオン伝導性を有するジルコニア系の固体電解質材料によって構成される。ジルコニア系の固体電解質材料としては、例えば、イットリア等の安定化剤を含有する部分安定化ジルコニア又は安定化ジルコニアを用いることができる。被測定ガス室2に面する第1固体電解質体11の表面には、ポンプセル4のポンプ電極41が形成されており、第1基準ガス導入路31に面する第1固体電解質体11の表面には、ポンプセル4の第1基準電極42が形成されている。また、被測定ガス室2に面する第2固体電解質体12の表面には、センサセル5のセンサ電極51が形成されており、第2基準ガス導入路32に面する第2固体電解質体12の表面には、センサセル5の第2基準電極52が形成されている。 The first solid electrolyte body 11 and the second solid electrolyte body 12 are composed of a zirconia-based solid electrolyte material having oxide ion conductivity. As the zirconia-based solid electrolyte material, for example, partially stabilized zirconia or stabilized zirconia containing a stabilizer such as yttria can be used. A pump electrode 41 of the pump cell 4 is formed on the surface of the first solid electrolyte body 11 facing the gas chamber 2 to be measured. , the first reference electrode 42 of the pump cell 4 is formed. A sensor electrode 51 of the sensor cell 5 is formed on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured. A second reference electrode 52 of the sensor cell 5 is formed on the surface.
 スペーサ層13、遮蔽層14、ヒータ絶縁層61は、アルミナ等の絶縁性セラミックス材料を用いて構成される。また、多孔質保護層15は、センサ素子1Aの検出部を被毒成分等から保護するためのもので、排ガスGの導入を妨げない程度の気孔率に調整された多孔質セラミックスにて構成することができる。 The spacer layer 13, the shield layer 14, and the heater insulating layer 61 are made of an insulating ceramic material such as alumina. The porous protective layer 15 is for protecting the detection portion of the sensor element 1A from poisonous components and the like, and is made of porous ceramics adjusted to a porosity that does not hinder the introduction of the exhaust gas G. be able to.
 第1基準ガス導入路31の通路壁となるヒータ絶縁層61の内部には、通電により発熱する発熱体62が埋設されて、ヒータ6を構成している。発熱体62は、ポンプセル4、センサセル5及びモニタセル50の電極が形成される部位に対応して配置され、検出部となる素子先端側の全体を加熱可能となっている。 A heating element 62 that generates heat when energized is embedded inside the heater insulating layer 61 that serves as the passage wall of the first reference gas introduction path 31 to constitute the heater 6 . The heating elements 62 are arranged corresponding to the portions where the electrodes of the pump cell 4, the sensor cell 5 and the monitor cell 50 are formed, and are capable of heating the entire front end side of the element serving as the detection portion.
 第2基準電極52が配置される第2基準ガス導入路32は、センサ素子1Aの基端側(すなわち、図6の右端側)まで延びており、その端面に開口する第2基準ガス導入口321を介して、大気Aが存在する素子カバーC1(例えば、上述の図2参照)内の空間と連通している。同様に、ポンプセル4の第1基準電極42が配置される第1基準ガス導入路31は、センサ素子1Aの基端側まで延びており、その端面に開口する第1基準ガス導入口311を介して大気Aと連通している。 The second reference gas introduction path 32, in which the second reference electrode 52 is arranged, extends to the base end side of the sensor element 1A (that is, the right end side in FIG. 6), and the second reference gas introduction port opens at the end face thereof. 321 communicates with the space within the element cover C1 (see, for example, FIG. 2 above) where the atmosphere A is present. Similarly, the first reference gas introduction passage 31, in which the first reference electrode 42 of the pump cell 4 is arranged, extends to the base end side of the sensor element 1A, and through a first reference gas introduction port 311 opened at the end surface thereof, is in communication with the atmosphere A.
 センサ素子1Aの基端部において、積層方向の両表面には、端子部71、72が設けられる。具体的には、第2基準ガス導入路32側の表面(すなわち、図6における上表面)、及び、第1基準ガス導入路31側の表面(すなわち、図6における下表面)には、それぞれ複数の端子部71、72が配置され、大気カバーC2内にてバネ端子部L2(例えば、上述の図2参照)と電気的に接続される。端子部71、72の各端子は、検出部の各セルを構成する電極、又は、ヒータ6の発熱体62の正負端子と、それぞれリード部を介して、電気的に接続されている。これにより、センサ制御部10から各セルへの制御信号又は各セルからの検出信号が入出力され、また、ヒータ6の通電制御が可能になる。なお、端子部71、72を構成する端子数や配置、接続構造は、適宜変更することができる。 Terminal portions 71 and 72 are provided on both surfaces in the stacking direction at the base end portion of the sensor element 1A. Specifically, the surface on the side of the second reference gas introduction path 32 (that is, the upper surface in FIG. 6) and the surface on the side of the first reference gas introduction path 31 (that is, the lower surface in FIG. 6) each have A plurality of terminal portions 71 and 72 are arranged and electrically connected to the spring terminal portion L2 (for example, see FIG. 2 described above) inside the atmosphere cover C2. Each terminal of the terminal portions 71 and 72 is electrically connected to an electrode constituting each cell of the detection portion or to the positive and negative terminals of the heating element 62 of the heater 6 via a lead portion. As a result, a control signal to each cell or a detection signal from each cell is input/output from the sensor control unit 10, and energization control of the heater 6 becomes possible. The number and arrangement of terminals constituting the terminal portions 71 and 72 and the connection structure can be changed as appropriate.
 被測定ガス室2において、ポンプセル4のポンプ電極41は、排ガスGのガス流れ方向の上流側に配置されており、センサセル5のセンサ電極51は、ポンプ電極41よりも下流側に配置されている。ポンプセル4の第1基準電極42は、第1固体電解質体11を挟んで、ポンプ電極41と対向する位置にあり、センサセル5の第2基準電極52は、第2固体電解質体12を挟んで、センサ電極51と対向する位置にある。また、モニタセル50のモニタ電極53は、ガス流れ方向において、センサセル5のセンサ電極51と同等の位置にある。 In the measured gas chamber 2, the pump electrode 41 of the pump cell 4 is arranged on the upstream side in the gas flow direction of the exhaust gas G, and the sensor electrode 51 of the sensor cell 5 is arranged on the downstream side of the pump electrode 41. . The first reference electrode 42 of the pump cell 4 is positioned opposite the pump electrode 41 with the first solid electrolyte body 11 interposed therebetween, and the second reference electrode 52 of the sensor cell 5 is positioned with the second solid electrolyte body 12 interposed therebetween. It is located at a position facing the sensor electrode 51 . Also, the monitor electrode 53 of the monitor cell 50 is located at the same position as the sensor electrode 51 of the sensor cell 5 in the gas flow direction.
 図7に示すように、ガス流れ方向と直交する断面において、センサセル5のセンサ電極51と、モニタセル50のモニタ電極53とは、隣接して配置される。第2基準電極52は、センサセル5とモニタセル50とで共通となっており、センサ電極51及びモニタ電極53の両方と対向するように配置されている。ヒータ6の発熱体62は、第1固体電解質体11に対向する第1基準ガス導入路31の底壁内に埋設されて、所定のヒータパターンを形成し、検出部の全体を均等加熱可能となっている。 As shown in FIG. 7, the sensor electrode 51 of the sensor cell 5 and the monitor electrode 53 of the monitor cell 50 are arranged adjacent to each other in a cross section orthogonal to the gas flow direction. The second reference electrode 52 is common to the sensor cell 5 and the monitor cell 50 and arranged to face both the sensor electrode 51 and the monitor electrode 53 . The heating element 62 of the heater 6 is embedded in the bottom wall of the first reference gas introduction passage 31 facing the first solid electrolyte body 11, forms a predetermined heater pattern, and can evenly heat the entire detection section. It's becoming
 ポンプセル4、センサセル5及びモニタセル50の電極は、貴金属又は貴金属合金材料とジルコニア系固体電解質とを含む多孔質サーメット電極とすることができる。センサセル5のセンサ電極51は、検出しようとするNOxに対して分解活性を有する電極材料を用いて構成することができる。このようなセンサ電極51は、例えば、白金及びロジウムを含む電極(以下、適宜、Pt-Rh電極と称する)であり、酸素及びNOxの分解活性を有する。 The electrodes of the pump cell 4, sensor cell 5 and monitor cell 50 can be porous cermet electrodes containing a noble metal or noble metal alloy material and a zirconia-based solid electrolyte. The sensor electrode 51 of the sensor cell 5 can be constructed using an electrode material having decomposition activity for NOx to be detected. Such a sensor electrode 51 is, for example, an electrode containing platinum and rhodium (hereinafter appropriately referred to as a Pt--Rh electrode), and has oxygen and NOx decomposition activity.
