WO2022239442A1 - Differential pressure sensor and method for manufacturing same - Google Patents

Differential pressure sensor and method for manufacturing same Download PDF

Info

Publication number
WO2022239442A1
WO2022239442A1 PCT/JP2022/010703 JP2022010703W WO2022239442A1 WO 2022239442 A1 WO2022239442 A1 WO 2022239442A1 JP 2022010703 W JP2022010703 W JP 2022010703W WO 2022239442 A1 WO2022239442 A1 WO 2022239442A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
differential pressure
detection element
pressure sensor
opening
Prior art date
Application number
PCT/JP2022/010703
Other languages
French (fr)
Japanese (ja)
Inventor
隆広 浅田
弘晃 西川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022239442A1 publication Critical patent/WO2022239442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges

Definitions

  • the present invention relates to a differential pressure sensor for measuring external pressure and a manufacturing method thereof.
  • a differential pressure sensor for measuring the differential pressure between two pressures is known (see Patent Document 1, for example).
  • a differential pressure sensor disclosed in Patent Document 1 includes a diaphragm, a pressure inlet, and an air inlet.
  • the diaphragm has a first surface and a second surface that is the back surface of the first surface.
  • the diaphragm is displaced by the differential pressure between the pressure acting on the first surface and the pressure acting on the second surface.
  • the pressure introduction port is provided in a pressure introduction portion erected on the surface of the case.
  • the atmospheric pressure introduction port is provided in an atmospheric pressure introduction section erected in parallel with the pressure introduction section on the surface of the case.
  • the pressure of the fluid supplied from the pressure introduction port acts on the first surface of the diaphragm via the pressure introduction portion.
  • the atmospheric pressure (atmospheric pressure) supplied from the atmospheric pressure introduction port acts on the second surface of the diaphragm via the atmospheric pressure introduction portion.
  • the diaphragm is displaced by pressure acting on the first and second surfaces. Based on this displacement, the differential pressure between the pressure of the fluid and the atmospheric pressure is detected.
  • the differential pressure sensor has room for improvement in terms of maintaining good detection accuracy.
  • an object of the present invention is to solve the above problems, and to provide a differential pressure sensor capable of maintaining good detection accuracy while suppressing an increase in size in plan view.
  • a differential pressure sensor comprises: A differential pressure sensor having a sensor bottom surface, a sensor top surface, and a sensor side surface connecting the sensor bottom surface and the sensor top surface, a substrate having the lower surface of the sensor and a bonding surface opposite to the lower surface of the sensor; a sensing element positioned above the joint surfaces of the substrates and having a diaphragm for sensing a differential pressure between the two pressures; a resin package covering at least a part of the bonding surface of the substrate and the detection element and having the upper surface of the sensor on the side opposite to the substrate;
  • the diaphragm has a first surface facing upward and a second surface facing downward on the back surface of the first surface,
  • the resin package is formed with a first communicating portion that communicates the first surface of the diaphragm with the outside of the differential pressure sensor through a first opening formed in the upper surface of the sensor, A second communicating portion is formed that communicates the second surface of the dia
  • FIG. 1 is a perspective view of a differential pressure sensor according to a first embodiment of the invention
  • FIG. FIG. 2 is a sectional view showing the AA section of FIG. 1
  • FIG. 4 is a cross-sectional view when a detection element is laminated on a substrate in the first manufacturing method of the differential pressure sensor according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view when the substrate and detection element in FIG. 3 are covered with a resin package
  • FIG. 5 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with a resin package in the second method of manufacturing the differential pressure sensor according to the first embodiment of the present invention
  • FIG. 11 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with a resin package in the third manufacturing method of the differential pressure sensor according to the first embodiment of the present invention;
  • FIG. 8 is a cross-sectional view showing the BB cross section of FIG. 7;
  • FIG. 8 is a cross-sectional view when a detection element is laminated on a substrate in a method for manufacturing a differential pressure sensor according to a second embodiment of the present invention;
  • FIG. 10 is a cross-sectional view when the substrate and detection element in FIG. 9 are covered with a resin package;
  • FIG. 12 is a sectional view showing a CC section of FIG. 11;
  • FIG. 11 is a cross-sectional view when a resin case is laminated on a substrate in a method of manufacturing a differential pressure sensor according to a third embodiment of the present invention;
  • FIG. 14 is a cross-sectional view when the detection element is laminated on the resin case of FIG. 13;
  • FIG. 15 is a cross-sectional view when the substrate, resin case, and detection element in FIG. 14 are covered with a resin package;
  • a differential pressure sensor comprises: A differential pressure sensor having a sensor bottom surface, a sensor top surface, and a sensor side surface connecting the sensor bottom surface and the sensor top surface, a substrate having the lower surface of the sensor and a bonding surface opposite to the lower surface of the sensor; a sensing element positioned above the joint surfaces of the substrates and having a diaphragm for sensing a differential pressure between the two pressures; a resin package covering at least a part of the bonding surface of the substrate and the detection element and having the upper surface of the sensor on the side opposite to the substrate;
  • the diaphragm has a first surface facing upward and a second surface facing downward on the back surface of the first surface,
  • the resin package is formed with a first communicating portion that communicates the first surface of the diaphragm with the outside of the differential pressure sensor through a first opening formed in the upper surface of the sensor, A second communicating portion is formed that communicates the second surface of the diaphragm with the outside of the differential pressure sensor through a second opening
  • the area of the differential pressure sensor viewed from the direction orthogonal to the upper surface of the sensor can be made smaller than the configuration in which both the first opening and the second opening are formed on the upper surface of the sensor. That is, it is possible to suppress an increase in the size of the differential pressure sensor in plan view.
  • the opening facing the bonding surface of the substrate is used when a component is bonded to the bonding surface of the substrate.
  • the differential pressure detection accuracy of the differential pressure sensor is lowered.
  • the first opening is formed on the upper surface of the sensor and the second opening is formed on the side surface of the sensor. That is, neither the first opening nor the second opening faces the bonding surface of the substrate. Therefore, it is possible to reduce the possibility of the opening being blocked as described above. As a result, it is possible to maintain good differential pressure detection accuracy by the differential pressure sensor.
  • the outer surface of the detection element may be part of the side surface of the sensor and have the second opening, and the second communication portion may be a flow path formed in the detection element. There may be.
  • the flow path as the second communication section is provided in the detection element. Therefore, there is no need to dispose another member having a flow path for communicating the second surface of the diaphragm with the outside, between the detection element and the substrate. This can prevent the differential pressure sensor from becoming longer in the vertical direction.
  • the detection element may be bonded to the bonding surface of the substrate, and the substrate is an outer surface that connects the bonding surface of the substrate and the lower surface of the sensor and is a part of the side surface of the sensor.
  • An outer surface may be provided, the second opening may be formed in the outer surface of the substrate, the second communication portion may be a flow path formed in the substrate, and the bonding surface of the substrate
  • a third opening may be formed to communicate the second surface of the diaphragm of the detection element and the flow path.
  • the channel as the second communication portion is provided in the substrate. Therefore, there is no need to dispose another member having a flow path for communicating the second surface of the diaphragm with the outside, between the detection element and the substrate. This can prevent the differential pressure sensor from becoming longer in the vertical direction.
  • the flow path may be a groove formed in the bonding surface of the substrate, and a portion above the groove excluding the third opening may be closed by the resin package. .
  • Forming a groove in the substrate is easier than forming an internal space in the substrate. Therefore, according to this configuration, it is possible to easily form the channel as the second communication portion in the substrate.
  • the differential pressure sensor according to an aspect of the present invention may further include a resin case bonded to the bonding surface of the substrate, the detection element may contact the resin case, and the resin package may include: The upper side of at least part of the resin case may be covered, the outer surface of the resin case may be part of the side surface of the sensor and may have the second opening, and the second communication portion may be the
  • the flow path may be formed in a resin case, and the resin case may be formed with a third opening that communicates the flow path with the second surface of the diaphragm of the detection element.
  • the flow path as the second communication portion is formed in the resin case. Therefore, it is not necessary to perform additional processing for forming the flow path as the second communication part on the detection element, the substrate, and the like.
  • the detection element may be bonded to a surface of the resin case opposite to the substrate.
  • the detection element is supported by the resin case from below. Therefore, it is easy to configure the detection element and the resin case so that the downward second surface of the diaphragm of the detection element faces the flow path formed in the resin case.
  • a method for manufacturing a differential pressure sensor includes: A detection element having a sealed internal space and a diaphragm having a first surface exposed to the outside and a second surface facing the internal space on the back surface of the first surface is mounted on the bonding surface of the substrate.
  • a resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered.
  • the internal space of the detection element is sealed until the cutting process is performed. Therefore, it is possible to prevent foreign substances from entering the internal space of the detecting element and prevent components of the resin package from entering the internal space of the detecting element in the covering process.
  • the detection element may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside. .
  • the two detection elements are integrated before the cutting process. Therefore, the structure in which the two differential pressure sensors are connected can be miniaturized.
  • the one in which two detection elements are integrated has two internal spaces. As such, a performance test can be performed on each of the two interior spaces before the cutting process is performed.
  • a method for manufacturing a differential pressure sensor includes: A detection element comprising a diaphragm having a first surface and a second surface on the back side of the first surface on the bonding surface of a substrate having a bonding surface on which an opening is formed and an internal space communicating with the outside through the opening. a lamination step of laminating such that the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening; A resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered. and a covering step of forming a structure comprising the resin package; a cutting step of cutting the structure along a direction intersecting the bonding surface of the substrate so that the internal space is exposed to the outside.
  • the internal space of the substrate can be sealed from when the opening formed in the bonding surface is closed in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space of the substrate, and prevent the components of the resin package from entering the internal space of the substrate in the coating process.
  • the substrate may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside.
  • two substrates integrated together have two internal spaces.
  • a performance test can be performed on each of the two interior spaces before the cutting process is performed.
  • a method for manufacturing a differential pressure sensor includes: a first lamination step of laminating a resin case having an internal space communicating with the outside through an opening on the bonding surface of the substrate;
  • a detecting element comprising a diaphragm having a first surface and a second surface on the back side of the first surface, wherein the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening.
  • the internal space of the resin case can be sealed from when the opening of the resin case is closed in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space of the resin case, and prevent the components of the resin package from entering the internal space of the resin case in the coating process.
  • the resin case may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside. .
  • two integrated resin cases are provided with two internal spaces.
  • a performance test can be performed on each of the two interior spaces before the cutting process is performed.
  • the resin package may be formed by avoiding the region cut in the cutting step.
  • a blade suitable for each material that constitutes the structure When the structure is cut, it is preferable to use a blade suitable for each material that constitutes the structure.
  • the structure is composed of a substrate, a detection element, and a resin package
  • there are three types of blades (a blade suitable for cutting the substrate, a blade suitable for cutting the detection element, and a blade suitable for cutting the resin package).
  • the resin package is not cut in the cutting step. Therefore, it is possible to reduce the number of types of blades used when cutting the structure.
  • FIG. 1 is a perspective view of a differential pressure sensor according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
  • a differential pressure sensor 10 detects a differential pressure between two pressures.
  • the differential pressure sensor 10 is mounted on an electronic cigarette to detect the differential pressure between the atmospheric pressure and the intake pressure.
  • the differential pressure sensor 10 is mounted on a medical nebulizer that delivers misty liquid medicine to the lungs or the like.
  • the differential pressure sensor 10 has a rectangular parallelepiped shape and includes a lower surface 10A, an upper surface 10B, and side surfaces 10C.
  • the lower surface 10A faces downward.
  • the upper surface 10B is located above the lower surface 10A and faces upward. That is, the upper surface 10B is the surface opposite to the lower surface 10A.
  • the side surface 10C connects the lower surface 10A and the upper surface 10B.
  • the bottom surface 10A is an example of a sensor bottom surface.
  • the upper surface 10B is an example of a sensor upper surface.
  • Side 10C is an example of a sensor side.
  • the differential pressure sensor 10 includes a substrate 20, a circuit element 30, a detection element 40, and a resin package 50.
  • a circuit element 30 is laminated on the substrate 20 .
  • the sensing element 40 is laminated on the substrate 20 .
  • the resin package 50 covers the substrate 20, the circuit element 30, and the detection element 40 from above.
  • the substrate 20 is a rectangular parallelepiped plate.
  • the substrate 20 is a rigid substrate made of glass epoxy, ceramic, or the like, but is not limited to this.
  • substrate 20 may be a leadframe.
  • the substrate 20 is not limited to a rectangular parallelepiped shape as shown in FIGS.
  • the substrate 20 may have a polygonal shape other than a quadrilateral in plan view.
  • the substrate 20 may be a single-sided substrate, a double-sided substrate, or a multilayer substrate.
  • the substrate 20 is located at the bottom of the differential pressure sensor 10.
  • the bottom surface of the substrate 20 is the bottom surface 10A of the differential pressure sensor 10 .
  • the substrate 20 has a bottom surface 10A, a top surface 20A and side surfaces 20B.
  • the upper surface 20A is located above the lower surface 10A and faces upward. That is, the upper surface 20A is the surface opposite to the lower surface 10A.
  • the upper surface 20A is an example of a joint surface.
  • the side surface 20B connects the bottom surface 10A and the top surface 20A.
  • the side surface 20B is exposed to the outside and constitutes part of the side surface 10C of the differential pressure sensor 10 .
  • the side surface 20B is exposed to the outside of the differential pressure sensor 10.
  • the substrate 20 has four side surfaces 20B that connect the square bottom surface 10A and the square top surface 20A. Four side surfaces 20B are exposed outside the differential pressure sensor 10 .
  • the circuit element 30 is laminated on the upper surface 20A of the substrate 20.
  • Various known means can be employed as the lamination means.
  • the circuit element 30 is bonded to the upper surface 20A of the substrate 20 with a die attach film, die attach material, or the like.
  • Circuit element 30 is electrically connected to detection element 40 via wire 31 .
  • wire 31 Although only one wire 31 is shown in FIG. 2, a plurality of wires 31 may be provided.
  • the electrical connection between the circuit element 30 and the detection element 40 may be made through a conductive wiring pattern formed on the upper surface 20A of the substrate 20, for example, other than the wire 31.
  • the circuit element 30 processes the signal input from the detection element 40 and outputs it to the outside via the wire 32 or the like.
  • the above signal processing includes, for example, a conversion process for converting the input signal from the detection element 40 from an analog value to a digital value, and a digital value obtained by the conversion process by removing noise components in a high frequency band to reduce the noise. This is a filtering process that obtains a signal in the band frequency band.
  • the circuit element 30 comprises, for example, an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • the sensing element 40 shown in FIGS. 1 and 2 is for measuring pressure.
  • the detection element 40 is a MEMS (Micro Electro Mechanical Systems) element, and is made of silicon, for example.
  • the detection element 40 is in the shape of a rectangular parallelepiped plate.
  • the sensing element 40 has a lower surface 40A, an upper surface 40B, and side surfaces 40C.
  • the upper surface 40B is located above the lower surface 40A and faces upward. That is, the upper surface 40B is the surface opposite to the lower surface 40A.
  • the side surface 40C connects the lower surface 40A and the upper surface 40B.
  • a portion of the side surface 40C constitutes a portion of the side surface 10C of the differential pressure sensor 10.
  • the rectangular parallelepiped detection element 40 has four side surfaces 40C.
  • One side surface 40Ca of the four side surfaces 40C is exposed to the outside and forms part of the side surface 10C of the differential pressure sensor 10.
  • the side surface 40Ca is an example of the outer surface of the detection element.
  • the remaining three side surfaces 40C of the four side surfaces 40C are covered with the resin package 50 and are not exposed to the outside.
  • An opening 70A is formed in the side surface 40Ca.
  • the opening 70A is an example of a second opening.
  • the detection element 40 is laminated on the upper surface 20A of the substrate 20. As shown in FIG. That is, the detection element 40 is positioned above the upper surface 20A of the substrate 20 .
  • Various known means can be employed as the lamination means.
  • the detection element 40 is bonded to the upper surface 20A of the substrate 20 with a die attach film, die attach material, or the like. That is, in the first embodiment, the stacking means for the detection element 40 is the same as the stacking means for the circuit element 30 . Note that the layering means for the detection element 40 and the layering means for the circuit element 30 may be different.
  • the detection element 40 includes a channel 70 and a diaphragm 41 .
  • the channel 70 is formed inside the detection element 40 .
  • the channel 70 is an example of a second communication portion.
  • the flow path 70 communicates with the outside of the differential pressure sensor 10 via an opening 70A formed in the side surface 40Ca.
  • the upper end of the flow path 70 in the deep part is positioned higher than the upper end of the flow path 70 other than the deep part. Thereby, a thin film is formed above the inner part of the channel 70 .
  • This thin film is the diaphragm 41 .
  • the diaphragm 41 is for detecting the pressure difference between two pressures.
  • the diaphragm 41 has an upper surface 41A and a lower surface 41B.
  • the upper surface 41A faces upward.
  • the upper surface 41A is exposed to the outside of the detection element 40.
  • the lower surface 41B is the rear surface of the upper surface 41A and faces downward.
  • the lower surface 41B forms part of the flow path 70.
  • the lower surface 41B communicates with the outside of the differential pressure sensor 10 via the channel 70 and the opening 70A. In other words, the flow path 70 communicates the lower surface 41B with the outside of the differential pressure sensor 10 via the opening 70A.
  • the upper surface 41A is an example of a first surface.
  • the lower surface 41B is an example of a second surface.
  • the resin package 50 is made of resin such as epoxy resin.
  • the resin package 50 is molded on the upper surface 20A of the substrate 20 by film assist molding or the like. As a result, the portion of the detection element 40 excluding the side surface 40Ca, the circuit element 30, and the wire 31 are buried. That is, the resin package 50 partially covers the detection element 40 , the entire top surface 20 ⁇ /b>A of the substrate 20 , and the entire circuit element 30 .
  • the resin package 50 may cover only a portion of the upper surface 20A of the substrate 20 or may cover only a portion of the circuit element 30 . Also, the resin package 50 may cover the entire detection element 40 . In this case, since the side surface 40Ca of the detection element 40 is also covered with the resin package 50, only the opening 70A is exposed to the outside.
  • the resin package 50 is positioned at the top of the differential pressure sensor 10 .
  • the top surface of the resin package 50 is the top surface 10B of the differential pressure sensor 10 .
  • the upper surface 10B is located on the opposite side of the substrate 20 with respect to the resin package 50 . That is, the resin package 50 has the upper surface 10B on the side opposite to the substrate 20 .
  • the resin package 50 has a top surface 10B and side surfaces 50A.
  • the side surface 50A extends downward from the outer edge of the top surface 10B.
  • Side 50A forms part of side 10C of differential pressure sensor 10 .
  • the resin package 50 has through holes 60 .
  • the through hole 60 is an example of a first communication portion.
  • a lower end portion of the through hole 60 communicates with the upper surface 41A of the diaphragm 41 of the detection element 40 .
  • An upper end portion of the through hole 60 communicates with the outside of the differential pressure sensor 10 via an opening 60A formed in the upper surface 10B.
  • the through hole 60 communicates the upper surface 41A of the diaphragm 41 with the outside of the differential pressure sensor 10 via the opening 60A.
  • the opening 60A is an example of a first opening.
  • the resin package 50 has an annular groove 51 on the upper surface 10B. Annular groove 51 is formed to surround opening 60A. An annular O-ring 52 (see FIG. 4) is fitted in the annular groove 51 .
  • the O-ring 52 is made of a member such as nitrile rubber that is easily deformed by compression. The O-ring 52 is pressed against a housing (not shown) of an electronic cigarette or the like when the differential pressure sensor 10 is mounted on the housing. Thereby, the gap between the upper surface 10B of the differential pressure sensor 10 and the housing is sealed at the position where the O-ring 52 is provided. As a result, the O-ring OR prevents liquid from entering the through hole 60 of the differential pressure sensor 10 from the outside of the housing through the gap.
  • the upper surface 41A of the diaphragm 41 of the detection element 40 is subjected to the pressure of the fluid flowing through the through-hole 60 from the opening 60A (hereinafter referred to as first pressure).
  • first pressure the pressure of the fluid flowing through the through-hole 60 from the opening 60A
  • second pressure acts on the lower surface 41B of the diaphragm 41 of the detection element 40 .
  • Diaphragm 41 bends based on these two pressures.
  • the diaphragm 41 will flex downward, and if the second pressure is greater than the first pressure, the diaphragm 41 will flex upward. Moreover, the diaphragm 41 bends greatly, so that the difference of a 1st pressure and a 2nd pressure is large.
  • a current or voltage based on the bending direction and bending magnitude of the diaphragm 41 is output to the circuit element 30 via the wire 31 .
  • the circuit element 30 calculates the differential pressure between the first pressure and the second pressure based on this current and voltage by a known calculation.
  • the differential pressure sensor 10 can function as either a piezo sensor or a capacitance sensor.
  • a strain gauge is provided on the diaphragm 41 when the differential pressure sensor 10 functions as a piezo type.
  • a capacitor is formed by the lower surface 41B of the diaphragm 41 and a surface of the surfaces forming a part of the flow path 70 and facing the lower surface 41B. Note that the above-described differential pressure calculation method differs depending on the type (piezo type or capacitance type) of the differential pressure sensor 10, but since a known method is used for the calculation method, a detailed description of the calculation method will be given. is omitted.
  • the opening 60A of the openings 60A and 70A is formed on the upper surface 10B, and the opening 70A is formed on the side surface 10C.
  • the area of the differential pressure sensor 10 viewed from the direction orthogonal to the upper surface 10B can be made smaller than the configuration in which both the openings 60A and 70A are formed in the upper surface 10B. That is, it is possible to suppress an increase in the size of the differential pressure sensor 10 in plan view.
  • openings 60A and 70A are formed facing the top surface 20A of the substrate 20, the opening facing the top surface 20A of the substrate 20 is used when a component is bonded to the top surface 20A of the substrate 20. There is a risk of clogging due to flux, etc. In this case, since pressure does not act on the diaphragm 41 through the opening, the differential pressure detection accuracy of the differential pressure sensor 10 is degraded.
  • opening 60A is formed in top surface 10B and opening 70A is formed in side surface 10C. In other words, neither of the openings 60A and 70A faces the upper surface 20A of the substrate 20 . Therefore, it is possible to reduce the possibility of the opening being blocked as described above. As a result, the differential pressure detection accuracy of the differential pressure sensor 10 can be favorably maintained.
  • the flow path 70 as the second communication section is provided in the detection element 40 . Therefore, it is not necessary to dispose another member having a channel for communicating the lower surface 41B of the diaphragm 41 with the outside between the detection element 40 and the substrate 20 . As a result, it is possible to prevent the differential pressure sensor 10 from becoming longer in the vertical direction.
  • FIG. 3 is a cross-sectional view when a detection element is laminated on a substrate in the first manufacturing method of the differential pressure sensor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the substrate and detection element shown in FIG. 3 covered with a resin package.
  • the lamination process is executed.
  • two detection elements 4 are laminated on the upper surface 2A of the substrate 2, as shown in FIG.
  • the substrate 2 is obtained by connecting a plurality of substrates 20 shown in FIG. In the first manufacturing method, the substrate 2 is obtained by connecting two substrates 20 shown in FIG.
  • the two detection elements 4 are stacked with a space between them.
  • the two detection elements 4 are bonded to the upper surface 2A of the substrate 2 with a die attach film, die attach material, or the like.
  • the upper surface 2A is an example of a joint surface. Note that the number of detection elements 4 stacked on the substrate 2 is not limited to two.
  • the detection element 4 includes an internal space 7 and a diaphragm 41 having an upper surface 41A and a lower surface 41B.
  • the internal space 7 is hermetically sealed.
  • a lower surface 41B of the diaphragm 41 forms part of the internal space 7 .
  • the two detection elements 4 are laminated on the upper surface 2A of the substrate 2 so that the diaphragm 41 faces upward. In other words, the two detection elements 4 are stacked on the upper surface 2A of the substrate 2 such that the diaphragm 41 is on the opposite side of the substrate 2 with respect to the internal space 7. As shown in FIG.
  • the circuit element 30 may be laminated on the upper surface 2A of the substrate 2 in the lamination step.
  • a circuit element 30 is stacked corresponding to each of the two detection elements 4 .
