WO2022239602A1 - Air-conditioning device for vehicle - Google Patents

Air-conditioning device for vehicle Download PDF

Info

Publication number
WO2022239602A1
WO2022239602A1 PCT/JP2022/017977 JP2022017977W WO2022239602A1 WO 2022239602 A1 WO2022239602 A1 WO 2022239602A1 JP 2022017977 W JP2022017977 W JP 2022017977W WO 2022239602 A1 WO2022239602 A1 WO 2022239602A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cooling water
air
temperature
refrigerant
Prior art date
Application number
PCT/JP2022/017977
Other languages
French (fr)
Japanese (ja)
Inventor
幸久 伊集院
紘明 河野
康弘 横尾
好則 一志
芳生 林
順基 平山
騎士 武藤
吉毅 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022239602A1 publication Critical patent/WO2022239602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • the present disclosure relates to a vehicle air conditioner that absorbs heat from a plurality of heat absorption sources to heat air.
  • Patent Document 1 describes a vehicle air conditioning system in which a ventilation exhaust heat recovery device, a motor/battery, and an electric heater are connected as heat sources to the coolant of the coolant cycle.
  • the air is heated by the second refrigerant condenser and used for heating.
  • the heat source is selected based only on the temperature of the coolant. Therefore, the temperature fluctuation behavior of the coolant differs depending on whether the amount of heat generated by each heat source is large or small. There is concern that frequent switching of heat sources may adversely affect the air conditioning performance and durability of each heat source.
  • the present disclosure aims to suppress frequent switching of endotherms.
  • a vehicle air conditioner includes a heat medium circuit, a plurality of heat absorption sources, a switching section, a compressor, a heat dissipation section, a pressure reduction section, an evaporator, and a control section.
  • a heat medium circulates in the heat medium circuit.
  • a plurality of heat absorption sources are arranged in the heat medium circuit, and heat is absorbed by the heat medium.
  • the switching unit switches whether or not to allow the heat medium to absorb heat from the plurality of heat absorption sources.
  • the compressor sucks in the refrigerant, compresses it, and discharges it.
  • the heat radiating section causes the refrigerant discharged from the compressor to radiate heat to the air blown into the air-conditioned space.
  • the decompression part decompresses the refrigerant radiated by the heat radiation part.
  • the evaporator evaporates the refrigerant decompressed by the decompression unit by absorbing heat from the heat medium.
  • the control unit determines which one of the plurality of heat absorption sources is used to absorb heat by the heat medium based on the temperature and amount of heat generation of the plurality of heat absorption sources, and controls the switching unit.
  • the heat absorption is switched based on not only the temperature but also the calorific value, so the temperature fluctuation behavior can be stabilized, and the frequent occurrence of the heat absorption switching can be suppressed.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and shows the operating state of cooling mode. It is a block diagram which shows the electric control part of the vehicle air conditioner of one Embodiment. BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and has shown the operating state of dehumidification heating mode. BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and shows the operating state in heating mode.
  • 3 is a flow chart showing control processing executed by a control device for a vehicle air conditioner according to one embodiment
  • 4 is a time chart showing temperature changes of a heat absorption source in an operation example of the vehicle air conditioner of one embodiment
  • 4 is a time chart showing temperature changes of equipment, cooling water, and refrigerant in an operation example of the vehicle air conditioner of one embodiment.
  • a vehicle air conditioner 1 shown in FIG. 1 is an air conditioner that adjusts a vehicle interior space (in other words, a space to be air-conditioned) to an appropriate temperature.
  • the vehicle air conditioner 1 has a refrigeration cycle device 10 .
  • the refrigeration cycle device 10 is installed in electric vehicles, hybrid vehicles, and the like.
  • An electric vehicle is a vehicle that obtains a driving force for running the vehicle from an electric motor for running.
  • a hybrid vehicle is a vehicle that obtains a driving force for driving the vehicle from an engine (in other words, an internal combustion engine) and an electric motor for driving.
  • the refrigerating cycle device 10 is a vapor compression refrigerator comprising a compressor 11, a condenser 12, a first expansion valve 13, an air side evaporator 14, a constant pressure valve 15, a second expansion valve 16 and a cooling water side evaporator 17. be.
  • a freon-based refrigerant is used as a refrigerant
  • a subcritical refrigerating cycle is constructed in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant.
  • the second expansion valve 16 and the cooling water side evaporator 17 are arranged in parallel with the first expansion valve 13, the air side evaporator 14 and the constant pressure valve 15 in the refrigerant flow.
  • a first refrigerant circuit and a second refrigerant circuit are formed in the refrigeration cycle device 10 .
  • the refrigerant circulates through the compressor 11, the condenser 12, the first expansion valve 13, the air-side evaporator 14, the constant pressure valve 15, and the compressor 11 in this order.
  • the refrigerant circulates through the compressor 11, the condenser 12, the second expansion valve 16, and the coolant-side evaporator 17 in this order.
  • the compressor 11 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses, and discharges the refrigerant of the refrigeration cycle device 10 .
  • the electric motor of compressor 11 is controlled by control device 60 shown in FIG.
  • Compressor 11 may be a variable displacement compressor driven by a belt.
  • the condenser 12 is a high pressure side heat exchanger that exchanges heat between the high pressure side refrigerant discharged from the compressor 11 and the cooling water of the high temperature cooling water circuit 20 .
  • the condenser 12 is a heat radiating section that heats the cooling water by heat-exchanging the refrigerant discharged from the compressor 11 and the cooling water.
  • the compressor 11 and condenser 12 are arranged in the motor room of the vehicle.
  • a motor room is a space in which an electric motor for traveling is accommodated.
  • compressor 11 and condenser 12 are arranged in the engine room of the vehicle.
  • An engine room is a space in which an engine is housed.
  • the condenser 12 has a condensation section 12a, a receiver 12b and a supercooling section 12c.
  • the refrigerant flows through the condensing portion 12a, the receiver 12b and the supercooling portion 12c in that order.
  • the condensation section 12a condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 20.
  • the receiver 12b is a gas-liquid separation unit that separates the gas-liquid of the high-pressure refrigerant that has flowed out of the condenser 12, causes the separated liquid-phase refrigerant to flow downstream, and stores surplus refrigerant in the cycle.
  • the supercooling unit 12c performs heat exchange between the liquid-phase refrigerant flowing out of the receiver 12b and the cooling water of the high-temperature cooling water circuit 20, thereby supercooling the liquid-phase refrigerant.
  • the cooling water of the high temperature cooling water circuit 20 is a fluid as a heat medium.
  • the cooling water in the high temperature cooling water circuit 20 is a high temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used as the cooling water for the high-temperature cooling water circuit 20 .
  • the high-temperature cooling water circuit 20 is a first circulation circuit through which cooling water circulates.
  • the high-temperature cooling water circuit 20 is a high-temperature heat medium circuit in which a high-temperature heat medium circulates.
  • the first expansion valve 13 is a first decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out from the receiver 12b.
  • the first expansion valve 13 is an electric expansion valve.
  • An electric expansion valve is an electric variable throttle mechanism that includes a valve body that can change the opening degree of the throttle and an electric actuator that changes the opening degree of the valve body.
  • the first expansion valve 13 is a refrigerant flow switching unit that switches between a state in which the refrigerant flows to the air-side evaporator 14 and a state in which the refrigerant does not flow. The operation of the first expansion valve 13 is controlled by control signals output from the controller 60 .
  • the first expansion valve 13 may be a mechanical thermal expansion valve. If the first expansion valve 13 is a mechanical thermal expansion valve, an on-off valve that opens and closes the refrigerant flow path on the first expansion valve 13 side must be provided separately from the first expansion valve 13 .
  • the air-side evaporator 14 is an evaporator that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the air blown into the vehicle interior to evaporate the refrigerant. In the air-side evaporator 14, the refrigerant absorbs heat from the air blown into the vehicle interior.
  • the air-side evaporator 14 is an air cooler that cools the air blown into the vehicle interior.
  • the constant pressure valve 15 is a pressure adjusting unit that maintains the pressure of the refrigerant on the outlet side of the air-side evaporator 14 at a predetermined value.
  • the constant pressure valve 15 is composed of a mechanical variable throttle mechanism. Specifically, when the pressure of the refrigerant on the outlet side of the air-side evaporator 14 falls below a predetermined value, the constant pressure valve 15 reduces the passage area (that is, throttle opening) of the refrigerant passage, When the pressure of the refrigerant on the side exceeds a predetermined value, the passage area of the refrigerant passage (that is, throttle opening) is increased. The gas-phase refrigerant pressure-regulated by the constant pressure valve 15 is sucked into the compressor 11 and compressed.
  • a fixed throttle made up of an orifice, capillary tube, or the like may be employed.
  • the second expansion valve 16 is a second decompression section that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 12 .
  • the second expansion valve 16 is an electric expansion valve.
  • An electric expansion valve is an electric variable throttle mechanism that includes a valve body that can change the opening degree of the throttle and an electric actuator that changes the opening degree of the valve body. The second expansion valve 16 can fully close the refrigerant passage.
  • the second expansion valve 16 is a refrigerant flow switching unit that switches between a state in which the refrigerant flows to the coolant-side evaporator 17 and a state in which the refrigerant does not flow.
  • the operation of the second expansion valve 16 is controlled by control signals output from the controller 60 .
  • the second expansion valve 16 may be a mechanical thermal expansion valve. If the second expansion valve 16 is a mechanical thermal expansion valve, an on-off valve that opens and closes the refrigerant flow path on the side of the second expansion valve 16 must be provided separately from the second expansion valve 16 .
  • the cooling water side evaporator 17 is an evaporator that exchanges heat between the refrigerant flowing out of the second expansion valve 16 and the cooling water of the low-temperature cooling water circuit 30 to evaporate the refrigerant.
  • the refrigerant absorbs heat from the coolant in the low-temperature coolant circuit 30 .
  • the coolant-side evaporator 17 is a heat medium cooler that cools the coolant in the low-temperature coolant circuit 30 .
  • the vapor phase refrigerant evaporated in the cooling water side evaporator 17 is sucked into the compressor 11 and compressed.
  • the cooling water of the low-temperature cooling water circuit 30 is a fluid as a heat medium.
  • the cooling water in the low-temperature cooling water circuit 30 is a low-temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used as the cooling water for the low-temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used.
  • the low-temperature cooling water circuit 30 is a low-temperature heat medium circuit in which a low-temperature heat medium circulates.
  • the low-temperature cooling water circuit 30 is a second circulation circuit through which cooling water circulates.
  • a condenser 12, a high temperature side pump 21, a heater core 22, a radiator 45, a first reserve tank 24, and an electric heater 25 are arranged in the high temperature cooling water circuit 20.
  • the high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water.
  • the high temperature side pump 21 is an electric pump.
  • the high temperature side pump 21 is an electric pump with a constant discharge flow rate, but the high temperature side pump 21 may be an electric pump with a variable discharge flow rate.
  • the heater core 22 is an air heating unit that heats the air that is blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature cooling water circuit 20 and the air that is blown into the vehicle interior. In the heater core 22, the cooling water radiates heat to the air blown into the vehicle interior.
  • the heater core 22 is a heat utilization section that utilizes the heat of the cooling water heated by the condenser 12 .
  • the high-temperature cooling water circuit 20 is a heating circuit that circulates cooling water to the heater core 22 .
  • the radiator 45 is a radiator that exchanges heat between the cooling water of the high-temperature cooling water circuit 20 and the outside air, and releases heat from the cooling water to the outside air.
  • the radiator 45 is a common radiator for the high-temperature cooling water circuit 20 and the low-temperature cooling water circuit 30 .
  • the condenser 12 and the high temperature side pump 21 are arranged in the condenser channel 20a.
  • the condenser channel 20a is a channel through which the cooling water of the high-temperature cooling water circuit 20 flows.
  • the direction of flow of cooling water in the condenser 12 is opposite to the direction of flow of refrigerant in the condenser 12 . That is, in the condenser 12, the cooling water flows through the supercooling section 12c and the condensing section 12a in that order.
  • the heater core 22 is arranged in the heater core channel 20b.
  • the heater core channel 20b is a channel through which the cooling water of the high-temperature cooling water circuit 20 flows.
  • the radiator 45 is arranged in the radiator channel 20c.
  • the radiator flow path 20 c is a flow path through which the cooling water of the high-temperature cooling water circuit 20 flows in parallel with the heater core 22 .
  • a first on-off valve 26a and a second on-off valve 26b are arranged in the branch portion 20d of the high-temperature cooling water circuit 20.
  • the branching portion 20d is a branching portion that branches from the condenser flow path 20a into the heater core flow path 20b and the radiator flow path 20c.
  • the first on-off valve 26 a and the second on-off valve 26 b are flow path switching units that switch the cooling water flow path in the high-temperature cooling water circuit 20 .
  • the first open/close valve 26a opens and closes the heater core flow path 20b.
  • the first on-off valve 26a adjusts the opening degree of the heater core flow path 20b.
  • the second on-off valve 26b opens and closes the radiator flow path 20c.
  • the second on-off valve 26b adjusts the degree of opening of the radiator flow path 20c.
  • the first on-off valve 26a and the second on-off valve 26b adjust the opening degree ratio between the heater core flow path 20b and the radiator flow path 20c.
  • the first on-off valve 26 a and the second on-off valve 26 b adjust the flow rate ratio between the cooling water flowing through the heater core 22 and the cooling water flowing through the radiator 45 .
  • a first reserve tank 24 is arranged on the downstream side of the confluence portion 20 e of the high-temperature cooling water circuit 20 and the upstream side of the high-temperature side pump 21 .
  • the confluence portion 20e is a confluence portion where the heater core flow path 20b and the radiator flow path 20c merge into the condenser flow path 20a.
  • the first reserve tank 24 is a storage section that stores surplus cooling water. By storing excess cooling water in the first reserve tank 24, it is possible to suppress a decrease in the amount of cooling water circulating through each flow path.
  • the first reserve tank 24 is a closed reserve tank or an open-air reserve tank.
  • the closed reserve tank is a reserve tank that sets the pressure of the liquid surface of the stored cooling water to a predetermined pressure.
  • the atmosphere open type reserve tank is a reserve tank in which the pressure at the liquid surface of the stored cooling water is brought to the atmospheric pressure.
  • the first reserve tank 24 has a gas-liquid separation function that separates air bubbles mixed in the cooling water from the cooling water.
  • the electric heater 25 is arranged downstream of the condenser 12 and upstream of the branch portion 20d.
  • the electric heater 25 is a heat source device that generates Joule heat when electric power is supplied from a battery to heat the cooling water.
  • the electric heater 25 is the second heat source.
  • the electric heater 25 supplementarily heats the cooling water in the high temperature cooling water circuit 20 .
