WO2022239437A1 - Ultraviolet light irradiation system - Google Patents

Ultraviolet light irradiation system Download PDF

Info

Publication number
WO2022239437A1
WO2022239437A1 PCT/JP2022/010532 JP2022010532W WO2022239437A1 WO 2022239437 A1 WO2022239437 A1 WO 2022239437A1 JP 2022010532 W JP2022010532 W JP 2022010532W WO 2022239437 A1 WO2022239437 A1 WO 2022239437A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
irradiated
light irradiation
irradiation system
incident angle
Prior art date
Application number
PCT/JP2022/010532
Other languages
French (fr)
Japanese (ja)
Inventor
善彦 奥村
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2022239437A1 publication Critical patent/WO2022239437A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation

Definitions

  • the present invention relates to an ultraviolet light irradiation system.
  • Droplet infection can be relatively easily prevented by, for example, each person wearing a mask.
  • contact infection requires frequent wiping and cleaning of the surfaces of items that are touched by multiple people (e.g., elevator buttons, ticket vending machine touch panels, etc.), requiring a great deal of effort.
  • Patent Literature 1 describes a sterilization device that irradiates an operation panel on which elevator floor buttons are arranged with ultraviolet light.
  • the sterilization device described in Patent Document 1 is arranged on the same plane as the wall surface on which the buttons of the elevator are arranged, and is configured to irradiate ultraviolet light substantially parallel to the plane on which the buttons are arranged. ing.
  • FIG. 10 is a drawing schematically showing a state during sterilization by a conventional sterilization device 100
  • FIG. 11 is a cross-sectional view of the sterilization device 100 in FIG. 10 when viewed in the X direction.
  • the sterilizer 100 is installed on the +Y side of the operation panel 110 on which the elevator floor buttons are arranged on the same wall surface W1. It is configured to emit light L1.
  • the sterilization device 100 includes a housing 101 and an ultraviolet light source 102 having an elongated tubular body 102a housed in the housing 101. As shown in FIG.
  • the plane parallel to the surface to be illuminated P1 is the XY plane
  • the direction orthogonal to the surface to be illuminated P1 is the Z direction.
  • the axial direction of the tubular body 102a is defined as the X direction
  • the direction orthogonal to the X and Z directions is defined as the Y direction.
  • the sterilization device 100 is installed on the same wall surface W1 as the operation panel 110, and is configured to emit ultraviolet light L1 from the +Y side of the operation panel 110.
  • the ultraviolet light source 102 is intentionally spaced far from the wall surface W1
  • the incident angle ⁇ of the ultraviolet light L1 on the illuminated surface P1 of the operation panel 110 is infinitely close to 90°.
  • the relationship between the incident angle ⁇ of the ultraviolet light L1 with respect to the irradiated surface P1 and the effect of the deactivation treatment will be considered.
  • the illuminance of the ultraviolet light L1 on the irradiated surface P1 decreases as the incident angle ⁇ of the ultraviolet light L1 with respect to the irradiated surface P1 increases. This characteristic is because the area irradiated with the ultraviolet light L1 on the irradiated surface P1 is inversely proportional to cos ⁇ , and is an optical characteristic generally known as the relationship between the illuminance and the incident angle ⁇ .
  • the effect of the sterilization treatment using the ultraviolet light L1 depends on the illuminance of the ultraviolet light L1 on the surface to be irradiated P1. Therefore, when the above characteristics are comprehensively considered, the effect of the sterilization treatment by the sterilization device 100 depends on cos ⁇ , and it is estimated that the effect of the sterilization treatment decreases as the incident angle ⁇ increases.
  • the present inventors believe that in order to irradiate the surface P1 to be irradiated with the ultraviolet light L1 for efficient sterilization, it is necessary to appropriately adjust the incident angle ⁇ of the ultraviolet light with respect to the surface to be irradiated P1. found to be important.
  • an object of the present invention is to provide an ultraviolet light irradiation system capable of more efficient deactivation.
  • the ultraviolet light irradiation system of the present invention is An ultraviolet light irradiation device having a housing, an ultraviolet light source accommodated inside the housing, and a light exit window for extracting the ultraviolet light emitted from the ultraviolet light source to the outside of the housing,
  • the principal ray of ultraviolet light emitted from the light exit window and irradiated directly or via an optical system onto the irradiated surface of the irradiation object has an incident angle of 20° or more and 70° or less with respect to the irradiated surface. It is characterized in that it is configured to be incident at .
  • principal ray refers to a ray exhibiting the highest light intensity in the light intensity distribution of ultraviolet light traveling toward the surface to be irradiated.
  • the term “inactivation” refers to a concept encompassing the killing of bacteria and viruses or the loss of infectivity and toxicity
  • the term “bacteria” refers to microorganisms such as bacteria and fungi. Point.
  • bacteria or virus may be collectively referred to as “bacteria or the like”.
  • the "irradiated surface” refers to the surface irradiated with ultraviolet light, of the object to be irradiated with ultraviolet light and subjected to deactivation treatment.
  • the "illuminated surface” is not limited to a completely flat surface, and when viewed as the entire object to be illuminated, it is flat if small irregularities due to the edges of buttons and panels are ignored. It is used in the sense of including one surface that can be regarded as a surface. Specific examples include an operating panel on which floor number buttons for an elevator are arranged, an operating panel for an air conditioner, a touch panel for a ticket vending machine at a station, and the like.
  • the inventor conducted an experiment to confirm the correlation between the angle of incidence of ultraviolet light on the surface to be irradiated and the effect of the deactivation treatment. Then, contrary to the above assumption, the effect of the inactivation treatment does not depend on cos ⁇ when the incident angle is ⁇ , and if the incident angle is 70° or less, It was confirmed that 90% or more of the was inactivated. This characteristic will be confirmed with reference to verification results in the "Description of the Invention".
  • the incident angle ⁇ is less than 20°, the effect of the deactivation treatment is greater than when the incident angle ⁇ is greater than 70°. It is necessary to install a reflective member that reflects the ultraviolet light emitted from the device or the ultraviolet light irradiation device.
  • an ultraviolet light irradiation device or a reflective member on the wall facing the surface to be irradiated.
  • the back or the back of the head of the person who operates the button or touch panel is always irradiated with ultraviolet light, and depending on the wavelength band of the ultraviolet light emitted from the ultraviolet light irradiation device, may affect the human body.
  • the ultraviolet light is emitted to the person while the person is operating the button, etc., and the ultraviolet light is not emitted to the button or the touch panel at all. put away.
  • the angle of incidence of the ultraviolet light with respect to the surface to be irradiated is 20° or more.
  • the incident angle of the ultraviolet light to the irradiated surface is preferably 60° or less, more preferably 50° or less. The reason for this will be described in detail in the explanation of the verification described later, but by setting the incident angle of the ultraviolet light with respect to the surface to be irradiated as described above, bacteria on the surface to be irradiated after ultraviolet light irradiation Viability (%) is more reduced.
  • FIG. 12 is a graph showing absorbance characteristics of proteins in the ultraviolet region.
  • protein absorbs ultraviolet light less easily at a wavelength of 240 nm or more, and absorbs ultraviolet light more easily at a wavelength of 240 nm or less toward a wavelength of 200 nm.
  • Ultraviolet light with a wavelength of 240 nm or more easily penetrates human skin and penetrates deep into the skin. Therefore, the cells in the human skin are easily damaged.
  • ultraviolet light with a wavelength of less than 240 nm is easily absorbed by the human skin surface (for example, the stratum corneum) and hardly penetrates into the skin. Therefore, it is highly safe for the skin.
  • ultraviolet light with a wavelength of less than 240 nm is less likely to pass through the cornea, so the shorter the wavelength, the higher the safety.
  • the oxygen molecules present in the atmosphere are photodecomposed to generate a large amount of oxygen atoms, and the bonding reaction between the oxygen molecules and the oxygen atoms generates a large amount of ozone. Therefore, it is not desirable to irradiate the atmosphere with ultraviolet light having a wavelength of less than 190 nm.
  • the ultraviolet light with a wavelength in the range of 190 nm or more and less than 240 nm is highly safe for humans and animals. Therefore, it is preferable that the wavelength of the ultraviolet light emitted from the ultraviolet light source is included in the above wavelength range.
  • the ultraviolet light emitted from the light source unit preferably has a wavelength range of 190 nm or more and 237 nm or less, more preferably 190 nm or more and 235 nm or less. is more preferable, and it is particularly preferable to be in the range of 190 nm or more and 230 nm or less.
  • the target product of the present invention does not cause erythema or keratitis on the skin or eyes of humans or animals, and can provide the sterilization and virus inactivation capabilities inherent to ultraviolet light.
  • unlike conventional light sources that emit ultraviolet light it can be used in manned environments. It can provide surface virus inhibition and disinfection.
  • the ultraviolet light irradiation device may be arranged on the same surface as the irradiation target object.
  • the ultraviolet light irradiation system is A reflective member having a reflective surface on which the ultraviolet light is incident, The principal ray of the ultraviolet light may be reflected by the reflecting surface of the reflecting member and incident on the irradiated surface of the object to be irradiated.
  • the reflecting member may include an adjusting mechanism for adjusting an incident angle of the ultraviolet light incident on the surface to be irradiated of the object to be irradiated.
  • the ultraviolet light irradiation system is A light guide member may be provided that takes in the ultraviolet light emitted from the light emitting surface and guides the ultraviolet light so that the ultraviolet light is emitted toward the irradiated surface of the irradiation object.
  • the ultraviolet light emitted from the ultraviolet light irradiation device can be incident on the surface to be irradiated at an arbitrary angle of incidence.
  • the traveling direction of the ultraviolet light should be adjusted so that the operator is not temporarily irradiated with the ultraviolet light. can be done.
  • an ultraviolet light irradiation system capable of more efficient inactivation treatment is realized.
  • FIG. 1 is an overall perspective view schematically showing an embodiment of an ultraviolet light irradiation system
  • FIG. FIG. 2 is a side cross-sectional view of the ultraviolet light irradiation system of FIG. 1 when viewed in the X direction; It is drawing when the ultraviolet light irradiation apparatus of FIG. 1 is seen from +Z side. It is a typical drawing which shows the structure of the ultraviolet-light irradiation system for verification. It is the graph of the verification result which plotted the survival rate of bacteria for every incident angle. It is drawing which shows typically the irradiation state of an ultraviolet ray when an incident angle is large. It is a side sectional view when another embodiment of an ultraviolet light irradiation system is seen in the X direction.
  • FIG. 11 is a side cross-sectional view of the sterilization device of FIG. 10 when viewed in the X direction; 1 is a graph showing absorbance characteristics of proteins in the ultraviolet region.
  • FIG. 1 is an overall perspective view schematically showing one embodiment of the ultraviolet light irradiation system 1.
  • FIG. 1 in the ultraviolet light irradiation system 1 of the present embodiment, the ultraviolet light L1 emitted from the ultraviolet light irradiation device 10 is irradiated on the operation panel 2 of the elevator operated by the person 3 pressing the button with the finger. It is configured to irradiate the plane P1.
  • FIG. 2 is a side cross-sectional view of the ultraviolet light irradiation system 1 of FIG. 1 as viewed in the X direction
