WO2022239633A1 - Complex, method for producing same, and shape memory member containing same - Google Patents

Complex, method for producing same, and shape memory member containing same Download PDF

Info

Publication number
WO2022239633A1
WO2022239633A1 PCT/JP2022/018807 JP2022018807W WO2022239633A1 WO 2022239633 A1 WO2022239633 A1 WO 2022239633A1 JP 2022018807 W JP2022018807 W JP 2022018807W WO 2022239633 A1 WO2022239633 A1 WO 2022239633A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite
curable compound
curable
complex
Prior art date
Application number
PCT/JP2022/018807
Other languages
French (fr)
Japanese (ja)
Inventor
甲一郎 宇都
充宏 荏原
明彦 菊池
Original Assignee
国立研究開発法人物質・材料研究機構
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 学校法人東京理科大学 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023520957A priority Critical patent/JPWO2022239633A1/ja
Publication of WO2022239633A1 publication Critical patent/WO2022239633A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a composite, a manufacturing method thereof, and a shape memory member including the same.
  • Non-Patent Document 1 describes a temperature-responsive poly( ⁇ -caprolactone) membrane.
  • Non-Patent Document 1 memorizes the applied deformation, and when heated to a predetermined temperature (this temperature is hereinafter also referred to as “driving temperature"), it returns to the shape before the deformation is applied. It had shape memory ability. However, in order to exert the shape memory ability, it is necessary to heat the membrane and/or the surrounding environment of the membrane. , there is room for improvement in terms of adverse effects on surrounding tissues due to heating.
  • an object of the present invention is to provide a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current.
  • Another object of the present invention is to provide a method for manufacturing such a composite, and a shape memory member including the composite.
  • a composite comprising a crosslinked polymer having an endothermic peak when differential scanning calorimetry (DSC) is performed, and a metal nanowire, in a conductive test, at least before deformation state, and in a state of being deformed by 100% or more in a predetermined direction by applying stress from the outside, having conductivity to the extent that electrical resistance can be measured, and the crosslinked polymer and / or the metal nanowire A composite that does not substantially cause detachment of the metal nanowires in a stability test using a good solvent.
  • DSC differential scanning calorimetry
  • the crosslinked polymer is a cured product of a curable compound 1 represented by Formula 1 described later, a cured product of a curable compound 2 represented by Formula 2 described later, and a curable compound 1 and the curable
  • the composite according to [1] which is selected from the group consisting of cured products of composites of curable compounds composed of compound 2.
  • [3] The composite according to [1] or [2], wherein the metal nanowires are silver nanowires.
  • TG thermogravimetry
  • a shape memory member comprising the composite according to any one of [1] to [4].
  • the curable compound comprises a curable compound 1 represented by Formula 1 described later, a curable compound 2 represented by Formula 2 described later, and the curable compound 1 and the curable compound 2.
  • the present invention it is possible to provide a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current. Further, according to the present invention, it is possible to provide a method of manufacturing such a composite and a shape memory member including the composite.
  • FIG. 1 is a schematic perspective view showing the structure of a composite according to one embodiment of the present invention
  • FIG. (a) A SEM image of silver nanowires synthesized in Example 2-1.
  • FIG. 4 is a SEM image of the composite prepared in Example 3-1.
  • (a) surface, (b) cross section. 10 is a graph showing the relationship between power (W) and temperature (° C.) in the composite produced in Example 3-1.
  • (a) to (f) are SEM images of the surface of three types of composites produced in Example 3-4 in permanent shape (before deformation) and temporary shape (after deformation).
  • FIG. A SEM image of silver nanowires synthesized in Example 2-1.
  • FIG. 4 is a SEM image of the composite prepared in Example 3-1.
  • (a) surface, (b) cross section. 10 is a graph showing the relationship between power (W) and temperature (° C.) in the composite produced in Example 3-1.
  • (a) to (f) are SEM images of the surface of three
  • FIG. 4 shows DSC curves of composite 4(10), composite 4(20), composite 4(30), and composite 4(50) prepared in Example 4-1.
  • FIG. 3 shows TG curves of complex 4 (10), complex 4 (20), complex 4 (30), and complex 4 (50).
  • 4 is a graph showing stress (MPa) generated in a test piece in 20 repeated cycles of deformation and recovery as a function of test time (s).
  • the term "permanent shape” means a state in which internal (residual) stress is relaxed in a target substance, in other words, the most thermodynamically stable shape. It refers to the shape obtained when a material is heated to near (or above) the melting temperature of the crystals in the absence of stress and then cooled to room temperature.
  • the melting temperature of the crystal means the temperature of the peak top of the endothermic peak in the temperature rising process of performing differential scanning calorimetry (DSC) of the substance of interest (when there are multiple endothermic peaks, the highest temperature side is the peak top temperature of the peak of ).
  • the vicinity of the melting temperature means about the terminal temperature on the high temperature side of the endothermic peak in differential scanning calorimetry.
  • differential scanning calorimetry shall be performed by the method mentioned later.
  • the term “temporary shape” refers to a state in which a target substance is deformed by applying stress from the outside, heated to around the melting temperature of the crystal, and then cooled to about the crystallization temperature (or lower). This means the shape when the deformation is temporarily fixed by crystallization or the like.
  • the crystallization temperature means the temperature of the peak top of the exothermic peak in the cooling process of the target substance measured by differential scanning calorimetry.
  • the terms “driving,” “driving,” “drivable,” and “drivable” used with respect to the shape memory ability of the complex refer to the shape memory ability of the complex. It is possible for the complex to exhibit the shape memory ability, to exhibit the shape memory ability of the complex, and to exhibit the shape memory ability of the complex. It is intended to be (that the complex can exhibit shape memory ability).
  • FIG. 1 is a schematic perspective view showing the structure of a composite according to one embodiment of the present invention.
  • a composite according to one embodiment of the present invention (hereinafter also referred to as “composite of the present embodiment") 100 is a composite including a crosslinked polymer 110 and metal nanowires 120. be.
  • FIG. 1 shows a mode in which the composite 100 of the present embodiment has a sheet-like appearance (also referred to as a film, a membrane, etc.), but the appearance of the composite 100 is particularly limited. can be determined as appropriate depending on the application.
  • the metal nanowires 120 are incorporated into the crosslinked polymer 110.
  • metal nanowires 120 do not simply partially cover the surface of crosslinked polymer 110 , but are embedded inside the crosslinked structure of crosslinked polymer 110 . With such a structure, composite 100 does not substantially cause detachment of metal nanowires 120 in a stability test described later.
  • the metal nanowires 120 are incorporated into the crosslinked polymer 110 in such a dispersed state that the composite 100 can be driven by local heating by application of electric current. Due to such a structure, the composite 100 has constant conductivity. More specifically, in the conductivity test described later, the composite 100 was at least in a state before deformation (permanent shape) and a state in which stress was applied from the outside and deformed by 100% or more in a predetermined direction (temporary shape). shape) and has conductivity to the extent that electrical resistance can be measured.
  • the composite 100 further has conductivity to the extent that the electrical resistance can be measured even in a state in which energy is applied in a state of being deformed by 100% or more to restore the same size as before deformation. .
  • the composite 100 can be driven by local heating by application of electric current, and in a more preferable embodiment, can be repeatedly deformed and recovered multiple times.
  • the above 100% or more deformed state may be 100% deformation, 200% deformation, or 300% deformation. Deformation of more than 300% is acceptable. It has conductivity to the extent that electrical resistance can be measured in a state of being deformed at a higher rate, and even in a state where energy is applied in the deformed state to restore it to the same size as before deformation. It is desirable to have a measurable degree of electrical conductivity so that the composite 100 can be applied to a wider range of applications.
  • the metal nanowires 120 are incorporated into the crosslinked polymer 110 without substantially impairing the properties of the crosslinked polymer 110 alone.
  • the composite 100 has an endothermic peak and an exothermic peak in substantially the same temperature range in at least two or more samples produced under conditions in which the content (content rate) of the metal nanowires 120 is different. A peak is confirmed.
  • the metal nanowires 120 are embedded inside the crosslinked structure of the crosslinked polymer 110, and the amount of the metal nanowires 120 thus incorporated into the crosslinked polymer 110 is It means that the melting point and crystallization temperature of the crosslinked polymer 110 contained in 100 are not substantially affected.
  • the composite 100 can more effectively exhibit the shape memory ability (details will be described later) due to the inclusion of the crosslinked polymer 110, and the inclusion of the metal nanowires 120 allows localized It has a structure that additively or synergistically combines the features of the crosslinked polymer 110 and the metal nanowires 120 that they can be driven by heating.
  • the metal nanowires 120 are incorporated into the crosslinked polymer 110 without substantially impairing the properties of the crosslinked polymer 110 alone. It also means that it is incorporated into the crosslinked polymer 110 without substantially impairing the properties that it has by itself.
  • the metal nanowires 120 are embedded in the crosslinked structure of the crosslinked polymer 110, so that the composite 100 can be driven by local heating by applying an electric current. Instead, the properties of the metal nanowires 120 alone can be exhibited while incorporated in the crosslinked polymer 110 .
  • composite 100 can exhibit antibacterial properties derived from silver that constitutes the nanowires.
  • the material of the metal nanowires 120 is In addition to selecting the metal, it is also possible to select the metal from the viewpoint of imparting desired properties to the composite 100 .
  • the dispersion state of the metal nanowires 120 in the composite 100 described above can also be explained using the concept of percolation.
  • the concept of percolation (the percolation problem) is well known in the art, as is its relationship to self-similarity. Given an n-dimensional lattice (eg, a cubic lattice), consider a procedure that occupies its site (or bond) parts with some probability p. If p ⁇ 1, the sites will all be connected, forming a network over the lattice. Conversely, if p ⁇ 0, few sites will be occupied and the surroundings of any occupied sites will remain empty. This process of stochastically occupying points or bonds in space is called percolation, and a group of mutually connected occupied sites is called a cluster. This can be thought of as an idealized model of the process of liquid penetration in random media and the process of forest fire propagation.
  • percolation threshold percolation threshold
  • the metal nanowires 120 have self-similarity based on the percolation cluster model described above or equivalent self-similarity.
  • the composite 100 has excellent electrical conductivity and is suitable for use as a shape memory member that can be driven by local heating by applying an electric current.
  • the crosslinked polymer 110 contained in the composite 100 of this embodiment is a chemically crosslinked polymer compound. That is, the crosslinked polymer 110 is a high molecular compound having a crosslinked structure in which molecules are bonded to each other by covalent bonds formed by a chemical reaction.
  • the method of introducing a crosslinked structure into the polymer compound is not particularly limited, but a method of applying energy (typically by heating) to the curable compound (crosslinkable monomer) described below to cure it can be mentioned.
  • the crosslinked polymer 110 has an endothermic peak when differential scanning calorimetry (DSC) is performed. That is, the crosslinked polymer 110 has crystallinity such that an endothermic peak due to melting can be detected in differential scanning calorimetry, in other words, a melting peak can be detected.
  • the composite 100 can exhibit a shape-memory ability to memorize the applied deformation and return to the shape before the deformation is applied when heated to the drive temperature.
  • differential scanning calorimetry shall be performed under the following test conditions using a general differential scanning calorimeter.
  • Measurement container Aluminum sample pan Sample amount/size: Adjust appropriately according to the size of the sample pan.
  • Measurement start temperature 0°C
  • Measurement end temperature 120°C Heating rate: set in the range of 0.01 to 20°C/min. Preferably, it is in the range of 5 to 10°C/min.
  • Measurement procedure First, the sample is heated from room temperature to 120°C, and when it reaches 120°C, it is cooled to -5°C. Next, after the temperature of the sample reaches ⁇ 5° C., the temperature is raised from 0° C. to 120° C. at a predetermined heating rate, and a DSC curve is obtained.
  • the melting peak temperature of the crosslinked polymer 110 is not particularly limited, it is preferably 33.0 to 58.0.degree.
  • the peak melting temperature of the crosslinked polymer 110 is preferably 33.0 to 37.0° C. in consideration of the surface temperature of the living body. 34.0 to 36.5°C is more preferable.
  • the melting peak temperature of the crosslinked polymer 110 is preferably 37.0 to 45.0° C. in consideration of the in vivo temperature. It is preferably above 0°C and below 44.0°C.
  • the degree of crystallinity of the crosslinked polymer 110 is not particularly limited, the degree of crystallinity obtained by differential scanning calorimetry is preferably 10.0 to 40.0%.
  • the crystallinity of the crosslinked polymer 110 is preferably 10.0 to 15.5%.
  • the crystallinity of the crosslinked polymer 110 is preferably more than 15.5% and 40.0% or less, more preferably more than 15.5% and 28.0% or less, and the lower limit is 15.5%. Even more preferably, it exceeds 5%.
  • the crosslinked polymer 110 is not particularly limited as long as it has the crystallinity described above.
  • a curable compound (crosslinkable monomer) for obtaining a cured product suitable for the crosslinked polymer 110 contained in the composite 100 of the present embodiment and an exemplary embodiment of a method for producing the same will be described below.
  • the crosslinked polymer 110 is a cured product of a curable compound 1 represented by Formula 1 below.
  • L 1 represents a poly(oxyalkylenecarbonyl) group
  • X 1 represents a group having a curable group
  • R 1 is a hydrogen atom or a monovalent substituent having no curable group.
  • q1 represents an integer of 2 or more
  • p1 represents an integer of 0 or more
  • M1 represents a single bond or a divalent group
  • q1 is 2 and
  • M 1 represents a p1+q1-valent group
  • a plurality of R 1 and L 1 may be the same or different.
  • the poly(oxyalkylenecarbonyl) group of L 1 in formula 1 is a divalent group consisting of a polymer chain having an oxyalkylenecarbonyl group as a repeating unit, specifically represented by the following formula II is the base.
  • L 21 represents an alkylene group, and although the number of carbon atoms in the alkylene group of L 21 is not particularly limited, it is preferably 1-20, more preferably 2-10. Among them, an alkylene group having 2 to 10 carbon atoms is more preferable as L 21 from the viewpoint of obtaining a composite having superior effects of the present invention.
  • n represents a number of 2 or more and is not particularly limited, but is preferably 2 to 200, more preferably 2 to 100. 5 to 50 are more preferred, and 10 to 30 are particularly preferred.
  • the curable compound 1 can also be prepared by ring-opening polymerization of a cyclic ester.
  • the number of n can be adjusted by the charge ratio of the ring-opening polymerization initiator (eg, polyhydric alcohol) and the monomer (eg, lactone compound). More specifically, the desired n number of lactone compounds may be prepared to react with one hydroxy group of the polyhydric alcohol.
  • the number n can be determined by 1 H-NMR (Nuclear Magnetic Resonance) measurement of the cured product.
  • X 1 is a group having a curable group.
  • a group having a curable group means a curable group itself or an atomic group having a curable group as a partial structure in its structure.
  • the group having a curable group for X 1 is not particularly limited, a group represented by the following formula (III) is preferable.
  • Z represents a curable group and L3 represents a single bond or a divalent group.
  • "*" represents a binding position.
  • the divalent group of L 3 is not particularly limited, but -C(O)-, -C(O)O-, -OC(O)-, -O-, -S-, -NR 20 -(R 20 represents a hydrogen atom or a monovalent organic group), an alkylene group (preferably having 1 to 10 carbon atoms), a cycloalkylene group (preferably having 3 to 10 carbon atoms), an alkenylene group (preferably having 2 to 10 carbon atoms is preferred), and combinations thereof.
  • L 3 is a single bond, —O—, —C(O)—, an alkylene group, —NR 20 —, and , and combinations of these are preferred.
  • the curable group of Z refers to a group that participates in the curing reaction.
  • the curable group is not particularly limited, but is preferably a group capable of radical polymerization, and more preferably a group having an ethylenically unsaturated bond, in that a composite having superior effects of the present invention can be obtained.
  • the group having an ethylenically unsaturated bond is not particularly limited, examples thereof include (meth)acryloyl groups, styryl groups, and allyl groups, among which (meth)acryloyl groups are preferred.
  • "(meth)acryloyl” means either one or both of acryloyl and methacryloyl.
  • the form of the p+q - valent group of M 1 is not particularly limited when M 1 is a divalent group. groups are preferred.
  • M 1 is a group having a valence of 3 or more, it is not particularly limited, and examples thereof include groups represented by the following formulas (4a) to (4d).
  • L3 represents a trivalent group.
  • T3 represents a single bond or a divalent group, and three T3s may be the same or different.
  • L 3 is a nitrogen atom, a trivalent hydrocarbon group (preferably having 1 to 10 carbon atoms; the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), or Examples thereof include trivalent heterocyclic groups (preferably 5- to 7-membered heterocyclic groups), and the hydrocarbon groups may contain a heteroatom (eg, —O—).
  • Specific examples of L3 include glycerol residue , trimethylolpropane residue, phloroglucinol residue, and cyclohexanetriol residue.
  • L4 represents a tetravalent group.
  • T4 represents a single bond or a divalent group, and four T4s may be the same or different.
  • a preferred form of L 4 is a tetravalent hydrocarbon group (preferably having 1 to 10 carbon atoms.
  • the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.)
  • a tetravalent heterocyclic group (preferably a 5- to 7-membered heterocyclic group) may be mentioned, and the hydrocarbon group may contain a heteroatom (eg, —O—).
  • Specific examples of L4 include a pentaerythritol residue, a ditrimethylolpropane residue, and the like.
  • L5 represents a pentavalent group.
  • T5 represents a single bond or a divalent group, and five T5s may be the same or different.
  • a preferred form of L 5 is a pentavalent hydrocarbon group (preferably having 2 to 10 carbon atoms.
  • the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.), or , a pentavalent heterocyclic group (preferably a 5- to 7-membered heterocyclic group), and the hydrocarbon group may contain a heteroatom (eg, —O—).
  • Specific examples of L5 include arabinitol residue, phloroglucidol residue, cyclohexanepentaol residue and the like.
  • L6 represents a hexavalent group.
  • T6 represents a single bond or a divalent group, and six T6s may be the same or different.
  • a preferred form of L 6 is a hexavalent hydrocarbon group (preferably having 2 to 10 carbon atoms.
  • the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.), or , a hexavalent heterocyclic group (preferably a 6- to 7-membered heterocyclic group), and the hydrocarbon group may contain a heteroatom (eg, —O—).
  • Specific examples of L6 include mannitol residue, sorbitol residue, dipentaerythritol residue, hexahydroxybenzene , and hexahydroxycyclohexane residue.
  • the divalent groups represented by T 3 to T 6 may have the same form as the divalent group of M 1 already explained, or may be the same. Further, when M 1 is a group having a valence of 7 or more, a group obtained by combining the groups represented by formulas 4a to 4d can be used.
  • p1 represents an integer of 0 or more, preferably 2 or less, more preferably 1 or less, and still more preferably 0.
  • q1 represents an integer of 2 or more, preferably 4 or less, more preferably 3 or less, and still more preferably 2.
  • R 1 represents a hydrogen atom or a monovalent substituent having no curable group.
  • the monovalent substituent having no curable group is not particularly limited, but includes, for example, a group represented by *-L''-R'.
  • L′′ represents a single bond or a divalent group
  • R′ represents a hydrogen atom or a hydrocarbon group (linear, branched, or cyclic). good)
  • * represents the binding position.
  • the curable compound 1 is preferably a compound represented by the following formula 1B in terms of obtaining a composite having superior effects of the present invention.
  • M 1B is an r1valent group, and its form, including preferred forms, is the same as the group represented by M 1 in Formula 1 already described.
  • L 1B represents a poly(oxyalkylenecarbonyl) group
  • X 1B represents a group having a curable group
  • its form, including preferred forms is the same as L 1 and X 1 in formula 1 already described. be.
  • the curable compound 1 is preferably a compound represented by the following formula 1D in that a composite having even more excellent effects of the present invention can be obtained.
  • AL 2 represents an alkylene group having 1 to 20 carbon atoms. Although the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 3 or more, and preferably 10 or less.
  • L D represents a hydrocarbon having 1 to 5 carbon atoms, and includes -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - , and -CH 2 C(CH 3 ) 2 CH 2 — is preferred, and —CH 2 CH 2 CH 2 CH 2 — is more preferred.
  • X 1D represents a group having a curable group, and its form, including preferred forms, is the same as the group represented by X 1 in formula 1 already described.
  • w represents an integer of 2 or more, preferably 100 or less, more preferably 50 or less, and preferably an integer of 20 or less.
  • the number average molecular weight of the curable compound 1 is not particularly limited, it is generally preferably from 2,000 to 8,000. Also, the molecular weight distribution (Mw/Mn) of the curable compound 1 is not particularly limited, but is generally preferably from 1.1 to 1.6.
  • the number average molecular weight and weight average molecular weight of the curable compound 1 mean values determined by GPC (Gel Permeation Chromatography) measurement by the method described in Examples below.
  • crosslinked polymer 110 is a cured product of curable compound 2 represented by Formula 2 below.
  • L 2 represents a polymer chain, the polymer chain includes all repeating units composed of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid, and X 2 is Represents a group having the same curable group as that of X 1 in Formula 1, R 2 represents a hydrogen atom or a monovalent substituent having no curable group, q2 is an integer of 2 or more and p2 represents an integer of 0 or more, when q2 is 2 and p2 is 0, M2 represents a single bond or a divalent group, when q2 is 2 and p2 is 1 or more, and When q2 is 3 or more, M 2 represents a p2+q2-valent group, and multiple R 2 and L 2 may be the same or different.
  • the polymer chain of L 2 in Formula 2 is a polymer chain containing all repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid.
  • the polymer chain of L2 may have repeating units other than the above, in which case a poly(oxyalkylene) group (chain) is preferred.
  • Lactic acid has two types of optical isomers, L-lactic acid and D-lactic acid, represented by the following formulas, and polylactic acid polymers can be obtained by polyesterifying these.
  • lactic acid can be polymerized by converting it to cyclic lactide and ring-opening polymerization as shown in the following formula.
  • the repeating unit of the polymer derived from D-lactic acid is referred to as "repeating unit derived from D-lactic acid”
  • the repeating unit of the polymer derived from L-lactic acid is referred to as "derived from L-lactic acid.” It is called a repeating unit that
  • the polymer chain of L2 consists of repeating units of P1 represented by the following formula (repeating units consisting of an oxyalkylenecarbonyl group), P2D (repeating units derived from D-lactic acid), and P2L (L- repeating unit derived from lactic acid).
  • P1 represented by the following formula (repeating units consisting of an oxyalkylenecarbonyl group), P2D (repeating units derived from D-lactic acid), and P2L (L- repeating unit derived from lactic acid).
  • n represents an integer of 1 to 20, preferably an integer of 2 to 10, more preferably an integer of 3 to 8.
  • the arrangement order of the P1 unit, P2D unit, and P2L unit in the L2 polymer chain is not particularly limited, and may be random, triblock, or multiblock. From the viewpoint of easily controlling the melting point of the polymer chain of L2, it is preferably arranged at random ( random copolymer).
  • the polymer chain of L2 becomes a polymer chain located between the crosslink points. It is difficult to have a structure or an extended chain structure, and the melting point of the cured product becomes lower, or the cured product does not have a melting point (has no crystallinity).
  • the content of P1 units, P2D units, and P2L units in L2 is not particularly limited. well, may be 10 mol% or more, may be 20 mol% or more, may be 30 mol% or more, may be 40 mol% or more, or may be 50 mol% or more It may be 60 mol % or more.
  • the content of P1 units in L2 is preferably more than 60 mol% and less than 100 mol%. The upper limit may be 90 mol % or less, 80 mol % or less, or 70 mol % or less.
  • the content of the P2D unit and the P2L unit may be 1 to 5 mol%, may be 5 mol% or more, may be 10 mol% or more, and may be 15 mol%. or more.
  • the upper limit may be 45 mol% or less, 40 mol% or less, 35 mol% or less, 30 mol% or less, or 25 mol% or less. may be present, or may be 20 mol % or less.
  • the content of P2D units and P2L units in L2 is preferably 1 mol % or more and less than 20 mol %. In this case, the upper limit may be 15 mol % or less, 10 mol % or less, or 5 mol % or less.
  • the number of repetitions of the P1 unit, the P2D unit, and the P2L unit in the polymer chain is not particularly limited, but the number of repetitions is preferably 10 or more, more preferably 20 or more, from the viewpoint that the deformation rate of the cured product tends to increase. , is more preferably 30 or more, preferably 200 or less, more preferably 100 or less, and even more preferably 70 or less.
  • the total number of repeating P1 units, P2D units and P2L units in L2 is 10-100.
  • X2 is a group having a curable group.
  • the curable group possessed by X2 is the same as the curable group possessed by X1 in formula ( 1 ). Further, specific examples of the group of X2 are the same as those of the group of X1 , and the preferred forms are also the same.
  • the monovalent substituents for R 2 are the same as the monovalent substituents for R 1 in Formula 1, and the preferred forms are also the same.
  • the divalent group and trivalent or higher group of M 2 are the same as the divalent group and trivalent or higher group of M 1 in Formula 1, respectively, and the preferred forms are also the same. is.
  • p2 represents an integer of 0 or more, preferably 2 or less, more preferably 1 or less, and still more preferably 0.
  • q2 represents an integer of 2 or more, preferably 3 or more, preferably 8 or less, and more preferably 6 or less.
  • the curable compound 2 is preferably a compound represented by the following formula 1C, in that a composite having superior effects of the present invention can be obtained.
  • M 1C is an r2valent group
  • L 1C represents a polymer chain, and the polymer chain is a repeating unit composed of an oxyalkylenecarbonyl group, a repeating unit derived from D-lactic acid, and L - containing all repeating units derived from lactic acid (which may further contain a poly(oxyalkylene) group)
  • X 1C represents a group having the same curable group as that of X 1B in Formula 1B
  • r2 is represents an integer of 2 or more, and a plurality of L 1C may be the same or different.
  • the polymer chain of L 1C , the divalent or trivalent group of M 1 C , or the curable group of X 1C are, respectively, the polymer chain of L 2 in formula 2, the divalent of M 2 , Alternatively, a group having a valence of 3 or more and a group similar to the curable group of X 2 can be mentioned, and the preferred forms are also the same.
  • r2 is preferably an integer of 2 or more, preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less. When r2 is within the above numerical range, a composite having superior effects of the present invention can be obtained.
  • the curable compound 2 is preferably a compound represented by the following formula 1E, from the viewpoint of obtaining a composite having more excellent effects of the present invention.
  • L 1Ea represents a polymer chain and includes all repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid
  • L 1Eb is It represents a polymer chain consisting of a single bond or a poly(oxyalkylene) group (chain)
  • X 1E represents a group having the same curable group as that of X 1D in Formula 1D.
  • polymer chain of L 1E and the group having a curable group of X 1E are the same groups as the polymer chain of L 2 and the group having a curable group of X 2 in Formula 2, respectively. The same applies to preferred forms.
  • the number average molecular weight of the curable compound 2 is not particularly limited, it is generally preferably from 8,000 to 40,000. Also, the molecular weight distribution (Mw/Mn) of the curable compound is not particularly limited, but is generally preferably from 1.10 to 1.80.
  • the number average molecular weight and weight average molecular weight of the curable compound 2 mean values determined by GPC (Gel Permeation Chromatography) measurement by the method described in Examples below.
  • curable compound 1 and curable compound 2 (hereinafter collectively referred to simply as "curable compound") will be described.
  • the method for producing the curable compound is not particularly limited, but in order to obtain the curable compound more easily, a group having a curable group is introduced into the precursor compound obtained by ring-opening polymerization of the cyclic compound. is preferably obtained by
  • cyclic compound known cyclic compounds can be used without particular limitation, but those that can be ring-opened by hydrolysis are preferred, such as ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - Butyrolactone, ⁇ -valerolactone, ⁇ -caprylolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -stearolactone, ⁇ -caprolactone, ⁇ -octanoic lactone, 2-methyl- ⁇ - Cyclic esters (lactone compounds) such as caprolactone, 4-methyl- ⁇ -caprolactone, ⁇ -caprylolactone, ⁇ -palmitolactone, ⁇ -hydroxy- ⁇ -butyrolactone, and ⁇ -methyl- ⁇ -butyrolactone; glycolide, and cyclic diesters such as lactide;
  • the cyclic compound is preferably a lactone compound or lactide
  • the lactone compound is ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - Butyrolactone, ⁇ -valerolactone, ⁇ -caprylolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -stearolactone, ⁇ -caprolactone, 2-methyl- ⁇ -caprolactone, 4-methyl- ⁇ -caprolactone, ⁇ -caprylolactone, and ⁇ -palmitolactone is more preferably at least one selected from the group consisting of.
  • lactide can be used in the synthesis of the curable compound 2.
  • this lactide include L-lactide (LL lactide) formed by dehydration condensation of two molecules of L-lactic acid, two molecules of D - D-lactide (DD-lactide) formed by dehydration condensation of lactic acid, meso-lactide formed by dehydration condensation of one molecule of L-lactic acid and one molecule of D-lactic acid, and D-lactide and L -DL-lactide (racemic lactide), which is a mixture of equal amounts of lactide, and the like.
  • DL-lactide is preferred because the melting point of the resulting cured product tends to be lower.
  • the method of obtaining a precursor compound by ring-opening polymerization of a cyclic compound is not particularly limited, but a method of ring-opening polymerization using an alcohol as an initiator in the presence of a metal catalyst can be mentioned.
  • -Metal catalyst Although not particularly limited as a metal catalyst, alkali metals, alkaline earth metals, rare earths, transition metals, aluminum, germanium, tin, and fatty acid salts such as antimony, carbonates, sulfates, phosphates, oxides, hydroxides, halides, alcoholates, and the like.
  • stannous chloride More specifically, stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, stannous myristate, tin octoate (Tin (II)-ethylhexanoate), stearin Tin acid, tetraphenyltin, tin methoxide, tin ethoxide, tin butoxide, aluminum oxide, aluminum acetylacetonate, aluminum isopropoxide, aluminum-imine complex, titanium tetrachloride, ethyl titanate, butyl titanate, glycol titanate, titanium tetra Compounds such as butoxide, zinc chloride, zinc oxide, diethyl zinc, antimony trioxide, antimony tribromide, antimony acetate, calcium oxide, germanium oxide, manganese oxide, manganese carbonate, manganese acetate, magnesium oxide, and yttrium al
  • the amount of the metal catalyst used is preferably about 0.01 ⁇ 10 ⁇ 4 to 100 ⁇ 10 ⁇ 4 mol per 1 mol of the cyclic compound in terms of the metal element in the metal catalyst.
  • initiator is not particularly limited, monohydric or dihydric or higher alcohols can be mentioned.
  • the monohydric alcohol is not particularly limited, but includes an alcohol represented by R IN —OH, where R IN is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms. show.
  • R IN is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms. show.
  • Examples of the aliphatic hydrocarbon group include, but are not limited to, alkyl groups having 1 to 20 carbon atoms.
  • Examples of monohydric alcohols include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, pentyl alcohol, n-hexyl alcohol, cyclohexyl alcohol, octyl alcohol, nonyl alcohol, 2-ethylhexyl alcohol, Examples include n-decyl alcohol, n-dodecyl alcohol, hexadecyl alcohol, lauryl alcohol, ethyl lactate and hexyl lactate.
  • Dihydric or higher alcohols include ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, and ditrimethylol.
  • a dihydric alcohol or a tetrahydric alcohol is preferable in terms of obtaining a composite having a more excellent effect of the present invention.
  • the dihydric alcohol include ethylene glycol, 1,3-propanediol, , 4-butanediol, and neopentyl glycol are preferred.
  • the tetrahydric alcohol pentaerythritol, pentaerythritol ethoxylate, and the like are preferable.
  • the amount of the initiator used is not particularly limited, but is preferably about 0.0001 to 0.1 mol per 1 mol of the cyclic compound.
  • Ring-opening polymerization is preferably carried out in an inert gas atmosphere in order to prevent volatilization of the cyclic compound.
  • the polymerization temperature is not particularly limited, but preferably 100 to 250°C.
  • the polymerization time is not particularly limited, it is preferably about 0.1 to 48 hours.
  • the method of introducing a curable group into a precursor compound obtained by ring-opening polymerization of a cyclic compound is not particularly limited.
  • the method (a) is preferable in that the curable compound (macromonomer) can be obtained more easily.
  • the compound to be reacted with the hydroxy group of the precursor compound is not particularly limited.
  • the curable group is a (meth)acryloyl group
  • (meth)acrylic acid chloride examples include unsaturated acid halogen compounds such as brominated (meth)acrylic acid.
  • the amount of the compound to be reacted with the hydroxy group of the precursor compound is not particularly limited, but is preferably about 0.1 to 20 molar equivalents relative to the hydroxy group.
  • the crosslinked polymer 110 is a cured composite of curable compounds composed of curable compound 1 and curable compound 2 above.
  • the contents of the curable compound 1 and the curable compound 2 in the composite of the curable compounds are not particularly limited as long as they have the crystallinity described above.
  • the contents of the curable compound 1 and the curable compound 2 can be adjusted so that the melting peak temperature of the crosslinked polymer is within the desired range in consideration of the use of the composite.
  • the content of the curable compound 1 is preferably 20 mol% or more, more preferably 30 mol% or more, more preferably 35 mol% or more, when the total is 100 mol%, in relation to the curable compound 2.
  • mol % or more is more preferable, and 40 mol % or more is particularly preferable.
  • the upper limit is preferably 99 mol% or less, more preferably 95 mol% or less, still more preferably 90 mol% or less, and particularly preferably 85 mol% or less.
  • the content of curable compound 1 is preferably 45 to 65 mol %.
  • the content of the curable compound 1 is preferably 65 to 99 mol %, more preferably 65 to 85 mol %.
  • the content of the curable compound 2, in relation to the curable compound 1, is preferably 1 mol% or more, more preferably 5 mol% or more, and further preferably 10 mol% or more when the total is 100 mol%. It is preferably 15 mol% or more, particularly preferably 80 mol% or less, more preferably 70 mol% or less, still more preferably 65 mol% or less, and particularly preferably 60 mol% or less.
  • the content of the curable compound 2 is preferably 35 to 50 mol %.
  • the content of the curable compound 2 is preferably 1 to 35 mol %, more preferably 10 to 35 mol %.
  • the molar ratio of the content of curable compound 2 to the content of curable compound 1 and curable compound 2 in the composite of curable compounds is from 0.01 to 0.65.
  • the specimen prepared by the following method has crystallinity from the viewpoint that the cured product of the composite of the curable compound can have both a lower melting point and a higher deformation rate. preferably not.
  • Test body preparation method A composition obtained by mixing 500 mg of curable compound 2, 15 mg of benzoyl peroxide, and 695 ⁇ L of xylene is heated to 80° C. to polymerize, and the obtained polymer is treated with acetone. After washing with , shrinking in methanol and drying under reduced pressure, a specimen is obtained.
  • Shape memory materials suitable for the crosslinked polymer 110 contained in the composite 100 of the present embodiment include the cured product of the curable compound 1, the cured product of the curable compound 2, and the curable compound 1 and the curable compound.
  • the method of obtaining a cured product of a composite of curable compounds composed of 2 is not particularly limited, but energy is applied to a composition containing curable compound 1 and curable compound 2 and, if necessary, other components. can be obtained by curing (typically by heating). The details are described in the section on "Method for producing a composite" below.
  • metal nanowires The material of the metal nanowires (hereinafter also simply referred to as “metal nanowires”) 120 included in the composite 100 of the present embodiment is metal.
  • the metal as the material of the metal nanowires 120 does not include ceramics such as metal oxides and nitrides. Specific examples include iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, cadmium, osmium, iridium, platinum, and gold. Among them, copper, silver, platinum, and gold are preferable, and silver is more preferable, from the viewpoint of conductivity.
  • the shape of the metal nanowires 120 is not particularly limited as long as the ratio of the length in the short axis direction to the length in the long axis direction (hereinafter also referred to as “aspect ratio”) is 10 or more. From the point of view of synthesis and composite manufacturing, if the aspect ratio is too large, it may become difficult to handle. Therefore, the aspect ratio is preferably 10000 or less, more preferably 1000 or less.
  • the metal nanowires 120 may have a straight shape, a branched shape, a shape in which particles are connected in a beaded shape, or a mixture of these shapes.
  • the linear metal nanowire means that the shape is rod-like
  • the branched metal nanowire means that the shape is branched. If the metal nanowires have low rigidity and are partially or wholly curved or bent, they are included in the linear metal nanowires.
  • the length of the metal nanowires 120 in the minor axis direction is not particularly limited, but is preferably 1 nm or more and 1 ⁇ m or less. If the length in the minor axis direction is too short, synthesis of metal nanowires tends to be difficult, so the length is more preferably 10 nm or more and 500 nm or less. Although the length of the metal nanowires in the major axis direction is not particularly limited, it is preferably 1 ⁇ m or more and 1 mm or less from the viewpoint of conductivity. Moreover, if the length in the major axis direction is too long, it may become difficult to handle. The shape and size of metal nanowires 120 can be confirmed with a scanning electron microscope or a transmission electron microscope.
  • the metal nanowires 120 can be synthesized by a known method. For example, a method of reducing silver nitrate in a solution, a method of applying voltage or current from the tip of the probe to the surface of the precursor to extract metal nanowires at the tip of the probe, and forming the metal nanowires continuously. is mentioned. Specific examples of the method for reducing silver nitrate in a solution include a method of reducing nanofibers composed of metal-complexed peptide lipids (JP-A-2002-266007) and a method called polyol reduction, in which ethylene A method of reduction while heating in glycol (Y.
  • the content of the metal nanowires 120 in the composite 100 of the present embodiment is not particularly limited as long as it is sufficient to drive the composite 100 by local heating due to the application of electric current.
  • the content of metal nanowires 120 calculated by thermogravimetry (TG) is preferably 5% or more, more preferably 10% or more, and further preferably 15% or more. It is preferably 20% or more, and more preferably 20% or more.
  • TG thermogravimetry
  • the metal nanowires 120 can be incorporated into the crosslinked polymer 110 in a dispersed state in the composite 100 to such an extent that the composite 100 can be driven by local heating by applying an electric current.
  • the thermogravimetric measurement shall be performed by the method described in Examples below.
  • the content of the metal nanowires 120 should be higher than necessary. is not required.
  • the content of the metal nanowires 120 calculated by thermogravimetry (TG) is preferably 60% or less, more preferably 50% or less, and 40% or less. More preferably, it is even more preferably 35% or less.
  • the content of metal nanowires 120 may be 5% or more and 60% or less, or may be 5% or more and 50% or less, as long as the composite has conductivity to the extent that the electrical resistance can be measured. well, may be 5% or more and 40% or less, may be 5% or more and 35% or less, may be 10% or more and 35% or less, may be 15% or more and 35% or less, It may be 20% or more and 35% or less.
  • the composite 100 of the present embodiment has a structure in which the metal nanowires 120 are incorporated into the crosslinked polymer 110, so that both the permanent shape and the temporary shape have conductivity to the extent that electrical resistance can be measured. have sex.
  • the conductivity test of the composite is performed by preparing a test piece of any size, at least in a permanent shape (state before deformation), in a state of being stretched 100% using a tensile tester, and applying energy (typically Specifically, the electrical resistance ( ⁇ ) shall be measured under three conditions in a 100% contracted state (restored to the same size as before deformation) by heating.
  • energy typically Specifically, the electrical resistance ( ⁇ ) shall be measured under three conditions in a 100% contracted state (restored to the same size as before deformation) by heating.
  • a specific test method when the test piece is in the form of a sheet is as described in Examples below. If the test piece has a shape other than a sheet shape, those skilled in the art can appropriately change the design.
  • the composite 100 of the present embodiment has a structure in which the metal nanowires 120 are incorporated into the crosslinked polymer 110, and therefore has excellent structural stability.
  • the composite 100 does not substantially detach the metal nanowires 120.
  • substantially does not cause detachment of the metal nanowires means that suspension of the test solvent caused by the metal nanowires detached from the composite is observed visually before and after the stability test. It means that it is substantially not observed and/or that weight measurement of the test piece before and after the stability test does not show a decrease in weight due to the metal nanowires detached from the composite. do. In practice, a small amount of the test solvent may remain in the test piece after the stability test. or a slight increase over the weight before testing. On the other hand, in a test piece made of a material having no structure like the composite 100 of this embodiment, the weight after the test clearly decreases from the weight before the test.
  • the solvent used in the stability test that is, the good solvent for the crosslinked polymer 110 and/or the metal nanowires 120 is not particularly limited, and may be appropriately selected according to the structure/materials of the crosslinked polymer and/or the metal nanowires. Specific examples include alcohols such as methanol, ethanol, and 1-propanol.
  • a specific test method when the test piece is in the form of a sheet is as described in Examples below. If the test piece has a shape other than a sheet shape, those skilled in the art can appropriately change the design.
  • the method for producing the composite 100 of the present embodiment is not particularly limited, but the following production is possible in that a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current can be obtained more easily. A method is preferred.
  • a method for producing a composite according to one embodiment of the present invention comprises: a step of producing a molded body containing metal nanowires (hereinafter also referred to as a “molded body manufacturing step”); a step of applying a composition containing a curable compound to the molded body (hereinafter also referred to as a “composition applying step”); a step of applying energy to the molded article to which the composition is applied to cure the curable compound (hereinafter also referred to as a “curing step”); including.
  • a step of producing a molded body containing metal nanowires hereinafter also referred to as a “molded body manufacturing step”
  • a step of applying a composition containing a curable compound to the molded body hereinafter also referred to as a “composition applying step”
  • a step of applying energy to the molded article to which the composition is applied to cure the curable compound hereinafter also referred to as a “curing step”
  • the compact preparation step is a step of preparing a compact containing metal nanowires. Specifically, metal nanowires are dispersed in an arbitrary solvent to prepare a metal nanowire dispersion solution, which is applied on an arbitrary support, and the solvent is dried at a predetermined temperature to form a molding containing metal nanowires. you can get a body
  • the solvent for dispersing the metal nanowires is not particularly limited, and examples include alcohols such as methanol, ethanol, and 1-propanol, and DMF (N,N-dimethylformamide), etc., which are liquid at room temperature and volatile. organic solvents excellent in
  • composition applying step is a step of applying a composition containing a curable compound to the molded article obtained in the molded article producing step.
  • the curable compound contained in the composition is not particularly limited, but the curable compound 1 described above, the curable compound 2, and a composite of a curable compound composed of the curable compound 1 and the curable compound 2 It is preferably selected from the group consisting of
  • composition contains the curable compound described above, it may contain other components as necessary.
  • Other ingredients include, for example, curing agents and solvents.
  • a curing agent is a compound having a function of acting on a curable compound to cause a curing reaction.
  • the curing agent is not particularly limited, and known compounds can be used, and radical polymerization initiators are typically preferred.
  • a thermosetting agent in which a curing reaction proceeds by application of heat energy and/or a photo-curing agent in which a curing reaction proceeds by light irradiation (application of light energy) can be used.
  • heat curing agents include azo compounds such as azobisisobutyronitrile and peroxides such as benzoyl peroxide.
  • photocuring agents include aromatic ketone compounds such as benzophenone, Michler's ketone, xanthone, and thioxanthone; quinone compounds such as 2-ethylanthraquinone; acetophenone, trichloroacetophenone, 2-hydroxy-2-methylpropiophenone, 1 - acetophenone compounds such as hydroxycyclohexylphenyl ketone, benzoin ether, 2,2-diethoxyacetophenone and 2,2-dimethoxy-2-phenylacetophenone; diketone compounds such as methylbenzoylformate; 1-phenyl-1,2- Acyl oxime ester compounds such as propanedione-2-(O-benzoyl) oxime; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoyldip
  • the content of the curing agent in the composition is preferably 0.001 to 10% by mass with respect to the total mass of curable compounds in the composition.
  • the composition may contain one type of curing agent alone, or may contain two or more types. When the composition contains two or more curing agents, the total content is preferably within the above numerical range.
  • the composition may contain a solvent.
  • the solvent contained in the composition is not particularly limited, but a solvent that can dissolve and/or disperse the curable compound and the curing agent and that is difficult to evaporate during the curing reaction may be selected.
  • the curing reaction temperature is about 80° C., so a solvent having a boiling point equal to or higher than the curing reaction temperature is preferable. Evaporation of the solvent during the curing reaction can be further suppressed by using such a solvent, so that a cured product with less inclusion of air bubbles can be easily obtained.
  • Such solvents include, for example, xylene, butyl acetate, DMF, dimethylsulfoxide, and the like.
  • the temperature of the curing reaction is generally lower than when using a heat curing agent, so even if a solvent with a lower boiling point is used, a cured product with fewer air bubbles can be obtained.
  • solvents that can be used include dichloromethane, chloroform, and acetone.
  • the content of the solvent in the composition is not particularly limited, but when the composition contains a solvent, it is preferably 10 to 90% by mass when the total mass of the composition is 100% by mass.
  • the composition may contain one type of solvent alone or may contain two or more types. When the composition contains two or more solvents, the total content is preferably within the above numerical range.
  • the curing step is a step of applying energy to the molded article to which the composition is applied to cure the curable compound.
  • the type of energy to be applied to the molded body may be appropriately selected depending on the type of curing agent that may be contained in the composition described above, and heating and/or light irradiation are preferred.
  • the method of applying energy is not particularly limited, but includes, for example, a method of heating a molded article formed on a support and/or irradiating the molded article with light to cure the curable compound.
  • the heating temperature/heating time, the intensity of light irradiation/irradiation time, etc. may be appropriately selected according to the shape of the molded article, the type of curing agent, and the like. More specifically, the heating temperature may be, for example, 40 to 200.degree. Also, the heating time may be, for example, 1 minute to 24 hours.
  • the application of energy to the molded body may be performed under pressurized conditions.
  • the metal nanowires can be more efficiently incorporated into the crosslinked structure of the cured product during the curing process of the curable compound.
  • the obtained composite tends to have a structure in which the metal nanowires are effectively embedded inside the crosslinked structure of the crosslinked polymer.
  • the pressure to be applied may be appropriately adjusted according to the shape and thickness of the molded body.
  • the production method of the present embodiment includes a step of drying the obtained product (composite containing metal nanowires and a cured product of a curable compound) after the curing step (hereinafter, also referred to as a “drying step”. ) may be included.
  • the drying step is a step of drying the product to remove at least part of the solvent contained in the product.
  • the drying method is not particularly limited, and examples thereof include a method of standing at 20 to 50° C. for 1 minute to 24 hours, and a method of holding under reduced pressure.
  • the drying conditions may be appropriately selected according to the shape and thickness of the product.
  • the size and shape of the hardened product are not particularly limited. It may be determined as appropriate according to the application.
  • the cured product has a shape memory ability, a lower driving temperature, and an excellent deformation rate, so that it can be applied to medical instruments such as ligatures and sutures.
  • cured material can also be used as a film
  • the base material of an adhesive tape having a base material and an adhesive layer disposed on the base material is used as this film, it can be preferably used as a medical tape.
  • the method of using the composite 100 of the present embodiment is not particularly limited, but as described above, the composite 100 of the present embodiment has shape memory ability by including the crosslinked polymer 110 .
  • the composite 100 of the present embodiment can be fixed in a temporary shape by heating to a softening point (a temperature near the melting temperature of crystals) under stress and then cooling. The temporary shaped composite 100 is then reheated to its softening point and returns to its permanent shape.
  • the composite 100 of the present embodiment includes the metal nanowires 120 (more specifically, the metal nanowires 120 are incorporated in the crosslinked polymer 110), so that local heating due to the application of current It is drivable.
  • the composite 100 of the present embodiment is suitable for producing a member containing it and using it as an electrically driven shape memory member.
  • the composite of this embodiment can be used alone or in combination with other members.
  • curable compound 1 (2b20PCL macromonomer)
  • a curable compound 1 (2b20PCL macromonomer) was synthesized according to the following scheme. First, 1,4-butanediol (2.21 mL, 0.025 mol) as a divalent ring-opening polymerization initiator and ⁇ -caprolactone (CL) (105.6 mL, 1 mol), and Tin (II) as a catalyst 0.2 mL of -2 ethylhexanoate was added to a round-bottomed flask and reacted at 120° C. for 24 hours under nitrogen atmosphere.
  • reaction product was reprecipitated in a mixed solvent of hexane and diethyl ether at a volume ratio of 1:1, and dried under reduced pressure to obtain a bibranched 20-mer PCL (hereinafter also referred to as "2b20PCL").
  • the molecular weight of "2b20PCL” and the number of repeating oxyalkylenecarbonyl groups were determined by GPC and 1 H-NMR.
  • the test conditions are as follows.
  • the number average molecular weight of 2b20PCL determined from the results of GPC was 3700, and Mw/Mn was 1.23.
  • the number average molecular weight of 4b50P (CL-co-DLLA) measured by GPC was 9900, and the Mw/Mn was 1.44.
  • composition was prepared using curable compound 1 and curable compound 2, and cured by heating to obtain a cured product.
  • Table 1 is the formulation of the composition.
  • a total of 500 mg of curable compounds 1 and 2 and 15 mg of BPO as a radical polymerization initiator (curing agent) (3% by mass/volume with respect to the total of curable compounds) were completely dissolved in 695 ⁇ L of xylene to form a composition. got
  • this composition was dropped onto a glass substrate, sandwiched between another glass substrate via a polytetrafluoroethylene spacer with a thickness of 0.2 mm, and placed in an oven at 80° C. overnight (3 hours or longer). Set aside to cure. The resulting cured product was thoroughly washed with acetone, shrunk in methanol, and dried under reduced pressure (overnight).
  • DSC measurement DSC measurement was performed in order to measure the melting peak temperature of the crystals of the obtained cured product and the degree of crystallinity.
  • the DSC measurement was performed using a differential scanning calorimeter "X-DSC 7000" (heat flux type) manufactured by SII.
  • the test conditions are as follows.
  • Measurement container Aluminum sample pan ( ⁇ 6.8mm) Amount and size of sample: The amount of sample was about 10 mg, and it was cut to fit in the sample pan.
  • each sample (cured product) was heated from room temperature to 120°C, and when it reached 120°C, it was cooled to -5°C.
  • the temperature of the sample reached ⁇ 5° C.
  • the temperature was raised from 0° C. to 120° C. at a rate of 5° C./min, and this DSC curve was acquired.
  • Table 1 shows the melting peak temperature (Tm) of the crystal read from the obtained DSC curve and the degree of crystallinity.
  • the elastic modulus was calculated from the linear portion of the stress-strain curve obtained by the tensile test.
  • the test piece was a sheet having a length of 17.5 ⁇ 2.5 mm, a width of 5.00 ⁇ 0.90 mm and a thickness of 0.14 ⁇ 0.03 mm. Each value was calculated to two decimal places and rounded off.
  • the cured products of Examples 1 to 6 obtained by curing the compositions containing curable compound 1 and curable compound 2 all have crystallinity and can be used as shape memory materials. It had a possible deformation rate. Among them, the cured products of Examples 1 to 5 had a small elastic modulus and a large breaking strain, and a large deformation rate as a shape memory material.
  • the cured products of the compositions of Examples 3 and 4 have a higher crystal melting peak temperature (Tm) than the cured products of the compositions of Examples 1 and 2.
  • the melting peak temperature (Tm) of the crystals of the cured product is lower than the cured product of the composition of 5, and the temperature is also in the range of 37.0 to 45.0 ° C., and it is used for driving in vivo ( ligatures, etc.).
  • the cured products of the compositions of Examples 1 and 2 have a lower crystal melting peak temperature (Tm) than the cured product of the composition of Example 3, and the temperature is also 33.0 It was in the range of ⁇ 37.0°C, and was more suitable for applications (wearable devices, sutures, etc.) driven on the surface of the body.
  • Tm crystal melting peak temperature
  • the cured products of the compositions of Examples 1 and 2 which have a crystallinity in the range of 10.0 to 15.5%, have a crystallinity of the cured product compared to the cured product of the composition of Example 3.
  • the melting peak temperature (Tm) is lower, and the temperature is in the range of 33.0 to 37.0 ° C., and it is more suitable for applications driven on the biological surface (wearable devices, sutures, etc.) .
  • the cured products of the compositions of Examples 3 and 4 which have a crystallinity in the range of more than 15.5% and 40.0% or less, are compared with the cured products of the compositions of Examples 1 and 2.
  • the crystal melting peak temperature (Tm) of the cured product is higher, and the crystal melting peak temperature (Tm) of the cured product is lower than that of the cured product of the composition of Example 5, and the temperature is also 37.0 to 37.0. It was within the range of 45.0° C., and was more suitable for applications driven in vivo (ligatures, etc.).
  • the obtained silver nanowire solution was centrifuged (3500 rpm, 20 min), and after removing the supernatant, it was re-dispersed in ethanol. This operation was repeated three times to refine the silver nanowires and collect the silver nanowires as a product.
  • Silver nanowires were synthesized by the following procedure. Polyvinylpyrrolidone (PVP) (900 mg), Ethylene glycol (150 mL), FeCl 3 (0.43 mg), AgNO 3 (600 mg) were added to a round bottom eggplant flask and stirred until dissolved. After dissolution, the mixture was heated to 110° C. in an oil bath and reacted without stirring for 24 hours to synthesize silver nanowires.
  • PVP Polyvinylpyrrolidone
  • Ethylene glycol 150 mL
  • FeCl 3 0.43 mg
  • AgNO 3 600 mg
  • Acetone was added to the resulting silver nanowire solution at a ratio of 1:1, centrifuged (3500 rpm, 15 min), and after removing the supernatant, re-dispersed in ethanol. This operation was repeated three times to refine the silver nanowires and collect the silver nanowires as a product.
  • FIGS. 2(a) and (b) are SEM images of the silver nanowires synthesized in 2-1 and 2-2 above, respectively.
  • the scale bar in FIG. 2(a) is 5 ⁇ m
  • the scale bar in FIG. 2(b) is 20 ⁇ m.
  • the silver nanowires synthesized in this example had a high aspect ratio.
  • the silver nanowires synthesized in 2-2 above have an average minor axis length of about 150 nm, an average major axis length of about 30 ⁇ m, and an average aspect ratio of about 200 was calculated.
  • a composite was produced by the following procedure.
  • pentaerythritol which is a tetravalent ring-opening polymerization initiator
  • This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C.
  • the 4b50PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-shaped cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.016 cm.
  • the composition was prepared in the same manner as in 1-3 above, and the cured product obtained by heating and curing had a melting peak temperature (Tm) of 55.3 ° C., and crystallized. degree was 31.3%.
  • the prepared cured product was heated to a melting point or higher, and cooled in a state of being stretched 300% in the width direction from the original shape using a tensile tester, thereby fixing the stretched shape.
  • a composite was produced by the following procedure. 12.8 mg of the silver nanowires synthesized in 2-1 above were dispersed in 350 ⁇ L of DMF to prepare a silver nanowire suspension solution. To this silver nanowire suspension solution, curable compound 1 (2b20PCL macromonomer) (250 mg) synthesized in 1-1 above, and 7.5 mg of BPO as a radical polymerization initiator (curing agent) (3 mass/volume %) was completely dissolved. The solution containing the obtained silver nanowires and the 2b20PCL macromonomer was dropped onto a glass substrate, and placed on another glass substrate via a 0.2 mm-thick polytetrafluoroethylene spacer (4 cm ⁇ 4 cm).
  • composites were produced by the same procedure as above, except that the amount of silver nanowires dispersed in DMF was 62 mg and 84.7 mg.
  • a composite was produced by the following procedure. 15 mg of the silver nanowires synthesized in 2-2 above were dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution. This silver nanowire suspension solution was cast on a glass substrate, and Ethanol was dried at room temperature to produce a silver nanowire film.
  • a rectangular mold made of PDMS (polydimethylsiloxane) (inner dimensions: length 3 cm, width 3 cm, depth 0.37 cm) was placed in advance on the glass substrate, and A silver nanowire suspension solution was cast.
  • composites were produced by the same procedure as above, except that the amount of silver nanowires dispersed in Ethanol was 10 mg and 5 mg.
  • a composite was produced by the following procedure. Using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) (3 mass / volume% with respect to the macromonomer) was completely dissolved in 695 ⁇ L of xylene to prepare a composition. This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C. The 2b20PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-like cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.015 cm.
  • a composite was produced by the following procedure. Using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) (3 mass / volume% with respect to the macromonomer) was completely dissolved in 695 ⁇ L of xylene to prepare a composition. This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C. The 2b20PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-like cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.015 cm.
  • a strip-shaped test piece with a length of 2 cm and a width of 1 cm is cut from the prepared cured product, heated to the melting point or higher, and cooled while being stretched 100% in the longitudinal direction from the original shape using a tensile tester. This fixed the stretched shape.
  • the formation of the crosslinked structure of the crosslinked polymer and the formation of the network structure of the metal nanowires are not simultaneous, and preferably have a time lag. It suggests.
  • energy is applied to the curable compound.
  • the metal nanowires are likely to be incorporated into the crosslinked polymer in a dispersed state to the extent that the composite can be driven by local heating due to the application of an electric current.
  • the composite of the present invention has a sheet-like shape
  • the composite can be driven by local heating due to the application of an electric current. It is believed that the incorporation of metal nanowires throughout the crosslinked polymer is not an essential requirement.
  • the silver nanowire film to which the composition is applied is in a state of being sandwiched between the glass substrates, so a certain pressure is applied. Therefore, it is considered that the incorporation of the metal nanowires into the crosslinked structure of the crosslinked polymer proceeds more efficiently.
  • FIGS. 3(a) and 3(b) are SEM images of the surface (surface where the silver nanowires are incorporated) and the cross section of the composite prepared in 3-1 above, respectively.
  • the scale bar in FIG. 3(a) is 50 ⁇ m
  • the scale bar in FIG. 3(b) is 200 ⁇ m.
  • the metal nanowires are dispersed to such an extent that the composite can be driven by local heating by applying an electric current, and the crosslinked polymer confirmed to be incorporated in
  • a strip-shaped test piece with a length of 3 cm and a width of 0.5 cm was cut from the composite prepared in 3-1 above, and a DC power supply (REGULATED DC POWER SUPPLY LX010-3.5 B TAKASAGO) was used to perform the test. Alligator clips were placed at both longitudinal ends of the strip and the relationship between power and temperature was investigated. As a specific test condition, the current value was increased by 0.5 A and the temperature was plotted while the power was maintained for 15 seconds. As for the temperature range, the test was conducted in the range of 25 to 130°C.
  • FIG. 4 is a graph showing the relationship between power (W) and temperature (° C.) in the composite prepared in 3-1 above.
  • W power
  • temperature ° C.
  • the composite obtained in the preparation procedure B (the composite of 3-2) exhibits an exothermic behavior when a higher voltage (8 V) is applied than the composite obtained in the preparation procedure A (the composite of 3-1). , and recovery to the original shape was observed. From this, it can be concluded that even by applying (a suspension solution of) metal nanowires to a crosslinked polymer having a crosslinked structure, as in the preparation procedure B, the composite is locally heated by applying an electric current. It may be possible to disperse metal nanowires to the extent that they can drive the body. However, as will be described later, the composite obtained by the preparation procedure B may have a problem regarding structural stability.
  • Each of the three types of test pieces was immersed in a 10 mL sample tube containing 5 mL of ethanol, which is a good solvent for silver nanowires. At this time, no particular change was observed in any of the test pieces by visual observation. Next, when each sample tube was vibrated to cause agitation, no particular change was observed in the specimens of the 3-3 and 3-4 composites, but the 3-5 composite was visually observed. Detachment of the silver nanowires was observed in the test piece of . Furthermore, each sample tube was subjected to ultrasonic treatment for 1 minute using an ultrasonic cleaner (US-105, manufactured by SND). No particular change was observed, but in the 3-5 composite test pieces, solvent suspension occurred due to detached silver nanowires. Table 3 shows the above results.
  • test procedure is the same as the stability test 1 described above, detailed description is omitted. Moreover, the test result was also the same as the stability test 1 mentioned above. Specifically, when each of the above three types of test pieces was immersed in a 10 mL sample tube containing 5 mL of ethanol, which is a good solvent for silver nanowires, no particular change was observed in any of the test pieces by visual observation. I didn't. Next, when each sample tube was vibrated to cause agitation, no particular change was observed in the specimens of the 3-3 and 3-4 composites, but the 3-6 composite was visually observed. Detachment of the silver nanowires was observed in the test piece of .
  • each sample tube was subjected to ultrasonic treatment for 1 minute using an ultrasonic cleaner (US-105, manufactured by SND). Although no particular change was observed, in the specimens of composites 3-6, suspension of the solvent due to detached silver nanowires occurred. Table 3 shows the above results.
  • the same tendency as in the stability test 1 was observed in the weight change of the test piece before and after being subjected to the stability test 2 described above.
  • the specimens of the composites 3-3 and 3-4 in which no detachment of silver nanowires was observed by visual observation, about 0.1 to about 0.6 mg of Weight gain was observed. This is believed to be associated with partial residual ethanol, the test solvent.
  • the composite test piece 3-6 where clear detachment of the silver nanowires was observed by visual observation, a weight decrease of about 1.3 mg was observed before and after the test. The weight of the piece was almost the same as the weight after cutting the test piece from the cured product in the preparation procedure of 3-6 above.
  • thermogravimetry (TG) was performed on the composites prepared in 3-4 above, and the content of silver nanowires in each composite was calculated. Table 4 shows the results. In addition, the measurement conditions are as follows.
  • metal nanowires silver nanowires
  • the silver nanowire content is about 5% or more, preferably 10%. It can be said that the above is possible.
  • FIGS. 5(a) to 5(f) are SEM images of the surfaces of the three types of composites prepared in 3-4 above in permanent shape (before deformation) and temporary shape (after deformation).
  • Figures 5(a) to (c) show the surface (the surface where the silver nanowires are incorporated) in the permanent shape (before deformation) of the composites fabricated using 5 mg, 10 mg, and 15 mg of silver nanowires, respectively. It is a figure which shows the SEM image of.
  • Figures 5(d)-(f) show the surface (side where silver nanowires are incorporated) in the temporary shape (after deformation) of composites fabricated using 5 mg, 10 mg, and 15 mg of silver nanowires, respectively. It is a figure which shows the SEM image of.
  • the scale bar in FIGS. 5(a), (c), (d) and (e) is 10 ⁇ m
  • the scale bar in FIG. 5(b) is 20 ⁇ m
  • the scale bar in FIG. 5(f) is 5 ⁇ m
  • FIGS. 5(a) to 5(c) in the permanent shape (before deformation), three types of composites with different silver nanowire contents (different amounts of silver nanowires used in the preparation of the composites). There was no significant difference in the dispersion state of silver nanowires between On the other hand, as shown in FIGS. 5(d) to (f), in the temporary shape (after deformation), the silver nanowires in the SEM image of FIG. 5(d) are larger than those in FIGS. It was observed that the state of dispersion (degree of overlapping of silver nanowires) was reduced.
  • the network structure of the metal nanowires must be maintained to some extent not only in the permanent shape but also in the desired deformed state (temporary shape). It was suggested that this is necessary and that the complex may be drivable by localized heating by the application of an electric current.
  • the values of the silver nanowire content of the composites 3-5 and 3-6 in Table 5 are the results of the stability tests 1 and 2 described above, and the heat of the silver nanowires described in 2-3 above. This is an estimated value calculated based on the PVP content (coverage) confirmed by gravimetric measurement (TG).
  • the composite that did not recover its shape by applying an electric current had an electrical resistance of 1.3 ⁇ 0 when its shape was recovered by heating. 0.18 ( ⁇ 10 4 ) ( ⁇ ), the electrical resistance of the composite in a permanent shape recovered from a predetermined deformed shape (temporary shape) was 1.0 ⁇ 10 4 ⁇ . It was suggested that it is preferable to satisfy the following.
  • the network structure of the metal nanowires is also stretched by stretching the composite, so the electrical resistance of the composite is greater than that in the permanent shape, but is 1.0 ⁇ 10 5 ⁇ or less. It was suggested that driving by application of electric current is possible if the conditions are satisfied.
  • the properties of the network structure of the metal nanowires incorporated in the crosslinked structure of the crosslinked polymer are related to the driving by the application of electric current, and the metal nanowires If the content is in the range of approximately 5% to 25%, more preferably 10% to 25%, the composite is dispersed to the extent that it can be driven by local heating by applying an electric current. is considered possible.
  • the content of metal nanowires may exceed 25%, and the results in Table 5 do not deny it.
  • the electrical resistance value could not be measured by the above test because the resistance of the test piece was too high. In Table 5 this is indicated as “N.D.”.
  • the electrical resistance values could be measured in the state after the composites were produced.
  • the silver nanowire suspension solution is applied in a state where the cured product of the curable compound 1 that constitutes the crosslinked polymer is stretched during the preparation of the composite. There is no test result corresponding to "before deformation", and the result of "during deformation" corresponds to the content described above.
  • the metal nanowires can be in a dispersed state at least to the extent that the electrical resistance can be measured.
  • the composites of 3-5 when the shape of the specimen is changed (in the “during deformation” in Table 5), the layer of silver nanowires peels off (partially detaches) from the layer of crosslinked polymer. was confirmed, and the value of electrical resistance could not be measured. In Table 5 this is indicated as "N.D.”. Therefore, for the composite of 3-5, the electrical resistance value at the time of shape recovery by heating was not measured, and the test was terminated.
  • Part 2 Preparation and analysis of complexes (Part 2) 4-1. [Preparation of complex] A composite was produced by the production procedure A described above. Specifically, 10 mg of the silver nanowires synthesized in 2-2 above was dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution (A). This silver nanowire suspension solution (A) was cast on a glass substrate, and Ethanol was dried at room temperature to produce a silver nanowire film. Here, a PDMS rectangular mold (inner dimensions: length 3 cm, width 3 cm, depth 0.37 cm) was placed in advance on the glass substrate, and the silver nanowire suspension solution was placed inside the mold. (A) was cast.
  • a silver nanowire suspension solution (B) was also prepared by dispersing 20 mg of the silver nanowires synthesized in 2-2 above in 1 mL of ethanol, and the type and amount of the solution to be cast on the glass substrate (cast By setting the number of times to do) to 4, the content of silver nanowires in the silver nanowire film, that is, the content of silver nanowires in the composite is 10 mg, 20 mg, 30 mg, and 50 mg. made the body.
  • the silver nanowire suspension solution (A) is used for the preparation of composites having a silver nanowire content of 10 mg and 20 mg, and the silver nanowire content is 30 mg and 50 mg. used the silver nanowire suspension solution (B).
  • complex 4 10
  • complex 4 (20) the thickness of the silver nanowire film produced on the glass substrate increases. It was also 3 cm long, 3 cm wide and 0.031 cm thick.
  • Measurement container Aluminum sample pan ( ⁇ 6.8mm) Amount and size of sample: The amount of sample was about 10 mg, and it was cut to fit in the sample pan.
  • each sample (composite) was heated from room temperature to 120°C, and when it reached 120°C, it was cooled to -5°C.
  • the temperature of the sample reached ⁇ 5° C.
  • the temperature was raised from 0° C. to 120° C. at a rate of 5° C./min, and this DSC curve was acquired.
  • FIG. 6 shows the DSC curves of Complex 4 (10), Complex 4 (20), Complex 4 (30), and Complex 4 (50).
  • an endothermic peak and an exothermic peak in the DSC curve were confirmed in substantially the same temperature range for all composite samples.
  • a cured product (silver nanowires incorporated) of curable compound 1 (2b20PCL macromonomer) prepared under the same conditions as described in 4-1 above except that silver nanowires were not included
  • An endothermic peak and an exothermic peak were confirmed in substantially the same temperature range as the DSC curve of the above composite also in the DSC curve of the crosslinked polymer that was not coated.
  • the melting point of the crosslinked polymer contained in the composite is It was found to have virtually no effect on crystallinity and crystallinity.
  • the composite of this production example it was found that the silver nanowires were incorporated into the crosslinked polymer in a manner capable of maintaining the properties of the crosslinked polymer.
  • the silver nanowires are locally heated by the application of an electric current. was incorporated into the crosslinked polymer in such a state that it was dispersed to the extent that it could be driven.
  • thermogravimetry was performed on Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50).
  • the measurement conditions are as follows.
  • FIG. 7 shows the TG curves of Complex 4 (10), Complex 4 (20), Complex 4 (30), and Complex 4 (50).
  • a certain weight change (mass decrease) was observed with heating in all composite samples, and the greater the silver nanowire content, the higher the mass decrease rate (%). rice field.
  • a suspension solution of metal nanowires having a certain concentration is applied when producing a compact of metal nanowires on a support. It was found that the content of metal nanowires in the composite can be controlled by adjusting the amount (the amount cast onto the support).
  • Figures 8(a)-(d) show the results for each cycle for specimens obtained from Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50), respectively.
  • 1 is a graph showing the stress (MPa) generated in a test piece in relation to the test time (s).
  • MPa stress
  • FIGS. 8(a) to 8(d) it was confirmed that the stress values when the specimens obtained from any of the composites were repeatedly stretched 300% in the longitudinal direction 20 times were almost constant. rice field. This means that all composites are mechanically (structurally) stable against repeated deformation and recovery at least 20 times under the condition of a large deformation rate of 300%. is doing.
  • test piece obtained from each composite recovered from the 300% stretched state (temporary shape) to the original shape (permanent shape), and it was found that it could be driven by the wireless power supply method. rice field.
  • agar medium 10 mg of high polypeptone, 2 g of yeast extract, 1 g of MgSO4.7H2O , 15 g of Agar, and 1 L of distilled water were added to a 1 L beaker and stirred. The beaker was then placed in an autoclave set at 120° C. for 20 minutes to dissolve the solutes and sterilize the solution. After taking out the beaker and pouring 20 mL of the resulting solution into a 90 mm dish, it was cooled to prepare an agar medium.
  • ⁇ Test 1 (test in permanent shape) Staphylococcus aureus (1.0 ⁇ 10 8 CFU/mL) was spread on the prepared agar medium.
  • a circular test piece with a diameter of 1 cm was cut from each composite and sterilized with ethylene oxide gas (EOG). ) was placed in contact with the agar medium. After that, the cells were incubated for 2 days in an incubator set at 30° C., and the presence or absence and width of growth inhibition zones (halos) were evaluated.
  • a cured product of curable compound 1 (2b20PCL macromonomer) prepared under the same conditions as described in 4-1 above except that silver nanowires were not included (crosslinked polymer in which silver nanowires were not incorporated).
  • a similar test was performed using
  • ⁇ Test 2 (test with temporary shape) Staphylococcus aureus (1.0 ⁇ 10 8 CFU/mL) was spread on the agar medium prepared by the above method.
  • the complex 4 50
  • the complex 4 50
  • a strip-shaped test piece of 1 cm long and 0.5 cm wide was cut from the stretched shape fixed and sterilized by EOG.
  • the surface on which the silver nanowires were incorporated was placed in contact with the agar medium. Then, it was incubated for 2 days in an incubator set at 30° C., and the presence or absence and width of halos were evaluated.
  • the same test was conducted using the crosslinked polymer described above.
  • the composite of the present invention both in its permanent form and in its temporary form, has the properties originally possessed by the metal nanowires (when the metal nanowires are silver nanowires, the properties may be antibacterial). can be effectively demonstrated.
  • the composite of the present invention can be applied to a shape-memory member that has a shape-memory ability and can be driven by local heating by applying an electric current. Therefore, it can be applied to a wider range of applications than conventional temperature-responsive shape memory materials. Specifically, for example, by adjusting the melting peak temperature of the crosslinked polymer in consideration of the temperature on the surface of the living body and/or the temperature in the living body, it is possible to apply the material to the living body, which has been difficult with conventional temperature-responsive shape memory materials. It can be applied, and it is expected to be applied to minimally invasive medical devices etc. as an electrically driven shape memory member.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention provides a complex which can be used for a shape memory member that can be driven by local heating by means of the application of an electric current. A complex according to one embodiment of the present invention comprises: a crosslinked polymer that has an endothermic peak when the crosslinked polymer is subjected to differential scanning calorimetry (DSC); and a metal nanowire. The complex has electroconductivity at such a level that the electrical resistance of the complex can be measured in an electroconductivity test in at least a state where the complex is not deformed and a state where the complex is deformed at a scale of 100% or more by applying a stress to the complex in a specific direction from the outside of the complex, and the detachment of the metal nanowire does not substantially occur in a stability test using a good solvent for the crosslinked polymer and/or the metal nanowire.