 ポンプセル4のポンプ電極41とモニタセル50のモニタ電極53は、酸素の分解活性を有しNOx分解活性を有しない電極材料を用いて、例えば、白金及び金を含む電極(以下、適宜、Pt-Au電極と称する)として構成することができる。また、第1基準電極42及び第2基準電極52は、例えば、白金を含む電極(以下、適宜、Pt電極と称する)として構成することができる。 The pump electrode 41 of the pump cell 4 and the monitor electrode 53 of the monitor cell 50 are made of an electrode material that has oxygen decomposition activity but does not have NOx decomposition activity. electrodes). Also, the first reference electrode 42 and the second reference electrode 52 can be configured as, for example, electrodes containing platinum (hereinafter, appropriately referred to as Pt electrodes).
 なお、センサ電極51は、Pt-Rh電極に限らず、同様の作用を有する電極材料にて形成されてもよい。このような電極材料としては、例えば、白金に対して、パラジウム(Pd)、鉄(Fe)、コバルト(Co)又はニッケル(Ni)等の金属を混合した合金材料が用いられる。 It should be noted that the sensor electrode 51 is not limited to the Pt--Rh electrode, and may be formed of an electrode material having a similar action. As such an electrode material, for example, an alloy material obtained by mixing platinum with a metal such as palladium (Pd), iron (Fe), cobalt (Co), or nickel (Ni) is used.
 ここで、ガスセンサ1による検出を行う前のセンサ始動時には、被測定ガス室2に導入されている排ガスGの酸素濃度が高くなっており、センサ始動に際しては、速やかに所定の低酸素濃度に調整することが望ましい。また、センサ素子1Aの各セルが低活性状態となっており、速やかに所定の活性温度に昇温することが望まれる。一方、センサセル5のセンサ電極51がPt-Rh電極である場合には、ロジウムが酸素を吸蔵することが知られることから、検出を行うための準備期間として、センサ素子1Aの昇温制御を行うと共に、ポンプセル4を利用して還元ガスとなる水素を発生させることにより吸蔵酸素を除去する早期活性制御が行われる。 Here, when the sensor is started before detection by the gas sensor 1, the oxygen concentration of the exhaust gas G introduced into the gas chamber 2 to be measured is high. It is desirable to Moreover, each cell of the sensor element 1A is in a low activation state, and it is desired to quickly raise the temperature to a predetermined activation temperature. On the other hand, when the sensor electrode 51 of the sensor cell 5 is a Pt—Rh electrode, rhodium is known to occlude oxygen. At the same time, the pump cell 4 is used to generate hydrogen as a reducing gas, thereby performing early activation control to remove the stored oxygen.
 早期活性制御では、ポンプセル4の一対の電極41、42に、通常時の制御電圧V1よりも高い始動時電圧V2が印加される。このとき、ポンプ電極41において、被測定ガス室2に存在する排ガスG中の酸素が分解されると共に、水蒸気の分解により、還元ガスとなる水素が発生する。発生した水素はガス流れの下流側に位置するセンサセル5に供給され、センサ電極51に吸蔵されている酸素との反応に消費される。水蒸気の分解により、水素と共に発生する酸素は、ポンプ電極41において分解される。ポンプ電極41においてイオン化した酸素は、第1固体電解質体11の内部を移動し、第1基準電極42から第1基準ガス導入路31へ排出される。 In the early activation control, a starting voltage V2 higher than the normal control voltage V1 is applied to the pair of electrodes 41 and 42 of the pump cell 4. At this time, at the pump electrode 41, oxygen in the exhaust gas G present in the gas chamber 2 to be measured is decomposed, and the water vapor is decomposed to generate hydrogen as a reducing gas. The generated hydrogen is supplied to the sensor cell 5 located on the downstream side of the gas flow and consumed in the reaction with the oxygen occluded in the sensor electrode 51 . Oxygen generated together with hydrogen by the decomposition of water vapor is decomposed at the pump electrode 41 . The oxygen ionized at the pump electrode 41 moves inside the first solid electrolyte body 11 and is discharged from the first reference electrode 42 to the first reference gas introduction passage 31 .
 早期活性制御において、ポンプセル4の一対の電極41、42に印加される始動時電圧V2は、ポンプ電極41上において、排ガスG中の酸素が分解すると共に、水蒸気の分解により、還元ガスとなる水素が発生可能な電圧に設定される。このとき、水蒸気の分解により水素と共に発生する酸素は、排ガスG中の酸素と同様に、ポンプ電極41上にて分解されて、第1固体電解質体11内を移動し(例えば、図6中に実線矢印で示す)、第1基準電極42側へ排出される。 In the early activation control, the start-up voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 is such that the oxygen in the exhaust gas G is decomposed on the pump electrode 41 and the water vapor is decomposed to generate hydrogen which becomes a reducing gas. is set to a voltage that can be generated. At this time, oxygen generated together with hydrogen by decomposition of water vapor is decomposed on the pump electrode 41 and moves through the first solid electrolyte body 11 (for example, in FIG. 6 indicated by a solid line arrow), and is discharged to the first reference electrode 42 side.
 なお、通常時の制御電圧V1は、被測定ガス室2における酸素濃度が、所定の濃度以下になるように調整される。制御電圧V1の大きさは、例えば、0.3~0.4Vであり、第1固体電解質体11が、ポンプセル4への印加電圧が変化しても、ポンプセル4に流れる電流がほとんど変化しない限界電流特性を示す電圧値の範囲内で決定される。これに対して、始動時電圧V2は、制御電圧V1よりも高く設定されており、限界電流特性を示す電圧値よりも高い電圧値として設定される。本形態の始動時電圧V2は、例えば、0.5~2Vの範囲内で設定することができる。 It should be noted that the control voltage V1 during normal operation is adjusted so that the oxygen concentration in the measured gas chamber 2 is equal to or lower than a predetermined concentration. The magnitude of the control voltage V1 is, for example, 0.3 to 0.4 V, and the first solid electrolyte body 11 is the limit at which the current flowing through the pump cell 4 hardly changes even if the voltage applied to the pump cell 4 changes. It is determined within the range of voltage values that indicate current characteristics. On the other hand, the starting voltage V2 is set higher than the control voltage V1, and is set as a voltage value higher than the voltage value indicating the limit current characteristic. The startup voltage V2 of this embodiment can be set within a range of 0.5 to 2V, for example.
 このようにして、ポンプセル4において、還元ガスとしての水素を十分な量となるように発生させ、センサセル5のセンサ電極51に吸蔵された酸素を、酸素の還元反応を利用して除去することができる。このとき、センサ電極51において余剰となる水素に対して、第2基準電極52側でイオン化した酸素が、第2固体電解質体12を介して供給され(例えば、図6中に点線矢印で示す)、水が生成することにより脱離して除去される。ただし、供給される酸素の量は、第2基準ガス導入路32を通過して第2基準電極52に到達する酸素の量に依存するため、余剰の水素の除去が進まないと、早期活性に要する時間が長くなるおそれがある。 In this manner, a sufficient amount of hydrogen is generated as a reducing gas in the pump cell 4, and the oxygen occluded in the sensor electrode 51 of the sensor cell 5 can be removed by utilizing the reduction reaction of oxygen. can. At this time, oxygen ionized on the side of the second reference electrode 52 is supplied via the second solid electrolyte body 12 to excess hydrogen in the sensor electrode 51 (for example, indicated by a dotted arrow in FIG. 6). , is desorbed and removed by the generation of water. However, since the amount of oxygen supplied depends on the amount of oxygen that passes through the second reference gas introduction passage 32 and reaches the second reference electrode 52, if the removal of excess hydrogen does not progress, the hydrogen will be activated early. It may take longer.