  • FIG. 3 is a drawing of the ultraviolet light irradiation device 10 of FIG. 1 as viewed from the +Z side.
  • the ultraviolet light irradiation device 10 of this embodiment includes a housing 11 , an ultraviolet light source 12 and a reflecting member 13 .
  • the reflecting member 13 is removed so that the inside of the housing 11 can be seen through the light exit window 11a.
  • the "illuminated surface” in this specification is not limited to a completely flat surface, and when viewed as the entire object to be illuminated, small unevenness due to buttons, panel edges, etc. can be ignored. It also includes one surface that can be regarded as a flat surface. In consideration of this point, the irradiated surface P1 of the operation panel 2 has buttons and the like formed thereon, and therefore actually has unevenness. It is not limited to a completely flat surface, and when viewed as the entire object to be illuminated, small unevenness due to buttons, panel edges, etc. can be ignored. It also includes one surface that can be regarded as a flat surface. In consideration of this point, the irradiated surface P1 of the operation panel 2 has buttons and the like formed thereon, and therefore actually has unevenness. It is
  • the direction perpendicular to the surface to be illuminated P1 is the Z direction
  • the plane parallel to the surface to be illuminated P1 is the XY plane.
  • the axial direction of a tubular body 12a provided in the ultraviolet light source 12, which will be described later, is defined as the X direction
  • the direction orthogonal to the X and Z directions is defined as the Y direction.
  • the housing 11 accommodates the ultraviolet light source 12 inside, and on one side, a light exit window 11a for extracting the ultraviolet light L1 emitted from the ultraviolet light source 12 is provided. ing.
  • the housing 11 of this embodiment is fixed to the wall surface W1 on which the operation panel 2, which is the object to be processed, is installed so that the ultraviolet light L1 is emitted from the light emission window 11a toward the +Z side.
  • the housing 11 may be detachable from the wall surface W1.
  • the light exit window 11a is made of a material that exhibits transparency to the ultraviolet light L1 emitted from the ultraviolet light source 12, which will be described later.
  • quartz glass, sapphire glass, or the like can be used as a specific material for forming the light exit window 11a.
  • the light exit window 11a may be an opening.
  • the light exit window 11a in this embodiment is preferably configured to suppress light intensity in the wavelength range of 240 nm to 280 nm in order to suppress the effects on the human body and improve safety.
  • the light exit window 11a in this embodiment is provided with an optical filter (not shown).
  • the optical filter may not be provided.
  • the configuration for suppressing the light intensity in the above wavelength range may be realized by a mechanism or an optical system provided separately from the housing 11 and the light exit window 11a, in addition to the optical filter provided in the light exit window 11a. I do not care.
  • the ultraviolet light source 12 in this embodiment includes a tubular body 12a in which a luminous gas is enclosed, and a pair of electrodes (12b, 12b) configured to contact the outer surface of the tubular body 12a. and an excimer lamp.
  • Krypton (Kr) and chlorine (Cl) are enclosed as luminous gases in the tubular body 12a in this embodiment, and when a voltage equal to or higher than a predetermined threshold is applied between the electrodes 12b, a peak is emitted from the tubular body 12a.
  • Ultraviolet light L1 with a wavelength of 222 nm is emitted.
  • the ultraviolet light source 12 in the present embodiment is composed of an excimer lamp, any light source capable of emitting ultraviolet light L1 in a wavelength band that can be used to inactivate bacteria, etc., can be composed of, for example, an LED. I don't mind.
  • the ultraviolet light L1 emitted by the ultraviolet light source 12 may have a peak wavelength different from 222 nm.
  • the ultraviolet light L1 emitted from the ultraviolet light source 12 preferably has a wavelength range of 190 nm or more and 237 nm or less, and a wavelength range of 190 nm or more and 235 nm or less. It is more preferably within the range, and particularly preferably within the range of 190 nm or more and 230 nm or less.
  • the lower limit of the wavelength range may be 200 nm or more.
  • the reflecting member 13 has a reflecting surface 13a that reflects the ultraviolet light L1 emitted from the light emitting window 11a of the housing 11 toward the illuminated surface P1 of the operation panel 2.
  • the reflective surface 13a of the present embodiment is made of aluminum, another material for forming the reflective surface 13a may be, for example, polytetrafluoroethylene (PTFE).
  • the reflecting member 13 in this embodiment includes a rotating mechanism 13b for rotating the reflecting surface 13a as an adjusting mechanism for finely adjusting the direction in which the ultraviolet light L1 is reflected.
  • the rotating mechanism 13b is, for example, a hinge configured to maintain the angle, an angle fixing mechanism by screwing, or the like.
  • the rotating mechanism 13b may not be provided and the angle of the reflecting surface 13a may be fixed.
  • the ultraviolet light L1 reflected by the reflecting surface 13a of the reflecting member 13 is configured such that the principal ray Lx is incident on the illuminated surface P1 of the operation panel 2 at an incident angle ⁇ .
  • the orientation of the reflecting surface 13a is adjusted so that the incident angle ⁇ is 60°.
  • FIG. 4 is a schematic drawing showing the configuration of an ultraviolet light irradiation system for verification. As shown in FIG. 4, this verification was performed by irradiating the sample Nx placed on the pedestal 41 with the ultraviolet light L1 from the ultraviolet light irradiation device 10 fixed to the pole 40 .
  • Sample Nx was obtained by dropping a test solution containing bacteria to be inactivated onto the main surface of a 20 mm square polycarbonate plate and air-drying it. That is, in this verification, the main surface of the polycarbonate plate onto which the test solution was dropped was the irradiated surface P1.
  • the size of the sample Nx is shown larger than the actual size so that the incident angle ⁇ and the illuminated surface P1 can be confirmed.
  • Irradiation of the sample Nx with the ultraviolet light L1 is performed on the pedestal 41 having the mounting surface 41a parallel to the floor surface and the pedestal 41 having the mounting surface 41a inclined with respect to the floor surface. was performed on the irradiated surface P1.
  • the mounting surface 41a having a different inclination angle ⁇ with respect to the floor surface was used according to the following conditions.
  • the distance between the ultraviolet light irradiation device 10 and the irradiated surface P1 was set according to the intensity of the ultraviolet light L1 irradiated from the ultraviolet light irradiation device 10 so as to satisfy the following illuminance conditions.
  • Staphylococcus aureus was used as the bacterium for verifying the effect of the inactivation treatment.
  • a pedestal 41 was used in which the inclination angle ⁇ of the mounting surface 41a with respect to the floor surface was 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. As can be seen from FIG. 4, the inclination angle ⁇ with respect to the floor directly corresponds to the incident angle ⁇ .
  • a sample Nx was prepared by dropping 0.1 mL of a test solution containing 8.5 ⁇ 10 7 Staphylococcus aureus onto the irradiated surface P1 of a polycarbonate plate and air-drying it.
  • FIG. 5 is a graph of verification results in which the survival rate of bacteria is plotted for each incident angle ⁇ .
  • the vertical axis of the graph shown in FIG. 5 is the ratio of the survival number of bacteria in the sample Nx irradiated with the ultraviolet light L1 to the survival number of bacteria in the sample Nx not irradiated with the ultraviolet light L1. is the angle ⁇ .
  • the effect of the deactivation treatment with the ultraviolet light L1 depends on the incident angle ⁇ , and was theoretically expected to exhibit a proportional relationship with cos ⁇ .
  • the survival rate of bacteria is less than 10% as in the range of 0° to 50°.
  • the relationship of being proportional to cos ⁇ was not confirmed.
  • the result of this verification is that the survival rate of bacteria is 10% or less when the incident angle ⁇ is 70° or less, and the survival rate of bacteria is 10% when the incident angle ⁇ is 80°.
  • the result was more than In particular, in the pattern with an illumination intensity of 5 mJ/cm 2 , about 20% of bacteria survived without being inactivated when the incident angle ⁇ was 80°.
  • the ultraviolet light L1 (at least the principal ray Lx) can kill 90% or more of the bacteria if the incident angle ⁇ is 70 ° or less, and the effect of the inactivation treatment is higher. was confirmed to be obtained.
  • FIG. 6 is a drawing schematically showing the irradiation state of the ultraviolet light L1 when the incident angle ⁇ is large.
  • the larger the incident angle ⁇ the more the bacteria V1 existing at the position closest to the light source becomes a shadow.
  • the number of bacteria V2 present at the position increases. This effect becomes significant when the incident angle ⁇ is greater than 70°, and it is presumed that the effect of the inactivation treatment is remarkably reduced, resulting in the results shown in FIG.
  • the ultraviolet light irradiation system 1 As shown in FIG. Ultraviolet light L1 can be irradiated, and a high deactivation effect can be obtained.
  • the ultraviolet light irradiation device 10 is provided with a reflecting member 13 having a rotating mechanism 13b.
  • the direction in which the light L1 is reflected can be appropriately adjusted.
  • the ultraviolet light irradiation device 10 when used exclusively for the operation panel 2 fixed to the wall surface W1, the reflecting member 13 does not have the rotating mechanism 13b, and the angle of the reflecting surface 13a is fixed. I don't mind.
  • the reflecting member 13 is fixed to the side surface of the housing 11 of the ultraviolet light irradiation device 10, but the reflecting member 13 may be configured as a separate body from the ultraviolet light irradiation device 10. I do not care.
  • FIG. 7 is a side cross-sectional view of another embodiment when viewed in the X direction.
  • the ultraviolet light irradiation device 10 in the present embodiment is tilted and fixed to the wall surface W1, so that the principal ray Lx of the ultraviolet light L1 emitted from the light emission window 11a is directed to the wall surface W1. It is configured to be incident on the illuminated surface P1 of the fixed operation panel 2 at an incident angle ⁇ .
  • the principal ray Lx of the ultraviolet light L1 can be configured to be incident on the illuminated surface P1 of the operation panel 2 at a desired incident angle ⁇ without providing the reflecting member 13. can.
  • Fig. 8 is a side cross-sectional view of another embodiment of the ultraviolet light irradiation system 1, which is different from Fig. 7 of the ultraviolet light irradiation system 1, when viewed in the X direction.
  • the ultraviolet light irradiation device 10 in the present embodiment takes in the ultraviolet light L1 emitted from the light emission window 11a of the housing 11, and emits the principal ray to the irradiated surface P1 of the operation panel 2.
  • a light guide member 80 is provided to guide light so that Lx is incident at an incident angle ⁇ .
  • the light guide member 80 for example, a UV light guide or the like can be adopted.
  • the ultraviolet light irradiation system 1 can be easily configured to avoid the person 3 touching the operation panel 2 as shown in FIG. It is also possible to irradiate the light L1.
  • Fig. 9 is a side cross-sectional view of another embodiment of the ultraviolet light irradiation system 1, which is different from Figs. 7 and 8 and viewed in the X direction.
  • the principal ray Lx of the ultraviolet light L1 emitted from the light emission window 11a is incident at an incident angle ⁇ with respect to the irradiated surface P1 of the operation panel 2. It is installed on the ceiling U1 via the fixing base 11b so that the light enters at .
  • the fixed base 11b is configured with a rotating portion 11c so as to deflect the direction in which the light exit window 11a faces while fixing the housing 11 to the ceiling U1.
  • the rotating portion 11c is, for example, a ball joint, a universal joint, or the like.
  • Ultraviolet light irradiation system 2 Operation panel 3: Person 10: Ultraviolet light irradiation device 11: Housing 11a: Light exit window 11b: Fixing base 11c: Rotating part 12: Ultraviolet light source 12a: Tube 12b: Electrode 13: Reflective member 13a: Reflective surface 13b: Rotating mechanism 40: Pole 41: Pedestal 41a: Mounting table 80: Light guide member 100: Sterilizer 101: Housing 102: Ultraviolet light source 110: Operation panel L1: Ultraviolet light Lx: Chief ray P1: Illuminated surface U1: Ceiling V1, V2: Bacteria W1: Wall surface ⁇ : Tilt angle ⁇ : Incident angle