Description

複合体、その製造方法、及び、それを含む形状記憶部材COMPOSITE, MANUFACTURING METHOD THEREOF, AND SHAPE MEMORY MEMBER CONTAINING THE SAME
 本発明は、複合体、その製造方法、及び、それを含む形状記憶部材に関する。 The present invention relates to a composite, a manufacturing method thereof, and a shape memory member including the same.
 ポリカプロラクトン等の脂肪族ポリエステル樹脂は優れた生分解性を有することが知られており、研究が進められている。非特許文献1には、温度応答性ポリ(ε-カプロラクトン)膜が記載されている。 Aliphatic polyester resins such as polycaprolactone are known to have excellent biodegradability, and research is underway. Non-Patent Document 1 describes a temperature-responsive poly(ε-caprolactone) membrane.
 非特許文献1に記載された膜は、付与された変形を記憶し、所定の温度(この温度を、以下「駆動温度」ともいう。)に加熱すると、変形が付与される前の形状に戻るという、形状記憶能を有していた。しかし、形状記憶能の発揮のためには、膜、及び/又は、膜の周囲環境を加熱する必要があるため、例えば、生体への適用を企図した場合、加熱方法の選択の難しさ、及び、加熱による周辺組織への悪影響等の点で、改善の余地があった。 The film described in Non-Patent Document 1 memorizes the applied deformation, and when heated to a predetermined temperature (this temperature is hereinafter also referred to as "driving temperature"), it returns to the shape before the deformation is applied. It had shape memory ability. However, in order to exert the shape memory ability, it is necessary to heat the membrane and/or the surrounding environment of the membrane. , there is room for improvement in terms of adverse effects on surrounding tissues due to heating.
 そこで、本発明は、電流の印加による局所的な加熱により駆動可能な形状記憶部材に適用できる複合体を提供することを課題とする。
 また、本発明は、そのような複合体を製造する方法、及び、当該複合体を含む形状記憶部材を提供することも課題とする。
Accordingly, an object of the present invention is to provide a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current.
Another object of the present invention is to provide a method for manufacturing such a composite, and a shape memory member including the composite.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成することができることを見出した。 As a result of intensive studies aimed at achieving the above problems, the inventors found that the above problems can be achieved with the following configuration.
[1] 架橋ポリマーであって、示差走査熱量測定(DSC)を行ったときに吸熱ピークを有する架橋ポリマーと、金属ナノワイヤと、を含む複合体であって、導電性試験において、少なくとも、変形前の状態、及び、外部から応力を加えて所定の方向に100%以上変形させた状態で、電気抵抗を測定可能な程度の導電性を有し、かつ、前記架橋ポリマー及び/又は前記金属ナノワイヤの良溶媒を用いる安定性試験において、前記金属ナノワイヤの脱離を実質的に生じない、複合体。
[2] 上記架橋ポリマーが、後述する式1で表される硬化性化合物1の硬化物、後述する式2で表される硬化性化合物2の硬化物、及び、硬化性化合物1と上記硬化性化合物2から構成される硬化性化合物の複合物の硬化物からなる群より選択される、[1]に記載の複合体。
[3] 上記金属ナノワイヤが、銀ナノワイヤである、[1]又は[2]に記載の複合体。
[4] 熱重量測定(TG)によって算出される上記金属ナノワイヤの含有率が、10%以上25%以下である、[1]~[3]のいずれかに記載の複合体。
[5] [1]~[4]のいずれかに記載の複合体を含む形状記憶部材。
[6] [1]~[4]のいずれかに記載の複合体の製造方法であって、金属ナノワイヤを含む成形体を作製する工程と、上記成形体に、硬化性化合物を含む組成物を適用する工程と、上記組成物を適用した成形体にエネルギーを付与して、上記硬化性化合物を硬化させる工程と、を含む、方法。
[7] 上記エネルギーの付与が、上記成形体を加熱して行われる、[6]に記載の方法。
[8] 上記エネルギーの付与が、加圧条件下で行われる、[6]又は[7]に記載の方法。
[9] 上記硬化性化合物が、後述する式1で表される硬化性化合物1、後述する式2で表される硬化性化合物2、及び、上記硬化性化合物1と上記硬化性化合物2から構成される硬化性化合物の複合物からなる群より選択される、[6]~[8]のいずれかに記載の方法。
[1] A composite comprising a crosslinked polymer having an endothermic peak when differential scanning calorimetry (DSC) is performed, and a metal nanowire, in a conductive test, at least before deformation state, and in a state of being deformed by 100% or more in a predetermined direction by applying stress from the outside, having conductivity to the extent that electrical resistance can be measured, and the crosslinked polymer and / or the metal nanowire A composite that does not substantially cause detachment of the metal nanowires in a stability test using a good solvent.
[2] The crosslinked polymer is a cured product of a curable compound 1 represented by Formula 1 described later, a cured product of a curable compound 2 represented by Formula 2 described later, and a curable compound 1 and the curable The composite according to [1], which is selected from the group consisting of cured products of composites of curable compounds composed of compound 2.
[3] The composite according to [1] or [2], wherein the metal nanowires are silver nanowires.
[4] The composite according to any one of [1] to [3], wherein the content of the metal nanowires calculated by thermogravimetry (TG) is 10% or more and 25% or less.
[5] A shape memory member comprising the composite according to any one of [1] to [4].
[6] A method for producing a composite according to any one of [1] to [4], which comprises a step of producing a molded body containing metal nanowires, and applying a composition containing a curable compound to the molded body. and applying energy to a molded article to which the composition is applied to cure the curable compound.
[7] The method according to [6], wherein the energy is applied by heating the compact.
[8] The method according to [6] or [7], wherein the energy is applied under pressurized conditions.
[9] The curable compound comprises a curable compound 1 represented by Formula 1 described later, a curable compound 2 represented by Formula 2 described later, and the curable compound 1 and the curable compound 2. The method according to any one of [6] to [8], which is selected from the group consisting of composites of curable compounds.
 本発明によれば、電流の印加による局所的な加熱により駆動可能な形状記憶部材に適用できる複合体を提供できる。
 また、本発明によれば、そのような複合体を製造する方法、及び、当該複合体を含む形状記憶部材を提供できる。
According to the present invention, it is possible to provide a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current.
Further, according to the present invention, it is possible to provide a method of manufacturing such a composite and a shape memory member including the composite.
本発明の一実施形態に係る複合体の構造を示す模式的な斜視図である。1 is a schematic perspective view showing the structure of a composite according to one embodiment of the present invention; FIG. (a)実施例の2-1で合成した銀ナノワイヤのSEM像を示す図である。(b)実施例の2-2で合成した銀ナノワイヤのSEM像を示す図である。(a) A SEM image of silver nanowires synthesized in Example 2-1. (b) A SEM image of silver nanowires synthesized in Example 2-2. 実施例の3-1で作製した複合体のSEM像を示す図である。(a)表面、(b)断面。FIG. 4 is a SEM image of the composite prepared in Example 3-1. (a) surface, (b) cross section. 実施例の3-1で作製した複合体における、電力(W)と温度(℃)の関係性を示すグラフである。10 is a graph showing the relationship between power (W) and temperature (° C.) in the composite produced in Example 3-1. (a)~(f)実施例の3-4で作製した3種類の複合体の、パーマネント形状(変形前)及びテンポラリー形状(変形後)での、表面のSEM像を示す図である。(a) to (f) are SEM images of the surface of three types of composites produced in Example 3-4 in permanent shape (before deformation) and temporary shape (after deformation). 実施例の4-1で作製した複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)のDSC曲線を示す図である。FIG. 4 shows DSC curves of composite 4(10), composite 4(20), composite 4(30), and composite 4(50) prepared in Example 4-1. 複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)のTG曲線を示す図である。FIG. 3 shows TG curves of complex 4 (10), complex 4 (20), complex 4 (30), and complex 4 (50). 20回の変形と回復の繰り返しサイクルにおける試験片に生じた応力(MPa)を、試験時間(s)との関係で示したグラフである。(a)複合体4(10)、(b)複合体4(20)、(c)複合体4(30)、(d)複合体4(50)。4 is a graph showing stress (MPa) generated in a test piece in 20 repeated cycles of deformation and recovery as a function of test time (s). (a) Complex 4(10), (b) Complex 4(20), (c) Complex 4(30), (d) Complex 4(50).
 以下、本発明の実施の形態について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含有する範囲を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
Although the description of the constituent elements described below may be made based on representative embodiments of the present invention, the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
(用語の定義)
 本明細書において、「パーマネント形状」とは、対象の物質において、内部(残留)応力が緩和された状態、言い換えれば、熱力学的に最も安定な形状を意味し、典型的には、外部から応力を与えない状態で、結晶の融解温度付近(又はそれ以上)に物質を加熱して、その後、室温まで冷却した際に得られる形状を意味する。
 なお、結晶の融解温度とは、対象の物質の示差走査熱量測定(DSC)を行い、その昇温過程における吸熱ピークのピークトップの温度を意味する(複数の吸熱ピークを有する場合、最も高温側のピークのピークトップ温度とする)。融解温度付近とは、示差走査熱量測定の吸熱ピークの高温側の終端温度程度を意味する。なお、示差走査熱量測定は、後述する方法により行うものとする。
(Definition of terms)
As used herein, the term "permanent shape" means a state in which internal (residual) stress is relaxed in a target substance, in other words, the most thermodynamically stable shape. It refers to the shape obtained when a material is heated to near (or above) the melting temperature of the crystals in the absence of stress and then cooled to room temperature.
The melting temperature of the crystal means the temperature of the peak top of the endothermic peak in the temperature rising process of performing differential scanning calorimetry (DSC) of the substance of interest (when there are multiple endothermic peaks, the highest temperature side is the peak top temperature of the peak of ). The vicinity of the melting temperature means about the terminal temperature on the high temperature side of the endothermic peak in differential scanning calorimetry. In addition, differential scanning calorimetry shall be performed by the method mentioned later.
 本明細書において、「テンポラリー形状」とは、対象の物質において、外部から応力を与えて変形させた状態で、結晶の融解温度付近に加熱後、結晶化温度程度(又はそれ以下)に冷却されることで、結晶化等によって一時的に変形が固定された際の形状を意味する。なお、結晶化温度とは、対象の物質の示差走査熱量測定を行い、その冷却過程における発熱ピークのピークトップの温度を意味する。 As used herein, the term “temporary shape” refers to a state in which a target substance is deformed by applying stress from the outside, heated to around the melting temperature of the crystal, and then cooled to about the crystallization temperature (or lower). This means the shape when the deformation is temporarily fixed by crystallization or the like. The crystallization temperature means the temperature of the peak top of the exothermic peak in the cooling process of the target substance measured by differential scanning calorimetry.
 本明細書において、複合体が有する形状記憶能に関して用いられる「駆動」、「駆動する」、「駆動させる」、及び、「駆動可能な」との用語は、それぞれ、複合体の形状記憶能の発揮(当該形状記憶能が発揮されること)、複合体が形状記憶能を発揮すること、複合体の形状記憶能を発揮させること、及び、複合体が形状記憶能を発揮することが可能であること(複合体の形状記憶能を発揮させることが可能であること)、を意図するものとする。 As used herein, the terms “driving,” “driving,” “drivable,” and “drivable” used with respect to the shape memory ability of the complex refer to the shape memory ability of the complex. It is possible for the complex to exhibit the shape memory ability, to exhibit the shape memory ability of the complex, and to exhibit the shape memory ability of the complex. It is intended to be (that the complex can exhibit shape memory ability).
[複合体]
 図1は、本発明の一実施形態に係る複合体の構造を示す模式的な斜視図である。
 図1に示すように、本発明の一実施形態に係る複合体(以下、「本実施形態の複合体」ともいう。)100は、架橋ポリマー110と、金属ナノワイヤ120と、を含む複合体である。なお、図1では、本実施形態の複合体100の外観形状がシート状(フィルム状、膜状等とも称され得る。)である態様を示しているが、複合体100の外観形状は特に制限されず、用途に応じて適宜定めることができる。
[Complex]
FIG. 1 is a schematic perspective view showing the structure of a composite according to one embodiment of the present invention.
As shown in FIG. 1, a composite according to one embodiment of the present invention (hereinafter also referred to as "composite of the present embodiment") 100 is a composite including a crosslinked polymer 110 and metal nanowires 120. be. Note that FIG. 1 shows a mode in which the composite 100 of the present embodiment has a sheet-like appearance (also referred to as a film, a membrane, etc.), but the appearance of the composite 100 is particularly limited. can be determined as appropriate depending on the application.
 本実施形態の複合体100において、金属ナノワイヤ120は、架橋ポリマー110に組み込まれている。言い換えると、複合体100において、金属ナノワイヤ120は、単に架橋ポリマー110の表面を部分的に覆っているのではなく、架橋ポリマー110が有する架橋構造内部に埋め込まれている。このような構造であることにより、複合体100は、後述する安定性試験において、金属ナノワイヤ120の脱離を実質的に生じない。 In the composite 100 of this embodiment, the metal nanowires 120 are incorporated into the crosslinked polymer 110. In other words, in composite 100 , metal nanowires 120 do not simply partially cover the surface of crosslinked polymer 110 , but are embedded inside the crosslinked structure of crosslinked polymer 110 . With such a structure, composite 100 does not substantially cause detachment of metal nanowires 120 in a stability test described later.
 また、本実施形態の複合体100において、金属ナノワイヤ120は、電流の印加による局所的な加熱により複合体100を駆動可能な程度に分散した状態で、架橋ポリマー110に組み込まれている。このような構造であることにより、複合体100は、一定の導電性を有する。より具体的には、複合体100は、後述する導電性試験において、少なくとも、変形前の状態(パーマネント形状)、及び、外部から応力を加えて所定の方向に100%以上変形させた状態(テンポラリー形状)で、電気抵抗を測定可能な程度の導電性を有する。より好ましくは、複合体100は、更に、上記100%以上変形させた状態でエネルギーを与えて変形前と同程度のサイズに回復させた状態でも、電気抵抗を測定可能な程度の導電性を有する。これにより、複合体100は、電流の印加による局所的な加熱により駆動可能であり、より好ましい態様では、複数回の変形と回復の繰り返しが可能である。 In addition, in the composite 100 of the present embodiment, the metal nanowires 120 are incorporated into the crosslinked polymer 110 in such a dispersed state that the composite 100 can be driven by local heating by application of electric current. Due to such a structure, the composite 100 has constant conductivity. More specifically, in the conductivity test described later, the composite 100 was at least in a state before deformation (permanent shape) and a state in which stress was applied from the outside and deformed by 100% or more in a predetermined direction (temporary shape). shape) and has conductivity to the extent that electrical resistance can be measured. More preferably, the composite 100 further has conductivity to the extent that the electrical resistance can be measured even in a state in which energy is applied in a state of being deformed by 100% or more to restore the same size as before deformation. . Thereby, the composite 100 can be driven by local heating by application of electric current, and in a more preferable embodiment, can be repeatedly deformed and recovered multiple times.
 なお、導電性試験におけるテンポラリー形状に関し、上記100%以上変形させた状態は、100%の変形であってもよく、200%の変形であってもよく、300%の変形であってもよく、300%を超える変形であってもよい。より高い割合で変形させた状態で電気抵抗を測定可能な程度の導電性を有し、更に、当該変形させた状態でエネルギーを与えて変形前と同程度のサイズに回復させた状態でも電気抵抗を測定可能な程度の導電性を有すると、複合体100をより広範な用途に適用することが可能となり、望ましい。 Regarding the temporary shape in the conductivity test, the above 100% or more deformed state may be 100% deformation, 200% deformation, or 300% deformation. Deformation of more than 300% is acceptable. It has conductivity to the extent that electrical resistance can be measured in a state of being deformed at a higher rate, and even in a state where energy is applied in the deformed state to restore it to the same size as before deformation. It is desirable to have a measurable degree of electrical conductivity so that the composite 100 can be applied to a wider range of applications.
 さらに、本実施形態の複合体100において、金属ナノワイヤ120は、架橋ポリマー110がそれ単独で有する特性を実質的に損なわない状態で、架橋ポリマー110に組み込まれている。具体的には、複合体100は、金属ナノワイヤ120の含有量(含有率)が異なる条件で作製された少なくとも2つ以上の試料のDSC曲線において、実質的に同一の温度帯に吸熱ピーク及び発熱ピークが確認される。このことは、複合体100において、架橋ポリマー110が有する架橋構造内部に金属ナノワイヤ120が埋め込まれていること、及び、そのようにして架橋ポリマー110に組み込まれた金属ナノワイヤ120の量は、複合体100に含まれる架橋ポリマー110の融点や結晶化温度には実質的に影響を及ぼさないことを意味する。これにより、複合体100は、架橋ポリマー110を含むことによる形状記憶能(詳細は後述)をより効果的に発揮することができ、かつ、金属ナノワイヤ120を含むことで電流の印加による局所的な加熱により駆動可能であるという、架橋ポリマー110と金属ナノワイヤ120の特長を相加的もしくは相乗的に兼ね備えた構造を有する。 Furthermore, in the composite 100 of this embodiment, the metal nanowires 120 are incorporated into the crosslinked polymer 110 without substantially impairing the properties of the crosslinked polymer 110 alone. Specifically, the composite 100 has an endothermic peak and an exothermic peak in substantially the same temperature range in at least two or more samples produced under conditions in which the content (content rate) of the metal nanowires 120 is different. A peak is confirmed. This means that in the composite 100, the metal nanowires 120 are embedded inside the crosslinked structure of the crosslinked polymer 110, and the amount of the metal nanowires 120 thus incorporated into the crosslinked polymer 110 is It means that the melting point and crystallization temperature of the crosslinked polymer 110 contained in 100 are not substantially affected. As a result, the composite 100 can more effectively exhibit the shape memory ability (details will be described later) due to the inclusion of the crosslinked polymer 110, and the inclusion of the metal nanowires 120 allows localized It has a structure that additively or synergistically combines the features of the crosslinked polymer 110 and the metal nanowires 120 that they can be driven by heating.
 加えて、本実施形態の複合体100において、金属ナノワイヤ120が、架橋ポリマー110がそれ単独で有する特性を実質的に損なわない状態で架橋ポリマー110に組み込まれていることは、金属ナノワイヤ120がそれ単独で有する特性を実質的に損なわない状態で架橋ポリマー110に組み込まれていることをも意味する。つまり、金属ナノワイヤ120は、架橋ポリマー110が有する架橋構造内部に金属ナノワイヤ120が埋め込まれていることで、複合体100が、電流の印加による局所的な加熱により駆動可能であるという特徴をもたらすだけでなく、架橋ポリマー110に組み込まれた状態で、金属ナノワイヤ120がそれ単独で有する特性を発揮することができる。具体的には、例えば金属ナノワイヤ120が銀ナノワイヤである態様においては、複合体100は、ナノワイヤを構成する銀に由来する抗菌性を発揮することができる。このように、本実施形態の複合体100においては、後述するように、導電性の観点(すなわち、電流の印加による局所的な加熱により駆動を可能にする観点)で、金属ナノワイヤ120の材質としての金属を選択することに加えて、複合体100に所望の特性を付与する観点で、当該金属を選択することをも可能である。 In addition, in the composite 100 of the present embodiment, the metal nanowires 120 are incorporated into the crosslinked polymer 110 without substantially impairing the properties of the crosslinked polymer 110 alone. It also means that it is incorporated into the crosslinked polymer 110 without substantially impairing the properties that it has by itself. In other words, the metal nanowires 120 are embedded in the crosslinked structure of the crosslinked polymer 110, so that the composite 100 can be driven by local heating by applying an electric current. Instead, the properties of the metal nanowires 120 alone can be exhibited while incorporated in the crosslinked polymer 110 . Specifically, for example, in a mode in which metal nanowires 120 are silver nanowires, composite 100 can exhibit antibacterial properties derived from silver that constitutes the nanowires. As described above, in the composite 100 of the present embodiment, as described later, from the viewpoint of conductivity (that is, from the viewpoint of enabling driving by local heating by applying current), the material of the metal nanowires 120 is In addition to selecting the metal, it is also possible to select the metal from the viewpoint of imparting desired properties to the composite 100 .
 上述した複合体100における金属ナノワイヤ120の分散状態は、パーコレーション(percolation;浸透)の概念を用いて説明することもできる。パーコレーションの概念(パーコレーション問題)は当該分野でよく知られており、自己相似性との関係も周知である。n次元の格子(例えば立方格子)を与え、そのサイト(あるいはボンド)部分をある確率pで占有する手続きを考える。もしp≒1ならばサイトは全て連結され、格子全体のネットワークが形成されるであろう。反対にp≒0の場合には、占有されたサイトは殆どなく、占有されたサイトがあったとしてもその周囲は空のままであろう。このように、空間の点あるいはボンドが確率的に占有される過程をパーコレーション(浸透)と呼び、互いに連結した占有サイトの集まりはクラスタと呼ばれる。これは、ランダムな媒質中を液体が浸透する過程や、森林火災が伝搬する過程を理想化したモデルと考えることができる。 The dispersion state of the metal nanowires 120 in the composite 100 described above can also be explained using the concept of percolation. The concept of percolation (the percolation problem) is well known in the art, as is its relationship to self-similarity. Given an n-dimensional lattice (eg, a cubic lattice), consider a procedure that occupies its site (or bond) parts with some probability p. If p≈1, the sites will all be connected, forming a network over the lattice. Conversely, if p≈0, few sites will be occupied and the surroundings of any occupied sites will remain empty. This process of stochastically occupying points or bonds in space is called percolation, and a group of mutually connected occupied sites is called a cluster. This can be thought of as an idealized model of the process of liquid penetration in random media and the process of forest fire propagation.
 パーコレーション問題では、p>pで初めて無限大の大きさの連結されたボンド(またはサイト)のクラスタ(パーコレーション・クラスタ)が出現するような臨界確率(パーコレーション閾値)pが存在し、その値は空間次元、ボンドを占有するかサイトを占有するか、格子の種類などに依存して決まる。実際に、コンピュータシミュレーションによると、パーコレーション・クラスタは自己相似性を有し、そのフラクタル次元Dは、2次元ではD=91/48=約1.89であり、3次元ではD=約2.53であることが分かっている。なお、フラクタル次元Dの値は、対象物の走査型電子顕微鏡(SEM)画像から算出することができる。 In the percolation problem, there exists a critical probability (percolation threshold) pc such that a cluster of connected bonds (or sites) of infinite size ( percolation cluster) appears for the first time when p> pc , and its value depends on the spatial dimension, whether it occupies a bond or a site, the lattice type, etc. Indeed, according to computer simulations, percolation clusters are self-similar and their fractal dimension D is D=91/48=about 1.89 in two dimensions and D=about 2.53 in three dimensions. I know it is. Note that the value of the fractal dimension D can be calculated from a scanning electron microscope (SEM) image of the object.
 以上のことを踏まえ、本実施形態の複合体100においては、金属ナノワイヤ120が、上述したパーコレーション・クラスタモデルに基づく自己相似性もしくはそれと同等の自己相似性を有していることが好ましい。これにより、複合体100は、導電性に優れ、電流の印加による局所的な加熱により駆動可能な形状記憶部材に使用するのに好適である。 Based on the above, in the composite 100 of the present embodiment, it is preferable that the metal nanowires 120 have self-similarity based on the percolation cluster model described above or equivalent self-similarity. As a result, the composite 100 has excellent electrical conductivity and is suitable for use as a shape memory member that can be driven by local heating by applying an electric current.
〔架橋ポリマー〕
 本実施形態の複合体100に含まれる架橋ポリマー110は、化学架橋された高分子化合物である。すなわち、架橋ポリマー110は、化学反応により形成された共有結合によって分子同士が結合した架橋構造を有する高分子化合物である。
[Crosslinked polymer]
The crosslinked polymer 110 contained in the composite 100 of this embodiment is a chemically crosslinked polymer compound. That is, the crosslinked polymer 110 is a high molecular compound having a crosslinked structure in which molecules are bonded to each other by covalent bonds formed by a chemical reaction.
 高分子化合物に架橋構造を導入する方法は特に制限されないが、後述する硬化性化合物(架橋性モノマー)にエネルギーを与えて(典型的には、加熱して)、硬化させる方法が挙げられる。 The method of introducing a crosslinked structure into the polymer compound is not particularly limited, but a method of applying energy (typically by heating) to the curable compound (crosslinkable monomer) described below to cure it can be mentioned.
 架橋ポリマー110は、示差走査熱量測定(DSC)を行ったときに吸熱ピークを有する。すなわち、架橋ポリマー110は、示差走査熱量測定を行ったときに、融解による吸熱ピークが検出されること、言い換えれば、融解ピークが検出される程度の結晶性を有する。これにより、複合体100は、付与された変形を記憶し、駆動温度に加熱すると、変形が付与される前の形状に戻るという、形状記憶能を発揮し得る。 The crosslinked polymer 110 has an endothermic peak when differential scanning calorimetry (DSC) is performed. That is, the crosslinked polymer 110 has crystallinity such that an endothermic peak due to melting can be detected in differential scanning calorimetry, in other words, a melting peak can be detected. As a result, the composite 100 can exhibit a shape-memory ability to memorize the applied deformation and return to the shape before the deformation is applied when heated to the drive temperature.
 ここで、示差走査熱量測定は、一般的な示差走査熱量計を用い、以下の試験条件で行うものとする。
<示差走査熱量測定の試験条件>
 測定容器:アルミニウム製サンプルパン
 試料量・サイズ:上記サンプルパンのサイズに応じて適宜調整する。
 測定開始温度:0℃
 測定終了温度:120℃
 昇温速度:0.01~20℃/minの範囲で設定する。好ましくは、5~10℃/minの範囲である。
 測定手順:まず、試料を室温から120℃まで加熱し、120℃に達したら、今度は-5℃まで冷却する。次に、試料の温度が-5℃に達した後、今度は所定の昇温速度で0℃~120℃まで昇温させ、DSC曲線を取得する。
Here, differential scanning calorimetry shall be performed under the following test conditions using a general differential scanning calorimeter.
<Test conditions for differential scanning calorimetry>
Measurement container: Aluminum sample pan Sample amount/size: Adjust appropriately according to the size of the sample pan.
Measurement start temperature: 0°C
Measurement end temperature: 120°C
Heating rate: set in the range of 0.01 to 20°C/min. Preferably, it is in the range of 5 to 10°C/min.
Measurement procedure: First, the sample is heated from room temperature to 120°C, and when it reaches 120°C, it is cooled to -5°C. Next, after the temperature of the sample reaches −5° C., the temperature is raised from 0° C. to 120° C. at a predetermined heating rate, and a DSC curve is obtained.
 架橋ポリマー110の融解ピークの温度としては特に制限されないが、33.0~58.0℃が好ましい。
 なかでも、複合体をウェアラブルデバイス等として生体表面に接触させた状態で駆動させる場合、架橋ポリマー110の融解ピーク温度は、生体表面温度を考慮して、33.0~37.0℃が好ましく、34.0~36.5℃がより好ましい。
 一方、複合体を生体内に配置又は留置した状態で駆動させる場合、架橋ポリマー110の融解ピーク温度は、生体内温度を考慮して、37.0~45.0℃とすることが好ましく、37.0℃を超えて、44.0℃以下が好ましい。
Although the melting peak temperature of the crosslinked polymer 110 is not particularly limited, it is preferably 33.0 to 58.0.degree.
In particular, when the composite is driven in contact with the surface of a living body as a wearable device or the like, the peak melting temperature of the crosslinked polymer 110 is preferably 33.0 to 37.0° C. in consideration of the surface temperature of the living body. 34.0 to 36.5°C is more preferable.
On the other hand, when the complex is placed or indwelled in vivo and driven, the melting peak temperature of the crosslinked polymer 110 is preferably 37.0 to 45.0° C. in consideration of the in vivo temperature. It is preferably above 0°C and below 44.0°C.
 架橋ポリマー110の結晶化度としては特に制限されないが、示差走査熱量測定で得られる結晶化度が10.0~40.0%であることが好ましい。複合体を生体表面で駆動させる場合、架橋ポリマー110の結晶化度は、10.0~15.5%が好ましい。複合体を生体内で駆動させる場合、架橋ポリマー110の結晶化度は、15.5%超40.0%以下が好ましく、15.5%超28.0%以下がより好ましく、下限は15.5%を超えることが更に好ましい。 Although the degree of crystallinity of the crosslinked polymer 110 is not particularly limited, the degree of crystallinity obtained by differential scanning calorimetry is preferably 10.0 to 40.0%. When driving the complex on the surface of a living body, the crystallinity of the crosslinked polymer 110 is preferably 10.0 to 15.5%. When the complex is driven in vivo, the crystallinity of the crosslinked polymer 110 is preferably more than 15.5% and 40.0% or less, more preferably more than 15.5% and 28.0% or less, and the lower limit is 15.5%. Even more preferably, it exceeds 5%.
 架橋ポリマー110としては、上述した結晶性を有していれば、特に制限されない。以下では、本実施形態の複合体100に含まれる架橋ポリマー110に好適な硬化物を得るための硬化性化合物(架橋性モノマー)、及び、その製造方法の例示的な形態について説明する。 The crosslinked polymer 110 is not particularly limited as long as it has the crystallinity described above. A curable compound (crosslinkable monomer) for obtaining a cured product suitable for the crosslinked polymer 110 contained in the composite 100 of the present embodiment and an exemplary embodiment of a method for producing the same will be described below.
<硬化性化合物1>
 例示的な一形態において、架橋ポリマー110は、以下の式1で表される硬化性化合物1の硬化物である。
<Curable compound 1>
In one exemplary form, the crosslinked polymer 110 is a cured product of a curable compound 1 represented by Formula 1 below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式1中、Lはポリ(オキシアルキレンカルボニル)基を表し、Xは硬化性基を有する基を表し、Rは水素原子、又は、上記硬化性基を有さない1価の置換基を表し、q1は2以上の整数を表し、p1は0以上の整数を表し、q1が2かつp1が0のとき、Mは単結合、又は、2価の基を表し、q1が2かつp1が1以上のとき、及び、q1が3以上のとき、Mはp1+q1価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい。 In Formula 1, L 1 represents a poly(oxyalkylenecarbonyl) group, X 1 represents a group having a curable group, and R 1 is a hydrogen atom or a monovalent substituent having no curable group. , q1 represents an integer of 2 or more, p1 represents an integer of 0 or more, when q1 is 2 and p1 is 0, M1 represents a single bond or a divalent group, q1 is 2 and When p1 is 1 or more and q1 is 3 or more, M 1 represents a p1+q1-valent group, and a plurality of R 1 and L 1 may be the same or different.
 式1のLのポリ(オキシアルキレンカルボニル)基とは、オキシアルキレンカルボニル基を繰り返し単位として有する高分子鎖からなる2価の基であり、具体的には、以下の式IIで表される基である。 The poly(oxyalkylenecarbonyl) group of L 1 in formula 1 is a divalent group consisting of a polymer chain having an oxyalkylenecarbonyl group as a repeating unit, specifically represented by the following formula II is the base.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式II中、L21はアルキレン基を表し、L21のアルキレン基の炭素数としては特に制限されないが、1~20個が好ましく、2~10個がより好ましい。
 なかでも、より優れた本発明の効果を有する複合体が得られる点で、L21としては、炭素数が2~10個のアルキレン基が更に好ましい。
In Formula II, L 21 represents an alkylene group, and although the number of carbon atoms in the alkylene group of L 21 is not particularly limited, it is preferably 1-20, more preferably 2-10.
Among them, an alkylene group having 2 to 10 carbon atoms is more preferable as L 21 from the viewpoint of obtaining a composite having superior effects of the present invention.
 また、式II中、nは、2以上の数を表し、特に制限されないが、2~200が好ましく、2~100がより好ましく。5~50が更に好ましく、10~30が特に好ましい。 Also, in formula II, n represents a number of 2 or more and is not particularly limited, but is preferably 2 to 200, more preferably 2 to 100. 5 to 50 are more preferred, and 10 to 30 are particularly preferred.
 後述するが、硬化性化合物1は環状エステルの開環重合によって調製することもできる。この場合、開環重合開始剤(例えば多価アルコール)と、モノマー(例えば、ラクトン化合物)との仕込み比によってnの数を調整できる。より具体的には、多価アルコールのヒドロキシ基1つに対して、ラクトン化合物が所望のn数反応するよう仕込めばよい。 As will be described later, the curable compound 1 can also be prepared by ring-opening polymerization of a cyclic ester. In this case, the number of n can be adjusted by the charge ratio of the ring-opening polymerization initiator (eg, polyhydric alcohol) and the monomer (eg, lactone compound). More specifically, the desired n number of lactone compounds may be prepared to react with one hydroxy group of the polyhydric alcohol.
 なお、上記nの数は、硬化物のH-NMR(Nuclear Magnetic Resonance)測定により決定できる。 The number n can be determined by 1 H-NMR (Nuclear Magnetic Resonance) measurement of the cured product.
 式1に戻り、Xは硬化性基を有する基である。本明細書において、硬化性基を有する基とは、硬化性基そのもの、又は、その構造中に硬化性基を部分構造として有する原子団を意味する。
 Xの硬化性基を有する基としては特に制限されないが、以下の式(III)で表される基が好ましい。
Returning to Formula 1, X 1 is a group having a curable group. As used herein, a group having a curable group means a curable group itself or an atomic group having a curable group as a partial structure in its structure.
Although the group having a curable group for X 1 is not particularly limited, a group represented by the following formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式III中、Zは硬化性基を表し、Lは単結合、又は、2価の基を表す。また、「*」は結合位置を表す。
 Lの2価の基としては特に制限されないが、-C(O)-、-C(O)O-、-OC(O)-、-O-、-S-、-NR20-(R20は水素原子又は1価の有機基を表す)、アルキレン基(炭素数1~10個が好ましい)、シクロアルキレン基(炭素数3~10個が好ましい)、アルケニレン基(炭素数2~10個が好ましい)、及び、これらの組み合わせ等が挙げられる。なかでも、より優れた本発明の効果を有する複合体が得られる点で、Lとしては、単結合、又は、-O-、-C(O)-、アルキレン基、-NR20-、及び、これらの組み合わせが好ましい。
In Formula III , Z represents a curable group and L3 represents a single bond or a divalent group. Moreover, "*" represents a binding position.
The divalent group of L 3 is not particularly limited, but -C(O)-, -C(O)O-, -OC(O)-, -O-, -S-, -NR 20 -(R 20 represents a hydrogen atom or a monovalent organic group), an alkylene group (preferably having 1 to 10 carbon atoms), a cycloalkylene group (preferably having 3 to 10 carbon atoms), an alkenylene group (preferably having 2 to 10 carbon atoms is preferred), and combinations thereof. Among them, L 3 is a single bond, —O—, —C(O)—, an alkylene group, —NR 20 —, and , and combinations of these are preferred.
 式III中、Zの硬化性基とは、硬化反応に関与する基をいう。硬化性基としては、特に制限されないが、より優れた本発明の効果を有する複合体が得られる点で、ラジカル重合が可能な基が好ましく、エチレン性不飽和結合を有する基がより好ましい。エチレン性不飽和結合を有する基としては特に制限されないが、例えば、(メタ)アクリロイル基、スチリル基、及び、アリル基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
 なお、本明細書において「(メタ)アクリロイル」とは、アクリロイル、及び、メタクリロイルのいずれか一方、又は、両方を意味する。
In Formula III, the curable group of Z refers to a group that participates in the curing reaction. The curable group is not particularly limited, but is preferably a group capable of radical polymerization, and more preferably a group having an ethylenically unsaturated bond, in that a composite having superior effects of the present invention can be obtained. Although the group having an ethylenically unsaturated bond is not particularly limited, examples thereof include (meth)acryloyl groups, styryl groups, and allyl groups, among which (meth)acryloyl groups are preferred.
In addition, in this specification, "(meth)acryloyl" means either one or both of acryloyl and methacryloyl.
 式1に戻り、Mのp+q価の基としては、Mが2価の基である場合には、その形態は特に制限されないが、式IIIのLの2価の基としてすでに説明した基が好ましい。 Returning to Formula 1, the form of the p+q - valent group of M 1 is not particularly limited when M 1 is a divalent group. groups are preferred.
 Mが3価以上の基である場合には、特に制限されないが、例えば、以下の式(4a)~(4d)で表される基が挙げられる。 When M 1 is a group having a valence of 3 or more, it is not particularly limited, and examples thereof include groups represented by the following formulas (4a) to (4d).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式4a中、Lは3価の基を表す。Tは単結合又は2価の基を表し、3個のTは互いに同一でも異なってもよい。
 Lとしては、窒素原子、3価の炭化水素基(炭素数1~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、3価の複素環基(5員環~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Lの具体例としては、グリセロール残基、トリメチロールプロパン残基、フロログルシノール残基、及び、シクロヘキサントリオール残基等が挙げられる。
In formula 4a, L3 represents a trivalent group. T3 represents a single bond or a divalent group, and three T3s may be the same or different.
L 3 is a nitrogen atom, a trivalent hydrocarbon group (preferably having 1 to 10 carbon atoms; the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), or Examples thereof include trivalent heterocyclic groups (preferably 5- to 7-membered heterocyclic groups), and the hydrocarbon groups may contain a heteroatom (eg, —O—). Specific examples of L3 include glycerol residue , trimethylolpropane residue, phloroglucinol residue, and cyclohexanetriol residue.
 式4b中、Lは4価の基を表す。Tは単結合又は2価の基を表し、4個のTは互いに同一でも異なってもよい。
 なお、Lの好適形態としては、4価の炭化水素基(炭素数1~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、4価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Lの具体例としては、ペンタエリスリトール残基、及びジトリメチロールプロパン残基等が挙げられる。
In formula 4b, L4 represents a tetravalent group. T4 represents a single bond or a divalent group, and four T4s may be the same or different.
A preferred form of L 4 is a tetravalent hydrocarbon group (preferably having 1 to 10 carbon atoms. The hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.), A tetravalent heterocyclic group (preferably a 5- to 7-membered heterocyclic group) may be mentioned, and the hydrocarbon group may contain a heteroatom (eg, —O—). Specific examples of L4 include a pentaerythritol residue, a ditrimethylolpropane residue, and the like.
 式4c中、Lは5価の基を表す。Tは単結合又は2価の基を表し、5個のTは互いに同一でも異なってもよい。
 なお、Lの好適形態としては、5価の炭化水素基(炭素数2~10が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、5価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Lの具体例としては、アラビニトール残基、フロログルシドール残基、及びシクロヘキサンペンタオール残基等が挙げられる。
In formula 4c, L5 represents a pentavalent group. T5 represents a single bond or a divalent group, and five T5s may be the same or different.
A preferred form of L 5 is a pentavalent hydrocarbon group (preferably having 2 to 10 carbon atoms. The hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.), or , a pentavalent heterocyclic group (preferably a 5- to 7-membered heterocyclic group), and the hydrocarbon group may contain a heteroatom (eg, —O—). Specific examples of L5 include arabinitol residue, phloroglucidol residue, cyclohexanepentaol residue and the like.
 式4d中、Lは6価の基を表す。Tは単結合又は2価の基を表し、6個のTは互いに同一でも異なってもよい。
 なお、Lの好適形態としては、6価の炭化水素基(炭素数2~10が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、6価の複素環基(6~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Lの具体例としては、マンニトール残基、ソルビトール残基、ジペンタエリスリトール残基、ヘキサヒドロキシベンゼン、及び、ヘキサヒドロキシシクロヘキサン残基等が挙げられる。
In formula 4d, L6 represents a hexavalent group. T6 represents a single bond or a divalent group, and six T6s may be the same or different.