 上述の図3~図5に示したように、早期活性制御時において、センサ電極51への酸素供給量は、式1にて定義される酸素限界電流値ILとして表され、水素発生量は、ポンプセル4を流れるポンプ電流値と時間との関係に基づいて制御することができる。酸素供給量は、例えば、式1における第2基準ガス導入路32の流路断面積S及び流路長さL等によって、酸素限界電流値ILが20μA以上、好適には、2500μA以下となるように設定され、所望の水素発生量において、吸蔵酸素の除去と、滞留する水素の除去の両方が、好適に実施可能となっている。好適には、水素発生量は、2000μA・s以上11000μA・s以下の範囲となるように制御され、適正な酸素供給量との組み合わせにより、早期活性制御時の活性時間を短縮することができる。 As shown in FIGS. 3 to 5 above, during the early activation control, the amount of oxygen supplied to the sensor electrode 51 is expressed as the oxygen limiting current value IL defined by Equation 1, and the amount of hydrogen generation is It can be controlled based on the relationship between the pump current value flowing through the pump cell 4 and time. The amount of oxygen supply is determined, for example, by the cross-sectional area S and length L of the second reference gas introduction passage 32 in Equation 1, so that the oxygen limiting current value IL is 20 μA or more, preferably 2500 μA or less. , so that both the removal of occluded oxygen and the removal of stagnant hydrogen can be suitably carried out at a desired hydrogen generation amount. Preferably, the amount of hydrogen generated is controlled to be in the range of 2000 μA·s or more and 11000 μA·s or less, and in combination with an appropriate amount of oxygen supply, the activation time during early activation control can be shortened.
 図8に示すように、早期活性制御時のセンサセル5の出力に基づくNOx濃度が、正側又は負側において所定の閾値範囲内となり、ほぼ0に収束するまでの時間を、活性時間とする。このときのNOx出力波形と活性時間は、酸素供給量と相関があり、図中に破線で示すように、酸素供給量(酸素限界電流値IL)が20μAより小さい10μAの場合には、NOx出力波形が、早期活性制御終了の時点(t1)において負側から正側へ振れた後、緩やかに減少しているために、活性時間(すなわち、正側の閾値に到達する時点(t3)までの時間)が長くなる。これは、被測定ガス室2に水素が滞留する一方、第2基準ガス導入路32ではセンサ電極51側への酸素供給により酸素が欠乏し、第2基準ガス導入路32の酸素濃度が低下することに起因する。そのために、被測定ガス室2内の酸素分圧と第2基準ガス導入路32内の酸素分圧との差が変化して、センサセル5の一対の電極51、52間の起電力が変化し、NOx出力の変動が生じると考えられる。 As shown in FIG. 8, the NOx concentration based on the output of the sensor cell 5 during early activation control is within a predetermined threshold range on the positive side or the negative side, and the time until it converges to approximately 0 is defined as the activation time. At this time, the NOx output waveform and activation time are correlated with the oxygen supply amount. After the waveform swings from the negative side to the positive side at the end of the early activation control (t1), it gradually decreases. time) increases. This is because hydrogen stays in the gas chamber 2 to be measured, while oxygen is depleted in the second reference gas introduction passage 32 due to the supply of oxygen to the sensor electrode 51 side, and the oxygen concentration in the second reference gas introduction passage 32 decreases. due to that. Therefore, the difference between the oxygen partial pressure in the measured gas chamber 2 and the oxygen partial pressure in the second reference gas introduction passage 32 changes, and the electromotive force between the pair of electrodes 51 and 52 of the sensor cell 5 changes. , NOx output fluctuations.
 これに対して、図中に実線で示すように、酸素供給量(酸素限界電流値IL)が20μAの場合には、時点(t1)において正側へ振れることなく、収束に向かう。そのために、速やかに負側の閾値に到達し(すなわち、時点(t2))、活性時間が短くなる。好適には、図9中に一点鎖線で示すように、酸素供給量(酸素限界電流値IL)が40μAに増加すると、より速やかに負側の閾値に到達し(すなわち、時点(t11))、活性時間はより短くなる。図10に示すように、酸素供給量(酸素限界電流値IL)が20μAから40μA付近までは、活性時間が徐々に短縮され、40μAを超えると、活性時間はほぼ一定となる。 On the other hand, as shown by the solid line in the figure, when the oxygen supply amount (oxygen limiting current value IL) is 20 μA, the convergence is achieved at time (t1) without deviating to the positive side. Therefore, the threshold on the negative side is quickly reached (that is, time (t2)), and the activation time is shortened. Preferably, as indicated by the dashed line in FIG. 9, when the oxygen supply amount (oxygen limiting current value IL) increases to 40 μA, the negative side threshold is reached more rapidly (that is, time (t11)), Active time is shorter. As shown in FIG. 10, when the oxygen supply amount (oxygen limiting current value IL) is from 20 μA to around 40 μA, the activation time is gradually shortened, and when it exceeds 40 μA, the activation time becomes substantially constant.
 したがって、好適には、酸素供給量(酸素限界電流値IL)が40μA以上となるように、第2基準ガス導入路32が構成されているのがよく、十分な量の酸素を供給して活性時間を短縮することができる。一方、酸素供給量(酸素限界電流値IL)がより多くなると、第2基準ガス導入路32となる空間容積が大きくなることで、素子強度が低下するおそれがある。上述したように、センサ素子1Aは、第2基準ガス導入路32が開口する基端部に、端子部71、72が配置されて、バネ端子部L2にて挟持される構成であり、好適には、素子強度を確保できるように、酸素供給量(酸素限界電流値IL)の上限値は、2500μA以下、より好適には、1000μA以下に設定されるのがよい。 Therefore, the second reference gas introduction passage 32 is preferably configured so that the oxygen supply amount (oxygen limiting current value IL) is 40 μA or more, and a sufficient amount of oxygen is supplied to activate the oxygen. can save time. On the other hand, if the oxygen supply amount (oxygen limiting current value IL) increases, the spatial volume of the second reference gas introduction path 32 increases, which may reduce the strength of the element. As described above, the sensor element 1A has the terminal portions 71 and 72 arranged at the proximal end where the second reference gas introduction path 32 opens, and is sandwiched between the spring terminal portions L2. The upper limit of the oxygen supply amount (oxygen limiting current value IL) is preferably set to 2500 μA or less, more preferably 1000 μA or less, so as to ensure the device strength.
 また、図11に示すように、水素発生量が、上述の所望の範囲(すなわち、2000μA・s以上11000μA・s以下)で変化したときには、同様のNOx出力波形となり、水素発生量が少ない方が、早期活性制御の終了タイミングが早くなり、活性時間が短くなる。例えば、水素発生量が5000μA・sの場合には、時点(t12)で負側の閾値に到達しているのに対し、水素発生量が10000μA・sの場合には、より遅い時点(t13)で負側の閾値に到達することになる。したがって、好適には、水素発生量が5000μA・s以上10000μA・s以下の範囲で、所望の活性時間となるように、水素発生量を調整することができる。 Further, as shown in FIG. 11, when the amount of hydrogen generation changes within the above-described desired range (that is, 2000 μA·s or more and 11000 μA·s or less), a similar NOx output waveform is obtained. , the end timing of the early activation control is advanced, and the activation time is shortened. For example, when the amount of hydrogen generation is 5000 μA s, the negative threshold is reached at time (t12), whereas when the amount of hydrogen generation is 10000 μA s, it reaches a later time (t13). will reach the threshold on the negative side. Therefore, preferably, the hydrogen generation amount can be adjusted so as to achieve a desired activation time within the range of 5000 μA·s or more and 10000 μA·s or less.