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

Provided is an ultraviolet light irradiation system which enables a more efficient inactivation treatment. This ultraviolet light irradiation system comprises an ultraviolet light irradiation device having a housing, an ultraviolet light source which is accommodated inside the housing, and a light exit window which is for outputting, to the outside of the housing, ultraviolet light which the ultraviolet light source radiates, wherein the principal rays of ultraviolet light that exit from the light exit window and that irradiate an irradiation surface of an irradiation target either directly or via an optical system are incident on the irradiation surface at an incidence angle of 20-70°.

Description

紫外光照射システムUltraviolet light irradiation system
 本発明は、紫外光照射システムに関する。 The present invention relates to an ultraviolet light irradiation system.
 菌やウイルスは、感染者から排出される飛沫による飛沫感染や、人同士の接触、又は人が触れる物を介した接触感染によって、人から人へと感染していく。飛沫感染は、例えば、それぞれの人がマスクを着用すること等によって比較的容易に対策を講じることができる。しかしながら、接触感染は、複数の人が触れる物品(例えば、エレベータのボタンや券売機のタッチパネル等)の表面をこまめに拭き取り清掃等を行う必要があり、対策のために大変な労力を要する。 Bacteria and viruses are transmitted from person to person through droplet infection by droplets discharged from an infected person, person-to-person contact, or contact infection through objects that people touch. Droplet infection can be relatively easily prevented by, for example, each person wearing a mask. However, contact infection requires frequent wiping and cleaning of the surfaces of items that are touched by multiple people (e.g., elevator buttons, ticket vending machine touch panels, etc.), requiring a great deal of effort.
 そこで、近年では、人による拭き取り作業等を要することのない接触感染対策として、紫外光を照射して物品の表面に付着している菌等を殺菌処理する方法が注目されている。例えば、下記特許文献1には、エレベータの階数ボタンが配列された操作パネルに対して、紫外光を照射する殺菌装置が記載されている。 Therefore, in recent years, as a measure against contact infection that does not require human wiping, etc., a method of sterilizing bacteria and the like adhering to the surface of an article by irradiating it with ultraviolet light has attracted attention. For example, Patent Literature 1 below describes a sterilization device that irradiates an operation panel on which elevator floor buttons are arranged with ultraviolet light.
実用新案登録第3174620号公報Utility Model Registration No. 3174620
 上記特許文献1に記載の殺菌装置は、エレベータのボタンが配置された壁面と同じ面上に配置され、当該ボタンが配列された平面に対して、ほぼ平行に紫外光を照射するように構成されている。 The sterilization device described in Patent Document 1 is arranged on the same plane as the wall surface on which the buttons of the elevator are arranged, and is configured to irradiate ultraviolet light substantially parallel to the plane on which the buttons are arranged. ing.
 ところが、本発明者は、上記特許文献1に記載の殺菌装置では、以下のような課題が存在することを見出した。以下、図面を参照しながら当該課題について説明する。 However, the inventor found that the sterilization device described in Patent Document 1 has the following problems. The problem will be described below with reference to the drawings.
 図10は、従来の殺菌装置100による殺菌処理中の状態を模式的に示す図面であって、図11は、図10の殺菌装置100をX方向に見たときに断面図である。図10に示すように、殺菌装置100は、同じ壁面W1上のエレベータの階数ボタンが配列された操作パネル110の+Y側に設置されており、操作パネル110の被照射面P1に対して、紫外光L1を照射するように構成されている。そして、殺菌装置100は、図11に示すように、筐体101と、筐体101内に収容された長尺状の管体102aを有する紫外光源102とを備える。 FIG. 10 is a drawing schematically showing a state during sterilization by a conventional sterilization device 100, and FIG. 11 is a cross-sectional view of the sterilization device 100 in FIG. 10 when viewed in the X direction. As shown in FIG. 10, the sterilizer 100 is installed on the +Y side of the operation panel 110 on which the elevator floor buttons are arranged on the same wall surface W1. It is configured to emit light L1. As shown in FIG. 11, the sterilization device 100 includes a housing 101 and an ultraviolet light source 102 having an elongated tubular body 102a housed in the housing 101. As shown in FIG.
 以下の説明においては、図10に示すように、被照射面P1と平行な平面をXY平面とし、被照射面P1と直交する方向をZ方向とする。そして、図11に示すように、管体102aの管軸方向をX方向とし、X方向及びZ方向に直交する方向をY方向として説明する。 In the following description, as shown in FIG. 10, the plane parallel to the surface to be illuminated P1 is the XY plane, and the direction orthogonal to the surface to be illuminated P1 is the Z direction. As shown in FIG. 11, the axial direction of the tubular body 102a is defined as the X direction, and the direction orthogonal to the X and Z directions is defined as the Y direction.
 また、方向を表現する際に、正負の向きを区別する場合には、「+Z方向」、「-Z方向」のように、正負の符号を付して記載され、正負の向きを区別せずに方向を表現する場合には、単に「Z方向」と記載される。 In addition, when distinguishing between positive and negative directions when expressing directions, positive and negative signs are added, such as “+Z direction” and “−Z direction”, and the positive and negative directions are not distinguished. When the direction is expressed in , it is simply described as "Z direction".
 殺菌装置100は、図10及び図11に示すように、操作パネル110と同じ壁面W1に設置されており、操作パネル110の+Y側から紫外光L1を出射するように構成されている。当該構成では、意図的に紫外光源102を壁面W1から大きく離間させない限り、操作パネル110の被照射面P1における紫外光L1の入射角θは、限りなく90°に近くなる。 As shown in FIGS. 10 and 11, the sterilization device 100 is installed on the same wall surface W1 as the operation panel 110, and is configured to emit ultraviolet light L1 from the +Y side of the operation panel 110. In this configuration, unless the ultraviolet light source 102 is intentionally spaced far from the wall surface W1, the incident angle θ of the ultraviolet light L1 on the illuminated surface P1 of the operation panel 110 is infinitely close to 90°.
 ここで、被照射面P1に対する紫外光L1の入射角θと、不活化処理の効果の関係性について考察する。被照射面P1における紫外光L1の照度は、紫外光L1の被照射面P1に対する入射角θが大きくなるほど低くなる。この特性は、被照射面P1上において紫外光L1が照射される面積がcosθに反比例するためであり、照度と入射角θとの関係として一般的に知られている光学特性である。 Here, the relationship between the incident angle θ of the ultraviolet light L1 with respect to the irradiated surface P1 and the effect of the deactivation treatment will be considered. The illuminance of the ultraviolet light L1 on the irradiated surface P1 decreases as the incident angle θ of the ultraviolet light L1 with respect to the irradiated surface P1 increases. This characteristic is because the area irradiated with the ultraviolet light L1 on the irradiated surface P1 is inversely proportional to cos θ, and is an optical characteristic generally known as the relationship between the illuminance and the incident angle θ.
 紫外光L1による殺菌処理の効果は、被照射面P1における紫外光L1の照度に依存することも一般的に知られている。このため、以上の特性を総合的に考慮すると、殺菌装置100による殺菌処理の効果は、cosθに依存し、入射角θが大きくなるほど殺菌処理の効果が低下してしまうと推測される。 It is also generally known that the effect of the sterilization treatment using the ultraviolet light L1 depends on the illuminance of the ultraviolet light L1 on the surface to be irradiated P1. Therefore, when the above characteristics are comprehensively considered, the effect of the sterilization treatment by the sterilization device 100 depends on cos θ, and it is estimated that the effect of the sterilization treatment decreases as the incident angle θ increases.
 以上より、本発明者は、被照射面P1に対して紫外光L1を照射して効率的に殺菌処理するためには、被照射面P1に対する紫外光の入射角θを適切に調整することが重要であることを見出した。 As described above, the present inventors believe that in order to irradiate the surface P1 to be irradiated with the ultraviolet light L1 for efficient sterilization, it is necessary to appropriately adjust the incident angle θ of the ultraviolet light with respect to the surface to be irradiated P1. found to be important.
 本発明は、上記課題に鑑み、より効率的に不活化処理が可能な紫外光照射システムを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an ultraviolet light irradiation system capable of more efficient deactivation.
 本発明の紫外光照射システムは、
 筐体と、前記筐体の内側に収容される紫外光源と、前記紫外光源から出射される紫外光を、前記筐体の外側に取り出すための光出射窓とを有する紫外光照射装置を備え、
 前記光出射窓から出射され、直接、又は光学系を介して照射対象物の被照射面に照射される紫外光の主光線が、前記被照射面に対して20°以上70°以下の入射角で入射するように構成されていることを特徴とする。
The ultraviolet light irradiation system of the present invention is
An ultraviolet light irradiation device having a housing, an ultraviolet light source accommodated inside the housing, and a light exit window for extracting the ultraviolet light emitted from the ultraviolet light source to the outside of the housing,
The principal ray of ultraviolet light emitted from the light exit window and irradiated directly or via an optical system onto the irradiated surface of the irradiation object has an incident angle of 20° or more and 70° or less with respect to the irradiated surface. It is characterized in that it is configured to be incident at .
 本明細書における「主光線」とは、被照射面に向かって進行する紫外光の光強度分布において、最も高い光強度を示す光線を指す。 The term "principal ray" as used herein refers to a ray exhibiting the highest light intensity in the light intensity distribution of ultraviolet light traveling toward the surface to be irradiated.
 本明細書において、「不活化」とは、菌やウイルスを死滅させる又は感染力や毒性を失わせることを包括する概念を指し、「菌」とは、細菌や真菌(カビ)等の微生物を指す。以下において、「菌又はウイルス」を「菌等」と総称することがある。 As used herein, the term "inactivation" refers to a concept encompassing the killing of bacteria and viruses or the loss of infectivity and toxicity, and the term "bacteria" refers to microorganisms such as bacteria and fungi. Point. Hereinafter, "bacteria or virus" may be collectively referred to as "bacteria or the like".