A preferred form of L 6 is a hexavalent hydrocarbon group (preferably having 2 to 10 carbon atoms. The hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.), or , a hexavalent heterocyclic group (preferably a 6- to 7-membered heterocyclic group), and the hydrocarbon group may contain a heteroatom (eg, —O—). Specific examples of L6 include mannitol residue, sorbitol residue, dipentaerythritol residue, hexahydroxybenzene , and hexahydroxycyclohexane residue.
 式4a~式4d中、T~Tで表される2価の基は、すでに説明したMの2価の基と同様の形態であってもよく、同一でもよい。
 また、Mが7価以上の基である場合には、式4a~式4dで表した基を組み合わせた基を用いることができる。
In Formulas 4a to 4d, the divalent groups represented by T 3 to T 6 may have the same form as the divalent group of M 1 already explained, or may be the same.
Further, when M 1 is a group having a valence of 7 or more, a group obtained by combining the groups represented by formulas 4a to 4d can be used.
 式1に戻り、p1は0以上の整数を表し、2以下が好ましく、1以下がより好ましく、0が更に好ましい。
 また、q1は、2以上の整数を表し、4以下が好ましく、3以下がより好ましく、2が更に好ましい。
Returning to Formula 1, p1 represents an integer of 0 or more, preferably 2 or less, more preferably 1 or less, and still more preferably 0.
Moreover, q1 represents an integer of 2 or more, preferably 4 or less, more preferably 3 or less, and still more preferably 2.
 式1中、Rは水素原子、又は、上記硬化性基を有さない1価の置換基を表す。
 硬化性基を有さない1価の置換基としては特に制限されないが、例えば、*-L″-R′で表される基が挙げられる。
 上記式中、L″は、単結合、又は、2価の基を表し、R′は、水素原子、又は、炭化水素基(直鎖状、分岐鎖状、若しくは、環状のいずれであってもよい)を表し、*は結合位置を表す。
In Formula 1, R 1 represents a hydrogen atom or a monovalent substituent having no curable group.
The monovalent substituent having no curable group is not particularly limited, but includes, for example, a group represented by *-L''-R'.
In the above formula, L″ represents a single bond or a divalent group, and R′ represents a hydrogen atom or a hydrocarbon group (linear, branched, or cyclic). good), and * represents the binding position.
 より優れた本発明の効果を有する複合体が得られる点で、硬化性化合物1は以下の式1Bで表される化合物が好ましい。 The curable compound 1 is preferably a compound represented by the following formula 1B in terms of obtaining a composite having superior effects of the present invention.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式1B中、M1Bはr1価の基であり、その形態は、好適形態を含め、すでに説明した式1中のMで表される基と同様である。
 L1Bはポリ(オキシアルキレンカルボニル)基を表し、X1Bは硬化性基を有する基を表し、その形態は、好適形態を含め、すでに説明した式1におけるL、及び、Xと同様である。
In Formula 1B, M 1B is an r1valent group, and its form, including preferred forms, is the same as the group represented by M 1 in Formula 1 already described.
L 1B represents a poly(oxyalkylenecarbonyl) group, X 1B represents a group having a curable group, and its form, including preferred forms, is the same as L 1 and X 1 in formula 1 already described. be.
 更に優れた本発明の効果を有する複合体が得られる点で、硬化性化合物1は、以下の式1Dで表される化合物が好ましい。 The curable compound 1 is preferably a compound represented by the following formula 1D in that a composite having even more excellent effects of the present invention can be obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式1D中、ALは炭素数1~20個のアルキレン基を表す。アルキレン基の炭素数としては特に制限されないが、3個以上が好ましく、10個以下が好ましい。Lは炭素数1~5の炭化水素を表し、-CHCH-、-CHCHCH-、-CHCHCHCH-、及び、-CHC(CHCH-からなる群より選択される少なくとも1種の基が好ましく、-CHCHCHCH-がより好ましい。X1Dは硬化性基を有する基を表し、その形態は、好適形態を含め、すでに説明した式1のXで表される基と同様である。 In Formula 1D, AL 2 represents an alkylene group having 1 to 20 carbon atoms. Although the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 3 or more, and preferably 10 or less. L D represents a hydrocarbon having 1 to 5 carbon atoms, and includes -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - , and -CH 2 C(CH 3 ) 2 CH 2 — is preferred, and —CH 2 CH 2 CH 2 CH 2 — is more preferred. X 1D represents a group having a curable group, and its form, including preferred forms, is the same as the group represented by X 1 in formula 1 already described.
 式1D中、wは2以上の整数を表し、100以下が好ましく、50以下がより好ましく、20以下の整数が好ましい。 In Formula 1D, w represents an integer of 2 or more, preferably 100 or less, more preferably 50 or less, and preferably an integer of 20 or less.
 硬化性化合物1の数平均分子量としては特に制限されないが、一般に、2000~8000が好ましい。
 また、硬化性化合物1の分子量分布(Mw/Mn)としては特に制限されないが、一般に、1.1~1.6が好ましい。
 なお、硬化性化合物1の数平均分子量、重量平均分子量は、後述する実施例に記載した方法によりGPC(Gel Permeation Chromatography)測定により求められる値を意味する。
Although the number average molecular weight of the curable compound 1 is not particularly limited, it is generally preferably from 2,000 to 8,000.
Also, the molecular weight distribution (Mw/Mn) of the curable compound 1 is not particularly limited, but is generally preferably from 1.1 to 1.6.
The number average molecular weight and weight average molecular weight of the curable compound 1 mean values determined by GPC (Gel Permeation Chromatography) measurement by the method described in Examples below.
<硬化性化合物2>
 別の例示的な形態において、架橋ポリマー110は、以下の式2で表される硬化性化合物2の硬化物である。
<Curable compound 2>
In another exemplary form, crosslinked polymer 110 is a cured product of curable compound 2 represented by Formula 2 below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Lは高分子鎖を表し、上記高分子鎖は、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含み、Xは式1中のXが有するのと同一硬化性基を有する基を表し、Rは水素原子、又は、上記硬化性基を有さない1価の置換基を表し、q2は2以上の整数を表し、p2は0以上の整数を表し、q2が2かつp2が0のとき、Mは単結合、又は、2価の基を表し、q2が2かつp2が1以上のとき、及び、q2が3以上のとき、Mはp2+q2価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい。 L 2 represents a polymer chain, the polymer chain includes all repeating units composed of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid, and X 2 is Represents a group having the same curable group as that of X 1 in Formula 1, R 2 represents a hydrogen atom or a monovalent substituent having no curable group, q2 is an integer of 2 or more and p2 represents an integer of 0 or more, when q2 is 2 and p2 is 0, M2 represents a single bond or a divalent group, when q2 is 2 and p2 is 1 or more, and When q2 is 3 or more, M 2 represents a p2+q2-valent group, and multiple R 2 and L 2 may be the same or different.
 式2のLの高分子鎖は、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含む高分子鎖である。なおLの高分子鎖は上記以外の繰り返し単位を有していてもよく、その場合、ポリ(オキシアルキレン)基(鎖)が好ましい。 The polymer chain of L 2 in Formula 2 is a polymer chain containing all repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid. The polymer chain of L2 may have repeating units other than the above, in which case a poly(oxyalkylene) group (chain) is preferred.
 乳酸には下記式で表されるL-乳酸とD-乳酸という2種類の光学位異性体が存在し、これらをポリエステル化することでポリ乳酸ポリマーが得られる。 Lactic acid has two types of optical isomers, L-lactic acid and D-lactic acid, represented by the following formulas, and polylactic acid polymers can be obtained by polyesterifying these.
 典型的には、乳酸は、以下の式のとおり環状ラクチドに変換され、開環重合されることにより、ポリマー化することができる。本明細書においては、このD-乳酸から誘導される、ポリマーの繰り返し単位を「D-乳酸に由来する繰り返し単位」、L-乳酸から誘導される、ポリマーの繰り返し単位を「L-乳酸に由来する繰り返し単位」という。 Typically, lactic acid can be polymerized by converting it to cyclic lactide and ring-opening polymerization as shown in the following formula. In the present specification, the repeating unit of the polymer derived from D-lactic acid is referred to as "repeating unit derived from D-lactic acid", and the repeating unit of the polymer derived from L-lactic acid is referred to as "derived from L-lactic acid." It is called a repeating unit that
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 従って、Lの高分子鎖は、以下の式で表されるP1の繰り返し単位(オキシアルキレンカルボニル基からなる繰り返し単位)と、P2D(D-乳酸に由来する繰り返し単位)と、P2L(L-乳酸に由来する繰り返し単位)とを有する。なお、下記式中、nは、1~20の整数を表し、2~10の整数が好ましく、3~8の整数がより好ましい。 Therefore, the polymer chain of L2 consists of repeating units of P1 represented by the following formula (repeating units consisting of an oxyalkylenecarbonyl group), P2D (repeating units derived from D-lactic acid), and P2L (L- repeating unit derived from lactic acid). In the formula below, n represents an integer of 1 to 20, preferably an integer of 2 to 10, more preferably an integer of 3 to 8.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Lの高分子鎖におけるP1単位、P2D単位、及び、P2L単位の配列順序は特に制限されず、ランダムでも、トリブロックでも、マルチブロックでもよい。Lの高分子鎖融点をより低く制御しやすい観点では、ランダムに配列されている(ランダム共重合体である)ことが好ましい。Lの高分子鎖は、硬化物(架橋体)において、架橋点間に位置する高分子鎖となるが、この高分子鎖の繰り返し単位の配列がランダムであると、高分子鎖は規則正しい折り畳み構造や伸び切り鎖構造をとりにくく、硬化物の融点がより低くなったり、硬化物が融点を有しなく(結晶性を有しなく)なったりする。 The arrangement order of the P1 unit, P2D unit, and P2L unit in the L2 polymer chain is not particularly limited, and may be random, triblock, or multiblock. From the viewpoint of easily controlling the melting point of the polymer chain of L2, it is preferably arranged at random ( random copolymer). In the cured product (crosslinked product), the polymer chain of L2 becomes a polymer chain located between the crosslink points. It is difficult to have a structure or an extended chain structure, and the melting point of the cured product becomes lower, or the cured product does not have a melting point (has no crystallinity).
 LにおけるP1単位、P2D単位、及び、P2L単位の含有量としては特に制限されないが、各単位の合計含有量を100モル%としたとき、P1単位は、1~10モル%であってもよく、10モル%以上であってもよく、20モル%以上であってもよく、30モル%以上であってもよく、40モル%以上であってもよく、50モル%以上であってもよく、60モル%以上であってもよい。架橋ポリマーが硬化性化合物2の硬化物のみから構成される場合には、LにおけるP1単位の含有量は、60モル%を超えて、100モル%未満であることが好ましい。なお、上限は、90モル%以下であってもよく、80モル%以下であってもよく、70モル%以下であってもよい。
 また、P2D単位、及び、P2L単位の含有量は、それぞれ、1~5モル%であってもよく、5モル%以上であってもよく、10モル%以上であってもよく、15モル%以上であってもよい。上限は、それぞれ、45モル%以下であってもよく、40モル%以下であってもよく、35モル%以下であってもよく、30モル%以下であってもよく、25モル%以下であってもよく、20モル%以下であってもよい。架橋ポリマーが硬化性化合物2の硬化物のみから構成される場合には、LにおけるP2D単位、及び、P2L単位の含有量は、それぞれ、1モル%以上20モル%未満であることが好ましい。なお、この場合の上限は、それぞれ、15モル%以下であってもよく、10モル%以下であってもよく、5モル%以下であってもよい。
The content of P1 units, P2D units, and P2L units in L2 is not particularly limited. well, may be 10 mol% or more, may be 20 mol% or more, may be 30 mol% or more, may be 40 mol% or more, or may be 50 mol% or more It may be 60 mol % or more. When the crosslinked polymer is composed only of the cured product of curable compound 2 , the content of P1 units in L2 is preferably more than 60 mol% and less than 100 mol%. The upper limit may be 90 mol % or less, 80 mol % or less, or 70 mol % or less.
Further, the content of the P2D unit and the P2L unit may be 1 to 5 mol%, may be 5 mol% or more, may be 10 mol% or more, and may be 15 mol%. or more. The upper limit may be 45 mol% or less, 40 mol% or less, 35 mol% or less, 30 mol% or less, or 25 mol% or less. may be present, or may be 20 mol % or less. When the crosslinked polymer is composed only of the cured product of curable compound 2 , the content of P2D units and P2L units in L2 is preferably 1 mol % or more and less than 20 mol %. In this case, the upper limit may be 15 mol % or less, 10 mol % or less, or 5 mol % or less.
 高分子鎖におけるP1単位、P2D単位、及び、P2L単位の繰り返し数としては特に制限されないが、硬化物の変形率がより大きくなりやすい観点では、繰り返し数は10以上が好ましく、20以上がより好ましく、30以上が更に好ましく、200以下が好ましく、100以下がより好ましく、70以下が更に好ましい。 The number of repetitions of the P1 unit, the P2D unit, and the P2L unit in the polymer chain is not particularly limited, but the number of repetitions is preferably 10 or more, more preferably 20 or more, from the viewpoint that the deformation rate of the cured product tends to increase. , is more preferably 30 or more, preferably 200 or less, more preferably 100 or less, and even more preferably 70 or less.
 例示的な好ましい一態様では、LにおけるP1単位、P2D単位、及び、P2L単位の繰り返し数の合計は、10~100である。 In one exemplary preferred aspect, the total number of repeating P1 units, P2D units and P2L units in L2 is 10-100.
 式2に戻り、Xは硬化性基を有する基である。Xが有する硬化性基は、式1におけるXが有する硬化性基と同一である。また、Xの基の具体例は、Xの基と同一であり、好適形態も同様である。
 また、Rの1価の置換基も、式1におけるRの1価の置換基と同様のものが挙げられ、好適形態も同様である。
 また、Mの2価の基、及び、3価以上の基も、式1におけるMの2価の基、及び、3価以上の基とそれぞれ同様のものが挙げられ、好適形態も同様である。
Returning to Formula 2 , X2 is a group having a curable group. The curable group possessed by X2 is the same as the curable group possessed by X1 in formula ( 1 ). Further, specific examples of the group of X2 are the same as those of the group of X1 , and the preferred forms are also the same.
In addition, the monovalent substituents for R 2 are the same as the monovalent substituents for R 1 in Formula 1, and the preferred forms are also the same.
In addition, the divalent group and trivalent or higher group of M 2 are the same as the divalent group and trivalent or higher group of M 1 in Formula 1, respectively, and the preferred forms are also the same. is.
 式2中、p2は0以上の整数を表し、2以下が好ましく、1以下がより好ましく、0が更に好ましい。
 また、q2は、2以上の整数を表し、3以上が好ましく、8以下が好ましく、6以下がより好ましい。
In Formula 2, p2 represents an integer of 0 or more, preferably 2 or less, more preferably 1 or less, and still more preferably 0.
Moreover, q2 represents an integer of 2 or more, preferably 3 or more, preferably 8 or less, and more preferably 6 or less.
 より優れた本発明の効果を有する複合体が得られる点で、硬化性化合物2は以下の式1Cで表される化合物が好ましい。 The curable compound 2 is preferably a compound represented by the following formula 1C, in that a composite having superior effects of the present invention can be obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式1C中、M1Cは、r2価の基であり、L1Cは高分子鎖を表し、高分子鎖は、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含み(更にポリ(オキシアルキレン)基を含んでもよく)、X1Cは、式1BにおけるX1Bが有するのと同一の硬化性基を有する基を表し、r2は2以上の整数を表し、複数あるL1Cはそれぞれ同一でも異なってもよい。 In Formula 1C, M 1C is an r2valent group, L 1C represents a polymer chain, and the polymer chain is a repeating unit composed of an oxyalkylenecarbonyl group, a repeating unit derived from D-lactic acid, and L - containing all repeating units derived from lactic acid (which may further contain a poly(oxyalkylene) group), X 1C represents a group having the same curable group as that of X 1B in Formula 1B, and r2 is represents an integer of 2 or more, and a plurality of L 1C may be the same or different.
 ここで、L1Cの高分子鎖、M1の2価、又は、3価以上の基、X1Cの硬化性基は、それぞれ、式2におけるLの高分子鎖、Mの2価、又は、3価以上の基、Xの硬化性基と同様の基が挙げられ、好適形態も同様である。
 r2は、2以上の整数が好ましく、10以下が好ましく、8以下がより好ましく、6以下が更に好ましい。r2が上記数値範囲内であると、より優れた本発明の効果を有する複合体が得られる。
Here, the polymer chain of L 1C , the divalent or trivalent group of M 1 C , or the curable group of X 1C are, respectively, the polymer chain of L 2 in formula 2, the divalent of M 2 , Alternatively, a group having a valence of 3 or more and a group similar to the curable group of X 2 can be mentioned, and the preferred forms are also the same.
r2 is preferably an integer of 2 or more, preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less. When r2 is within the above numerical range, a composite having superior effects of the present invention can be obtained.
 より優れた本発明の効果を有する複合体が得られる観点で、硬化性化合物2は以下の式1Eで表される化合物が好ましい。 The curable compound 2 is preferably a compound represented by the following formula 1E, from the viewpoint of obtaining a composite having more excellent effects of the present invention.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式1E中、L1Eaは、高分子鎖を表し、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含み、L1Ebは、単結合、又は、ポリ(オキシアルキレン)基(鎖)からなる高分子鎖を表し、X1Eは式1DにおけるX1Dが有するのと同一の硬化性基を有する基を表す。 In Formula 1E, L 1Ea represents a polymer chain and includes all repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid, and L 1Eb is It represents a polymer chain consisting of a single bond or a poly(oxyalkylene) group (chain), and X 1E represents a group having the same curable group as that of X 1D in Formula 1D.
 ここで、L1Eの高分子鎖、及び、X1Eの硬化性基を有する基は、それぞれ、式2におけるLの高分子鎖、及び、Xの硬化性基を有する基と同様の基が挙げられ好適形態も同様である。 Here, the polymer chain of L 1E and the group having a curable group of X 1E are the same groups as the polymer chain of L 2 and the group having a curable group of X 2 in Formula 2, respectively. The same applies to preferred forms.
 硬化性化合物2の数平均分子量としては特に制限されないが、一般に、8000~40000が好ましい。また、硬化性化合物の分子量分布(Mw/Mn)としては特に制限されないが、一般に、1.10~1.80が好ましい。
 なお、硬化性化合物2の数平均分子量、重量平均分子量は、後述する実施例に記載した方法によりGPC(Gel Permeation Chromatography)測定により求められる値を意味する。
Although the number average molecular weight of the curable compound 2 is not particularly limited, it is generally preferably from 8,000 to 40,000. Also, the molecular weight distribution (Mw/Mn) of the curable compound is not particularly limited, but is generally preferably from 1.10 to 1.80.
The number average molecular weight and weight average molecular weight of the curable compound 2 mean values determined by GPC (Gel Permeation Chromatography) measurement by the method described in Examples below.
<硬化性化合物の製造方法>
 ここで、硬化性化合物1、及び、硬化性化合物2(以下、これらを合わせて、単に「硬化性化合物」ともいう。)の製造方法について説明する。
 硬化性化合物の製造方法としては特に制限されないが、より簡便に硬化性化合物が得られる点で、環状化合物を開環重合して得られた前駆体化合物に、硬化性基を有する基を導入して得る方法が好ましい。
<Method for producing curable compound>
Here, a method for producing curable compound 1 and curable compound 2 (hereinafter collectively referred to simply as "curable compound") will be described.
The method for producing the curable compound is not particularly limited, but in order to obtain the curable compound more easily, a group having a curable group is introduced into the precursor compound obtained by ring-opening polymerization of the cyclic compound. is preferably obtained by
 環状化合物としては公知の環状化合物を使用することができ、特に制限されないが、加水分解によって開環し得るものが好ましく、例えば、β-プロピオラクトン、β-ブチロラクトン、β-バレロラクトン、γ-ブチロラクトン、γ-バレロラクトン、γ-カプリロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、δ-ステアロラクトン、ε-カプロラクトン、γ-オクタノイックラクトン、2-メチル-ε-カプロラクトン、4-メチル-ε-カプロラクトン、ε-カプリロラクトン、ε-パルミトラクトン、α-ヒドロキシ-γ-ブチロラクトン、及び、α-メチル-γ-ブチロラクトン等の環状エステル(ラクトン化合物);グリコリド、及び、ラクチド等の環状ジエステル;等が挙げられる。 As the cyclic compound, known cyclic compounds can be used without particular limitation, but those that can be ring-opened by hydrolysis are preferred, such as β-propiolactone, β-butyrolactone, β-valerolactone, γ- Butyrolactone, γ-valerolactone, γ-caprylolactone, δ-valerolactone, β-methyl-δ-valerolactone, δ-stearolactone, ε-caprolactone, γ-octanoic lactone, 2-methyl-ε- Cyclic esters (lactone compounds) such as caprolactone, 4-methyl-ε-caprolactone, ε-caprylolactone, ε-palmitolactone, α-hydroxy-γ-butyrolactone, and α-methyl-γ-butyrolactone; glycolide, and cyclic diesters such as lactide;
 なかでも、開環重合の反応性が良好である点で、環状化合物としては、ラクトン化合物またはラクチドが好ましく、ラクトン化合物としては、β-プロピオラクトン、β-ブチロラクトン、β-バレロラクトン、γ-ブチロラクトン、γ-バレロラクトン、γ-カプリロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、δ-ステアロラクトン、ε-カプロラクトン、2-メチル-ε-カプロラクトン、4-メチル-ε-カプロラクトン、ε-カプリロラクトン、及び、ε-パルミトラクトンからなる群から選択される少なくとも1種であることが更に好ましい。 Among them, the cyclic compound is preferably a lactone compound or lactide, and the lactone compound is β-propiolactone, β-butyrolactone, β-valerolactone, γ- Butyrolactone, γ-valerolactone, γ-caprylolactone, δ-valerolactone, β-methyl-δ-valerolactone, δ-stearolactone, ε-caprolactone, 2-methyl-ε-caprolactone, 4-methyl-ε -caprolactone, ε-caprylolactone, and ε-palmitolactone is more preferably at least one selected from the group consisting of.
 また、特に硬化性化合物2の合成には、ラクチドを用いることができ、このラクチドとしては、2分子のL-乳酸が脱水縮合して形成されるL-ラクチド(LLラクチド)、2分子のD-乳酸が脱水縮合して形成されるD-ラクチド(DDラクチド)、及び、1分子のL-乳酸と1分子のD-乳酸が脱水縮合して形成されるメソラクチド、並びに、D-ラクチドとL-ラクチドの等量混合物であるDL-ラクチド(ラセミラクチド)等が挙げられる。得られる硬化物の融点がより低くなりやすい点では、DL-ラクチドが好ましい。 In particular, lactide can be used in the synthesis of the curable compound 2. Examples of this lactide include L-lactide (LL lactide) formed by dehydration condensation of two molecules of L-lactic acid, two molecules of D - D-lactide (DD-lactide) formed by dehydration condensation of lactic acid, meso-lactide formed by dehydration condensation of one molecule of L-lactic acid and one molecule of D-lactic acid, and D-lactide and L -DL-lactide (racemic lactide), which is a mixture of equal amounts of lactide, and the like. DL-lactide is preferred because the melting point of the resulting cured product tends to be lower.
 環状化合物を開環重合して前駆体化合物を得る方法としては特に制限されないが、金属触媒の存在下、アルコールを開始剤として開環重合する方法が挙げられる。 The method of obtaining a precursor compound by ring-opening polymerization of a cyclic compound is not particularly limited, but a method of ring-opening polymerization using an alcohol as an initiator in the presence of a metal catalyst can be mentioned.
・金属触媒
 金属触媒としては特に制限されないが、アルカリ金属、アルカリ土類金属、希土類、遷移金属類、アルミニウム、ゲルマニウム、スズ、及び、アンチモン等の脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、及び、アルコラート等が挙げられる。
 より具体的には、塩化第一スズ、臭化第一スズ、ヨウ化第一スズ、硫酸第一スズ、酸化第二スズ、ミリスチン酸スズ、オクチル酸スズ(Tin (II)-ethylhexanoate)、ステアリン酸スズ、テトラフェニルスズ、スズメトキシド、スズエトキシド、スズブトキシド、酸化アルミニウム、アルミニウムアセチルアセトネート、アルミニウムイソプロポキシド、アルミニウム-イミン錯体、四塩化チタン、チタン酸エチル、チタン酸ブチル、チタン酸グリコール、チタンテトラブトキシド、塩化亜鉛、酸化亜鉛、ジエチル亜鉛、三酸化アンチモン、三臭化アンチモン、酢酸アンチモン、酸化カルシウム、酸化ゲルマニウム、酸化マンガン、炭酸マンガン、酢酸マンガン、酸化マグネシウム、及び、イットリウムアルコキシド等の化合物が挙げられる。
-Metal catalyst Although not particularly limited as a metal catalyst, alkali metals, alkaline earth metals, rare earths, transition metals, aluminum, germanium, tin, and fatty acid salts such as antimony, carbonates, sulfates, phosphates, oxides, hydroxides, halides, alcoholates, and the like.
More specifically, stannous chloride, stannous bromide, stannous iodide, stannous sulfate, stannic oxide, stannous myristate, tin octoate (Tin (II)-ethylhexanoate), stearin Tin acid, tetraphenyltin, tin methoxide, tin ethoxide, tin butoxide, aluminum oxide, aluminum acetylacetonate, aluminum isopropoxide, aluminum-imine complex, titanium tetrachloride, ethyl titanate, butyl titanate, glycol titanate, titanium tetra Compounds such as butoxide, zinc chloride, zinc oxide, diethyl zinc, antimony trioxide, antimony tribromide, antimony acetate, calcium oxide, germanium oxide, manganese oxide, manganese carbonate, manganese acetate, magnesium oxide, and yttrium alkoxide. be done.
 金属触媒の使用量は金属触媒中の金属元素に換算して、環状化合物1モル当たり0.01×10-4~100×10-4モル程度が好ましい。 The amount of the metal catalyst used is preferably about 0.01×10 −4 to 100×10 −4 mol per 1 mol of the cyclic compound in terms of the metal element in the metal catalyst.
・開始剤
 開始剤としては特に制限されないが、1価又は2価以上のアルコールが挙げられる。
• Initiator Although the initiator is not particularly limited, monohydric or dihydric or higher alcohols can be mentioned.
 1価のアルコールとしては特に制限されないが、RIN-OHで表されるアルコールが挙げられ、RINは、置換基を有していてもよい炭素数1~20個の脂肪族炭化水素基を表す。
 脂肪族炭化水素基としては、特に制限されないが、炭素数1~20個のアルキル基等が挙げられる。
 1価のアルコールとしては、例えば、メタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、ペンチルアルコール、n-ヘキシルアルコール、シクロヘキシルアルコール、オクチルアルコール、ノニルアルコール、2-エチルヘキシルアルコール、n-デシルアルコール、n-ドデシルアルコール、ヘキサデシルアルコール、ラウリルアルコール、エチルラクテート、及び、ヘキシルラクテート等が挙げられる。
The monohydric alcohol is not particularly limited, but includes an alcohol represented by R IN —OH, where R IN is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms. show.
Examples of the aliphatic hydrocarbon group include, but are not limited to, alkyl groups having 1 to 20 carbon atoms.
Examples of monohydric alcohols include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, pentyl alcohol, n-hexyl alcohol, cyclohexyl alcohol, octyl alcohol, nonyl alcohol, 2-ethylhexyl alcohol, Examples include n-decyl alcohol, n-dodecyl alcohol, hexadecyl alcohol, lauryl alcohol, ethyl lactate and hexyl lactate.
 また、2価以上のアルコール(多価アルコール)としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、及び、ペンタエリスリトールエトキシラート等が挙げられる。 Dihydric or higher alcohols (polyhydric alcohols) include ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, and ditrimethylol. Propane, pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, and pentaerythritol ethoxylate.
 なかでも、より優れた本発明の効果を有する複合体が得られる点で、2価のアルコール又は4価のアルコールが好ましく、2価のアルコールとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、及び、ネオペンチルグリコールからなる群より選択される少なくとも1種が好ましい。
 また、4価のアルコールとしては、ペンタエリスリトール、及び、ペンタエリスリトールエトキシラート等が好ましい。
 開始剤の使用量は、特に制限されないが、環状化合物1モル当たり、好ましくは0.0001~0.1モル程度が好ましい。
Among them, a dihydric alcohol or a tetrahydric alcohol is preferable in terms of obtaining a composite having a more excellent effect of the present invention. Examples of the dihydric alcohol include ethylene glycol, 1,3-propanediol, , 4-butanediol, and neopentyl glycol are preferred.
As the tetrahydric alcohol, pentaerythritol, pentaerythritol ethoxylate, and the like are preferable.
The amount of the initiator used is not particularly limited, but is preferably about 0.0001 to 0.1 mol per 1 mol of the cyclic compound.
・開環重合
 開環重合は、環状化合物の揮散を防ぐため、不活性ガス雰囲気下で行うことが好ましい。重合温度は、特に制限されないが、100~250℃が好ましい。
 重合時間としては特に制限されないが、0.1~48時間程度が好ましい。
- Ring-opening polymerization Ring-opening polymerization is preferably carried out in an inert gas atmosphere in order to prevent volatilization of the cyclic compound. The polymerization temperature is not particularly limited, but preferably 100 to 250°C.
Although the polymerization time is not particularly limited, it is preferably about 0.1 to 48 hours.
・硬化性基の導入
 環状化合物の開環重合で得られた前駆体化合物に硬化性基を導入する方法としては特に制限されないが、例えば、前駆体化合物が有するヒドロキシ基に対して反応性を示す置換基、及び、硬化性基の両方を有する化合物を反応させる方法(イ)、並びに、前駆体化合物が有するヒドロキシ基を他の官能基に置換し、この置換基に対して反応性を示す官能基、及び、硬化性基の両方を有する化合物を反応させる方法(ロ)等が挙げられる。なかでも、より簡便に硬化性化合物(マクロモノマー)が得られる点で、(イ)の方法が好ましい。
・Introduction of curable group The method of introducing a curable group into a precursor compound obtained by ring-opening polymerization of a cyclic compound is not particularly limited. A method (a) of reacting a compound having both a substituent and a curable group, and a functional group that is reactive to the substituent by substituting the hydroxy group of the precursor compound with another functional group. and a method (b) of reacting a compound having both a group and a curable group. Among them, the method (a) is preferable in that the curable compound (macromonomer) can be obtained more easily.
 上記(イ)の方法で、前駆体化合物のヒドロキシ基と反応させる化合物としては、特に制限されないが、例えば、硬化性基が(メタ)アクリロイル基である場合、塩化(メタ)アクリル酸、及び、臭化(メタ)アクリル酸等の不飽和酸ハロゲン化合物類等が挙げられる。
 前駆体化合物のヒドロキシ基と反応させる化合物の使用量としては、特に制限されないが、ヒドロキシ基に対し、0.1~20モル当量程度が好ましい。
In the method (a) above, the compound to be reacted with the hydroxy group of the precursor compound is not particularly limited. For example, when the curable group is a (meth)acryloyl group, (meth)acrylic acid chloride, and Examples include unsaturated acid halogen compounds such as brominated (meth)acrylic acid.
The amount of the compound to be reacted with the hydroxy group of the precursor compound is not particularly limited, but is preferably about 0.1 to 20 molar equivalents relative to the hydroxy group.
<硬化性化合物の複合物>
 別の例示的な形態において、架橋ポリマー110は、上記硬化性化合物1と上記硬化性化合物2から構成される硬化性化合物の複合物の硬化物である。
<Composite of curable compound>
In another exemplary form, the crosslinked polymer 110 is a cured composite of curable compounds composed of curable compound 1 and curable compound 2 above.
 上記硬化性化合物の複合物における、硬化性化合物1及び硬化性化合物2の含有量としては、上述した結晶性を有していれば、特に制限されない。例えば、複合体の用途等を考慮して、架橋ポリマーの融解ピーク温度が所望の範囲内となるように、硬化性化合物1及び硬化性化合物2の含有量を調整することができる。 The contents of the curable compound 1 and the curable compound 2 in the composite of the curable compounds are not particularly limited as long as they have the crystallinity described above. For example, the contents of the curable compound 1 and the curable compound 2 can be adjusted so that the melting peak temperature of the crosslinked polymer is within the desired range in consideration of the use of the composite.
 具体的には、硬化性化合物1の含有量としては、硬化性化合物2との関係では、その合計を100モル%としたとき、20モル%以上が好ましく、30モル%以上がより好ましく、35モル%以上が更に好ましく、40モル%以上が特に好ましい。
 上限は、99モル%以下が好ましく、95モル%以下がより好ましく、90モル%以下が更に好ましく、85モル%以下が特に好ましい。
Specifically, the content of the curable compound 1 is preferably 20 mol% or more, more preferably 30 mol% or more, more preferably 35 mol% or more, when the total is 100 mol%, in relation to the curable compound 2. mol % or more is more preferable, and 40 mol % or more is particularly preferable.
The upper limit is preferably 99 mol% or less, more preferably 95 mol% or less, still more preferably 90 mol% or less, and particularly preferably 85 mol% or less.
 なかでも、複合体を生体表面で駆動させる場合、硬化性化合物1の含有量は、45~65モル%が好ましい。
 また、複合体を生体内で駆動させる場合、硬化性化合物1の含有量は、65~99モル%が好ましく、65~85モル%がより好ましい。
In particular, when the composite is driven on the surface of a living body, the content of curable compound 1 is preferably 45 to 65 mol %.
Moreover, when the composite is driven in vivo, the content of the curable compound 1 is preferably 65 to 99 mol %, more preferably 65 to 85 mol %.
 硬化性化合物2の含有量としては、硬化性化合物1との関係では、その合計を100モル%としたとき、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましく、15モル%以上が特に好ましく、80モル%以下が好ましく、70モル%以下がより好ましく、65モル%以下が更に好ましく、60モル%以下が特に好ましい。 The content of the curable compound 2, in relation to the curable compound 1, is preferably 1 mol% or more, more preferably 5 mol% or more, and further preferably 10 mol% or more when the total is 100 mol%. It is preferably 15 mol% or more, particularly preferably 80 mol% or less, more preferably 70 mol% or less, still more preferably 65 mol% or less, and particularly preferably 60 mol% or less.
 なかでも、複合体を生体表面で駆動させる場合、硬化性化合物2の含有量は、35~50モル%が好ましい。
 また、複合体を生体内で駆動させる場合、硬化性化合物2の含有量は、1~35モル%が好ましく、10~35モル%がより好ましい。
In particular, when the composite is driven on the surface of a living body, the content of the curable compound 2 is preferably 35 to 50 mol %.
Moreover, when the composite is driven in vivo, the content of the curable compound 2 is preferably 1 to 35 mol %, more preferably 10 to 35 mol %.
 例示的な好ましい一態様では、上記硬化性化合物の複合物における、硬化性化合物1と硬化性化合物2の含有量に対する硬化性化合物2の含有量のモル基準の比([硬化性化合物2]/[硬化性化合物1+硬化性化合物2])は、0.01~0.65である。 In a preferred exemplary embodiment, the molar ratio of the content of curable compound 2 to the content of curable compound 1 and curable compound 2 in the composite of curable compounds ([curable compound 2]/ [Curable compound 1+Curable compound 2]) is from 0.01 to 0.65.
 また、別の例示的な好ましい態様では、上記硬化性化合物の複合物の硬化物がより低い融点とより高い変形率を両立できる観点で、以下の方法により準備される試験体が結晶性を有しないことが好ましい。 In another exemplary preferred embodiment, the specimen prepared by the following method has crystallinity from the viewpoint that the cured product of the composite of the curable compound can have both a lower melting point and a higher deformation rate. preferably not.
 試験体の準備方法:硬化性化合物2の500mgと、過酸化ベンゾイルの15mgと、キシレンの695μLとを混合して得られる組成物を80℃に加熱して重合させ、得られた重合体をアセトンで洗浄し、メタノール中で収縮させた後、減圧乾燥させて試験体を得る。 Test body preparation method: A composition obtained by mixing 500 mg of curable compound 2, 15 mg of benzoyl peroxide, and 695 μL of xylene is heated to 80° C. to polymerize, and the obtained polymer is treated with acetone. After washing with , shrinking in methanol and drying under reduced pressure, a specimen is obtained.
<硬化物>
 本実施形態の複合体100に含まれる架橋ポリマー110に好適な形状記憶材料として、上述した硬化性化合物1の硬化物、硬化性化合物2の硬化物、及び、硬化性化合物1と上記硬化性化合物2から構成される硬化性化合物の複合物の硬化物を得る方法は特に制限されないが、硬化性化合物1と硬化性化合物2と、必要に応じてその他の成分とを含む組成物にエネルギーを与えて(典型的には、加熱して)、硬化させて得ることができる。詳細は、以下の「複合体の製造方法」に関する項で説明する。
<Cured product>
Shape memory materials suitable for the crosslinked polymer 110 contained in the composite 100 of the present embodiment include the cured product of the curable compound 1, the cured product of the curable compound 2, and the curable compound 1 and the curable compound. The method of obtaining a cured product of a composite of curable compounds composed of 2 is not particularly limited, but energy is applied to a composition containing curable compound 1 and curable compound 2 and, if necessary, other components. can be obtained by curing (typically by heating). The details are described in the section on "Method for producing a composite" below.
〔金属ナノワイヤ〕
 本実施形態の複合体100に含まれる金属ナノワイヤ(以下、単に「金属ナノワイヤ」ともいう。)120の材質は金属である。金属ナノワイヤ120の材質としての金属には、金属の酸化物や窒化物等のセラミックは含まない。具体的には、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、カドミウム、オスミウム、イリジウム、白金、金等が挙げられる。なかでも、導電性の観点から、銅、銀、白金、金が好ましく、銀がより好ましい。
[Metal nanowires]
The material of the metal nanowires (hereinafter also simply referred to as “metal nanowires”) 120 included in the composite 100 of the present embodiment is metal. The metal as the material of the metal nanowires 120 does not include ceramics such as metal oxides and nitrides. Specific examples include iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, cadmium, osmium, iridium, platinum, and gold. Among them, copper, silver, platinum, and gold are preferable, and silver is more preferable, from the viewpoint of conductivity.
 金属ナノワイヤ120の形状は、短軸方向の長さと長軸方向の長さの比(以下、これを「アスペクト比」とも称する。)が10以上のものであれば特に制限されないが、金属ナノワイヤの合成及び複合体の製造上の観点から、アスペクト比が大きすぎると取扱いが困難となる場合がある。そのため、アスペクト比は、10000以下が好ましく、1000以下がより好ましい。 The shape of the metal nanowires 120 is not particularly limited as long as the ratio of the length in the short axis direction to the length in the long axis direction (hereinafter also referred to as “aspect ratio”) is 10 or more. From the point of view of synthesis and composite manufacturing, if the aspect ratio is too large, it may become difficult to handle. Therefore, the aspect ratio is preferably 10000 or less, more preferably 1000 or less.
 金属ナノワイヤ120は、直線状であってもよく、分岐状であってもよく、粒子が数珠状に繋がった形状であってもよく、これらの形状が入り混じったものであってもよい。ここで、直線状金属ナノワイヤとは、形状が棒状であることを意味し、分岐状金属ナノワイヤとは、形状が枝分かれ状であることを意味する。なお、金属ナノワイヤの剛性が低く、部分的もしくは全体的に湾曲していたり、折れ曲がったりしている場合には、直線状金属ナノワイヤに含むものとする。 The metal nanowires 120 may have a straight shape, a branched shape, a shape in which particles are connected in a beaded shape, or a mixture of these shapes. Here, the linear metal nanowire means that the shape is rod-like, and the branched metal nanowire means that the shape is branched. If the metal nanowires have low rigidity and are partially or wholly curved or bent, they are included in the linear metal nanowires.
 金属ナノワイヤ120の短軸方向の長さは特に制限されないが、1nm以上1μm以下が好ましい。短軸方向の長さが短すぎると、金属ナノワイヤの合成が困難となりやすいため、10nm以上500nm以下がより好ましい。金属ナノワイヤの長軸方向の長さは特に制限されないが、導電性の観点から、1μm以上1mm以下であることが好ましい。また、長軸方向の長さが長すぎると取扱いが困難となる場合があるため、10μm以上100μm以下であることがより好ましい。
 金属ナノワイヤ120の形状や大きさは、走査型電子顕微鏡や透過型電子顕微鏡によって確認することができる。
The length of the metal nanowires 120 in the minor axis direction is not particularly limited, but is preferably 1 nm or more and 1 μm or less. If the length in the minor axis direction is too short, synthesis of metal nanowires tends to be difficult, so the length is more preferably 10 nm or more and 500 nm or less. Although the length of the metal nanowires in the major axis direction is not particularly limited, it is preferably 1 μm or more and 1 mm or less from the viewpoint of conductivity. Moreover, if the length in the major axis direction is too long, it may become difficult to handle.
The shape and size of metal nanowires 120 can be confirmed with a scanning electron microscope or a transmission electron microscope.
 金属ナノワイヤ120は、公知の方法によって合成することができる。例えば、溶液中で硝酸銀を還元する方法、及び、前駆体表面にプローブの先端部から印加電圧又は電流を作用させプローブ先端部で金属ナノワイヤをひき出し、当該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法としては、具体的には、金属複合化ペプチド脂質からなるナノファイバーを還元する方法(特開2002-266007号公報)や、ポリオール還元と呼ばれる方法であって、エチレングリコール中で過熱しながら還元する方法(Y. Sun, et al., Chem Mater., 2002, 14(11), 4736-4745.)、クエン酸ナトリウム中で還元する方法(K. K. Caswell, et al., Nano Lett., 2003, 3(5), 667-669.)等が挙げられる。なかでも、エチレングリコール中で過熱しながら還元する方法は、比較的容易に結晶性の高い金属ナノワイヤを合成できるので好ましい。 The metal nanowires 120 can be synthesized by a known method. For example, a method of reducing silver nitrate in a solution, a method of applying voltage or current from the tip of the probe to the surface of the precursor to extract metal nanowires at the tip of the probe, and forming the metal nanowires continuously. is mentioned. Specific examples of the method for reducing silver nitrate in a solution include a method of reducing nanofibers composed of metal-complexed peptide lipids (JP-A-2002-266007) and a method called polyol reduction, in which ethylene A method of reduction while heating in glycol (Y. Sun, et al., Chem Mater., 2002, 14(11), 4736-4745.), a method of reduction in sodium citrate (K. K. Caswell, et al., Nano Lett., 2003, 3(5), 667-669.). Among them, the method of reducing while heating in ethylene glycol is preferable because metal nanowires with high crystallinity can be synthesized relatively easily.