  • Electric heater 25 is controlled by controller 60 .
  • a low temperature side pump 31, a cooling water side evaporator 17, a radiator 45, and a second reserve tank 32 are arranged in the low temperature cooling water circuit 30.
  • the low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water.
  • the low temperature side pump 31 is an electric pump.
  • a part of the flow path of the low-temperature cooling water circuit 30 is shared with the radiator flow path 20 c of the high-temperature cooling water circuit 20 .
  • the radiator 45 is arranged in a portion of the low-temperature cooling water circuit 30 that is common to the radiator flow path 20 c of the high-temperature cooling water circuit 20 . Therefore, both the cooling water in the radiator flow path 20 c of the high-temperature cooling water circuit 20 and the cooling water in the low-temperature cooling water circuit 30 can flow through the radiator 45 .
  • the radiator 45 and the outdoor fan 40 are arranged at the front of the vehicle. Therefore, when the vehicle is running, the radiator 45 can be exposed to running wind.
  • the outdoor blower 40 is an outside air blower that blows outside air toward the radiator 45 .
  • the outdoor blower 40 is an electric blower whose fan is driven by an electric motor.
  • the operation of outdoor fan 40 is controlled by control device 60 .
  • the radiator 45 and the outdoor fan 40 are arranged at the front of the vehicle. Therefore, when the vehicle is running, the radiator 45 can be exposed to running wind.
  • the second reserve tank 32 is arranged downstream of the radiator 45 and upstream of the low temperature side pump 31 .
  • the second reserve tank 32 has the same structure and function as the first reserve tank 24 .
  • the air-side evaporator 14 and heater core 22 are housed in the air conditioning casing 51 of the indoor air conditioning unit 50 .
  • the indoor air conditioning unit 50 is arranged inside a not-shown instrument panel in the front part of the passenger compartment.
  • the air conditioning casing 51 is an air passage forming member that forms an air passage.
  • the heater core 22 is arranged downstream of the air-side evaporator 14 in the air passage in the air conditioning casing 51 .
  • An inside/outside air switching box 52 and an indoor fan 53 are arranged in the air conditioning casing 51 .
  • the inside/outside air switching box 52 is an inside/outside air switching unit that switches between introducing inside air and outside air into the air passage in the air conditioning casing 51 .
  • the indoor air blower 53 draws in the inside air and the outside air introduced into the air passage in the air conditioning casing 51 through the inside/outside air switching box 52 and blows the air.
  • the operation of the indoor fan 53 is controlled by the controller 60 .
  • An air mix door 54 is arranged between the air-side evaporator 14 and the heater core 22 in the air passage in the air conditioning casing 51 .
  • the air mix door 54 adjusts the air volume ratio between the cold air flowing into the heater core 22 and the cold air flowing through the cold air bypass passage 55 among the cold air that has passed through the air-side evaporator 14 .
  • the cold air bypass passage 55 is an air passage through which cold air that has passed through the air-side evaporator 14 flows while bypassing the heater core 22 .
  • the air mix door 54 is a rotary door having a rotating shaft rotatably supported with respect to the air conditioning casing 51 and a door base plate portion coupled to the rotating shaft. By adjusting the opening position of the air mix door 54, the temperature of the air-conditioned air blown out from the air-conditioning casing 51 into the passenger compartment can be adjusted to a desired temperature.
  • the rotating shaft of the air mix door 54 is driven by a servomotor 56.
  • the operation of the air mix door servomotor 56 is controlled by a control device 60 .
  • the air mix door 54 may be a sliding door that slides in a direction substantially perpendicular to the air flow.
  • the sliding door may be a plate-shaped door made of a rigid body.
  • a film door formed of a flexible film material may be used.
  • the air-conditioned air whose temperature has been adjusted by the air mix door 54 is blown into the vehicle interior through an outlet 57 formed in the air-conditioning casing 51 .
  • the low-temperature cooling water circuit 30 has a four-way valve 33, a first heat absorption channel 34 and a second heat absorption channel 35.
  • the four-way valve 33 is arranged on the outlet side of the coolant-side evaporator 17 and the inlet side of the radiator 45 in the low-temperature coolant circuit 30 .
  • a first heat absorption channel 34 and a second heat absorption channel 35 are connected to the four-way valve 33 .
  • the four-way valve 33 is a channel switching unit that switches the cooling water channel in the low-temperature cooling water circuit 30 .
  • the four-way valve 33 opens and closes the first heat absorption channel 34 and the second heat absorption channel 35 .
  • the first heat absorption channel 34 and the second heat absorption channel 35 are arranged in parallel with the radiator 45 in the flow of cooling water in the low-temperature cooling water circuit 30 .
  • the first heat absorption flow path 34 and the second heat absorption flow path 35 are arranged in parallel with each other in the flow of cooling water in the low-temperature cooling water circuit 30 .
  • a first heat absorption target device group 36 is arranged in the first heat absorption flow path 34 .
  • a second heat absorption target device group 37 is arranged in the second heat absorption flow path 35 .
  • Each device included in the first heat absorption target device group 36 and the second heat absorption target device group 37 is a heat generating device that generates heat as it operates, and is a heat absorption source that absorbs heat into the cooling water.
  • the first heat absorption target device group 36 is a battery 36a and a charger 36b
  • the second heat absorption target device group 37 is a transaxle 37a, a motor generator 37b, and an inverter 37c.
  • the battery 36a supplies power for running to the electric motor for running.
  • the battery 36a supplies power to the compressor 11 and various accessories.
  • Charger 36b is used to charge battery 36a.
  • the transaxle 37a is a power transmission mechanism that integrates a transmission, a differential gear, and the like.
  • the motor-generator 37b outputs driving force for running when supplied with electric power, and generates regenerative electric power during deceleration and the like.
  • the inverter 37c converts the direct current supplied from the battery 36a into alternating current and outputs the alternating current to the motor generator 37b.
  • the first heat absorption target device group 36 is a device that has a narrower guaranteed temperature range and easily generates heat compared to the second heat absorption target device group 37 .
  • the guaranteed temperature range is the temperature range in which the operation and durability of the equipment are guaranteed.
  • the control device 60 shown in FIG. 2 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 60 performs various calculations and processes based on control programs stored in the ROM.
  • Various devices to be controlled are connected to the output side of the control device 60 .
  • the control device 60 is a control unit that controls the operation of various controlled devices.
  • Equipment to be controlled by the controller 60 includes the compressor 11, the first expansion valve 13, the second expansion valve 16, the electric heater 25, the first on-off valve 26a, the second on-off valve 26b, the outdoor fan 40, and the four-way valve. 33, an indoor fan 53, an air mix door servomotor 56, and the like.
  • the software and hardware for controlling the electric motor of the compressor 11 in the control device 60 is a refrigerant discharge capacity control section.
  • Software and hardware for controlling the first expansion valve 13 and the second expansion valve 16 in the control device 60 are a throttle control section.
  • the software and hardware for controlling the first on-off valve 26a, the second on-off valve 26b, and the four-way valve 33 in the control device 60 are a valve control unit.
  • the control device 60, the first on-off valve 26a, the second on-off valve 26b, and the four-way valve 33 are flow path switching units that switch the flow path of the cooling water.
  • the software and hardware for controlling the outdoor fan 40 in the control device 60 is an outdoor air blowing capacity control section.
  • Software and hardware for controlling the indoor fan 53 in the control device 60 is an air blowing capacity control section.
  • the software and hardware for controlling the air mix door servomotor 56 in the controller 60 is an air volume ratio controller.
  • the various control sensor groups include an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a high temperature cooling water temperature sensor 64, a radiator temperature sensor 65, a device temperature sensor group 66, and the like.
  • the inside air temperature sensor 61 detects the vehicle interior temperature Tr.
  • An outside air temperature sensor 62 detects outside air temperature Tam.
  • the solar radiation sensor 63 detects the solar radiation Ts inside the vehicle compartment.
  • the high-temperature cooling water temperature sensor 64 detects the cooling water temperature TWH of the high-temperature cooling water circuit 20 .
  • the high temperature cooling water temperature sensor 64 detects the temperature of the cooling water flowing out from the electric heater 25 .
  • a radiator temperature sensor 65 detects a temperature TWR of cooling water flowing into the radiator 45 .
  • the device temperature sensor group 66 is a sensor group for detecting the temperature of the first heat absorption target device group 36 and the second heat absorption target device group 37, and includes a battery temperature sensor, a charger temperature sensor, a transaxle temperature sensor, and a motor generator temperature sensor. and an inverter temperature sensor.
  • the battery temperature sensor detects the temperature of the battery 36a.
  • a charger temperature sensor detects the temperature of the charger 36b.
  • a transaxle temperature sensor detects the temperature of the transaxle 37a.
  • the motor generator temperature sensor detects the temperature of the motor generator 37b.
  • the inverter temperature sensor detects the temperature of the inverter 37c.
  • Various operation switches (not shown) are connected to the input side of the control device 60 .
  • Various operation switches are provided on the operation panel 70 and are operated by the passenger.
  • the operation panel 70 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches are input to the control device 60 .
  • the auto switch is a switch for setting and canceling the automatic control operation of the vehicle air conditioner 1 .
  • the air conditioner switch is a switch for setting whether or not to cool the air in the indoor air conditioning unit 50 .
  • a temperature setting switch is a switch for setting a preset temperature in the vehicle compartment.
  • Operation modes include at least a cooling mode and a dehumidifying and heating mode.
  • the target blowout temperature TAO is the target temperature of the blowout air blown into the vehicle interior.
  • the control device 60 calculates the target outlet temperature TAO based on the following formula.
  • TAO Kset x Tset - Kr x Tr - Kam x Tam - Ks x Ts + C
  • Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel 70
  • Tr is the inside temperature detected by the inside temperature sensor 61
  • Tam is the outside temperature detected by the outside temperature sensor 62
  • Ts is It is the amount of solar radiation detected by the solar radiation sensor 63 .
  • Kset, Kr, Kam, and Ks are control gains
  • C is a correction constant.
  • the control device 60 switches to the cooling mode in the low temperature range of the target blowing temperature TAO, and switches to the dehumidifying heating mode in the high temperature range of the target blowing temperature TAO.
  • the air-side evaporator 14 cools and dehumidifies the air blown into the vehicle compartment, and the heater core 22 heats the air cooled and dehumidified by the air-side evaporator 14 to dehumidify and heat the vehicle compartment.
  • the control device 60 switches to the heating mode when the air conditioner switch on the operation panel 70 is turned off by the passenger and the target blowout temperature TAO is in the high temperature range.
  • the vehicle interior is heated by heating the air blown into the vehicle interior with the heater core 22 without cooling and dehumidifying it with the air-side evaporator 14 .
  • the control device 60 determines the operating states of various control devices connected to the control device 60 (in other words, , control signals to be output to various control devices).
  • controller 60 operates compressor 11 and high temperature side pump 21 .
  • the control device 60 opens the first expansion valve 13 at the throttle opening.
  • the controller 60 opens the first on-off valve 26a and the second on-off valve 26b.
  • the control device 60 controls the four-way valve 33 so that the cooling water passage to the radiator 45 side is closed.
  • the refrigerant flows in the refrigeration cycle device 10 in the cooling mode as indicated by the thick solid line in FIG. That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 .
  • the refrigerant is cooled and condensed in the condenser 12 .
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air-side evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
  • the refrigerant that has flowed out of the air-side evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the air-side evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, and the cooled air can be blown out into the passenger compartment. Thereby, cooling of the passenger compartment can be achieved.
  • the cooling water of the high-temperature cooling water circuit 20 circulates through the radiator 45, and the radiator 45 radiates heat from the cooling water to the outside air, as indicated by the thick solid line in FIG.
  • the cooling water of the high-temperature cooling water circuit 20 also circulates through the heater core 22 , and the amount of heat released from the cooling water to the air in the heater core 22 is adjusted by the air mix door 54 .
  • the control signal output to the servomotor of the air mix door 54 is determined so that the temperature of the air-conditioned air adjusted by the air mix door 54 reaches the target blowout temperature TAO.
  • the degree of opening of the air mix door 54 is determined based on the target outlet temperature TAO, the temperature of the air-side evaporator 14, the temperature TW of the coolant in the high-temperature coolant circuit 20, and the like.
  • the controller 60 operates the compressor 11 , the high temperature side pump 21 and the low temperature side pump 31 .
  • the control device 60 opens the first expansion valve 13 and the second expansion valve 16 at the throttle opening.
  • the controller 60 opens the first on-off valve 26a and closes the second on-off valve 26b.
  • the control device 60 controls the four-way valve 33 so that the cooling water flow path to the radiator 45 side is opened.
  • the refrigerant flows as indicated by the thick solid line in FIG. That is, in the refrigerating cycle device 10, the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12, exchanges heat with the cooling water in the high-temperature cooling water circuit 20, and radiates heat. Thereby, the cooling water in the high-temperature cooling water circuit 20 is heated.
  • the refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air-side evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools and dehumidifies the air blown into the passenger compartment.
  • the refrigerant that has flowed out of the air-side evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling water side evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the refrigerant that has flowed out of the coolant-side evaporator 17 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
  • the cooling water circulates between the condenser 12 and the heater core 22 as indicated by the thick solid line in FIG. Cooling water does not circulate.
  • the air mix door 54 is positioned at the solid line position in FIG. The total flow is determined to pass through heater core 22 .
  • the heater core 22 radiates heat from the cooling water in the high-temperature cooling water circuit 20 to the air blown into the vehicle interior. Therefore, the air that has been cooled and dehumidified by the air-side evaporator 14 is heated by the heater core 22 and blown into the passenger compartment.
  • the second on-off valve 26b closes the radiator flow path 20c, the cooling water of the high-temperature cooling water circuit 20 does not circulate through the radiator 45. Therefore, the radiator 45 does not radiate heat from the cooling water to the outside air.
  • the cooling water of the low-temperature cooling water circuit 30 circulates through the radiator 45 as indicated by the thick solid line in FIG. heat is absorbed from
  • the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is dissipated. can be radiated into the air by the heater core 22, and the air heated by the heater core 22 can be blown out into the passenger compartment.
  • the heater core 22 heats the air that has been cooled and dehumidified by the air-side evaporator 14 . As a result, dehumidification and heating of the passenger compartment can be achieved.
  • controller 60 operates compressor 11 , high temperature side pump 21 and low temperature side pump 31 .
  • the control device 60 closes the first expansion valve 13 and opens the second expansion valve 16 at the throttle opening.
  • the controller 60 opens the first on-off valve 26a and closes the second on-off valve 26b.
  • the control device 60 controls the four-way valve 33 so that the coolant flow path to the radiator 45 side is opened.