 本明細書における「被照射面」とは、紫外光を照射されて不活化処理が行われる照射対象物のうちの、紫外光が照射される面をいう。なお、本明細書において、「被照射面」は、完全に平坦な面のみには限られず、照射対象物全体で見たときに、ボタンやパネルの縁等による小さな凹凸を無視すれば平坦な面として見做せる一つの面をも含む意味で用いられる。具体的な例としては、エレベータの階数ボタンが配列された操作盤や、空調の操作パネル、駅の券売機のタッチパネル等である。 In this specification, the "irradiated surface" refers to the surface irradiated with ultraviolet light, of the object to be irradiated with ultraviolet light and subjected to deactivation treatment. In this specification, the "illuminated surface" is not limited to a completely flat surface, and when viewed as the entire object to be illuminated, it is flat if small irregularities due to the edges of buttons and panels are ignored. It is used in the sense of including one surface that can be regarded as a surface. Specific examples include an operating panel on which floor number buttons for an elevator are arranged, an operating panel for an air conditioner, a touch panel for a ticket vending machine at a station, and the like.
 本発明者は、上述した推測が正しいかどうかを確認するために、紫外光の被照射面に対する入射角と、不活化処理の効果との相関関係を確認する実験を行った。すると、不活化処理の効果は、上述の推測に反して、入射角をθとしたときのcosθには依存せず、入射角が70°以下であれば、サンプルに付着させていた菌のうちの90%以上が不活化処理されていることが確認された。この特性については、「発明を実施するための形態」において、検証結果を参照しながら確認される。 In order to confirm whether the above assumption is correct, the inventor conducted an experiment to confirm the correlation between the angle of incidence of ultraviolet light on the surface to be irradiated and the effect of the deactivation treatment. Then, contrary to the above assumption, the effect of the inactivation treatment does not depend on cos θ when the incident angle is θ, and if the incident angle is 70° or less, It was confirmed that 90% or more of the was inactivated. This characteristic will be confirmed with reference to verification results in the "Description of the Invention".
 なお、入射角θが20°未満の場合は、入射角θが70°より大きい場合と比較すると不活化処理の効果は大きいものの、光出射窓が被照射面と対向するように、紫外光照射装置、又は紫外光照射装置から出射された紫外光を反射する反射部材を設置する必要がある。 When the incident angle θ is less than 20°, the effect of the deactivation treatment is greater than when the incident angle θ is greater than 70°. It is necessary to install a reflective member that reflects the ultraviolet light emitted from the device or the ultraviolet light irradiation device.
 当該構成を実現する方法の一例としては、被照射面と対向する壁面に紫外光照射装置や反射部材を設置することが考えられる。しかしながら、このような構成の場合は、ボタンやタッチパネルを操作する人の背中や後頭部等に、常に紫外光が照射されることになり、紫外光照射装置から出射される紫外光の波長帯によっては、人体に影響を与えてしまうおそれがある。また、人がボタン等を操作している最中や、順番待ちをしている人の立ち位置によっては、人に対して紫外光が照射され、ボタンやタッチパネルに紫外光が全く照射されなくなってしまう。 As an example of a method for realizing this configuration, it is conceivable to install an ultraviolet light irradiation device or a reflective member on the wall facing the surface to be irradiated. However, in the case of such a configuration, the back or the back of the head of the person who operates the button or touch panel is always irradiated with ultraviolet light, and depending on the wavelength band of the ultraviolet light emitted from the ultraviolet light irradiation device, may affect the human body. Also, depending on the standing position of a person who is waiting for their turn, the ultraviolet light is emitted to the person while the person is operating the button, etc., and the ultraviolet light is not emitted to the button or the touch panel at all. put away.
 以上より、照射対象物に触れる人に対する紫外光の照射量をできる限り抑制しつつ、被照射面に対して紫外光を照射できると共に、被照射面において、高い不活化処理の効果を得るためには、被照射面に対する紫外光の入射角が20°以上であることが好ましい。 From the above, it is possible to irradiate the surface to be irradiated with ultraviolet light while suppressing the amount of ultraviolet light irradiation to the person who touches the object to be irradiated as much as possible, and to obtain a high deactivation treatment effect on the surface to be irradiated. It is preferable that the angle of incidence of the ultraviolet light with respect to the surface to be irradiated is 20° or more.
 また、被照射面において、高い不活化処理の効果を得るためには、被照射面に対する紫外光の入射角が60°以下であることが好ましく、50°以下であることがより好ましい。この理由については、後述される検証の説明において詳述されるが、被照射面に対する紫外光の入射角が上記のように設定されることで、紫外光照射後の被照射面上における菌の生存率(%)がより低減される。 Also, in order to obtain a high deactivation effect on the irradiated surface, the incident angle of the ultraviolet light to the irradiated surface is preferably 60° or less, more preferably 50° or less. The reason for this will be described in detail in the explanation of the verification described later, but by setting the incident angle of the ultraviolet light with respect to the surface to be irradiated as described above, bacteria on the surface to be irradiated after ultraviolet light irradiation Viability (%) is more reduced.
 ここで、紫外光の波長帯と、人体に対する影響についても説明しておく。図12は、たんぱく質の紫外光領域における吸光度特性を示すグラフである。図12によれば、たんぱく質は、波長240nm以上では紫外光が吸収されにくく、波長240nm以下では波長200nmに向かう程、紫外光が吸収されやすくなる。波長が240nm以上の紫外光は、人の皮膚を透過しやすく、皮膚内部まで浸透する。そのため、人の皮膚内部の細胞がダメージを受けやすい。これに対して、波長240nm未満の紫外光は、人の皮膚表面(例えば角質層)で吸収されやすく、皮膚内部まで浸透し難い。そのため、皮膚に対して安全性が高い。 Here, I will also explain the wavelength range of ultraviolet light and its effects on the human body. FIG. 12 is a graph showing absorbance characteristics of proteins in the ultraviolet region. According to FIG. 12, protein absorbs ultraviolet light less easily at a wavelength of 240 nm or more, and absorbs ultraviolet light more easily at a wavelength of 240 nm or less toward a wavelength of 200 nm. Ultraviolet light with a wavelength of 240 nm or more easily penetrates human skin and penetrates deep into the skin. Therefore, the cells in the human skin are easily damaged. On the other hand, ultraviolet light with a wavelength of less than 240 nm is easily absorbed by the human skin surface (for example, the stratum corneum) and hardly penetrates into the skin. Therefore, it is highly safe for the skin.
 また、目に対しても、波長240nm未満の紫外光は、角膜を透過しにくいため、波長が短くなるほど安全性が高くなる。 Also, for the eyes, ultraviolet light with a wavelength of less than 240 nm is less likely to pass through the cornea, so the shorter the wavelength, the higher the safety.
 一方で、波長190nm未満の紫外光が存在すると、大気中に存在する酸素分子が光分解されて酸素原子を多く生成し、酸素分子と酸素原子との結合反応によってオゾンを多く生成させてしまう。そのため、波長190nm未満の紫外光を大気中に照射させることは望ましくない。 On the other hand, in the presence of ultraviolet light with a wavelength of less than 190 nm, the oxygen molecules present in the atmosphere are photodecomposed to generate a large amount of oxygen atoms, and the bonding reaction between the oxygen molecules and the oxygen atoms generates a large amount of ozone. Therefore, it is not desirable to irradiate the atmosphere with ultraviolet light having a wavelength of less than 190 nm.
 したがって、波長が190nm以上240nm未満の範囲内の紫外光は、人や動物に対する安全性が高い紫外光であるといえる。このため、前記紫外光源から出射される紫外光の波長は、上記の波長範囲に含まれるのが好ましい。なお、人や動物に安全性をより高める観点から、光源部から出射される紫外光は、波長範囲が190nm以上237nm以下の範囲内であることが好ましく、190nm以上235nm以下の範囲内であることがより好ましく、190nm以上230nm以下の範囲内であることが特に好ましい。 Therefore, it can be said that ultraviolet light with a wavelength in the range of 190 nm or more and less than 240 nm is highly safe for humans and animals. Therefore, it is preferable that the wavelength of the ultraviolet light emitted from the ultraviolet light source is included in the above wavelength range. From the viewpoint of further improving safety for humans and animals, the ultraviolet light emitted from the light source unit preferably has a wavelength range of 190 nm or more and 237 nm or less, more preferably 190 nm or more and 235 nm or less. is more preferable, and it is particularly preferable to be in the range of 190 nm or more and 230 nm or less.
 本発明の対象製品は、人や動物の皮膚や目に紅斑や角膜炎を起こすことはなく、紫外光本来の殺菌、ウイルスの不活化能力を提供することができる。特に、従来の紫外光を出射する光源とは異なり、有人環境で使用できるという特徴を生かし、屋内外の有人環境に設置することで、環境全体を照射することができ、空気と環境内設置部材表面のウイルス抑制・除菌を提供することができる。 The target product of the present invention does not cause erythema or keratitis on the skin or eyes of humans or animals, and can provide the sterilization and virus inactivation capabilities inherent to ultraviolet light. In particular, unlike conventional light sources that emit ultraviolet light, it can be used in manned environments. It can provide surface virus inhibition and disinfection.
 このことは、国連が主導する持続可能な開発目標(SDGs)の目標3「あらゆる年齢の全ての人々が健康的な生活を確保し、福祉を促進する」に対応し、また、ターゲット3.3「2030年までに、エイズ、結核、マラリア及び顧みられない熱帯病といった伝染病を根絶すると共に、肝炎、水系感染症及びその他の感染症に対処する」に大きく貢献するものである。 This corresponds to Goal 3 of the United Nations-led Sustainable Development Goals (SDGs), "Ensure healthy lives and promote well-being for all at all ages", and also to Target 3.3. It will make a significant contribution to “by 2030, end epidemics such as AIDS, tuberculosis, malaria and neglected tropical diseases, and combat hepatitis, water-borne diseases and other communicable diseases”.
 なお、本願出願日の時点では、人体に対して1日(8時間)あたりの紫外光の照射量に関して、ACGIH(American Conference of Governmental Industrial Hygienists:米国産業衛生専門家会議)やJIS Z 8812(有害紫外放射の測定方法)等によって、波長ごとの許容限界値(TLV:Threshold Limit Value)が定められている。つまり、人間が存在する環境下で紫外光が利用される場合には、所定の時間内に照射される紫外光の積算照射量がTLVの基準値以内となるように、光源部の放射強度や点灯時間を決定することが推奨されている。 As of the filing date of the present application, regarding the amount of ultraviolet light irradiation to the human body per day (8 hours), ACGIH (American Conference of Governmental Industrial Hygienists) and JIS Z 8812 (Harmful Threshold Limit Value (TLV: Threshold Limit Value) for each wavelength is defined according to the Ultraviolet Radiation Measurement Method, etc. In other words, when ultraviolet light is used in an environment where humans exist, the radiant intensity of the light source and the It is recommended to determine the lighting time.