 本実施形態の複合体100における、金属ナノワイヤ120の含有量としては、特に制限されず、複合体100を電流の印加による局所的な加熱により駆動させるに十分な量であればよい。 The content of the metal nanowires 120 in the composite 100 of the present embodiment is not particularly limited as long as it is sufficient to drive the composite 100 by local heating due to the application of electric current.
 具体的には、熱重量測定(TG)によって算出される金属ナノワイヤ120の含有率が、5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、20%以上であることがよりさらに好ましい。これにより、金属ナノワイヤ120は、複合体100において、電流の印加による局所的な加熱により複合体100を駆動可能な程度に分散した状態で、架橋ポリマー110に組み込まれ得る。なお、熱重量測定は、後述する実施例に記載の方法により行うものとする。 Specifically, the content of metal nanowires 120 calculated by thermogravimetry (TG) is preferably 5% or more, more preferably 10% or more, and further preferably 15% or more. It is preferably 20% or more, and more preferably 20% or more. Thereby, the metal nanowires 120 can be incorporated into the crosslinked polymer 110 in a dispersed state in the composite 100 to such an extent that the composite 100 can be driven by local heating by applying an electric current. The thermogravimetric measurement shall be performed by the method described in Examples below.
 一方、本実施形態の複合体100は、電流の印加による局所的な加熱により駆動可能であることを特徴の一つとして有するので、金属ナノワイヤ120の含有率は、必要以上に高い値であることは要しない。そのような観点から、熱重量測定(TG)によって算出される金属ナノワイヤ120の含有率は、60%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることがさらに好ましく、35%以下であることがよりさらに好ましい。金属ナノワイヤ120の含有率をより低い値とすることで、電流の印加によって生じるジュール熱が意図しない周囲環境に伝わる等の悪影響を回避することができる。一方、複合体の用途によっては、上述したような周囲環境へのジュール熱の伝搬・拡散をそれほど考慮する必要がない場合もあり得る。そのため、複合体が電気抵抗を測定可能な程度の導電性を有する限りにおいて、金属ナノワイヤ120の含有率は、5%以上60%以下であってもよく、5%以上50%以下であってもよく、5%以上40%以下であってもよく、5%以上35%以下であってもよく、10%以上35%以下であってもよく、15%以上35%以下であってもよく、20%以上35%以下であってもよい。 On the other hand, since one of the features of the composite 100 of the present embodiment is that it can be driven by local heating due to the application of electric current, the content of the metal nanowires 120 should be higher than necessary. is not required. From such a viewpoint, the content of the metal nanowires 120 calculated by thermogravimetry (TG) is preferably 60% or less, more preferably 50% or less, and 40% or less. More preferably, it is even more preferably 35% or less. By setting the content rate of the metal nanowires 120 to a lower value, it is possible to avoid adverse effects such as unintended transfer of Joule heat generated by the application of current to the surrounding environment. On the other hand, depending on the application of the composite, there may be cases where it is not necessary to consider the propagation and diffusion of Joule heat to the surrounding environment so much. Therefore, the content of metal nanowires 120 may be 5% or more and 60% or less, or may be 5% or more and 50% or less, as long as the composite has conductivity to the extent that the electrical resistance can be measured. well, may be 5% or more and 40% or less, may be 5% or more and 35% or less, may be 10% or more and 35% or less, may be 15% or more and 35% or less, It may be 20% or more and 35% or less.
〔複合体の導電性〕
 上述したように、本実施形態の複合体100は、架橋ポリマー110に金属ナノワイヤ120が組み込まれた構造を有するので、パーマネント形状、及び、テンポラリー形状の両方において、電気抵抗を測定可能な程度の導電性を有する。
[Conductive Conductivity of Composite]
As described above, the composite 100 of the present embodiment has a structure in which the metal nanowires 120 are incorporated into the crosslinked polymer 110, so that both the permanent shape and the temporary shape have conductivity to the extent that electrical resistance can be measured. have sex.
 複合体の導電性試験は、任意のサイズの試験片を作製し、少なくとも、パーマネント形状(変形前の状態)、引張試験機を用いて100%引き伸ばした状態、及び、エネルギーを付与して(典型的には、加熱して)100%収縮させた状態(変形前と同程度のサイズに回復した状態)の、三通りの条件における、電気抵抗(Ω)を測定するものとする。
 試験片がシート状である場合の具体的な試験方法については、後述する実施例に記載のとおりである。試験片がシート状以外の形状である場合については、当業者であれば適宜設計変更が可能である。
The conductivity test of the composite is performed by preparing a test piece of any size, at least in a permanent shape (state before deformation), in a state of being stretched 100% using a tensile tester, and applying energy (typically Specifically, the electrical resistance (Ω) shall be measured under three conditions in a 100% contracted state (restored to the same size as before deformation) by heating.
A specific test method when the test piece is in the form of a sheet is as described in Examples below. If the test piece has a shape other than a sheet shape, those skilled in the art can appropriately change the design.
〔複合体の構造的安定性〕
 また、上述したように、本実施形態の複合体100は、架橋ポリマー110に金属ナノワイヤ120が組み込まれた構造を有するので、構造的な安定性に優れている。
[Structural stability of complex]
Moreover, as described above, the composite 100 of the present embodiment has a structure in which the metal nanowires 120 are incorporated into the crosslinked polymer 110, and therefore has excellent structural stability.
 具体的には、複合体100は、架橋ポリマー110及び/又は金属ナノワイヤ120の良溶媒を用いる安定性試験において、金属ナノワイヤ120の脱離を実質的に生じない。 Specifically, in the stability test using a good solvent for the crosslinked polymer 110 and/or the metal nanowires 120, the composite 100 does not substantially detach the metal nanowires 120.
 ここで、「金属ナノワイヤの脱離を実質的に生じない」とは、安定性試験の前後における試験溶媒の目視観察において、複合体から脱離した金属ナノワイヤに起因する、試験溶媒の懸濁が実質的に見られないこと、及び/又は、安定性試験の前後における試験片の重量測定において、複合体から脱離した金属ナノワイヤに起因する、重量の減少が見られないことを意味するものとする。なお、実際上は、安定性試験後の試験片では、試験溶媒の若干の残留が生じ得るため、本実施形態の複合体100から作製した試験片では、試験後の重量は、試験前の重量と実質的に同じ、若しくは、試験前の重量より若干の増加が見られ得る。一方、本実施形態の複合体100のような構造を有しない材料から作製した試験片では、試験後の重量は、試験前の重量より明らかに減少する。 Here, "substantially does not cause detachment of the metal nanowires" means that suspension of the test solvent caused by the metal nanowires detached from the composite is observed visually before and after the stability test. It means that it is substantially not observed and/or that weight measurement of the test piece before and after the stability test does not show a decrease in weight due to the metal nanowires detached from the composite. do. In practice, a small amount of the test solvent may remain in the test piece after the stability test. or a slight increase over the weight before testing. On the other hand, in a test piece made of a material having no structure like the composite 100 of this embodiment, the weight after the test clearly decreases from the weight before the test.
 安定性試験で使用する溶媒、すなわち、架橋ポリマー110及び/又は金属ナノワイヤ120の良溶媒としては特に制限されず、架橋ポリマー及び/又は金属ナノワイヤの構造・材質等に応じて適宜選択すればよい。具体的には、メタノール、エタノール、1-プロパノール等のアルコール類が挙げられる。
 試験片がシート状である場合の具体的な試験方法については、後述する実施例に記載のとおりである。試験片がシート状以外の形状である場合については、当業者であれば適宜設計変更が可能である。
The solvent used in the stability test, that is, the good solvent for the crosslinked polymer 110 and/or the metal nanowires 120 is not particularly limited, and may be appropriately selected according to the structure/materials of the crosslinked polymer and/or the metal nanowires. Specific examples include alcohols such as methanol, ethanol, and 1-propanol.
A specific test method when the test piece is in the form of a sheet is as described in Examples below. If the test piece has a shape other than a sheet shape, those skilled in the art can appropriately change the design.
[複合体の製造方法]
 本実施形態の複合体100の製造方法としては特に制限されないが、より簡便に、電流の印加による局所的な加熱により駆動可能な形状記憶部材に適用できる複合体が得られる点で、以下の製造方法が好ましい。
[Manufacturing method of composite]
The method for producing the composite 100 of the present embodiment is not particularly limited, but the following production is possible in that a composite that can be applied to a shape memory member that can be driven by local heating by applying an electric current can be obtained more easily. A method is preferred.
 本発明の一実施形態に係る複合体の製造方法(以下、「本実施形態の製造方法」ともいう。)は、
 金属ナノワイヤを含む成形体を作製する工程(以下、「成形体作製工程」ともいう。)と、
 前記成形体に、硬化性化合物を含む組成物を適用する工程(以下、「組成物適用工程」ともいう。)と、
 前記組成物を適用した成形体にエネルギーを付与して、前記硬化性化合物を硬化させる工程(以下、「硬化工程」ともいう。)と、
を含む。
 以下では、上記各工程について説明する。
A method for producing a composite according to one embodiment of the present invention (hereinafter, also referred to as “the production method of the present embodiment”) comprises:
a step of producing a molded body containing metal nanowires (hereinafter also referred to as a “molded body manufacturing step”);
a step of applying a composition containing a curable compound to the molded body (hereinafter also referred to as a "composition applying step");
a step of applying energy to the molded article to which the composition is applied to cure the curable compound (hereinafter also referred to as a “curing step”);
including.
Below, each said process is demonstrated.
(成形体作製工程)
 成形体作製工程は、金属ナノワイヤを含む成形体を作製する工程である。具体的には、金属ナノワイヤを任意の溶媒に分散させた金属ナノワイヤ分散溶液を調製し、これを任意の支持体上に適用し、所定の温度で溶媒を乾燥させることにより、金属ナノワイヤを含む成形体を得ることができる。
(Molding body manufacturing process)
The compact preparation step is a step of preparing a compact containing metal nanowires. Specifically, metal nanowires are dispersed in an arbitrary solvent to prepare a metal nanowire dispersion solution, which is applied on an arbitrary support, and the solvent is dried at a predetermined temperature to form a molding containing metal nanowires. you can get a body
 金属ナノワイヤを分散させる溶媒としては特に制限されず、例えば、メタノール、エタノール、1-プロパノール等のアルコール類、及び、DMF(N,N-ジメチルホルムアミド)等、常温で液体であり、かつ、揮発性に優れた有機溶媒が挙げられる。 The solvent for dispersing the metal nanowires is not particularly limited, and examples include alcohols such as methanol, ethanol, and 1-propanol, and DMF (N,N-dimethylformamide), etc., which are liquid at room temperature and volatile. organic solvents excellent in
(組成物適用工程)
 組成物適用工程は、成形体作製工程で得られた成形体に、硬化性化合物を含む組成物を適用する工程である。
(Composition application step)
The composition applying step is a step of applying a composition containing a curable compound to the molded article obtained in the molded article producing step.
 上記組成物に含まれる硬化性化合物としては特に制限されないが、上述した硬化性化合物1、硬化性化合物2、及び、硬化性化合物1と上記硬化性化合物2から構成される硬化性化合物の複合物からなる群より選択されることが好ましい。 The curable compound contained in the composition is not particularly limited, but the curable compound 1 described above, the curable compound 2, and a composite of a curable compound composed of the curable compound 1 and the curable compound 2 It is preferably selected from the group consisting of
 上記組成物は、上述した硬化性化合物を含んでいれば、必要に応じて他の成分を含んでいてもよい。他の成分としては、例えば、硬化剤、及び、溶媒が挙げられる。 As long as the composition contains the curable compound described above, it may contain other components as necessary. Other ingredients include, for example, curing agents and solvents.
<硬化剤>
 硬化剤は、硬化性化合物に作用して、硬化反応を起こさせる機能を有する化合物である。
 硬化剤としては、特に制限されず、公知の化合物が使用でき、典型的にはラジカル重合開始剤が好ましい。硬化剤としては、熱エネルギーの付与により硬化反応が進行する熱硬化剤、及び/又は、光照射(光エネルギーの付与)により硬化反応が進行する光硬化剤が使用できる。
<Curing agent>
A curing agent is a compound having a function of acting on a curable compound to cause a curing reaction.
The curing agent is not particularly limited, and known compounds can be used, and radical polymerization initiators are typically preferred. As the curing agent, a thermosetting agent in which a curing reaction proceeds by application of heat energy and/or a photo-curing agent in which a curing reaction proceeds by light irradiation (application of light energy) can be used.
 熱硬化剤としては、例えば、アゾビスイソブチロニトリル等のアゾ化合物、及び、過酸化ベンゾイル等の過酸化物等が挙げられる。
 光硬化剤としては、例えば、ベンゾフェノン、ミヒラーズケトン、キサントン、及び、チオキサントン等の芳香族ケトン化合物;2-エチルアントラキノン等のキノン化合物;アセトフェノン、トリクロロアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエーテル、2,2-ジエトキシアセトフェノン、及び、2,2-ジメトキシー2-フェニルアセトフェノン等のアセトフェノン化合物;メチルベンゾイルホルメート等のジケトン化合物;1-フェニル-1,2-プロパンジオン-2-(O-ベンゾイル)オキシム等のアシルオキシムエステル化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のアシルホスフィンオキシド化合物;テトラメチルチウラム、及び、ジチオカーバメート等のイオウ化合物;過酸化ベンゾイル等の有機化酸化物;アゾビスイソブチロニトリル等のアゾ化合物;有機スルフォニウム塩化合物;ヨードニウム塩化合物;フォスフォニウム化合物;等が挙げられる。
Examples of heat curing agents include azo compounds such as azobisisobutyronitrile and peroxides such as benzoyl peroxide.
Examples of photocuring agents include aromatic ketone compounds such as benzophenone, Michler's ketone, xanthone, and thioxanthone; quinone compounds such as 2-ethylanthraquinone; acetophenone, trichloroacetophenone, 2-hydroxy-2-methylpropiophenone, 1 - acetophenone compounds such as hydroxycyclohexylphenyl ketone, benzoin ether, 2,2-diethoxyacetophenone and 2,2-dimethoxy-2-phenylacetophenone; diketone compounds such as methylbenzoylformate; 1-phenyl-1,2- Acyl oxime ester compounds such as propanedione-2-(O-benzoyl) oxime; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide; tetramethylthiuram and sulfur compounds such as dithiocarbamate; Organic peroxides such as benzoyl oxide; azo compounds such as azobisisobutyronitrile; organic sulfonium salt compounds; iodonium salt compounds;
 組成物中における硬化剤の含有量は、組成物中の硬化性化合物の全質量に対して、0.001~10質量%が好ましい。なお、組成物は、硬化剤の1種を単独で含有してもよく、2種以上を含有していてもよい。組成物が2種以上の硬化剤を含有する場合には、その合計含有量が上記数値範囲内であることが好ましい。 The content of the curing agent in the composition is preferably 0.001 to 10% by mass with respect to the total mass of curable compounds in the composition. The composition may contain one type of curing agent alone, or may contain two or more types. When the composition contains two or more curing agents, the total content is preferably within the above numerical range.
<溶媒>
 組成物は、溶媒を含有していてもよい。組成物が含有する溶媒としては特に制限されないが、硬化性化合物、及び、硬化剤を溶解、及び/又は、分散させ得るものであって、硬化反応中に蒸発しにくい溶媒を選択すればよい。
 例えば、硬化剤として過酸化ベンゾイル(BPO)を用いる場合、硬化反応の温度は80℃程度となるため、沸点が硬化反応の温度以上となる溶媒が好ましい。このような溶媒を用いると、硬化反応中の溶媒の蒸発がより抑制できるので、気泡の混入がより少ない硬化物が得られやすい。このような溶媒としては例えば、キシレン、酢酸ブチル、DMF、及び、ジメチルスルホキシド等が挙げられる。
<Solvent>
The composition may contain a solvent. The solvent contained in the composition is not particularly limited, but a solvent that can dissolve and/or disperse the curable compound and the curing agent and that is difficult to evaporate during the curing reaction may be selected.
For example, when benzoyl peroxide (BPO) is used as the curing agent, the curing reaction temperature is about 80° C., so a solvent having a boiling point equal to or higher than the curing reaction temperature is preferable. Evaporation of the solvent during the curing reaction can be further suppressed by using such a solvent, so that a cured product with less inclusion of air bubbles can be easily obtained. Such solvents include, for example, xylene, butyl acetate, DMF, dimethylsulfoxide, and the like.
 一方、硬化剤として光硬化剤を用いる場合、硬化反応の温度は熱硬化剤を用いる場合よりも一般に低いため、より沸点の低い溶媒を用いても、気泡の混入がより少ない硬化物が得られる。溶媒としては例えば、ジクロロメタン、クロロホルム、及び、アセトン等が使用できる。 On the other hand, when a photocuring agent is used as a curing agent, the temperature of the curing reaction is generally lower than when using a heat curing agent, so even if a solvent with a lower boiling point is used, a cured product with fewer air bubbles can be obtained. . Examples of solvents that can be used include dichloromethane, chloroform, and acetone.
 組成物中における溶媒の含有量としては特に制限されないが、組成物が溶媒を含有する場合、組成物の全質量を100質量%としたとき、10~90質量%が好ましい。なお、組成物は、溶媒の1種を単独で含有してもよく、2種以上を含有していてもよい。組成物が2種以上の溶媒を含有する場合には、その合計含有量が上記数値範囲内であることが好ましい。 The content of the solvent in the composition is not particularly limited, but when the composition contains a solvent, it is preferably 10 to 90% by mass when the total mass of the composition is 100% by mass. The composition may contain one type of solvent alone or may contain two or more types. When the composition contains two or more solvents, the total content is preferably within the above numerical range.
(硬化工程)
 硬化工程は、上記組成物を適用した成形体にエネルギーを付与して、上記硬化性化合物を硬化させる工程である。
(Curing process)
The curing step is a step of applying energy to the molded article to which the composition is applied to cure the curable compound.
 硬化工程において、成形体に与えるエネルギーの種類は、上述した組成物に含まれ得る硬化剤の種類によって適宜選択されればよく、加熱、及び/又は、光照射が好ましい。 In the curing step, the type of energy to be applied to the molded body may be appropriately selected depending on the type of curing agent that may be contained in the composition described above, and heating and/or light irradiation are preferred.
 エネルギーを与える方法としては特に制限されないが、例えば、支持体上に形成された成形体を加熱し、及び/又は、当該成形体に光照射し、硬化性化合物を硬化させる方法が挙げられる。
 なお、加熱温度・加熱時間、及び、光照射の強度・照射時間等は、成形体の形状、及び、硬化剤の種類等によって適宜選択されればよい。
 より具体的には、加熱の温度としては、例えば、40~200℃であってもよい。また、加熱の時間としては、例えば、1分~24時間であってもよい。
The method of applying energy is not particularly limited, but includes, for example, a method of heating a molded article formed on a support and/or irradiating the molded article with light to cure the curable compound.
The heating temperature/heating time, the intensity of light irradiation/irradiation time, etc. may be appropriately selected according to the shape of the molded article, the type of curing agent, and the like.
More specifically, the heating temperature may be, for example, 40 to 200.degree. Also, the heating time may be, for example, 1 minute to 24 hours.
 また、成形体に対するエネルギーの付与は、加圧条件下で行われてもよい。これにより、硬化性化合物が硬化する過程で、金属ナノワイヤが、硬化物の架橋構造内部により効率的に組み込まれ得る。その結果、得られる複合体において、架橋ポリマーが有する架橋構造内部に金属ナノワイヤが効果的に埋め込まれた構造が得られやすい。なお、加える圧力は、成形体の形状、及び、厚み等によって適宜調整すればよい。 In addition, the application of energy to the molded body may be performed under pressurized conditions. Thereby, the metal nanowires can be more efficiently incorporated into the crosslinked structure of the cured product during the curing process of the curable compound. As a result, the obtained composite tends to have a structure in which the metal nanowires are effectively embedded inside the crosslinked structure of the crosslinked polymer. The pressure to be applied may be appropriately adjusted according to the shape and thickness of the molded body.
 更に、本実施形態の製造方法は、上記硬化工程の後、得られた生成物(金属ナノワイヤと、硬化性化合物の硬化物とを含む複合体)を乾燥させる工程(以下、「乾燥工程」ともいう。)を含んでもよい。 Furthermore, the production method of the present embodiment includes a step of drying the obtained product (composite containing metal nanowires and a cured product of a curable compound) after the curing step (hereinafter, also referred to as a “drying step”. ) may be included.
 乾燥工程は、上記生成物を乾燥させて、生成物に含有される溶媒の少なくとも一部を除去する工程である。乾燥の方法は特に制限されず、例えば、20~50℃で、1分~24時間静置する方法、及び、減圧下で保持する方法等が挙げられる。なお、乾燥条件は、生成物の形状、及び、厚み等によって適宜選択されればよい。 The drying step is a step of drying the product to remove at least part of the solvent contained in the product. The drying method is not particularly limited, and examples thereof include a method of standing at 20 to 50° C. for 1 minute to 24 hours, and a method of holding under reduced pressure. The drying conditions may be appropriately selected according to the shape and thickness of the product.
 なお、本硬化物の大きさ、及び、形状は特に制限されない。用途に応じて適宜定めればよい。本硬化物は、形状記憶能を有し、その駆動温度がより低く、かつ、優れた変形率を有するため、結紮具、及び、縫合糸等の医療器具等に適用できる。また、本硬化物は、形状記憶能を活かし、膜として用いることもできる。例えば、基材と、基材上に配置された接着剤層とを有する接着テープの基材をこの膜とすれば、医療用のテープとして好ましく使用可能である。 The size and shape of the hardened product are not particularly limited. It may be determined as appropriate according to the application. The cured product has a shape memory ability, a lower driving temperature, and an excellent deformation rate, so that it can be applied to medical instruments such as ligatures and sutures. Moreover, this hardened|cured material can also be used as a film|membrane taking advantage of shape memory ability. For example, if the base material of an adhesive tape having a base material and an adhesive layer disposed on the base material is used as this film, it can be preferably used as a medical tape.
[形状記憶部材]
 本実施形態の複合体100の使用方法としては特に制限されないが、上述したとおり、本実施形態の複合体100は、架橋ポリマー110を含むことにより、形状記憶能を有する。本実施形態の複合体100は、応力下で軟化点(結晶の融解温度付近の温度)まで加熱し、冷却することで、テンポラリー形状を固定できる。その後、テンポラリー形状の複合体100を軟化点まで再加熱すると、パーマネント形状に戻る。また、本実施形態の複合体100は、金属ナノワイヤ120を含むこと(より具体的には、金属ナノワイヤ120が、架橋ポリマー110に組み込まれていること)により、電流の印加による局所的な加熱により駆動可能である。このように、本実施形態の複合体100は、それを含む部材を作製し、電気駆動型の形状記憶部材として使用するのに好適である。
[Shape memory member]
The method of using the composite 100 of the present embodiment is not particularly limited, but as described above, the composite 100 of the present embodiment has shape memory ability by including the crosslinked polymer 110 . The composite 100 of the present embodiment can be fixed in a temporary shape by heating to a softening point (a temperature near the melting temperature of crystals) under stress and then cooling. The temporary shaped composite 100 is then reheated to its softening point and returns to its permanent shape. In addition, the composite 100 of the present embodiment includes the metal nanowires 120 (more specifically, the metal nanowires 120 are incorporated in the crosslinked polymer 110), so that local heating due to the application of current It is drivable. Thus, the composite 100 of the present embodiment is suitable for producing a member containing it and using it as an electrically driven shape memory member.
 具体的には、ウェアラブルデバイス等の生体表面に適用される装置及び器具等を構成する部材として、また、生体内に適用される装置及び器具等を構成する部材として使用することができる。あるいは、所望の用途に応じて、本実施形態の複合体を単独で、若しくは、他の部材と組み合わせて使用することも可能である。 Specifically, it can be used as a member that constitutes devices, instruments, etc. applied to the surface of a living body such as a wearable device, and as a member that constitutes devices, instruments, etc. that are applied in vivo. Alternatively, depending on the desired application, the composite of this embodiment can be used alone or in combination with other members.
 以下、実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
The present invention will be described in more detail below based on examples.
The materials, amounts used, proportions, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the examples shown below.
1.硬化性化合物の合成及び分析
1-1.
[硬化性化合物1(2b20PCLマクロモノマー)の合成]
 下記スキームに基づき、硬化性化合物1(2b20PCLマクロモノマー)を合成した。
 まず初めに、2価の開環重合開始剤である1,4-butanediol(2.21mL、0.025mol)とε-caprolactone(CL)(105.6mL、1mol)、触媒であるTin(II)-2 ethylhexanoate 0.2mLを丸底フラスコに加え、窒素雰囲気下で120℃、24時間反応させた。
1. Synthesis and Analysis of Curable Compound 1-1.
[Synthesis of curable compound 1 (2b20PCL macromonomer)]
A curable compound 1 (2b20PCL macromonomer) was synthesized according to the following scheme.
First, 1,4-butanediol (2.21 mL, 0.025 mol) as a divalent ring-opening polymerization initiator and ε-caprolactone (CL) (105.6 mL, 1 mol), and Tin (II) as a catalyst 0.2 mL of -2 ethylhexanoate was added to a round-bottomed flask and reacted at 120° C. for 24 hours under nitrogen atmosphere.
 その後、反応物をhexaneとdiethyl etherの1:1体積比の混合溶媒に再沈殿させ、減圧乾燥することによって、2分岐20量体PCL(以下、「2b20PCL」ともいう。)を得た。 After that, the reaction product was reprecipitated in a mixed solvent of hexane and diethyl ether at a volume ratio of 1:1, and dried under reduced pressure to obtain a bibranched 20-mer PCL (hereinafter also referred to as "2b20PCL").
 次に、回収した2b20PCL(50g、0.011mol)の末端基に対して、acryloyl chlorideを10倍量(17.7mL、0.22mol)、triethylamineを11倍量(33.2mL、0.24mol)加え、72時間反応させた。その後、methanol中に再沈殿させて精製を行い、減圧乾燥することで、2b20PCLのマクロモノマーである、硬化性化合物1(2b20PCL macromonomer)を回収した。 Next, 10 times the amount of acryloyl chloride (17.7 mL, 0.22 mol) and 11 times the amount of triethylamine (33.2 mL, 0.24 mol) relative to the terminal group of the recovered 2b20PCL (50 g, 0.011 mol) was added and allowed to react for 72 hours. Then, it was reprecipitated in methanol for purification and dried under reduced pressure to recover curable compound 1 (2b20PCL macromonomer), which is a macromonomer of 2b20PCL.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 なお、「2b20PCL」の分子量、及び、オキシアルキレンカルボニル基の繰り返し数はGPC、及び、H-NMRによって求めた。試験条件は以下のとおりである。
 GPCの結果から求めた2b20PCLの数平均分子量は3700、Mw/Mnは1.23だった。
The molecular weight of "2b20PCL" and the number of repeating oxyalkylenecarbonyl groups were determined by GPC and 1 H-NMR. The test conditions are as follows.
The number average molecular weight of 2b20PCL determined from the results of GPC was 3700, and Mw/Mn was 1.23.
・GPC測定条件
 測定装置: (東ソー)HLC―8220GPC
 検出器:示差屈折率(RI)検出器
 使用カラム:「Shodex(商標)」GPC LF―804(80mmI.D.×300mm×2本)
 カラム温度:40℃
 溶離液:DMF、流速0.5mL/分
 試料:DMFに、0.2質量%で溶解させ、0.45μmのメンブレンフィルタでろ過
 分子量標準ポリマー:ポリスチレン(分子量=1970、3930、7920、12140、及び、21030)、0.1質量%
・GPC measurement conditions Measurement device: (Tosoh) HLC-8220GPC
Detector: Differential refractive index (RI) detector Column used: "Shodex (trademark)" GPC LF-804 (80 mm ID × 300 mm × 2)
Column temperature: 40°C
Eluent: DMF, flow rate 0.5 mL/min Sample: 0.2% by mass dissolved in DMF, filtered through a 0.45 μm membrane filter Molecular weight standard polymer: Polystyrene (molecular weight = 1970, 3930, 7920, 12140, and , 21030), 0.1% by mass
・NMR測定条件
 測定装置:400MHz NMR(JEOL社製)
 溶媒:重水素化クロロホルム(CDCl
 試料濃度:~30mg/mL(3mass/vol%)
 基準物質:テトラメチルシラン(TMS)
 測定手法:H測定 共鳴周波数400MHz
 観測スペクトル幅:0ppm~10ppm
 積算回数:128回
 測定温度:室温(20~25℃)
・ NMR measurement conditions Measuring device: 400 MHz NMR (manufactured by JEOL)
Solvent: deuterated chloroform (CDCl 3 )
Sample concentration: ~30mg/mL (3mass/vol%)
Reference substance: Tetramethylsilane (TMS)
Measurement method: 1 H measurement Resonance frequency 400 MHz
Observed spectrum width: 0 ppm to 10 ppm
Accumulation times: 128 times Measurement temperature: Room temperature (20 to 25°C)
1-2.
[硬化性化合物2(4b50P(CL-co-DLLA))の合成]
 下記スキームに基づき、硬化性化合物2(CLとd,l-Lactide(DLLA)からなる共重合体)の合成を行った。
 まず初めに、4価の開環重合開始剤であるpentaerythritol(343mg、0.0025mol)とε-caprolactone(32mL、0.3mol)、DLLA(14.5g、0.2mol)、触媒であるTin(II)2-ethylhexanoate 0.2mLを丸底フラスコに加え、窒素雰囲気下で140℃、24時間反応させ、4分岐50量体P(CL-co-DLLA)を得た。以下では、これを「4b50P(CL-co-DLLA)」ともいう。
1-2.
[Synthesis of curable compound 2 (4b50P (CL-co-DLLA))]
A curable compound 2 (a copolymer composed of CL and d,l-Lactide (DLLA)) was synthesized according to the following scheme.
First, pentaerythritol (343 mg, 0.0025 mol), a tetravalent ring-opening polymerization initiator, ε-caprolactone (32 mL, 0.3 mol), DLLA (14.5 g, 0.2 mol), a catalyst Tin ( II) 0.2 mL of 2-ethylhexanoate was added to a round-bottomed flask and reacted at 140° C. for 24 hours under a nitrogen atmosphere to obtain a 4-branched 50-mer P (CL-co-DLLA). Hereinafter, this is also referred to as "4b50P (CL-co-DLLA)".
 その後、末端基に対して、acryloyl chlorideを10倍量、triethylamineを11倍量加え、72時間反応させた。その後、methanol中に再沈殿させて精製を行い、減圧乾燥することで,4b50P(CL-co-DLLA)のマクロモノマーである、硬化性化合物2(4b50P(CL-co-DLLA)macromonomer)を回収した。なお、下記スキーム中、m:nはモル比で6:4である。 After that, 10 times the amount of acryloyl chloride and 11 times the amount of triethylamine were added to the terminal groups and reacted for 72 hours. Thereafter, it is reprecipitated in methanol for purification and dried under reduced pressure to recover curable compound 2 (4b50P (CL-co-DLLA) macromonomer), which is a macromonomer of 4b50P (CL-co-DLLA). did. In the scheme below, the molar ratio of m:n is 6:4.
 なお、4b50P(CL-co-DLLA)のGPCで測定した数平均分子量は9900、Mw/Mnは1.44だった。  The number average molecular weight of 4b50P (CL-co-DLLA) measured by GPC was 9900, and the Mw/Mn was 1.44.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
1-3.
[硬化物の調製]
 硬化性化合物1と硬化性化合物2とを用いて、組成物を調製し、加熱して硬化させ、硬化物を得た。表1は、組成物の配合である。
 硬化性化合物1及び2の合計で500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(硬化性化合物の合計に対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を得た。
1-3.
[Preparation of cured product]
A composition was prepared using curable compound 1 and curable compound 2, and cured by heating to obtain a cured product. Table 1 is the formulation of the composition.
A total of 500 mg of curable compounds 1 and 2 and 15 mg of BPO as a radical polymerization initiator (curing agent) (3% by mass/volume with respect to the total of curable compounds) were completely dissolved in 695 μL of xylene to form a composition. got
 次に、この組成物をガラス基板に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサーを介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、硬化させた。
 得られた硬化物はアセトンで十分に洗浄後、メタノール中で収縮させた後、減圧乾燥(オーバーナイト)させた。
Next, this composition was dropped onto a glass substrate, sandwiched between another glass substrate via a polytetrafluoroethylene spacer with a thickness of 0.2 mm, and placed in an oven at 80° C. overnight (3 hours or longer). Set aside to cure.
The resulting cured product was thoroughly washed with acetone, shrunk in methanol, and dried under reduced pressure (overnight).
[DSC測定]
 得られた硬化物の結晶の融解ピーク温度、及び、結晶化度を測定するために、DSC測定を行った。DSC測定は、エスアイアイ社製、「X-DSC 7000」;熱流束型)示差走査熱量分析計を用いて行った。試験条件は下記のとおりである。
[DSC measurement]
DSC measurement was performed in order to measure the melting peak temperature of the crystals of the obtained cured product and the degree of crystallinity. The DSC measurement was performed using a differential scanning calorimeter "X-DSC 7000" (heat flux type) manufactured by SII. The test conditions are as follows.
測定容器:アルミニウム製サンプルパン(φ6.8mm)
試料量・サイズ:サンプル量は約10mgとし、上記サンプルパンに入るように切断して使用した。
Measurement container: Aluminum sample pan (φ6.8mm)
Amount and size of sample: The amount of sample was about 10 mg, and it was cut to fit in the sample pan.
開始温度: 0℃
昇温速度: 5℃/min
終了温度: 120℃
Start temperature: 0°C
Heating rate: 5°C/min
End temperature: 120°C
 まず、各試料(硬化物)を室温から120℃まで加熱し、120℃に達したら、今度は-5℃まで冷却した。次に、試料の温度が-5℃に達した後、今度は5℃/minの速度で0℃~120℃まで昇温させ、このDSC曲線を取得した。 First, each sample (cured product) was heated from room temperature to 120°C, and when it reached 120°C, it was cooled to -5°C. Next, after the temperature of the sample reached −5° C., the temperature was raised from 0° C. to 120° C. at a rate of 5° C./min, and this DSC curve was acquired.
 表1には、得られたDSC曲線から読み取った結晶の融解ピーク温度(Tm)と、結晶化度が示されている。結晶化度は、吸熱ピーク面積から、エンタルピー(ΔH)を算出し、(結晶化度)=(ΔH/142)×100として計算した。
 なお、それぞれの値は小数点以下2桁まで求めて、四捨五入した。
Table 1 shows the melting peak temperature (Tm) of the crystal read from the obtained DSC curve and the degree of crystallinity. The degree of crystallinity was calculated by calculating the enthalpy (ΔH) from the endothermic peak area, and calculating the degree of crystallinity=(ΔH/142)×100.
Each value was calculated to two decimal places and rounded off.
[弾性率の測定]
 弾性率は、引張試験で応力-ひずみ曲線を求め、線形部分から算出した。試験片は、長さ17.5±2.5mm、幅5.00±0.90mm、厚み0.14±0.03mmのシート状とし、試験は室温で、引張速度は5mm/分とした。なお、それぞれの値は小数点以下2桁まで求めて、四捨五入した。
[Measurement of elastic modulus]
The elastic modulus was calculated from the linear portion of the stress-strain curve obtained by the tensile test. The test piece was a sheet having a length of 17.5±2.5 mm, a width of 5.00±0.90 mm and a thickness of 0.14±0.03 mm. Each value was calculated to two decimal places and rounded off.
 なお、弾性率の値が低いほど、同じ力を与えた際の変形量が大きくなりやすい。また、破断ひずみの値が大きいほど、より大きな変形を受けても硬化物が破断しにくい。上記のことから、より小さい弾性率と、より大きい破断ひずみを併せ持つ硬化物は、形状記憶材料としてより大きい変形率を有する。
 なお、表1中「比」とあるのは、組成物中における硬化性化合物1と硬化性化合物2の含有量に対する硬化性化合物2の含有量のモル基準の比([硬化性化合物2]/[硬化性化合物1+硬化性化合物2])を表している。
It should be noted that the lower the elastic modulus value, the larger the amount of deformation when the same force is applied. Moreover, the larger the value of the breaking strain, the less likely the cured product will break even if it receives a large deformation. From the above, a cured product having both a smaller elastic modulus and a larger breaking strain has a larger deformation rate as a shape memory material.
The "ratio" in Table 1 means the molar ratio of the content of curable compound 2 to the content of curable compound 1 and curable compound 2 in the composition ([curable compound 2]/ [Curable compound 1+Curable compound 2]).
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1の結果から、硬化性化合物1と硬化性化合物2とを有する組成物を硬化させて得られた例1~例6の硬化物は、いずれも結晶性を有し、形状記憶材料として利用可能な変形率を有していた。なかでも、例1~例5の硬化物は、小さい弾性率と、大きい破断ひずみを有しており、形状記憶材料として大きい変形率を有していた。 From the results in Table 1, the cured products of Examples 1 to 6 obtained by curing the compositions containing curable compound 1 and curable compound 2 all have crystallinity and can be used as shape memory materials. It had a possible deformation rate. Among them, the cured products of Examples 1 to 5 had a small elastic modulus and a large breaking strain, and a large deformation rate as a shape memory material.
 より具体的には、例3及び例4の組成物の硬化物は、例1及び例2の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより高く、例5の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより低く、その温度も37.0~45.0℃の範囲内にあり、生体内で駆動させる用途(結紮具等)により適していた。 More specifically, the cured products of the compositions of Examples 3 and 4 have a higher crystal melting peak temperature (Tm) than the cured products of the compositions of Examples 1 and 2. The melting peak temperature (Tm) of the crystals of the cured product is lower than the cured product of the composition of 5, and the temperature is also in the range of 37.0 to 45.0 ° C., and it is used for driving in vivo ( ligatures, etc.).
 また、例1及び例2の組成物の硬化物は、例3の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより低く、また、その温度も33.0~37.0℃の範囲内にあり、生体表面で駆動させる用途(ウェアラブルデバイス、及び、縫合糸等)により適していた。 In addition, the cured products of the compositions of Examples 1 and 2 have a lower crystal melting peak temperature (Tm) than the cured product of the composition of Example 3, and the temperature is also 33.0 It was in the range of ~37.0°C, and was more suitable for applications (wearable devices, sutures, etc.) driven on the surface of the body.
 また、結晶化度が、10.0~15.5%の範囲内にある、例1及び例2の組成物の硬化物は、例3の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより低く、また、その温度も33.0~37.0℃の範囲内にあり、生体表面で駆動させる用途(ウェアラブルデバイス、及び、縫合糸等)により適していた。 In addition, the cured products of the compositions of Examples 1 and 2, which have a crystallinity in the range of 10.0 to 15.5%, have a crystallinity of the cured product compared to the cured product of the composition of Example 3. The melting peak temperature (Tm) is lower, and the temperature is in the range of 33.0 to 37.0 ° C., and it is more suitable for applications driven on the biological surface (wearable devices, sutures, etc.) .
 また、結晶化度が、15.5%超40.0%以下の範囲内にある、例3及び例4の組成物の硬化物は、例1及び例2の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより高く、例5の組成物の硬化物と比較して硬化物の結晶の融解ピーク温度(Tm)がより低く、その温度も37.0~45.0℃の範囲内にあり、生体内で駆動させる用途(結紮具等)により適していた。 In addition, the cured products of the compositions of Examples 3 and 4, which have a crystallinity in the range of more than 15.5% and 40.0% or less, are compared with the cured products of the compositions of Examples 1 and 2. The crystal melting peak temperature (Tm) of the cured product is higher, and the crystal melting peak temperature (Tm) of the cured product is lower than that of the cured product of the composition of Example 5, and the temperature is also 37.0 to 37.0. It was within the range of 45.0° C., and was more suitable for applications driven in vivo (ligatures, etc.).
2.金属ナノワイヤの合成及び分析