  • refrigerant flows as indicated by the thick solid line in FIG. That is, in the refrigeration cycle device 10, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling water side evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
  • the refrigerant does not flow to the air-side evaporator 14 because the first expansion valve 13 is closed. Therefore, the air is not cooled and dehumidified in the air-side evaporator 14 .
  • cooling water circulates between the condenser 12 and the heater core 22 as indicated by the thick solid line in FIG. Water does not circulate.
  • the air mix door 54 is positioned at the solid line position in FIG. The total flow is determined to pass through heater core 22 .
  • the heater core 22 radiates heat from the cooling water in the high-temperature cooling water circuit 20 to the air blown into the vehicle interior. Therefore, the air that has passed through the air-side evaporator 14 (that is, the air that has not been cooled and dehumidified by the air-side evaporator 14) is heated by the heater core 22 and blown into the vehicle compartment.
  • the radiator 45 does not radiate heat from the cooling water to the outside air.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is released.
  • Heat is radiated to the air by the heater core 22, and the air heated by the heater core 22 can be blown out into the passenger compartment.
  • the heater core 22 heats the air that has passed through the air-side evaporator 14 without being cooled and dehumidified by the air-side evaporator 14 . This makes it possible to heat the vehicle interior.
  • the low temperature side pump 31 is operated to throttle and open the second expansion valve 16.
  • the four-way valve 33 is controlled so that it is opened at a constant temperature and the cooling water is circulated to the equipment that requires cooling among the first heat absorption target equipment group 36 and the second endothermic equipment group 37 .
  • the cooling water cooled by the cooling water side evaporator 17 cools the equipment that requires cooling.
  • control device 60 executes the control process shown in the flowchart of FIG. This control process is executed as a subroutine of the control program executed by the control device 60 .
  • step S100 it is determined whether or not the amount of heat required for heating is insufficient. If it is determined in step S100 that the amount of heat necessary for heating (hereinafter referred to as the required amount of heat for heating) is not insufficient, the process returns to the main routine without taking any action.
  • step S100 If it is determined in step S100 that the amount of heat required for heating is insufficient, the process proceeds to step S110, in which it is determined whether or not the shortage of the necessary amount of heat for heating can be resolved by absorbing heat from the first endothermic device group 36. be judged. That is, it is determined whether or not the amount of heat that can be absorbed from the first heat absorption target device group 36 exceeds the required heating heat amount.
  • the necessary amount of heat for heating is calculated based on the amount of air blown by the indoor blower 53, the intake air temperature of the air-side evaporator 14, and the target outlet temperature TAO.
  • the intake air temperature of the air-side evaporator 14 is calculated based on the introduction ratio of the inside air and the outside air in the inside/outside air switching box 52, the vehicle interior temperature Tr, and the outside air temperature Tam.
  • the amount of heat that can be absorbed from the first heat absorption target device group 36 is calculated based on the amount of heat generated in each device of the first heat absorption target device group 36, the current temperature, and the lower limit value of the guaranteed temperature range. That is, the amount of heat that can be absorbed while maintaining the temperature of the equipment within the guaranteed temperature range is calculated as the amount of heat that can be absorbed from the first heat absorption target equipment group 36 .
  • step S110 If it is determined in step S110 that the shortage of the required amount of heating heat can be resolved by absorbing heat from the first heat absorption target device group 36, the process proceeds to step S120, where the operation mode is switched to absorb heat from the first heat absorption target device group 36. be done.
  • step S110 If it is determined in step S110 that the shortage of the required amount of heating heat is not resolved by absorbing heat from the first heat absorption target device group 36, the process proceeds to step S130, where the first heat absorption target device group 36 and the second heat absorption target device group It is determined whether or not the shortage of the required amount of heat for heating can be resolved by absorbing heat from 37 . That is, it is determined whether or not the amount of heat that can be absorbed from the first heat absorption target device group 36 and the second heat absorption target device group 37 exceeds the required heating heat amount.
  • the amount of heat that can be absorbed from the second group of devices for heat absorption 37 is calculated in the same manner as the amount of heat that can be absorbed from the first group of devices for heat absorption.
  • step S130 If it is determined in step S130 that the shortage of the necessary amount of heating heat can be resolved by absorbing heat from the first heat absorption target device group 36 and the second heat absorption target device group 37, the process proceeds to step S140, and the first heat absorption target device group. 36 and the second endothermic device group 37 are switched to an operation mode in which heat is absorbed.
  • the heat-absorbing device is switched based on the amount of heat generated, so as shown in FIG. 6, the frequency of switching can be reduced compared to the case where the heat-absorbing device is switched based only on the temperature. As a result, it is possible to reduce deterioration in the durability of the four-way valve 33, heat shock to each device, and adverse effects on air conditioning due to frequent switching.
  • the temperature of the cooling water rises by absorbing heat from the heat absorption target equipment, so the amount of heat that can be used for heating increases. Moreover, since the temperature of the device is lowered by absorbing heat from the heat-absorbing target device, the operating efficiency of the device is deteriorated and the amount of heat generated by the device is increased. Therefore, the amount of heat that can be used for heating is further increased.
  • control device 60 determines in which of the first heat absorption target device group 36 and the second heat absorption target device group 37 the heat absorption target device group is to be absorbed by the cooling water. 2
  • the four-way valve 33 is controlled by determining based on the temperature and calorific value of the endothermic device group 37 .
  • the heat absorption is switched based on not only the temperature but also the calorific value, so the temperature fluctuation behavior can be stabilized, and the frequent occurrence of the heat absorption switching can be suppressed.
  • control device 60 controls the temperature of the heat-absorbing target device group to be equal to or higher than the lower limit value of the guaranteed temperature range, and the heat-absorbing target equipment to be absorbed by the cooling water so that the amount of heat necessary for heating the vehicle interior space can be obtained. Determine the equipment group. Thereby, endothermic switching can be performed appropriately.
  • control device 60 controls the cooling water from any of the heat absorption target device groups based on the guaranteed temperature range and the ease of heat generation in each of the first heat absorption target device group 36 and the second heat absorption target device group 37. Decide the order of priority for heat absorption. As a result, it is possible to appropriately determine the heat absorption target device group for causing the cooling water to absorb heat.
  • control device 60 estimates the amount of heat generated by the battery 36a based on the value of the output current of the battery 36a. Thereby, heat absorption can be appropriately switched based on the amount of heat generated by the battery 36a.
  • control device 60 estimates the amount of heat generated by the second heat absorption target device group 37, which is the running auxiliary machine, based on the running state of the vehicle. Accordingly, it is possible to appropriately perform heat absorption switching based on the amount of heat generated by the second heat absorption target device group 37 .
  • a nanofluid may be used as a heat carrier.
  • a nanofluid is a fluid mixed with nanoparticles having a particle size on the order of nanometers.
  • a freon-based refrigerant is used as a refrigerant, but the type of refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon-based refrigerants, etc. may be used. good.
  • the refrigerating cycle device 10 of the above embodiment constitutes a subcritical refrigerating cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but a supercritical refrigerating cycle in which the high pressure side refrigerant pressure exceeds the critical pressure of the refrigerant.
  • the first heat absorption target device group 36 and the second heat absorption target device group 37 are provided as heat absorption sources, but three or more heat absorption target device groups may be provided.
  • the three or more heat absorption target device groups are arranged in parallel with each other in the flow of the cooling water of the low-temperature cooling water circuit 30, and the cooling water flows and does not flow to each of the three or more heat absorption target device groups. It is sufficient if the state can be switched.
  • the heat absorption target device group that causes the cooling water to absorb heat may be determined based on a predetermined priority.
  • a heat absorption target device group for heat absorption by the cooling water may be determined by individually combining three or more heat absorption target device groups.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This air-conditioning device for a vehicle comprises: a heat medium circuit (30) in which a heat medium circulates; a plurality of heat sinks (36, 37) which are disposed in the heat medium circuit and from which heat is absorbed by the heat medium; a switching unit (33) for switching whether or not the heat medium absorbs heat from the plurality of heat sinks; a compressor (11) that draws in, compresses, and discharges a refrigerant; a heat radiation section (12) that causes the refrigerant discharged from the compressor to radiate heat into air blown into an air-conditioned space; a decompression section (16) that decompresses the refrigerant caused to radiate heat in the heat radiation section; an evaporator (17) that causes the refrigerant decompressed in the decompression section to be evaporated by absorbed heat from the heat medium; and a control unit (60) that determines which of the plurality of heat sinks to use to cause the heat medium to absorb heat on the basis of the temperatures and heating values of the plurality of heat sinks, and controls the switching unit.

Description

車両用空調装置vehicle air conditioner 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年5月14日に出願された日本特許出願2021-82431号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-82431 filed on May 14, 2021, and the contents thereof are incorporated herein.
 本開示は、複数の吸熱源から吸熱して空気を加熱する車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner that absorbs heat from a plurality of heat absorption sources to heat air.
 従来、特許文献1には、クーラントサイクルのクーラントに、熱源として、換気排熱回収器、モータ/バッテリ、電気ヒータがつなげられた車両空調システムが記載されている。 Conventionally, Patent Document 1 describes a vehicle air conditioning system in which a ventilation exhaust heat recovery device, a motor/battery, and an electric heater are connected as heat sources to the coolant of the coolant cycle.
 これらの熱源によって加熱されたクーラントを、冷媒/クーラント熱交換器で冷媒に吸熱させることによって、第2冷媒凝縮器で空気を加熱して暖房に利用している。 By allowing the coolant heated by these heat sources to absorb heat in the refrigerant/coolant heat exchanger, the air is heated by the second refrigerant condenser and used for heating.
 この従来技術では、各熱源のうちいずれの熱源からクーラントに吸熱させるかを、各熱源付近のクーラントの温度に基づいて選択している。 In this prior art, which of the heat sources the coolant should absorb heat from is selected based on the temperature of the coolant near each heat source.
特許第5297154号公報Japanese Patent No. 5297154
 しかしながら、上記従来技術では、クーラントの温度のみに基づいて熱源を選択しているので、各熱源の発熱量の大きいときと小さいときとでクーラントへの温度変動挙動が異なり、場合によっては吸熱対象の熱源の切り替えが頻繁に起こって空調性や各熱源の耐久性に悪影響を及ぼす懸念がある。 However, in the above conventional technology, the heat source is selected based only on the temperature of the coolant. Therefore, the temperature fluctuation behavior of the coolant differs depending on whether the amount of heat generated by each heat source is large or small. There is concern that frequent switching of heat sources may adversely affect the air conditioning performance and durability of each heat source.
 本開示は、上記点に鑑みて、吸熱の切り替えが頻繁に起こることを抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress frequent switching of endotherms.
 本開示の一態様による車両用空調装置は、熱媒体回路と、複数の吸熱源と、切替部と、圧縮機と、放熱部と、減圧部と、蒸発器と、制御部とを備える。熱媒体回路には熱媒体が循環する。複数の吸熱源は、熱媒体回路に配置され、熱媒体に吸熱される。切替部は、複数の吸熱源に対して熱媒体に吸熱させるか否かを切り替える。 A vehicle air conditioner according to one aspect of the present disclosure includes a heat medium circuit, a plurality of heat absorption sources, a switching section, a compressor, a heat dissipation section, a pressure reduction section, an evaporator, and a control section. A heat medium circulates in the heat medium circuit. A plurality of heat absorption sources are arranged in the heat medium circuit, and heat is absorbed by the heat medium. The switching unit switches whether or not to allow the heat medium to absorb heat from the plurality of heat absorption sources.
 圧縮機は、冷媒を吸入して圧縮し吐出する。放熱部は、圧縮機から吐出された冷媒を、空調対象空間へ送風される空気に放熱させる。減圧部は、放熱部で放熱された冷媒を減圧させる。蒸発器は、減圧部で減圧された冷媒を熱媒体からの吸熱により蒸発させる。制御部は、複数の吸熱源のうちいずれの吸熱源で熱媒体に吸熱させるかを複数の吸熱源の温度および発熱量に基づいて決定して切替部を制御する。 The compressor sucks in the refrigerant, compresses it, and discharges it. The heat radiating section causes the refrigerant discharged from the compressor to radiate heat to the air blown into the air-conditioned space. The decompression part decompresses the refrigerant radiated by the heat radiation part. The evaporator evaporates the refrigerant decompressed by the decompression unit by absorbing heat from the heat medium. The control unit determines which one of the plurality of heat absorption sources is used to absorb heat by the heat medium based on the temperature and amount of heat generation of the plurality of heat absorption sources, and controls the switching unit.
 これによると、温度のみならず発熱量に基づいて吸熱の切り替えを行うので、温度変動挙動を安定化でき、ひいては吸熱の切り替えが頻繁に起こることを抑制できる。 According to this, the heat absorption is switched based on not only the temperature but also the calorific value, so the temperature fluctuation behavior can be stabilized, and the frequent occurrence of the heat absorption switching can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
一実施形態の車両用空調装置の全体構成図であり、冷房モードの作動状態を示している。 一実施形態の車両用空調装置の電気制御部を示すブロック図である。 一実施形態の車両用空調装置の全体構成図であり、除湿暖房モードの作動状態を示している。 一実施形態の車両用空調装置の全体構成図であり、暖房モードの作動状態を示している。 一実施形態の車両用空調装置の制御装置が実行する制御処理を示すフローチャートである。 一実施形態の車両用空調装置の作動例における吸熱源の温度変化を示すタイムチャートである。 一実施形態の車両用空調装置の作動例における機器、冷却水および冷媒の温度変化を示すタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and shows the operating state of cooling mode. It is a block diagram which shows the electric control part of the vehicle air conditioner of one Embodiment. BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and has shown the operating state of dehumidification heating mode. BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram of the vehicle air conditioner of one Embodiment, and shows the operating state in heating mode. 3 is a flow chart showing control processing executed by a control device for a vehicle air conditioner according to one embodiment; 4 is a time chart showing temperature changes of a heat absorption source in an operation example of the vehicle air conditioner of one embodiment; 4 is a time chart showing temperature changes of equipment, cooling water, and refrigerant in an operation example of the vehicle air conditioner of one embodiment.
 以下、一実施形態について図に基づいて説明する。図1に示す車両用空調装置1は、車室内空間(換言すれば、空調対象空間)を適切な温度に調整する空調装置である。車両用空調装置1は、冷凍サイクル装置10を有している。 An embodiment will be described below based on the drawings. A vehicle air conditioner 1 shown in FIG. 1 is an air conditioner that adjusts a vehicle interior space (in other words, a space to be air-conditioned) to an appropriate temperature. The vehicle air conditioner 1 has a refrigeration cycle device 10 .