 これらの規定には、波長が190nm以上240nm未満の紫外光についても許容限界値が定められている。このため、不活化処理が人体に影響を及ぼすリスクが極めて少ない、波長が190nm以上240nm未満の紫外光を用いて行われる場合であっても、当該紫外光が人に対して、許容限界値を超えないように照射されることが好ましい。 These regulations also set permissible limit values for ultraviolet light with a wavelength of 190 nm or more and less than 240 nm. For this reason, even if the inactivation treatment is performed using ultraviolet light with a wavelength of 190 nm or more and less than 240 nm, which has an extremely low risk of affecting the human body, the ultraviolet light may cause the human body to exceed the allowable limit value. It is preferable to irradiate so as not to exceed.
 前記紫外光照射システムにおいて、
 前記紫外光照射装置は、前記照射対象物が設置された面と同じ面に配置されていても構わない。
In the ultraviolet light irradiation system,
The ultraviolet light irradiation device may be arranged on the same surface as the irradiation target object.
 上記構成とすることで、紫外光照射装置と被照射面との間を、人が往来することがなく、人に対して照射される紫外光の量を、より低減させることができる。 With the above configuration, people do not come and go between the ultraviolet light irradiation device and the surface to be irradiated, and the amount of ultraviolet light irradiated to the person can be further reduced.
 上記紫外光照射システムは、
 前記紫外光が入射される反射面を有する反射部材を備え、
 前記紫外光の前記主光線は、前記反射部材の前記反射面によって反射されて、前記照射対象物の前記被照射面に入射するように構成されていても構わない。
The ultraviolet light irradiation system is
A reflective member having a reflective surface on which the ultraviolet light is incident,
The principal ray of the ultraviolet light may be reflected by the reflecting surface of the reflecting member and incident on the irradiated surface of the object to be irradiated.
 さらに、紫外光照射システムにおいて、
 前記反射部材は、前記照射対象物の前記被照射面に入射する前記紫外光の入射角を調整する調整機構を備えていても構わない。
Furthermore, in the ultraviolet light irradiation system,
The reflecting member may include an adjusting mechanism for adjusting an incident angle of the ultraviolet light incident on the surface to be irradiated of the object to be irradiated.
 また、上記紫外光照射システムは、
 前記光出射面から出射された前記紫外光を取り込み、前記紫外光を、前記照射対象物の前記被照射面に向かって出射するように導光する導光部材を備えていても構わない。
Further, the ultraviolet light irradiation system is
A light guide member may be provided that takes in the ultraviolet light emitted from the light emitting surface and guides the ultraviolet light so that the ultraviolet light is emitted toward the irradiated surface of the irradiation object.
 上記構成とすることで、紫外光照射装置から出射される紫外光を、被照射面に対して、任意の入射角で入射することができる。 With the above configuration, the ultraviolet light emitted from the ultraviolet light irradiation device can be incident on the surface to be irradiated at an arbitrary angle of incidence.
 また、入射角を調整する調整機構を備えていることで、紫外光照射装置が所定の場所に固定された状態で、異なる照射対象物、又は被照射面に対して紫外光を照射することができる。さらには、紫外光を浴びたくない人が照射対象物となっている操作パネル等を操作する場合に、一時的に操作者に紫外光が照射されないように、紫外光の進行方向を調整することができる。 In addition, by providing an adjustment mechanism for adjusting the incident angle, it is possible to irradiate different objects or surfaces to be irradiated with ultraviolet light while the ultraviolet light irradiation device is fixed at a predetermined location. can. Furthermore, when a person who does not want to be exposed to ultraviolet light operates an operation panel or the like that is an object to be irradiated, the traveling direction of the ultraviolet light should be adjusted so that the operator is not temporarily irradiated with the ultraviolet light. can be done.
 本発明によれば、より効率的に不活化処理が可能な紫外光照射システムが実現される。 According to the present invention, an ultraviolet light irradiation system capable of more efficient inactivation treatment is realized.
紫外光照射システムの一実施形態を模式的に示す全体斜視図面である。1 is an overall perspective view schematically showing an embodiment of an ultraviolet light irradiation system; FIG. 図1の紫外光照射システムをX方向に見たときの側面断面図である。FIG. 2 is a side cross-sectional view of the ultraviolet light irradiation system of FIG. 1 when viewed in the X direction; 図1の紫外光照射装置を+Z側から見たときの図面である。It is drawing when the ultraviolet light irradiation apparatus of FIG. 1 is seen from +Z side. 検証用の紫外光照射システムの構成を示す模式的な図面である。It is a typical drawing which shows the structure of the ultraviolet-light irradiation system for verification. 入射角ごとの菌の生存率をプロットした検証結果のグラフである。It is the graph of the verification result which plotted the survival rate of bacteria for every incident angle. 入射角が大きい場合における、紫外光の照射状態を模式的に示す図面である。It is drawing which shows typically the irradiation state of an ultraviolet ray when an incident angle is large. 紫外光照射システムの別実施形態をX方向に見たときの側面断面図である。It is a side sectional view when another embodiment of an ultraviolet light irradiation system is seen in the X direction. 紫外光照射システムの別実施形態をX方向に見たときの側面断面図である。It is a side sectional view when another embodiment of an ultraviolet light irradiation system is seen in the X direction. 紫外光照射システムの別実施形態をX方向に見たときの側面断面図である。It is a side sectional view when another embodiment of an ultraviolet light irradiation system is seen in the X direction. 従来の殺菌装置による殺菌処理中の状態を模式的に示す図面である。It is drawing which shows typically the state during the sterilization process by the conventional sterilizer. 図10の殺菌装置をX方向に見たときの側面断面図である。FIG. 11 is a side cross-sectional view of the sterilization device of FIG. 10 when viewed in the X direction; たんぱく質の紫外光領域における吸光度特性を示すグラフである。1 is a graph showing absorbance characteristics of proteins in the ultraviolet region.
 以下、本発明の紫外光照射システムについて、図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。 The ultraviolet light irradiation system of the present invention will be described below with reference to the drawings. It should be noted that the following drawings are all schematic illustrations, and the dimensional ratios and numbers in the drawings do not necessarily match the actual dimensional ratios and numbers.
 図1は、紫外光照射システム1の一実施形態を模式的に示す全体斜視図面である。図1に示すように、本実施形態の紫外光照射システム1は、紫外光照射装置10から出射される紫外光L1が、人3が指でボタンを押して操作するエレベータの操作パネル2の被照射面P1に照射されるように構成されている。 FIG. 1 is an overall perspective view schematically showing one embodiment of the ultraviolet light irradiation system 1. FIG. As shown in FIG. 1, in the ultraviolet light irradiation system 1 of the present embodiment, the ultraviolet light L1 emitted from the ultraviolet light irradiation device 10 is irradiated on the operation panel 2 of the elevator operated by the person 3 pressing the button with the finger. It is configured to irradiate the plane P1.
 図2は、図1の紫外光照射システム1をX方向に見たときの側面断面図であり、図3は、図1の紫外光照射装置10を+Z側から見たときの図面である。図2に示すように、本実施形態の紫外光照射装置10は、筐体11と、紫外光源12と、反射部材13とを備える。なお、図3においては、光出射窓11aを通して筐体11の内側を視認できるように、反射部材13が取り外された状態で図示されている。 2 is a side cross-sectional view of the ultraviolet light irradiation system 1 of FIG. 1 as viewed in the X direction, and FIG. 3 is a drawing of the ultraviolet light irradiation device 10 of FIG. 1 as viewed from the +Z side. As shown in FIG. 2 , the ultraviolet light irradiation device 10 of this embodiment includes a housing 11 , an ultraviolet light source 12 and a reflecting member 13 . In FIG. 3, the reflecting member 13 is removed so that the inside of the housing 11 can be seen through the light exit window 11a.
 なお、上述したように、本明細書における「被照射面」は、完全に平坦な面のみには限られず、照射対象物全体で見たときに、ボタンやパネルの縁等による小さな凹凸を無視すれば平坦な面として見做せる一つの面をも含む。この点も考慮して、操作パネル2の被照射面P1は、ボタン等が形成されているため、実際には凹凸が存在するが、図2においては、説明の便宜のために、平面として図示されている。 As described above, the "illuminated surface" in this specification is not limited to a completely flat surface, and when viewed as the entire object to be illuminated, small unevenness due to buttons, panel edges, etc. can be ignored. It also includes one surface that can be regarded as a flat surface. In consideration of this point, the irradiated surface P1 of the operation panel 2 has buttons and the like formed thereon, and therefore actually has unevenness. It is
 以下の説明においては、図1に示すように、被照射面P1に対して直交する方向をZ方向、被照射面P1と平行な平面をXY平面とする。そして、図3に示すように、後述する紫外光源12が備える管体12aの管軸方向をX方向とし、X方向及びZ方向に直交する方向をY方向として説明する。 In the following description, as shown in FIG. 1, the direction perpendicular to the surface to be illuminated P1 is the Z direction, and the plane parallel to the surface to be illuminated P1 is the XY plane. As shown in FIG. 3, the axial direction of a tubular body 12a provided in the ultraviolet light source 12, which will be described later, is defined as the X direction, and the direction orthogonal to the X and Z directions is defined as the Y direction.
 また、方向を表現する際に、正負の向きを区別する場合には、「+Z方向」、「-Z方向」のように、正負の符号を付して記載され、正負の向きを区別せずに方向を表現する場合には、単に「Z方向」と記載される。 In addition, when distinguishing between positive and negative directions when expressing directions, positive and negative signs are added, such as “+Z direction” and “−Z direction”, and the positive and negative directions are not distinguished. When the direction is expressed in , it is simply described as "Z direction".
 筐体11は、図2に示すように、内側に紫外光源12が収容されており、一側面において、紫外光源12から出射された紫外光L1を外側に取り出すための光出射窓11aが設けられている。そして、本実施形態の筐体11は、光出射窓11aから+Z側に向かって紫外光L1を出射するように、処理対象物である操作パネル2が設置された壁面W1に固定されている。なお、本実施形態では、筐体11が壁面W1に固定されているが、筐体11は、壁面W1に対して着脱可能であっても構わない。 As shown in FIG. 2, the housing 11 accommodates the ultraviolet light source 12 inside, and on one side, a light exit window 11a for extracting the ultraviolet light L1 emitted from the ultraviolet light source 12 is provided. ing. The housing 11 of this embodiment is fixed to the wall surface W1 on which the operation panel 2, which is the object to be processed, is installed so that the ultraviolet light L1 is emitted from the light emission window 11a toward the +Z side. Although the housing 11 is fixed to the wall surface W1 in this embodiment, the housing 11 may be detachable from the wall surface W1.