2-1.
[銀ナノワイヤの合成1]
 下記の手順により、銀ナノワイヤを合成した。
 Poly vinylpyrrolidone(PVP)(494mg、34mM)、Ethylene glycol(160mL、2.9mM)、CuCl(0.43mg、4mM)を丸底ナスフラスコに加え、AgNO(480mg、94mM)を30分かけて滴下した。
 その後、1時間撹拌して、銀ナノワイヤを合成した。
2. Synthesis and analysis of metal nanowires 2-1.
[Synthesis of silver nanowires 1]
Silver nanowires were synthesized by the following procedure.
Polyvinylpyrrolidone (PVP) (494 mg, 34 mM), Ethylene glycol (160 mL, 2.9 mM), CuCl2 (0.43 mg, 4 mM) were added to a round bottom eggplant flask and AgNO3 (480 mg, 94 mM) was added over 30 minutes. Dripped.
After that, the mixture was stirred for 1 hour to synthesize silver nanowires.
 得られた銀ナノワイヤ溶液を遠心分離(3500rpm、20min)し、上澄み除去後、ethanol中に再分散させた。この操作を3回繰り返すことで銀ナノワイヤを精製し、生成物である銀ナノワイヤを回収した。 The obtained silver nanowire solution was centrifuged (3500 rpm, 20 min), and after removing the supernatant, it was re-dispersed in ethanol. This operation was repeated three times to refine the silver nanowires and collect the silver nanowires as a product.
2-2.
[銀ナノワイヤの合成2]
 下記の手順により、銀ナノワイヤを合成した。
 Poly vinylpyrrolidone(PVP)(900mg)、Ethylene glycol(150mL)、FeCl(0.43mg)、AgNO(600mg)を丸底ナスフラスコに加え、溶解するまで撹拌した。
 溶解後、オイルバスで110℃に加熱し、24時間撹拌しないで反応させ、銀ナノワイヤを合成した。
2-2.
[Synthesis of silver nanowires 2]
Silver nanowires were synthesized by the following procedure.
Polyvinylpyrrolidone (PVP) (900 mg), Ethylene glycol (150 mL), FeCl 3 (0.43 mg), AgNO 3 (600 mg) were added to a round bottom eggplant flask and stirred until dissolved.
After dissolution, the mixture was heated to 110° C. in an oil bath and reacted without stirring for 24 hours to synthesize silver nanowires.
 得られた銀ナノワイヤ溶液にAcetoneを1:1の割合で加え、遠心分離(3500rpm、15min)し、上澄み除去後、ethanol中に再分散させた。この操作を3回繰り返すことで銀ナノワイヤを精製し、生成物である銀ナノワイヤを回収した。 Acetone was added to the resulting silver nanowire solution at a ratio of 1:1, centrifuged (3500 rpm, 15 min), and after removing the supernatant, re-dispersed in ethanol. This operation was repeated three times to refine the silver nanowires and collect the silver nanowires as a product.
2-3.
[銀ナノワイヤの分析]
 上記2-1及び2-2で合成した銀ナノワイヤの熱重量測定(TG)を行った。測定条件は以下のとおりである。
2-3.
[Analysis of silver nanowires]
Thermogravimetry (TG) was performed on the silver nanowires synthesized in 2-1 and 2-2 above. The measurement conditions are as follows.
・TG測定条件
 測定装置:TG/DTA6200(セイコーインスツルメンツ社製)
 昇温速度:10℃/min
 測定温度範囲:25~600℃
 雰囲気ガス:窒素
 試料重量(質量):2.3mg
· TG measurement conditions Measurement device: TG / DTA6200 (manufactured by Seiko Instruments Inc.)
Heating rate: 10°C/min
Measurement temperature range: 25 to 600°C
Atmospheric gas: Nitrogen Sample weight (mass): 2.3 mg
 その結果、いずれの試料においても、加熱に伴って12%の重量変化(質量減少)が見られた。このことから、本実施例で合成した銀ナノワイヤは、質量比で12%のPVPで被覆されていることが確認された。 As a result, a weight change (mass reduction) of 12% was observed with heating in all samples. From this, it was confirmed that the silver nanowires synthesized in this example were coated with PVP at a mass ratio of 12%.
 また、走査型電子顕微鏡(日本電子社製、JCM-500 Neoscope)を用いて銀ナノワイヤのSEM観察を行った。
 図2(a)及び(b)は、それぞれ、上記2-1及び2-2で合成した銀ナノワイヤのSEM像を示す図である。なお、図2(a)のスケールバーは5μmであり、図2(b)のスケールバーは20μmである。
 図2(a)及び(b)に示すように、本実施例で合成した銀ナノワイヤは、高いアスペクト比を有していた。具体的には、上記2-2で合成した銀ナノワイヤは、短軸方向の長さが平均で約150nmであり、長軸方向の長さが平均で約30μmであり、アスペクト比は平均で約200と計算された。
In addition, SEM observation of the silver nanowires was performed using a scanning electron microscope (manufactured by JEOL Ltd., JCM-500 Neoscope).
FIGS. 2(a) and (b) are SEM images of the silver nanowires synthesized in 2-1 and 2-2 above, respectively. The scale bar in FIG. 2(a) is 5 μm, and the scale bar in FIG. 2(b) is 20 μm.
As shown in FIGS. 2(a) and 2(b), the silver nanowires synthesized in this example had a high aspect ratio. Specifically, the silver nanowires synthesized in 2-2 above have an average minor axis length of about 150 nm, an average major axis length of about 30 μm, and an average aspect ratio of about 200 was calculated.
3.複合体の作製及び分析(その1)
3-1.
[複合体の作製1]
 下記の手順により、複合体を作製した。
 上記2-1で合成した銀ナノワイヤ 20mgをEthanol 4mLに分散させ、銀ナノワイヤ懸濁溶液を調製した。この銀ナノワイヤ懸濁溶液を、ガラス基板の上にキャストし、常温でEthanolを乾燥させ、銀ナノワイヤfilmを作製した。
3. Preparation and analysis of complexes (Part 1)
3-1.
[Preparation of complex 1]
A composite was produced by the following procedure.
20 mg of the silver nanowires synthesized in 2-1 above were dispersed in 4 mL of ethanol to prepare a silver nanowire suspension solution. This silver nanowire suspension solution was cast on a glass substrate, and Ethanol was dried at room temperature to produce a silver nanowire film.
 次に、架橋ポリマーを構成する硬化性化合物として上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)を用いて、2b20PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板上に作製した銀ナノワイヤfilmの上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.012cmのシート状の複合体を作製した。 Next, using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above as the curable compound constituting the crosslinked polymer, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) ( 3% by mass/volume with respect to the above macromonomer) was completely dissolved in 695 μL of xylene to prepare a composition. This composition was dropped onto a silver nanowire film prepared on a glass substrate, and sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm × 4 cm) interposed therebetween. C. overnight (3 hours or more) to cure the 2b20PCL macromonomer to produce a sheet-like composite with a length of 3 cm, a width of 3 cm and a thickness of 0.012 cm.
3-2.
[複合体の作製2]
 下記の手順により、複合体を作製した。
 開環重合開始剤として4価の開環重合開始剤であるpentaerythritolを用いること以外は上記1-1と同様の手順で合成した硬化性化合物(4分岐50量体PCL(以下、「4b50PCL」ともいう。))のマクロモノマーを用いて、4b50PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板の上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、4b50PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.016cmのシート状の硬化物を作製した。
3-2.
[Preparation of complex 2]
A composite was produced by the following procedure.
A curable compound synthesized in the same manner as in 1-1 above except that pentaerythritol, which is a tetravalent ring-opening polymerization initiator, is used as the ring-opening polymerization initiator (4-branched 50-mer PCL (hereinafter also referred to as “4b50PCL” )), 500 mg of 4b50PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) (3% by mass/volume with respect to the macromonomer) are completely dissolved in 695 μL of xylene. to prepare the composition. This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C. The 4b50PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-shaped cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.016 cm.
 なお、4b50PCLを用いて、上記1-3と同様に組成物を調製し、加熱して硬化させて得られた硬化物の、融解ピーク温度(Tm)は、55.3℃であり、結晶化度は、31.3%であった。 In addition, using 4b50PCL, the composition was prepared in the same manner as in 1-3 above, and the cured product obtained by heating and curing had a melting peak temperature (Tm) of 55.3 ° C., and crystallized. degree was 31.3%.
 ここで、作製した硬化物を融点以上に加熱し、引張試験機を用いて元の形状から幅方向に300%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。 Here, the prepared cured product was heated to a melting point or higher, and cooled in a state of being stretched 300% in the width direction from the original shape using a tensile tester, thereby fixing the stretched shape.
 次に、上記2-1で合成した銀ナノワイヤ 11.14mgをEthanol 1mLに分散させ、銀ナノワイヤ懸濁溶液を調製した。この銀ナノワイヤ懸濁溶液を、上記引き伸ばした形状を固定化した硬化物の一方の表面に、0.1mLずつ、均一にキャストして乾燥させるサイクルを10サイクル繰り返し、複合体を作製した。 Next, 11.14 mg of the silver nanowires synthesized in 2-1 above was dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution. A cycle of uniformly casting 0.1 mL of this silver nanowire suspension solution onto one surface of the cured product in which the stretched shape was fixed and drying was repeated 10 cycles to prepare a composite.
3-3.
[複合体の作製3]
 下記の手順により、複合体を作製した。
 上記2-1で合成した銀ナノワイヤ 12.8mgを、DMF 350μLに分散させ、銀ナノワイヤ懸濁溶液を調製した。
 この銀ナノワイヤ懸濁溶液に、上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)(250mg)と、ラジカル重合開始剤(硬化剤)としてBPO 7.5mg(上記マクロモノマーに対して3質量/体積%)とを完全に溶解させた。
 得られた銀ナノワイヤと2b20PCLマクロモノマーとを含む溶液を、ガラス基板の上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.014cmのシート状の複合体を作製した。
3-3.
[Preparation of complex 3]
A composite was produced by the following procedure.
12.8 mg of the silver nanowires synthesized in 2-1 above were dispersed in 350 μL of DMF to prepare a silver nanowire suspension solution.
To this silver nanowire suspension solution, curable compound 1 (2b20PCL macromonomer) (250 mg) synthesized in 1-1 above, and 7.5 mg of BPO as a radical polymerization initiator (curing agent) (3 mass/volume %) was completely dissolved.
The solution containing the obtained silver nanowires and the 2b20PCL macromonomer was dropped onto a glass substrate, and placed on another glass substrate via a 0.2 mm-thick polytetrafluoroethylene spacer (4 cm × 4 cm). It was sandwiched and left overnight (3 hours or more) in an oven at 80° C. to cure the 2b20PCL macromonomer to produce a sheet-like composite with a length of 3 cm, a width of 3 cm and a thickness of 0.014 cm.
 また、DMF中に分散させる銀ナノワイヤの量を62mg、及び、84.7mgとしたこと以外は上記と同様の手順により、複合体を作製した。 In addition, composites were produced by the same procedure as above, except that the amount of silver nanowires dispersed in DMF was 62 mg and 84.7 mg.
3-4.
[複合体の作製4]
 下記の手順により、複合体を作製した。
 上記2-2で合成した銀ナノワイヤ 15mgをEthanol 1mLに分散させ、銀ナノワイヤ懸濁溶液を調製した。この銀ナノワイヤ懸濁溶液を、ガラス基板の上にキャストし、常温でEthanolを乾燥させ、銀ナノワイヤfilmを作製した。ここで、ガラス基板の上には予め、PDMS(ポリジメチルシロキサン)製の矩形の型枠(内寸サイズ:縦3cm、幅3cm、深さ0.37cm)を配置し、当該型枠の内側に銀ナノワイヤ懸濁溶液をキャストした。
3-4.
[Preparation of complex 4]
A composite was produced by the following procedure.
15 mg of the silver nanowires synthesized in 2-2 above were dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution. This silver nanowire suspension solution was cast on a glass substrate, and Ethanol was dried at room temperature to produce a silver nanowire film. Here, a rectangular mold made of PDMS (polydimethylsiloxane) (inner dimensions: length 3 cm, width 3 cm, depth 0.37 cm) was placed in advance on the glass substrate, and A silver nanowire suspension solution was cast.
 次に、架橋ポリマーを構成する硬化性化合物として上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)を用いて、2b20PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板上に作製した銀ナノワイヤfilmの上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.012cmのシート状の複合体を作製した。 Next, using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above as the curable compound constituting the crosslinked polymer, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) ( 3% by mass/volume with respect to the above macromonomer) was completely dissolved in 695 μL of xylene to prepare a composition. This composition was dropped onto a silver nanowire film prepared on a glass substrate, and sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm × 4 cm) interposed therebetween. C. overnight (3 hours or more) to cure the 2b20PCL macromonomer to produce a sheet-like composite with a length of 3 cm, a width of 3 cm and a thickness of 0.012 cm.
 また、Ethanol中に分散させる銀ナノワイヤの量を10mg、及び、5mgとしたこと以外は上記と同様の手順により、複合体を作製した。 In addition, composites were produced by the same procedure as above, except that the amount of silver nanowires dispersed in Ethanol was 10 mg and 5 mg.
3-5.
[複合体の作製5]
 下記の手順により、複合体を作製した。
 上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)を用いて、2b20PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板の上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.015cmのシート状の硬化物を作製した。
3-5.
[Preparation of complex 5]
A composite was produced by the following procedure.
Using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) (3 mass / volume% with respect to the macromonomer) was completely dissolved in 695 μL of xylene to prepare a composition. This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C. The 2b20PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-like cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.015 cm.
 ここで、作製した硬化物から、縦2cm、幅1cmの短冊状の試験片を切り取った。 Here, a strip-shaped test piece with a length of 2 cm and a width of 1 cm was cut from the prepared cured product.
 次に、上記2-2で合成した銀ナノワイヤ 10mgをEthanol 1mLに分散させ、銀ナノワイヤ懸濁溶液を調製した。この銀ナノワイヤ懸濁溶液を、上記硬化物から切り取った試験片の一方の表面に、0.05mL(50μL)ずつ、均一にキャストして乾燥させるサイクルを10サイクル繰り返し、複合体を作製した。 Next, 10 mg of the silver nanowires synthesized in 2-2 above were dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution. 0.05 mL (50 μL) of this silver nanowire suspension solution was uniformly cast on one surface of a test piece cut from the cured product, and the drying cycle was repeated 10 times to prepare a composite.
3-6.
[複合体の作製6]
 下記の手順により、複合体を作製した。
 上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)を用いて、2b20PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板の上に滴下し、厚さ0.2mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.015cmのシート状の硬化物を作製した。
3-6.
[Preparation of complex 6]
A composite was produced by the following procedure.
Using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) (3 mass / volume% with respect to the macromonomer) was completely dissolved in 695 μL of xylene to prepare a composition. This composition was dropped onto a glass substrate, sandwiched between another glass substrate with a 0.2 mm thick polytetrafluoroethylene spacer (4 cm x 4 cm) interposed therebetween, and placed overnight in an oven at 80°C. The 2b20PCL macromonomer was allowed to stand (for 3 hours or more) to cure, thereby producing a sheet-like cured product having a length of 3 cm, a width of 3 cm, and a thickness of 0.015 cm.
 ここで、作製した硬化物から、縦2cm、幅1cmの短冊状の試験片を切り取り、融点以上に加熱し、引張試験機を用いて元の形状から縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。 Here, a strip-shaped test piece with a length of 2 cm and a width of 1 cm is cut from the prepared cured product, heated to the melting point or higher, and cooled while being stretched 100% in the longitudinal direction from the original shape using a tensile tester. This fixed the stretched shape.
 次に、上記2-2で合成した銀ナノワイヤ 10mgをEthanol 1mLに分散させ、銀ナノワイヤ懸濁溶液を調製した。この銀ナノワイヤ懸濁溶液を、上記引き伸ばした形状を固定化した試験片の一方の表面に、0.05mL(50μL)ずつ、均一にキャストして乾燥させるサイクルを10サイクル繰り返し、複合体を作製した。 Next, 10 mg of the silver nanowires synthesized in 2-2 above were dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution. 0.05 mL (50 μL) of this silver nanowire suspension solution was uniformly cast on one surface of the test piece having the stretched shape fixed, and the drying cycle was repeated 10 times to prepare a composite. .
〔複合体の作製手順について〕
 ここで、上記3-1~3-6における、複合体の作製手順は、概略以下の三通りに分類することができる。
・作製手順A:支持体上に作製した金属ナノワイヤの成形体に、硬化性化合物を含む組成物を適用した後、エネルギーを付与して硬化性化合物を硬化させる。
・作製手順B:硬化性化合物を含む組成物を支持体上に適用し、エネルギーを付与して硬化性化合物を硬化させて作製した硬化物に、金属ナノワイヤの懸濁溶液を適用する。
・作製手順C:金属ナノワイヤと硬化物化合物を含む混合溶液を支持体上に適用した後、エネルギーを付与して硬化性化合物を硬化させる。
[Regarding the procedure for preparing the composite]
Here, the procedures for preparing the composite in 3-1 to 3-6 above can be roughly classified into the following three types.
- Production procedure A: After applying a composition containing a curable compound to a molded body of metal nanowires produced on a support, energy is applied to cure the curable compound.
- Preparation procedure B: A suspension solution of metal nanowires is applied to a cured product prepared by applying a composition containing a curable compound onto a support and curing the curable compound by applying energy.
- Preparation procedure C: After applying a mixed solution containing metal nanowires and a cured product compound onto a support, energy is applied to cure the curable compound.
 なお、後述する表2~表5では、便宜的に、上記作製手順の記号A~Cを用いて、各例の複合体の作製手順を示している。また、以下でも同様に、上記作製手順の記号A~Cを用いて、各例の複合体の作製手順に言及することがある点に留意されたい。 In addition, in Tables 2 to 5, which will be described later, for the sake of convenience, the symbols A to C of the above production procedures are used to indicate the production procedures of the composites of each example. It should also be noted that hereinafter, the symbols A to C of the above-described fabrication procedures may be used to refer to the fabrication procedures of the composites of each example.
3-7.
[複合体の分析]
〔TG測定1〕
 上記3-1及び3-3で作製した複合体の熱重量測定(TG)を行い、各複合体中の銀ナノワイヤの含有率を算出した。結果を表2に示す。
 なお、測定条件は以下のとおりである。
3-7.
[Analysis of Complex]
[TG measurement 1]
The composites prepared in 3-1 and 3-3 above were subjected to thermogravimetry (TG) to calculate the content of silver nanowires in each composite. Table 2 shows the results.
In addition, the measurement conditions are as follows.
・TG測定条件
 測定装置:TG/DTA6200(セイコーインスツルメンツ社製)
 昇温速度:10℃/min
 測定温度範囲:25~600℃
 雰囲気ガス:窒素
 試料重量(質量):5.3mg(n=3)
· TG measurement conditions Measurement device: TG / DTA6200 (manufactured by Seiko Instruments Inc.)
Heating rate: 10°C/min
Measurement temperature range: 25 to 600°C
Atmospheric gas: Nitrogen Sample weight (mass): 5.3 mg (n = 3)
〔電流印加による駆動試験1〕
 また、上記3-1~3-3で作製した複合体から、縦3cm、幅0.5cmの短冊状の試験片を切り取り、融点以上に加熱し、引張試験機で縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。その状態で、各試験片の縦方向の両端にワニ口クリップを挟み、電圧を印加して、元の形状への回復の有無を確認した。結果を表2に示す。
[Drive test 1 by current application]
A strip-shaped test piece with a length of 3 cm and a width of 0.5 cm was cut from the composite prepared in 3-1 to 3-3 above, heated to the melting point or higher, and stretched 100% in the longitudinal direction with a tensile tester. By cooling in this state, the stretched shape was fixed. In this state, alligator clips were sandwiched between both ends of each test piece in the vertical direction, and a voltage was applied to confirm the presence or absence of recovery to the original shape. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2に示した結果から、作製手順Cの場合には、電流の印加により駆動可能な複合体を得ることは困難であることが示唆された。より具体的には、作製手順Cの場合、作製手順Aよりも、銀ナノワイヤの含有率が高い複合体が得られているが、駆動試験において元の形状への回復は見られなかった。
 一方、作製手順A及びBで得られた複合体では、駆動試験において元の形状への回復が見られた。特に、作製手順Aで得られた複合体(3-1の複合体)は、0.88Vの電圧印加(印加電流0.12A)により、少なくとも3回の変形と回復の繰り返しが可能であった。
The results shown in Table 2 suggest that in the case of preparation procedure C, it is difficult to obtain a complex that can be driven by application of an electric current. More specifically, in the production procedure C, a composite with a higher silver nanowire content than in the production procedure A was obtained, but no recovery to the original shape was observed in the driving test.
On the other hand, in the composites obtained by the fabrication procedures A and B, recovery to the original shape was observed in the driving test. In particular, the composite obtained in the preparation procedure A (composite of 3-1) was able to repeat deformation and recovery at least three times by applying a voltage of 0.88 V (applied current 0.12 A). .
 このことは、本発明の複合体の作製においては、架橋ポリマーが有する架橋構造の形成と、金属ナノワイヤのネットワーク構造の形成とは、同時進行的ではなく、時間差を有していることが好ましいことを示唆している。また、なかでも、作製手順Aのように、ネットワーク構造が形成された金属ナノワイヤの成形体に、架橋ポリマーを構成する硬化性化合物を含む組成物を適用した後、エネルギーを付与して硬化性化合物を硬化させることで、金属ナノワイヤが、電流の印加による局所的な加熱により複合体を駆動可能な程度に分散した状態で、架橋ポリマーに組み込まれやすいと考えられる。言い換えると、本発明の複合体がシート状の形状を有する態様では、少なくとも架橋ポリマーの一方の面に対して金属ナノワイヤが組み込まれていれば、電流の印加による局所的な加熱により複合体を駆動させることができ、架橋ポリマーの全体に渡って金属ナノワイヤが組み込まれていることは必須の要件ではないと考えられる。 This means that in the production of the composite of the present invention, the formation of the crosslinked structure of the crosslinked polymer and the formation of the network structure of the metal nanowires are not simultaneous, and preferably have a time lag. It suggests. In addition, among others, as in the preparation procedure A, after applying a composition containing a curable compound that constitutes a crosslinked polymer to the molded body of metal nanowires in which a network structure is formed, energy is applied to the curable compound. By curing, the metal nanowires are likely to be incorporated into the crosslinked polymer in a dispersed state to the extent that the composite can be driven by local heating due to the application of an electric current. In other words, in the aspect in which the composite of the present invention has a sheet-like shape, if metal nanowires are incorporated into at least one surface of the crosslinked polymer, the composite can be driven by local heating due to the application of an electric current. It is believed that the incorporation of metal nanowires throughout the crosslinked polymer is not an essential requirement.
 加えて、作製手順Aを適用した上記3-1では、硬化性化合物を硬化させる際、上記組成物が適用された銀ナノワイヤfilmはガラス基板で挟まれた状態であるため、一定の圧力が加わることで、架橋ポリマーの架橋構造への金属ナノワイヤの組み込みがより効率的に進行していると考えられる。 In addition, in the above 3-1 to which the production procedure A is applied, when the curable compound is cured, the silver nanowire film to which the composition is applied is in a state of being sandwiched between the glass substrates, so a certain pressure is applied. Therefore, it is considered that the incorporation of the metal nanowires into the crosslinked structure of the crosslinked polymer proceeds more efficiently.
 図3(a)及び(b)は、それぞれ、上記3-1で作製した複合体の表面(銀ナノワイヤが組み込まれた面)及び断面のSEM像を示す図である。なお、図3(a)のスケールバーは50μmであり、図3(b)のスケールバーは200μmである。
 図3(a)及び(b)に示すように、3-1の複合体において、金属ナノワイヤが、電流の印加による局所的な加熱により複合体を駆動可能な程度に分散した状態で、架橋ポリマーに組み込まれていることが確認された。
FIGS. 3(a) and 3(b) are SEM images of the surface (surface where the silver nanowires are incorporated) and the cross section of the composite prepared in 3-1 above, respectively. The scale bar in FIG. 3(a) is 50 μm, and the scale bar in FIG. 3(b) is 200 μm.
As shown in FIGS. 3(a) and 3(b), in the composite of 3-1, the metal nanowires are dispersed to such an extent that the composite can be driven by local heating by applying an electric current, and the crosslinked polymer confirmed to be incorporated in
 ここで、上記3-1で作製した複合体から、縦3cm、幅0.5cmの短冊状の試験片を切り取り、DC電源(REGULATED DC POWER SUPPLY LX010-3.5 B TAKASAGO)を用いて、試験片の縦方向の両端にワニ口クリップを挟み、電力と温度の関係性を調査した。具体的な試験条件として、電流値を0.5Aずつ上昇させ、15秒間その電力を保持した状態で、その時の温度をプロットした。温度範囲としては、25~130℃の範囲で試験を行った。 Here, a strip-shaped test piece with a length of 3 cm and a width of 0.5 cm was cut from the composite prepared in 3-1 above, and a DC power supply (REGULATED DC POWER SUPPLY LX010-3.5 B TAKASAGO) was used to perform the test. Alligator clips were placed at both longitudinal ends of the strip and the relationship between power and temperature was investigated. As a specific test condition, the current value was increased by 0.5 A and the temperature was plotted while the power was maintained for 15 seconds. As for the temperature range, the test was conducted in the range of 25 to 130°C.
 結果を図4に示す。
 図4は、上記3-1で作製した複合体における、電力(W)と温度(℃)の関係性を示すグラフである。
 図4に示すように、3-1の複合体では、電力の増加(電流値の上昇)に伴って温度が上昇し、温度が約130℃を超えると、架橋ポリマーの構造が損なわれることが確認された。この結果から、複合体に供給する電力(印加電流)を調節することによって、複合体の温度を制御することができることが分かった。
The results are shown in FIG.
FIG. 4 is a graph showing the relationship between power (W) and temperature (° C.) in the composite prepared in 3-1 above.
As shown in FIG. 4, in the composite of 3-1, the temperature increased with an increase in electric power (increase in current value), and when the temperature exceeded about 130° C., the structure of the crosslinked polymer was damaged. confirmed. From this result, it was found that the temperature of the composite can be controlled by adjusting the power (applied current) supplied to the composite.
 一方、作製手順Bで得られた複合体(3-2の複合体)は、作製手順Aで得られた複合体(3-1の複合体)よりも高い電圧(8V)の印加により発熱挙動を示し、元の形状への回復が見られた。このことから、作製手順Bのように、架橋構造が形成された架橋ポリマーに対して金属ナノワイヤ(の懸濁溶液)を適用することでも、複合体において、電流の印加による局所的な加熱により複合体を駆動可能な程度に金属ナノワイヤを分散させることは可能であり得ると言える。しかしながら、後述するように、作製手順Bで得られる複合体においては、構造的な安定性に関する課題が存在し得る。 On the other hand, the composite obtained in the preparation procedure B (the composite of 3-2) exhibits an exothermic behavior when a higher voltage (8 V) is applied than the composite obtained in the preparation procedure A (the composite of 3-1). , and recovery to the original shape was observed. From this, it can be concluded that even by applying (a suspension solution of) metal nanowires to a crosslinked polymer having a crosslinked structure, as in the preparation procedure B, the composite is locally heated by applying an electric current. It may be possible to disperse metal nanowires to the extent that they can drive the body. However, as will be described later, the composite obtained by the preparation procedure B may have a problem regarding structural stability.
〔安定性試験1:パーマネント形状での安定性〕
 次に、上記3-3~3-5で作製した複合体を用いて、パーマネント形状での構造的な安定性を試験した。
 なお、3-3及び3-4の複合体に関しては、それぞれ、熱重量測定(TG)によって算出された銀ナノワイヤの含有率が26.7%のもの(表2参照)、及び、17.3±2.5%のもの(後述する表4参照)のものを用い、3-5の複合体と同じサイズの、縦2cm、幅1cmの短冊状の試験片を切り取って、本試験に供した。試験手順は以下のとおりである。
[Stability test 1: Stability in permanent shape]
Next, using the composites prepared in 3-3 to 3-5 above, structural stability in a permanent shape was tested.
Regarding the composites 3-3 and 3-4, the content of silver nanowires calculated by thermogravimetry (TG) was 26.7% (see Table 2) and 17.3. Using ±2.5% (see Table 4 below), a strip-shaped test piece of the same size as the composite of 3-5, 2 cm long and 1 cm wide, was cut and subjected to the main test. . The test procedure is as follows.
 上記3種類の試験片を、それぞれ、銀ナノワイヤの良溶媒であるエタノール 5mLを収容した10mLサンプル管に浸漬させた。このとき、いずれの試験片も、目視観察において特段変化は見られなかった。
 次に、各サンプル管を振動させて撹拌を生じさせたところ、目視観察において、3-3及び3-4の複合体の試験片では特段変化は見られなかったが、3-5の複合体の試験片では、銀ナノワイヤの脱離が見られた。
 更に、超音波洗浄器(US-105、エスエヌディ社製)を用いて各サンプル管を1分間超音波処理に供した結果、目視観察において、3-3及び3-4の複合体の試験片では特段変化は見られなかったが、3-5の複合体の試験片では、脱離した銀ナノワイヤに起因する溶媒の懸濁が生じた。
 以上の結果を表3に示す。
Each of the three types of test pieces was immersed in a 10 mL sample tube containing 5 mL of ethanol, which is a good solvent for silver nanowires. At this time, no particular change was observed in any of the test pieces by visual observation.
Next, when each sample tube was vibrated to cause agitation, no particular change was observed in the specimens of the 3-3 and 3-4 composites, but the 3-5 composite was visually observed. Detachment of the silver nanowires was observed in the test piece of .
Furthermore, each sample tube was subjected to ultrasonic treatment for 1 minute using an ultrasonic cleaner (US-105, manufactured by SND). No particular change was observed, but in the 3-5 composite test pieces, solvent suspension occurred due to detached silver nanowires.
Table 3 shows the above results.
 ここで、上述した安定性試験1に供する前後の試験片の重量変化について説明する。
 目視観察において銀ナノワイヤの脱離が見られなかった3-3及び3-4の複合体の試験片では、試験前と試験後で、約0.2~約0.5mgの重量の増加が見られた。これは、試験溶媒であるエタノールの部分的な残留に伴うものであると考えられる。
 一方、目視観察において明らかな銀ナノワイヤの脱離が見られた3-5の複合体の試験片では、試験前と試験後で、約3mgの重量の減少が見られ、試験後の試験片の重量は、上記3-5の作製手順における、硬化物から試験片を切り取った後の重量とほぼ一致していた。すなわち、3-5の複合体の試験片では、上記安定性試験1により、複合体を構成していた銀ナノワイヤのほぼ全てが架橋ポリマーから脱離したと考えられる。実際に、試験後の試験片の外観は、銀ナノワイヤによる金属光沢を有さず、2b20PCLマクロモノマーの硬化物のパーマネント形状と同様の性状であった。
Here, the change in weight of the test piece before and after being subjected to the stability test 1 described above will be described.
In the specimens of the composites 3-3 and 3-4 in which no detachment of the silver nanowires was observed by visual observation, an increase in weight of about 0.2 to about 0.5 mg was observed before and after the test. was taken. This is believed to be associated with partial residual ethanol, the test solvent.
On the other hand, in the composite test piece of 3-5, in which clear detachment of silver nanowires was observed by visual observation, a weight decrease of about 3 mg was observed before and after the test. The weight was almost the same as the weight after cutting the test piece from the cured product in the production procedure of 3-5 above. That is, in the test piece of the composite of 3-5, it is considered that almost all of the silver nanowires constituting the composite were detached from the crosslinked polymer in the stability test 1 described above. In fact, the appearance of the test piece after the test did not have metallic luster due to silver nanowires, and had the same properties as the permanent shape of the cured product of 2b20PCL macromonomer.
〔安定性試験2:テンポラリー形状での安定性〕
 次に、上記3-3、3-4、及び、3-6で作製した複合体を用いて、テンポラリー形状での構造的な安定性を試験した。
 なお、3-3及び3-4の複合体に関しては、上記安定性試験1で用いたのと同じ銀ナノワイヤの含有率を有する試料を用い、3-6の複合体と同じサイズの、縦2cm、幅1cmの短冊状の試験片を切り取り、融点以上に加熱し、引張試験機を用いて元の形状から縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した状態で、本試験に供した。
[Stability test 2: Stability in temporary shape]
Next, using the composites prepared in 3-3, 3-4, and 3-6 above, the structural stability in the temporary form was tested.
Regarding the composites of 3-3 and 3-4, a sample having the same silver nanowire content as used in the stability test 1 was used, and the same size as the composite of 3-6, 2 cm in length, was used. , A strip-shaped test piece with a width of 1 cm is cut, heated to the melting point or higher, and cooled while being stretched 100% in the longitudinal direction from the original shape using a tensile tester, so that the stretched shape is fixed. It was used for this test.
 試験手順は、上述した安定性試験1と同様であるので、詳細な説明は省略する。
 また、試験結果も、上述した安定性試験1と同様であった。具体的には、上記3種類の試験片を、それぞれ、銀ナノワイヤの良溶媒であるエタノール 5mLを収容した10mLサンプル管に浸漬させたときには、いずれの試験片も、目視観察において特段変化は見られなかった。
 次に、各サンプル管を振動させて撹拌を生じさせたところ、目視観察において、3-3及び3-4の複合体の試験片では特段変化は見られなかったが、3-6の複合体の試験片では、銀ナノワイヤの脱離が見られた。
 更に、超音波洗浄器(US-105、エスエヌディ社製)を用いて各サンプル管を1分間超音波処理に供した結果、目視観察において、3-3及び3-4の複合体の試験片では特段変化は見られなかったが、3-6の複合体の試験片では、脱離した銀ナノワイヤに起因する溶媒の懸濁が生じた。
 以上の結果を表3に示す。
Since the test procedure is the same as the stability test 1 described above, detailed description is omitted.
Moreover, the test result was also the same as the stability test 1 mentioned above. Specifically, when each of the above three types of test pieces was immersed in a 10 mL sample tube containing 5 mL of ethanol, which is a good solvent for silver nanowires, no particular change was observed in any of the test pieces by visual observation. I didn't.
Next, when each sample tube was vibrated to cause agitation, no particular change was observed in the specimens of the 3-3 and 3-4 composites, but the 3-6 composite was visually observed. Detachment of the silver nanowires was observed in the test piece of .
Furthermore, each sample tube was subjected to ultrasonic treatment for 1 minute using an ultrasonic cleaner (US-105, manufactured by SND). Although no particular change was observed, in the specimens of composites 3-6, suspension of the solvent due to detached silver nanowires occurred.
Table 3 shows the above results.
 ここで、上述した安定性試験2に供する前後の試験片の重量変化についても、上記安定性試験1と同様の傾向が見られた。具体的には、目視観察において銀ナノワイヤの脱離が見られなかった3-3及び3-4の複合体の試験片では、試験前と試験後で、約0.1~約0.6mgの重量の増加が見られた。これは、試験溶媒であるエタノールの部分的な残留に伴うものであると考えられる。
 一方、目視観察において明らかな銀ナノワイヤの脱離が見られた3-6の複合体の試験片では、試験前と試験後で、約1.3mgの重量の減少が見られ、試験後の試験片の重量は、上記3-6の作製手順における、硬化物から試験片を切り取った後の重量とほぼ一致していた。すなわち、3-6の複合体の試験片では、上記安定性試験2により、複合体を構成していた銀ナノワイヤのほぼ全てが架橋ポリマーから脱離したと考えられる。実際に、試験後の試験片の外観は、銀ナノワイヤによる金属光沢を有さず、2b20PCLマクロモノマーの硬化物のテンポラリー形状と同様の性状であった。
Here, the same tendency as in the stability test 1 was observed in the weight change of the test piece before and after being subjected to the stability test 2 described above. Specifically, in the specimens of the composites 3-3 and 3-4, in which no detachment of silver nanowires was observed by visual observation, about 0.1 to about 0.6 mg of Weight gain was observed. This is believed to be associated with partial residual ethanol, the test solvent.
On the other hand, in the composite test piece 3-6, where clear detachment of the silver nanowires was observed by visual observation, a weight decrease of about 1.3 mg was observed before and after the test. The weight of the piece was almost the same as the weight after cutting the test piece from the cured product in the preparation procedure of 3-6 above. That is, in the test piece of the composite of 3-6, it is considered that almost all of the silver nanowires constituting the composite were detached from the crosslinked polymer in the stability test 2 described above. In fact, the appearance of the test piece after the test did not have metallic luster due to silver nanowires, and had the same properties as the temporary shape of the cured product of 2b20PCL macromonomer.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
〔TG測定2〕
 次に、上記3-4で作製した複合体の熱重量測定(TG)を行い、各複合体中の銀ナノワイヤの含有率を算出した。結果を表4に示す。
 なお、測定条件は以下のとおりである。
[TG measurement 2]
Next, thermogravimetry (TG) was performed on the composites prepared in 3-4 above, and the content of silver nanowires in each composite was calculated. Table 4 shows the results.
In addition, the measurement conditions are as follows.
・TG測定条件
 測定装置:TG/DTA6200(セイコーインスツルメンツ社製)
 昇温速度:10℃/min
 測定温度範囲:25~550℃
 雰囲気ガス:窒素
 試料重量(質量):3mg(n=2)
· TG measurement conditions Measurement device: TG / DTA6200 (manufactured by Seiko Instruments Inc.)
Heating rate: 10°C/min
Measurement temperature range: 25 to 550°C
Atmospheric gas: Nitrogen Sample weight (mass): 3 mg (n = 2)
〔電流印加による駆動試験2〕
 また、上記3-4で作製した複合体から、縦3cm、幅0.5cmの短冊状の試験片を切り取り、融点以上に加熱し、引張試験機で縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。その状態で、各試験片の縦方向の両端にワニ口クリップを挟み、電圧を印加して、元の形状への回復の有無を確認した。結果を表4に示す。
[Driving test 2 by current application]
Also, from the composite prepared in 3-4 above, a strip-shaped test piece with a length of 3 cm and a width of 0.5 cm is cut, heated to the melting point or higher, and cooled while being stretched 100% in the longitudinal direction with a tensile tester. This fixed the stretched shape. In this state, alligator clips were sandwiched between both ends of each test piece in the vertical direction, and a voltage was applied to confirm the presence or absence of recovery to the original shape. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表4に示した結果から、作製手順Aの場合でも、電流の印加により駆動可能な複合体を得るためには、一定量以上の銀ナノワイヤが必要であることが示唆された。言い換えると、作製手順Aで得られる複合体では、複合体中の銀ナノワイヤの含有率が一定の値以上であれば、電流の印加により駆動可能な複合体となることが示唆された。これら、作製手順として必要な金属ナノワイヤの量、及び、複合体中の金属ナノワイヤの含有率は、目的の複合体の形状及びサイズ等にもよるものと考えられるが、上記3-4で用いたPDMS製の型枠の内寸サイズ、より具体的には、縦3cm×幅3cmの面積(9cm)に対しては、少なくとも、5mgを超える量の金属ナノワイヤ(銀ナノワイヤ)を使用することで、銀ナノワイヤが、電流の印加による局所的な加熱により複合体を駆動可能な程度に分散した状態のネットワーク構造が形成され得ると言える。また、そのようにして形成されたネットワーク構造を有する金属ナノワイヤ(銀ナノワイヤ)が架橋ポリマーの架橋構造に組み込まれた複合体においては、銀ナノワイヤの含有率は、約5%以上、好ましくは10%以上であり得ると言える。 From the results shown in Table 4, it was suggested that a certain amount or more of silver nanowires was necessary in order to obtain a composite that can be driven by applying an electric current, even in the case of fabrication procedure A. In other words, it was suggested that the composite obtained by the preparation procedure A becomes a composite that can be driven by the application of an electric current if the content of silver nanowires in the composite is a certain value or more. The amount of metal nanowires necessary for the production procedure and the content of metal nanowires in the composite are considered to depend on the shape and size of the target composite, but are used in 3-4 above. It is possible to use metal nanowires (silver nanowires) in an amount exceeding at least 5 mg for the inner size of the mold made of PDMS, more specifically, the area of 3 cm long × 3 cm wide (9 cm 2 ). , it can be said that a network structure can be formed in which the silver nanowires are dispersed to the extent that the composite can be driven by local heating due to the application of electric current. In addition, in the composite in which the metal nanowires (silver nanowires) having a network structure thus formed are incorporated into the crosslinked structure of the crosslinked polymer, the silver nanowire content is about 5% or more, preferably 10%. It can be said that the above is possible.