  • two circuit elements 30 are laminated on the upper surface 2A of the substrate 2. As shown in FIG. In the first manufacturing method, the two circuit elements 30 are bonded to the upper surface 2A of the substrate 2 by a die attach film, die attach material, or the like.
  • the circuit element 30, the detection element 4, and the upper surface 2A of the substrate 2 may be electrically connected to each other by wire bonding or the like.
  • the covering process is executed.
  • the entire upper surface 2A of the substrate 2 and part of the two detection elements 4 are covered with the resin package 50.
  • the upper surface 2A of the substrate 2 and the resin package 50 are coated by known means such as Film Assist Molding.
  • the resin package 50 is formed with a through-hole 60 and an annular groove 51 using a mold or the like.
  • the through hole 60 and the annular groove 51 are formed corresponding to each of the detection elements 4 . That is, in the first manufacturing method, two through holes 60 and two annular grooves 51 are formed in the resin package 50 .
  • Each through-hole 60 is formed directly above the upper surface 41A of the diaphragm 41 of the corresponding detection element 4 . Thereby, the upper surface 41A faces the through hole 60 .
  • Each annular groove 51 is formed so as to surround each through hole 60 .
  • An annular O-ring 52 is fitted in each annular groove 51 .
  • the O-ring 52 may be fitted into the annular groove 51 not only at the time of the coating process, but at any timing after the annular groove 51 is formed.
  • the resin package 50 also covers the circuit element 30 and the wires in addition to the detection element 4 in the covering process. Also, in the covering step, the resin package 50 may cover only the upper surface 2A of the substrate 2, the circuit elements 30, and part of the wires.
  • the structure 100 including the substrate 2, the two detection elements 4, and the resin package 50 is formed by executing the covering step.
  • the cutting process is executed.
  • the structure 100 is cut by a blade 81, as shown in FIG.
  • the structure 100 is cut along the vertical direction perpendicular to the upper surface 2A.
  • the structure 100 is cut so that the blade 81 passes through the internal space 7 of each detection element 4 and avoids the diaphragm 41 .
  • the structure 100 is cut at two locations. As a result, an opening 70A that communicates the internal space 7 of each detection element 4 with the outside is formed. That is, the structure 100 is cut so that the internal space 7 is exposed to the outside.
  • the structure 100 is divided into two differential pressure sensors 10 and a disposal member 10a between the two differential pressure sensors 10.
  • the substrate 2 is split to form two substrates 20 (see FIG. 2).
  • the resin package 50 is divided into two.
  • each detection element 4 is formed as a detection element 40 (see FIG. 2) having an opening 70A and a flow path 70. As shown in FIG.
  • the cutting direction of the structure 100 by the blade 81 is not limited to the direction perpendicular to the top surface 2A as long as it intersects the top surface 2A.
  • the internal space 7 of the detection element 4 is sealed until the cutting process is performed. Therefore, it is possible to prevent foreign matter from entering the internal space 7 of the detecting element 4 and components of the resin package 50 from entering the internal space 7 of the detecting element 4 in the covering process.
  • FIG. 5 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with the resin package in the second method of manufacturing the differential pressure sensor according to the first embodiment of the present invention.
  • the second manufacturing method differs from the first manufacturing method in that the detection element 4A laminated on the upper surface 2A of the substrate 2 has two internal spaces 7. As shown in FIG. Differences from the first manufacturing method will be described below. Points in common with the first manufacturing method are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • one detection element 4A is laminated on the upper surface 2A of the substrate 2 in the same manner as the detection element 4 of the first manufacturing method.
  • the detection element 4A has two internal spaces 7 and two diaphragms 41 .
  • a structural body 100A including the substrate 2, one detection element 4A, and the resin package 50 is formed by performing the lamination step described above and the covering step similar to the first manufacturing method.
  • the structure 100A is cut so that the blade 81 passes between the two internal spaces 7 in the detection element 4A.
  • the distance between the two inner spaces 7 is made smaller than the width of the blade 81 . Therefore, when the structure 100 is cut as described above, the blade 81 cuts at one point to form the openings 70A that allow both of the two internal spaces 7 to communicate with the outside. That is, the structure 100 is cut so that each of the two internal spaces 7 is exposed to the outside.
  • the structure 100 is divided into two differential pressure sensors 10 (see FIG. 2), and the disposal member 10a is not formed. Further, in the second manufacturing method, one detection element 4A is divided into two detection elements 40 by cutting. Also in the second manufacturing method, the structural body 100A may be cut at two locations as in the first manufacturing method. In this case, a sacrificial member is formed between the two differential pressure sensors 10 by cutting the structure 100A, as in the first manufacturing method.
  • the two detection elements 40 are integrated as the detection element 4A before the cutting process. Therefore, the structure 100A to which the two differential pressure sensors 10 are connected can be miniaturized.
  • the detection element 4A in which the two detection elements 40 are integrated has two internal spaces 7 . Therefore, a performance test can be performed for each of the two inner spaces 7 before the cutting process is performed.
  • FIG. 6 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with the resin package in the third method of manufacturing the differential pressure sensor according to the first embodiment of the present invention.
  • the difference of the third manufacturing method from the first manufacturing method is that the resin package 5 is formed in the covering step while avoiding the region cut in the cutting step. Differences from the first manufacturing method will be described below. Points in common with the first manufacturing method are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the lamination process is executed in the same manner as in the first manufacturing method.
  • the covering step a portion of the upper surface 2A of the substrate 2 and a portion of the two detection elements 4 are covered with the resin package 5.
  • the coating of the resin package 5 is performed by known means such as Film Assist Molding.
  • the resin package 5 covers the upper surface 2A of the substrate 2, avoiding the portion between the two detection elements 4.
  • the resin package 5 covers the two detection elements 4 while avoiding the portion where the through hole 60 is formed.
  • the resin package 5 covers the two detection elements 4 while avoiding the portion on the adjacent detection element 4 side.
  • the portion includes a portion through which the blades 82 and 83 pass in the cutting step and a portion that becomes the sacrificial member 10a after cutting in the cutting step. In other words, the resin package 5 is formed avoiding the region cut in the cutting process.
  • the structure 100B including the substrate 2, the two detection elements 4A, and the resin package 5 is formed by performing the same lamination process as in the first manufacturing method and the coating process described above.
  • the portion of the structure 100B where the resin package 5 is not formed is cut.
  • the structure 100B is cut by blades 82,83.
  • the blade 82 cuts the detection element 4 and the blade 83 cuts the substrate 2 .
  • a blade 82 suitable for cutting the material (for example, silicon) of the detection element 4 is used.
  • a blade 83 suitable for cutting the material of the substrate 2 is used.
  • the manufacturing method in which the resin package 5 is formed in the covering step while avoiding the region cut in the cutting step is also applicable to other manufacturing methods described herein. It is possible.
  • a manufacturing method in which a blade suitable for cutting the material is used is different from the other manufacturing methods described herein. It is also applicable to methods.
  • a blade suitable for each material that constitutes the structure When the structure is cut, it is preferable to use a blade suitable for each material that constitutes the structure.
  • the structure is composed of a substrate, a detection element, and a resin package
  • there are three types of blades (a blade suitable for cutting the substrate, a blade suitable for cutting the detection element, and a blade suitable for cutting the resin package).
  • the resin package 5 is not cut in the cutting step. Therefore, the number of types of blades used when cutting the structure 100B can be reduced from the three types described above to two types.
  • FIG. 7 is a perspective view of a differential pressure sensor according to a second embodiment of the invention.
  • FIG. 8 is a sectional view showing the BB section of FIG.
  • a difference of the differential pressure sensor 11 according to the second embodiment from the differential pressure sensor 10 according to the first embodiment is that a flow path 71 is formed in the substrate 20 . Differences from the first embodiment will be described below. Points in common with the differential pressure sensor 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted in principle, and will be described as necessary.
  • the differential pressure sensor 11 includes a substrate 200, a circuit element 30, a detection element 400, and a resin package 50. That is, the differential pressure sensor 11 differs from the differential pressure sensor 10 according to the first embodiment in that it includes a substrate 200 instead of the substrate 20 and a detection element 400 instead of the detection element 40 .
  • the substrate 200 has a lower surface 10A, an upper surface 20A, and side surfaces 20B.
  • the side surface 20B is an example of the outer surface of the substrate.
  • the substrate 200 is the same as that of the first embodiment, except that the channel 71 is formed inside, the opening 71A is formed in the side surface 20B, and the opening 71B is formed in the top surface 20A. It has the same configuration as the substrate 20 of the differential pressure sensor 10 .
  • the channel 71 is formed inside the substrate 200 .
  • the channel 71 is an example of a second communication portion.
  • Flow path 71 communicates with the outside of differential pressure sensor 10 via opening 71A formed in side surface 20B.
  • the opening 71A is an example of a second opening.
  • the channel 71 communicates with an opening 71B formed in the upper surface 20A.
  • the opening 71B is an example of a third opening.
  • the detection element 400 has the same configuration as the detection element 40 of the differential pressure sensor 10 according to the first embodiment, except that it has a recess 410 instead of the flow path 71 and the opening 71A. In the second embodiment, the sensing element 400 is not exposed outside the differential pressure sensor 10 .
  • the detection element 400 is for measuring pressure.
  • the detection element 400 is a rectangular parallelepiped plate.
  • the sensing element 400 has a bottom surface 400A, a top surface 400B, and side surfaces 400C.
  • the upper surface 400B is located above the lower surface 400A and faces upward. That is, the upper surface 400B is the surface opposite to the lower surface 400A.
  • the side surface 400C connects the bottom surface 400A and the top surface 400B.
  • a concave portion 410 is formed in the lower surface 400A of the detection element 400 .
  • the detection element 400 is thin at the portion where the concave portion 410 is formed, and a thin film is formed. This thin film is the diaphragm 41 .
  • Upper surface 41A of diaphragm 41 is part of upper surface 400B of detection element 400 .
  • a lower surface 41B of the diaphragm 41 is part of the recess 410 .
  • the detection element 400 is laminated on the upper surface 20A of the substrate 200. In other words, the detection element 400 is positioned above the upper surface 20A of the substrate 200 . Various known means can be employed as the lamination means. In the second embodiment, the detection element 400 is bonded to the upper surface 20A of the substrate 200 with a die attach film, die attach material, or the like.
  • the detection element 400 is laminated on the top surface 20A of the substrate 200 so as to cover the opening 71B of the substrate 200 from above and so that the opening 71B and the recess 410 overlap when viewed from the direction perpendicular to the top surface 20A.
  • the lower surface 41B of the diaphragm 41 communicates with the channel 71 of the substrate 200 via the recess 410 and the opening 71B of the substrate 200 . That is, the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 11 via the recess 410, the opening 71B, the flow path 71, and the opening 71A.
  • the differential pressure sensor 11 can function as a piezo sensor.
  • the flow path 71 as the second communication portion is provided in the substrate 200. Therefore, it is not necessary to dispose another member having a channel for communicating the lower surface 41B of the diaphragm 41 with the outside, between the detection element 400 and the substrate 200 . As a result, it is possible to prevent the differential pressure sensor 11 from becoming longer in the vertical direction.
  • FIG. 9 is a cross-sectional view when a detection element is laminated on a substrate in the method of manufacturing a differential pressure sensor according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view when the substrate and the detection element of FIG. 9 are covered with a resin package. Differences from the method of manufacturing the differential pressure sensor according to the first embodiment will be described below. Points in common with the manufacturing method of the differential pressure sensor according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the lamination process is executed.
  • two detection elements 400 are laminated on the upper surface 21A of the substrate 21 in the same manner as the detection element 4 of the first manufacturing method.
  • the substrate 21 is formed by connecting a plurality of substrates 200 shown in FIG. 8, like the substrate 2 shown in FIG. In this manufacturing method, the substrate 21 is obtained by connecting two substrates 200 shown in FIG. Note that the number of detection elements 400 stacked on the substrate 21 is not limited to two.
  • the substrate 21 has two openings 71B formed in the upper surface 21A and two internal spaces 21B.
  • the upper surface 21A is an example of a joint surface.
  • Each of the two internal spaces 21B communicates with the outside of the substrate 21 via each of the two openings 71B.
  • the internal space 21B is formed, for example, by providing an opening in the inner layer of the substrate 21 when the substrate 21 is composed of multiple layers. Further, for example, the internal space 21B is formed by drilling holes from the upper surface 20A and the side surface 20B of the substrate 21 with a drill or the like.
  • Each of the two detection elements 400 is laminated on the upper surface 21A of the substrate 21 so that the opening 71B is closed and the lower surface 41B of the diaphragm 41 communicates with the internal space 21B of the substrate 21 through the opening 71B.
  • the covering step is performed in the same manner as the covering step of the first method of manufacturing the differential pressure sensor according to the first embodiment.
  • a structure 100C including the substrate 21, the two detection elements 400, and the resin package 50 is formed as shown in FIG.
  • the cutting process is executed.
  • the structure 100C is cut by a blade 81, as shown in FIG.
  • the structure 100C is cut along the vertical direction orthogonal to the upper surface 21A.
  • the structure 100C is cut so that the blade 81 passes through the internal space 21B of each substrate 21 and avoids the detection element 400.
  • FIG. In this manufacturing method the structure 100C is cut at two locations. As a result, an opening 71A that communicates the internal space 21B of each substrate 21 with the outside is formed. That is, the structure 100C is cut so that each of the two internal spaces 21B is exposed to the outside.
  • the structure 100C is divided into the two differential pressure sensors 11 and the disposal member 11a between the two differential pressure sensors 11. Specifically, the substrate 21 is split to form two substrates 200 (see FIG. 8). Also, the resin package 50 is divided into two.
  • the internal space 21B of the substrate 21 can be hermetically sealed from the closing of the opening 71B formed in the upper surface 21A in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space 21B of the substrate 21, and prevent the components of the resin package 50 from entering the internal space 21B of the substrate 21 in the covering step.
  • the two substrates 200 are integrated as the substrate 21 before the cutting process. Therefore, the structure 100C to which the two differential pressure sensors 11 are connected can be miniaturized.
  • the substrate 21 in which two substrates 200 are integrated has two internal spaces 21B. Therefore, a performance test can be performed on each of the two internal spaces 21B before the cutting process is performed.
  • the substrate 200 has the channel 71 as the second communicating portion, but may have the groove 72 instead of the channel 71 as the second communicating portion.
  • the grooves 72 are formed in the upper surface 20A of the substrate 200. As shown in FIG. Groove 72 extends to the outer edge of upper surface 20A of substrate 200 . An opening 71A is formed in the outer edge.
  • the detection element 400 is laminated on the upper surface 20A of the substrate 200 so as to cover a part of the groove 72 and overlap the recess 410 with the part when viewed from the direction orthogonal to the upper surface 20A.
  • An opening 71 ⁇ /b>B communicating between the groove 72 and the recess 410 is formed in a portion where the part overlaps the recess 410 .
  • the resin package 50 covers the portion of the upper surface 20A of the substrate 200 that is not covered with the detection element 4400 . As a result, the portion of the groove 72 other than the openings 71A and 71B is closed by the resin package 50 .
  • Forming a groove in the substrate 200 is easier than forming an internal space in the substrate 200 . Therefore, according to the configuration indicated by the dashed line in FIG. 8 , by forming the groove 72 in the substrate 200 , it is possible to easily form the flow path as the second communication portion.
  • the groove 72 is configured as a flow path that communicates the lower surface 41B of the diaphragm 41 with the outside by executing the following steps, for example.
  • a groove 72 formed in the substrate 200 is filled with wax or the like.
  • the differential pressure sensor 11 is manufactured by performing the lamination process, the coating process, and the cutting process described above. Heat is then applied to each manufactured differential pressure sensor 11 .
  • the wax filling the grooves 72 melts and flows out from the openings 71A.
  • the grooves 72 formed in the substrate 200 are configured as channels.
  • FIG. 11 is a perspective view of a differential pressure sensor according to a third embodiment of the invention.
  • FIG. 12 is a sectional view showing a CC section of FIG. 11.
  • a differential pressure sensor 12 according to the third embodiment differs from the differential pressure sensor 10 according to the first embodiment in that a resin case 90 is provided. Differences from the first embodiment and the second embodiment will be described below. Points common to the differential pressure sensor 10 of the first embodiment or the differential pressure sensor 11 of the second embodiment are denoted by the same reference numerals, and description thereof is omitted in principle, and will be described as necessary. .
  • the differential pressure sensor 12 includes a substrate 20, a circuit element 30, a detection element 400, a resin case 90, and a resin package 50.
  • the resin case 90 is made of hard resin such as thermosetting resin.
  • the resin case 90 may be made of a different kind of resin from the resin package 50 or may be made of the same kind of resin as the resin package 50 .
  • the resin case 90 has a rectangular parallelepiped shape.
  • the resin case 90 has a lower surface 90A, an upper surface 90B, and side surfaces 90C.
  • the upper surface 90B is located above the lower surface 90A and faces upward. That is, the upper surface 90B is the surface opposite to the lower surface 90A.
  • the side surface 90C connects the bottom surface 90A and the top surface 90B.
  • a portion of the side surface 90C constitutes a portion of the side surface 10C of the differential pressure sensor 10.
  • a rectangular parallelepiped resin case 90 has four side surfaces 90C.
  • One side surface 90Ca of the four side surfaces 90C is exposed to the outside and forms part of the side surface 10C of the differential pressure sensor 10.
  • the side surface 90Ca is an example of the outer surface of the resin case.
  • the remaining three side surfaces 90C out of the four side surfaces 90C are covered with the resin package 50 and are not exposed to the outside.
  • An opening 73A is formed in the side surface 90Ca.
  • the opening 73A is an example of a second opening.
  • the resin case 90 is laminated on the upper surface 20A of the substrate 20.
  • Various known means can be employed as the lamination means.
  • the resin case 90 is joined to the upper surface 20A of the substrate 20 by a die attach film, die attach material, or the like.
  • a concave portion is formed on the lower side of the resin case 90 .
  • the recess forms the flow path 73 by laminating the resin case 90 on the upper surface 20A of the substrate 20 . That is, the flow path 73 is formed in the resin case 90 .
  • the flow path 73 is an example of a second communication portion.
  • the flow path 73 communicates with the outside of the differential pressure sensor 12 through an opening 73A.
  • the channel 73 communicates with an opening 73B formed in the upper surface 90B.
  • the opening 73B is an example of a third opening.
  • the detection element 400 is laminated on the upper surface 90B, which is the surface of the resin case 90 opposite to the substrate 20 .
  • the stacking means various known means can be adopted as in the case of bonding the resin case 90 to the substrate 20 .
  • the detection element 400 is mounted on the upper surface 90B of the resin case 90 so as to cover the opening 73B of the resin case 90 from above and so that the opening 73B and the recess 410 overlap when viewed from the direction orthogonal to the upper surface 90B of the resin case 90. Laminated. Thereby, the lower surface 41B of the diaphragm 41 communicates with the flow path 73 of the resin case 90 via the recess 410 and the opening 73B of the resin case 90 . That is, the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 12 via the recess 410, the opening 73B, the flow path 73, and the opening 73A.
  • the resin package 50 covers the upper surface 20A of the substrate 20, the circuit element 30, the detection element 40, and a part of the resin case 90 (the part excluding the side surface 90Ca of the resin case 90).
  • the resin package 50 may cover the side surface 90Ca of the resin case 90 so that only the opening 73A is exposed to the outside.
  • the differential pressure sensor 12 can function as a piezo sensor.
  • the flow path 73 is formed in the resin case 90 as the second communication portion. Therefore, it is not necessary to apply additional processing to the detection element 400, the substrate 20, and the like for forming the flow path as the second communication portion.
  • the detection element 400 is supported by the resin case 90 from below. Therefore, it is easy to configure the detection element 400 and the resin case 90 so that the lower surface 41B of the diaphragm 41 of the detection element 400 faces the flow path 73 formed in the resin case 90 .
  • the detection element 400 is layered on the top surface 90B of the resin case 90 .
  • the detection element 400 may be laminated on the upper surface 20A of the substrate 20.
  • FIG. the detection element 400 may be arranged on the side of the resin case 90 and adjacent to the resin case 90 .
  • an opening that communicates with the recess 410 is formed in the side surface of the detection element 400 on the resin case 90 side.
  • An opening communicating with the flow path 73 is formed in the side surface of the resin case 90 on the side of the detection element 400 .
  • the opening communicating with recess 410 and the opening communicating with channel 73 communicate with each other.
  • the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 12 via the recess 410 and the flow path 73. As shown in FIG.
  • FIG. 13 is a cross-sectional view when a resin case is laminated on a substrate in the method of manufacturing a differential pressure sensor according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the resin case of FIG. 13 when the detection element is laminated.
  • FIG. 15 is a cross-sectional view of the substrate, resin case, and detection element of FIG. 14 covered with a resin package. Differences from the method of manufacturing the differential pressure sensor according to the first and second embodiments will be described below. Points in common with the differential pressure sensor manufacturing method according to the first embodiment and the second embodiment are given the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the first lamination process is performed.
  • the resin case 9 is laminated on the upper surface 2A of the substrate 2, as shown in FIG.
  • the upper surface 2A is an example of a joint surface.
  • one resin case 9 having two internal spaces 7A is laminated on the upper surface 2A of the substrate 2, similarly to the second manufacturing method of the differential pressure sensor according to the first embodiment.
  • the resin case 9 is joined to the upper surface 2A of the substrate 2 by a die attach film, die attach material, or the like.
  • a plurality of one resin cases each having one internal space 7A may be laminated on the upper surface 2A of the substrate 2 in the same manner as in the first manufacturing method of the differential pressure sensor according to the first embodiment.
  • the resin case 9 has a lower surface 9A, an upper surface 9B, and side surfaces 9C.
  • the upper surface 9B is located above the lower surface 9A and faces upward. That is, the upper surface 9B is the surface opposite to the lower surface 9A.
  • the side surface 9C connects the bottom surface 9A and the top surface 9B.
  • the resin case 9 has two openings 73B formed in the upper surface 9B and two internal spaces 7A. Each of the two internal spaces 7A communicates with the outside of the substrate 21 via each of the two openings 73B.
  • the second lamination process is performed.
  • two detection elements 400 are laminated on the upper surface 9B of the resin case 9 in the same manner as the detection elements 400 in the method of manufacturing the differential pressure sensor according to the second embodiment. be.
  • one detection element 400 is stacked for each resin case 9. FIG.
  • Each of the two detection elements 400 is stacked on the upper surface 9B of the resin case 9 so as to block the opening 73B and communicate the lower surface 41B of the diaphragm 41 with the internal space 7A of the resin case 9 through the opening 73B.
  • the detection element 400 may be laminated on the upper surface 2A of the substrate 2.
  • the opening 73 ⁇ /b>B of the resin case 9 is formed on the side surface 9 ⁇ /b>C of the resin case 9 .
  • an opening is formed in the side surface 400C of the detection element 400 .
  • the detection element 400 is stacked at a position adjacent to the side surface 9C of the resin case 9 so that the opening formed in the side surface 400C and the opening 73B of the resin case 9 communicate with each other.
  • the covering step is performed in the same manner as the covering step of the first method of manufacturing the differential pressure sensor according to the first embodiment.
  • the covering step as shown in FIG. 15, the entire top surface 2A of the substrate 2, the resin case 9, and a portion of the two detection elements 400 (excluding the top surface 41A) are covered with the resin package 50.
  • FIG. 15 the entire top surface 2A of the substrate 2, the resin case 9, and a portion of the two detection elements 400 (excluding the top surface 41A) are covered with the resin package 50.
  • a structure 100D including a substrate 21, a resin case 9, two detection elements 400, and a resin package 50 is formed as shown in FIG.
  • the resin package 50 may cover only a part of the resin case 9 .
  • the cutting process is executed.
  • the structure 100D is cut by a blade 81, as shown in FIG.
  • the structure 100D is cut along the vertical direction perpendicular to the upper surface 2A.
  • the structural body 100 ⁇ /b>D is cut so that the blade 81 passes through each internal space 7 ⁇ /b>A of the resin case 9 and avoids the detection element 400 .
  • the structure 100D is cut at two locations. As a result, openings 73A are formed that allow the internal spaces 7A of the resin case 9 to communicate with the outside. That is, the structure 100D is cut so that each of the two internal spaces 7A is exposed to the outside.
  • the structure 100D is divided into the two differential pressure sensors 12 (see FIG. 12) and the disposal member 12a between the two differential pressure sensors 12.
  • the substrate 2 is split to form two substrates 20 (see FIG. 12).
  • the resin case 9 is divided to form two resin cases 90 (see FIG. 12).
  • the resin package 50 is divided into two.
  • the internal space 7A of the resin case 9 can be sealed from when the opening 73B of the resin case 9 is closed in the stacking step until the cutting step is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space 7A of the resin case 9, and prevent the components of the resin package 50 from entering the internal space 7A of the resin case 9 in the coating step. .
  • the two resin cases 90 are integrated as the resin case 9 before the cutting process. Therefore, the structure 100D to which the two differential pressure sensors 12 are connected can be miniaturized.
  • the resin case 9 in which two resin cases 90 are integrated has two internal spaces 7A. Therefore, a performance test can be performed for each of the two internal spaces 7A before the cutting process is performed.