 次に、図12のフローチャートにより、センサ制御部10による制御について説明する。センサ制御部10は、例えば、ガスセンサ1の全体を制御するセンサ制御ユニット(以下、適宜、SCUと称する)として構成されており、車両用エンジンの全体を制御するエンジン制御ユニット(以下、適宜、ECUと称する)からの制御指令に基づいて作動する。SCUは、図1に示す早期活性制御部101、検出制御部102、ヒータ制御部103を備えると共に、図示しない通信部や演算部等を備えており、送受信された信号に基づく制御や演算等を行ってNOx濃度を検出し、検出結果を随時ECUへ出力することができる。 Next, control by the sensor control unit 10 will be described with reference to the flowchart of FIG. The sensor control unit 10 is configured as, for example, a sensor control unit (hereinafter referred to as SCU) that controls the entire gas sensor 1, and an engine control unit (hereinafter referred to as ECU) that controls the entire vehicle engine. (referred to as ). The SCU includes an early activation control unit 101, a detection control unit 102, and a heater control unit 103 shown in FIG. 1, as well as a communication unit and a calculation unit (not shown). The NOx concentration can be detected by going there, and the detection result can be output to the ECU at any time.
 図8において、センサ制御部10による制御開始に際し、まず、ステップS1において、センサ始動が許可されているか否かが判定され、センサ始動が許可されるとステップS2以降へ進む。ステップS2は、ヒータ制御部103によるヒータ制御に相当し、ステップS3~S5は、早期活性制御部101による早期活性制御に相当する。ステップS5~S7は、検出制御部102による、NOx検出制御に相当し、ステップS6はポンプセル制御部102Aに、ステップS7は、センサセル検出部102B及びモニタセル検出部102Cに相当する。ステップS1では、これら制御を実施する前に、センサ素子1Aの状態を確認することで、センサ素子1Aの破損や誤検出等を防止する。 In FIG. 8, when the sensor control unit 10 starts control, first, in step S1, it is determined whether or not sensor activation is permitted, and if sensor activation is permitted, the process proceeds to step S2 and subsequent steps. Step S2 corresponds to heater control by heater control section 103, and steps S3 to S5 correspond to early activation control by early activation control section 101. FIG. Steps S5 to S7 correspond to NOx detection control by the detection control section 102, step S6 corresponds to the pump cell control section 102A, and step S7 corresponds to the sensor cell detection section 102B and the monitor cell detection section 102C. In step S1, the state of the sensor element 1A is checked before performing these controls, thereby preventing damage to the sensor element 1A and erroneous detection.
 具体的には、センサ素子1Aに凝縮水が付着しやすい低温時には、ヒータ通電による破損のおそれがあり、また、検出部を構成する各セル4、5、50及びヒータ6の電気系統等の異常により誤検出が生じるおそれがある。そこで、別の制御フローに基づいてセンサ素子1Aの温度や異常の有無を確認し、正常動作可能と判断された場合にのみ許可信号が出力されるようにすることができる。ステップS1が肯定判定された場合には、SCUが起動されて、ステップS2へ進み、センサ素子1Aの通電が開始される。ステップS1が否定判定された場合には、SCUが起動されずに、本処理が終了される。 Specifically, at low temperatures when condensed water tends to adhere to the sensor element 1A, there is a risk of damage due to heater energization. False detection may occur due to Therefore, it is possible to check the temperature of the sensor element 1A and the presence or absence of abnormality based on another control flow, and output the permission signal only when it is determined that normal operation is possible. If the determination in step S1 is affirmative, the SCU is activated, the process proceeds to step S2, and energization of the sensor element 1A is started. If the determination in step S1 is negative, the process ends without starting the SCU.
 ステップS2においては、ヒータ6への通電制御が開始されて、センサ素子1Aの固体電解質体及び電極を所定の活性温度まで昇温させる。この通電制御は、センサ素子1Aの各セルのインピーダンスが温度によって変化することを利用し、検出されるインピーダンスが所定の値となるように通電量を制御することによって行うことができる。具体的には、ポンプセル4のインピーダンスが、所定の活性温度に相当する活性判定インピーダンスに到達するまでは、ヒータ6の通電デューティを大きく設定し(例えば、100%)、到達後は、目標インピーダンスとの偏差に基づいて、ヒータ6の通電デューティをPI制御することによって行うことができる。インピーダンスの検出は、ポンプセル4に限らず、他のセルやヒータ6について行うこともできる。 In step S2, energization control to the heater 6 is started, and the temperature of the solid electrolyte body and electrodes of the sensor element 1A is raised to a predetermined activation temperature. This energization control can be performed by utilizing the fact that the impedance of each cell of the sensor element 1A changes with temperature, and controlling the amount of energization so that the detected impedance becomes a predetermined value. Specifically, until the impedance of the pump cell 4 reaches the activation determination impedance corresponding to a predetermined activation temperature, the energization duty of the heater 6 is set large (for example, 100%). can be performed by PI-controlling the energization duty of the heater 6 based on the deviation of . Impedance detection is not limited to the pump cell 4, and can be performed for other cells and the heater 6 as well.
 ステップS2により、ヒータ6への通電制御を開始したら、ステップS3へ進んで、早期活性制御部101による早期活性制御を開始する。具体的には、ポンプセル4の一対の電極41、42への印加電圧を、予め設定された始動時電圧V2へ上昇させる。次いで、ステップS4へ進んで、予め設定された所定時間が経過したか否かを判定する。ステップS4が肯定判定された場合には、ステップS5へ進み、否定判定された場合には、所定時間が経過するまで、ステップS4を繰り返す。 After the power supply control to the heater 6 is started in step S2, the process proceeds to step S3, and early activation control by the early activation control unit 101 is started. Specifically, the voltage applied to the pair of electrodes 41 and 42 of the pump cell 4 is raised to the preset starting voltage V2. Next, in step S4, it is determined whether or not a predetermined time has elapsed. If the determination in step S4 is affirmative, the process proceeds to step S5, and if the determination in step S4 is negative, step S4 is repeated until a predetermined period of time elapses.
 ポンプセル4の一対の電極41、42に印加される始動時電圧V2は、通常時の制御電圧V1(例えば、0.3~0.4V)よりも高く設定される(例えば、0.5~2V)。これにより、ポンプ電極41上において、排ガスG中の酸素が分解すると共に、水蒸気が分解して、還元ガスとなる水素が発生する。発生した水素は、被測定ガス室2内に拡がってセンサセル5に到達し、センサ電極51に吸蔵された酸素と反応して除去される。 The starting voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 is set higher (eg, 0.5 to 2 V) than the normal control voltage V1 (eg, 0.3 to 0.4 V). ). As a result, on the pump electrode 41, the oxygen in the exhaust gas G is decomposed and the water vapor is decomposed to generate hydrogen as a reducing gas. The generated hydrogen spreads in the gas chamber 2 to be measured, reaches the sensor cell 5, reacts with the oxygen occluded in the sensor electrode 51, and is removed.
 ステップS4における所定時間は、上述の図5、図8において、早期活性制御の開始から終了の時点(t1)までの時間に相当し、始動時電圧V2の印加時間が長いほど、水素発生量が多くなる。また、上述の図11に示したように、水素発生量が多くなるほど、活性時間は長くなる。したがって、所望の水素発生量と活性時間とを考慮して、予め設定されることが望ましい。あるいは、所望の水素発生量と活性時間が得られる範囲で、ステップS2のヒータ6への通電制御において、所定の活性温度になるまでの昇温時間として設定することもできる。所定時間の下限値は、例えば、5秒以上であり、より確実に活性温度になるように、例えば、10秒以上とすることもできる。所定時間の上限値は、検出開始までの準備時間として確保できる時間、例えば、30秒以下であり、吸蔵酸素の除去に必用な水素を発生可能であれば、例えば、20秒以下であってもよい。 The predetermined time in step S4 corresponds to the time from the start of the early activation control to the end of the early activation control (t1) in FIGS. become more. In addition, as shown in FIG. 11, the more hydrogen generated, the longer the activation time. Therefore, it is desirable to set in advance in consideration of the desired hydrogen generation amount and activation time. Alternatively, it is also possible to set the heating time until a predetermined activation temperature is reached in the power supply control to the heater 6 in step S2 within the range in which the desired hydrogen generation amount and activation time can be obtained. The lower limit of the predetermined time is, for example, 5 seconds or more, and may be, for example, 10 seconds or more so as to more reliably reach the activation temperature. The upper limit of the predetermined time is a time that can be secured as a preparation time until the start of detection, for example, 30 seconds or less. good.