 図5(a)~(f)は、上記3-4で作製した3種類の複合体の、パーマネント形状(変形前)及びテンポラリー形状(変形後)での、表面のSEM像を示す図である。
 図5(a)~(c)は、それぞれ、5mg、10mg、15mgの銀ナノワイヤを使用して作製した複合体の、パーマネント形状(変形前)での、表面(銀ナノワイヤが組み込まれた面)のSEM像を示す図である。
 図5(d)~(f)は、それぞれ、5mg、10mg、15mgの銀ナノワイヤを使用して作製した複合体の、テンポラリー形状(変形後)での、表面(銀ナノワイヤが組み込まれた面)のSEM像を示す図である。
 なお、図5(a)、(c)、(d)及び(e)のスケールバーは10μmであり、図5(b)のスケールバーは20μmであり、図5(f)のスケールバーは5μmである。
FIGS. 5(a) to 5(f) are SEM images of the surfaces of the three types of composites prepared in 3-4 above in permanent shape (before deformation) and temporary shape (after deformation). .
Figures 5(a) to (c) show the surface (the surface where the silver nanowires are incorporated) in the permanent shape (before deformation) of the composites fabricated using 5 mg, 10 mg, and 15 mg of silver nanowires, respectively. It is a figure which shows the SEM image of.
Figures 5(d)-(f) show the surface (side where silver nanowires are incorporated) in the temporary shape (after deformation) of composites fabricated using 5 mg, 10 mg, and 15 mg of silver nanowires, respectively. It is a figure which shows the SEM image of.
The scale bar in FIGS. 5(a), (c), (d) and (e) is 10 μm, the scale bar in FIG. 5(b) is 20 μm, and the scale bar in FIG. 5(f) is 5 μm. is.
 図5(a)~(c)に示すように、パーマネント形状(変形前)においては、銀ナノワイヤの含有率が異なる(複合体の作製時に使用した銀ナノワイヤの量が異なる)3種類の複合体の間で、銀ナノワイヤの分散状態に目立った違いは見られなかった。
 一方、図5(d)~(f)に示すように、テンポラリー形状(変形後)においては、図5(e)及び(f)に比べて、図5(d)のSEM像における銀ナノワイヤの分散状態(銀ナノワイヤ同士の重なりの程度)が少なくなっている様子が見られた。
As shown in FIGS. 5(a) to 5(c), in the permanent shape (before deformation), three types of composites with different silver nanowire contents (different amounts of silver nanowires used in the preparation of the composites). There was no significant difference in the dispersion state of silver nanowires between
On the other hand, as shown in FIGS. 5(d) to (f), in the temporary shape (after deformation), the silver nanowires in the SEM image of FIG. 5(d) are larger than those in FIGS. It was observed that the state of dispersion (degree of overlapping of silver nanowires) was reduced.
 これらの結果から、本発明の複合体が電流の印加により駆動するためには、パーマネント形状のみならず、所望の変形状態(テンポラリー形状)においても、金属ナノワイヤのネットワーク構造が一定程度保持されていることが必要であること、また、それにより、電流の印加による局所的な加熱により複合体が駆動可能であり得ることが示唆された。 From these results, in order for the composite of the present invention to be driven by the application of electric current, the network structure of the metal nanowires must be maintained to some extent not only in the permanent shape but also in the desired deformed state (temporary shape). It was suggested that this is necessary and that the complex may be drivable by localized heating by the application of an electric current.
〔導電性試験〕
 次に、上記3-4で作製した複合体から、縦2cm、幅0.5cmの短冊状の試験片を切り取り、試験片の縦方向の両端にワニ口クリップを挟み、ソースメータ(2400 SourceMeter、KEITHLEY社製)を用いて電気抵抗を測定した。
 また、各試験片を融点以上に加熱し、引張試験機で縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化し、同様に電気抵抗を測定した。
 更に、引き伸ばした形状を固定化した試験片を加熱して形状を回復させ、同様に電気抵抗を測定した。なお、ここでは、形状回復時の電気抵抗の測定を意図しているため、「加熱」は、電流の印加による加熱ではない点に留意されたい。
 結果を表5に示す。
[Conductive test]
Next, a strip-shaped test piece with a length of 2 cm and a width of 0.5 cm was cut out from the composite prepared in 3-4 above, alligator clips were sandwiched at both ends of the test piece in the longitudinal direction, and a source meter (2400 SourceMeter, (manufactured by KEITHLEY) was used to measure electrical resistance.
In addition, each test piece was heated to the melting point or higher, stretched 100% in the longitudinal direction by a tensile tester, and then cooled to fix the stretched shape, and the electrical resistance was measured in the same manner.
Further, the stretched shape-fixed test piece was heated to recover the shape, and the electrical resistance was similarly measured. It should be noted that the "heating" is not heating due to the application of electric current because the measurement of electrical resistance during shape recovery is intended here.
Table 5 shows the results.
 また、比較のために、上記3-3、3-5及び3-6で作製した複合体についても、上記と同様の試験片を切り取り、同様の手順で電気抵抗を測定した。なお、3-3の複合体としては、熱重量測定(TG)によって銀ナノワイヤの含有率が26.7%と算出された複合体を用いたが、これを重さ換算すると、18.2mgとなる。
 結果を表5に示す。
Also, for comparison, from the composites prepared in 3-3, 3-5 and 3-6 above, the same test pieces were cut and the electrical resistance was measured in the same procedure. As the composite of 3-3, a composite whose content of silver nanowires was calculated to be 26.7% by thermogravimetry (TG) was used. Become.
Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 なお、表5における、3-5及び3-6の複合体の銀ナノワイヤの含有率の値は、上述した安定性試験1及び2の結果、並びに、上記2-3で説明した銀ナノワイヤの熱重量測定(TG)によって確認されたPVPの含有率(被覆率)に基づいて算出された、見積値である。 The values of the silver nanowire content of the composites 3-5 and 3-6 in Table 5 are the results of the stability tests 1 and 2 described above, and the heat of the silver nanowires described in 2-3 above. This is an estimated value calculated based on the PVP content (coverage) confirmed by gravimetric measurement (TG).
 表5に示すように、3-4の複合体のうち、電流の印加による形状回復が見られなかった複合体(表4参照)では、加熱による形状回復時の電気抵抗が1.3±0.18(×10)(Ω)であったことから、少なくとも、所定の変形形状(テンポラリー形状)から形状が回復したパーマネント形状での複合体の電気抵抗としては、1.0×10Ω以下を満たすことが好ましいことが示唆された。
 また、テンポラリー形状では、複合体が引き伸ばされることによって金属ナノワイヤのネットワーク構造も引き伸ばされるため、複合体の電気抵抗は、パーマネント形状での値よりも大きくなるが、1.0×10Ω以下を満たせば、電流の印加による駆動が可能であることが示唆された。
 加えて、複合体中の金属ナノワイヤの含有率が同程度であっても、初回の変形前であるパーマネント形状、及び、テンポラリー形状から回復した後のパーマネント形状での電気抵抗の値に差が生じ得ることが分かった。このことは、本発明の複合体において、架橋ポリマーの架橋構造に組み込まれた金属ナノワイヤのネットワーク構造の性状(金属ナノワイヤの分散状態)が、電流の印加による駆動と関連しており、金属ナノワイヤの含有率として概ね5%以上25%以下、より好ましくは10%以上25%以下の範囲内であれば、電流の印加による局所的な加熱により複合体を駆動可能な程度に分散した状態とすることができると考えられる。もちろん、上述したように、複合体の用途によっては、金属ナノワイヤの含有率として25%を超えていてもよく、表5の結果は、それを否定するものでもない。
As shown in Table 5, among the 3-4 composites, the composite that did not recover its shape by applying an electric current (see Table 4) had an electrical resistance of 1.3 ± 0 when its shape was recovered by heating. 0.18 (×10 4 ) (Ω), the electrical resistance of the composite in a permanent shape recovered from a predetermined deformed shape (temporary shape) was 1.0×10 4 Ω. It was suggested that it is preferable to satisfy the following.
In addition, in the temporary shape, the network structure of the metal nanowires is also stretched by stretching the composite, so the electrical resistance of the composite is greater than that in the permanent shape, but is 1.0×10 5 Ω or less. It was suggested that driving by application of electric current is possible if the conditions are satisfied.
In addition, even if the content of metal nanowires in the composite is about the same, there is a difference in electrical resistance between the permanent shape before the initial deformation and the permanent shape after recovery from the temporary shape. I knew I could get This indicates that in the composite of the present invention, the properties of the network structure of the metal nanowires incorporated in the crosslinked structure of the crosslinked polymer (the dispersed state of the metal nanowires) are related to the driving by the application of electric current, and the metal nanowires If the content is in the range of approximately 5% to 25%, more preferably 10% to 25%, the composite is dispersed to the extent that it can be driven by local heating by applying an electric current. is considered possible. Of course, as described above, depending on the application of the composite, the content of metal nanowires may exceed 25%, and the results in Table 5 do not deny it.
 これに対して、3-3の複合体では、試験片の抵抗が高すぎて、上記試験によって電気抵抗の値を測定することができなかった。表5では、これを「N.D.」として示している。
 3-5及び3-6の複合体では、複合体を作製した後の状態において、電気抵抗の値を測定することができた。なお、3-6の複合体は、複合体の作製の際に、架橋ポリマーを構成する硬化性化合物1の硬化物を引き伸ばした状態で銀ナノワイヤ懸濁溶液を適用しているため、表5における「変形前」に相当する試験結果は存在せず、「変形時」の結果が、上述した内容に対応する。このことから、作製手順Bによって得られる複合体では、金属ナノワイヤは、少なくとも電気抵抗を測定可能な程度に分散した状態であり得ると言える。
 しかしながら、3-5の複合体では、試験片の形状を変化させると(表5の「変形時」において)、架橋ポリマーの層から銀ナノワイヤの層が剥離する(部分的に脱離する)様子が確認され、電気抵抗の値を測定することができなかった。表5では、これを「N.D.」として示している。そのため、3-5の複合体については、加熱による形状回復時の電気抵抗の値は測定せず、試験終了とした。
 また、3-6の複合体でも、3-5の複合体と同様に、試験片の形状を変化させると(表5の「回復時」において)、架橋ポリマーの層から銀ナノワイヤの層が剥離する(部分的に脱離する)様子が確認され、電気抵抗の値を測定することができなかった。表5では、これを「N.D.」として示している。
 これらの結果、及び、上述した安定性試験1及び2の結果から、複合体の作製手順の観点において、作製手順Aの優位性が示唆された。
On the other hand, in the composite of 3-3, the electrical resistance value could not be measured by the above test because the resistance of the test piece was too high. In Table 5 this is indicated as "N.D.".
In the composites 3-5 and 3-6, the electrical resistance values could be measured in the state after the composites were produced. In addition, in the composite of 3-6, the silver nanowire suspension solution is applied in a state where the cured product of the curable compound 1 that constitutes the crosslinked polymer is stretched during the preparation of the composite. There is no test result corresponding to "before deformation", and the result of "during deformation" corresponds to the content described above. From this, it can be said that in the composite obtained by the preparation procedure B, the metal nanowires can be in a dispersed state at least to the extent that the electrical resistance can be measured.
However, in the composites of 3-5, when the shape of the specimen is changed (in the “during deformation” in Table 5), the layer of silver nanowires peels off (partially detaches) from the layer of crosslinked polymer. was confirmed, and the value of electrical resistance could not be measured. In Table 5 this is indicated as "N.D.". Therefore, for the composite of 3-5, the electrical resistance value at the time of shape recovery by heating was not measured, and the test was terminated.
In addition, in the composite of 3-6, as in the composite of 3-5, when the shape of the test piece was changed (in "recovery" in Table 5), the layer of silver nanowires was peeled off from the layer of the crosslinked polymer. (partial detachment) was confirmed, and the electrical resistance value could not be measured. In Table 5 this is indicated as "N.D.".
These results, and the results of stability tests 1 and 2 described above, suggested that the preparation procedure A was superior in terms of the composite preparation procedure.
4.複合体の作製及び分析(その2)
4-1.
[複合体の作製]
 上記作製手順Aにより、複合体を作製した。
 具体的には、上記2-2で合成した銀ナノワイヤ 10mgをEthanol 1mLに分散させ、銀ナノワイヤ懸濁溶液(A)を調製した。この銀ナノワイヤ懸濁溶液(A)を、ガラス基板の上にキャストし、常温でEthanolを乾燥させ、銀ナノワイヤfilmを作製した。ここで、ガラス基板の上には予め、PDMS製の矩形の型枠(内寸サイズ:縦3cm、幅3cm、深さ0.37cm)を配置し、当該型枠の内側に銀ナノワイヤ懸濁溶液(A)をキャストした。
4. Preparation and analysis of complexes (Part 2)
4-1.
[Preparation of complex]
A composite was produced by the production procedure A described above.
Specifically, 10 mg of the silver nanowires synthesized in 2-2 above was dispersed in 1 mL of ethanol to prepare a silver nanowire suspension solution (A). This silver nanowire suspension solution (A) was cast on a glass substrate, and Ethanol was dried at room temperature to produce a silver nanowire film. Here, a PDMS rectangular mold (inner dimensions: length 3 cm, width 3 cm, depth 0.37 cm) was placed in advance on the glass substrate, and the silver nanowire suspension solution was placed inside the mold. (A) was cast.
 次に、架橋ポリマーを構成する硬化性化合物として上記1-1で合成した硬化性化合物1(2b20PCLマクロモノマー)を用いて、2b20PCLマクロモノマー 500mgと、ラジカル重合開始剤(硬化剤)としてBPO 15mg(上記マクロモノマーに対して3質量/体積%)とをxylene 695μLで完全に溶解させて組成物を調製した。この組成物を、ガラス基板上に作製した銀ナノワイヤfilmの上に滴下し、厚さ0.5mmのポリテトラフルオロエチレン製スペーサー(4cm×4cm)を介してもう1枚のガラス基板で挟み、80℃のオーブン内に一晩(3時間以上)静置し、2b20PCLマクロモノマーを硬化させて、縦3cm、幅3cm、厚み0.031cmのシート状の複合体を作製した。 Next, using the curable compound 1 (2b20PCL macromonomer) synthesized in 1-1 above as the curable compound constituting the crosslinked polymer, 500 mg of 2b20PCL macromonomer and 15 mg of BPO as a radical polymerization initiator (curing agent) ( 3% by mass/volume with respect to the above macromonomer) was completely dissolved in 695 μL of xylene to prepare a composition. This composition was dropped onto a silver nanowire film prepared on a glass substrate, and sandwiched between another glass substrate with a 0.5 mm thick polytetrafluoroethylene spacer (4 cm × 4 cm) interposed therebetween. C. overnight (3 hours or longer) to cure the 2b20PCL macromonomer to produce a sheet-like composite with a length of 3 cm, a width of 3 cm and a thickness of 0.031 cm.
 ここで、本作製例では、上記2-2で合成した銀ナノワイヤ 20mgをEthanol 1mLに分散させた銀ナノワイヤ懸濁溶液(B)も調製し、ガラス基板上にキャストする溶液の種類及び量(キャストする回数)を4通りに設定することで、銀ナノワイヤfilm中の銀ナノワイヤの含有量、すなわち、複合体中の銀ナノワイヤの含有量が10mg、20mg、30mg、及び50mgである計4種類の複合体を作製した。具体的には、銀ナノワイヤの含有量が10mg及び20mgである複合体の作製には、銀ナノワイヤ懸濁溶液(A)を用い、銀ナノワイヤの含有量が30mg及び50mgである複合体の作製には、銀ナノワイヤ懸濁溶液(B)を用いた。以下では、これらの複合体を、「複合体4(10)」、「複合体4(20)」、「複合体4(30)」、及び「複合体4(50)」とも称することとする。なお、銀ナノワイヤfilm中の銀ナノワイヤの含有量が多いほど、ガラス基板上に作製される銀ナノワイヤfilmの厚さは厚くなるが、最終的に得られたシート状の複合体のサイズは、いずれも縦3cm、幅3cm、厚み0.031cmであった。 Here, in this production example, a silver nanowire suspension solution (B) was also prepared by dispersing 20 mg of the silver nanowires synthesized in 2-2 above in 1 mL of ethanol, and the type and amount of the solution to be cast on the glass substrate (cast By setting the number of times to do) to 4, the content of silver nanowires in the silver nanowire film, that is, the content of silver nanowires in the composite is 10 mg, 20 mg, 30 mg, and 50 mg. made the body. Specifically, the silver nanowire suspension solution (A) is used for the preparation of composites having a silver nanowire content of 10 mg and 20 mg, and the silver nanowire content is 30 mg and 50 mg. used the silver nanowire suspension solution (B). Hereinafter, these complexes are also referred to as "complex 4 (10)," "complex 4 (20)," "complex 4 (30)," and "complex 4 (50)." . As the content of silver nanowires in the silver nanowire film increases, the thickness of the silver nanowire film produced on the glass substrate increases. It was also 3 cm long, 3 cm wide and 0.031 cm thick.
4-2.
[複合体の分析]
〔DSC測定〕
 複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)のDSC測定を行った。DSC測定は、エスアイアイ社製、「X-DSC 7000」;熱流束型)示差走査熱量分析計を用いて行った。試験条件は下記のとおりである。
4-2.
[Analysis of Complex]
[DSC measurement]
DSC measurements were performed on Complex 4(10), Complex 4(20), Complex 4(30), and Complex 4(50). The DSC measurement was performed using a differential scanning calorimeter "X-DSC 7000" (heat flux type) manufactured by SII. The test conditions are as follows.
測定容器:アルミニウム製サンプルパン(φ6.8mm)
試料量・サイズ:サンプル量は約10mgとし、上記サンプルパンに入るように切断して使用した。
Measurement container: Aluminum sample pan (φ6.8mm)
Amount and size of sample: The amount of sample was about 10 mg, and it was cut to fit in the sample pan.
開始温度: 0℃
昇温速度: 5℃/min
終了温度: 120℃
Start temperature: 0°C
Heating rate: 5°C/min
End temperature: 120°C
 まず、各試料(複合体)を室温から120℃まで加熱し、120℃に達したら、今度は-5℃まで冷却した。次に、試料の温度が-5℃に達した後、今度は5℃/minの速度で0℃~120℃まで昇温させ、このDSC曲線を取得した。 First, each sample (composite) was heated from room temperature to 120°C, and when it reached 120°C, it was cooled to -5°C. Next, after the temperature of the sample reached −5° C., the temperature was raised from 0° C. to 120° C. at a rate of 5° C./min, and this DSC curve was acquired.
 図6は、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)のDSC曲線を示す図である。
 図6に示すように、いずれの複合体の試料も、実質的に同一の温度帯にDSC曲線における吸熱ピーク及び発熱ピークが確認された。また、図6には示していないが、銀ナノワイヤを含まないこと以外は上記4-1に記載したのと同じ条件で作製した硬化性化合物1(2b20PCLマクロモノマー)の硬化物(銀ナノワイヤが組み込まれていない架橋ポリマー)のDSC曲線においても、上記複合体のDSC曲線と実質的に同一の温度帯に吸熱ピーク及び発熱ピークが確認された。これらの結果から、本作製例の複合体の作製手順(上記作製手順A)では、銀ナノワイヤが硬化性化合物の硬化物(架橋ポリマー)に組み込まれることによって、複合体に含まれる架橋ポリマーの融点や結晶化度には実質的に影響を及ぼさないことが分かった。言い換えると、本作製例の複合体において、銀ナノワイヤは、架橋ポリマーの特性を維持し得る態様で、架橋ポリマーに組み込まれていることが分かった。
FIG. 6 shows the DSC curves of Complex 4 (10), Complex 4 (20), Complex 4 (30), and Complex 4 (50).
As shown in FIG. 6, an endothermic peak and an exothermic peak in the DSC curve were confirmed in substantially the same temperature range for all composite samples. In addition, although not shown in FIG. 6, a cured product (silver nanowires incorporated) of curable compound 1 (2b20PCL macromonomer) prepared under the same conditions as described in 4-1 above except that silver nanowires were not included An endothermic peak and an exothermic peak were confirmed in substantially the same temperature range as the DSC curve of the above composite also in the DSC curve of the crosslinked polymer that was not coated. From these results, in the procedure for producing the composite of this production example (the above production procedure A), by incorporating the silver nanowires into the cured product (crosslinked polymer) of the curable compound, the melting point of the crosslinked polymer contained in the composite is It was found to have virtually no effect on crystallinity and crystallinity. In other words, in the composite of this production example, it was found that the silver nanowires were incorporated into the crosslinked polymer in a manner capable of maintaining the properties of the crosslinked polymer.
 なお、上記3-1で作製した複合体について図3(a)及び(b)を参照して説明したのと同様に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)の表面(銀ナノワイヤが組み込まれた面)及び断面のSEM像から、いずれの複合体においても、銀ナノワイヤが、電流の印加による局所的な加熱により複合体を駆動可能な程度に分散した状態で、架橋ポリマーに組み込まれていることが確認された。 In addition, in the same manner as described with reference to FIGS. 30), and from the SEM images of the surface (the surface in which the silver nanowires are incorporated) and the cross section of the composite 4 (50), in any composite, the silver nanowires are locally heated by the application of an electric current. was incorporated into the crosslinked polymer in such a state that it was dispersed to the extent that it could be driven.
〔TG測定〕
 次に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)の熱重量測定(TG)を行った。
 なお、測定条件は以下のとおりである。
[TG measurement]
Next, thermogravimetry (TG) was performed on Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50).
In addition, the measurement conditions are as follows.
・TG測定条件
 測定装置:TG/DTA6200(セイコーインスツルメンツ社製)
 昇温速度:10℃/min
 測定温度範囲:25~550℃
 雰囲気ガス:窒素
 試料重量(質量):3mg(n=2)
· TG measurement conditions Measurement device: TG / DTA6200 (manufactured by Seiko Instruments Inc.)
Heating rate: 10°C/min
Measurement temperature range: 25 to 550°C
Atmospheric gas: Nitrogen Sample weight (mass): 3 mg (n = 2)
 図7は、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)のTG曲線を示す図である。
 図7に示すように、いずれの複合体の試料においても、加熱に伴って一定の重量変化(質量減少)が見られ、銀ナノワイヤの含有量が多いほど、質量減少の割合(%)が高かった。これらの結果から、本作製例の複合体の作製手順(上記作製手順A)では、支持体上に金属ナノワイヤの成形体を作製する際に、一定の濃度を有する金属ナノワイヤの懸濁溶液の適用量(支持体へのキャスト量)を調節することによって、複合体中の金属ナノワイヤの含有量を制御することができることが分かった。
FIG. 7 shows the TG curves of Complex 4 (10), Complex 4 (20), Complex 4 (30), and Complex 4 (50).
As shown in FIG. 7 , a certain weight change (mass decrease) was observed with heating in all composite samples, and the greater the silver nanowire content, the higher the mass decrease rate (%). rice field. From these results, in the procedure for producing the composite of this production example (the above-mentioned production procedure A), a suspension solution of metal nanowires having a certain concentration is applied when producing a compact of metal nanowires on a support. It was found that the content of metal nanowires in the composite can be controlled by adjusting the amount (the amount cast onto the support).
 なお、図7に示すTG曲線から、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)中の銀ナノワイヤの含有率は、それぞれ、5.67%、10.42%、22.43%、及び31.35%と算出された。 From the TG curve shown in FIG. 7, the content of silver nanowires in Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50) is 5. .67%, 10.42%, 22.43%, and 31.35%.
〔安定性試験〕
 次に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)を用いて、上記3-3~3-6で作製した複合体を用いたのと同様の試験条件及び試験手順で、パーマネント形状及びテンポラリー形状での構造的な安定性を試験した。
[Stability test]
Next, using the composites prepared in 3-3 to 3-6 above using composite 4(10), composite 4(20), composite 4(30), and composite 4(50), Structural stability in permanent and temporary shapes was tested under the same test conditions and procedures as in the previous study.
 その結果、いずれの複合体の試験片でも、目視観察において特段の変化は見られず、パーマネント形状及びテンポラリー形状での構造的な安定性が確認された。 As a result, no particular changes were observed in the visual observation of any of the composite test pieces, confirming the structural stability of the permanent and temporary shapes.
〔導電性試験〕
 次に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)から、縦3cm、幅0.5cmの短冊状の試験片を切り取り、試験片の縦方向の両端にワニ口クリップを挟み、ソースメータ(2400 SourceMeter、KEITHLEY社製)を用いて電気抵抗を測定した。
 また、各試験片を融点以上に加熱し、引張試験機で縦方向に100%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化し、同様に電気抵抗を測定した。
 さらに、各試験片について、引張試験機で引き伸ばす割合を200%、300%とした場合についても同様に電気抵抗を測定した。
[Conductive test]
Next, from Composite 4 (10), Composite 4 (20), Composite 4 (30), and Composite 4 (50), a strip-shaped test piece with a length of 3 cm and a width of 0.5 cm was cut and tested. Alligator clips were clamped at both ends of the piece in the longitudinal direction, and electrical resistance was measured using a source meter (2400 SourceMeter, manufactured by KEITHLEY).
In addition, each test piece was heated to the melting point or higher, stretched 100% in the longitudinal direction by a tensile tester, and then cooled to fix the stretched shape, and the electrical resistance was measured in the same manner.
Furthermore, the electrical resistance of each test piece was measured in the same manner when the stretching ratio was set to 200% and 300% with a tensile tester.
 その結果、いずれの複合体から取得した試験片でも、パーマネント形状及びテンポラリー形状において、電気抵抗を測定可能な程度の導電性を有することが確認された。
 加えて、複合体に含まれる銀ナノワイヤの含有量が多い(含有率が高い)試料ほど、引張試験機で引き伸ばす割合が100%、200%、300%と高くなったときの電気抵抗の変化(上昇)が小さいことが分かった。
 これらの結果から、形状記憶材料としてより大きい変形率での使用が意図される場合には、複合体の金属ナノワイヤの含有率をより高い値に設定することが有効であることが示唆された。
As a result, it was confirmed that the test pieces obtained from any of the composites, in the permanent shape and the temporary shape, had electrical conductivity to the extent that electrical resistance could be measured.
In addition, the larger the content of silver nanowires contained in the composite (the higher the content), the higher the rate of stretching with a tensile tester, 100%, 200%, and 300%. rise) was found to be small.
These results suggested that it is effective to set the content of metal nanowires in the composite to a higher value when the shape memory material is intended to be used at a higher deformation rate.
〔電流印加による駆動試験1〕
 次に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)から、縦3cm、幅0.5cmの短冊状の試験片を切り取り、融点以上に加熱し、引張試験機で縦方向に300%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。その状態で、各試験片の縦方向の両端にワニ口クリップを挟み、2.0Vの電圧を印加して、元の形状への回復の様子を確認した。
[Drive test 1 by current application]
Next, from Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50), a strip-shaped test piece with a length of 3 cm and a width of 0.5 cm was cut, and the melting point was determined. It was heated to the above temperature, stretched 300% in the longitudinal direction by a tensile tester, and then cooled to fix the stretched shape. In this state, alligator clips were sandwiched between both ends of each test piece in the vertical direction, and a voltage of 2.0 V was applied to confirm the state of recovery to the original shape.
 その結果、いずれの試料から取得した試験片でも、300%引き伸ばした状態(テンポラリー形状)を、効率的に保持できること(固定化率>99%)に加えて、元の形状(パーマネント形状)への回復性能にも優れていること(回復率>90%)ことが分かった。 As a result, in addition to being able to efficiently maintain the 300% stretched state (temporary shape) of the test piece obtained from any sample (fixation rate > 99%), it was possible to return to the original shape (permanent shape). It was found that the recovery performance was also excellent (recovery rate>90%).
〔電流印加による駆動試験2〕
 次に、上記駆動試験1と同様の試験片を用いて、縦方向への300%引き伸ばしと、2.0Vの電圧印加による元の形状への回復のサイクルを計20サイクル繰り返し、各サイクルにおける試験片に生じた応力と、各サイクル後(パーマネント形状への回復後)の電気抵抗を測定した。
[Driving test 2 by current application]
Next, using the same test piece as in the driving test 1, the cycle of stretching 300% in the longitudinal direction and recovering to the original shape by applying a voltage of 2.0 V was repeated for a total of 20 cycles. The stress induced in the strip and the electrical resistance after each cycle (recovery to the permanent shape) were measured.
 図8(a)~(d)は、それぞれ、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)から取得した試験片について、各サイクルにおける試験片に生じた応力(MPa)を、試験時間(s)との関係で示したグラフである。
 図8(a)~(d)に示すように、いずれの複合体から取得した試験片でも、縦方向への300%引き伸ばしを20回繰り返したときの応力値はほぼ一定であることが確認された。このことは、いずれの複合体も、300%という大きい変形率の条件下で、電流の印加による少なくとも20回の変形と回復の繰り返しに対して力学的(構造的)に安定であることを意味している。
 さらに、各試験片における、1サイクル後の電気抵抗と20サイクル後の電気抵抗の値はほぼ同等であり、いずれの複合体も、上記条件での変形と回復の繰り返しに対する力学的(構造的)な安定性に加えて、電気的にも安定であることが確認された。
 加えて、2.0Vという低い電圧で300%の変形と回復の繰り返しが可能な材料は、従来の温度応答性の形状記憶材料との対比において突出した成果であり、本発明者らによって初めて実証されたものである。
Figures 8(a)-(d) show the results for each cycle for specimens obtained from Composite 4(10), Composite 4(20), Composite 4(30), and Composite 4(50), respectively. 1 is a graph showing the stress (MPa) generated in a test piece in relation to the test time (s).
As shown in FIGS. 8(a) to 8(d), it was confirmed that the stress values when the specimens obtained from any of the composites were repeatedly stretched 300% in the longitudinal direction 20 times were almost constant. rice field. This means that all composites are mechanically (structurally) stable against repeated deformation and recovery at least 20 times under the condition of a large deformation rate of 300%. is doing.
Furthermore, the electrical resistance after 1 cycle and the electrical resistance after 20 cycles in each test piece are almost the same, and all composites are mechanically (structurally) resistant to repeated deformation and recovery under the above conditions. It was confirmed that in addition to excellent stability, it is also electrically stable.
In addition, a material that can repeat 300% deformation and recovery at a voltage as low as 2.0 V is an outstanding achievement in comparison with conventional temperature-responsive shape memory materials, and was first demonstrated by the present inventors. It is what was done.
〔電流印加による駆動試験3〕
 次に、市販のワイヤレス給電装置を用いた非接触給電による、複合体の駆動試験を行った。具体的には、ワイヤレス電力給電実験キット(CQ出版社製、Tech Villageセレクト・シリーズ)を用いて、送電コイルと受電コイルとを有する電磁誘導方式のワイヤレス給電装置を組み立てた。
 上記駆動試験1と同様の試験片を用いて、各試験片を融点以上に加熱し、引張試験機で縦方向に300%引き伸ばした状態で冷却することで、引き伸ばした形状を固定化した。その状態で、各試験片の縦方向の両端にワニ口クリップを挟み、送電コイルと受電コイルを十分に近づけ、送電コイルに交流電流を流すことで、受電コイルの中に磁束を発生させ、受電コイルにも電流が流れる状態として、元の形状への回復の様子を確認した。
[Drive test 3 by current application]
Next, we conducted a driving test of the complex by contactless power supply using a commercially available wireless power supply device. Specifically, a wireless power feeding experiment kit (manufactured by CQ Publishing Co., Ltd., Tech Village Select Series) was used to assemble an electromagnetic induction type wireless power feeding device having a power transmitting coil and a power receiving coil.
Using the same test piece as in the drive test 1, each test piece was heated to the melting point or higher, and cooled in a state of being stretched 300% in the longitudinal direction with a tensile tester, thereby fixing the stretched shape. In this state, an alligator clip is placed on both ends of each test piece in the vertical direction, the power transmitting coil and the power receiving coil are sufficiently brought close to each other, and an alternating current is passed through the power transmitting coil to generate a magnetic flux in the power receiving coil. The state of recovery to the original shape was confirmed assuming that the current also flowed through the coil.
 その結果、いずれの複合体から取得した試験片でも、300%引き伸ばした状態(テンポラリー形状)から元の形状(パーマネント形状)への回復が確認され、ワイヤレス給電方式による駆動が可能であることが分かった。 As a result, it was confirmed that the test piece obtained from each composite recovered from the 300% stretched state (temporary shape) to the original shape (permanent shape), and it was found that it could be driven by the wireless power supply method. rice field.
〔抗菌性試験〕
 次に、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)を用いて、下記の手順により、簡易の抗菌性試験を行った。
[Antibacterial test]
Next, using Complex 4(10), Complex 4(20), Complex 4(30) and Complex 4(50), a simple antibacterial test was conducted according to the following procedure.
・寒天培地の作製
 1Lビーカーに、ハイポリペプトン 10mg、酵母抽出物 2g、MgSO・7HO 1g、Agar 15g、蒸留水 1Lを加え、撹拌した。その後、120℃に設定したオートクレーブにビーカーを20分間収容することで溶質を溶解させ、かつ、溶液を滅菌した。ビーカーを取り出し、得られた溶液を90mmのディッシュに20mL注いだ後、冷却して寒天培地を作製した。
- Preparation of agar medium 10 mg of high polypeptone, 2 g of yeast extract, 1 g of MgSO4.7H2O , 15 g of Agar, and 1 L of distilled water were added to a 1 L beaker and stirred. The beaker was then placed in an autoclave set at 120° C. for 20 minutes to dissolve the solutes and sterilize the solution. After taking out the beaker and pouring 20 mL of the resulting solution into a 90 mm dish, it was cooled to prepare an agar medium.
・試験1(パーマネント形状での試験)
 作製した寒天培地の上に、黄色ブドウ球菌(1.0×10 CFU/mL)を塗った。
 検体として、各複合体から直径1cmの円形状の試験片を切り取り、エチレンオキサイドガス(EOG)により滅菌した後、銀ナノワイヤが組み込まれた面(複合体作製時に銀ナノワイヤfilmが位置していた側の面)が寒天培地に接触するように置いた。その後、30℃に設定したインキュベーター内で2日間インキュベートし、発育阻止帯(ハロー)の有無及び幅を評価した。なお、対照として、銀ナノワイヤを含まないこと以外は上記4-1に記載したのと同じ条件で作製した硬化性化合物1(2b20PCLマクロモノマー)の硬化物(銀ナノワイヤが組み込まれていない架橋ポリマー)を用いて、同様の試験を行った。
・Test 1 (test in permanent shape)
Staphylococcus aureus (1.0×10 8 CFU/mL) was spread on the prepared agar medium.
As a specimen, a circular test piece with a diameter of 1 cm was cut from each composite and sterilized with ethylene oxide gas (EOG). ) was placed in contact with the agar medium. After that, the cells were incubated for 2 days in an incubator set at 30° C., and the presence or absence and width of growth inhibition zones (halos) were evaluated. As a control, a cured product of curable compound 1 (2b20PCL macromonomer) prepared under the same conditions as described in 4-1 above except that silver nanowires were not included (crosslinked polymer in which silver nanowires were not incorporated). A similar test was performed using
 その結果、対照の架橋ポリマーではハローは見られなかったのに対して、複合体4(10)、複合体4(20)、複合体4(30)、及び複合体4(50)から取得した試験片(検体)では、複合体に含まれる銀ナノワイヤの含有量が多い(含有率が高い)ほど、より多くのハローが見られた。より詳細には、複合体4(20)では、複合体4(10)に比べて明らかにハローの数の増加が見られ、複合体4(30)では、複合体4(20)よりも試験片の広い範囲にわたってより多くのハローが見られ、さらに、複合体4(50)では、試験片の全体にわたってさらにより多くのハローが見られた。加えて、複合体4(50)では、個々のハローの幅も大きい傾向が見られた。 As a result, no halo was observed in the control crosslinked polymer, whereas the halos obtained from Composite 4 (10), In the test piece (specimen), the more silver nanowires contained in the composite (the higher the content), the more halos were observed. More specifically, complex 4 (20) clearly showed an increase in the number of halos compared to complex 4 (10), and complex 4 (30) tested more than complex 4 (20). More halos were seen over a wider area of the specimen, and even more halos were seen throughout the specimen for Composite 4 (50). In addition, complex 4 (50) also tended to have wider individual halos.
・試験2(テンポラリー形状での試験)
 上記の方法で作製した寒天培地に黄色ブドウ球菌(1.0×10 CFU/mL)を塗った。
 検体として、複合体4(50)を一定方向に300%引き伸ばした状態で冷却し、引き伸ばした形状を固定化したものから縦1cm、幅0.5cmの短冊状の試験片を切り取り、EOGにより滅菌した後、銀ナノワイヤが組み込まれた面(複合体作製時に銀ナノワイヤfilmが位置していた側の面)が寒天培地に接触するように置いた。その後、30℃に設定したインキュベーター内で2日間インキュベートし、ハローの有無及び幅を評価した。なお、ここでも、対照として、上述した架橋ポリマーを用いて同様の試験を行った。
・Test 2 (test with temporary shape)
Staphylococcus aureus (1.0×10 8 CFU/mL) was spread on the agar medium prepared by the above method.
As a specimen, the complex 4 (50) was stretched 300% in a certain direction and cooled, and a strip-shaped test piece of 1 cm long and 0.5 cm wide was cut from the stretched shape fixed and sterilized by EOG. After that, the surface on which the silver nanowires were incorporated (the surface on which the silver nanowire film was located when the composite was produced) was placed in contact with the agar medium. Then, it was incubated for 2 days in an incubator set at 30° C., and the presence or absence and width of halos were evaluated. As a control, the same test was conducted using the crosslinked polymer described above.
 その結果、対照の架橋ポリマーでは、上述した試験1(パーマネント形状での試験)と同様に、テンポラリー形状でもハローは見られなかったのに対して、複合体4(50)から取得した試験片(検体)では、テンポラリー形状においても、試験1のパーマネント形状の場合とほぼ同程度の数及び幅のハローが試験片全体にわたって見られた。これらの結果から、本発明の複合体は、パーマネント形状及びテンポラリー形状のいずれにおいても、金属ナノワイヤが元々有する特性(金属ナノワイヤが銀ナノワイヤである場合には、当該特性は抗菌性であり得る。)を効果的に発揮することができることが確認された。 As a result, in the control crosslinked polymer, no halo was observed even in the temporary form as in Test 1 (permanent form test) described above, whereas the specimen obtained from Composite 4 (50) ( Specimen), even in the temporary shape, almost the same number and width of halos were found throughout the specimen as in the permanent shape of Test 1. From these results, the composite of the present invention, both in its permanent form and in its temporary form, has the properties originally possessed by the metal nanowires (when the metal nanowires are silver nanowires, the properties may be antibacterial). can be effectively demonstrated.
 本発明の複合体は、形状記憶能を有し、電流の印加による局所的な加熱により駆動可能な形状記憶部材に適用できる。そのため、従来の温度応答性の形状記憶材料に比べて、より広範な用途に適用することができる。具体的には、例えば、架橋ポリマーの融解ピーク温度を、生体表面温度及び/又は生体内温度を考慮して調整することによって、従来の温度応答性の形状記憶材料では困難であった生体への適用が可能となり、電気駆動型の形状記憶部材として、低侵襲医療デバイス等への応用が期待される。 The composite of the present invention can be applied to a shape-memory member that has a shape-memory ability and can be driven by local heating by applying an electric current. Therefore, it can be applied to a wider range of applications than conventional temperature-responsive shape memory materials. Specifically, for example, by adjusting the melting peak temperature of the crosslinked polymer in consideration of the temperature on the surface of the living body and/or the temperature in the living body, it is possible to apply the material to the living body, which has been difficult with conventional temperature-responsive shape memory materials. It can be applied, and it is expected to be applied to minimally invasive medical devices etc. as an electrically driven shape memory member.
 100 複合体
 110 架橋ポリマー
 120 金属ナノワイヤ
100 Composite 110 Crosslinked Polymer 120 Metal Nanowire