 冷凍サイクル装置10は、電気自動車やハイブリッド自動車等に搭載されている。電気自動車は、走行用電動モータから車両走行用の駆動力を得る自動車である。ハイブリッド自動車は、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得る自動車である。 The refrigeration cycle device 10 is installed in electric vehicles, hybrid vehicles, and the like. An electric vehicle is a vehicle that obtains a driving force for running the vehicle from an electric motor for running. A hybrid vehicle is a vehicle that obtains a driving force for driving the vehicle from an engine (in other words, an internal combustion engine) and an electric motor for driving.
 冷凍サイクル装置10は、圧縮機11、凝縮器12、第1膨張弁13、空気側蒸発器14、定圧弁15、第2膨張弁16および冷却水側蒸発器17を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。 The refrigerating cycle device 10 is a vapor compression refrigerator comprising a compressor 11, a condenser 12, a first expansion valve 13, an air side evaporator 14, a constant pressure valve 15, a second expansion valve 16 and a cooling water side evaporator 17. be. In the refrigerating cycle device 10 of the present embodiment, a freon-based refrigerant is used as a refrigerant, and a subcritical refrigerating cycle is constructed in which the pressure of the refrigerant on the high-pressure side does not exceed the critical pressure of the refrigerant.
 第2膨張弁16および冷却水側蒸発器17は、冷媒流れにおいて、第1膨張弁13、空気側蒸発器14および定圧弁15に対して並列に配置されている。 The second expansion valve 16 and the cooling water side evaporator 17 are arranged in parallel with the first expansion valve 13, the air side evaporator 14 and the constant pressure valve 15 in the refrigerant flow.
 冷凍サイクル装置10には、第1冷媒循環回路と第2冷媒循環回路とが形成される。第1冷媒循環回路では、冷媒が圧縮機11、凝縮器12、第1膨張弁13、空気側蒸発器14、定圧弁15、圧縮機11の順に循環する。第2冷媒循環回路では、冷媒が圧縮機11、凝縮器12、第2膨張弁16、冷却水側蒸発器17の順に循環する。 A first refrigerant circuit and a second refrigerant circuit are formed in the refrigeration cycle device 10 . In the first refrigerant circulation circuit, the refrigerant circulates through the compressor 11, the condenser 12, the first expansion valve 13, the air-side evaporator 14, the constant pressure valve 15, and the compressor 11 in this order. In the second refrigerant circulation circuit, the refrigerant circulates through the compressor 11, the condenser 12, the second expansion valve 16, and the coolant-side evaporator 17 in this order.
 圧縮機11は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。圧縮機11の電動モータは、図2に示す制御装置60によって制御される。圧縮機11は、ベルトによって駆動される可変容量圧縮機であってもよい。 The compressor 11 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses, and discharges the refrigerant of the refrigeration cycle device 10 . The electric motor of compressor 11 is controlled by control device 60 shown in FIG. Compressor 11 may be a variable displacement compressor driven by a belt.
 凝縮器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させる高圧側熱交換器である。凝縮器12は、圧縮機11から吐出された冷媒と冷却水とを熱交換させることにより冷媒を放熱させて冷却水を加熱する放熱部である。 The condenser 12 is a high pressure side heat exchanger that exchanges heat between the high pressure side refrigerant discharged from the compressor 11 and the cooling water of the high temperature cooling water circuit 20 . The condenser 12 is a heat radiating section that heats the cooling water by heat-exchanging the refrigerant discharged from the compressor 11 and the cooling water.
 電気自動車の場合、圧縮機11および凝縮器12は、車両のモータールーム内に配置されている。モータールームは、走行用電動モータが収容される空間である。ハイブリッド自動車の場合、圧縮機11および凝縮器12は、車両のエンジンルーム内に配置されている。エンジンルームは、エンジンが収容される空間である。 In the case of an electric vehicle, the compressor 11 and condenser 12 are arranged in the motor room of the vehicle. A motor room is a space in which an electric motor for traveling is accommodated. In the case of a hybrid vehicle, compressor 11 and condenser 12 are arranged in the engine room of the vehicle. An engine room is a space in which an engine is housed.
 凝縮器12は、凝縮部12a、レシーバ12bおよび過冷却部12cを有している。凝縮器12において冷媒は凝縮部12a、レシーバ12bおよび過冷却部12cの順番に流れる。 The condenser 12 has a condensation section 12a, a receiver 12b and a supercooling section 12c. In the condenser 12, the refrigerant flows through the condensing portion 12a, the receiver 12b and the supercooling portion 12c in that order.
 凝縮部12aは、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる。レシーバ12bは、凝縮器12から流出した高圧冷媒の気液を分離して、分離された液相冷媒を下流側へ流出させるとともに、サイクルの余剰冷媒を貯える気液分離部である。過冷却部12cは、レシーバ12bから流出した液相冷媒と高温冷却水回路20の冷却水とを熱交換させて液相冷媒を過冷却する。 The condensation section 12a condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 20. The receiver 12b is a gas-liquid separation unit that separates the gas-liquid of the high-pressure refrigerant that has flowed out of the condenser 12, causes the separated liquid-phase refrigerant to flow downstream, and stores surplus refrigerant in the cycle. The supercooling unit 12c performs heat exchange between the liquid-phase refrigerant flowing out of the receiver 12b and the cooling water of the high-temperature cooling water circuit 20, thereby supercooling the liquid-phase refrigerant.
 高温冷却水回路20の冷却水は、熱媒体としての流体である。高温冷却水回路20の冷却水は高温熱媒体である。本実施形態では、高温冷却水回路20の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。高温冷却水回路20は、冷却水が循環する第1循環回路である。高温冷却水回路20は、高温熱媒体が循環する高温熱媒体回路である。 The cooling water of the high temperature cooling water circuit 20 is a fluid as a heat medium. The cooling water in the high temperature cooling water circuit 20 is a high temperature heat medium. In this embodiment, as the cooling water for the high-temperature cooling water circuit 20, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used. The high-temperature cooling water circuit 20 is a first circulation circuit through which cooling water circulates. The high-temperature cooling water circuit 20 is a high-temperature heat medium circuit in which a high-temperature heat medium circulates.
 第1膨張弁13は、レシーバ12bから流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式膨張弁である。電気式膨張弁は、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The first expansion valve 13 is a first decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out from the receiver 12b. The first expansion valve 13 is an electric expansion valve. An electric expansion valve is an electric variable throttle mechanism that includes a valve body that can change the opening degree of the throttle and an electric actuator that changes the opening degree of the valve body.
 第1膨張弁13は、空気側蒸発器14に冷媒が流れる状態と冷媒が流れない状態とを切り替える冷媒流れ切替部である。第1膨張弁13の作動は、制御装置60から出力される制御信号によって制御される。 The first expansion valve 13 is a refrigerant flow switching unit that switches between a state in which the refrigerant flows to the air-side evaporator 14 and a state in which the refrigerant does not flow. The operation of the first expansion valve 13 is controlled by control signals output from the controller 60 .
 第1膨張弁13は機械式の温度膨張弁であってもよい。第1膨張弁13が機械式の温度膨張弁である場合、第1膨張弁13側の冷媒流路を開閉する開閉弁が、第1膨張弁13とは別個に設けられている必要がある。 The first expansion valve 13 may be a mechanical thermal expansion valve. If the first expansion valve 13 is a mechanical thermal expansion valve, an on-off valve that opens and closes the refrigerant flow path on the first expansion valve 13 side must be provided separately from the first expansion valve 13 .
 空気側蒸発器14は、第1膨張弁13から流出した冷媒と車室内へ送風される空気とを熱交換させて冷媒を蒸発させる蒸発器である。空気側蒸発器14では、冷媒が車室内へ送風される空気から吸熱する。空気側蒸発器14は、車室内へ送風される空気を冷却する空気冷却器である。 The air-side evaporator 14 is an evaporator that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the air blown into the vehicle interior to evaporate the refrigerant. In the air-side evaporator 14, the refrigerant absorbs heat from the air blown into the vehicle interior. The air-side evaporator 14 is an air cooler that cools the air blown into the vehicle interior.
 定圧弁15は、空気側蒸発器14の出口側における冷媒の圧力を所定値に維持する圧力調整部である。定圧弁15は、機械式の可変絞り機構で構成されている。具体的には、定圧弁15は、空気側蒸発器14の出口側における冷媒の圧力が所定値を下回ると冷媒通路の通路面積(すなわち絞り開度)を減少させ、空気側蒸発器14の出口側における冷媒の圧力が所定値を超えると冷媒通路の通路面積(すなわち絞り開度)を増加させる。定圧弁15で圧力調整された気相冷媒は圧縮機11に吸入されて圧縮される。 The constant pressure valve 15 is a pressure adjusting unit that maintains the pressure of the refrigerant on the outlet side of the air-side evaporator 14 at a predetermined value. The constant pressure valve 15 is composed of a mechanical variable throttle mechanism. Specifically, when the pressure of the refrigerant on the outlet side of the air-side evaporator 14 falls below a predetermined value, the constant pressure valve 15 reduces the passage area (that is, throttle opening) of the refrigerant passage, When the pressure of the refrigerant on the side exceeds a predetermined value, the passage area of the refrigerant passage (that is, throttle opening) is increased. The gas-phase refrigerant pressure-regulated by the constant pressure valve 15 is sucked into the compressor 11 and compressed.
 サイクルを循環する循環冷媒流量の変動が少ない場合等には、定圧弁15に代えて、オリフィス、キャピラリチューブ等からなる固定絞りを採用してもよい。 In cases such as when there is little variation in the flow rate of the circulating refrigerant that circulates through the cycle, instead of the constant pressure valve 15, a fixed throttle made up of an orifice, capillary tube, or the like may be employed.
 第2膨張弁16は、凝縮器12から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁16は、電気式膨張弁である。電気式膨張弁は、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。第2膨張弁16は冷媒流路を全閉可能になっている。 The second expansion valve 16 is a second decompression section that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 12 . The second expansion valve 16 is an electric expansion valve. An electric expansion valve is an electric variable throttle mechanism that includes a valve body that can change the opening degree of the throttle and an electric actuator that changes the opening degree of the valve body. The second expansion valve 16 can fully close the refrigerant passage.
 第2膨張弁16は、冷却水側蒸発器17に冷媒が流れる状態と流れない状態とを切り替える冷媒流れ切替部である。第2膨張弁16の作動は、制御装置60から出力される制御信号によって制御される。 The second expansion valve 16 is a refrigerant flow switching unit that switches between a state in which the refrigerant flows to the coolant-side evaporator 17 and a state in which the refrigerant does not flow. The operation of the second expansion valve 16 is controlled by control signals output from the controller 60 .
 第2膨張弁16は機械式の温度膨張弁であってもよい。第2膨張弁16が機械式の温度膨張弁である場合、第2膨張弁16側の冷媒流路を開閉する開閉弁が、第2膨張弁16とは別個に設けられている必要がある。 The second expansion valve 16 may be a mechanical thermal expansion valve. If the second expansion valve 16 is a mechanical thermal expansion valve, an on-off valve that opens and closes the refrigerant flow path on the side of the second expansion valve 16 must be provided separately from the second expansion valve 16 .
 冷却水側蒸発器17は、第2膨張弁16から流出した冷媒と低温冷却水回路30の冷却水とを熱交換させて冷媒を蒸発させる蒸発部である。冷却水側蒸発器17では、冷媒が低温冷却水回路30の冷却水から吸熱する。冷却水側蒸発器17は、低温冷却水回路30の冷却水を冷却する熱媒体冷却器である。冷却水側蒸発器17で蒸発した気相冷媒は圧縮機11に吸入されて圧縮される。 The cooling water side evaporator 17 is an evaporator that exchanges heat between the refrigerant flowing out of the second expansion valve 16 and the cooling water of the low-temperature cooling water circuit 30 to evaporate the refrigerant. In the coolant-side evaporator 17 , the refrigerant absorbs heat from the coolant in the low-temperature coolant circuit 30 . The coolant-side evaporator 17 is a heat medium cooler that cools the coolant in the low-temperature coolant circuit 30 . The vapor phase refrigerant evaporated in the cooling water side evaporator 17 is sucked into the compressor 11 and compressed.
 低温冷却水回路30の冷却水は、熱媒体としての流体である。低温冷却水回路30の冷却水は低温熱媒体である。本実施形態では、低温冷却水回路30の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。低温冷却水回路30は、低温の熱媒体が循環する低温熱媒体回路である。低温冷却水回路30は、冷却水が循環する第2循環回路である。 The cooling water of the low-temperature cooling water circuit 30 is a fluid as a heat medium. The cooling water in the low-temperature cooling water circuit 30 is a low-temperature heat medium. In this embodiment, as the cooling water for the low-temperature cooling water circuit 30, a liquid containing at least ethylene glycol, dimethylpolysiloxane, or a nanofluid, or an antifreeze liquid is used. The low-temperature cooling water circuit 30 is a low-temperature heat medium circuit in which a low-temperature heat medium circulates. The low-temperature cooling water circuit 30 is a second circulation circuit through which cooling water circulates.
 高温冷却水回路20には、凝縮器12、高温側ポンプ21、ヒータコア22、ラジエータ45、第1リザーブタンク24および電気ヒータ25が配置されている。 A condenser 12, a high temperature side pump 21, a heater core 22, a radiator 45, a first reserve tank 24, and an electric heater 25 are arranged in the high temperature cooling water circuit 20.
 高温側ポンプ21は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ21は電動式のポンプである。高温側ポンプ21は、吐出流量が一定となる電動式のポンプであるが、高温側ポンプ21は、吐出流量が可変な電動式のポンプであってもよい。 The high temperature side pump 21 is a heat medium pump that sucks and discharges cooling water. The high temperature side pump 21 is an electric pump. The high temperature side pump 21 is an electric pump with a constant discharge flow rate, but the high temperature side pump 21 may be an electric pump with a variable discharge flow rate.
 ヒータコア22は、高温冷却水回路20の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱部である。ヒータコア22では、冷却水が、車室内へ送風される空気に放熱する。ヒータコア22は、凝縮器12で加熱された冷却水の熱を利用する熱利用部である。高温冷却水回路20は、ヒータコア22に冷却水を循環させる暖房用回路である。 The heater core 22 is an air heating unit that heats the air that is blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature cooling water circuit 20 and the air that is blown into the vehicle interior. In the heater core 22, the cooling water radiates heat to the air blown into the vehicle interior. The heater core 22 is a heat utilization section that utilizes the heat of the cooling water heated by the condenser 12 . The high-temperature cooling water circuit 20 is a heating circuit that circulates cooling water to the heater core 22 .