 ステップS4において、所定時間が経過したら、ステップS5へ進んで、早期活性制御部101による制御を終了し、検出制御部102による通常制御へ切り替える。具体的には、ステップS6において、ポンプセル制御部102Aを用いて、ポンプセル4の一対の電極41、42に印加されていた始動時電圧V2を、それよりも低い制御電圧V1へ低下させる。これにより、ポンプセル4では、被測定ガス室2内の酸素の分解による電流が流れ、ポンプセル4の出力電流を検出して、所定の低濃度となるように制御することができる。 In step S4, after a predetermined period of time has elapsed, the process proceeds to step S5, where the control by the early activation control unit 101 ends and the detection control unit 102 switches to normal control. Specifically, in step S6, the pump cell control unit 102A is used to lower the startup voltage V2 applied to the pair of electrodes 41 and 42 of the pump cell 4 to a lower control voltage V1. As a result, in the pump cell 4, a current due to decomposition of oxygen in the gas chamber 2 to be measured flows, and the output current of the pump cell 4 can be detected and controlled to a predetermined low concentration.
 次いで、ステップS6へ進んで、センサセル検出部102Bを用いて、センサセル5の出力電流を検出し、モニタセル検出部102Cを用いて、モニタセル50の出力電流を検出する。センサセル5及びモニタセル50には、限界電流特性を示す所定の電圧が印加されており、被測定ガス室2内の残留酸素とNOxに基づくセンサセル5の出力電流から、残留酸素のみに基づくモニタセル50の出力電流を差し引くことにより、残留酸素の影響が補正されたNOx濃度を算出することができる。 Next, proceeding to step S6, the output current of the sensor cell 5 is detected using the sensor cell detection section 102B, and the output current of the monitor cell 50 is detected using the monitor cell detection section 102C. A predetermined voltage indicating limiting current characteristics is applied to the sensor cell 5 and the monitor cell 50. From the output current of the sensor cell 5 based on the residual oxygen and NOx in the gas chamber 2 to be measured, the output current of the monitor cell 50 based only on residual oxygen is determined. By subtracting the output current, the NOx concentration corrected for the influence of residual oxygen can be calculated.
 以上のように、本形態の構成によれば、センサ始動時の早期活性制御の遅延を抑制し、特定ガスの検出を速やかに開始することができる。 As described above, according to the configuration of this embodiment, it is possible to suppress the delay in the early activation control when the sensor is started, and to promptly start detecting the specific gas.
(実施形態2)
 ガスセンサに係る実施形態2について、図13を参照して説明する。
 本形態のガスセンサ1の基本構成は、上述の図1、図2と同様であるため図示及び説明を省略し、図13には、センサ素子1Aの主要部であるセンサセル5とその周辺の構成示している。以下、相違点を中心に説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
A second embodiment of the gas sensor will be described with reference to FIG.
Since the basic configuration of the gas sensor 1 of this embodiment is the same as those shown in FIGS. 1 and 2, illustration and description thereof are omitted, and FIG. ing. The following description will focus on the differences.
Note that, of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the previous embodiments represent the same components as those in the previous embodiments, unless otherwise specified.
 図13に示すように、本形態では、上記実施形態1におけるモニタセル50を設けておらず、センサセル5のセンサ電極51と第2基準電極52とが、第2固体電解質体12を挟んで、同等位置に対向して配置されている。センサ電極51は、被測定ガス室2に面する第2固体電解質体12の表面に配置され、第2固体電解質体12と対向する第1固体電解質体11の表面には、ポンプセル4のポンプ電極41が配置される。 As shown in FIG. 13, in the present embodiment, the monitor cell 50 in the first embodiment is not provided, and the sensor electrode 51 and the second reference electrode 52 of the sensor cell 5 sandwich the second solid electrolyte body 12 and are equivalent to each other. located opposite to each other. The sensor electrode 51 is arranged on the surface of the second solid electrolyte body 12 facing the gas chamber 2 to be measured. 41 are placed.
 通常の検出時において、ポンプセル4により被測定ガス室2から第1基準ガス導入路31へ排出される酸素に基づくポンプ電流に対して、センサセル5における残留酸素及びNOxに基づくセンサ電流はごく小さくなる。そのため、第2基準ガス導入路32を第1基準ガス導入路31と別に設けることで、酸素の排出に伴う濃度変動の影響を受けにくい等の利点がある一方で、センサ素子1Aの小型化の観点から、第2基準ガス導入路32となる空間容積が小さくなると、上述したように、早期活性制御時の酸素供給量が十分確保できないおそれがある。また、第1基準ガス導入路31となる空間容積が大きくなると、上述したように、センサ素子1Aの強度が低下するおそれがある。 During normal detection, the sensor current based on residual oxygen and NOx in the sensor cell 5 is very small compared to the pump current based on oxygen discharged from the gas chamber 2 to be measured to the first reference gas introduction passage 31 by the pump cell 4. . Therefore, by providing the second reference gas introduction path 32 separately from the first reference gas introduction path 31, there are advantages such as being less susceptible to concentration fluctuations due to the discharge of oxygen. From the point of view, when the spatial volume of the second reference gas introduction passage 32 becomes small, as described above, there is a possibility that the oxygen supply amount during the early activation control cannot be sufficiently secured. Further, when the spatial volume of the first reference gas introduction passage 31 increases, the strength of the sensor element 1A may decrease as described above.
 そのために、第2基準ガス導入路32は、流路断面形状が、流路幅に対して流路高さ(すなわち、積層方向の長さ)が十分小さい扁平形状となるように構成される。これにより、積層方向の素子厚さを抑えて、第2基準電極52上に大気Aを導入しやすくなる。また、第2基準ガス導入路32が形成される遮蔽層14の厚さtに対して、第2基準ガス導入路32の流路高さhの比率を十分小さくすることが望ましい。これにより、第2基準ガス導入路32の流路壁となる遮蔽層14の厚さを確保して、素子強度を保ちながら、早期活性制御時に必要な流路断面積Sを確保して、所望の酸素供給量とすることができる。 Therefore, the second reference gas introduction path 32 is configured such that the cross-sectional shape of the flow path is a flat shape in which the height of the flow path (that is, the length in the stacking direction) is sufficiently small relative to the width of the flow path. This makes it easier to introduce the atmosphere A onto the second reference electrode 52 while suppressing the element thickness in the stacking direction. Further, it is desirable to sufficiently reduce the ratio of the channel height h of the second reference gas introduction path 32 to the thickness t of the shielding layer 14 in which the second reference gas introduction path 32 is formed. As a result, the thickness of the shielding layer 14, which serves as the channel wall of the second reference gas introduction channel 32, is secured, and the channel cross-sectional area S required for early activation control is secured while maintaining the element strength. of oxygen can be supplied.
 早期活性制御時に、上述した式1に基づく酸素供給量(IL)を所望の範囲とするために、好適には、第2基準ガス導入路32の流路断面積Sが、0.007mm2以上となるように構成されることが望ましい。流路断面積Sは、図13中に点線で囲まれる領域で表され、第2基準電極52が配置される先端側の空間部において、ガス流れ方向(例えば、図1における長手方向X)と直交する方向における断面積として定義される。これにより、通常のNOxセンサ構成において(例えば、図2参照)、上述した図3の酸素供給量(IL)の下限値である20μA以上を満たす構成とすることができる。 In order to keep the oxygen supply amount (IL) based on the above-mentioned formula 1 within the desired range during the early activation control, it is preferable that the flow passage cross-sectional area S of the second reference gas introduction passage 32 is 0.007 mm 2 or more. It is desirable to be configured to be The cross-sectional area S of the flow path is represented by a region surrounded by a dotted line in FIG. Defined as cross-sectional areas in orthogonal directions. As a result, in a normal NOx sensor configuration (for example, see FIG. 2), it is possible to achieve a configuration that satisfies the lower limit value of 20 μA or more of the oxygen supply amount (IL) in FIG. 3 described above.