Claims (9)

  1.  架橋ポリマーであって、示差走査熱量測定(DSC)を行ったときに吸熱ピークを有する架橋ポリマーと、
     金属ナノワイヤと、
    を含む複合体であって、
     導電性試験において、少なくとも、変形前の状態、及び、外部から応力を加えて所定の方向に100%以上変形させた状態で、電気抵抗を測定可能な程度の導電性を有し、かつ、
     前記架橋ポリマー及び/又は前記金属ナノワイヤの良溶媒を用いる安定性試験において、前記金属ナノワイヤの脱離を実質的に生じない、
    複合体。
    a crosslinked polymer having an endothermic peak when differential scanning calorimetry (DSC) is performed;
    metal nanowires;
    A complex containing
    In the conductivity test, at least in the state before deformation and in the state of being deformed by 100% or more in a predetermined direction by applying stress from the outside, it has conductivity to the extent that the electrical resistance can be measured, and
    In a stability test using a good solvent for the crosslinked polymer and/or the metal nanowires, substantially no detachment of the metal nanowires occurs.
    Complex.
  2.  前記架橋ポリマーが、以下の式1で表される硬化性化合物1の硬化物、以下の式2で表される硬化性化合物2の硬化物、及び、前記硬化性化合物1と前記硬化性化合物2から構成される硬化性化合物の複合物の硬化物からなる群より選択される、請求項1に記載の複合体。
    Figure JPOXMLDOC01-appb-C000001
    (式1中、Lはポリ(オキシアルキレンカルボニル)基を表し、Xは硬化性基を有する基を表し、Rは水素原子、又は、前記硬化性基を有さない1価の置換基を表し、q1は2以上の整数を表し、p1は0以上の整数を表し、q1が2かつp1が0のとき、Mは単結合、又は、2価の基を表し、q1が2かつp1が1以上のとき、及び、q1が3以上のとき、Mはp1+q1価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい)
    Figure JPOXMLDOC01-appb-C000002
    (式2中、Lは高分子鎖を表し、前記高分子鎖は、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含み、Xは前記式1中のXが有するのと同一の硬化性基を有する基を表し、Rは水素原子、又は、前記硬化性基を有さない1価の置換基を表し、q2は2以上の整数を表し、p2は0以上の整数を表し、q2が2かつp2が0のとき、Mは単結合、又は、2価の基を表し、q2が2かつp2が1以上のとき、及び、q2が3以上のとき、Mはp2+q2価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい)
    The crosslinked polymer is a cured product of a curable compound 1 represented by the following formula 1, a cured product of a curable compound 2 represented by the following formula 2, and the curable compound 1 and the curable compound 2 2. The composite according to claim 1, selected from the group consisting of a cured product of a composite of a curable compound consisting of:
    Figure JPOXMLDOC01-appb-C000001
    (In formula 1, L 1 represents a poly(oxyalkylenecarbonyl) group, X 1 represents a group having a curable group, R 1 is a hydrogen atom, or a monovalent substituent having no curable group group, q1 represents an integer of 2 or more, p1 represents an integer of 0 or more, and when q1 is 2 and p1 is 0, M1 represents a single bond or a divalent group, and q1 represents 2 and when p1 is 1 or more and q1 is 3 or more, M 1 represents a p1+q1-valent group, and multiple R 1 and L 1 may be the same or different)
    Figure JPOXMLDOC01-appb-C000002
    (In Formula 2 , L2 represents a polymer chain, and the polymer chain includes repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid. X 2 represents a group having the same curable group as that of X 1 in Formula 1, and R 2 represents a hydrogen atom or a monovalent substituent having no curable group , q2 represents an integer of 2 or more, p2 represents an integer of 0 or more, when q2 is 2 and p2 is 0, M2 represents a single bond or a divalent group, q2 is 2 and p2 is When 1 or more and when q2 is 3 or more, M 2 represents a p2 + q divalent group, and multiple R 2 and L 2 may be the same or different)
  3.  前記金属ナノワイヤが、銀ナノワイヤである、請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the metal nanowires are silver nanowires.
  4.  熱重量測定(TG)によって算出される前記金属ナノワイヤの含有率が、5%以上60%以下である、請求項1~3のいずれか一項に記載の複合体。 The composite according to any one of claims 1 to 3, wherein the content of the metal nanowires calculated by thermogravimetry (TG) is 5% or more and 60% or less.
  5.  請求項1~4のいずれか一項に記載の複合体を含む形状記憶部材。 A shape memory member comprising the composite according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか一項に記載の複合体の製造方法であって、
     金属ナノワイヤを含む成形体を作製する工程と、
     前記成形体に、硬化性化合物を含む組成物を適用する工程と、
     前記組成物を適用した成形体にエネルギーを付与して、前記硬化性化合物を硬化させる工程と、
    を含む、方法。
    A method for producing the composite according to any one of claims 1 to 4,
    A step of producing a molded body containing metal nanowires;
    applying a composition containing a curable compound to the molded body;
    a step of applying energy to the molded article to which the composition is applied to cure the curable compound;
    A method, including
  7.  前記エネルギーの付与が、前記成形体を加熱して行われる、請求項6に記載の方法。 The method according to claim 6, wherein the application of energy is performed by heating the compact.
  8.  前記エネルギーの付与が、加圧条件下で行われる、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the application of energy is performed under pressurized conditions.
  9.  前記硬化性化合物が、以下の式1で表される硬化性化合物1、以下の式2で表される硬化性化合物2、及び、前記硬化性化合物1と前記硬化性化合物2から構成される硬化性化合物の複合物からなる群より選択される、請求項6~8のいずれか一項に記載の方法。
    Figure JPOXMLDOC01-appb-C000003