 ラジエータ45は、高温冷却水回路20の冷却水と外気とを熱交換させて冷却水から外気に放熱させる放熱器である。ラジエータ45は、高温冷却水回路20と低温冷却水回路30とで共通のラジエータである。 The radiator 45 is a radiator that exchanges heat between the cooling water of the high-temperature cooling water circuit 20 and the outside air, and releases heat from the cooling water to the outside air. The radiator 45 is a common radiator for the high-temperature cooling water circuit 20 and the low-temperature cooling water circuit 30 .
 凝縮器12および高温側ポンプ21は、凝縮器流路20aに配置されている。凝縮器流路20aは、高温冷却水回路20の冷却水が流れる流路である。 The condenser 12 and the high temperature side pump 21 are arranged in the condenser channel 20a. The condenser channel 20a is a channel through which the cooling water of the high-temperature cooling water circuit 20 flows.
 凝縮器12における冷却水の流れ方向は、凝縮器12における冷媒の流れ方向と対向している。すなわち、凝縮器12において冷却水は、過冷却部12c、凝縮部12aの順番に流れる。 The direction of flow of cooling water in the condenser 12 is opposite to the direction of flow of refrigerant in the condenser 12 . That is, in the condenser 12, the cooling water flows through the supercooling section 12c and the condensing section 12a in that order.
 ヒータコア22は、ヒータコア流路20bに配置されている。ヒータコア流路20bは、高温冷却水回路20の冷却水が流れる流路である。 The heater core 22 is arranged in the heater core channel 20b. The heater core channel 20b is a channel through which the cooling water of the high-temperature cooling water circuit 20 flows.
 ラジエータ45は、ラジエータ流路20cに配置されている。ラジエータ流路20cは、高温冷却水回路20の冷却水がヒータコア22に対して並列に流れる流路である。 The radiator 45 is arranged in the radiator channel 20c. The radiator flow path 20 c is a flow path through which the cooling water of the high-temperature cooling water circuit 20 flows in parallel with the heater core 22 .
 高温冷却水回路20の分岐部20dには、第1開閉弁26aおよび第2開閉弁26bが配置されている。分岐部20dは、凝縮器流路20aからヒータコア流路20bとラジエータ流路20cとに分岐する分岐部である。 A first on-off valve 26a and a second on-off valve 26b are arranged in the branch portion 20d of the high-temperature cooling water circuit 20. The branching portion 20d is a branching portion that branches from the condenser flow path 20a into the heater core flow path 20b and the radiator flow path 20c.
 第1開閉弁26aおよび第2開閉弁26bは、高温冷却水回路20における冷却水の流路を切り替える流路切替部である。第1開閉弁26aは、ヒータコア流路20bを開閉する。第1開閉弁26aは、ヒータコア流路20bの開度を調整する。第2開閉弁26bは、ラジエータ流路20cを開閉する。第2開閉弁26bは、ラジエータ流路20cの開度を調整する。第1開閉弁26aおよび第2開閉弁26bは、ヒータコア流路20bとラジエータ流路20cとの開度比を調整する。第1開閉弁26aおよび第2開閉弁26bは、ヒータコア22を流れる冷却水とラジエータ45を流れる冷却水との流量比を調整する。 The first on-off valve 26 a and the second on-off valve 26 b are flow path switching units that switch the cooling water flow path in the high-temperature cooling water circuit 20 . The first open/close valve 26a opens and closes the heater core flow path 20b. The first on-off valve 26a adjusts the opening degree of the heater core flow path 20b. The second on-off valve 26b opens and closes the radiator flow path 20c. The second on-off valve 26b adjusts the degree of opening of the radiator flow path 20c. The first on-off valve 26a and the second on-off valve 26b adjust the opening degree ratio between the heater core flow path 20b and the radiator flow path 20c. The first on-off valve 26 a and the second on-off valve 26 b adjust the flow rate ratio between the cooling water flowing through the heater core 22 and the cooling water flowing through the radiator 45 .
 高温冷却水回路20の合流部20eの下流側かつ高温側ポンプ21の上流側には、第1リザーブタンク24が配置されている。合流部20eは、ヒータコア流路20bとラジエータ流路20cとから凝縮器流路20aに合流する合流部である。 A first reserve tank 24 is arranged on the downstream side of the confluence portion 20 e of the high-temperature cooling water circuit 20 and the upstream side of the high-temperature side pump 21 . The confluence portion 20e is a confluence portion where the heater core flow path 20b and the radiator flow path 20c merge into the condenser flow path 20a.
 第1リザーブタンク24は、余剰冷却水を貯留する貯留部である。第1リザーブタンク24に余剰冷却水を貯留しておくことによって、各流路を循環する冷却水の液量の低下を抑制することができる。 The first reserve tank 24 is a storage section that stores surplus cooling water. By storing excess cooling water in the first reserve tank 24, it is possible to suppress a decrease in the amount of cooling water circulating through each flow path.
 第1リザーブタンク24は、密閉式リザーブタンクまたは大気開放式リザーブタンクである。密閉式リザーブタンクは、蓄えている冷却水の液面における圧力を所定圧力にするリザーブタンクである。大気開放式リザーブタンクは、蓄えている冷却水の液面における圧力を大気圧にするリザーブタンクである。 The first reserve tank 24 is a closed reserve tank or an open-air reserve tank. The closed reserve tank is a reserve tank that sets the pressure of the liquid surface of the stored cooling water to a predetermined pressure. The atmosphere open type reserve tank is a reserve tank in which the pressure at the liquid surface of the stored cooling water is brought to the atmospheric pressure.
 第1リザーブタンク24は、冷却水中に混在する気泡を冷却水から分離させる気液分離機能を有している。 The first reserve tank 24 has a gas-liquid separation function that separates air bubbles mixed in the cooling water from the cooling water.
 電気ヒータ25は、凝縮器12の下流側かつ分岐部20dの上流側に配置されている。電気ヒータ25は、電池から電力が供給されることによってジュール熱を発生して冷却水を加熱する熱源機器である。電気ヒータ25は第2熱源である。電気ヒータ25は、高温冷却水回路20の冷却水を補助的に加熱する。電気ヒータ25は、制御装置60によって制御される。 The electric heater 25 is arranged downstream of the condenser 12 and upstream of the branch portion 20d. The electric heater 25 is a heat source device that generates Joule heat when electric power is supplied from a battery to heat the cooling water. The electric heater 25 is the second heat source. The electric heater 25 supplementarily heats the cooling water in the high temperature cooling water circuit 20 . Electric heater 25 is controlled by controller 60 .
 低温冷却水回路30には、低温側ポンプ31、冷却水側蒸発器17、ラジエータ45および第2リザーブタンク32が配置されている。低温側ポンプ31は、冷却水を吸入して吐出する熱媒体ポンプである。低温側ポンプ31は電動式のポンプである。 A low temperature side pump 31, a cooling water side evaporator 17, a radiator 45, and a second reserve tank 32 are arranged in the low temperature cooling water circuit 30. The low temperature side pump 31 is a heat medium pump that sucks and discharges cooling water. The low temperature side pump 31 is an electric pump.
 低温冷却水回路30の一部の流路は、高温冷却水回路20のラジエータ流路20cと共通になっている。ラジエータ45は、低温冷却水回路30のうち高温冷却水回路20のラジエータ流路20cと共通の流路の部分に配置されている。したがって、ラジエータ45には、高温冷却水回路20のラジエータ流路20cの冷却水と、低温冷却水回路30の冷却水の両方が流通可能になっている。 A part of the flow path of the low-temperature cooling water circuit 30 is shared with the radiator flow path 20 c of the high-temperature cooling water circuit 20 . The radiator 45 is arranged in a portion of the low-temperature cooling water circuit 30 that is common to the radiator flow path 20 c of the high-temperature cooling water circuit 20 . Therefore, both the cooling water in the radiator flow path 20 c of the high-temperature cooling water circuit 20 and the cooling water in the low-temperature cooling water circuit 30 can flow through the radiator 45 .
 ラジエータ45および室外送風機40は、車両の最前部に配置されている。従って、車両の走行時にはラジエータ45に走行風を当てることができるようになっている。 The radiator 45 and the outdoor fan 40 are arranged at the front of the vehicle. Therefore, when the vehicle is running, the radiator 45 can be exposed to running wind.
 室外送風機40は、ラジエータ45へ向けて外気を送風する外気送風部である。室外送風機40は、ファンを電動モータにて駆動する電動送風機である。室外送風機40の作動は、制御装置60によって制御される。 The outdoor blower 40 is an outside air blower that blows outside air toward the radiator 45 . The outdoor blower 40 is an electric blower whose fan is driven by an electric motor. The operation of outdoor fan 40 is controlled by control device 60 .
 ラジエータ45および室外送風機40は、車両の最前部に配置されている。従って、車両の走行時にはラジエータ45に走行風を当てることができるようになっている。 The radiator 45 and the outdoor fan 40 are arranged at the front of the vehicle. Therefore, when the vehicle is running, the radiator 45 can be exposed to running wind.
 第2リザーブタンク32は、ラジエータ45の下流側かつ低温側ポンプ31の上流側に配置されている。第2リザーブタンク32は、第1リザーブタンク24と同様の構造および機能を有している。 The second reserve tank 32 is arranged downstream of the radiator 45 and upstream of the low temperature side pump 31 . The second reserve tank 32 has the same structure and function as the first reserve tank 24 .
 空気側蒸発器14およびヒータコア22は、室内空調ユニット50の空調ケーシング51に収容されている。室内空調ユニット50は、車室内前部の図示しない計器盤の内側に配置されている。空調ケーシング51は、空気通路を形成する空気通路形成部材である。 The air-side evaporator 14 and heater core 22 are housed in the air conditioning casing 51 of the indoor air conditioning unit 50 . The indoor air conditioning unit 50 is arranged inside a not-shown instrument panel in the front part of the passenger compartment. The air conditioning casing 51 is an air passage forming member that forms an air passage.
 ヒータコア22は、空調ケーシング51内の空気通路において、空気側蒸発器14の空気流れ下流側に配置されている。空調ケーシング51には、内外気切替箱52と室内送風機53とが配置されている。 The heater core 22 is arranged downstream of the air-side evaporator 14 in the air passage in the air conditioning casing 51 . An inside/outside air switching box 52 and an indoor fan 53 are arranged in the air conditioning casing 51 .
 内外気切替箱52は、空調ケーシング51内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機53は、内外気切替箱52を通して空調ケーシング51内の空気通路に導入された内気および外気を吸入して送風する。室内送風機53の作動は、制御装置60によって制御される。 The inside/outside air switching box 52 is an inside/outside air switching unit that switches between introducing inside air and outside air into the air passage in the air conditioning casing 51 . The indoor air blower 53 draws in the inside air and the outside air introduced into the air passage in the air conditioning casing 51 through the inside/outside air switching box 52 and blows the air. The operation of the indoor fan 53 is controlled by the controller 60 .
 空調ケーシング51内の空気通路において空気側蒸発器14とヒータコア22との間には、エアミックスドア54が配置されている。エアミックスドア54は、空気側蒸発器14を通過した冷風のうちヒータコア22に流入する冷風と冷風バイパス通路55を流れる冷風との風量割合を調整する。 An air mix door 54 is arranged between the air-side evaporator 14 and the heater core 22 in the air passage in the air conditioning casing 51 . The air mix door 54 adjusts the air volume ratio between the cold air flowing into the heater core 22 and the cold air flowing through the cold air bypass passage 55 among the cold air that has passed through the air-side evaporator 14 .
 冷風バイパス通路55は、空気側蒸発器14を通過した冷風がヒータコア22をバイスして流れる空気通路である。 The cold air bypass passage 55 is an air passage through which cold air that has passed through the air-side evaporator 14 flows while bypassing the heater core 22 .
 エアミックスドア54は、空調ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア54の開度位置を調整することによって、空調ケーシング51から車室内に吹き出される空調風の温度を所望温度に調整できる。 The air mix door 54 is a rotary door having a rotating shaft rotatably supported with respect to the air conditioning casing 51 and a door base plate portion coupled to the rotating shaft. By adjusting the opening position of the air mix door 54, the temperature of the air-conditioned air blown out from the air-conditioning casing 51 into the passenger compartment can be adjusted to a desired temperature.
 エアミックスドア54の回転軸は、サーボモータ56によって駆動される。エアミックスドア用サーボモータ56の作動は、制御装置60によって制御される。 The rotating shaft of the air mix door 54 is driven by a servomotor 56. The operation of the air mix door servomotor 56 is controlled by a control device 60 .
 エアミックスドア54は、空気流れと略直交する方向にスライド移動するスライドドアであってもよい。スライドドアは、剛体で形成された板状のドアであってもよいし。可撓性を有するフィルム材で形成されたフィルムドアであってもよい。 The air mix door 54 may be a sliding door that slides in a direction substantially perpendicular to the air flow. The sliding door may be a plate-shaped door made of a rigid body. A film door formed of a flexible film material may be used.
 エアミックスドア54によって温度調整された空調風は、空調ケーシング51に形成された吹出口57から車室内へ吹き出される。 The air-conditioned air whose temperature has been adjusted by the air mix door 54 is blown into the vehicle interior through an outlet 57 formed in the air-conditioning casing 51 .
 低温冷却水回路30は、四方弁33、第1吸熱流路34および第2吸熱流路35を有している。四方弁33は、低温冷却水回路30において冷却水側蒸発器17の出口側かつラジエータ45の入口側に配置されている。四方弁33には第1吸熱流路34および第2吸熱流路35が接続されている。 The low-temperature cooling water circuit 30 has a four-way valve 33, a first heat absorption channel 34 and a second heat absorption channel 35. The four-way valve 33 is arranged on the outlet side of the coolant-side evaporator 17 and the inlet side of the radiator 45 in the low-temperature coolant circuit 30 . A first heat absorption channel 34 and a second heat absorption channel 35 are connected to the four-way valve 33 .
 四方弁33は、低温冷却水回路30における冷却水の流路を切り替える流路切替部である。四方弁33は、第1吸熱流路34と第2吸熱流路35とを開閉する。第1吸熱流路34および第2吸熱流路35は、低温冷却水回路30の冷却水の流れにおいて、ラジエータ45と並列に配置されている。第1吸熱流路34および第2吸熱流路35は、低温冷却水回路30の冷却水の流れにおいて、互いに並列に配置されている。 The four-way valve 33 is a channel switching unit that switches the cooling water channel in the low-temperature cooling water circuit 30 . The four-way valve 33 opens and closes the first heat absorption channel 34 and the second heat absorption channel 35 . The first heat absorption channel 34 and the second heat absorption channel 35 are arranged in parallel with the radiator 45 in the flow of cooling water in the low-temperature cooling water circuit 30 . The first heat absorption flow path 34 and the second heat absorption flow path 35 are arranged in parallel with each other in the flow of cooling water in the low-temperature cooling water circuit 30 .