Abstract

This differential pressure sensor has a lower surface, an upper surface, and a lateral surface. The differential pressure sensor comprises a substrate having an upper surface, a detection element that is positioned above the upper surface of the substrate and has a diaphragm for detecting the pressure difference between two pressures, and a resin package that covers the upper surface of the substrate and the detection element and has an upper surface. A through hole is formed in the resin package that causes the upper surface of the diaphragm to be in communication with the outside of the differential pressure sensor via an opening formed in the upper surface of the resin package. A flow path is formed in the detection element that causes the lower surface of the diaphragm to be in communication with the outside of the differential pressure sensor via an opening formed in the lateral surface.

Description

差圧センサ及びその製造方法Differential pressure sensor and manufacturing method thereof
 本発明は、外部からの圧力を測定するための差圧センサ及びその製造方法に関する。 The present invention relates to a differential pressure sensor for measuring external pressure and a manufacturing method thereof.
 2つの圧力の差圧を測定するための差圧センサが知られている(例えば、特許文献1参照)。特許文献1に開示された差圧センサは、ダイアフラムと圧力導入口と大気導入口とを備える。 A differential pressure sensor for measuring the differential pressure between two pressures is known (see Patent Document 1, for example). A differential pressure sensor disclosed in Patent Document 1 includes a diaphragm, a pressure inlet, and an air inlet.
 ダイアフラムは、第1面と第1面の裏面である第2面とを有する。ダイアフラムは、第1面に作用する圧力と、第2面に作用する圧力との差圧により変位する。圧力導入口は、ケースの表面に立設された圧力導入部に設けられている。大気導入口は、ケースの表面に圧力導入部と並んで立設された大気圧導入部に設けられている。 The diaphragm has a first surface and a second surface that is the back surface of the first surface. The diaphragm is displaced by the differential pressure between the pressure acting on the first surface and the pressure acting on the second surface. The pressure introduction port is provided in a pressure introduction portion erected on the surface of the case. The atmospheric pressure introduction port is provided in an atmospheric pressure introduction section erected in parallel with the pressure introduction section on the surface of the case.
 圧力導入口から供給される流体の圧力は、圧力導入部を介してダイアフラムの第1面に作用する。大気導入口から供給される大気の圧力(大気圧)は、大気圧導入部を介してダイアフラムの第2面に作用する。第1面及び第2面に作用する圧力によってダイアフラムは変位する。この変位に基づいて、流体の圧力と大気圧との差圧が検出される。 The pressure of the fluid supplied from the pressure introduction port acts on the first surface of the diaphragm via the pressure introduction portion. The atmospheric pressure (atmospheric pressure) supplied from the atmospheric pressure introduction port acts on the second surface of the diaphragm via the atmospheric pressure introduction portion. The diaphragm is displaced by pressure acting on the first and second surfaces. Based on this displacement, the differential pressure between the pressure of the fluid and the atmospheric pressure is detected.
特開2012-233872号公報JP 2012-233872 A
 特許文献1に開示された差圧センサでは、圧力導入部及び大気圧導入部が設けられたケースの表面と直交する方向から見た場合の、差圧センサの大型化を抑えるという観点において、改善の余地がある。 In the differential pressure sensor disclosed in Patent Document 1, there is an improvement in terms of suppressing an increase in the size of the differential pressure sensor when viewed from a direction orthogonal to the surface of the case where the pressure introduction part and the atmospheric pressure introduction part are provided. There is room for
 また、差圧センサには、良好な検出精度を維持する観点において、改善の余地がある。 Also, the differential pressure sensor has room for improvement in terms of maintaining good detection accuracy.
 従って、本発明の目的は、前記課題を解決することにあって、平面視における大型化を抑制しつつ、良好な検出精度を維持することができる差圧センサを提供することにある。 Accordingly, an object of the present invention is to solve the above problems, and to provide a differential pressure sensor capable of maintaining good detection accuracy while suppressing an increase in size in plan view.
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の一態様に係る差圧センサは、
 センサ下面と、センサ上面と、前記センサ下面及び前記センサ上面を繋ぐセンサ側面とを有する差圧センサであって、
 前記センサ下面と、前記センサ下面の反対側の接合面とを有する基板と、
 前記基板の接合面の上方に位置し、2つの圧力の差圧を検出するためのダイアフラムを有する検出素子と、
 前記基板の接合面と前記検出素子との少なくとも一部を覆い、前記基板と反対側に前記センサ上面を有する樹脂パッケージと、を備え、
 前記ダイアフラムは、上方を向く第1面と前記第1面の裏面であって下方を向く第2面とを有し、
 前記ダイアフラムの前記第1面を、前記センサ上面に形成された第1開口を介して、前記差圧センサの外部に連通する第1連通部が前記樹脂パッケージに形成され、
 前記ダイアフラムの前記第2面を、前記センサ側面に形成された第2開口を介して、前記差圧センサの外部に連通する第2連通部が形成される。
In order to achieve the above object, the present invention is configured as follows.
A differential pressure sensor according to an aspect of the present invention comprises:
A differential pressure sensor having a sensor bottom surface, a sensor top surface, and a sensor side surface connecting the sensor bottom surface and the sensor top surface,
a substrate having the lower surface of the sensor and a bonding surface opposite to the lower surface of the sensor;
a sensing element positioned above the joint surfaces of the substrates and having a diaphragm for sensing a differential pressure between the two pressures;
a resin package covering at least a part of the bonding surface of the substrate and the detection element and having the upper surface of the sensor on the side opposite to the substrate;
The diaphragm has a first surface facing upward and a second surface facing downward on the back surface of the first surface,
The resin package is formed with a first communicating portion that communicates the first surface of the diaphragm with the outside of the differential pressure sensor through a first opening formed in the upper surface of the sensor,
A second communicating portion is formed that communicates the second surface of the diaphragm with the outside of the differential pressure sensor through a second opening formed in the side surface of the sensor.
 本発明によれば、平面視における大型化を抑制することができる。 According to the present invention, it is possible to suppress an increase in size in plan view.
本発明の第1実施形態に係る差圧センサの斜視図。1 is a perspective view of a differential pressure sensor according to a first embodiment of the invention; FIG. 図1のA-A断面を示す断面図。FIG. 2 is a sectional view showing the AA section of FIG. 1; 本発明の第1実施形態に係る差圧センサの第1製造方法において基板に検出素子が積層されたときの断面図。FIG. 4 is a cross-sectional view when a detection element is laminated on a substrate in the first manufacturing method of the differential pressure sensor according to the first embodiment of the present invention; 図3の基板及び検出素子に樹脂パッケージが被覆されたときの断面図。FIG. 4 is a cross-sectional view when the substrate and detection element in FIG. 3 are covered with a resin package; 本発明の第1実施形態に係る差圧センサの第2製造方法において検出素子が積層された基板に樹脂パッケージが被覆されたときの断面図。FIG. 5 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with a resin package in the second method of manufacturing the differential pressure sensor according to the first embodiment of the present invention; 本発明の第1実施形態に係る差圧センサの第3製造方法において検出素子が積層された基板に樹脂パッケージが被覆されたときの断面図。FIG. 11 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with a resin package in the third manufacturing method of the differential pressure sensor according to the first embodiment of the present invention; 本発明の第2実施形態に係る差圧センサの斜視図。The perspective view of the differential pressure sensor which concerns on 2nd Embodiment of this invention. 図7のB-B断面を示す断面図。FIG. 8 is a cross-sectional view showing the BB cross section of FIG. 7; 本発明の第2実施形態に係る差圧センサの製造方法において基板に検出素子が積層されたときの断面図。FIG. 8 is a cross-sectional view when a detection element is laminated on a substrate in a method for manufacturing a differential pressure sensor according to a second embodiment of the present invention; 図9の基板及び検出素子に樹脂パッケージが被覆されたときの断面図。FIG. 10 is a cross-sectional view when the substrate and detection element in FIG. 9 are covered with a resin package; 本発明の第3実施形態に係る差圧センサの斜視図。The perspective view of the differential pressure sensor which concerns on 3rd Embodiment of this invention. 図11のC-C断面を示す断面図。FIG. 12 is a sectional view showing a CC section of FIG. 11; 本発明の第3実施形態に係る差圧センサの製造方法において基板に樹脂ケースが積層されたときの断面図。FIG. 11 is a cross-sectional view when a resin case is laminated on a substrate in a method of manufacturing a differential pressure sensor according to a third embodiment of the present invention; 図13の樹脂ケースに検出素子が積層されたときの断面図。FIG. 14 is a cross-sectional view when the detection element is laminated on the resin case of FIG. 13; 図14の基板、樹脂ケース、及び検出素子に樹脂パッケージが被覆されたときの断面図。FIG. 15 is a cross-sectional view when the substrate, resin case, and detection element in FIG. 14 are covered with a resin package;
 本発明の一態様に係る差圧センサは、
 センサ下面と、センサ上面と、前記センサ下面及び前記センサ上面を繋ぐセンサ側面とを有する差圧センサであって、
 前記センサ下面と、前記センサ下面の反対側の接合面とを有する基板と、
 前記基板の接合面の上方に位置し、2つの圧力の差圧を検出するためのダイアフラムを有する検出素子と、
 前記基板の接合面と前記検出素子との少なくとも一部を覆い、前記基板と反対側に前記センサ上面を有する樹脂パッケージと、を備え、
 前記ダイアフラムは、上方を向く第1面と前記第1面の裏面であって下方を向く第2面とを有し、
 前記ダイアフラムの前記第1面を、前記センサ上面に形成された第1開口を介して、前記差圧センサの外部に連通する第1連通部が前記樹脂パッケージに形成され、
 前記ダイアフラムの前記第2面を、前記センサ側面に形成された第2開口を介して、前記差圧センサの外部に連通する第2連通部が形成される。
A differential pressure sensor according to an aspect of the present invention comprises:
A differential pressure sensor having a sensor bottom surface, a sensor top surface, and a sensor side surface connecting the sensor bottom surface and the sensor top surface,
a substrate having the lower surface of the sensor and a bonding surface opposite to the lower surface of the sensor;
a sensing element positioned above the joint surfaces of the substrates and having a diaphragm for sensing a differential pressure between the two pressures;
a resin package covering at least a part of the bonding surface of the substrate and the detection element and having the upper surface of the sensor on the side opposite to the substrate;
The diaphragm has a first surface facing upward and a second surface facing downward on the back surface of the first surface,
The resin package is formed with a first communicating portion that communicates the first surface of the diaphragm with the outside of the differential pressure sensor through a first opening formed in the upper surface of the sensor,
A second communicating portion is formed that communicates the second surface of the diaphragm with the outside of the differential pressure sensor through a second opening formed in the side surface of the sensor.
 この構成によれば、第1開口及び第2開口のうちの第1開口のみがセンサ上面に形成され、第2開口はセンサ側面に形成される。これにより、センサ上面と直交する方向から見た差圧センサの面積を、第1開口及び第2開口の双方がセンサ上面に形成された構成より小さくすることができる。つまり、平面視における差圧センサの大型化を抑制することができる。 According to this configuration, only the first opening of the first opening and the second opening is formed on the upper surface of the sensor, and the second opening is formed on the side surface of the sensor. As a result, the area of the differential pressure sensor viewed from the direction orthogonal to the upper surface of the sensor can be made smaller than the configuration in which both the first opening and the second opening are formed on the upper surface of the sensor. That is, it is possible to suppress an increase in the size of the differential pressure sensor in plan view.
 仮に、第1開口及び第2開口の少なくとも一方が基板の接合面と対向して形成されている場合、基板の接合面と対向する開口が、基板の接合面に部品が接合される際に使用されるフラックス等によって閉塞されるおそれがある。この場合、当該開口を介してダイアフラムへ圧力が作用しないため、差圧センサによる差圧の検出精度が落ちてしまう。しかし、この構成によれば、第1開口がセンサ上面に形成され、第2開口がセンサ側面に形成されている。つまり、第1開口及び第2開口のいずれも基板の接合面と対向していない。そのため、前述したような開口の閉塞の可能性を低くすることができる。その結果、差圧センサによる差圧の検出精度を良好に維持することができる。 If at least one of the first opening and the second opening is formed facing the bonding surface of the substrate, the opening facing the bonding surface of the substrate is used when a component is bonded to the bonding surface of the substrate. There is a risk of clogging due to flux, etc. In this case, since pressure does not act on the diaphragm through the opening, the differential pressure detection accuracy of the differential pressure sensor is lowered. However, according to this configuration, the first opening is formed on the upper surface of the sensor and the second opening is formed on the side surface of the sensor. That is, neither the first opening nor the second opening faces the bonding surface of the substrate. Therefore, it is possible to reduce the possibility of the opening being blocked as described above. As a result, it is possible to maintain good differential pressure detection accuracy by the differential pressure sensor.
 前記差圧センサにおいて、前記検出素子の外面は、前記センサ側面の一部であって前記第2開口を有してもよく、前記第2連通部は、前記検出素子に形成される流路であってもよい。 In the differential pressure sensor, the outer surface of the detection element may be part of the side surface of the sensor and have the second opening, and the second communication portion may be a flow path formed in the detection element. There may be.
 この構成によれば、第2連通部としての流路は、検出素子に設けられている。そのため、検出素子と基板との間に、ダイアフラムの第2面を外部と連通させるための流路が形成された他の部材を配置する必要がない。これにより、差圧センサが上下に長くなることを抑制することができる。 According to this configuration, the flow path as the second communication section is provided in the detection element. Therefore, there is no need to dispose another member having a flow path for communicating the second surface of the diaphragm with the outside, between the detection element and the substrate. This can prevent the differential pressure sensor from becoming longer in the vertical direction.
 前記差圧センサにおいて、前記検出素子は、前記基板の接合面に接合されてもよく、前記基板は、前記基板の接合面及び前記センサ下面を繋ぐ外面であって前記センサ側面の一部である外面を備えてもよく、前記基板の外面に、前記第2開口が形成されてもよく、前記第2連通部は、前記基板に形成される流路であってもよく、前記基板の接合面に、前記検出素子の前記ダイアフラムの前記第2面と前記流路とを連通する第3開口が形成されてもよい。 In the differential pressure sensor, the detection element may be bonded to the bonding surface of the substrate, and the substrate is an outer surface that connects the bonding surface of the substrate and the lower surface of the sensor and is a part of the side surface of the sensor. An outer surface may be provided, the second opening may be formed in the outer surface of the substrate, the second communication portion may be a flow path formed in the substrate, and the bonding surface of the substrate A third opening may be formed to communicate the second surface of the diaphragm of the detection element and the flow path.
 この構成によれば、第2連通部としての流路は、基板に設けられている。そのため、検出素子と基板との間に、ダイアフラムの第2面を外部と連通させるための流路が形成された他の部材を配置する必要がない。これにより、差圧センサが上下に長くなることを抑制することができる。 According to this configuration, the channel as the second communication portion is provided in the substrate. Therefore, there is no need to dispose another member having a flow path for communicating the second surface of the diaphragm with the outside, between the detection element and the substrate. This can prevent the differential pressure sensor from becoming longer in the vertical direction.
 前記差圧センサにおいて、前記流路は、前記基板の接合面に形成される溝であってもよく、前記溝の上側における前記第3開口を除く部分は、前記樹脂パッケージによって閉塞されてもよい。 In the differential pressure sensor, the flow path may be a groove formed in the bonding surface of the substrate, and a portion above the groove excluding the third opening may be closed by the resin package. .
 基板に溝を形成することは、基板に内部空間を形成するより容易である。そのため、この構成によれば、基板に第2連通部としての流路を容易に形成することができる。 Forming a groove in the substrate is easier than forming an internal space in the substrate. Therefore, according to this configuration, it is possible to easily form the channel as the second communication portion in the substrate.
 本発明の一態様に係る差圧センサは、前記基板の接合面に接合される樹脂ケースを更に備えてもよく、前記検出素子は、前記樹脂ケースに接触してもよく、前記樹脂パッケージは、前記樹脂ケースの少なくとも一部の上方を覆ってもよく、前記樹脂ケースの外面は、前記センサ側面の一部であって前記第2開口を有してもよく、前記第2連通部は、前記樹脂ケースに形成された流路であってもよく、前記樹脂ケースに、前記検出素子の前記ダイアフラムの前記第2面と前記流路とを連通する第3開口が形成されてもよい。 The differential pressure sensor according to an aspect of the present invention may further include a resin case bonded to the bonding surface of the substrate, the detection element may contact the resin case, and the resin package may include: The upper side of at least part of the resin case may be covered, the outer surface of the resin case may be part of the side surface of the sensor and may have the second opening, and the second communication portion may be the The flow path may be formed in a resin case, and the resin case may be formed with a third opening that communicates the flow path with the second surface of the diaphragm of the detection element.
 この構成によれば、第2連通部としての流路が樹脂ケースに形成されている。そのため、検出素子及び基板等に、第2連通部としての流路を形成するための追加の加工を施す必要がない。 According to this configuration, the flow path as the second communication portion is formed in the resin case. Therefore, it is not necessary to perform additional processing for forming the flow path as the second communication part on the detection element, the substrate, and the like.
 前記差圧センサにおいて、前記検出素子は、前記樹脂ケースの面のうち前記基板と反対側の面に接合されてもよい。 In the differential pressure sensor, the detection element may be bonded to a surface of the resin case opposite to the substrate.
 この構成によれば、検出素子が樹脂ケースに下方から支持される。そのため、検出素子のダイアフラムの下方を向く第2面を、樹脂ケースに形成された流路に面するように検出素子及び樹脂ケースを構成することが容易である。 According to this configuration, the detection element is supported by the resin case from below. Therefore, it is easy to configure the detection element and the resin case so that the downward second surface of the diaphragm of the detection element faces the flow path formed in the resin case.
 本発明の一態様に係る差圧センサの製造方法は、
 密閉された内部空間と、外部に露出する第1面及び前記第1面の裏面であって前記内部空間に面する第2面を有するダイアフラムとを備える検出素子を、基板の接合面に、前記ダイアフラムが前記内部空間に対して前記基板の反対側となるように積層する積層工程と、
 貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子との少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂パッケージとを備える構造体を形成する被覆工程と、
 前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む。
A method for manufacturing a differential pressure sensor according to one aspect of the present invention includes:
A detection element having a sealed internal space and a diaphragm having a first surface exposed to the outside and a second surface facing the internal space on the back surface of the first surface is mounted on the bonding surface of the substrate. A lamination step of laminating so that the diaphragm is on the opposite side of the substrate with respect to the internal space;
A resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered. and a covering step of forming a structure comprising the resin package;
a cutting step of cutting the structure along a direction intersecting the bonding surface of the substrate so that the internal space is exposed to the outside.
 この製造方法によれば、切断工程が実行されるまで、検出素子の内部空間は密閉されている。そのため、検出素子の内部空間へ異物が進入すること、及び被覆工程において検出素子の内部空間へ樹脂パッケージの構成物が進入することを防止することができる。 According to this manufacturing method, the internal space of the detection element is sealed until the cutting process is performed. Therefore, it is possible to prevent foreign substances from entering the internal space of the detecting element and prevent components of the resin package from entering the internal space of the detecting element in the covering process.
 前記製造方法において、前記検出素子は、2つの前記内部空間を備えてもよく、前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断されてもよい。 In the manufacturing method, the detection element may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside. .
 この製造方法によれば、切断工程の前において、2つの検出素子が一体化されている。そのため、2つの差圧センサが連結されている構造体を小型化することができる。 According to this manufacturing method, the two detection elements are integrated before the cutting process. Therefore, the structure in which the two differential pressure sensors are connected can be miniaturized.
 この製造方法によれば、2つの検出素子が一体化されたものが2つの内部空間を備えている。そのため、切断工程が実行される前に、2つの内部空間の各々に対して性能検査を実行することができる。 According to this manufacturing method, the one in which two detection elements are integrated has two internal spaces. As such, a performance test can be performed on each of the two interior spaces before the cutting process is performed.
 本発明の一態様に係る差圧センサの製造方法は、
 開口が形成される接合面と前記開口を介して外部と連通する内部空間とを備える基板の前記接合面に、第1面及び前記第1面の裏側の第2面を有するダイアフラムを備える検出素子を、前記開口を外部に対して塞ぎ且つ前記ダイアフラムの前記第2面が前記開口を介して前記内部空間と連通するように積層する積層工程と、
 貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子との少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂パッケージとを備える構造体を形成する被覆工程と、
 前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む。
A method for manufacturing a differential pressure sensor according to one aspect of the present invention includes:
A detection element comprising a diaphragm having a first surface and a second surface on the back side of the first surface on the bonding surface of a substrate having a bonding surface on which an opening is formed and an internal space communicating with the outside through the opening. a lamination step of laminating such that the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening;
A resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered. and a covering step of forming a structure comprising the resin package;
a cutting step of cutting the structure along a direction intersecting the bonding surface of the substrate so that the internal space is exposed to the outside.
 この製造方法によれば、積層工程において接合面に形成された開口が塞がれてから切断工程が実行されるまで、基板の内部空間を密閉させることができる。そのため、基板の内部空間へ異物が進入する可能性を低くすることができ、被覆工程において基板の内部空間へ樹脂パッケージの構成物が進入することを防止することができる。 According to this manufacturing method, the internal space of the substrate can be sealed from when the opening formed in the bonding surface is closed in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space of the substrate, and prevent the components of the resin package from entering the internal space of the substrate in the coating process.
 前記製造方法において、前記基板は、2つの前記内部空間を備えてもよく、前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断されてもよい。 In the manufacturing method, the substrate may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside.
 この製造方法によれば、切断工程の前において、2枚の基板が一体化されている。そのため、2つの差圧センサが連結されている構造体を小型化することができる。 According to this manufacturing method, two substrates are integrated before the cutting process. Therefore, the structure in which the two differential pressure sensors are connected can be miniaturized.
 この製造方法によれば、2枚の基板が一体化されたものが2つの内部空間を備えている。そのため、切断工程が実行される前に、2つの内部空間の各々に対して性能検査を実行することができる。 According to this manufacturing method, two substrates integrated together have two internal spaces. As such, a performance test can be performed on each of the two interior spaces before the cutting process is performed.
 本発明の一態様に係る差圧センサの製造方法は、
 開口を介して外部と連通した内部空間を備える樹脂ケースを、基板の接合面に積層する第1積層工程と、
 第1面及び前記第1面の裏側の第2面を有するダイアフラムを備える検出素子を、前記開口を外部に対して塞ぎ且つ前記ダイアフラムの前記第2面が前記開口を介して前記内部空間と連通するように、前記基板の接合面または前記樹脂ケースに積層する第2積層工程と、
 貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子と前記樹脂ケースとの少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂ケースと前記樹脂パッケージとを備える構造体を形成する被覆工程と、
 前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む。
A method for manufacturing a differential pressure sensor according to one aspect of the present invention includes:
a first lamination step of laminating a resin case having an internal space communicating with the outside through an opening on the bonding surface of the substrate;
A detecting element comprising a diaphragm having a first surface and a second surface on the back side of the first surface, wherein the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening. A second lamination step of laminating on the bonding surface of the substrate or the resin case so as to
A resin package having a through hole covers at least a part of the bonding surface of the substrate, the detection element, and the resin case so that the first surface of the diaphragm faces the through hole, and the substrate and a covering step of forming a structure comprising the detection element, the resin case, and the resin package;
a cutting step of cutting the structure along a direction intersecting the bonding surface of the substrate so that the internal space is exposed to the outside.
 この製造方法によれば、積層工程において樹脂ケースの開口が塞がれてから切断工程が実行されるまで、樹脂ケースの内部空間を密閉させることができる。そのため、樹脂ケースの内部空間へ異物が進入する可能性を低くすることができ、被覆工程において樹脂ケースの内部空間へ樹脂パッケージの構成物が進入することを防止することができる。 According to this manufacturing method, the internal space of the resin case can be sealed from when the opening of the resin case is closed in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space of the resin case, and prevent the components of the resin package from entering the internal space of the resin case in the coating process.
 前記製造方法において、前記樹脂ケースは、2つの前記内部空間を備えてもよく、前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断されてもよい。 In the manufacturing method, the resin case may have two internal spaces, and in the cutting step, the structure may be cut so that each of the two internal spaces is exposed to the outside. .
 この製造方法によれば、切断工程の前において、2つの樹脂ケースが一体化されている。そのため、2つの差圧センサが連結されている構造体を小型化することができる。 According to this manufacturing method, two resin cases are integrated before the cutting process. Therefore, the structure in which the two differential pressure sensors are connected can be miniaturized.