    (式1中、Lはポリ(オキシアルキレンカルボニル)基を表し、Xは硬化性基を有する基を表し、Rは水素原子、又は、前記硬化性基を有さない1価の置換基を表し、q1は2以上の整数を表し、p1は0以上の整数を表し、q1が2かつp1が0のとき、Mは単結合、又は、2価の基を表し、q1が2かつp1が1以上のとき、及び、q1が3以上のとき、Mはp1+q1価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい)
    Figure JPOXMLDOC01-appb-C000004

    (式2中、Lは高分子鎖を表し、前記高分子鎖は、オキシアルキレンカルボニル基からなる繰り返し単位、D-乳酸に由来する繰り返し単位、及び、L-乳酸に由来する繰り返し単位をすべて含み、Xは前記式1中のXが有するのと同一の硬化性基を有する基を表し、Rは水素原子、又は、前記硬化性基を有さない1価の置換基を表し、q2は2以上の整数を表し、p2は0以上の整数を表し、q2が2かつp2が0のとき、Mは単結合、又は、2価の基を表し、q2が2かつp2が1以上のとき、及び、q2が3以上のとき、Mはp2+q2価の基を表し、複数あるR、及び、Lはそれぞれ同一でも異なってもよい)
    The curable compound is a curable compound 1 represented by the following formula 1, a curable compound 2 represented by the following formula 2, and a curing composed of the curable compound 1 and the curable compound 2 A method according to any one of claims 6 to 8, wherein the conjugate is selected from the group consisting of complexes of sexual compounds.
    Figure JPOXMLDOC01-appb-C000003

    (In formula 1, L 1 represents a poly(oxyalkylenecarbonyl) group, X 1 represents a group having a curable group, R 1 is a hydrogen atom, or a monovalent substituent having no curable group group, q1 represents an integer of 2 or more, p1 represents an integer of 0 or more, and when q1 is 2 and p1 is 0, M1 represents a single bond or a divalent group, and q1 represents 2 and when p1 is 1 or more and q1 is 3 or more, M 1 represents a p1+q1-valent group, and multiple R 1 and L 1 may be the same or different)
    Figure JPOXMLDOC01-appb-C000004

    (In Formula 2 , L2 represents a polymer chain, and the polymer chain includes repeating units consisting of an oxyalkylenecarbonyl group, repeating units derived from D-lactic acid, and repeating units derived from L-lactic acid. X 2 represents a group having the same curable group as that of X 1 in Formula 1, and R 2 represents a hydrogen atom or a monovalent substituent having no curable group , q2 represents an integer of 2 or more, p2 represents an integer of 0 or more, when q2 is 2 and p2 is 0, M2 represents a single bond or a divalent group, q2 is 2 and p2 is When 1 or more and when q2 is 3 or more, M 2 represents a p2 + q divalent group, and multiple R 2 and L 2 may be the same or different)
PCT/JP2022/018807 2021-05-08 2022-04-26 Complex, method for producing same, and shape memory member containing same WO2022239633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520957A JPWO2022239633A1 (en) 2021-05-08 2022-04-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079389 2021-05-08
JP2021-079389 2021-05-08

Publications (1)

Publication Number Publication Date
WO2022239633A1 true WO2022239633A1 (en) 2022-11-17

Family

ID=84029572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018807 WO2022239633A1 (en) 2021-05-08 2022-04-26 Complex, method for producing same, and shape memory member containing same

Country Status (2)

Country Link
JP (1) JPWO2022239633A1 (en)
WO (1) WO2022239633A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095206A (en) * 2013-01-24 2014-08-01 엘지디스플레이 주식회사 Flexible display device
CN106566398A (en) * 2016-10-20 2017-04-19 广东工业大学 Tri-shape shape memory conductive polymeric nanocomposite and preparation method thereof
CN106674998A (en) * 2017-01-05 2017-05-17 广东工业大学 Shape memory-based multi-stimulated sensing conductive polymer material and preparation method and application thereof
CN106883586A (en) * 2017-01-17 2017-06-23 广东工业大学 A kind of adjustable type strain sensing macromolecule with hybridized nanometer conductive material
US20200150789A1 (en) * 2017-07-21 2020-05-14 3M Innovative Properties Company Flexible conductive display film
CN111572019A (en) * 2020-06-03 2020-08-25 浙江大学 Shape memory composite member controllable deformation three-dimensional printing method based on surface acoustic waves
JP2021023499A (en) * 2019-08-02 2021-02-22 国立研究開発法人物質・材料研究機構 Thermoplastic shape memory resin sheet and article including thermoplastic shape memory resin sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095206A (en) * 2013-01-24 2014-08-01 엘지디스플레이 주식회사 Flexible display device
CN106566398A (en) * 2016-10-20 2017-04-19 广东工业大学 Tri-shape shape memory conductive polymeric nanocomposite and preparation method thereof
CN106674998A (en) * 2017-01-05 2017-05-17 广东工业大学 Shape memory-based multi-stimulated sensing conductive polymer material and preparation method and application thereof
CN106883586A (en) * 2017-01-17 2017-06-23 广东工业大学 A kind of adjustable type strain sensing macromolecule with hybridized nanometer conductive material
US20200150789A1 (en) * 2017-07-21 2020-05-14 3M Innovative Properties Company Flexible conductive display film
JP2021023499A (en) * 2019-08-02 2021-02-22 国立研究開発法人物質・材料研究機構 Thermoplastic shape memory resin sheet and article including thermoplastic shape memory resin sheet
CN111572019A (en) * 2020-06-03 2020-08-25 浙江大学 Shape memory composite member controllable deformation three-dimensional printing method based on surface acoustic waves

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EBARA MITSUHIRO; AKIMOTO MASANORI; UTO KOICHIRO; SHIBA KOTA; YOSHIKAWA GENKI; AOYAGI TAKAO: "Focus on the interlude between topographic transition and cell response on shape-memory surfaces", POLYMER, ELSEVIER, AMSTERDAM, NL, vol. 55, no. 23, 17 September 2014 (2014-09-17), AMSTERDAM, NL, pages 5961 - 5968, XP029092585, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2014.09.009 *
LIU WAN-CHEN, CHUNG CHIH-HSIANG, HONG JIN-LONG: "Highly Stretchable, Self-Healable Elastomers from Hydrogen-Bonded Interpolymer Complex (HIPC) and Their Use as Sensitive, Stable Electric Skin", ACS OMEGA, ACS PUBLICATIONS, US, vol. 3, no. 9, 30 September 2018 (2018-09-30), US , pages 11368 - 11382, XP093004407, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b01456 *
TANG PANDENG, ZHENG XIAOTONG, YANG HUIKAI, HE JING, ZHENG ZHIWEN, YANG WEIQING, ZHOU SHAOBING: "Intrinsically Stretchable and Shape Memory Conducting Nanofiber for Programmable Flexible Electronic Films", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 51, 26 December 2019 (2019-12-26), US , pages 48202 - 48211, XP093004406, ISSN: 1944-8244, DOI: 10.1021/acsami.9b14430 *

Also Published As

Publication number Publication date
JPWO2022239633A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Hao et al. Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly (L-lactide) s initiated with diverse natural sugar alcohols
US7557167B2 (en) Polyester compositions, methods of manufacturing said compositions, and articles made therefrom
Wang et al. Polylactide-based polyurethane and its shape-memory behavior
Pan et al. Polymorphic transition in disordered poly (L-lactide) crystals induced by annealing at elevated temperatures
Kumar et al. Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field
Bai et al. A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone
Li et al. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR
Chu et al. A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues
Qiu et al. [PCL-bP (THF-co-CL)] m multiblock copolymer synthesized by Janus polymerization
WO2007085702A1 (en) New biodegradable polymers
Gorbunova et al. Recent advances in the synthesis and application of thermoplastic semicrystalline shape memory polyurethanes
WO2022239633A1 (en) Complex, method for producing same, and shape memory member containing same
Kobori et al. Synthesis, solid-state structure, and surface properties of end-capped poly (L-lactide)
Feng et al. Synthesis and characterization of hydrophilic polyester‐PEO networks with shape‐memory properties
Fan et al. Inhibited-nanophase-separation modulated polymerization for recoverable ultrahigh-strain biobased shape memory polymers
Kim et al. Structure–property relationships of 3D-printable chain-extended block copolymers with tunable elasticity and biodegradability
Malafeev et al. Synthesis and properties of fibers prepared from lactic acid–glycolic acid copolymer
Xing et al. Novel multiblock poly (ε-caprolactone) copolyesters containing D-glucose derivatives with different bicyclic structures
Du et al. Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites
Kum et al. Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly (L-lactide) composites
Das et al. Controlling nucleation in quasi-two-dimensional Langmuir poly (l-lactide) films through variation of the rate of compression
Wei et al. Strengthening the Shape Memory Behaviors of l-Lactide-ased Copolymers via Its Stereocomplexation Effect with Poly (d-Lactide)
JP7274241B2 (en) Member, method of manufacturing member, method of manufacturing permanent reshaped member, permanent reshaped member, cell culture substrate, ligation device, and laminate
JP7484167B2 (en) Medical molded bodies, medical devices, nerve regeneration induction tubes
JP7302296B2 (en) Polyester copolymer and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520957

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807336

Country of ref document: EP

Kind code of ref document: A1