 光出射窓11aは、後述される紫外光源12から出射される紫外光L1に対して透過性を示す材料で形成されている。光出射窓11aを構成する具体的な材料は、例えば、石英ガラスやサファイアガラス等を採用し得る。また、光出射窓11aは、開口であっても構わない。 The light exit window 11a is made of a material that exhibits transparency to the ultraviolet light L1 emitted from the ultraviolet light source 12, which will be described later. For example, quartz glass, sapphire glass, or the like can be used as a specific material for forming the light exit window 11a. Also, the light exit window 11a may be an opening.
 本実施形態における光出射窓11aは、人体に対する影響を抑止して安全性を向上させるために、240nm~280nmの波長範囲の光強度を抑止するように構成されていることが好ましい。具体的な構成の一例として、本実施形態における光出射窓11aは、図示されない光学フィルタが設けられている。ただし、紫外光源12から出射される紫外光L1のスペクトルにおいて、240nm~280nmの波長域の光強度が、十分低いような場合は、光学フィルタが設けられていなくても構わない。また、上記の波長範囲の光強度を抑止する構成は、光出射窓11aに設けられる光学フィルタ以外に、筐体11や光出射窓11aとは別に設けられる機構や光学系によって実現されていても構わない。 The light exit window 11a in this embodiment is preferably configured to suppress light intensity in the wavelength range of 240 nm to 280 nm in order to suppress the effects on the human body and improve safety. As an example of a specific configuration, the light exit window 11a in this embodiment is provided with an optical filter (not shown). However, if the spectrum of the ultraviolet light L1 emitted from the ultraviolet light source 12 has a sufficiently low light intensity in the wavelength range of 240 nm to 280 nm, the optical filter may not be provided. Further, the configuration for suppressing the light intensity in the above wavelength range may be realized by a mechanism or an optical system provided separately from the housing 11 and the light exit window 11a, in addition to the optical filter provided in the light exit window 11a. I do not care.
 本実施形態における紫外光源12は、図3に示すように、発光ガスが封入された管体12aと、管体12aの外表面に接触するように構成された一対の電極(12b,12b)とを備えるエキシマランプである。 As shown in FIG. 3, the ultraviolet light source 12 in this embodiment includes a tubular body 12a in which a luminous gas is enclosed, and a pair of electrodes (12b, 12b) configured to contact the outer surface of the tubular body 12a. and an excimer lamp.
 本実施形態における管体12a内には、発光ガスとしてクリプトン(Kr)と塩素(Cl)が封入されており、電極12b間に所定の閾値以上の電圧が印加されると、管体12aからピーク波長が222nmの紫外光L1が出射される。なお、本実施形態における紫外光源12は、エキシマランプで構成されているが、菌等の不活化処理に利用できる波長帯の紫外光L1を出射できる光源であれば、例えば、LEDで構成されていても構わない。 Krypton (Kr) and chlorine (Cl) are enclosed as luminous gases in the tubular body 12a in this embodiment, and when a voltage equal to or higher than a predetermined threshold is applied between the electrodes 12b, a peak is emitted from the tubular body 12a. Ultraviolet light L1 with a wavelength of 222 nm is emitted. Although the ultraviolet light source 12 in the present embodiment is composed of an excimer lamp, any light source capable of emitting ultraviolet light L1 in a wavelength band that can be used to inactivate bacteria, etc., can be composed of, for example, an LED. I don't mind.
 また、紫外光源12が出射する紫外光L1は、ピーク波長が222nmとは異なる波長であってもよい。具体的には、人や動物に安全性をより高める観点から、紫外光源12から出射される紫外光L1は、波長範囲が190nm以上237nm以下の範囲内であることが好ましく、190nm以上235nm以下の範囲内であることがより好ましく、190nm以上230nm以下の範囲内であることが特に好ましい。また、オゾンの生成をより効果的に抑制する観点からは、波長範囲の下限値を200nm以上としてもよい。 Further, the ultraviolet light L1 emitted by the ultraviolet light source 12 may have a peak wavelength different from 222 nm. Specifically, from the viewpoint of further increasing the safety for humans and animals, the ultraviolet light L1 emitted from the ultraviolet light source 12 preferably has a wavelength range of 190 nm or more and 237 nm or less, and a wavelength range of 190 nm or more and 235 nm or less. It is more preferably within the range, and particularly preferably within the range of 190 nm or more and 230 nm or less. Moreover, from the viewpoint of suppressing the generation of ozone more effectively, the lower limit of the wavelength range may be 200 nm or more.
 反射部材13は、図2に示すように、筐体11の光出射窓11aから出射された紫外光L1を、操作パネル2の被照射面P1に向かうように反射させる反射面13aを備える。本実施形態の反射面13aはアルミニウムで形成されているが、反射面13aを形成する他の材料としては、例えば、ポリテトラフルオロエチレン(PTFE)等を採用し得る。 As shown in FIG. 2, the reflecting member 13 has a reflecting surface 13a that reflects the ultraviolet light L1 emitted from the light emitting window 11a of the housing 11 toward the illuminated surface P1 of the operation panel 2. Although the reflective surface 13a of the present embodiment is made of aluminum, another material for forming the reflective surface 13a may be, for example, polytetrafluoroethylene (PTFE).
 本実施形態における反射部材13は、図2に示すように、紫外光L1を反射する方向を微調整する調整機構として、反射面13aを回動する回動機構13bを備える。回動機構13bは、例えば、角度を維持できるように構成された蝶番や、ネジ止による角度固定機構等である。なお、図2に示すように、照射対象物が固定された操作パネル2のような物品であれば、回動機構13bを備えず、反射面13aの角度が固定されていても構わない。 As shown in FIG. 2, the reflecting member 13 in this embodiment includes a rotating mechanism 13b for rotating the reflecting surface 13a as an adjusting mechanism for finely adjusting the direction in which the ultraviolet light L1 is reflected. The rotating mechanism 13b is, for example, a hinge configured to maintain the angle, an angle fixing mechanism by screwing, or the like. As shown in FIG. 2, if the object to be irradiated is a fixed object such as the operation panel 2, the rotating mechanism 13b may not be provided and the angle of the reflecting surface 13a may be fixed.
 反射部材13の反射面13aで反射された紫外光L1は、操作パネル2の被照射面P1に対して、主光線Lxが入射角θで入射するように構成されている。本実施形態においては、入射角θが60°となるように反射面13aの向きが調整されている。 The ultraviolet light L1 reflected by the reflecting surface 13a of the reflecting member 13 is configured such that the principal ray Lx is incident on the illuminated surface P1 of the operation panel 2 at an incident angle θ. In this embodiment, the orientation of the reflecting surface 13a is adjusted so that the incident angle θ is 60°.
 [検証]
 ここで、入射角θと不活化処理の効果との相関関係を確認するために行った検証実験について説明する。
[inspection]
Verification experiments conducted to confirm the correlation between the incident angle θ and the effect of the deactivation treatment will now be described.
 (装置構成)
 図4は、検証用の紫外光照射システムの構成を示す模式的な図面である。本検証は、図4に示すように、ポール40に固定した紫外光照射装置10から、台座41上に配置されたサンプルNxに紫外光L1を照射して行った。
(Device configuration)
FIG. 4 is a schematic drawing showing the configuration of an ultraviolet light irradiation system for verification. As shown in FIG. 4, this verification was performed by irradiating the sample Nx placed on the pedestal 41 with the ultraviolet light L1 from the ultraviolet light irradiation device 10 fixed to the pole 40 .
 サンプルNxは、20mm□のポリカーボネート板の主面上に、不活化処理対象である菌を含む試液を滴下し、風乾させたものとした。つまり、本検証においては、試液が滴下されたポリカーボネート板の主面が被照射面P1である。なお、図4においては、入射角θや被照射面P1が確認できるように、サンプルNxのサイズが実際よりも大きく図示されている。 Sample Nx was obtained by dropping a test solution containing bacteria to be inactivated onto the main surface of a 20 mm square polycarbonate plate and air-drying it. That is, in this verification, the main surface of the polycarbonate plate onto which the test solution was dropped was the irradiated surface P1. In addition, in FIG. 4, the size of the sample Nx is shown larger than the actual size so that the incident angle θ and the illuminated surface P1 can be confirmed.
 サンプルNxに対する紫外光L1の照射は、床面に対して平行な載置面41aを有する台座41、及び床面に対して傾斜した載置面41aを有する台座41に載置された、サンプルNxの被照射面P1に対して行った。なお、床面に対して傾斜した載置面41aを有する台座41は、下記条件に合わせて、それぞれ載置面41aの床面に対する傾斜角度αが異なるもの使用した。 Irradiation of the sample Nx with the ultraviolet light L1 is performed on the pedestal 41 having the mounting surface 41a parallel to the floor surface and the pedestal 41 having the mounting surface 41a inclined with respect to the floor surface. was performed on the irradiated surface P1. As the pedestal 41 having the mounting surface 41a inclined with respect to the floor surface, the mounting surface 41a having a different inclination angle α with respect to the floor surface was used according to the following conditions.
 紫外光照射装置10と被照射面P1との離間距離は、下記の照度の条件を満たすように、紫外光照射装置10から照射される紫外光L1の強度に合わせて設定した。 The distance between the ultraviolet light irradiation device 10 and the irradiated surface P1 was set according to the intensity of the ultraviolet light L1 irradiated from the ultraviolet light irradiation device 10 so as to satisfy the following illuminance conditions.
 (条件)
 不活化処理の効果を検証する菌は、黄色ブドウ球菌とした。
(conditions)
Staphylococcus aureus was used as the bacterium for verifying the effect of the inactivation treatment.
 載置面41aの床面に対する傾斜角度αが0°、10°、20°、30°、40°、50°、60°、70°、80°となっている台座41を用いた。図4からわかるように、床面に対する傾斜角度αが、そのまま入射角θに対応する。 A pedestal 41 was used in which the inclination angle α of the mounting surface 41a with respect to the floor surface was 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. As can be seen from FIG. 4, the inclination angle α with respect to the floor directly corresponds to the incident angle θ.
 サンプルNxは、8.5×107個の黄色ブドウ球菌が含まれる試液を、ポリカーボネート板の被照射面P1上に、0.1mLを滴下し、風乾させたものを準備した。 A sample Nx was prepared by dropping 0.1 mL of a test solution containing 8.5×10 7 Staphylococcus aureus onto the irradiated surface P1 of a polycarbonate plate and air-drying it.
 紫外光L1の照射は、5mJ/cm2(=5μW/cm2×1000秒)、5mJ/cm2(=10μW/cm2×500秒)、10mJ/cm2(=10μW/cm2×1000秒)の三つのパターンの照度で行った。 Irradiation of ultraviolet light L1 is 5 mJ/cm 2 (=5 μW/cm 2 ×1000 seconds), 5 mJ/cm 2 (=10 μW/cm 2 ×500 seconds), 10 mJ/cm 2 (=10 μW/cm 2 ×1000 seconds). ) with three patterns of illuminance.