 この製造方法によれば、2つの樹脂ケースが一体化されたものが2つの内部空間を備えている。そのため、切断工程が実行される前に、2つの内部空間の各々に対して性能検査を実行することができる。 According to this manufacturing method, two integrated resin cases are provided with two internal spaces. As such, a performance test can be performed on each of the two interior spaces before the cutting process is performed.
 前記製造方法の前記被覆工程において、前記樹脂パッケージは、前記切断工程で切断される領域を避けて形成されてもよい。 In the covering step of the manufacturing method, the resin package may be formed by avoiding the region cut in the cutting step.
 構造体が切断されるとき、構造体を構成する各材料に適したブレードが使用されることが好ましい。例えば、構造体が基板と検出素子と樹脂パッケージとで構成されるとき、3種類のブレード(基板の切断に適したブレード、検出素子の切断に適したブレード、樹脂パッケージの切断に適したブレード)が各材料の切断時に使用されることが好ましい。この製造方法によれば、切断工程において樹脂パッケージは切断されない。そのため、構造体の切断時に、使用されるブレードの種類数を減らすことができる。 When the structure is cut, it is preferable to use a blade suitable for each material that constitutes the structure. For example, when the structure is composed of a substrate, a detection element, and a resin package, there are three types of blades (a blade suitable for cutting the substrate, a blade suitable for cutting the detection element, and a blade suitable for cutting the resin package). is preferably used when cutting each material. According to this manufacturing method, the resin package is not cut in the cutting step. Therefore, it is possible to reduce the number of types of blades used when cutting the structure.
 以下、本発明の実施形態が、図面を参照しながら説明される。なお、本発明は、以下の実施形態によって限定されるものではない。また、図面において実質的に同一の部材については、同一の符号を付すことにより説明が省略される。以下では、説明の便宜上、「上面」、「下面」、「側面」等の方向を示す用語を用いるが、これらの用語は、本発明に係るセンサモジュールの使用状態等を限定することを意味するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment. Also, in the drawings, substantially the same members are denoted by the same reference numerals, and descriptions thereof are omitted. Hereinafter, for convenience of explanation, terms indicating directions such as "upper surface", "lower surface", and "side surface" are used, but these terms are meant to limit the usage conditions of the sensor module according to the present invention. not a thing
 <第1実施形態>
 図1は、本発明の第1実施形態に係る差圧センサの斜視図である。図2は、図1のA-A断面を示す断面図である。差圧センサ10は、2つの圧力の差圧を検出する。例えば、差圧センサ10は、電子タバコに搭載されて、大気圧と吸気の圧力との差圧を検出する。また、例えば、差圧センサ10は、霧状の薬液を肺などに送る医療用のネブライザーに搭載される。
<First embodiment>
FIG. 1 is a perspective view of a differential pressure sensor according to a first embodiment of the invention. FIG. 2 is a cross-sectional view showing the AA cross section of FIG. A differential pressure sensor 10 detects a differential pressure between two pressures. For example, the differential pressure sensor 10 is mounted on an electronic cigarette to detect the differential pressure between the atmospheric pressure and the intake pressure. Further, for example, the differential pressure sensor 10 is mounted on a medical nebulizer that delivers misty liquid medicine to the lungs or the like.
 図1及び図2に示すように、差圧センサ10は、直方体形状であり、下面10Aと、上面10Bと、側面10Cとを備える。下面10Aは、下方を向く。上面10Bは、下面10Aの上方に位置し、上方を向く。つまり、上面10Bは、下面10Aの反対側の面である。側面10Cは、下面10A及び上面10Bを繋ぐ。下面10Aは、センサ下面の一例である。上面10Bは、センサ上面の一例である。側面10Cは、センサ側面の一例である。 As shown in FIGS. 1 and 2, the differential pressure sensor 10 has a rectangular parallelepiped shape and includes a lower surface 10A, an upper surface 10B, and side surfaces 10C. The lower surface 10A faces downward. The upper surface 10B is located above the lower surface 10A and faces upward. That is, the upper surface 10B is the surface opposite to the lower surface 10A. The side surface 10C connects the lower surface 10A and the upper surface 10B. The bottom surface 10A is an example of a sensor bottom surface. The upper surface 10B is an example of a sensor upper surface. Side 10C is an example of a sensor side.
 差圧センサ10は、基板20と、回路素子30と、検出素子40と、樹脂パッケージ50とを備える。回路素子30は、基板20に積層される。検出素子40は、基板20に積層される。樹脂パッケージ50は、上方から基板20、回路素子30、及び検出素子40を覆う。 The differential pressure sensor 10 includes a substrate 20, a circuit element 30, a detection element 40, and a resin package 50. A circuit element 30 is laminated on the substrate 20 . The sensing element 40 is laminated on the substrate 20 . The resin package 50 covers the substrate 20, the circuit element 30, and the detection element 40 from above.
 第1実施形態において、基板20は、直方体の板状である。第1実施形態において、基板20は、ガラスエポキシやセラミック等で構成されたリジッド基板であるが、これに限らない。例えば、基板20は、リードフレームであってもよい。基板20は、図1及び図2に示すような直方体形状に限らない。例えば、基板20は、平面視において四角形以外の多角形であってもよい。基板20は、片面基板、両面基板、多層基板のいずれであってもよい。 In the first embodiment, the substrate 20 is a rectangular parallelepiped plate. In the first embodiment, the substrate 20 is a rigid substrate made of glass epoxy, ceramic, or the like, but is not limited to this. For example, substrate 20 may be a leadframe. The substrate 20 is not limited to a rectangular parallelepiped shape as shown in FIGS. For example, the substrate 20 may have a polygonal shape other than a quadrilateral in plan view. The substrate 20 may be a single-sided substrate, a double-sided substrate, or a multilayer substrate.
 基板20は、差圧センサ10の最下部に位置している。基板20の下面は、差圧センサ10の下面10Aである。基板20は、下面10Aと、上面20Aと、側面20Bとを備える。上面20Aは、下面10Aの上方に位置し、上方を向く。つまり、上面20Aは、下面10Aの反対側の面である。上面20Aは、接合面の一例である。側面20Bは、下面10A及び上面20Aを繋ぐ。側面20Bは、外部に露出しており、差圧センサ10の側面10Cの一部を構成している。 The substrate 20 is located at the bottom of the differential pressure sensor 10. The bottom surface of the substrate 20 is the bottom surface 10A of the differential pressure sensor 10 . The substrate 20 has a bottom surface 10A, a top surface 20A and side surfaces 20B. The upper surface 20A is located above the lower surface 10A and faces upward. That is, the upper surface 20A is the surface opposite to the lower surface 10A. The upper surface 20A is an example of a joint surface. The side surface 20B connects the bottom surface 10A and the top surface 20A. The side surface 20B is exposed to the outside and constitutes part of the side surface 10C of the differential pressure sensor 10 .
 側面20Bは、差圧センサ10の外部に露出している。第1実施形態において、基板20は、四角形の下面10Aと四角形の上面20Aとを繋ぐ4つの側面20Bを備える。4つの側面20Bが、差圧センサ10の外部に露出している。 The side surface 20B is exposed to the outside of the differential pressure sensor 10. In the first embodiment, the substrate 20 has four side surfaces 20B that connect the square bottom surface 10A and the square top surface 20A. Four side surfaces 20B are exposed outside the differential pressure sensor 10 .
 図2に示すように、回路素子30は、基板20の上面20Aに積層されている。積層手段は、公知の種々の手段が採用可能である。第1実施形態において、回路素子30は、ダイアタッチフィルムやダイアタッチ材等によって、基板20の上面20Aに接合されている。回路素子30は、ワイヤ31を介して検出素子40と電気的に接続されている。なお、図2では、ワイヤ31は1本のみ描かれているが、ワイヤ31は複数本設けられていてもよい。なお、回路素子30と検出素子40との電気的な接続は、ワイヤ31以外、例えば基板20の上面20Aに形成された導電性の配線パターンを介して行われてもよい。 As shown in FIG. 2, the circuit element 30 is laminated on the upper surface 20A of the substrate 20. As shown in FIG. Various known means can be employed as the lamination means. In the first embodiment, the circuit element 30 is bonded to the upper surface 20A of the substrate 20 with a die attach film, die attach material, or the like. Circuit element 30 is electrically connected to detection element 40 via wire 31 . Although only one wire 31 is shown in FIG. 2, a plurality of wires 31 may be provided. The electrical connection between the circuit element 30 and the detection element 40 may be made through a conductive wiring pattern formed on the upper surface 20A of the substrate 20, for example, other than the wire 31. FIG.
 回路素子30は、検出素子40から入力された信号を処理して、ワイヤ32などを介して外部へ出力する。前記の信号の処理は、例えば、検出素子40からの入力信号をアナログ値からデジタル値に変換する変換処理、及び変換処理で得られたデジタル値において高域周波数帯のノイズ成分を除去して低域周波数帯の信号を得るフィルタリング処理である。前記のような処理を実行するため、回路素子30は、例えば特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)を備える。 The circuit element 30 processes the signal input from the detection element 40 and outputs it to the outside via the wire 32 or the like. The above signal processing includes, for example, a conversion process for converting the input signal from the detection element 40 from an analog value to a digital value, and a digital value obtained by the conversion process by removing noise components in a high frequency band to reduce the noise. This is a filtering process that obtains a signal in the band frequency band. In order to perform the processing as described above, the circuit element 30 comprises, for example, an Application Specific Integrated Circuit (ASIC).
 図1及び図2に示す検出素子40は、圧力を測定するためのものである。検出素子40は、MEMS(Micro Electro Mechanical Systems)素子であり、例えばシリコンで構成されている。 The sensing element 40 shown in FIGS. 1 and 2 is for measuring pressure. The detection element 40 is a MEMS (Micro Electro Mechanical Systems) element, and is made of silicon, for example.
 図1及び図2に示すように、検出素子40は、直方体の板状である。検出素子40は、下面40Aと、上面40Bと、側面40Cとを備える。上面40Bは、下面40Aの上方に位置し、上方を向く。つまり、上面40Bは、下面40Aの反対側の面である。側面40Cは、下面40A及び上面40Bを繋ぐ。 As shown in FIGS. 1 and 2, the detection element 40 is in the shape of a rectangular parallelepiped plate. The sensing element 40 has a lower surface 40A, an upper surface 40B, and side surfaces 40C. The upper surface 40B is located above the lower surface 40A and faces upward. That is, the upper surface 40B is the surface opposite to the lower surface 40A. The side surface 40C connects the lower surface 40A and the upper surface 40B.
 側面40Cの一部は、差圧センサ10の側面10Cの一部を構成している。第1実施形態において、直方体形状の検出素子40は、4つの側面40Cを備える。4つの側面40Cのうちの1つの側面40Caは、外部に露出しており、差圧センサ10の側面10Cの一部を構成している。側面40Caは、検出素子の外面の一例である。4つの側面40Cのうちの残り3つの側面40Cは、樹脂パッケージ50に覆われており、外部に露出していない。側面40Caには、開口70Aが形成されている。開口70Aは、第2開口の一例である。 A portion of the side surface 40C constitutes a portion of the side surface 10C of the differential pressure sensor 10. In the first embodiment, the rectangular parallelepiped detection element 40 has four side surfaces 40C. One side surface 40Ca of the four side surfaces 40C is exposed to the outside and forms part of the side surface 10C of the differential pressure sensor 10. As shown in FIG. The side surface 40Ca is an example of the outer surface of the detection element. The remaining three side surfaces 40C of the four side surfaces 40C are covered with the resin package 50 and are not exposed to the outside. An opening 70A is formed in the side surface 40Ca. The opening 70A is an example of a second opening.
 図2に示すように、検出素子40は、基板20の上面20Aに積層されている。つまり、検出素子40は、基板20の上面20Aの上方に位置している。積層手段は、公知の種々の手段が採用可能である。第1実施形態において、検出素子40は、ダイアタッチフィルムやダイアタッチ材等によって、基板20の上面20Aに接合されている。つまり、第1実施形態において、検出素子40の積層手段は、回路素子30の積層手段と同手段である。なお、検出素子40の積層手段と、回路素子30の積層手段とは異なっていてもよい。 As shown in FIG. 2, the detection element 40 is laminated on the upper surface 20A of the substrate 20. As shown in FIG. That is, the detection element 40 is positioned above the upper surface 20A of the substrate 20 . Various known means can be employed as the lamination means. In the first embodiment, the detection element 40 is bonded to the upper surface 20A of the substrate 20 with a die attach film, die attach material, or the like. That is, in the first embodiment, the stacking means for the detection element 40 is the same as the stacking means for the circuit element 30 . Note that the layering means for the detection element 40 and the layering means for the circuit element 30 may be different.
 検出素子40は、流路70と、ダイアフラム41とを備える。 The detection element 40 includes a channel 70 and a diaphragm 41 .
 流路70は、検出素子40の内部に形成されている。流路70は、第2連通部の一例である。流路70は、側面40Caに形成された開口70Aを介して差圧センサ10の外部と連通している。流路70の奥部における上端は、流路70の奥部以外における上端よりも上方に位置する。これにより、流路70の奥部の上方に、薄膜が形成される。この薄膜が、ダイアフラム41である。 The channel 70 is formed inside the detection element 40 . The channel 70 is an example of a second communication portion. The flow path 70 communicates with the outside of the differential pressure sensor 10 via an opening 70A formed in the side surface 40Ca. The upper end of the flow path 70 in the deep part is positioned higher than the upper end of the flow path 70 other than the deep part. Thereby, a thin film is formed above the inner part of the channel 70 . This thin film is the diaphragm 41 .
 ダイアフラム41は、2つの圧力の差圧を検出するためのものである。ダイアフラム41は、上面41Aと下面41Bとを備える。上面41Aは、上方を向く。上面41Aは、検出素子40の外部に露出している。下面41Bは、上面41Aの裏面であって下方を向く。下面41Bは、流路70の一部を構成している。下面41Bは、流路70及び開口70Aを介して差圧センサ10の外部に連通されている。言い換えると、流路70は、下面41Bを、開口70Aを介して差圧センサ10の外部に連通する。上面41Aは、第1面の一例である。下面41Bは、第2面の一例である。 The diaphragm 41 is for detecting the pressure difference between two pressures. The diaphragm 41 has an upper surface 41A and a lower surface 41B. The upper surface 41A faces upward. The upper surface 41A is exposed to the outside of the detection element 40. As shown in FIG. The lower surface 41B is the rear surface of the upper surface 41A and faces downward. The lower surface 41B forms part of the flow path 70. As shown in FIG. The lower surface 41B communicates with the outside of the differential pressure sensor 10 via the channel 70 and the opening 70A. In other words, the flow path 70 communicates the lower surface 41B with the outside of the differential pressure sensor 10 via the opening 70A. The upper surface 41A is an example of a first surface. The lower surface 41B is an example of a second surface.
 樹脂パッケージ50は、エポキシ樹脂などの樹脂で構成されている。樹脂パッケージ50は、基板20の上面20Aに、フィルムアシスト成型(Film Assist Molding)等によってモールド成型されている。これにより、検出素子40のうちの側面40Caを除く部分と、回路素子30と、ワイヤ31とが埋設されている。つまり、樹脂パッケージ50は、検出素子40の一部と、基板20の上面20Aの全部と、回路素子30の全部とを覆っている。なお、樹脂パッケージ50は、基板20の上面20Aの一部のみを覆っていてもよいし、回路素子30の一部のみを覆っていてもよい。また、樹脂パッケージ50は、検出素子40の全部を覆っていてもよい。この場合、検出素子40のうちの側面40Caも樹脂パッケージ50によって覆われるため、開口70Aのみが外部に露出する。 The resin package 50 is made of resin such as epoxy resin. The resin package 50 is molded on the upper surface 20A of the substrate 20 by film assist molding or the like. As a result, the portion of the detection element 40 excluding the side surface 40Ca, the circuit element 30, and the wire 31 are buried. That is, the resin package 50 partially covers the detection element 40 , the entire top surface 20</b>A of the substrate 20 , and the entire circuit element 30 . The resin package 50 may cover only a portion of the upper surface 20A of the substrate 20 or may cover only a portion of the circuit element 30 . Also, the resin package 50 may cover the entire detection element 40 . In this case, since the side surface 40Ca of the detection element 40 is also covered with the resin package 50, only the opening 70A is exposed to the outside.
 樹脂パッケージ50は、差圧センサ10の最上部に位置している。樹脂パッケージ50の上面は、差圧センサ10の上面10Bである。上面10Bは、樹脂パッケージ50に対して基板20の反対側に位置している。つまり、樹脂パッケージ50は、基板20と反対側に上面10Bを有する。樹脂パッケージ50は、上面10Bと、側面50Aとを備える。側面50Aは、上面10Bの外縁部から下方へ延びている。側面50Aは、差圧センサ10の側面10Cの一部を構成している。 The resin package 50 is positioned at the top of the differential pressure sensor 10 . The top surface of the resin package 50 is the top surface 10B of the differential pressure sensor 10 . The upper surface 10B is located on the opposite side of the substrate 20 with respect to the resin package 50 . That is, the resin package 50 has the upper surface 10B on the side opposite to the substrate 20 . The resin package 50 has a top surface 10B and side surfaces 50A. The side surface 50A extends downward from the outer edge of the top surface 10B. Side 50A forms part of side 10C of differential pressure sensor 10 .
 樹脂パッケージ50は、貫通孔60を有している。貫通孔60は、第1連通部の一例である。貫通孔60の下端部は、検出素子40のダイアフラム41の上面41Aに連通している。貫通孔60の上端部は、上面10Bに形成された開口60Aを介して、差圧センサ10の外部に連通している。言い換えると、貫通孔60は、ダイアフラム41の上面41Aを、開口60Aを介して差圧センサ10の外部に連通する。開口60Aは、第1開口の一例である。 The resin package 50 has through holes 60 . The through hole 60 is an example of a first communication portion. A lower end portion of the through hole 60 communicates with the upper surface 41A of the diaphragm 41 of the detection element 40 . An upper end portion of the through hole 60 communicates with the outside of the differential pressure sensor 10 via an opening 60A formed in the upper surface 10B. In other words, the through hole 60 communicates the upper surface 41A of the diaphragm 41 with the outside of the differential pressure sensor 10 via the opening 60A. The opening 60A is an example of a first opening.
 樹脂パッケージ50は、上面10Bに環状溝51を有する。環状溝51は、開口60Aを囲むように形成されている。環状溝51には、環状のOリング52(図4参照)が嵌められる。Oリング52は、ニトリルゴム等の圧縮変形容易な部材によって構成されている。Oリング52は、差圧センサ10が電子タバコ等の筐体(不図示)に搭載されるときに、当該筐体に圧接される。これにより、Oリング52が設けられている位置において、差圧センサ10の上面10Bと当該筐体との隙間が封止される。その結果、当該筐体の外部から当該隙間を介して差圧センサ10の貫通孔60へ液体が浸入することが、OリングORによって防止される。 The resin package 50 has an annular groove 51 on the upper surface 10B. Annular groove 51 is formed to surround opening 60A. An annular O-ring 52 (see FIG. 4) is fitted in the annular groove 51 . The O-ring 52 is made of a member such as nitrile rubber that is easily deformed by compression. The O-ring 52 is pressed against a housing (not shown) of an electronic cigarette or the like when the differential pressure sensor 10 is mounted on the housing. Thereby, the gap between the upper surface 10B of the differential pressure sensor 10 and the housing is sealed at the position where the O-ring 52 is provided. As a result, the O-ring OR prevents liquid from entering the through hole 60 of the differential pressure sensor 10 from the outside of the housing through the gap.
 検出素子40のダイアフラム41の上面41Aには、開口60Aから貫通孔60を流通した流体の圧力(以下、第1圧力と記す。)が作用する。なお、当該流体は、Oリング52によって封止された隙間以外、例えば、電子タバコ等の筐体に形成された圧力導入穴を介して、開口60Aへ到達する。検出素子40のダイアフラム41の下面41Bには、開口70Aから流路70を流通した流体の圧力(以下、第2圧力と記す。)が作用する。これら2つの圧力に基づいて、ダイアフラム41が撓む。例えば、第1圧力が第2圧力より大きい場合、ダイアフラム41は下方へ撓み、第2圧力が第1圧力より大きい場合、ダイアフラム41は上方へ撓む。また、第1圧力と第2圧力との差が大きい程、ダイアフラム41は大きく撓む。 The upper surface 41A of the diaphragm 41 of the detection element 40 is subjected to the pressure of the fluid flowing through the through-hole 60 from the opening 60A (hereinafter referred to as first pressure). Note that the fluid reaches the opening 60A through, for example, a pressure introduction hole formed in the housing of the electronic cigarette or the like, other than the gap sealed by the O-ring 52 . The pressure of the fluid flowing through the flow path 70 from the opening 70A (hereinafter referred to as second pressure) acts on the lower surface 41B of the diaphragm 41 of the detection element 40 . Diaphragm 41 bends based on these two pressures. For example, if the first pressure is greater than the second pressure, the diaphragm 41 will flex downward, and if the second pressure is greater than the first pressure, the diaphragm 41 will flex upward. Moreover, the diaphragm 41 bends greatly, so that the difference of a 1st pressure and a 2nd pressure is large.
 ダイアフラム41の撓みの向き及び撓みの大きさに基づいた電流や電圧が、ワイヤ31を介して回路素子30へ出力される。回路素子30は、この電流や電圧に基づいて第1圧力と第2圧力の差圧を、公知の演算によって算出する。 A current or voltage based on the bending direction and bending magnitude of the diaphragm 41 is output to the circuit element 30 via the wire 31 . The circuit element 30 calculates the differential pressure between the first pressure and the second pressure based on this current and voltage by a known calculation.
 第1実施形態に係る差圧センサ10は、ピエゾ型及び静電容量型のいずれとしても機能することが可能である。差圧センサ10がピエゾ型として機能する場合、ダイアフラム41上に歪ゲージが設けられる。差圧センサ10が静電容量型として機能する場合、ダイアフラム41の下面41Bと、流路70の一部を構成する面のうち下面41Bと対向する面とで、コンデンサが形成される。なお、差圧センサ10の型(ピエゾ型または静電容量型)によって、前述した差圧の算出方法は異なるが、当該算出方法は公知の方法が用いられるため、当該算出方法についての詳細な説明は省略される。 The differential pressure sensor 10 according to the first embodiment can function as either a piezo sensor or a capacitance sensor. A strain gauge is provided on the diaphragm 41 when the differential pressure sensor 10 functions as a piezo type. When the differential pressure sensor 10 functions as a capacitive type, a capacitor is formed by the lower surface 41B of the diaphragm 41 and a surface of the surfaces forming a part of the flow path 70 and facing the lower surface 41B. Note that the above-described differential pressure calculation method differs depending on the type (piezo type or capacitance type) of the differential pressure sensor 10, but since a known method is used for the calculation method, a detailed description of the calculation method will be given. is omitted.
 第1実施形態によれば、開口60A,70Aのうちの開口60Aのみが上面10Bに形成され、開口70Aは側面10Cに形成される。これにより、上面10Bと直交する方向から見た差圧センサ10の面積を、開口60A,70Aの双方が上面10Bに形成された構成より小さくすることができる。つまり、平面視における差圧センサ10の大型化を抑制することができる。 According to the first embodiment, only the opening 60A of the openings 60A and 70A is formed on the upper surface 10B, and the opening 70A is formed on the side surface 10C. As a result, the area of the differential pressure sensor 10 viewed from the direction orthogonal to the upper surface 10B can be made smaller than the configuration in which both the openings 60A and 70A are formed in the upper surface 10B. That is, it is possible to suppress an increase in the size of the differential pressure sensor 10 in plan view.
 仮に、開口60A,70Aの少なくとも一方が基板20の上面20Aと対向して形成されている場合、基板20の上面20Aと対向する開口が、基板20の上面20Aに部品が接合される際に使用されるフラックス等によって閉塞されるおそれがある。この場合、当該開口を介してダイアフラム41へ圧力が作用しないため、差圧センサ10による差圧の検出精度が落ちてしまう。しかし、第1実施形態によれば、開口60Aが上面10Bに形成され、開口70Aが側面10Cに形成されている。つまり、開口60A,70Aのいずれも基板20の上面20Aと対向していない。そのため、前述したような開口の閉塞の可能性を低くすることができる。その結果、差圧センサ10による差圧の検出精度を良好に維持することができる。 If at least one of the openings 60A and 70A is formed facing the top surface 20A of the substrate 20, the opening facing the top surface 20A of the substrate 20 is used when a component is bonded to the top surface 20A of the substrate 20. There is a risk of clogging due to flux, etc. In this case, since pressure does not act on the diaphragm 41 through the opening, the differential pressure detection accuracy of the differential pressure sensor 10 is degraded. However, according to the first embodiment, opening 60A is formed in top surface 10B and opening 70A is formed in side surface 10C. In other words, neither of the openings 60A and 70A faces the upper surface 20A of the substrate 20 . Therefore, it is possible to reduce the possibility of the opening being blocked as described above. As a result, the differential pressure detection accuracy of the differential pressure sensor 10 can be favorably maintained.
 第1実施形態によれば、第2連通部としての流路70は、検出素子40に設けられている。そのため、検出素子40と基板20との間に、ダイアフラム41の下面41Bを外部と連通させるための流路が形成された他の部材を配置する必要がない。これにより、差圧センサ10が上下に長くなることを抑制することができる。 According to the first embodiment, the flow path 70 as the second communication section is provided in the detection element 40 . Therefore, it is not necessary to dispose another member having a channel for communicating the lower surface 41B of the diaphragm 41 with the outside between the detection element 40 and the substrate 20 . As a result, it is possible to prevent the differential pressure sensor 10 from becoming longer in the vertical direction.
 <第1実施形態の差圧センサの第1製造方法>
 以下に、差圧センサ10の第1製造方法が、図3及び図4が参照されつつ説明される。図3は、本発明の第1実施形態に係る差圧センサの第1製造方法において基板に検出素子が積層されたときの断面図である。図4は、図3の基板及び検出素子に樹脂パッケージが被覆されたときの断面図である。
<First Manufacturing Method of Differential Pressure Sensor of First Embodiment>
Below, a first method of manufacturing the differential pressure sensor 10 will be described with reference to FIGS. FIG. 3 is a cross-sectional view when a detection element is laminated on a substrate in the first manufacturing method of the differential pressure sensor according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view of the substrate and detection element shown in FIG. 3 covered with a resin package.
 最初に、積層工程が実行される。積層工程では、図3に示すように、基板2の上面2Aに、2つの検出素子4が積層される。 First, the lamination process is executed. In the lamination step, two detection elements 4 are laminated on the upper surface 2A of the substrate 2, as shown in FIG.
 基板2は、図2に示す基板20が複数連結されたものである。第1製造方法では、基板2は、図2に示す基板20が2枚連結されたものである。 The substrate 2 is obtained by connecting a plurality of substrates 20 shown in FIG. In the first manufacturing method, the substrate 2 is obtained by connecting two substrates 20 shown in FIG.
 2つの検出素子4は、互いに間隔を空けて積層される。第1製造方法において、2つの検出素子4は、ダイアタッチフィルムやダイアタッチ材等によって、基板2の上面2Aに接合される。上面2Aは、接合面の一例である。なお、基板2に積層される検出素子4は、2つに限らない。 The two detection elements 4 are stacked with a space between them. In the first manufacturing method, the two detection elements 4 are bonded to the upper surface 2A of the substrate 2 with a die attach film, die attach material, or the like. The upper surface 2A is an example of a joint surface. Note that the number of detection elements 4 stacked on the substrate 2 is not limited to two.
 検出素子4は、内部空間7と、上面41A及び下面41Bを有するダイアフラム41とを備える。内部空間7は、密閉されている。ダイアフラム41の下面41Bは、内部空間7の一部を構成している。2つの検出素子4は、ダイアフラム41が上側となるように、基板2の上面2Aに積層される。言い換えると、2つの検出素子4は、ダイアフラム41が内部空間7に対して基板2の反対側となるように、基板2の上面2Aに積層される。 The detection element 4 includes an internal space 7 and a diaphragm 41 having an upper surface 41A and a lower surface 41B. The internal space 7 is hermetically sealed. A lower surface 41B of the diaphragm 41 forms part of the internal space 7 . The two detection elements 4 are laminated on the upper surface 2A of the substrate 2 so that the diaphragm 41 faces upward. In other words, the two detection elements 4 are stacked on the upper surface 2A of the substrate 2 such that the diaphragm 41 is on the opposite side of the substrate 2 with respect to the internal space 7. As shown in FIG.