 また、好適には、第2基準ガス導入路32の流路断面積Sは、80mm2以下となるように構成されることが望ましい。これにより、上述した図3の酸素供給量(IL)の上限値である2500μA以下を満たす構成とすることができる。なお、式1に基づく酸素供給量(IL)の算出に際しては、第2基準ガス導入路32の先端側から基端側までの流路長さLの全体において、同一の流路断面積Sとしており、また、温度条件等の異なるブロック毎に酸素供給量を求め、それらの総和として全体の酸素供給量(IL)を算出している。なお、流路長さLは、例えば、20mm以上40mm以下となるように構成されることが望ましい。 Moreover, it is preferable that the cross-sectional area S of the second reference gas introduction path 32 is set to 80 mm 2 or less. As a result, the upper limit value of the oxygen supply amount (IL) in FIG. 3 described above, 2500 μA or less, can be satisfied. In addition, when calculating the oxygen supply amount (IL) based on Equation 1, for the entire channel length L from the distal end side to the proximal end side of the second reference gas introduction channel 32, the same channel cross-sectional area S Also, the oxygen supply amount is obtained for each block with different temperature conditions, etc., and the total oxygen supply amount (IL) is calculated as the sum of them. In addition, it is desirable that the channel length L is configured to be, for example, 20 mm or more and 40 mm or less.
 また、第2基準ガス導入路32の流路高さhと、第2基準ガス導入路32が形成される遮蔽層14の厚さtとの比(h/t)は、具体的には、(h/t)<1/4、好適には、(h/t)<1/5の関係にあることが望ましい。このとき、第2基準ガス導入路32の形成位置における遮蔽層14の厚さtは、流路高さhの4倍ないし5倍以上となり、センサ素子1Aの端面に第2基準ガス導入路32が開口する構成においても、十分な素子強度とすることができる。また、必要な流路断面積Sと、素子組付けの際に要求される素子強度とを高度に満足させる観点から、好適には、0.03<(h/t)<0.13、より好適には、0.04<(h/t)<0.11の関係となるように、構成することができる。 Further, the ratio (h/t) between the channel height h of the second reference gas introduction channel 32 and the thickness t of the shielding layer 14 in which the second reference gas introduction channel 32 is formed is, specifically, (h/t)<1/4, preferably (h/t)<1/5. At this time, the thickness t of the shielding layer 14 at the position where the second reference gas introduction path 32 is formed is four to five times or more the height h of the flow path. Sufficient element strength can be obtained even in a configuration in which is opened. From the viewpoint of highly satisfying the required cross-sectional area S of the flow path and the strength of the element required when assembling the element, it is preferable that 0.03<(h/t)<0.13. Preferably, it can be constructed so as to satisfy the relationship of 0.04<(h/t)<0.11.
(実施形態3)
 ガスセンサに係る実施形態3について、図14~図17を参照して説明する。
 本形態のガスセンサ1の基本構成は、上述の図1、図2と同様であるため図示及び説明を省略し、以下、相違点を中心に説明する。図14に示すように、本形態では、上記実施形態1におけるセンサ素子1Aの構成において、その一端側である基端側の端面に、第2基準ガス導入路32を開口させる代わりに、第2基準ガス導入路32の基端部において、遮蔽層14を積層方向に貫通するスルーホールを形成して、第2基準ガス導入口321としている。
(Embodiment 3)
A third embodiment of the gas sensor will be described with reference to FIGS. 14 to 17. FIG.
Since the basic structure of the gas sensor 1 of this embodiment is the same as that shown in FIGS. 1 and 2, illustration and description thereof will be omitted, and differences will be mainly described below. As shown in FIG. 14, in the present embodiment, in the configuration of the sensor element 1A in Embodiment 1, instead of opening the second reference gas introduction path 32 in the end surface on the base end side, which is one end side, the second A second reference gas introduction port 321 is formed at the base end of the reference gas introduction path 32 so as to penetrate through the shielding layer 14 in the stacking direction.
 第2基準ガス導入口321は、遮蔽層14の基端側の表面に配置される端子部71に隣接する位置に形成されて、第2基準ガス導入路32の基端側の流路端部に接続している。このとき、センサ素子1Aは、端子部71が配置される基端部に空間が形成されないので、素子組付けの際に要求される素子強度を確保することができる。また、第2基準ガス導入路32の流路長さLは、基端側の端面に第2基準ガス導入口321が開口する構成よりも短くなり、上記式1における流路断面積Sと流路長さLの比(S/L)が大きくなるので、酸素供給量を確保しやすくなる。なお、本形態においては、第2基準ガス導入口321を通過する部位については、スルーホールの断面積を用い、流路断面積Sとしてスルーホールの断面積及び第2基準ガス導入路32の断面積を用いて、酸素供給量の算出を行っている。 The second reference gas introduction port 321 is formed at a position adjacent to the terminal portion 71 arranged on the surface of the shielding layer 14 on the proximal side, and is located at the flow path end portion on the proximal side of the second reference gas introduction passage 32 . connected to. At this time, since the sensor element 1A does not have a space at the base end portion where the terminal portion 71 is arranged, it is possible to secure the element strength required when assembling the element. In addition, the channel length L of the second reference gas introduction channel 32 is shorter than the configuration in which the second reference gas introduction port 321 opens at the end surface on the proximal end side, and the channel cross-sectional area S and the flow Since the ratio (S/L) of the path length L is increased, it becomes easier to secure the oxygen supply amount. In this embodiment, the cross-sectional area of the through hole is used for the portion passing through the second reference gas introduction port 321, and the cross-sectional area of the through hole and the cross section of the second reference gas introduction passage 32 are used as the flow passage cross-sectional area S. The area is used to calculate the oxygen supply amount.
 図15に変形例として示すように、上記実施形態1におけるセンサ素子1Aの構成において、第2基準ガス導入路32の内部に、多孔質セラミックスからなる多孔質体が充填された拡散層(以下、多孔質拡散層と略称する)33が形成された構成とすることもできる。この場合には、第2基準ガス導入路32の第2基準ガス導入口321が、基端側の端面に開口する構成であっても、多孔質拡散層33によって、素子強度を向上させることができる。 As shown in FIG. 15 as a modified example, in the configuration of the sensor element 1A in the first embodiment, a diffusion layer (hereinafter referred to as a A configuration in which a porous diffusion layer 33 is formed can also be used. In this case, even if the second reference gas introduction port 321 of the second reference gas introduction path 32 is open at the end surface on the proximal side, the element strength can be improved by the porous diffusion layer 33 . can.
 なお、多孔質拡散層33が配置されることにより、第2基準ガス導入路32の拡散抵抗は大きくなるので、上述の式1における酸素供給量は、第2基準ガス導入路32が同等容積の空間部である場合に比べて減少することになる。酸素供給量をより多くしたい場合には、第2基準ガス導入路32の流路断面積Sを大きくするか、多孔質拡散層33が充填される部位を低減することができる。後者の場合には、多孔質拡散層33は、少なくとも、第2基準ガス導入口321が開口する基端面から端子部71が形成される基端部を含むように配置されていればよく、素子組付けの際に挟持される基端部を補強して、組付け性を向上させることができる。 Since the diffusion resistance of the second reference gas introduction passage 32 is increased by arranging the porous diffusion layer 33, the oxygen supply amount in the above equation 1 is calculated as follows: It will be reduced compared to the case of the space portion. If it is desired to increase the amount of oxygen supplied, the cross-sectional area S of the second reference gas introduction passage 32 can be increased, or the portion filled with the porous diffusion layer 33 can be reduced. In the latter case, the porous diffusion layer 33 may be arranged so as to include at least the base end portion where the terminal portion 71 is formed from the base end surface where the second reference gas introduction port 321 opens. It is possible to improve the ease of assembly by reinforcing the proximal end portion that is held during assembly.
 または、図16に変形例として示すように、第2基準ガス導入路32の流路壁に、柱状の補強部材が埋設された補強部34を備える構成としてもよい。補強部34は、具体的には、第2基準ガス導入口321が開口する基端面の近傍から、端子部71が形成される基端部を含む部位において、第2基準ガス導入路32の流路幅の範囲内で配置することができる。このようにしても、センサ素子1Aの素子組付けの際に挟持される基端部を補強して、組付け性を向上させることができる。 Alternatively, as shown in FIG. 16 as a modified example, the passage wall of the second reference gas introduction passage 32 may be provided with a reinforcing portion 34 in which a columnar reinforcing member is embedded. Specifically, the reinforcing portion 34 is formed to reduce the flow of the second reference gas introduction passage 32 from the vicinity of the base end surface where the second reference gas introduction port 321 opens to the portion including the base end portion where the terminal portion 71 is formed. Can be placed within the width of the road. Also in this way, it is possible to reinforce the base end part that is held when assembling the sensor element 1A, thereby improving the assembling efficiency.