 紫外光L1の照射後は、10mLの希釈液が入った遠沈管にそれぞれのサンプルNxを入れて、ボルテックスミキサーによって30秒程攪拌した後、遠沈管内の溶液0.1mLを培地に播種して培養し、コロニーの数をカウントした。そして、プレートに生存していた菌数は、カウントしたコロニーの数から計算によって算出した。 After irradiation with ultraviolet light L1, put each sample Nx in a centrifuge tube containing 10 mL of diluent, stir with a vortex mixer for about 30 seconds, and then seed 0.1 mL of the solution in the centrifuge tube on the medium. It was cultured and the number of colonies was counted. The number of bacteria surviving on the plate was calculated from the number of counted colonies.
 (結果)
 図5は、入射角θごとの菌の生存率をプロットした検証結果のグラフである。図5に示すグラフの縦軸は、紫外光L1を照射していないサンプルNxの菌の生存数に対する、紫外光L1を照射したサンプルNxの菌の生存数の比率であり、横軸は、入射角θである。
(result)
FIG. 5 is a graph of verification results in which the survival rate of bacteria is plotted for each incident angle θ. The vertical axis of the graph shown in FIG. 5 is the ratio of the survival number of bacteria in the sample Nx irradiated with the ultraviolet light L1 to the survival number of bacteria in the sample Nx not irradiated with the ultraviolet light L1. is the angle θ.
 ここで、上述したように、紫外光L1による不活化処理の効果は、入射角θに依存しており、理論的にはcosθと比例関係を示すものと予想されていた。しかしながら、図5に示すように、入射角θが60°の場合であっても、0°~50°の範囲と同様に菌の生存率が10%未満となっており、不活化処理の効果が、cosθに比例するという関係は確認されなかった。 Here, as described above, the effect of the deactivation treatment with the ultraviolet light L1 depends on the incident angle θ, and was theoretically expected to exhibit a proportional relationship with cos θ. However, as shown in FIG. 5, even when the incident angle θ is 60°, the survival rate of bacteria is less than 10% as in the range of 0° to 50°. However, the relationship of being proportional to cos θ was not confirmed.
 本検証の結果は、図5に示すように、入射角θが70°以下の範囲では、菌の生存率が10%以下であり、入射角θが80°では、菌の生存率が10%を超える結果となっていた。特に、照度が5mJ/cm2のパターンにおいては、入射角θが80°では約20%の菌が不活化処理されずに生存していた。 As shown in FIG. 5, the result of this verification is that the survival rate of bacteria is 10% or less when the incident angle θ is 70° or less, and the survival rate of bacteria is 10% when the incident angle θ is 80°. The result was more than In particular, in the pattern with an illumination intensity of 5 mJ/cm 2 , about 20% of bacteria survived without being inactivated when the incident angle θ was 80°.
 以上の結果からすれば、紫外光L1(少なくとも主光線Lx)は、入射角θが70°以下であれば、90%以上の菌を死滅させることができており、より高い不活化処理の効果が得られることが確認された。 From the above results, the ultraviolet light L1 (at least the principal ray Lx) can kill 90% or more of the bacteria if the incident angle θ is 70 ° or less, and the effect of the inactivation treatment is higher. was confirmed to be obtained.
 ここで、上記のような結果が得られた要因について考察する。図6は、入射角θが大きい場合における、紫外光L1の照射状態を模式的に示す図面である。図6に示すように、菌は被照射面P1上に、積層するように付着していることから、入射角θが大きくなるほど、最も光源に近い位置に存在する菌V1の影となってしまう位置に存在する菌V2の数が多くなる。この影響が、入射角θが70°よりも大きくなると顕著になり、不活化処理の効果が著しく低下することで、図5に示すような結果となったのではないかと推察される。 Here, we will consider the factors that led to the above results. FIG. 6 is a drawing schematically showing the irradiation state of the ultraviolet light L1 when the incident angle θ is large. As shown in FIG. 6, since the bacteria adhere to the surface to be irradiated P1 in a layered manner, the larger the incident angle θ, the more the bacteria V1 existing at the position closest to the light source becomes a shadow. The number of bacteria V2 present at the position increases. This effect becomes significant when the incident angle θ is greater than 70°, and it is presumed that the effect of the inactivation treatment is remarkably reduced, resulting in the results shown in FIG.
 上記構成とすることで、紫外光照射システム1は、図1に示すように、操作パネル2を操作する人3に対する紫外光L1の照射量をできる限り抑制しつつ、被照射面P1に対して紫外光L1を照射できると共に、高い不活化処理の効果が得られる。 With the above configuration, the ultraviolet light irradiation system 1, as shown in FIG. Ultraviolet light L1 can be irradiated, and a high deactivation effect can be obtained.
 また、図2に示すように、本実施形態における紫外光照射装置10は、回動機構13bを備えた反射部材13が設けられているため、照射対象物や人3の位置に応じて、紫外光L1を反射する方向を適宜調整することができる。 In addition, as shown in FIG. 2, the ultraviolet light irradiation device 10 according to the present embodiment is provided with a reflecting member 13 having a rotating mechanism 13b. The direction in which the light L1 is reflected can be appropriately adjusted.
 なお、紫外光照射装置10が、壁面W1に固定されている操作パネル2専用で用いられるような場合は、反射部材13が回動機構13bを備えず、反射面13aの角度が固定されていても構わない。 In addition, when the ultraviolet light irradiation device 10 is used exclusively for the operation panel 2 fixed to the wall surface W1, the reflecting member 13 does not have the rotating mechanism 13b, and the angle of the reflecting surface 13a is fixed. I don't mind.
 また、本実施形態においては、反射部材13が紫外光照射装置10の筐体11の側面に固定されているが、反射部材13は、紫外光照射装置10とは別体として構成されていても構わない。 Further, in the present embodiment, the reflecting member 13 is fixed to the side surface of the housing 11 of the ultraviolet light irradiation device 10, but the reflecting member 13 may be configured as a separate body from the ultraviolet light irradiation device 10. I do not care.
 [別実施形態]
 以下、別実施形態につき説明する。
[Another embodiment]
Another embodiment will be described below.
 〈1〉 図7は、別実施形態をX方向に見たときの側面断面図である。図7に示すように、本実施形態における紫外光照射装置10は、壁面W1に傾斜して固定されることで、光出射窓11aから出射された紫外光L1の主光線Lxが、壁面W1に固定された操作パネル2の被照射面P1に対して、入射角θで入射するように構成されている。 <1> FIG. 7 is a side cross-sectional view of another embodiment when viewed in the X direction. As shown in FIG. 7, the ultraviolet light irradiation device 10 in the present embodiment is tilted and fixed to the wall surface W1, so that the principal ray Lx of the ultraviolet light L1 emitted from the light emission window 11a is directed to the wall surface W1. It is configured to be incident on the illuminated surface P1 of the fixed operation panel 2 at an incident angle θ.
 上記構成とすることで、反射部材13を備えることなく、紫外光L1の主光線Lxが、操作パネル2の被照射面P1に対して、所望の入射角θで入射するように構成することができる。 With the above configuration, the principal ray Lx of the ultraviolet light L1 can be configured to be incident on the illuminated surface P1 of the operation panel 2 at a desired incident angle θ without providing the reflecting member 13. can.
 〈2〉 図8は、紫外光照射システム1の図7とは異なる、紫外光照射システム1の別実施形態をX方向に見たときの側面断面図である。図8に示すように、本実施形態における紫外光照射装置10は、筐体11の光出射窓11aから出射された紫外光L1を取り込み、操作パネル2の被照射面P1に対して、主光線Lxが入射角θで入射するように導光する導光部材80を備えている。 <2> Fig. 8 is a side cross-sectional view of another embodiment of the ultraviolet light irradiation system 1, which is different from Fig. 7 of the ultraviolet light irradiation system 1, when viewed in the X direction. As shown in FIG. 8, the ultraviolet light irradiation device 10 in the present embodiment takes in the ultraviolet light L1 emitted from the light emission window 11a of the housing 11, and emits the principal ray to the irradiated surface P1 of the operation panel 2. A light guide member 80 is provided to guide light so that Lx is incident at an incident angle θ.
 導光部材80は、例えば、UVライトガイド等を採用し得る。 For the light guide member 80, for example, a UV light guide or the like can be adopted.
 上記構成とすることで、反射部材13を設ける場合と比較して、紫外光L1の照射方向や、入射角θの調整の自由度がより高くなる。つまり、紫外光照射システム1は、図1に示すような、操作パネル2に触れる人3を回避するように構成しやすくなり、さらには、被照射面P1の一部の領域に集中的に紫外光L1を照射することも可能となる。 With the above configuration, the irradiation direction of the ultraviolet light L1 and the degree of freedom in adjusting the incident angle θ are increased compared to the case where the reflecting member 13 is provided. That is, the ultraviolet light irradiation system 1 can be easily configured to avoid the person 3 touching the operation panel 2 as shown in FIG. It is also possible to irradiate the light L1.
 〈3〉 図9は、紫外光照射システム1の図7及び図8とは異なる、別実施形態をX方向に見たときの側面断面図である。図9に示すように、本実施形態における紫外光照射装置10は、光出射窓11aから出射された紫外光L1の主光線Lxが、操作パネル2の被照射面P1に対して、入射角θで入射するように、固定台11bを介して天井U1に設置されている。さらに、固定台11bは、筐体11を天井U1に固定しつつ、光出射窓11aが向く方向を偏向できるように、回動部11cが構成されている。なお、回動部11cは、例えば、球体関節や、自在接手等である。 <3> Fig. 9 is a side cross-sectional view of another embodiment of the ultraviolet light irradiation system 1, which is different from Figs. 7 and 8 and viewed in the X direction. As shown in FIG. 9, in the ultraviolet light irradiation device 10 according to the present embodiment, the principal ray Lx of the ultraviolet light L1 emitted from the light emission window 11a is incident at an incident angle θ with respect to the irradiated surface P1 of the operation panel 2. It is installed on the ceiling U1 via the fixing base 11b so that the light enters at . Further, the fixed base 11b is configured with a rotating portion 11c so as to deflect the direction in which the light exit window 11a faces while fixing the housing 11 to the ceiling U1. Note that the rotating portion 11c is, for example, a ball joint, a universal joint, or the like.
 〈4〉 上述した紫外光照射システム1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。 <4> The configuration provided in the ultraviolet light irradiation system 1 described above is merely an example, and the present invention is not limited to each illustrated configuration.
    1    :  紫外光照射システム
    2    :  操作パネル
    3    :  人
   10    :  紫外光照射装置
   11    :  筐体
   11a   :  光出射窓
   11b   :  固定台
   11c   :  回動部
   12    :  紫外光源
   12a   :  管体
   12b   :  電極
   13    :  反射部材
   13a   :  反射面
   13b   :  回動機構
   40    :  ポール
   41    :  台座
   41a   :  載置台
   80    :  導光部材
  100    :  殺菌装置
  101    :  筐体
  102    :  紫外光源
  110    :  操作パネル
    L1   :  紫外光
    Lx   :  主光線
    P1   :  被照射面
    U1   :  天井
    V1,V2   :  菌
    W1   :  壁面
    α    :  傾斜角度
    θ    :  入射角
 
Reference Signs List 1: Ultraviolet light irradiation system 2: Operation panel 3: Person 10: Ultraviolet light irradiation device 11: Housing 11a: Light exit window 11b: Fixing base 11c: Rotating part 12: Ultraviolet light source 12a: Tube 12b: Electrode 13: Reflective member 13a: Reflective surface 13b: Rotating mechanism 40: Pole 41: Pedestal 41a: Mounting table 80: Light guide member 100: Sterilizer 101: Housing 102: Ultraviolet light source 110: Operation panel L1: Ultraviolet light Lx: Chief ray P1: Illuminated surface U1: Ceiling V1, V2: Bacteria W1: Wall surface α: Tilt angle θ: Incident angle

Claims (5)

  1.  筐体と、前記筐体の内側に収容される紫外光源と、前記紫外光源から出射される紫外光を、前記筐体の外側に取り出すための光出射窓とを有する紫外光照射装置を備え、
     前記光出射窓から出射され、直接、又は光学系を介して照射対象物の被照射面に照射される紫外光の主光線が、前記被照射面に対して20°以上70°以下の入射角で入射するように構成されていることを特徴とする紫外光照射システム。
    An ultraviolet light irradiation device having a housing, an ultraviolet light source accommodated inside the housing, and a light exit window for extracting the ultraviolet light emitted from the ultraviolet light source to the outside of the housing,
    The principal ray of ultraviolet light emitted from the light exit window and irradiated directly or via an optical system onto the irradiated surface of the irradiation object has an incident angle of 20° or more and 70° or less with respect to the irradiated surface. An ultraviolet light irradiation system characterized in that it is configured to be incident at .
  2.  前記紫外光照射装置は、前記照射対象物が設置された面と同じ面に配置されていることを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the ultraviolet light irradiation device is arranged on the same surface as the surface on which the object to be irradiated is placed.
  3.  前記紫外光が入射される反射面を有する反射部材を備え、
     前記紫外光の前記主光線は、前記反射部材の前記反射面によって反射されて、前記照射対象物の前記被照射面に入射することを特徴とする請求項1又は2に記載の紫外光照射システム。
    A reflective member having a reflective surface on which the ultraviolet light is incident,
    3. The ultraviolet light irradiation system according to claim 1, wherein the principal ray of the ultraviolet light is reflected by the reflecting surface of the reflecting member and enters the irradiated surface of the object to be irradiated. .
  4.  前記反射部材は、前記照射対象物の前記被照射面に入射する前記紫外光の入射角を調整する調整機構を備えていることを特徴とする請求項3に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 3, wherein the reflecting member has an adjusting mechanism for adjusting an incident angle of the ultraviolet light incident on the surface to be irradiated of the object to be irradiated.
  5.  前記光出射窓から出射された前記紫外光を取り込み、前記紫外光を、前記照射対象物の前記被照射面に向かって出射するように導光する導光部材を備えることを特徴とする請求項1又は2に記載の紫外光照射システム。
     
    2. A light guide member that takes in the ultraviolet light emitted from the light emission window and guides the ultraviolet light so that the ultraviolet light is emitted toward the irradiated surface of the irradiation object. 3. The ultraviolet light irradiation system according to 1 or 2.
PCT/JP2022/010532 2021-05-14 2022-03-10 Ultraviolet light irradiation system WO2022239437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082153A JP2022175601A (en) 2021-05-14 2021-05-14 Ultraviolet light irradiation system
JP2021-082153 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239437A1 true WO2022239437A1 (en) 2022-11-17

Family

ID=84029159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010532 WO2022239437A1 (en) 2021-05-14 2022-03-10 Ultraviolet light irradiation system

Country Status (2)

Country Link
JP (1) JP2022175601A (en)
WO (1) WO2022239437A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
WO2015015734A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Sterilization device
JP2015112439A (en) * 2013-12-14 2015-06-22 倫文 木原 Automatic floor surface sterilizer
WO2019026431A1 (en) * 2017-08-02 2019-02-07 日立造船株式会社 Uv irradiation apparatus
US20210046201A1 (en) * 2019-08-13 2021-02-18 Korea Electro-Optics Co., Ltd. Uv line beam sterilizer
JP2021177809A (en) * 2020-05-11 2021-11-18 ウシオ電機株式会社 Sterilizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
WO2015015734A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Sterilization device
JP2015112439A (en) * 2013-12-14 2015-06-22 倫文 木原 Automatic floor surface sterilizer
WO2019026431A1 (en) * 2017-08-02 2019-02-07 日立造船株式会社 Uv irradiation apparatus
US20210046201A1 (en) * 2019-08-13 2021-02-18 Korea Electro-Optics Co., Ltd. Uv line beam sterilizer
JP2021177809A (en) * 2020-05-11 2021-11-18 ウシオ電機株式会社 Sterilizer

Also Published As

Publication number Publication date
JP2022175601A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
EP2928506B1 (en) Lamp and reflector arrangements for apparatuses with multiple germicidal lamps
US8895940B2 (en) Switch sanitizing device
US8877124B2 (en) Apparatus, system, and method for evaluating and adjusting the effectiveness of ultraviolet light disinfection of areas
EP1866627A2 (en) Method and apparatus for sterilizing and disinfecting air and surfaces and protecting a zone from external microbial contamination
JP2012516197A5 (en)
US20220323624A1 (en) Inactivation apparatus and inactivation method
KR20210029308A (en) Ultraviolet discharge lamp apparatuses with one or more reflectors and systems which determine operating parameters and disinfection schedules for germicidal devices
JP2012516197A (en) Method and apparatus for disinfecting air and surfaces
JP7375367B2 (en) Sterilizers and indoor sterilization systems
JP2021177809A (en) Sterilizer
WO2022005505A1 (en) Multispectral light disinfection system and method
KR20180105844A (en) Movable wall for sterilization of airborne pathogens
US20220001069A1 (en) Ultraviolet light disinfection system and method
TW202002805A (en) Ultraviolet ray irradiation device
WO2022239437A1 (en) Ultraviolet light irradiation system
KR20230065990A (en) Air treatment systems and methods using UV irradiation
JP2022176043A (en) Germ or virus inactivation device, and germ or virus inactivation processing method
GB2595468A (en) A device
KR102405315B1 (en) Sterilization Device and Sterilization System Using the Same
WO2022239445A1 (en) Bacteria or virus inactivation apparatus and bacteria or virus inactivation treatment method
JP2022014438A (en) Disinfection device comprising detector
JP2022055486A (en) Inactivation device and method
JP6912014B1 (en) Inactivation method and inactivation system
WO2022049884A1 (en) Illumination device with bacterial or viral inactivation function
RU2738856C1 (en) Surface disinfection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807144

Country of ref document: EP

Kind code of ref document: A1