 なお、積層工程において、回路素子30が、基板2の上面2Aに積層されてもよい。回路素子30は、2つの検出素子4の各々に対応して積層される。第1製造方法において、2つの回路素子30が基板2の上面2Aに積層される。第1製造方法において、2つの回路素子30は、ダイアタッチフィルムやダイアタッチ材等によって、基板2の上面2Aに接合される。 Note that the circuit element 30 may be laminated on the upper surface 2A of the substrate 2 in the lamination step. A circuit element 30 is stacked corresponding to each of the two detection elements 4 . In the first manufacturing method, two circuit elements 30 are laminated on the upper surface 2A of the substrate 2. As shown in FIG. In the first manufacturing method, the two circuit elements 30 are bonded to the upper surface 2A of the substrate 2 by a die attach film, die attach material, or the like.
 また、積層工程において、回路素子30、検出素子4、及び基板2の上面2Aの相互間は、ワイヤボンディング等によって互いに電気的に接続されてもよい。 Also, in the lamination process, the circuit element 30, the detection element 4, and the upper surface 2A of the substrate 2 may be electrically connected to each other by wire bonding or the like.
 次に、被覆工程が実行される。被覆工程では、図4に示すように、基板2の上面2Aの全部と、2つの検出素子4の一部(上面41Aを除く部分)とが樹脂パッケージ50によって覆われる。基板2の上面2Aと、樹脂パッケージ50の被覆は、フィルムアシスト成型(Film Assist Molding)等の公知の手段によって行われる。 Next, the covering process is executed. In the covering step, as shown in FIG. 4, the entire upper surface 2A of the substrate 2 and part of the two detection elements 4 (parts other than the upper surface 41A) are covered with the resin package 50. As shown in FIG. The upper surface 2A of the substrate 2 and the resin package 50 are coated by known means such as Film Assist Molding.
 被覆工程において、樹脂パッケージ50には、金型等によって貫通孔60と、環状溝51とが形成される。貫通孔60及び環状溝51は、検出素子4の各々に対応して形成される。つまり、第1製造方法において、樹脂パッケージ50には、2つの貫通孔60と、2つの環状溝51とが形成される。 In the coating process, the resin package 50 is formed with a through-hole 60 and an annular groove 51 using a mold or the like. The through hole 60 and the annular groove 51 are formed corresponding to each of the detection elements 4 . That is, in the first manufacturing method, two through holes 60 and two annular grooves 51 are formed in the resin package 50 .
 各貫通孔60は、対応する検出素子4のダイアフラム41の上面41Aの真上に形成される。これにより、上面41Aは、貫通孔60に面する。 Each through-hole 60 is formed directly above the upper surface 41A of the diaphragm 41 of the corresponding detection element 4 . Thereby, the upper surface 41A faces the through hole 60 .
 各環状溝51は、各貫通孔60を囲むように形成される。各環状溝51には、環状のOリング52が嵌められる。Oリング52が環状溝51に嵌められるのは、被覆工程のときに限らず、環状溝51の形成後の任意のタイミングでよい。 Each annular groove 51 is formed so as to surround each through hole 60 . An annular O-ring 52 is fitted in each annular groove 51 . The O-ring 52 may be fitted into the annular groove 51 not only at the time of the coating process, but at any timing after the annular groove 51 is formed.
 積層工程において回路素子30及びワイヤが基板2の上面2Aに設けられた場合、被覆工程において、樹脂パッケージ50は、検出素子4に加えて、回路素子30及びワイヤも覆う。また、被覆工程において、樹脂パッケージ50は、基板2の上面2A、回路素子30、及びワイヤの一部のみを覆ってもよい。 When the circuit element 30 and the wires are provided on the upper surface 2A of the substrate 2 in the lamination process, the resin package 50 also covers the circuit element 30 and the wires in addition to the detection element 4 in the covering process. Also, in the covering step, the resin package 50 may cover only the upper surface 2A of the substrate 2, the circuit elements 30, and part of the wires.
 被覆工程が実行されることにより、基板2と、2つの検出素子4と、樹脂パッケージ50とを備える構造体100が形成される。 The structure 100 including the substrate 2, the two detection elements 4, and the resin package 50 is formed by executing the covering step.
 次に、切断工程が実行される。切断工程では、図4に示すように、構造体100がブレード81によって切断される。構造体100は、上面2Aと直交する上下方向に沿って切断される。このとき、構造体100は、ブレード81が各検出素子4の内部空間7を通り且つダイアフラム41を避けるように切断される。第1製造方法では、構造体100は、2箇所において切断される。これにより、各検出素子4の内部空間7を外部に連通させる開口70Aが形成される。つまり、構造体100は、内部空間7が外部に露出するように切断される。 Next, the cutting process is executed. In the cutting step, the structure 100 is cut by a blade 81, as shown in FIG. The structure 100 is cut along the vertical direction perpendicular to the upper surface 2A. At this time, the structure 100 is cut so that the blade 81 passes through the internal space 7 of each detection element 4 and avoids the diaphragm 41 . In the first manufacturing method, the structure 100 is cut at two locations. As a result, an opening 70A that communicates the internal space 7 of each detection element 4 with the outside is formed. That is, the structure 100 is cut so that the internal space 7 is exposed to the outside.
 前記のように構造体100が切断されることによって、構造体100は、2つの差圧センサ10と、2つの差圧センサ10の間の捨て部材10aとに分割される。詳細には、基板2が分割されて2つの基板20(図2参照)が形成される。また、樹脂パッケージ50が2つに分割される。また、各検出素子4が開口70A及び流路70を備えた検出素子40(図2参照)として形成される。 By cutting the structure 100 as described above, the structure 100 is divided into two differential pressure sensors 10 and a disposal member 10a between the two differential pressure sensors 10. Specifically, the substrate 2 is split to form two substrates 20 (see FIG. 2). Also, the resin package 50 is divided into two. Further, each detection element 4 is formed as a detection element 40 (see FIG. 2) having an opening 70A and a flow path 70. As shown in FIG.
 なお、ブレード81による構造体100の切断方向は、上面2Aと直交する方向に限らず、上面2Aと交差する方向であればよい。 It should be noted that the cutting direction of the structure 100 by the blade 81 is not limited to the direction perpendicular to the top surface 2A as long as it intersects the top surface 2A.
 第1製造方法によれば、切断工程が実行されるまで、検出素子4の内部空間7は密閉されている。そのため、検出素子4の内部空間7へ異物が進入すること、及び被覆工程において検出素子4の内部空間7へ樹脂パッケージ50の構成物が進入することを防止することができる。 According to the first manufacturing method, the internal space 7 of the detection element 4 is sealed until the cutting process is performed. Therefore, it is possible to prevent foreign matter from entering the internal space 7 of the detecting element 4 and components of the resin package 50 from entering the internal space 7 of the detecting element 4 in the covering process.
 <第1実施形態の差圧センサの第2製造方法>
 以下に、差圧センサ10の第2製造方法が、図5が参照されつつ説明される。図5は、本発明の第1実施形態に係る差圧センサの第2製造方法において検出素子が積層された基板に樹脂パッケージが被覆されたときの断面図である。第2製造方法が第1製造方法と異なることは、基板2の上面2Aに積層される検出素子4Aが2つの内部空間7を備えることである。以下、第1製造方法との相違点が説明される。第1製造方法との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Second Manufacturing Method of Differential Pressure Sensor of First Embodiment>
A second method of manufacturing the differential pressure sensor 10 will now be described with reference to FIG. FIG. 5 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with the resin package in the second method of manufacturing the differential pressure sensor according to the first embodiment of the present invention. The second manufacturing method differs from the first manufacturing method in that the detection element 4A laminated on the upper surface 2A of the substrate 2 has two internal spaces 7. As shown in FIG. Differences from the first manufacturing method will be described below. Points in common with the first manufacturing method are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
 図5に示すように、積層工程において、基板2の上面2Aに、1つの検出素子4Aが、第1製造方法の検出素子4と同様にして積層される。検出素子4Aは、2つの内部空間7と、2つのダイアフラム41とを備える。前述した積層工程と、第1製造方法と同様の被覆工程とが実行されることによって、基板2と1つの検出素子4Aと樹脂パッケージ50とを備える構造体100Aが形成される。 As shown in FIG. 5, in the lamination step, one detection element 4A is laminated on the upper surface 2A of the substrate 2 in the same manner as the detection element 4 of the first manufacturing method. The detection element 4A has two internal spaces 7 and two diaphragms 41 . A structural body 100A including the substrate 2, one detection element 4A, and the resin package 50 is formed by performing the lamination step described above and the covering step similar to the first manufacturing method.
 切断工程において、構造体100Aは、検出素子4Aにおける2つの内部空間7の間をブレード81が通るように切断される。第2製造方法において、2つの内部空間7の間隔は、ブレード81の幅より小さくされる。そのため、前述したように構造体100が切断された場合、ブレード81による1箇所の切断で、2つの内部空間7の双方において外部に連通させる開口70Aが形成される。つまり、構造体100は、2つの内部空間7の各々が外部に露出するように切断される。 In the cutting process, the structure 100A is cut so that the blade 81 passes between the two internal spaces 7 in the detection element 4A. In the second manufacturing method, the distance between the two inner spaces 7 is made smaller than the width of the blade 81 . Therefore, when the structure 100 is cut as described above, the blade 81 cuts at one point to form the openings 70A that allow both of the two internal spaces 7 to communicate with the outside. That is, the structure 100 is cut so that each of the two internal spaces 7 is exposed to the outside.
 第2製造方法では、切断工程において構造体100Aが切断されることによって、構造体100は、2つの差圧センサ10(図2参照)に分割され、捨て部材10aは形成されない。また、第2製造方法では、1つの検出素子4Aが切断されることによって、2つの検出素子40に分割される。なお、第2製造方法においても、第1製造方法と同様に、構造体100Aが2箇所において切断されてもよい。この場合、第1製造方法と同様に、構造体100Aが切断されることによって、2つの差圧センサ10の間に捨て部材が形成される。 In the second manufacturing method, by cutting the structure 100A in the cutting step, the structure 100 is divided into two differential pressure sensors 10 (see FIG. 2), and the disposal member 10a is not formed. Further, in the second manufacturing method, one detection element 4A is divided into two detection elements 40 by cutting. Also in the second manufacturing method, the structural body 100A may be cut at two locations as in the first manufacturing method. In this case, a sacrificial member is formed between the two differential pressure sensors 10 by cutting the structure 100A, as in the first manufacturing method.
 第2製造方法によれば、切断工程の前において、2つの検出素子40が検出素子4Aとして一体化されている。そのため、2つの差圧センサ10が連結されている構造体100Aを小型化することができる。 According to the second manufacturing method, the two detection elements 40 are integrated as the detection element 4A before the cutting process. Therefore, the structure 100A to which the two differential pressure sensors 10 are connected can be miniaturized.
 第2製造方法によれば、2つの検出素子40が一体化された検出素子4Aが2つの内部空間7を備えている。そのため、切断工程が実行される前に、2つの内部空間7の各々に対して性能検査を実行することができる。 According to the second manufacturing method, the detection element 4A in which the two detection elements 40 are integrated has two internal spaces 7 . Therefore, a performance test can be performed for each of the two inner spaces 7 before the cutting process is performed.
 <第1実施形態の差圧センサの第3製造方法>
 以下に、差圧センサ10の第3製造方法が、図6が参照されつつ説明される。図6は、本発明の第1実施形態に係る差圧センサの第3製造方法において検出素子が積層された基板に樹脂パッケージが被覆されたときの断面図である。第3製造方法が第1製造方法と異なることは、被覆工程において、樹脂パッケージ5が、切断工程で切断される領域を避けて形成されることである。以下、第1製造方法との相違点が説明される。第1製造方法との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Third Manufacturing Method of Differential Pressure Sensor of First Embodiment>
A third manufacturing method of the differential pressure sensor 10 will be described below with reference to FIG. FIG. 6 is a cross-sectional view when the substrate on which the detection elements are laminated is covered with the resin package in the third method of manufacturing the differential pressure sensor according to the first embodiment of the present invention. The difference of the third manufacturing method from the first manufacturing method is that the resin package 5 is formed in the covering step while avoiding the region cut in the cutting step. Differences from the first manufacturing method will be described below. Points in common with the first manufacturing method are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
 第3製造方法では、図6に示すように、第1製造方法と同様にして積層工程が実行される。 In the third manufacturing method, as shown in FIG. 6, the lamination process is executed in the same manner as in the first manufacturing method.
 被覆工程では、基板2の上面2Aの一部と、2つの検出素子4の一部とが、樹脂パッケージ5によって覆われる。樹脂パッケージ5の被覆は、フィルムアシスト成型(Film Assist Molding)等の公知の手段によって行われる。 In the covering step, a portion of the upper surface 2A of the substrate 2 and a portion of the two detection elements 4 are covered with the resin package 5. The coating of the resin package 5 is performed by known means such as Film Assist Molding.
 樹脂パッケージ5は、基板2の上面2Aのうち、2つの検出素子4の間の部分を避けて被覆される。樹脂パッケージ5は、貫通孔60が形成される部分を避けて、2つの検出素子4を被覆する。また、樹脂パッケージ5は、2つの検出素子4の各々における隣に配置された検出素子4側の部分を避けて被覆される。当該部分は、切断工程においてブレード82,83が通る部分と、切断工程における切断後に捨て部材10aとなる部分とを含む。つまり、樹脂パッケージ5は、切断工程で切断される領域を避けて形成される。 The resin package 5 covers the upper surface 2A of the substrate 2, avoiding the portion between the two detection elements 4. The resin package 5 covers the two detection elements 4 while avoiding the portion where the through hole 60 is formed. In addition, the resin package 5 covers the two detection elements 4 while avoiding the portion on the adjacent detection element 4 side. The portion includes a portion through which the blades 82 and 83 pass in the cutting step and a portion that becomes the sacrificial member 10a after cutting in the cutting step. In other words, the resin package 5 is formed avoiding the region cut in the cutting process.
 第1製造方法と同様の積層工程と、前述した被覆工程とが実行されることによって、基板2と2つの検出素子4Aと樹脂パッケージ5とを備える構造体100Bが形成される。 The structure 100B including the substrate 2, the two detection elements 4A, and the resin package 5 is formed by performing the same lamination process as in the first manufacturing method and the coating process described above.
 切断工程において、構造体100Bのうち、樹脂パッケージ5が形成されていない部分が切断される。構造体100Bは、ブレード82,83によって切断される。詳細には、ブレード82によって検出素子4が切断され、ブレード83によって基板2が切断される。ブレード82は、検出素子4の材料(例えばシリコン)を切断するのに適したものが用いられる。ブレード83は、基板2の材料(例えばガラスエポキシ)を切断するのに適したものが用いられる。 In the cutting process, the portion of the structure 100B where the resin package 5 is not formed is cut. The structure 100B is cut by blades 82,83. Specifically, the blade 82 cuts the detection element 4 and the blade 83 cuts the substrate 2 . A blade 82 suitable for cutting the material (for example, silicon) of the detection element 4 is used. A blade 83 suitable for cutting the material of the substrate 2 (for example, glass epoxy) is used.
 なお、第3製造方法のように、被覆工程において、樹脂パッケージ5が、切断工程で切断される領域を避けて形成される製造方法は、本明細書で説明される他の製造方法にも適用可能である。 It should be noted that, like the third manufacturing method, the manufacturing method in which the resin package 5 is formed in the covering step while avoiding the region cut in the cutting step is also applicable to other manufacturing methods described herein. It is possible.
 また、第3製造方法のように、切断工程において、切断対象の部材の材料に応じて、当該材料の切断に適したブレードが使用される製造方法は、本明細書で説明される他の製造方法にも適用可能である。 In addition, as in the third manufacturing method, in the cutting step, depending on the material of the member to be cut, a manufacturing method in which a blade suitable for cutting the material is used is different from the other manufacturing methods described herein. It is also applicable to methods.
 構造体が切断されるとき、構造体を構成する各材料に適したブレードが使用されることが好ましい。例えば、構造体が基板と検出素子と樹脂パッケージとで構成されるとき、3種類のブレード(基板の切断に適したブレード、検出素子の切断に適したブレード、樹脂パッケージの切断に適したブレード)が各材料の切断時に使用されることが好ましい。第3製造方法によれば、切断工程において樹脂パッケージ5は切断されない。そのため、構造体100Bの切断時に、使用されるブレードの種類数を前述した3種類から2種類に減らすことができる。 When the structure is cut, it is preferable to use a blade suitable for each material that constitutes the structure. For example, when the structure is composed of a substrate, a detection element, and a resin package, there are three types of blades (a blade suitable for cutting the substrate, a blade suitable for cutting the detection element, and a blade suitable for cutting the resin package). is preferably used when cutting each material. According to the third manufacturing method, the resin package 5 is not cut in the cutting step. Therefore, the number of types of blades used when cutting the structure 100B can be reduced from the three types described above to two types.
 <第2実施形態>
 図7は、本発明の第2実施形態に係る差圧センサの斜視図である。図8は、図7のB-B断面を示す断面図である。第2実施形態に係る差圧センサ11が第1実施形態に係る差圧センサ10と異なることは、基板20に流路71が形成されていることである。以下、第1実施形態との相違点が説明される。第1実施形態の差圧センサ10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Second embodiment>
FIG. 7 is a perspective view of a differential pressure sensor according to a second embodiment of the invention. FIG. 8 is a sectional view showing the BB section of FIG. A difference of the differential pressure sensor 11 according to the second embodiment from the differential pressure sensor 10 according to the first embodiment is that a flow path 71 is formed in the substrate 20 . Differences from the first embodiment will be described below. Points in common with the differential pressure sensor 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted in principle, and will be described as necessary.
 図7及び図8に示すように、差圧センサ11は、基板200と、回路素子30と、検出素子400と、樹脂パッケージ50とを備える。つまり、差圧センサ11は、基板20の代わりに基板200を備え、検出素子40の代わりに検出素子400を備える点において、第1実施形態に係る差圧センサ10と異なる。 As shown in FIGS. 7 and 8, the differential pressure sensor 11 includes a substrate 200, a circuit element 30, a detection element 400, and a resin package 50. That is, the differential pressure sensor 11 differs from the differential pressure sensor 10 according to the first embodiment in that it includes a substrate 200 instead of the substrate 20 and a detection element 400 instead of the detection element 40 .
 第2実施形態において、基板200は、下面10Aと、上面20Aと、側面20Bとを備える。側面20Bは、基板の外面の一例である。 In the second embodiment, the substrate 200 has a lower surface 10A, an upper surface 20A, and side surfaces 20B. The side surface 20B is an example of the outer surface of the substrate.
 基板200は、内部に流路71が形成されていること、側面20Bに開口71Aが形成されていること、及び上面20Aに開口71Bが形成されていることを除いて、第1実施形態に係る差圧センサ10の基板20と同構成である。 The substrate 200 is the same as that of the first embodiment, except that the channel 71 is formed inside, the opening 71A is formed in the side surface 20B, and the opening 71B is formed in the top surface 20A. It has the same configuration as the substrate 20 of the differential pressure sensor 10 .
 流路71は、基板200の内部に形成されている。流路71は、第2連通部の一例である。流路71は、側面20Bに形成された開口71Aを介して差圧センサ10の外部と連通している。開口71Aは、第2開口の一例である。流路71は、上面20Aに形成された開口71Bと連通している。開口71Bは、第3開口の一例である。 The channel 71 is formed inside the substrate 200 . The channel 71 is an example of a second communication portion. Flow path 71 communicates with the outside of differential pressure sensor 10 via opening 71A formed in side surface 20B. The opening 71A is an example of a second opening. The channel 71 communicates with an opening 71B formed in the upper surface 20A. The opening 71B is an example of a third opening.
 検出素子400は、流路71及び開口71Aの代わりに凹部410を備えていることを除いて、第1実施形態に係る差圧センサ10の検出素子40と同構成である。第2実施形態において、検出素子400は、差圧センサ10の外部に露出されていない。 The detection element 400 has the same configuration as the detection element 40 of the differential pressure sensor 10 according to the first embodiment, except that it has a recess 410 instead of the flow path 71 and the opening 71A. In the second embodiment, the sensing element 400 is not exposed outside the differential pressure sensor 10 .
 検出素子400は、圧力を測定するためのものである。第2実施形態において、検出素子400は、直方体の板状である。検出素子400は、下面400Aと、上面400Bと、側面400Cとを備える。上面400Bは、下面400Aの上方に位置し、上方を向く。つまり、上面400Bは、下面400Aの反対側の面である。側面400Cは、下面400A及び上面400Bを繋ぐ。 The detection element 400 is for measuring pressure. In the second embodiment, the detection element 400 is a rectangular parallelepiped plate. The sensing element 400 has a bottom surface 400A, a top surface 400B, and side surfaces 400C. The upper surface 400B is located above the lower surface 400A and faces upward. That is, the upper surface 400B is the surface opposite to the lower surface 400A. The side surface 400C connects the bottom surface 400A and the top surface 400B.
 検出素子400の下面400Aに、凹部410が形成されている。検出素子400は、凹部410が形成されている部分において薄くなっており、薄膜が形成される。この薄膜が、ダイアフラム41である。ダイアフラム41の上面41Aは、検出素子400の上面400Bの一部である。ダイアフラム41の下面41Bは、凹部410の一部である。 A concave portion 410 is formed in the lower surface 400A of the detection element 400 . The detection element 400 is thin at the portion where the concave portion 410 is formed, and a thin film is formed. This thin film is the diaphragm 41 . Upper surface 41A of diaphragm 41 is part of upper surface 400B of detection element 400 . A lower surface 41B of the diaphragm 41 is part of the recess 410 .
 検出素子400は、基板200の上面20Aに積層されている。つまり、検出素子400は、基板200の上面20Aの上方に位置している。積層手段は、公知の種々の手段が採用可能である。第2実施形態において、検出素子400は、ダイアタッチフィルムやダイアタッチ材等によって、基板200の上面20Aに接合されている。 The detection element 400 is laminated on the upper surface 20A of the substrate 200. In other words, the detection element 400 is positioned above the upper surface 20A of the substrate 200 . Various known means can be employed as the lamination means. In the second embodiment, the detection element 400 is bonded to the upper surface 20A of the substrate 200 with a die attach film, die attach material, or the like.
 検出素子400は、上方から基板200の開口71Bを覆うように、且つ上面20Aと直交する方向から見て開口71Bと凹部410とが重なるように、基板200の上面20Aに積層される。これにより、ダイアフラム41の下面41Bは、凹部410及び基板200の開口71Bを介して、基板200の流路71と連通する。つまり、ダイアフラム41の下面41Bは、凹部410、開口71B、流路71、及び開口71Aを介して、差圧センサ11の外部と連通している。 The detection element 400 is laminated on the top surface 20A of the substrate 200 so as to cover the opening 71B of the substrate 200 from above and so that the opening 71B and the recess 410 overlap when viewed from the direction perpendicular to the top surface 20A. Thereby, the lower surface 41B of the diaphragm 41 communicates with the channel 71 of the substrate 200 via the recess 410 and the opening 71B of the substrate 200 . That is, the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 11 via the recess 410, the opening 71B, the flow path 71, and the opening 71A.
 差圧センサ11は、ダイアフラム41上に歪ゲージが設けられることによって、ピエゾ型として機能することが可能である。 By providing a strain gauge on the diaphragm 41, the differential pressure sensor 11 can function as a piezo sensor.
 第2実施形態によれば、第2連通部としての流路71は、基板200に設けられている。そのため、検出素子400と基板200との間に、ダイアフラム41の下面41Bを外部と連通させるための流路が形成された他の部材を配置する必要がない。これにより、差圧センサ11が上下に長くなることを抑制することができる。 According to the second embodiment, the flow path 71 as the second communication portion is provided in the substrate 200. Therefore, it is not necessary to dispose another member having a channel for communicating the lower surface 41B of the diaphragm 41 with the outside, between the detection element 400 and the substrate 200 . As a result, it is possible to prevent the differential pressure sensor 11 from becoming longer in the vertical direction.
 <第2実施形態の差圧センサの製造方法>
 以下に、差圧センサ11の製造方法が、図9及び図10が参照されつつ説明される。図9は、本発明の第2実施形態に係る差圧センサの製造方法において基板に検出素子が積層されたときの断面図である。図10は、図9の基板及び検出素子に樹脂パッケージが被覆されたときの断面図である。以下、第1実施形態に係る差圧センサの製造方法との相違点が説明される。第1実施形態に係る差圧センサの製造方法との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Method for Manufacturing Differential Pressure Sensor of Second Embodiment>
A method of manufacturing the differential pressure sensor 11 will be described below with reference to FIGS. 9 and 10. FIG. FIG. 9 is a cross-sectional view when a detection element is laminated on a substrate in the method of manufacturing a differential pressure sensor according to the second embodiment of the present invention. FIG. 10 is a cross-sectional view when the substrate and the detection element of FIG. 9 are covered with a resin package. Differences from the method of manufacturing the differential pressure sensor according to the first embodiment will be described below. Points in common with the manufacturing method of the differential pressure sensor according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
 最初に、積層工程が実行される。積層工程では、図9に示すように、基板21の上面21Aに、2つの検出素子400が、第1製造方法の検出素子4と同様にして積層される。基板21は、図2に示す基板2と同様に、図8に示す基板200が複数連結されたものである。この製造方法では、基板21は、図8に示す基板200が2枚連結されたものである。なお、基板21に積層される検出素子400は、2つに限らない。 First, the lamination process is executed. In the lamination step, as shown in FIG. 9, two detection elements 400 are laminated on the upper surface 21A of the substrate 21 in the same manner as the detection element 4 of the first manufacturing method. The substrate 21 is formed by connecting a plurality of substrates 200 shown in FIG. 8, like the substrate 2 shown in FIG. In this manufacturing method, the substrate 21 is obtained by connecting two substrates 200 shown in FIG. Note that the number of detection elements 400 stacked on the substrate 21 is not limited to two.
 基板21は、上面21Aに形成された2つの開口71Bと、2つの内部空間21Bとを備える。上面21Aは、接合面の一例である。2つの内部空間21Bの各々は、2つの開口71Bの各々を介して基板21の外部と連通する。内部空間21Bは、例えば、基板21が複数層で構成される場合に、基板21の内層に開口を設けることによって形成される。また、例えば、内部空間21Bは、基板21の上面20A及び側面20Bからドリル等で穴をあけることによって形成される。 The substrate 21 has two openings 71B formed in the upper surface 21A and two internal spaces 21B. The upper surface 21A is an example of a joint surface. Each of the two internal spaces 21B communicates with the outside of the substrate 21 via each of the two openings 71B. The internal space 21B is formed, for example, by providing an opening in the inner layer of the substrate 21 when the substrate 21 is composed of multiple layers. Further, for example, the internal space 21B is formed by drilling holes from the upper surface 20A and the side surface 20B of the substrate 21 with a drill or the like.
 2つの検出素子400の各々は、開口71Bを塞ぎ且つダイアフラム41の下面41Bが開口71Bを介して基板21の内部空間21Bと連通するように、基板21の上面21Aに積層される。 Each of the two detection elements 400 is laminated on the upper surface 21A of the substrate 21 so that the opening 71B is closed and the lower surface 41B of the diaphragm 41 communicates with the internal space 21B of the substrate 21 through the opening 71B.