 第1吸熱流路34には第1吸熱対象機器群36が配置されている。第2吸熱流路35には第2吸熱対象機器群37が配置されている。第1吸熱対象機器群36および第2吸熱対象機器群37に含まれる各機器は、作動に伴って発熱する発熱機器であり、冷却水に吸熱される吸熱源である。 A first heat absorption target device group 36 is arranged in the first heat absorption flow path 34 . A second heat absorption target device group 37 is arranged in the second heat absorption flow path 35 . Each device included in the first heat absorption target device group 36 and the second heat absorption target device group 37 is a heat generating device that generates heat as it operates, and is a heat absorption source that absorbs heat into the cooling water.
 本例では、第1吸熱対象機器群36は電池36aおよび充電器36bであり、第2吸熱対象機器群37はトランスアクスル37a、モータジェネレータ37bおよびインバータ37cである。 In this example, the first heat absorption target device group 36 is a battery 36a and a charger 36b, and the second heat absorption target device group 37 is a transaxle 37a, a motor generator 37b, and an inverter 37c.
 電池36aは、走行用電動モータに走行用電力を供給する。電池36aは、圧縮機11や種々の補機類に電力を供給する。充電器36bは、電池36aを充電するために用いられる。 The battery 36a supplies power for running to the electric motor for running. The battery 36a supplies power to the compressor 11 and various accessories. Charger 36b is used to charge battery 36a.
 トランスアクスル37aは、トランスミッションやディファレンシャルギア等を一体化させた動力伝達機構である。モータジェネレータ37bは、電力が供給されることによって走行用の駆動力を出力するとともに、減速時等には回生電力を発生させる。インバータ37cは、電池36aから供給された直流電流を交流電流に変換してモータジェネレータ37bに出力する。 The transaxle 37a is a power transmission mechanism that integrates a transmission, a differential gear, and the like. The motor-generator 37b outputs driving force for running when supplied with electric power, and generates regenerative electric power during deceleration and the like. The inverter 37c converts the direct current supplied from the battery 36a into alternating current and outputs the alternating current to the motor generator 37b.
 第1吸熱対象機器群36は、第2吸熱対象機器群37と比較して、保証温度範囲が狭く、かつ容易に発熱する機器であることが好ましい。保証温度範囲は、機器の作動と耐久性が保証される温度の範囲である。 It is preferable that the first heat absorption target device group 36 is a device that has a narrower guaranteed temperature range and easily generates heat compared to the second heat absorption target device group 37 . The guaranteed temperature range is the temperature range in which the operation and durability of the equipment are guaranteed.
 図2に示す制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。 The control device 60 shown in FIG. 2 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits. The control device 60 performs various calculations and processes based on control programs stored in the ROM. Various devices to be controlled are connected to the output side of the control device 60 . The control device 60 is a control unit that controls the operation of various controlled devices.
 制御装置60によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁16、電気ヒータ25、第1開閉弁26a、第2開閉弁26b、室外送風機40、四方弁33、室内送風機53およびエアミックスドア用サーボモータ56等である。 Equipment to be controlled by the controller 60 includes the compressor 11, the first expansion valve 13, the second expansion valve 16, the electric heater 25, the first on-off valve 26a, the second on-off valve 26b, the outdoor fan 40, and the four-way valve. 33, an indoor fan 53, an air mix door servomotor 56, and the like.
 制御装置60のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置60のうち第1膨張弁13および第2膨張弁16を制御するソフトウェアおよびハードウェアは、絞り制御部である。 The software and hardware for controlling the electric motor of the compressor 11 in the control device 60 is a refrigerant discharge capacity control section. Software and hardware for controlling the first expansion valve 13 and the second expansion valve 16 in the control device 60 are a throttle control section.
 制御装置60のうち第1開閉弁26aおよび第2開閉弁26bおよび四方弁33を制御するソフトウェアおよびハードウェアは、弁制御部である。制御装置60、第1開閉弁26aおよび第2開閉弁26bおよび四方弁33は、冷却水の流路を切り替える流路切替部である。 The software and hardware for controlling the first on-off valve 26a, the second on-off valve 26b, and the four-way valve 33 in the control device 60 are a valve control unit. The control device 60, the first on-off valve 26a, the second on-off valve 26b, and the four-way valve 33 are flow path switching units that switch the flow path of the cooling water.
 制御装置60のうち室外送風機40を制御するソフトウェアおよびハードウェアは、外気送風能力制御部である。制御装置60のうち室内送風機53を制御するソフトウェアおよびハードウェアは、空気送風能力制御部である。制御装置60のうちエアミックスドア用サーボモータ56を制御するソフトウェアおよびハードウェアは、風量割合制御部である。 The software and hardware for controlling the outdoor fan 40 in the control device 60 is an outdoor air blowing capacity control section. Software and hardware for controlling the indoor fan 53 in the control device 60 is an air blowing capacity control section. The software and hardware for controlling the air mix door servomotor 56 in the controller 60 is an air volume ratio controller.
 制御装置60の入力側には、種々の制御用センサ群が接続されている。種々の制御用センサ群は、内気温度センサ61、外気温度センサ62、日射量センサ63、高温冷却水温度センサ64、ラジエータ温度センサ65、機器温度センサ群66等である。 Various control sensors are connected to the input side of the control device 60 . The various control sensor groups include an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a high temperature cooling water temperature sensor 64, a radiator temperature sensor 65, a device temperature sensor group 66, and the like.
 内気温度センサ61は車室内温度Trを検出する。外気温度センサ62は外気温Tamを検出する。日射量センサ63は車室内の日射量Tsを検出する。 The inside air temperature sensor 61 detects the vehicle interior temperature Tr. An outside air temperature sensor 62 detects outside air temperature Tam. The solar radiation sensor 63 detects the solar radiation Ts inside the vehicle compartment.
 高温冷却水温度センサ64は、高温冷却水回路20の冷却水の温度TWHを検出する。例えば、高温冷却水温度センサ64は、電気ヒータ25から流出した冷却水の温度を検出する。ラジエータ温度センサ65は、ラジエータ45に流入する冷却水の温度TWRを検出する。 The high-temperature cooling water temperature sensor 64 detects the cooling water temperature TWH of the high-temperature cooling water circuit 20 . For example, the high temperature cooling water temperature sensor 64 detects the temperature of the cooling water flowing out from the electric heater 25 . A radiator temperature sensor 65 detects a temperature TWR of cooling water flowing into the radiator 45 .
 機器温度センサ群66は、第1吸熱対象機器群36および第2吸熱対象機器群37の温度を検出するセンサ群であり、電池温度センサ、充電器温度センサ、トランスアクスル温度センサ、モータジェネレータ温度センサおよびインバータ温度センサを含んでいる。 The device temperature sensor group 66 is a sensor group for detecting the temperature of the first heat absorption target device group 36 and the second heat absorption target device group 37, and includes a battery temperature sensor, a charger temperature sensor, a transaxle temperature sensor, and a motor generator temperature sensor. and an inverter temperature sensor.
 電池温度センサは電池36aの温度を検出する。充電器温度センサは充電器36bの温度を検出する。トランスアクスル温度センサはトランスアクスル37aの温度を検出する。モータジェネレータ温度センサはモータジェネレータ37bの温度を検出する。インバータ温度センサはインバータ37cの温度を検出する。 The battery temperature sensor detects the temperature of the battery 36a. A charger temperature sensor detects the temperature of the charger 36b. A transaxle temperature sensor detects the temperature of the transaxle 37a. The motor generator temperature sensor detects the temperature of the motor generator 37b. The inverter temperature sensor detects the temperature of the inverter 37c.
 制御装置60の入力側には、図示しない各種操作スイッチが接続されている。各種操作スイッチは操作パネル70に設けられており、乗員によって操作される。操作パネル70は車室内前部の計器盤付近に配置されている。制御装置60には、各種操作スイッチからの操作信号が入力される。 Various operation switches (not shown) are connected to the input side of the control device 60 . Various operation switches are provided on the operation panel 70 and are operated by the passenger. The operation panel 70 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches are input to the control device 60 .
 各種操作スイッチは、オートスイッチ、エアコンスイッチ、温度設定スイッチ等である。オートスイッチは、車両用空調装置1の自動制御運転の設定および解除を行うスイッチである。エアコンスイッチは、室内空調ユニット50にて空気の冷却を行うか否かを設定するスイッチである。温度設定スイッチは、車室内の設定温度を設定するスイッチである。 Various operation switches are auto switches, air conditioner switches, temperature setting switches, etc. The auto switch is a switch for setting and canceling the automatic control operation of the vehicle air conditioner 1 . The air conditioner switch is a switch for setting whether or not to cool the air in the indoor air conditioning unit 50 . A temperature setting switch is a switch for setting a preset temperature in the vehicle compartment.
 次に、上記構成における作動を説明する。以下では、制御装置60は、操作パネル70のオートスイッチが乗員によってオンされている場合の作動について説明する。操作パネル70のエアコンスイッチが乗員によってオンされている場合、目標吹出温度TAO等に基づいて運転モードを切り替える。運転モードとしては、少なくとも冷房モードおよび除湿暖房モードがある。 Next, the operation of the above configuration will be explained. Below, the operation of the control device 60 when the auto switch of the operation panel 70 is turned on by the passenger will be described. When the air conditioner switch on the operation panel 70 is turned on by the passenger, the operation mode is switched based on the target air temperature TAO and the like. Operation modes include at least a cooling mode and a dehumidifying and heating mode.
 目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。制御装置60は、目標吹出温度TAOを以下の数式に基づいて算出する。 The target blowout temperature TAO is the target temperature of the blowout air blown into the vehicle interior. The control device 60 calculates the target outlet temperature TAO based on the following formula.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C
 この数式において、Tsetは操作パネル70の温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ61によって検出された内気温、Tamは外気温度センサ62によって検出された外気温、Tsは日射量センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset x Tset - Kr x Tr - Kam x Tam - Ks x Ts + C
In this formula, Tset is the vehicle interior set temperature set by the temperature setting switch on the operation panel 70, Tr is the inside temperature detected by the inside temperature sensor 61, Tam is the outside temperature detected by the outside temperature sensor 62, and Ts is It is the amount of solar radiation detected by the solar radiation sensor 63 . Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 制御装置60は、目標吹出温度TAOの低温域では冷房モードに切り替え、目標吹出温度TAOの高温域では除湿暖房モードに切り替える。 The control device 60 switches to the cooling mode in the low temperature range of the target blowing temperature TAO, and switches to the dehumidifying heating mode in the high temperature range of the target blowing temperature TAO.
 除湿暖房モードでは、車室内へ送風される空気を空気側蒸発器14で冷却除湿し、空気側蒸発器14で冷却除湿された空気をヒータコア22で加熱することによって車室内を除湿暖房する。 In the dehumidifying and heating mode, the air-side evaporator 14 cools and dehumidifies the air blown into the vehicle compartment, and the heater core 22 heats the air cooled and dehumidified by the air-side evaporator 14 to dehumidify and heat the vehicle compartment.
 制御装置60は、操作パネル70のエアコンスイッチが乗員によってオフされており且つ目標吹出温度TAOが高温域にある場合、暖房モードに切り替える。 The control device 60 switches to the heating mode when the air conditioner switch on the operation panel 70 is turned off by the passenger and the target blowout temperature TAO is in the high temperature range.
 暖房モードでは、車室内へ送風される空気を空気側蒸発器14で冷却除湿することなくヒータコア22で加熱することによって車室内を暖房する。 In the heating mode, the vehicle interior is heated by heating the air blown into the vehicle interior with the heater core 22 without cooling and dehumidifying it with the air-side evaporator 14 .
 次に、冷房モード、除湿暖房モードおよび暖房モードにおける作動について説明する。冷房モード、除湿暖房モードおよび暖房モードでは、制御装置60は、目標吹出温度TAOや上述のセンサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(換言すれば、各種制御機器へ出力する制御信号)を決定する。 Next, we will explain the operation in the cooling mode, dehumidifying heating mode, and heating mode. In the cooling mode, the dehumidifying heating mode, and the heating mode, the control device 60 determines the operating states of various control devices connected to the control device 60 (in other words, , control signals to be output to various control devices).
 (1)冷房モード
 冷房モードでは、制御装置60は、圧縮機11および高温側ポンプ21を作動させる。冷房モードでは、制御装置60は、第1膨張弁13を絞り開度で開弁させる。冷房モードでは、制御装置60は、第1開閉弁26aを開弁させ、第2開閉弁26bを開弁させる。冷房モードでは、制御装置60は、ラジエータ45側への冷却水流路が閉じられるように四方弁33を制御する。
(1) Cooling Mode In the cooling mode, controller 60 operates compressor 11 and high temperature side pump 21 . In the cooling mode, the control device 60 opens the first expansion valve 13 at the throttle opening. In the cooling mode, the controller 60 opens the first on-off valve 26a and the second on-off valve 26b. In the cooling mode, the control device 60 controls the four-way valve 33 so that the cooling water passage to the radiator 45 side is closed.
 これにより、冷房モード時の冷凍サイクル装置10では、図1の太実線に示すように冷媒が流れる。すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。 As a result, the refrigerant flows in the refrigeration cycle device 10 in the cooling mode as indicated by the thick solid line in FIG. That is, the high pressure refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant that has flowed into the condenser 12 releases heat to the cooling water in the high-temperature cooling water circuit 20 . As a result, the refrigerant is cooled and condensed in the condenser 12 .
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、空気側蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air-side evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools the air blown into the vehicle interior.
 そして、空気側蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the air-side evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 このように、冷房モードでは、空気側蒸発器14にて低圧冷媒に空気から吸熱させて、冷却された空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。 Thus, in the cooling mode, the air-side evaporator 14 allows the low-pressure refrigerant to absorb heat from the air, and the cooled air can be blown out into the passenger compartment. Thereby, cooling of the passenger compartment can be achieved.
 冷房モード時の高温冷却水回路20では、図1の太実線に示すようにラジエータ45に高温冷却水回路20の冷却水が循環してラジエータ45で冷却水から外気に放熱される。 In the high-temperature cooling water circuit 20 in the cooling mode, the cooling water of the high-temperature cooling water circuit 20 circulates through the radiator 45, and the radiator 45 radiates heat from the cooling water to the outside air, as indicated by the thick solid line in FIG.
 このとき、ヒータコア22にも高温冷却水回路20の冷却水が循環するが、ヒータコア22における冷却水から空気への放熱量はエアミックスドア54によって調整される。 At this time, the cooling water of the high-temperature cooling water circuit 20 also circulates through the heater core 22 , and the amount of heat released from the cooling water to the air in the heater core 22 is adjusted by the air mix door 54 .