 補強部34は、例えば、流路壁となる遮蔽層14よりも高い強度を有し、第2基準ガス導入路32の端部における強度が向上するように形成されていればよく、遮蔽層14と同じセラミックス材料であっても異なる材料であってもよい。また、ここでは、補強部34に埋設される補強部材を、扁平な矩形板状に形成しているが、形状や大きさ等は、適宜変更することができる。また、補強部材は、流路壁の内部に埋設されているが、例えば、第2基準ガス導入口321が形成される端面に、一部が露出する構成であってもよい。 The reinforcement part 34 has, for example, a higher strength than the shielding layer 14 that forms the flow path wall, and may be formed so that the strength at the end of the second reference gas introduction path 32 is improved. It may be the same ceramic material as or a different material. Further, here, the reinforcing member embedded in the reinforcing portion 34 is formed in a flat rectangular plate shape, but the shape, size, etc. can be changed as appropriate. Moreover, although the reinforcing member is embedded inside the flow path wall, for example, a configuration in which a part of the reinforcing member is exposed at the end surface where the second reference gas inlet 321 is formed may be employed.
 さらに、図17に変形例として示すように、第2基準ガス導入路32の幅方向の流路壁に、複数の第2基準ガス導入口321が開口する構成としてもよい。第2基準ガス導入路32は、端子部71(例えば、図15参照)が配置される基端部には形成されず、第2基準ガス導入路32となる空間部は、基端側の端部から二股に分岐して、両側壁に開口する複数の第2基準ガス導入口321に連通している。二股の分岐路は、基端側へ斜めに両側壁を貫通し、第2基準ガス導入口321の近傍には、それぞれ、多孔質拡散層33が充填されている。 Furthermore, as shown in FIG. 17 as a modification, a plurality of second reference gas introduction ports 321 may be opened in the width direction wall of the second reference gas introduction passage 32 . The second reference gas introduction path 32 is not formed at the proximal end portion where the terminal portion 71 (see, for example, FIG. 15) is arranged, and the space portion serving as the second reference gas introduction path 32 is formed at the proximal end. It branches into two from the part and communicates with a plurality of second reference gas introduction ports 321 opened in both side walls. The bifurcated path obliquely penetrates both side walls toward the base end, and the vicinity of the second reference gas inlet 321 is filled with the porous diffusion layer 33 .
 このようにしても、センサ素子1Aの素子組付けの際に挟持される基端部に空間部が設けられず、また、複数の第2基準ガス導入口321は、多孔質拡散層33によって補強されるので、素子強度が向上し、組付け性を向上させることができる。多孔質拡散層33は、第2基準ガス導入路32の全体に充填されていてもよく、あるいは、多孔質拡散層33が充填されない構成とすることもできる。なお、これらの構成の酸素供給量の算出に際し、二股の分岐路については、その断面積と多孔質拡散層33の配置に応じた酸素供給量をそれぞれ求めて、全体の酸素供給量に反映させることができる。 Even in this way, no space is provided in the proximal end portion that is sandwiched during assembly of the sensor element 1A, and the plurality of second reference gas introduction ports 321 are reinforced by the porous diffusion layer 33. Therefore, the strength of the element is improved, and the ease of assembly can be improved. The porous diffusion layer 33 may be filled in the entire second reference gas introduction path 32, or the configuration may be such that the porous diffusion layer 33 is not filled. When calculating the oxygen supply amount for these configurations, for the bifurcated path, the oxygen supply amount corresponding to the cross-sectional area and the arrangement of the porous diffusion layer 33 is obtained and reflected in the overall oxygen supply amount. be able to.
 本形態において、多孔質拡散層33は、図14及び図16に示した第2基準ガス導入路32に限らず、図14又は図17の第2基準ガス導入路32に適用することもできる。その場合、多孔質拡散層33は、少なくとも第2基準ガス導入口321及びその近傍に設けられることで、開口部の強度を向上させることができる。また、第2基準ガス導入路32の流路形状は、図示したものに限らず、適宜変更することができる。 In this embodiment, the porous diffusion layer 33 can be applied not only to the second reference gas introduction passage 32 shown in FIGS. 14 and 16, but also to the second reference gas introduction passage 32 shown in FIG. 14 or FIG. In that case, the porous diffusion layer 33 is provided at least at the second reference gas introduction port 321 and its vicinity, so that the strength of the opening can be improved. Moreover, the flow path shape of the second reference gas introduction path 32 is not limited to the illustrated one, and can be changed as appropriate.
 上記各実施形態では、ガスセンサ1をNOxセンサとして用いる場合について説明したが、特定ガスは、NOxに限らず、排ガスGに含まれる任意のガスの検出に適用することができる。また、ガスセンサ1やセンサ素子1Aの各部構成や形状は、図示したものに限らず、適宜変更することができる。 In the above embodiments, the gas sensor 1 is used as a NOx sensor. Moreover, the configuration and shape of each part of the gas sensor 1 and the sensor element 1A are not limited to those shown in the drawings, and can be changed as appropriate.
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the present disclosure.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the embodiments, it is understood that the present disclosure is not limited to such embodiments or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (10)

  1.  被測定ガス(G)に含まれる特定ガスの濃度を検出するガスセンサ(1)であって、
     上記被測定ガスが導入される被測定ガス室(2)と、
     上記被測定ガス室を挟んで対向する第1固体電解質体(11)及び第2固体電解質体(12)と、
     酸素を含む基準ガス(A)が導入される第1基準ガス導入路(31)及び第2基準ガス導入路(32)と、
     上記第1固体電解質体の上記被測定ガス室に面する表面にポンプ電極(41)を有し、上記第1基準ガス導入路に面する表面に第1基準電極(42)を有して、上記被測定ガス室の酸素濃度を調整するポンプセル(4)と、
     上記第2固体電解質体の上記被測定ガス室に面する表面にセンサ電極(51)を有し、上記第2基準ガス導入路に面する表面に第2基準電極(52)を有して、上記特定ガスに基づく出力を生じるセンサセル(5)と、
     センサ始動時に上記ポンプセルへ印加される電圧を、通常時の制御電圧(V1)よりも高い始動時電圧(V2)に制御し、上記被測定ガスに含まれる水の分解によって上記被測定ガス室に発生する還元ガスを用いて、上記センサ電極に吸蔵された酸素を除去する早期活性制御部(101)と、を備えており、
     上記第2基準ガス導入路は、上記センサ始動時に、上記第2基準ガス導入路から上記センサ電極へ向けて供給される酸素の限界量を、上記第2固体電解質体を流れる電流値として示す酸素限界電流値が、20μA以上となるように形成されている、ガスセンサ。
    A gas sensor (1) for detecting the concentration of a specific gas contained in a gas (G) to be measured,
    a measured gas chamber (2) into which the measured gas is introduced;
    a first solid electrolyte body (11) and a second solid electrolyte body (12) facing each other with the gas chamber to be measured interposed therebetween;
    a first reference gas introduction passage (31) and a second reference gas introduction passage (32) through which a reference gas (A) containing oxygen is introduced;
    Having a pump electrode (41) on the surface facing the gas chamber to be measured of the first solid electrolyte body, and having a first reference electrode (42) on the surface facing the first reference gas introduction path, a pump cell (4) for adjusting the oxygen concentration in the gas chamber to be measured;
    Having a sensor electrode (51) on the surface facing the gas chamber to be measured of the second solid electrolyte body, and having a second reference electrode (52) on the surface facing the second reference gas introduction path, a sensor cell (5) that produces an output based on the specific gas;
    The voltage applied to the pump cell when the sensor is started is controlled to a starting voltage (V2) higher than the normal control voltage (V1). an early activation control unit (101) that removes oxygen occluded in the sensor electrode using the generated reducing gas,
    The second reference gas introduction path is configured to indicate a limit amount of oxygen supplied from the second reference gas introduction path toward the sensor electrode when the sensor is started, as a current value flowing through the second solid electrolyte body. A gas sensor formed to have a limiting current value of 20 μA or more.
  2.  上記酸素限界電流値は、2500μA以下である、請求項1に記載のガスセンサ。 The gas sensor according to claim 1, wherein the oxygen limiting current value is 2500 μA or less.
  3.  上記早期活性制御部は、上記センサ始動時に発生する上記還元ガスの総量を示すクーロン量が、2000μA・s以上11000μA・s以下の範囲となるように、上記始動時電圧及び上記始動時電圧の印加時間を制御する、請求項1又は2に記載のガスセンサ。 The early activation control unit applies the start-up voltage and the start-up voltage so that the coulomb amount indicating the total amount of the reducing gas generated when the sensor is started is in the range of 2000 μA s or more and 11000 μA s or less. 3. The gas sensor according to claim 1, which controls time.
  4.  上記第2基準ガス導入路は、上記第2基準電極の形成部位における流路断面積が、0.007mm2以上である、請求項1~3のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 3, wherein the second reference gas introducing passage has a flow passage cross-sectional area of 0.007 mm 2 or more at the portion where the second reference electrode is formed.
  5.  上記第2基準ガス導入路は、上記第2基準電極の形成部位における流路断面積が、0.80mm2以下である、請求項1~4のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 4, wherein the second reference gas introducing passage has a flow passage cross-sectional area of 0.80 mm 2 or less at the portion where the second reference electrode is formed.
  6.  上記ポンプセル及び上記センサセルが形成されるセンサ素子(1A)を備えており、
     上記センサ素子の長手方向(X)の一端側に、上記第1基準ガス導入路に上記基準ガスを導入するための第1基準ガス導入口(311)及び上記第2基準ガス導入路に上記基準ガスを導入するための第2基準ガス導入口(321)が、それぞれ開口しており、
     上記酸素限界電流値の大きさは、上記第2基準ガス導入口から上記第2基準電極に至る上記第2基準ガス導入路の流路構造に依存して定まる、請求項1~5のいずれか1項に記載のガスセンサ。
    A sensor element (1A) in which the pump cell and the sensor cell are formed,
    A first reference gas introduction port (311) for introducing the reference gas into the first reference gas introduction passage and the reference The second reference gas introduction ports (321) for introducing gas are respectively open,
    6. The oxygen limiting current value according to any one of claims 1 to 5, wherein the magnitude of the oxygen limiting current value is determined depending on the flow channel structure of the second reference gas introduction passage from the second reference gas introduction port to the second reference electrode. 2. The gas sensor according to item 1.
  7.  上記第2基準ガス導入口を取り囲む流路壁の少なくとも一部に、補強部(34)が形成されている、請求項6に記載のガスセンサ。 The gas sensor according to claim 6, wherein a reinforcing portion (34) is formed on at least a portion of the channel wall surrounding the second reference gas inlet.
  8.  上記第2基準ガス導入口は、上記センサ素子の上記一端側において、上記長手方向に延びる上記第2基準ガス導入路の流路壁を積層方向に貫通するスルーホールにて形成される、請求項6又は7に記載のガスセンサ。 The second reference gas introduction port is formed at the one end side of the sensor element by a through hole penetrating in the stacking direction through a flow channel wall of the second reference gas introduction passage extending in the longitudinal direction. 8. The gas sensor according to 6 or 7.
  9.  上記センサ素子の上記一端側において、複数の上記第2基準ガス導入口が開口していると共に、複数の上記第2基準ガス導入口は、上記長手方向に延びる上記第2基準ガス導入路の両側壁を貫通して設けられる、請求項6又は7に記載のガスセンサ。 A plurality of the second reference gas introduction ports are open at the one end side of the sensor element, and the plurality of the second reference gas introduction ports are arranged on both sides of the second reference gas introduction path extending in the longitudinal direction. 8. The gas sensor according to claim 6 or 7, provided through a wall.
  10.  上記第2基準ガス導入口に続く上記第2基準ガス導入路の少なくとも一部に、多孔質体が充填された拡散層(33)が形成されている、請求項6~9のいずれか1項に記載のガスセンサ。 A diffusion layer (33) filled with a porous material is formed in at least a part of the second reference gas introduction passage leading to the second reference gas introduction port. The gas sensor described in .
PCT/JP2022/018954 2021-05-12 2022-04-26 Gas sensor WO2022239645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520960A JP7495012B2 (en) 2021-05-12 2022-04-26 Gas Sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080944 2021-05-12
JP2021080944 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239645A1 true WO2022239645A1 (en) 2022-11-17

Family

ID=84028284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018954 WO2022239645A1 (en) 2021-05-12 2022-04-26 Gas sensor

Country Status (2)

Country Link
JP (1) JP7495012B2 (en)
WO (1) WO2022239645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185347A1 (en) * 2023-03-09 2024-09-12 株式会社デンソー Gas concentration detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298859A (en) * 1989-05-15 1990-12-11 Ngk Insulators Ltd Oxygen sensor
JPH10325824A (en) * 1997-05-23 1998-12-08 Denso Corp Hydrocarbon sensor
JP2001159620A (en) * 1999-09-22 2001-06-12 Ngk Insulators Ltd Gas analyser and calibration method thereof
JP2008261848A (en) * 2007-03-20 2008-10-30 Hitachi Ltd Oxygen sensor
JP2010237044A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Gas sensor manufacturing method, gas sensor, and laminated structure of gas sensor
JP2015194474A (en) * 2014-03-26 2015-11-05 日本特殊陶業株式会社 Gas sensor and gas detection element
WO2016052707A1 (en) * 2014-10-01 2016-04-07 株式会社デンソー Gas concentration detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298859A (en) * 1989-05-15 1990-12-11 Ngk Insulators Ltd Oxygen sensor
JPH10325824A (en) * 1997-05-23 1998-12-08 Denso Corp Hydrocarbon sensor
JP2001159620A (en) * 1999-09-22 2001-06-12 Ngk Insulators Ltd Gas analyser and calibration method thereof
JP2008261848A (en) * 2007-03-20 2008-10-30 Hitachi Ltd Oxygen sensor
JP2010237044A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Gas sensor manufacturing method, gas sensor, and laminated structure of gas sensor
JP2015194474A (en) * 2014-03-26 2015-11-05 日本特殊陶業株式会社 Gas sensor and gas detection element
WO2016052707A1 (en) * 2014-10-01 2016-04-07 株式会社デンソー Gas concentration detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185347A1 (en) * 2023-03-09 2024-09-12 株式会社デンソー Gas concentration detection device

Also Published As

Publication number Publication date
JPWO2022239645A1 (en) 2022-11-17
JP7495012B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
EP3203223B1 (en) Method of detecting a gas concentration and a gas concentration detection device
US11782017B2 (en) Pump electrode and reference electrode for gas sensor
JP4592570B2 (en) Sensor element deterioration determination device and sensor element deterioration determination method
US5948963A (en) Gas sensor
JP3701114B2 (en) NOx decomposition electrode oxidation prevention method
JP3647181B2 (en) Nitrogen oxide measurement method
US10732143B2 (en) Gas sensor element and gas sensor unit
JP2009244140A (en) GAS SENSOR AND NOx SENSOR
US20110168573A1 (en) Apparatus and method for controlling a gas sensor
JP7124644B2 (en) gas sensor element
WO2022239645A1 (en) Gas sensor
JP5186472B2 (en) Hydrogen gas concentration detection system and gas sensor element having the same
JP6758215B2 (en) Ammonia sensor element
US20130180854A1 (en) Correction coefficient setting method of gas concentration detection apparatus, gas concentration detection apparatus and gas sensor
WO2015029842A1 (en) Gas concentration detection device
JP4592571B2 (en) Sensor element deterioration determination device and sensor element deterioration determination method
JP3104291B2 (en) NOX sensor
US10895553B2 (en) Gas sensor
JP2002005878A (en) Electrochemical measurement sensor
US20200064303A1 (en) Gas sensor element
WO2016052707A1 (en) Gas concentration detection device
JP2004157063A (en) Gas sensor element and its manufacturing method
JP7349300B2 (en) gas sensor
JP7396842B2 (en) gas sensor
JP4003879B2 (en) Method for manufacturing gas sensor element and gas sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807347

Country of ref document: EP

Kind code of ref document: A1