 次に、被覆工程が実行される。被覆工程は、第1実施形態に係る差圧センサの第1製造方法の被覆工程と同様に実行される。被覆工程が実行されることにより、図10に示すように、基板21と、2つの検出素子400と、樹脂パッケージ50とを備える構造体100Cが形成される。 Next, the covering process is executed. The covering step is performed in the same manner as the covering step of the first method of manufacturing the differential pressure sensor according to the first embodiment. By performing the covering step, a structure 100C including the substrate 21, the two detection elements 400, and the resin package 50 is formed as shown in FIG.
 次に、切断工程が実行される。切断工程では、図10に示すように、構造体100Cがブレード81によって切断される。構造体100Cは、上面21Aと直交する上下方向に沿って切断される。このとき、構造体100Cは、ブレード81が各基板21の内部空間21Bを通り且つ検出素子400を避けるように切断される。この製造方法では、構造体100Cは、2箇所において切断される。これにより、各基板21の内部空間21Bを外部に連通させる開口71Aが形成される。つまり、構造体100Cは、2つの内部空間21Bの各々が外部に露出するように切断される。 Next, the cutting process is executed. In the cutting step, the structure 100C is cut by a blade 81, as shown in FIG. The structure 100C is cut along the vertical direction orthogonal to the upper surface 21A. At this time, the structure 100C is cut so that the blade 81 passes through the internal space 21B of each substrate 21 and avoids the detection element 400. FIG. In this manufacturing method, the structure 100C is cut at two locations. As a result, an opening 71A that communicates the internal space 21B of each substrate 21 with the outside is formed. That is, the structure 100C is cut so that each of the two internal spaces 21B is exposed to the outside.
 前記のように構造体100Cが切断されることによって、構造体100Cは、2つの差圧センサ11と、2つの差圧センサ11の間の捨て部材11aとに分割される。詳細には、基板21が分割されて2つの基板200(図8参照)が形成される。また、樹脂パッケージ50が2つに分割される。 By cutting the structure 100C as described above, the structure 100C is divided into the two differential pressure sensors 11 and the disposal member 11a between the two differential pressure sensors 11. Specifically, the substrate 21 is split to form two substrates 200 (see FIG. 8). Also, the resin package 50 is divided into two.
 この製造方法によれば、積層工程において上面21Aに形成された開口71Bが塞がれてから切断工程が実行されるまで、基板21の内部空間21Bを密閉させることができる。そのため、基板21の内部空間21Bへ異物が進入する可能性を低くすることができ、被覆工程において基板21の内部空間21Bへ樹脂パッケージ50の構成物が進入することを防止することができる。 According to this manufacturing method, the internal space 21B of the substrate 21 can be hermetically sealed from the closing of the opening 71B formed in the upper surface 21A in the lamination process until the cutting process is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space 21B of the substrate 21, and prevent the components of the resin package 50 from entering the internal space 21B of the substrate 21 in the covering step.
 この製造方法によれば、切断工程の前において、2枚の基板200が基板21として一体化されている。そのため、2つの差圧センサ11が連結されている構造体100Cを小型化することができる。 According to this manufacturing method, the two substrates 200 are integrated as the substrate 21 before the cutting process. Therefore, the structure 100C to which the two differential pressure sensors 11 are connected can be miniaturized.
 この製造方法によれば、2枚の基板200が一体化された基板21が2つの内部空間21Bを備えている。そのため、切断工程が実行される前に、2つの内部空間21Bの各々に対して性能検査を実行することができる。 According to this manufacturing method, the substrate 21 in which two substrates 200 are integrated has two internal spaces 21B. Therefore, a performance test can be performed on each of the two internal spaces 21B before the cutting process is performed.
 第2実施形態では、基板200は、第2連通部として流路71を備えているが、第2連通部として流路71の代わりに溝72を備えていてもよい。 In the second embodiment, the substrate 200 has the channel 71 as the second communicating portion, but may have the groove 72 instead of the channel 71 as the second communicating portion.
 図8に破線で示すように、溝72は、基板200の上面20Aに形成されている。溝72は、基板200の上面20Aの外縁部まで延びている。当該外縁部に、開口71Aが形成される。検出素子400は、溝72の一部を覆うように、且つ上面20Aと直交する方向から見て当該一部と凹部410とが重なるように、基板200の上面20Aに積層される。当該一部と凹部410とが重なった部分に、溝72と凹部410とを連通する開口71Bが形成される。樹脂パッケージ50は、基板200の上面20Aのうち、検出素子4400に覆われていない部分を覆う。これにより、溝72の開口71A,71B以外の部分が、樹脂パッケージ50によって閉塞される。 As indicated by broken lines in FIG. 8, the grooves 72 are formed in the upper surface 20A of the substrate 200. As shown in FIG. Groove 72 extends to the outer edge of upper surface 20A of substrate 200 . An opening 71A is formed in the outer edge. The detection element 400 is laminated on the upper surface 20A of the substrate 200 so as to cover a part of the groove 72 and overlap the recess 410 with the part when viewed from the direction orthogonal to the upper surface 20A. An opening 71</b>B communicating between the groove 72 and the recess 410 is formed in a portion where the part overlaps the recess 410 . The resin package 50 covers the portion of the upper surface 20A of the substrate 200 that is not covered with the detection element 4400 . As a result, the portion of the groove 72 other than the openings 71A and 71B is closed by the resin package 50 .
 基板200に溝を形成することは、基板200に内部空間を形成するより容易である。そのため、図8に破線で示す構成によれば、基板200に溝72を形成することによって第2連通部としての流路を容易に形成することができる。 Forming a groove in the substrate 200 is easier than forming an internal space in the substrate 200 . Therefore, according to the configuration indicated by the dashed line in FIG. 8 , by forming the groove 72 in the substrate 200 , it is possible to easily form the flow path as the second communication portion.
 溝72は、例えば以下の工程が実行されることにより、ダイアフラム41の下面41Bを外部へ連通する流路として構成される。基板200に形成された溝72が蝋などで埋められる。次に、前述した積層工程、被覆工程、及び切断工程が実行されることによって、差圧センサ11が製造される。次に、製造された各差圧センサ11に熱が加えられる。これにより、溝72を埋めている蝋が溶けて、開口71Aから流れ出す。その結果、基板200に形成された溝72が、流路として構成される。 The groove 72 is configured as a flow path that communicates the lower surface 41B of the diaphragm 41 with the outside by executing the following steps, for example. A groove 72 formed in the substrate 200 is filled with wax or the like. Next, the differential pressure sensor 11 is manufactured by performing the lamination process, the coating process, and the cutting process described above. Heat is then applied to each manufactured differential pressure sensor 11 . As a result, the wax filling the grooves 72 melts and flows out from the openings 71A. As a result, the grooves 72 formed in the substrate 200 are configured as channels.
 <第3実施形態>
 図11は、本発明の第3実施形態に係る差圧センサの斜視図である。図12は、図11のC-C断面を示す断面図である。第3実施形態に係る差圧センサ12が第1実施形態に係る差圧センサ10と異なることは、樹脂ケース90を備えることである。以下、第1実施形態及び第2実施形態との相違点が説明される。第1実施形態の差圧センサ10または第2実施形態の差圧センサ11との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Third Embodiment>
FIG. 11 is a perspective view of a differential pressure sensor according to a third embodiment of the invention. FIG. 12 is a sectional view showing a CC section of FIG. 11. As shown in FIG. A differential pressure sensor 12 according to the third embodiment differs from the differential pressure sensor 10 according to the first embodiment in that a resin case 90 is provided. Differences from the first embodiment and the second embodiment will be described below. Points common to the differential pressure sensor 10 of the first embodiment or the differential pressure sensor 11 of the second embodiment are denoted by the same reference numerals, and description thereof is omitted in principle, and will be described as necessary. .
 図11及び図12に示すように、差圧センサ12は、基板20と、回路素子30と、検出素子400と、樹脂ケース90と、樹脂パッケージ50とを備える。 As shown in FIGS. 11 and 12, the differential pressure sensor 12 includes a substrate 20, a circuit element 30, a detection element 400, a resin case 90, and a resin package 50.
 樹脂ケース90は、熱硬化性樹脂などの硬質樹脂で構成されている。樹脂ケース90は、樹脂パッケージ50と異なる種類の樹脂で構成されていてもよいし、樹脂パッケージ50と同じ種類の樹脂で構成されていてもよい。 The resin case 90 is made of hard resin such as thermosetting resin. The resin case 90 may be made of a different kind of resin from the resin package 50 or may be made of the same kind of resin as the resin package 50 .
 樹脂ケース90は、直方体形状である。樹脂ケース90は、下面90Aと、上面90Bと、側面90Cとを備える。上面90Bは、下面90Aの上方に位置し、上方を向く。つまり、上面90Bは、下面90Aの反対側の面である。側面90Cは、下面90A及び上面90Bを繋ぐ。 The resin case 90 has a rectangular parallelepiped shape. The resin case 90 has a lower surface 90A, an upper surface 90B, and side surfaces 90C. The upper surface 90B is located above the lower surface 90A and faces upward. That is, the upper surface 90B is the surface opposite to the lower surface 90A. The side surface 90C connects the bottom surface 90A and the top surface 90B.
 側面90Cの一部は、差圧センサ10の側面10Cの一部を構成している。第3実施形態において、直方体形状の樹脂ケース90は、4つの側面90Cを備える。4つの側面90Cのうちの1つの側面90Caは、外部に露出しており、差圧センサ10の側面10Cの一部を構成している。側面90Caは、樹脂ケースの外面の一例である。4つの側面90Cのうちの残り3つの側面90Cは、樹脂パッケージ50に覆われており、外部に露出していない。側面90Caには、開口73Aが形成されている。開口73Aは、第2開口の一例である。 A portion of the side surface 90C constitutes a portion of the side surface 10C of the differential pressure sensor 10. In the third embodiment, a rectangular parallelepiped resin case 90 has four side surfaces 90C. One side surface 90Ca of the four side surfaces 90C is exposed to the outside and forms part of the side surface 10C of the differential pressure sensor 10. As shown in FIG. The side surface 90Ca is an example of the outer surface of the resin case. The remaining three side surfaces 90C out of the four side surfaces 90C are covered with the resin package 50 and are not exposed to the outside. An opening 73A is formed in the side surface 90Ca. The opening 73A is an example of a second opening.
 樹脂ケース90は、基板20の上面20Aに積層されている。積層手段は、公知の種々の手段が採用可能である。第3実施形態において、樹脂ケース90は、ダイアタッチフィルムやダイアタッチ材等によって、基板20の上面20Aに接合されている。 The resin case 90 is laminated on the upper surface 20A of the substrate 20. Various known means can be employed as the lamination means. In the third embodiment, the resin case 90 is joined to the upper surface 20A of the substrate 20 by a die attach film, die attach material, or the like.
 樹脂ケース90の下側には、凹部が形成されている。当該凹部は、樹脂ケース90が基板20の上面20Aに積層されることによって、流路73を構成する。つまり、樹脂ケース90には、流路73が形成されている。流路73は、第2連通部の一例である。流路73は、開口73Aを介して差圧センサ12の外部と連通している。流路73は、上面90Bに形成された開口73Bと連通している。開口73Bは、第3開口の一例である。 A concave portion is formed on the lower side of the resin case 90 . The recess forms the flow path 73 by laminating the resin case 90 on the upper surface 20A of the substrate 20 . That is, the flow path 73 is formed in the resin case 90 . The flow path 73 is an example of a second communication portion. The flow path 73 communicates with the outside of the differential pressure sensor 12 through an opening 73A. The channel 73 communicates with an opening 73B formed in the upper surface 90B. The opening 73B is an example of a third opening.
 検出素子400は、樹脂ケース90の面のうち基板20と反対側の面である上面90Bに積層されている。積層手段は、樹脂ケース90の基板20への接合と同様に、公知の種々の手段が採用可能である。 The detection element 400 is laminated on the upper surface 90B, which is the surface of the resin case 90 opposite to the substrate 20 . As for the stacking means, various known means can be adopted as in the case of bonding the resin case 90 to the substrate 20 .
 検出素子400は、上方から樹脂ケース90の開口73Bを覆うように、且つ樹脂ケース90の上面90Bと直交する方向から見て開口73Bと凹部410とが重なるように、樹脂ケース90の上面90Bに積層される。これにより、ダイアフラム41の下面41Bは、凹部410及び樹脂ケース90の開口73Bを介して、樹脂ケース90の流路73と連通する。つまり、ダイアフラム41の下面41Bは、凹部410、開口73B、流路73、及び開口73Aを介して、差圧センサ12の外部と連通している。 The detection element 400 is mounted on the upper surface 90B of the resin case 90 so as to cover the opening 73B of the resin case 90 from above and so that the opening 73B and the recess 410 overlap when viewed from the direction orthogonal to the upper surface 90B of the resin case 90. Laminated. Thereby, the lower surface 41B of the diaphragm 41 communicates with the flow path 73 of the resin case 90 via the recess 410 and the opening 73B of the resin case 90 . That is, the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 12 via the recess 410, the opening 73B, the flow path 73, and the opening 73A.
 樹脂パッケージ50は、基板20の上面20Aと、回路素子30と、検出素子40とに加えて、樹脂ケース90の一部(樹脂ケース90の側面90Caを除く部分)を覆っている。なお、樹脂パッケージ50は、開口73Aのみが外部に露出するように、樹脂ケース90の側面90Caを覆っていてもよい。 The resin package 50 covers the upper surface 20A of the substrate 20, the circuit element 30, the detection element 40, and a part of the resin case 90 (the part excluding the side surface 90Ca of the resin case 90). The resin package 50 may cover the side surface 90Ca of the resin case 90 so that only the opening 73A is exposed to the outside.
 差圧センサ12は、ダイアフラム41上に歪ゲージが設けられることによって、ピエゾ型として機能することが可能である。 By providing a strain gauge on the diaphragm 41, the differential pressure sensor 12 can function as a piezo sensor.
 第3実施形態によれば、第2連通部としての流路73が樹脂ケース90に形成されている。そのため、検出素子400及び基板20等に、第2連通部としての流路を形成するための追加の加工を施す必要がない。 According to the third embodiment, the flow path 73 is formed in the resin case 90 as the second communication portion. Therefore, it is not necessary to apply additional processing to the detection element 400, the substrate 20, and the like for forming the flow path as the second communication portion.
 第3実施形態によれば、検出素子400が樹脂ケース90に下方から支持される。そのため、検出素子400のダイアフラム41の下面41Bを、樹脂ケース90に形成された流路73に面するように検出素子400及び樹脂ケース90を構成することが容易である。 According to the third embodiment, the detection element 400 is supported by the resin case 90 from below. Therefore, it is easy to configure the detection element 400 and the resin case 90 so that the lower surface 41B of the diaphragm 41 of the detection element 400 faces the flow path 73 formed in the resin case 90 .
 第3実施形態では、検出素子400は、樹脂ケース90の上面90Bに積層されている。しかし、検出素子400は、基板20の上面20Aに積層されていてもよい。例えば、検出素子400は、樹脂ケース90の側方に、樹脂ケース90に隣接して配置されていてもよい。この場合、検出素子400の樹脂ケース90側の側面に、凹部410と連通する開口が形成される。また、樹脂ケース90の検出素子400側の側面に、流路73と連通する開口が形成される。凹部410と連通する開口と、流路73と連通する開口とは、互いに連通される。これにより、ダイアフラム41の下面41Bは、凹部410及び流路73を介して、差圧センサ12の外部と連通する。 In the third embodiment, the detection element 400 is layered on the top surface 90B of the resin case 90 . However, the detection element 400 may be laminated on the upper surface 20A of the substrate 20. FIG. For example, the detection element 400 may be arranged on the side of the resin case 90 and adjacent to the resin case 90 . In this case, an opening that communicates with the recess 410 is formed in the side surface of the detection element 400 on the resin case 90 side. An opening communicating with the flow path 73 is formed in the side surface of the resin case 90 on the side of the detection element 400 . The opening communicating with recess 410 and the opening communicating with channel 73 communicate with each other. Thereby, the lower surface 41B of the diaphragm 41 communicates with the outside of the differential pressure sensor 12 via the recess 410 and the flow path 73. As shown in FIG.
 <第3実施形態の差圧センサの製造方法>
 以下に、差圧センサ12の製造方法が、図13、図14、及び図15が参照されつつ説明される。図13は、本発明の第3実施形態に係る差圧センサの製造方法において基板に樹脂ケースが積層されたときの断面図である。図14は、図13の樹脂ケースに検出素子が積層されたときの断面図である。図15は、図14の基板、樹脂ケース、及び検出素子に樹脂パッケージが被覆されたときの断面図である。以下、第1実施形態及び第2実施形態に係る差圧センサの製造方法との相違点が説明される。第1実施形態及び第2実施形態に係る差圧センサの製造方法との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
<Method for Manufacturing Differential Pressure Sensor of Third Embodiment>
Below, a method of manufacturing the differential pressure sensor 12 will be described with reference to FIGS. FIG. 13 is a cross-sectional view when a resin case is laminated on a substrate in the method of manufacturing a differential pressure sensor according to the third embodiment of the present invention. FIG. 14 is a cross-sectional view of the resin case of FIG. 13 when the detection element is laminated. FIG. 15 is a cross-sectional view of the substrate, resin case, and detection element of FIG. 14 covered with a resin package. Differences from the method of manufacturing the differential pressure sensor according to the first and second embodiments will be described below. Points in common with the differential pressure sensor manufacturing method according to the first embodiment and the second embodiment are given the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
 最初に、第1積層工程が実行される。第1積層工程では、図13に示すように、基板2の上面2Aに、樹脂ケース9が積層される。上面2Aは、接合面の一例である。本製造方法では、第1実施形態に係る差圧センサの第2製造方法と同様に、2つの内部空間7Aを有する1つの樹脂ケース9が基板2の上面2Aに積層される。樹脂ケース9は、ダイアタッチフィルムやダイアタッチ材等によって、基板2の上面2Aに接合される。なお、第1実施形態に係る差圧センサの第1製造方法と同様に、1つの内部空間7Aを有する1つの樹脂ケースが基板2の上面2Aに複数積層されてもよい。 First, the first lamination process is performed. In the first lamination step, the resin case 9 is laminated on the upper surface 2A of the substrate 2, as shown in FIG. The upper surface 2A is an example of a joint surface. In this manufacturing method, one resin case 9 having two internal spaces 7A is laminated on the upper surface 2A of the substrate 2, similarly to the second manufacturing method of the differential pressure sensor according to the first embodiment. The resin case 9 is joined to the upper surface 2A of the substrate 2 by a die attach film, die attach material, or the like. A plurality of one resin cases each having one internal space 7A may be laminated on the upper surface 2A of the substrate 2 in the same manner as in the first manufacturing method of the differential pressure sensor according to the first embodiment.
 樹脂ケース9は、下面9Aと、上面9Bと、側面9Cとを備える。上面9Bは、下面9Aの上方に位置し、上方を向く。つまり、上面9Bは、下面9Aの反対側の面である。側面9Cは、下面9A及び上面9Bを繋ぐ。 The resin case 9 has a lower surface 9A, an upper surface 9B, and side surfaces 9C. The upper surface 9B is located above the lower surface 9A and faces upward. That is, the upper surface 9B is the surface opposite to the lower surface 9A. The side surface 9C connects the bottom surface 9A and the top surface 9B.
 樹脂ケース9は、上面9Bに形成された2つの開口73Bと、2つの内部空間7Aとを備える。2つの内部空間7Aの各々は、2つの開口73Bの各々を介して基板21の外部と連通する。 The resin case 9 has two openings 73B formed in the upper surface 9B and two internal spaces 7A. Each of the two internal spaces 7A communicates with the outside of the substrate 21 via each of the two openings 73B.
 次に、第2積層工程が実行される。第2積層工程では、図14に示すように、樹脂ケース9の上面9Bに、2つの検出素子400が、第2実施形態に係る差圧センサの製造方法の検出素子400と同様にして積層される。なお、1つの内部空間7Aを備える樹脂ケース9が基板2に複数積層されている場合、1つの樹脂ケース9毎に、1つの検出素子400が積層される。 Next, the second lamination process is performed. In the second lamination step, as shown in FIG. 14, two detection elements 400 are laminated on the upper surface 9B of the resin case 9 in the same manner as the detection elements 400 in the method of manufacturing the differential pressure sensor according to the second embodiment. be. When a plurality of resin cases 9 each having one internal space 7A are stacked on the substrate 2, one detection element 400 is stacked for each resin case 9. FIG.
 2つの検出素子400の各々は、開口73Bを塞ぎ且つダイアフラム41の下面41Bが開口73Bを介して樹脂ケース9の内部空間7Aと連通するように、樹脂ケース9の上面9Bに積層される。 Each of the two detection elements 400 is stacked on the upper surface 9B of the resin case 9 so as to block the opening 73B and communicate the lower surface 41B of the diaphragm 41 with the internal space 7A of the resin case 9 through the opening 73B.
 なお、検出素子400は、基板2の上面2Aに積層されてもよい。この場合、樹脂ケース9の開口73Bは、樹脂ケース9の側面9Cに形成される。また、検出素子400の側面400Cに開口が形成される。検出素子400は、側面400Cに形成された開口と樹脂ケース9の開口73Bとが互いに連通するように、樹脂ケース9の側面9Cに隣接する位置に積層される。 Note that the detection element 400 may be laminated on the upper surface 2A of the substrate 2. In this case, the opening 73</b>B of the resin case 9 is formed on the side surface 9</b>C of the resin case 9 . Also, an opening is formed in the side surface 400C of the detection element 400 . The detection element 400 is stacked at a position adjacent to the side surface 9C of the resin case 9 so that the opening formed in the side surface 400C and the opening 73B of the resin case 9 communicate with each other.
 次に、被覆工程が実行される。被覆工程は、第1実施形態に係る差圧センサの第1製造方法の被覆工程と同様に実行される。被覆工程では、図15に示すように、基板2の上面2Aの全部と、樹脂ケース9と、2つの検出素子400の一部(上面41Aを除く部分)とが樹脂パッケージ50によって覆われる。 Next, the covering process is executed. The covering step is performed in the same manner as the covering step of the first method of manufacturing the differential pressure sensor according to the first embodiment. In the covering step, as shown in FIG. 15, the entire top surface 2A of the substrate 2, the resin case 9, and a portion of the two detection elements 400 (excluding the top surface 41A) are covered with the resin package 50. FIG.
 被覆工程が実行されることにより、図15に示すように、基板21と、樹脂ケース9と、2つの検出素子400と、樹脂パッケージ50とを備える構造体100Dが形成される。なお、被覆工程において、樹脂パッケージ50は、樹脂ケース9の一部のみを覆ってもよい。 By executing the covering step, a structure 100D including a substrate 21, a resin case 9, two detection elements 400, and a resin package 50 is formed as shown in FIG. In addition, in the covering step, the resin package 50 may cover only a part of the resin case 9 .
 次に、切断工程が実行される。切断工程では、図15に示すように、構造体100Dがブレード81によって切断される。構造体100Dは、上面2Aと直交する上下方向に沿って切断される。このとき、構造体100Dは、ブレード81が樹脂ケース9の各内部空間7Aを通り且つ検出素子400を避けるように切断される。この製造方法では、構造体100Dは、2箇所において切断される。これにより、樹脂ケース9の各内部空間7Aを外部に連通させる開口73Aが形成される。つまり、構造体100Dは、2つの内部空間7Aの各々が外部に露出するように切断される。 Next, the cutting process is executed. In the cutting step, the structure 100D is cut by a blade 81, as shown in FIG. The structure 100D is cut along the vertical direction perpendicular to the upper surface 2A. At this time, the structural body 100</b>D is cut so that the blade 81 passes through each internal space 7</b>A of the resin case 9 and avoids the detection element 400 . In this manufacturing method, the structure 100D is cut at two locations. As a result, openings 73A are formed that allow the internal spaces 7A of the resin case 9 to communicate with the outside. That is, the structure 100D is cut so that each of the two internal spaces 7A is exposed to the outside.
 前記のように構造体100Dが切断されることによって、構造体100Dは、2つの差圧センサ12(図12参照)と、2つの差圧センサ12の間の捨て部材12aとに分割される。詳細には、基板2が分割されて2つの基板20(図12参照)が形成される。また、樹脂ケース9が分割されて2つの樹脂ケース90(図12参照)が形成される。また、樹脂パッケージ50が2つに分割される。 By cutting the structure 100D as described above, the structure 100D is divided into the two differential pressure sensors 12 (see FIG. 12) and the disposal member 12a between the two differential pressure sensors 12. Specifically, the substrate 2 is split to form two substrates 20 (see FIG. 12). Also, the resin case 9 is divided to form two resin cases 90 (see FIG. 12). Also, the resin package 50 is divided into two.
 この製造方法によれば、積層工程において樹脂ケース9の開口73Bが塞がれてから切断工程が実行されるまで、樹脂ケース9の内部空間7Aを密閉させることができる。そのため、樹脂ケース9の内部空間7Aへ異物が進入する可能性を低くすることができ、被覆工程において樹脂ケース9の内部空間7Aへ樹脂パッケージ50の構成物が進入することを防止することができる。 According to this manufacturing method, the internal space 7A of the resin case 9 can be sealed from when the opening 73B of the resin case 9 is closed in the stacking step until the cutting step is performed. Therefore, it is possible to reduce the possibility of foreign matter entering the internal space 7A of the resin case 9, and prevent the components of the resin package 50 from entering the internal space 7A of the resin case 9 in the coating step. .
 この製造方法によれば、切断工程の前において、2つの樹脂ケース90が樹脂ケース9として一体化されている。そのため、2つの差圧センサ12が連結されている構造体100Dを小型化することができる。 According to this manufacturing method, the two resin cases 90 are integrated as the resin case 9 before the cutting process. Therefore, the structure 100D to which the two differential pressure sensors 12 are connected can be miniaturized.
 この製造方法によれば、2つの樹脂ケース90が一体化された樹脂ケース9が2つの内部空間7Aを備えている。そのため、切断工程が実行される前に、2つの内部空間7Aの各々に対して性能検査を実行することができる。 According to this manufacturing method, the resin case 9 in which two resin cases 90 are integrated has two internal spaces 7A. Therefore, a performance test can be performed for each of the two internal spaces 7A before the cutting process is performed.
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that by appropriately combining any of the various embodiments described above, the respective effects can be achieved.
 本発明は、適宜図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with appropriate reference to the drawings, various variations and modifications will be apparent to those skilled in the art. Such variations and modifications are to be included therein insofar as they do not depart from the scope of the invention as set forth in the appended claims.
   2 基板
  2A 上面(接合面)
   7 内部空間
  7A 内部空間
   9 樹脂ケース
  10 差圧センサ
 10A 下面(センサ下面)
 10B 上面(センサ上面)
 10C 側面(センサ側面)
  20 基板
 20A 上面(接合面)
 20B 側面(外面)
  21 基板
 21A 上面(接合面)
 21B 内部空間
  40 検出素子
  41 ダイアフラム
 41A 上面(第1面)
 41B 下面(第2面)
40Ca 側面(外面)
  50 樹脂パッケージ
  60 貫通孔(第1連通部)
 60A 開口(第1開口)
  70 流路(第2連通部)
 70A 開口(第2開口)
  71 流路(第2連通部)
 71B 開口(第3開口)
  72 溝
  73 流路(第2連通部)
 73B 開口(第3開口)
  90 樹脂ケース
90Ca 側面(外面)
 100 構造体
100A 構造体
100B 構造体
100C 構造体
100D 構造体
 400 検出素子
2 substrate 2A upper surface (joint surface)
7 Internal space 7A Internal space 9 Resin case 10 Differential pressure sensor 10A Bottom surface (sensor bottom surface)
10B upper surface (sensor upper surface)
10C side (sensor side)
20 substrate 20A upper surface (joint surface)
20B side (outer surface)
21 substrate 21A upper surface (joint surface)
21B internal space 40 detection element 41 diaphragm 41A upper surface (first surface)
41B lower surface (second surface)
40Ca side (outer surface)
50 resin package 60 through hole (first communicating portion)
60A opening (first opening)
70 flow path (second communicating part)
70A opening (second opening)
71 flow path (second communicating part)
71B opening (third opening)
72 Groove 73 Flow path (second communicating portion)
73B opening (third opening)
90 Resin case 90Ca Side (outer surface)
100 structure 100A structure 100B structure 100C structure 100D structure 400 detection element