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54によって温度調整された空調風が目標吹出温度TAOとなるように決定される。具体的には、エアミックスドア54の開度が、目標吹出温度TAO、空気側蒸発器14の温度、および高温冷却水回路20の冷却水の温度TW等に基づいて決定される。 The control signal output to the servomotor of the air mix door 54 is determined so that the temperature of the air-conditioned air adjusted by the air mix door 54 reaches the target blowout temperature TAO. Specifically, the degree of opening of the air mix door 54 is determined based on the target outlet temperature TAO, the temperature of the air-side evaporator 14, the temperature TW of the coolant in the high-temperature coolant circuit 20, and the like.
 (2)除湿暖房モード
 除湿暖房モードでは、制御装置60は、圧縮機11、高温側ポンプ21および低温側ポンプ31を作動させる。除湿暖房モードでは、制御装置60は、第1膨張弁13および第2膨張弁16を絞り開度で開弁させる。除湿暖房モードでは、制御装置60は、第1開閉弁26aを開弁させ、第2開閉弁26bを閉弁させる。除湿暖房モードでは、制御装置60は、ラジエータ45側への冷却水流路が開けられるように四方弁33を制御する。
(2) Dehumidifying Heating Mode In the dehumidifying heating mode, the controller 60 operates the compressor 11 , the high temperature side pump 21 and the low temperature side pump 31 . In the dehumidification/heating mode, the control device 60 opens the first expansion valve 13 and the second expansion valve 16 at the throttle opening. In the dehumidification heating mode, the controller 60 opens the first on-off valve 26a and closes the second on-off valve 26b. In the dehumidifying heating mode, the control device 60 controls the four-way valve 33 so that the cooling water flow path to the radiator 45 side is opened.
 除湿暖房モードの冷凍サイクル装置10では、図3の太実線に示すように冷媒が流れる。すなわち、冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。 In the refrigeration cycle device 10 in dehumidification and heating mode, the refrigerant flows as indicated by the thick solid line in FIG. That is, in the refrigerating cycle device 10, the high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12, exchanges heat with the cooling water in the high-temperature cooling water circuit 20, and radiates heat. Thereby, the cooling water in the high-temperature cooling water circuit 20 is heated.
 凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、空気側蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却除湿される。 The refrigerant that has flowed out of the condenser 12 flows into the first expansion valve 13 and is decompressed and expanded by the first expansion valve 13 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 13 flows into the air-side evaporator 14, absorbs heat from the air blown into the vehicle interior, and evaporates. This cools and dehumidifies the air blown into the passenger compartment.
 そして、空気側蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the air-side evaporator 14 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 これと同時に、冷凍サイクル装置10では、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、冷却水側蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。 At the same time, in the refrigeration cycle device 10, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling water side evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
 そして、冷却水側蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant that has flowed out of the coolant-side evaporator 17 flows to the suction side of the compressor 11 and is compressed again by the compressor 11 .
 除湿暖房モード時の高温冷却水回路20では、図3の太実線に示すように凝縮器12とヒータコア22との間で冷却水が循環するが、図3の破線に示すようにラジエータ45には冷却水が循環しない。 In the high temperature cooling water circuit 20 in the dehumidification heating mode, the cooling water circulates between the condenser 12 and the heater core 22 as indicated by the thick solid line in FIG. Cooling water does not circulate.
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図3の実線位置に位置してヒータコア22の空気通路を全開し、空気側蒸発器14を通過した送風空気の全流量がヒータコア22を通過するように決定される。 Regarding the control signal output to the servomotor of the air mix door 54, the air mix door 54 is positioned at the solid line position in FIG. The total flow is determined to pass through heater core 22 .
 これにより、ヒータコア22で高温冷却水回路20の冷却水から、車室内へ送風される空気に放熱される。したがって、空気側蒸発器14で冷却除湿された空気がヒータコア22で加熱されて車室内に吹き出される。 As a result, the heater core 22 radiates heat from the cooling water in the high-temperature cooling water circuit 20 to the air blown into the vehicle interior. Therefore, the air that has been cooled and dehumidified by the air-side evaporator 14 is heated by the heater core 22 and blown into the passenger compartment.
 このとき、第2開閉弁26bがラジエータ流路20cを閉じているので、ラジエータ45に高温冷却水回路20の冷却水が循環しない。したがって、ラジエータ45で冷却水から外気に放熱されない。 At this time, since the second on-off valve 26b closes the radiator flow path 20c, the cooling water of the high-temperature cooling water circuit 20 does not circulate through the radiator 45. Therefore, the radiator 45 does not radiate heat from the cooling water to the outside air.
 除湿暖房モード時の低温冷却水回路30では、図3の太実線に示すようにラジエータ45に低温冷却水回路30の冷却水が循環してラジエータ45にて低温冷却水回路30の冷却水に外気から吸熱される。 In the low-temperature cooling water circuit 30 in the dehumidifying and heating mode, the cooling water of the low-temperature cooling water circuit 30 circulates through the radiator 45 as indicated by the thick solid line in FIG. heat is absorbed from
 このように、除湿暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させ、ヒータコア22で加熱された空気を車室内へ吹き出すことができる。 Thus, in the dehumidifying heating mode, the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is dissipated. can be radiated into the air by the heater core 22, and the air heated by the heater core 22 can be blown out into the passenger compartment.
 ヒータコア22では、空気側蒸発器14にて冷却除湿された空気が加熱される。これにより、車室内の除湿暖房を実現することができる。 The heater core 22 heats the air that has been cooled and dehumidified by the air-side evaporator 14 . As a result, dehumidification and heating of the passenger compartment can be achieved.
 (3)暖房モード
 暖房モードでは、制御装置60は、圧縮機11、高温側ポンプ21および低温側ポンプ31を作動させる。暖房モードでは、制御装置60は、第1膨張弁13を閉弁させ、第2膨張弁16を絞り開度で開弁させる。暖房モードでは、制御装置60は、第1開閉弁26aを開弁させ、第2開閉弁26bを閉弁させる。暖房モードでは、制御装置60は、ラジエータ45側への冷却水流路が開けられるように四方弁33を制御する。
(3) Heating Mode In the heating mode, controller 60 operates compressor 11 , high temperature side pump 21 and low temperature side pump 31 . In the heating mode, the control device 60 closes the first expansion valve 13 and opens the second expansion valve 16 at the throttle opening. In the heating mode, the controller 60 opens the first on-off valve 26a and closes the second on-off valve 26b. In the heating mode, the control device 60 controls the four-way valve 33 so that the coolant flow path to the radiator 45 side is opened.
 暖房モードの冷凍サイクル装置10では、図4の太実線に示すように冷媒が流れる。すなわち、冷凍サイクル装置10では、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、冷却水側蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。 In the refrigeration cycle device 10 in heating mode, refrigerant flows as indicated by the thick solid line in FIG. That is, in the refrigeration cycle device 10, the refrigerant that has flowed out of the condenser 12 flows into the second expansion valve 16 and is decompressed and expanded by the second expansion valve 16 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 16 flows into the cooling water side evaporator 17, absorbs heat from the cooling water in the low-temperature cooling water circuit 30, and evaporates. Thereby, the cooling water in the low-temperature cooling water circuit 30 is cooled.
 このとき、第1膨張弁13が閉弁されているので、空気側蒸発器14に冷媒が流れない。したがって、空気側蒸発器14で空気が冷却除湿されない。 At this time, the refrigerant does not flow to the air-side evaporator 14 because the first expansion valve 13 is closed. Therefore, the air is not cooled and dehumidified in the air-side evaporator 14 .
 暖房モード時の高温冷却水回路20では、図4の太実線に示すように凝縮器12とヒータコア22との間で冷却水が循環するが、図4の破線に示すようにラジエータ45には冷却水が循環しない。 In the high-temperature cooling water circuit 20 in the heating mode, cooling water circulates between the condenser 12 and the heater core 22 as indicated by the thick solid line in FIG. Water does not circulate.
 エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図4の実線位置に位置してヒータコア22の空気通路を全開し、空気側蒸発器14を通過した送風空気の全流量がヒータコア22を通過するように決定される。 Regarding the control signal output to the servomotor of the air mix door 54, the air mix door 54 is positioned at the solid line position in FIG. The total flow is determined to pass through heater core 22 .
 これにより、ヒータコア22で高温冷却水回路20の冷却水から、車室内へ送風される空気に放熱される。したがって、空気側蒸発器14を通過した空気(すなわち、空気側蒸発器14で冷却除湿されていない空気)がヒータコア22で加熱されて車室内に吹き出される。 As a result, the heater core 22 radiates heat from the cooling water in the high-temperature cooling water circuit 20 to the air blown into the vehicle interior. Therefore, the air that has passed through the air-side evaporator 14 (that is, the air that has not been cooled and dehumidified by the air-side evaporator 14) is heated by the heater core 22 and blown into the vehicle compartment.
 このとき、第1開閉弁26aおよび第2開閉弁26bがラジエータ流路20cを閉じているので、ラジエータ45に高温冷却水回路20の冷却水が循環しない。したがって、ラジエータ45で冷却水から外気に放熱されない。 At this time, since the first on-off valve 26a and the second on-off valve 26b close the radiator flow path 20c, the cooling water of the high-temperature cooling water circuit 20 does not circulate through the radiator 45. Therefore, the radiator 45 does not radiate heat from the cooling water to the outside air.
 暖房モード時の低温冷却水回路30では、図4の太実線に示すようにラジエータ45に低温冷却水回路30の冷却水が循環してラジエータ45にて低温冷却水回路30の冷却水に外気から吸熱される。 In the low-temperature cooling water circuit 30 in the heating mode, as shown by the thick solid line in FIG. endothermic.
 このように、暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させ、ヒータコア22で加熱された空気を車室内へ吹き出すことができる。 Thus, in the heating mode, the heat of the high-pressure refrigerant discharged from the compressor 11 is radiated to the cooling water of the high-temperature cooling water circuit 20 by the condenser 12, and the heat of the cooling water of the high-temperature cooling water circuit 20 is released. Heat is radiated to the air by the heater core 22, and the air heated by the heater core 22 can be blown out into the passenger compartment.
 ヒータコア22では、空気側蒸発器14にて冷却除湿されることなく空気側蒸発器14にてを通過した空気を加熱する。これにより、車室内の暖房を実現することができる。 The heater core 22 heats the air that has passed through the air-side evaporator 14 without being cooled and dehumidified by the air-side evaporator 14 . This makes it possible to heat the vehicle interior.
 上記運転モードにおいて、第1吸熱対象機器群36および第2吸熱対象機器群37のうち少なくとも一つの機器を冷却する必要がある場合、低温側ポンプ31を作動させ、第2膨張弁16を絞り開度で開弁させるとともに、第1吸熱対象機器群36および第2吸熱対象機器群37のうち冷却が必要な機器に冷却水が循環するように四方弁33が制御される。 In the operation mode described above, when at least one of the first heat absorption target device group 36 and the second heat absorption target device group 37 needs to be cooled, the low temperature side pump 31 is operated to throttle and open the second expansion valve 16. The four-way valve 33 is controlled so that it is opened at a constant temperature and the cooling water is circulated to the equipment that requires cooling among the first heat absorption target equipment group 36 and the second endothermic equipment group 37 .
 これにより、冷却水側蒸発器17で冷却された冷却水によって、冷却が必要な機器が冷却される。 As a result, the cooling water cooled by the cooling water side evaporator 17 cools the equipment that requires cooling.
 除湿暖房モードまたは暖房モードでは、制御装置60は、図5のフローチャートに示す制御処理を実行する。この制御処理は、制御装置60が実行する制御プログラムのサブルーチンとして実行される。 In the dehumidification/heating mode or the heating mode, the control device 60 executes the control process shown in the flowchart of FIG. This control process is executed as a subroutine of the control program executed by the control device 60 .
 ステップS100では、暖房に必要な熱量が不足しているか否かが判定される。ステップS100にて、暖房に必要な熱量(以下、必要暖房熱量と言う。)が不足していないと判定された場合、処置を行うことなくメインルーチンへ戻る。  In step S100, it is determined whether or not the amount of heat required for heating is insufficient. If it is determined in step S100 that the amount of heat necessary for heating (hereinafter referred to as the required amount of heat for heating) is not insufficient, the process returns to the main routine without taking any action.
 ステップS100にて、暖房に必要な熱量が不足していると判定された場合、ステップS110へ進み、第1吸熱対象機器群36から吸熱すれば必要暖房熱量の不足が解消されるか否かが判定される。すなわち、第1吸熱対象機器群36から吸熱可能な熱量が必要暖房熱量を上回っているか否かが判定される。 If it is determined in step S100 that the amount of heat required for heating is insufficient, the process proceeds to step S110, in which it is determined whether or not the shortage of the necessary amount of heat for heating can be resolved by absorbing heat from the first endothermic device group 36. be judged. That is, it is determined whether or not the amount of heat that can be absorbed from the first heat absorption target device group 36 exceeds the required heating heat amount.
 例えば、必要暖房熱量は、室内送風機53の送風量、空気側蒸発器14の吸込空気温度、および目標吹出温度TAOに基づいて算出される。例えば、空気側蒸発器14の吸込空気温度は、内外気切替箱52における内気と外気の導入割合と、車室内温度Trと、外気温Tamとに基づいて算出される。 For example, the necessary amount of heat for heating is calculated based on the amount of air blown by the indoor blower 53, the intake air temperature of the air-side evaporator 14, and the target outlet temperature TAO. For example, the intake air temperature of the air-side evaporator 14 is calculated based on the introduction ratio of the inside air and the outside air in the inside/outside air switching box 52, the vehicle interior temperature Tr, and the outside air temperature Tam.
 第1吸熱対象機器群36から吸熱可能な熱量は、第1吸熱対象機器群36の各機器における発熱量と現在の温度と保証温度範囲の下限値とに基づいて算出される。すなわち、機器の温度を保証温度範囲内に保ちながら吸熱できる熱量が、第1吸熱対象機器群36から吸熱可能な熱量として算出される。 The amount of heat that can be absorbed from the first heat absorption target device group 36 is calculated based on the amount of heat generated in each device of the first heat absorption target device group 36, the current temperature, and the lower limit value of the guaranteed temperature range. That is, the amount of heat that can be absorbed while maintaining the temperature of the equipment within the guaranteed temperature range is calculated as the amount of heat that can be absorbed from the first heat absorption target equipment group 36 .
 ステップS110にて、第1吸熱対象機器群36から吸熱すれば必要暖房熱量の不足が解消されると判定された場合、ステップS120へ進み、第1吸熱対象機器群36から吸熱する運転モードに切り替えられる。 If it is determined in step S110 that the shortage of the required amount of heating heat can be resolved by absorbing heat from the first heat absorption target device group 36, the process proceeds to step S120, where the operation mode is switched to absorb heat from the first heat absorption target device group 36. be done.
 ステップS110にて、第1吸熱対象機器群36から吸熱しても必要暖房熱量の不足が解消されないと判定された場合、ステップS130へ進み、第1吸熱対象機器群36および第2吸熱対象機器群37から吸熱すれば必要暖房熱量の不足が解消されるか否かが判定される。すなわち、第1吸熱対象機器群36および第2吸熱対象機器群37から吸熱可能な熱量が必要暖房熱量を上回っているか否かが判定される。第2吸熱対象機器群37から吸熱可能な熱量は、第1吸熱対象機器群36から吸熱可能な熱量と同様に算出される。 If it is determined in step S110 that the shortage of the required amount of heating heat is not resolved by absorbing heat from the first heat absorption target device group 36, the process proceeds to step S130, where the first heat absorption target device group 36 and the second heat absorption target device group It is determined whether or not the shortage of the required amount of heat for heating can be resolved by absorbing heat from 37 . That is, it is determined whether or not the amount of heat that can be absorbed from the first heat absorption target device group 36 and the second heat absorption target device group 37 exceeds the required heating heat amount. The amount of heat that can be absorbed from the second group of devices for heat absorption 37 is calculated in the same manner as the amount of heat that can be absorbed from the first group of devices for heat absorption.
 ステップS130にて、第1吸熱対象機器群36および第2吸熱対象機器群37から吸熱すれば必要暖房熱量の不足が解消されると判定された場合、ステップS140へ進み、第1吸熱対象機器群36および第2吸熱対象機器群37から吸熱する運転モードに切り替えられる。 If it is determined in step S130 that the shortage of the necessary amount of heating heat can be resolved by absorbing heat from the first heat absorption target device group 36 and the second heat absorption target device group 37, the process proceeds to step S140, and the first heat absorption target device group. 36 and the second endothermic device group 37 are switched to an operation mode in which heat is absorbed.
 このように、吸熱する機器を発熱量に基づいて切り替えるので、図6に示すように、吸熱する機器を温度のみに基づいて切り替える場合と比較して切り替えの頻度を低減できる。その結果、切り替えが頻繁に起こることによる四方弁33の耐久性の低下や各機器に与えるヒートショックや空調への悪影響を低減できる。 In this way, the heat-absorbing device is switched based on the amount of heat generated, so as shown in FIG. 6, the frequency of switching can be reduced compared to the case where the heat-absorbing device is switched based only on the temperature. As a result, it is possible to reduce deterioration in the durability of the four-way valve 33, heat shock to each device, and adverse effects on air conditioning due to frequent switching.
 図7に示すように、吸熱対象機器から吸熱することにより冷却水の温度が上昇するので、暖房に使用可能な熱量が増加する。しかも、吸熱対象機器から吸熱することにより機器の温度が低下するので、機器の作動効率が悪化して機器の発熱量が大きくなる。そのため、暖房に使用可能な熱量が一層増加する。 As shown in FIG. 7, the temperature of the cooling water rises by absorbing heat from the heat absorption target equipment, so the amount of heat that can be used for heating increases. Moreover, since the temperature of the device is lowered by absorbing heat from the heat-absorbing target device, the operating efficiency of the device is deteriorated and the amount of heat generated by the device is increased. Therefore, the amount of heat that can be used for heating is further increased.
 本実施形態では、制御装置60は、第1吸熱対象機器群36および第2吸熱対象機器群37のうちいずれの吸熱対象機器群で冷却水に吸熱させるかを第1吸熱対象機器群36および第2吸熱対象機器群37の温度および発熱量に基づいて決定して四方弁33を制御する。 In the present embodiment, the control device 60 determines in which of the first heat absorption target device group 36 and the second heat absorption target device group 37 the heat absorption target device group is to be absorbed by the cooling water. 2 The four-way valve 33 is controlled by determining based on the temperature and calorific value of the endothermic device group 37 .
 これによると、温度のみならず発熱量に基づいて吸熱の切り替えを行うので、温度変動挙動を安定化でき、ひいては吸熱の切り替えが頻繁に起こることを抑制できる。 According to this, the heat absorption is switched based on not only the temperature but also the calorific value, so the temperature fluctuation behavior can be stabilized, and the frequent occurrence of the heat absorption switching can be suppressed.
 本実施形態では、制御装置60は、吸熱対象機器群の温度が保証温度範囲の下限値以上になり、かつ車室内空間の暖房に必要な熱量が得られるように、冷却水に吸熱させる吸熱対象機器群を決定する。これにより、吸熱の切り替えを適切に行うことができる。 In this embodiment, the control device 60 controls the temperature of the heat-absorbing target device group to be equal to or higher than the lower limit value of the guaranteed temperature range, and the heat-absorbing target equipment to be absorbed by the cooling water so that the amount of heat necessary for heating the vehicle interior space can be obtained. Determine the equipment group. Thereby, endothermic switching can be performed appropriately.
 本実施形態では、制御装置60は、第1吸熱対象機器群36および第2吸熱対象機器群37のそれぞれにおける保証温度範囲および発熱の容易さに基づいて、いずれの吸熱対象機器群から冷却水に吸熱させる際の優先順位を決定する。これにより、冷却水に吸熱させる吸熱対象機器群を適切に決定できる。 In the present embodiment, the control device 60 controls the cooling water from any of the heat absorption target device groups based on the guaranteed temperature range and the ease of heat generation in each of the first heat absorption target device group 36 and the second heat absorption target device group 37. Decide the order of priority for heat absorption. As a result, it is possible to appropriately determine the heat absorption target device group for causing the cooling water to absorb heat.
 本実施形態では、制御装置60は、電池36aの発熱量を、電池36aの出力電流の値に基づいて推定する。これにより、電池36aの発熱量に基づいて吸熱の切り替えを適切に行うことができる。 In this embodiment, the control device 60 estimates the amount of heat generated by the battery 36a based on the value of the output current of the battery 36a. Thereby, heat absorption can be appropriately switched based on the amount of heat generated by the battery 36a.
 本実施形態では、制御装置60は、走行用補機である第2吸熱対象機器群37の発熱量を、車両の走行状態に基づいて推定する。これにより、第2吸熱対象機器群37の発熱量に基づいて吸熱の切り替えを適切に行うことができる。 In this embodiment, the control device 60 estimates the amount of heat generated by the second heat absorption target device group 37, which is the running auxiliary machine, based on the running state of the vehicle. Accordingly, it is possible to appropriately perform heat absorption switching based on the amount of heat generated by the second heat absorption target device group 37 .
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上記実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。 Although cooling water is used as the heat medium in the above embodiment, various media such as oil may be used as the heat medium. A nanofluid may be used as a heat carrier. A nanofluid is a fluid mixed with nanoparticles having a particle size on the order of nanometers.
 上記実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 In the refrigeration cycle apparatus 10 of the above-described embodiment, a freon-based refrigerant is used as a refrigerant, but the type of refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon-based refrigerants, etc. may be used. good.
 また、上記実施形態の冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 Further, the refrigerating cycle device 10 of the above embodiment constitutes a subcritical refrigerating cycle in which the high pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but a supercritical refrigerating cycle in which the high pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. may constitute
 上記実施形態では、吸熱源として第1吸熱対象機器群36および第2吸熱対象機器群37を有しているが、3つ以上の吸熱対象機器群を有していてもよい。3つ以上の吸熱対象機器群は、低温冷却水回路30の冷却水の流れにおいて互いに並列に配置されていて、3つ以上の吸熱対象機器群のそれぞれに対して冷却水が流れる状態と流れない状態とを切替可能になっていればよい。 In the above embodiment, the first heat absorption target device group 36 and the second heat absorption target device group 37 are provided as heat absorption sources, but three or more heat absorption target device groups may be provided. The three or more heat absorption target device groups are arranged in parallel with each other in the flow of the cooling water of the low-temperature cooling water circuit 30, and the cooling water flows and does not flow to each of the three or more heat absorption target device groups. It is sufficient if the state can be switched.
 3つ以上の吸熱対象機器群に対して、冷却水に吸熱させる吸熱対象機器群を、予め定められた優先順位に基づいて決定すればよい。 For three or more heat absorption target device groups, the heat absorption target device group that causes the cooling water to absorb heat may be determined based on a predetermined priority.
 冷却水に吸熱させる吸熱対象機器群を、3つ以上の吸熱対象機器群から個別に組み合わせて決定してもよい。 A heat absorption target device group for heat absorption by the cooling water may be determined by individually combining three or more heat absorption target device groups.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (7)

  1.  熱媒体が循環する熱媒体回路(30)と、
     前記熱媒体回路に配置され、前記熱媒体に吸熱される複数の吸熱源(36、37)と、
     複数の吸熱源に対して前記熱媒体に吸熱させるか否かを切り替える切替部(33)と、
     冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を、空調対象空間へ送風される空気に放熱させる放熱部(12)と、
     前記放熱部で放熱された前記冷媒を減圧させる減圧部(16)と、
     前記減圧部で減圧された前記冷媒を前記熱媒体からの吸熱により蒸発させる蒸発器(17)と、
     前記複数の吸熱源のうちいずれの吸熱源で前記熱媒体に吸熱させるかを前記複数の吸熱源の温度および発熱量に基づいて決定して前記切替部を制御する制御部(60)とを備える車両用空調装置。
    a heat medium circuit (30) in which the heat medium circulates;
    a plurality of heat absorption sources (36, 37) arranged in the heat medium circuit and absorbed by the heat medium;
    a switching unit (33) for switching whether or not the heat medium absorbs heat from a plurality of heat absorption sources;
    a compressor (11) that sucks, compresses, and discharges refrigerant;
    a heat radiating section (12) for dissipating the refrigerant discharged from the compressor to the air blown into the air-conditioned space;
    a decompression unit (16) for decompressing the refrigerant radiated by the heat radiation unit;
    an evaporator (17) that evaporates the refrigerant decompressed by the decompression unit by absorbing heat from the heat medium;
    a control unit (60) for determining which one of the plurality of heat absorption sources is used to absorb heat by the heat medium based on the temperature and amount of heat generation of the plurality of heat absorption sources, and for controlling the switching unit; Vehicle air conditioner.
  2.  前記制御部は、前記熱媒体に吸熱させる前記吸熱源の温度が保証温度範囲の下限値以上になり、かつ前記空調対象空間の暖房に必要な熱量が得られるように、前記熱媒体に吸熱させる前記吸熱源を決定する請求項1に記載の車両用空調装置。 The control unit causes the heat medium to absorb heat so that the temperature of the heat absorption source that causes the heat medium to absorb heat is equal to or higher than a lower limit value of a guaranteed temperature range, and the amount of heat necessary for heating the air-conditioned space is obtained. 2. The vehicle air conditioner according to claim 1, wherein the heat absorption source is determined.
  3.  前記制御部は、前記複数の吸熱源のそれぞれにおける保証温度範囲および発熱の容易さに基づいて、前記複数の吸熱源のうち一部の吸熱源から前記熱媒体に吸熱させる際の優先順位を決定する請求項1または2に記載の車両用空調装置。 The control unit determines an order of priority when causing the heat medium to absorb heat from some of the plurality of heat absorption sources based on a guaranteed temperature range and ease of heat generation in each of the plurality of heat absorption sources. The vehicle air conditioner according to claim 1 or 2.
  4.  前記複数の吸熱源は、走行用電力を供給するための電池(36a)を含んでいる請求項1ないし3のいずれか1つに記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 1 to 3, wherein the plurality of heat absorption sources include a battery (36a) for supplying power for running.
  5.  前記制御部は、前記電池の発熱量を、前記電池の出力電流の値に基づいて推定する請求項4に記載の車両用空調装置。 The vehicle air conditioner according to claim 4, wherein the control unit estimates the amount of heat generated by the battery based on the value of the output current of the battery.
  6.  前記複数の吸熱源は走行用補機(37)を含んでいる請求項1ないし5のいずれか1つに記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 1 to 5, wherein the plurality of heat absorption sources include running auxiliary machines (37).
  7.  前記制御部は、前記走行用補機の発熱量を、車両の走行状態に基づいて推定する請求項6に記載の車両用空調装置。 The vehicle air conditioner according to claim 6, wherein the control unit estimates the amount of heat generated by the running auxiliary machine based on the running state of the vehicle.
PCT/JP2022/017977 2021-05-14 2022-04-18 Air-conditioning device for vehicle WO2022239602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-082431 2021-05-14
JP2021082431A JP2022175756A (en) 2021-05-14 2021-05-14 Air-conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2022239602A1 true WO2022239602A1 (en) 2022-11-17

Family

ID=84028270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017977 WO2022239602A1 (en) 2021-05-14 2022-04-18 Air-conditioning device for vehicle

Country Status (2)

Country Link
JP (1) JP2022175756A (en)
WO (1) WO2022239602A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000948A (en) * 2012-05-24 2014-01-09 Denso Corp Vehicular heat management system
JP2019057429A (en) * 2017-09-21 2019-04-11 株式会社デンソー Machine temperature adjustment device
JP2021063644A (en) * 2019-10-15 2021-04-22 株式会社デンソー Refrigeration cycle device
US20210129627A1 (en) * 2019-11-04 2021-05-06 Hyundai Motor Company Heat Pump System for Vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000948A (en) * 2012-05-24 2014-01-09 Denso Corp Vehicular heat management system
JP2019057429A (en) * 2017-09-21 2019-04-11 株式会社デンソー Machine temperature adjustment device
JP2021063644A (en) * 2019-10-15 2021-04-22 株式会社デンソー Refrigeration cycle device
US20210129627A1 (en) * 2019-11-04 2021-05-06 Hyundai Motor Company Heat Pump System for Vehicle

Also Published As

Publication number Publication date
JP2022175756A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
US11498391B2 (en) Air conditioner
US20220032732A1 (en) Battery heating device for vehicle
CN113646595B (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
WO2018092464A1 (en) Refrigeration cycle device
CN111094028A (en) Air conditioner for vehicle
CN114514129B (en) Refrigeration cycle device
CN110914082B (en) Air conditioner
US11897316B2 (en) Refrigeration cycle device
US20210102716A1 (en) Refrigeration cycle device
CN110997369A (en) Refrigeration cycle device
CN113646594A (en) Air conditioner
WO2022064880A1 (en) Refrigeration cycle device
CN112334715A (en) Refrigeration cycle device
WO2022264743A1 (en) Vehicle air-conditioning device
US20220088996A1 (en) Refrigeration cycle device
WO2022239602A1 (en) Air-conditioning device for vehicle
JP7233953B2 (en) Vehicle air conditioner
WO2022202307A1 (en) Refrigeration cycle device
JP7472744B2 (en) Refrigeration Cycle Equipment
JP2020142620A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807305

Country of ref document: EP

Kind code of ref document: A1