Claims (13)

  1.  センサ下面と、センサ上面と、前記センサ下面及び前記センサ上面を繋ぐセンサ側面とを有する差圧センサであって、
     前記センサ下面と、前記センサ下面の反対側の接合面とを有する基板と、
     前記基板の接合面の上方に位置し、2つの圧力の差圧を検出するためのダイアフラムを有する検出素子と、
     前記基板の接合面と前記検出素子との少なくとも一部を覆い、前記基板と反対側に前記センサ上面を有する樹脂パッケージと、を備え、
     前記ダイアフラムは、上方を向く第1面と前記第1面の裏面であって下方を向く第2面とを有し、
     前記ダイアフラムの前記第1面を、前記センサ上面に形成された第1開口を介して、前記差圧センサの外部に連通する第1連通部が前記樹脂パッケージに形成され、
     前記ダイアフラムの前記第2面を、前記センサ側面に形成された第2開口を介して、前記差圧センサの外部に連通する第2連通部が形成される差圧センサ。
    A differential pressure sensor having a sensor bottom surface, a sensor top surface, and a sensor side surface connecting the sensor bottom surface and the sensor top surface,
    a substrate having the lower surface of the sensor and a bonding surface opposite to the lower surface of the sensor;
    a sensing element positioned above the joint surfaces of the substrates and having a diaphragm for sensing a differential pressure between the two pressures;
    a resin package covering at least a part of the bonding surface of the substrate and the detection element and having the upper surface of the sensor on the side opposite to the substrate;
    The diaphragm has a first surface facing upward and a second surface facing downward on the back surface of the first surface,
    The resin package is formed with a first communicating portion that communicates the first surface of the diaphragm with the outside of the differential pressure sensor through a first opening formed in the upper surface of the sensor,
    A differential pressure sensor, wherein a second communication portion is formed to communicate the second surface of the diaphragm with the outside of the differential pressure sensor through a second opening formed in the side surface of the sensor.
  2.  前記検出素子の外面は、前記センサ側面の一部であって前記第2開口を有し、
     前記第2連通部は、前記検出素子に形成される流路である請求項1に記載の差圧センサ。
    the outer surface of the detection element is part of the side surface of the sensor and has the second opening;
    2. The differential pressure sensor according to claim 1, wherein the second communication portion is a flow path formed in the detection element.
  3.  前記検出素子は、前記基板の接合面に接合され、
     前記基板は、前記基板の接合面及び前記センサ下面を繋ぐ外面であって前記センサ側面の一部である外面を備え、
     前記基板の外面に、前記第2開口が形成され、
     前記第2連通部は、前記基板に形成される流路であり、
     前記基板の接合面に、前記検出素子の前記ダイアフラムの前記第2面と前記流路とを連通する第3開口が形成される請求項1に記載の差圧センサ。
    The detection element is bonded to the bonding surface of the substrate,
    The substrate has an outer surface that connects the bonding surface of the substrate and the lower surface of the sensor and is a part of the side surface of the sensor,
    the second opening is formed in the outer surface of the substrate;
    the second communicating portion is a flow path formed in the substrate,
    2. The differential pressure sensor according to claim 1, wherein a joint surface of said substrate is formed with a third opening that communicates said second surface of said diaphragm of said detection element with said flow path.
  4.  前記流路は、前記基板の接合面に形成される溝であり、
     前記溝の上側における前記第3開口を除く部分は、前記樹脂パッケージによって閉塞される請求項3に記載の差圧センサ。
    the channel is a groove formed in the bonding surface of the substrate,
    4. The differential pressure sensor according to claim 3, wherein the upper portion of the groove except for the third opening is closed by the resin package.
  5.  前記基板の接合面に接合される樹脂ケースを更に備え、
     前記検出素子は、前記樹脂ケースに接触し、
     前記樹脂パッケージは、前記樹脂ケースの少なくとも一部の上方を覆い、
     前記樹脂ケースの外面は、前記センサ側面の一部であって前記第2開口を有し、
     前記第2連通部は、前記樹脂ケースに形成された流路であり、
     前記樹脂ケースに、前記検出素子の前記ダイアフラムの前記第2面と前記流路とを連通する第3開口が形成される請求項1に記載の差圧センサ。
    Further comprising a resin case bonded to the bonding surface of the substrate,
    The detection element is in contact with the resin case,
    The resin package covers at least part of the resin case,
    The outer surface of the resin case is a part of the side surface of the sensor and has the second opening,
    The second communicating portion is a flow path formed in the resin case,
    2. The differential pressure sensor according to claim 1, wherein the resin case is formed with a third opening that communicates the second surface of the diaphragm of the detection element with the flow path.
  6.  前記検出素子は、前記樹脂ケースの面のうち前記基板と反対側の面に接合される請求項5に記載の差圧センサ。 The differential pressure sensor according to claim 5, wherein the detection element is bonded to a surface of the resin case opposite to the substrate.
  7.  密閉された内部空間と、外部に露出する第1面及び前記第1面の裏面であって前記内部空間に面する第2面を有するダイアフラムとを備える検出素子を、基板の接合面に、前記ダイアフラムが前記内部空間に対して前記基板の反対側となるように積層する積層工程と、
     貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子との少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂パッケージとを備える構造体を形成する被覆工程と、
     前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む差圧センサの製造方法。
    A detection element having a sealed internal space and a diaphragm having a first surface exposed to the outside and a second surface facing the internal space on the back surface of the first surface is mounted on the bonding surface of the substrate. A lamination step of laminating so that the diaphragm is on the opposite side of the substrate with respect to the internal space;
    A resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered. and a covering step of forming a structure comprising the resin package;
    a cutting step of cutting the structure along a direction intersecting the bonding surfaces of the substrates so that the internal space is exposed to the outside.
  8.  前記検出素子は、2つの前記内部空間を備え、
     前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断される請求項7に記載の差圧センサの製造方法。
    The detection element comprises two internal spaces,
    8. The method of manufacturing a differential pressure sensor according to claim 7, wherein in the cutting step, the structure is cut so that each of the two internal spaces is exposed to the outside.
  9.  開口が形成される接合面と前記開口を介して外部と連通する内部空間とを備える基板の前記接合面に、第1面及び前記第1面の裏側の第2面を有するダイアフラムを備える検出素子を、前記開口を外部に対して塞ぎ且つ前記ダイアフラムの前記第2面が前記開口を介して前記内部空間と連通するように積層する積層工程と、
     貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子との少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂パッケージとを備える構造体を形成する被覆工程と、
     前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む差圧センサの製造方法。
    A detection element comprising a diaphragm having a first surface and a second surface on the back side of the first surface on the bonding surface of a substrate having a bonding surface on which an opening is formed and an internal space communicating with the outside through the opening. a lamination step of laminating such that the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening;
    A resin package having a through hole covers at least a part of the bonding surface of the substrate and the detection element so that the first surface of the diaphragm faces the through hole, and the substrate and the detection element are covered. and a covering step of forming a structure comprising the resin package;
    a cutting step of cutting the structure along a direction intersecting the bonding surfaces of the substrates so that the internal space is exposed to the outside.
  10.  前記基板は、2つの前記内部空間を備え、
     前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断される請求項9に記載の差圧センサの製造方法。
    the substrate comprises two of the internal spaces;
    10. The method of manufacturing a differential pressure sensor according to claim 9, wherein in the cutting step, the structure is cut so that each of the two internal spaces is exposed to the outside.
  11.  開口を介して外部と連通した内部空間を備える樹脂ケースを、基板の接合面に積層する第1積層工程と、
     第1面及び前記第1面の裏側の第2面を有するダイアフラムを備える検出素子を、前記開口を外部に対して塞ぎ且つ前記ダイアフラムの前記第2面が前記開口を介して前記内部空間と連通するように、前記基板の接合面または前記樹脂ケースに積層する第2積層工程と、
     貫通穴を有する樹脂パッケージによって、前記ダイアフラムの前記第1面が前記貫通穴に面するように、前記基板の前記接合面と前記検出素子と前記樹脂ケースとの少なくとも一部を覆って、前記基板と前記検出素子と前記樹脂ケースと前記樹脂パッケージとを備える構造体を形成する被覆工程と、
     前記内部空間が外部に露出するように前記基板の接合面と交差する方向に沿って前記構造体を切断する切断工程と、を含む差圧センサの製造方法。
    a first lamination step of laminating a resin case having an internal space communicating with the outside through an opening on the bonding surface of the substrate;
    A detecting element comprising a diaphragm having a first surface and a second surface on the back side of the first surface, wherein the opening is closed from the outside and the second surface of the diaphragm communicates with the internal space through the opening. A second lamination step of laminating on the bonding surface of the substrate or the resin case so as to
    A resin package having a through hole covers at least a part of the bonding surface of the substrate, the detection element, and the resin case so that the first surface of the diaphragm faces the through hole, and the substrate and a covering step of forming a structure comprising the detection element, the resin case, and the resin package;
    a cutting step of cutting the structure along a direction intersecting the bonding surfaces of the substrates so that the internal space is exposed to the outside.
  12.  前記樹脂ケースは、2つの前記内部空間を備え、
     前記切断工程において、前記構造体は、2つの前記内部空間の各々が外部に露出するように切断される請求項11に記載の差圧センサの製造方法。
    The resin case has two internal spaces,
    12. The method of manufacturing a differential pressure sensor according to claim 11, wherein in the cutting step, the structure is cut so that each of the two internal spaces is exposed to the outside.
  13.  前記被覆工程において、前記樹脂パッケージは、前記切断工程で切断される領域を避けて形成される請求項7から12のいずれか1項に記載の差圧センサの製造方法。 The method of manufacturing a differential pressure sensor according to any one of claims 7 to 12, wherein in the covering step, the resin package is formed avoiding the region cut in the cutting step.
PCT/JP2022/010703 2021-05-12 2022-03-10 Differential pressure sensor and method for manufacturing same WO2022239442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021081161 2021-05-12
JP2021-081161 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239442A1 true WO2022239442A1 (en) 2022-11-17

Family

ID=84028144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010703 WO2022239442A1 (en) 2021-05-12 2022-03-10 Differential pressure sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2022239442A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540069A (en) * 1991-08-07 1993-02-19 Nissan Motor Co Ltd Pulsating pressure sensor
JPH0727644A (en) * 1993-07-12 1995-01-31 Omron Corp Pressure sensor module
JPH07225240A (en) * 1994-02-14 1995-08-22 Omron Corp Semiconductor acceleration sensor and semiconductor acceleration sensor device and semiconductor pressure sensor and semiconductor pressure device
JPH08247873A (en) * 1995-03-13 1996-09-27 Tokai Rika Co Ltd Pressure sensor
US20170081179A1 (en) * 2015-09-22 2017-03-23 Freescale Semiconductor, Inc. Mems sensor with side port and method of fabricating same
WO2019176527A1 (en) * 2018-03-15 2019-09-19 株式会社村田製作所 Semiconductor device and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540069A (en) * 1991-08-07 1993-02-19 Nissan Motor Co Ltd Pulsating pressure sensor
JPH0727644A (en) * 1993-07-12 1995-01-31 Omron Corp Pressure sensor module
JPH07225240A (en) * 1994-02-14 1995-08-22 Omron Corp Semiconductor acceleration sensor and semiconductor acceleration sensor device and semiconductor pressure sensor and semiconductor pressure device
JPH08247873A (en) * 1995-03-13 1996-09-27 Tokai Rika Co Ltd Pressure sensor
US20170081179A1 (en) * 2015-09-22 2017-03-23 Freescale Semiconductor, Inc. Mems sensor with side port and method of fabricating same
WO2019176527A1 (en) * 2018-03-15 2019-09-19 株式会社村田製作所 Semiconductor device and electronic device

Similar Documents

Publication Publication Date Title
US8526665B2 (en) Electro-acoustic transducer comprising a MEMS sensor
US10334339B2 (en) MEMS transducer package
US10119875B2 (en) Pressure sensor device with a MEMS piezoresistive element attached to an in-circuit ceramic board
US20170374441A1 (en) Mems transducer package
US9321628B2 (en) MEMS device incorporating a fluidic path, and manufacturing process thereof
US8779535B2 (en) Packaged integrated device die between an external and internal housing
JP6175873B2 (en) microphone
JP6614242B2 (en) Piezoelectric deflection sensor and detection device
JP2007150507A (en) Microphone package
US7421904B2 (en) Assembly of an integrated device enabling a facilitated fluidic connection to regions of the device
US10405102B2 (en) MEMS transducer package
JP5974621B2 (en) Pressure sensor
KR20160086383A (en) Printed circuit board for mounting a microphone component and microphone module with such a printed circuit board
WO2022239442A1 (en) Differential pressure sensor and method for manufacturing same
CN111664990A (en) Leadless pressure sensor
KR100870991B1 (en) Condenser microphone using ceramic package
WO2022030176A1 (en) Pressure sensor chip, pressure sensor, and methods for manufacturing same
JP2007057455A (en) Pressure sensor and manufacturing method thereof
US20230146234A1 (en) Fabrication Method of MEMS Transducer Element
US11274984B2 (en) Pressure sensor having a lidless/laminate structure
WO2024006346A1 (en) Sensor package having a channel integrated within a substrate
JP2015021922A (en) Dynamic quantity sensor
JP2012068149A (en) Electrostatic capacitance type pressure sensor, pressure measuring device and method for manufacturing electrostatic capacitance type pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE