WO2022239425A1 - State detection system - Google Patents

State detection system Download PDF

Info

Publication number
WO2022239425A1
WO2022239425A1 PCT/JP2022/009897 JP2022009897W WO2022239425A1 WO 2022239425 A1 WO2022239425 A1 WO 2022239425A1 JP 2022009897 W JP2022009897 W JP 2022009897W WO 2022239425 A1 WO2022239425 A1 WO 2022239425A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
detection system
inspected
inspection target
electromagnetic wave
Prior art date
Application number
PCT/JP2022/009897
Other languages
French (fr)
Japanese (ja)
Inventor
拓己 石渡
三郎 平岡
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023520843A priority Critical patent/JPWO2022239425A1/ja
Publication of WO2022239425A1 publication Critical patent/WO2022239425A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws

Definitions

  • the present disclosure relates to a state detection system.
  • Hyperspectral imaging can capture the material state of each inspected position of an object as spectral information for each pixel, and can acquire an amount of information not found in conventional imaging techniques.
  • hyperspectral imaging is the use of wide-range physical property evaluation that makes use of the feature of combining spatial information of images and physical property information of spectra.
  • Patent Document 1 discloses a technique for land cover classification using hyperspectral imaging.
  • a state detection system using hyperspectral imaging can usually detect only the material state that is conspicuously visible in the external appearance of the object, and the material state that is difficult to appear in the external appearance of the object (for example, pressurized state or temperature state). ), weak changes in the material state of the object over time, and the material state (for example, composition state) inside the object cannot be detected. Therefore, a state detection system using hyperspectral imaging leads to a delay in detection of an abnormal state occurring in an object, and cannot accurately detect quality defects in an object shipped as a product.
  • the present disclosure has been made in view of such problems, and aims to provide a state detection system capable of detecting the distribution of the material state of an object more accurately.
  • An electromagnetic wave reading type state detection system an electromagnetic wave responsive material disposed in a state sensitive to the state of the material to be detected of the object to be inspected; a reader that transmits an electromagnetic wave from the outside of the object to be inspected to the position where the electromagnetic wave responsive material is arranged in the object to be inspected, receives the reflected wave, and acquires the spectrum of the reflected wave; , an analysis device for estimating the distribution of the material state in the object to be inspected based on the spectra obtained at a plurality of positions in the object to be inspected during the same time period;
  • a condition detection system comprising:
  • the state detection system it is possible to more accurately detect the distribution of the material state of the object.
  • FIG. 4 is a diagram schematically explaining the distribution of material properties of an object detected by the state detection system according to the present disclosure
  • a diagram showing an example of a specific configuration of a sensor according to the present disclosure A diagram showing an example of a reflected wave spectrum of a sensor according to the present disclosure
  • FIG. 11 is a diagram showing a mode of detecting an expansion/contraction state (that is, shape change) of an object to be inspected by a sensor according to the present disclosure;
  • FIG. 11 is a diagram showing a mode of detecting an expansion/contraction state (that is, shape change) of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the thickness of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the thickness of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the material composition of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the material composition of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the material composition of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the degree of oxidation of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the degree of oxidation of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the strength of electrical anisotropy (eg, orientation) of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the strength of electrical anisotropy (eg, orientation) of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing a mode of detecting the strength of electrical anisotropy (eg, orientation) of an object to be inspected by a sensor according to the present disclosure
  • FIG. 4 is a diagram showing an example of another arrangement of sensors in an object to be inspected as viewed from the reader side according to the present disclosure
  • FIG. 10 is a diagram showing the configuration of a sensor according to Modification 1
  • FIG. 11 is a diagram illustrating an example of a mechanism for detecting a state using a sensor according to Modification 1
  • FIG. 5 is a diagram illustrating an example of a method for estimating the distribution of the material state of an object to be inspected by the analysis apparatus according to the present disclosure
  • FIG. 5 is a diagram illustrating an example of a method for estimating the distribution of the material state of an object to be inspected by the analysis apparatus according to the present disclosure
  • FIG. 5 is a diagram explaining an example of the operation of the state detection system according to the present disclosure
  • FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment
  • FIG. FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment
  • FIG. FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment
  • FIG. FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fifth embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fifth embodiment
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a sixth embodiment
  • FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment
  • FIG. 11 is
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment;
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment;
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment;
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment;
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment;
  • FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment;
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a ninth embodiment;
  • FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a ninth embodiment;
  • the inventors of the present application have made intensive studies on a method for detecting the distribution of the state of materials in an object to be inspected. We came up with the idea of a state detection system using sensor tags.
  • This type of state detection system is generally arranged in a state sensitive to the material state of an object to be inspected, and transmits and receives electromagnetic waves to and from a sensor tag that changes its own electromagnetic wave reflection characteristics according to the material state of the object, and a reader for acquiring the frequency spectrum of the reflected wave from the object to be inspected (hereinafter referred to as the "reflected wave spectrum").
  • the reader receives a reflected wave from the sensor tag when an electromagnetic wave is transmitted to the sensor tag, thereby obtaining a change in the electromagnetic wave reflection characteristic of the sensor tag. Estimate the state change of the target object.
  • data of the reference pattern of the electromagnetic wave reflection characteristics of the sensor tag is stored in advance by experiment or the like, and the data of the reference pattern and the sensor tag obtained this time are stored.
  • a method of estimating a state change of an object to be inspected is adopted by collating it with electromagnetic wave reflection characteristics.
  • a basic configuration of a state detection system (hereinafter referred to as “state detection system U”) according to an embodiment of the present disclosure will be described below with reference to FIGS. 1A and 1B.
  • the state detection system U according to the present disclosure is constructed based on the state detection system using the electromagnetic wave reading type sensor tag described above.
  • FIG. 1A is a diagram showing an example of the overall configuration of the state detection system U.
  • FIG. 1B is a diagram schematically explaining the distribution of material properties of an object M detected by the state detection system U. As shown in FIG.
  • the state detection system U includes a sensor tag 1, a reader 2, and an analysis device 3.
  • the sensor tag 1 (corresponding to the "electromagnetic wave reflector” of the present invention) is sensitive to the specific material condition of the object M (that is, the material condition to be detected) on the surface or inside of the object M to be inspected. placed in a state.
  • the sensor tag 1 has, for example, a resonator whose resonance state changes according to the specific material state of the object M, and has a reflection characteristic (hereinafter referred to as "the sensor tag 1's Also referred to as “electromagnetic wave reflection characteristics” or "reflected wave spectrum of the sensor tag 1"), information relating to the material state of the object M is transferred to the reader 2 (details will be described later).
  • At least one sensor tag 1 is arranged at each of a plurality of inspection target positions Ma (see FIG. 1B) in the inspection target object M. As shown in FIG.
  • the reader 2 transmits an electromagnetic wave to the presence position of the sensor tag 1 of the inspection target object M (that is, the inspection target position Ma of the inspection target object M) and receives the reflected wave, and the reflected wave spectrum ( That is, the reflected wave spectrum characterized by the electromagnetic wave reflection characteristics of the sensor tag 1 is acquired. At this time, the reader 2 acquires the reflected wave spectrum at each of the plurality of inspection target positions Ma of the inspection target object M by electronic scanning or the like.
  • the analysis device 3 estimates the distribution of the state of the material to be detected in the object M based on the reflected wave spectrum acquired by the reader 2 at each of the plurality of inspection positions Ma in the object M to be inspected (for example, (see FIG. 16A). At this time, the analysis device 3 refers to the reflected wave spectra obtained at each of the plurality of inspection target positions Ma of the inspection target object M, and compares them with each other and/or generates reference data based on them. Thus, the material state (for example, normal and abnormal distribution) of each inspection target position of the inspection target object M is estimated, thereby enabling highly accurate state estimation (details will be described later). ).
  • the object M to be inspected by the state detection system U is, for example, a concrete structure, a resin material, a ceramic material, or a sheet material. Then, the state detection system U detects, for example, corrosion occurring inside the inspection target object M, cracks in the inspection target object M, composition of constituent materials of the inspection target object M, and the like, and detects these inspection target object It is applied to the quality control at the manufacturing site of M and the check of the deterioration state when the use is started in the actual environment.
  • the object M to be inspected is not limited to the above, and may be any dielectric material.
  • the material condition to be detected by the condition detection system U may be any material property and/or structural property of the object M to be inspected.
  • the state detection system U is typically constructed based on the use of electromagnetic waves in the UWB band, millimeter wave band, or sub-millimeter wave band (range of 3.1 GHz to 3 THz). ing. That is, the sensor tag 1 is configured to respond to electromagnetic waves in such a band, and the reader 2 is configured to detect the material properties for each position of the object to be inspected using the electromagnetic waves in this band. Electromagnetic waves in such a band have characteristics such as a short wavelength, high directivity (that is, rectilinearity) of the electromagnetic wave, and high frequency resolution at the time of detection. By using electromagnetic waves in such a band, it is possible to achieve high area resolution when grasping the distribution of the material properties of the object M to be inspected, and the size of the sensor tag 1 can also be reduced.
  • FIG. 2 is a diagram showing an example of how the sensor tags 1 are arranged in the inspection object M viewed from the reader 2 side.
  • FIG. 3 is a diagram showing an example of a specific configuration of the sensor tag 1.
  • FIG. 4 is a diagram showing an example of the reflected wave spectrum of the sensor tag 1.
  • FIG. 3 is a diagram showing an example of a specific configuration of the sensor tag 1.
  • FIG. 4 is a diagram showing an example of the reflected wave spectrum of the sensor tag 1.
  • a plurality of sensor tags 1 are dispersedly arranged on the surface or inside the inspection target region of the inspection target object M in a state sensitive to the material state of the detection target of the inspection target object M.
  • the inspection target area of the inspection target object M is divided into, for example, a plurality of small areas, and at least one sensor tag 1 is provided for each small area.
  • the plurality of inspection target positions Ma in FIG. 1B are the positions of the small areas obtained by partitioning the inspection target area of the inspection target object M, respectively.
  • Each sensor tag 1 detects the material state of the inspection target object M at each inspection target position Ma.
  • the sensor tag 1 detects, for example, the state of the material to be detected of the object M as the resonance state of the resonator 1a (see, for example, FIG. 3), and transmits information on the state of the material when electromagnetic waves are emitted from the reader 2. (ie, the position of the resonance peak and the peak intensity at the resonance peak) regarding the pattern of the reflected wave spectrum of .
  • the reflected wave of the sensor tag 1 is superimposed on the reflected wave of the inspection target object M itself, and is acquired by the reader 2. A unique pattern centered on the resonance peak position of the resonator 1a is drawn. Therefore, the reflected wave spectrum pattern of the sensor tag 1 (see, for example, FIG. 4) can be clearly identified from the reflected wave spectrum pattern of the inspection object M itself.
  • FIG. 2 shows, as an example, a mode in which eight sensor tags 1 are distributed and arranged at eight inspection target positions Ma of an inspection target object M. Each detects the material state of each of the eight inspection target positions Ma. Then, the reader 2, for example, based on the electromagnetic wave reflection characteristics of the eight sensor tags 1 extracted from the reflected wave spectrum obtained when the electromagnetic wave is transmitted to each of the eight inspection target positions Ma of the inspection target object M to detect the distribution of the material state in the object M to be inspected (see FIG. 1B).
  • the sensor tag 1 has, for example, a resonant structure that resonates when externally irradiated with an electromagnetic wave of a predetermined frequency and absorbs or reflects the electromagnetic wave.
  • the sensor tag 1 according to the present embodiment has an electromagnetic wave reflection characteristic that absorbs electromagnetic waves with a frequency that matches its own resonance frequency and reflects electromagnetic waves with frequencies other than that (see FIG. 4).
  • the sensor tag 1 is composed of, for example, a resonator 1a, an isolation layer 1b, and a back reflector 1c, which are arranged in order from the front side.
  • the resonator 1a is, for example, a conductor pattern formed in a strip shape, absorbs an electromagnetic wave of a frequency matching its own resonance frequency, and reflects the electromagnetic wave when irradiated with an electromagnetic wave of a frequency other than that. do.
  • the resonator 1a resonates, for example, when it is irradiated with an electromagnetic wave having a frequency corresponding to 1/2 ⁇ of the resonator length (length in the longitudinal direction of the resonator 1a).
  • FIG. 3 shows only one resonator 1a
  • the sensor tag 1 is preferably provided with a plurality of resonators 1a having mutually different resonance frequencies. This makes it possible to further diversify the reflected wave spectrum pattern of the sensor tag 1 and improve the distinguishability from the reflected wave spectrum pattern of the inspection target object M itself.
  • the isolation layer 1b is an insulating material layer or an insulating space layer (including a space where no object is arranged), is formed between the resonator 1a and the back reflector 1c, and is formed between the resonator 1a and the back reflector 1c. insulate between The isolation layer 1b may be partially or entirely composed of the object M to be inspected.
  • the back reflector 1c is a material having characteristics of reflecting electromagnetic waves, such as a metal material such as silver, gold, copper, or aluminum, and is disposed facing the resonator 1a via the isolation layer 1b, The electromagnetic wave irradiated to the sensor tag 1 is reflected.
  • the rear reflector 1c also functions to amplify the resonance phenomenon that occurs in the resonator 1a. Specifically, when the back reflector 1c exists, the resonance phenomenon occurring in the resonator 1a also occurs between the resonator 1a and the back reflector 1c, and the resonance phenomenon is amplified. That is, the back reflector 1c increases the resonance peak when a resonance phenomenon occurs in the resonator 1a.
  • a part or the whole of the back reflector 1c may be composed of the object M to be inspected.
  • the resonance peak at frequency f0 in the reflected wave spectrum of FIG. 4 represents power loss (absorption) due to resonance of the resonator 1a.
  • the baseband region in the reflected wave spectrum of FIG. 4 represents the reflection of the electromagnetic wave from the rear reflector 1c when the resonator 1a is not resonating.
  • a change in the state of at least one of the resonator 1a, the isolation layer 1b, or the back reflector 1c is a change in the state of the material to be detected of the object M to be inspected (e.g., shape change, structure change, etc.). change, ambient atmosphere change, physical property change, etc.).
  • the material state of the object M to be detected by the sensor tag 1 is arbitrary.
  • the state of the material to be detected includes, for example, the expansion and contraction of the constituent material in the object M to be inspected, the thickness of the constituent material in the object M to be inspected, the corrosion state (degree of oxidation) of the constituent material in the object M to be inspected, Orientation state of constituent materials in the inspection object M, composition state of the constituent materials in the inspection object M, pressure state in the inspection object M, wear state in the inspection object M, cracks in the inspection object M Occurrence state, dielectric constant in the object M to be inspected, detachment state of the region joining a plurality of members in the object M to be inspected, moisture content in the object M to be inspected, temperature in the object M to be inspected, etc. is mentioned.
  • FIG. 5A to 9B are diagrams showing an example of detection modes of the material state of the inspection target object M by the sensor tag 1.
  • FIG. 5A to 9B are diagrams showing an example of detection modes of the material state of the inspection target object M by the sensor tag 1.
  • FIGS. 5A and 5B are diagrams showing how the sensor tag 1 detects the expansion/contraction state (that is, shape change) of the object M to be inspected.
  • the sensor tag 1 is made of, for example, a member that allows the resonator 1a to expand and contract in the longitudinal direction. Then, the sensor tag 1 detects the expansion/contraction state of the object M to be inspected as a change in the length of the resonator 1a. A change in the length of the resonator 1a is expressed as a change in resonance frequency in the reflected wave spectrum of the sensor tag 1.
  • FIGS. 6A and 6B are diagrams showing modes of detecting the thickness of the inspection target object M with the sensor tag 1.
  • the sensor tag 1 is arranged such that the thickness of the isolation layer 1b (that is, the distance between the resonator 1a and the back reflector 1c) changes in conjunction with the thickness of the inspection object M, for example. It is configured. Then, the sensor tag 1 detects the thickness of the object M to be inspected as a change in the thickness of the isolation layer 1b.
  • the intensity of the reflected wave from the sensor tag 1 becomes maximum when the distance between the resonator 1a and the back surface reflector 1c is a predetermined distance. The distance to the reflector 1c becomes smaller as the distance from the predetermined distance increases. In other words, a change in the thickness of the isolation layer 1b appears as a change in the peak intensity of the resonance peak in the reflected wave spectrum of the sensor tag 1.
  • FIG. 1 the intensity of the reflected wave from the sensor tag 1 becomes maximum when the distance between the resonator 1a
  • FIGS. 7A and 7B are diagrams showing modes of detecting the material composition of the inspection target object M with the sensor tag 1.
  • the sensor tag 1 has, for example, a structure in which a portion of the object M to be inspected is arranged in the isolation layer 1b, or a structure in which the object M to be inspected is the isolation layer 1b itself. Then, the sensor tag 1 detects a change in the material composition of the object M to be inspected as a change in dielectric constant of the isolation layer 1b.
  • the change in the dielectric constant of the isolation layer 1b is expressed as a change in the resonance frequency of the resonator 1a in the reflected wave spectrum of the sensor tag 1.
  • FIGS. 8A and 8B are diagrams showing modes in which the sensor tag 1 detects the degree of oxidation of the object M to be inspected.
  • the sensor tag 1 is configured such that the back reflector 1c is part of the object M to be inspected, for example. Then, the sensor tag 1 detects the degree of oxidation of the object M to be inspected as a change in conductivity of the back reflector 1c. A change in the conductivity of the back reflector 1c is expressed as a change in the peak intensity of the resonance peak in the reflected wave spectrum of the sensor tag 1.
  • FIGS. 9A and 9B are diagrams showing how the sensor tag 1 detects the strength of the electrical anisotropy (eg, orientation) of the object M to be inspected.
  • the sensor tag 1 has, for example, a structure in which a portion of the object M to be inspected is arranged within the isolation layer 1b. Then, the sensor tag 1 detects the strength of the electrical anisotropy of the object M to be inspected from the magnitude of the peak intensity of the resonance peak.
  • the sensor tag 1 detects the strength of the electrical anisotropy of the object M to be inspected. This is based on the fact that it depends on the ease of occurrence of the resonance phenomenon of the electromagnetic field generated in the That is, in the sensor tag 1, the resonance current that flows when the resonator 1a resonates flows along the extending direction of the resonator 1a. The direction of flow of this resonant current determines the direction of the electromagnetic field generated around the resonator 1a (for example, the isolation layer 1b).
  • the object M to be inspected has electrical anisotropy, and the arrangement direction of the object M to be inspected (that is, the polarization direction of the object M to be inspected) is the direction of the electromagnetic field generated by this resonance current.
  • the presence of the inspection object M functions to strengthen the resonance phenomenon of the electromagnetic field generated around the resonator 1a, increasing the peak intensity of the resonance peak.
  • the sensor tag 1 is arranged on the surface or inside of the object M to be inspected so as to be responsive to the state of the material to be detected of the object M to be inspected. Whether the sensor tag 1 is arranged on the surface of the object M to be inspected or arranged inside it depends on the type of material condition of the object M to be inspected and the portion of the object M to be detected. Therefore, preferred embodiments are different.
  • the sensor tag 1 is arranged on the surface of the object M to be inspected by, for example, a sticking method or a coating method. Just do it. Further, when the part to be detected by the sensor tag 1 is only the surface layer part of the object M to be inspected, the sensor tag 1 is attached or coated on the surface of the sensor group installation sheet, and the sensor group installation sheet is installed at the time of inspection. A sheet may be placed on the inspection target object M (see, for example, FIG. 22B described later).
  • the method of arranging these sensor tags 1 is simple, and the manufacturing cost for constructing the state detection system U can be reduced. For example, the sensor tag 1 can be avoided from affecting the material strength), and the sensor tag 1 (resonator 1a) provided at a plurality of locations can be easily aligned. It is more preferable than the aspect of mixing inside the object M to be inspected.
  • the sensor tag 1 when the sensor tag 1 is intended to detect the state of the material inside the object M to be inspected, the sensor tag 1 is integrated with the material constituting the object M to be inspected inside the object M to be inspected. (see, eg, FIG. 16B below).
  • the sensor tag 1 may be embedded inside the inspection target object M so as to be mixed with the material constituting the inspection target object M in the process of forming the inspection target object M, or may be embedded in the inspection target object M. It may be embedded inside the object to be inspected M so as to be sandwiched between the materials constituting M. In such a configuration, the sensor tag 1 may be entirely embedded inside the object M to be inspected, or only a part of the configuration (for example, only the resonator 1a) may be embedded inside the object M to be inspected. may be embedded in
  • the sensor tags 1 are arranged at regular intervals in the inspection target object M (see, for example, FIG. 2). As a result, it is possible to suppress a situation in which the reflected wave intensity when reading the reflected wave spectrum by the reader 2 changes greatly for each position of the detection target due to the difference in the existence density of the sensor tags 1 in the inspection target object M. can be done.
  • the sensor tags 1 are arranged in the inspection target object M with the resonators 1a oriented in the same direction (see FIG. 2, for example). As a result, it is possible to prevent the high-sensitivity direction from being different with respect to the polarization direction of the electromagnetic wave for each inspection target position Ma.
  • sensor tags 1 having different resonance frequencies for each inspection target position Ma may be used. Thereby, the identifiability of each inspection target position Ma in the inspection target object M can be enhanced.
  • FIG. 10 is a diagram showing an example of another arrangement mode of the sensor tag 1 in the inspection target object M viewed from the reader 2 side.
  • the sensor tag 1 has a plurality of types of resonators 1a having different resonance frequencies for each position Ma to be inspected (that is, a small area in the object M to be inspected). is preferably provided.
  • FIG. 10 shows a mode in which two types of sensor tags 1X and 1Y having resonators 1a with mutually different resonance frequencies are arranged at each inspection target position Ma in the inspection target object M.
  • the high-sensitivity band of the state of the material to be detected may be restricted to a narrow band.
  • multiple types of sensor tags 1X and 1Y are arranged for each inspection target position Ma, and the multiple types of sensor tags 1X and 1Y are each provided with a high sensitivity band for the state of the material to be detected. material state can be detected.
  • the sensor tags 1X and 1Y are used for detecting the temperature inside the object M to be inspected, the sensor tag 1X having a high sensitivity band to a temperature of around 30° C. and the sensor tag 1Y having a high sensitivity band to a temperature of around 50° C.
  • the plurality of types of sensor tags 1X and 1Y may share the isolation layer 1b and the back reflector 1c, and may differ only in the configuration of the resonator 1a (that is, the resonator length).
  • [Modification 1 of sensor tag 1] 11A is a diagram showing the configuration of the sensor tag 1 according to Modification 1.
  • FIG. 11B is a diagram illustrating a mechanism for detecting a state using the sensor tag 1 according to Modification 1.
  • the sensor tag 1 shown in FIG. 11A has a configuration in which a conversion unit 1d is added to the sensor tag 1 shown in FIG.
  • the conversion unit 1d is made of a material that responds to a specific material condition of the object M to be inspected (that is, the material condition to be detected).
  • the conversion unit 1d is arranged in contact with the resonator 1a, and changes the electromagnetic wave reflection characteristics of the resonator 1a by changing the physical properties of the conversion unit 1d. That is, the sensor tag 1 is configured such that the change in the physical properties of the conversion portion 1d is linked to the change in the material state of the object M to be inspected.
  • the conversion unit 1d is made of a material that changes at least one of the dielectric constant, the dielectric loss tangent (tan ⁇ ), and the conductivity in accordance with changes in the specific material state of the inspection object M to which the conversion unit 1d is sensitive. be done.
  • the conversion unit 1d changes the dielectric constant, dielectric loss tangent, or electrical conductivity of the region adjacent to the resonator 1a through the change in its own dielectric constant, dielectric loss tangent, or electrical conductivity. is changed to change the electromagnetic wave reflection characteristic change of the resonator 1a.
  • a change in the dielectric constant and dielectric loss tangent of the region adjacent to the resonator 1a induces a change in the resonance frequency of the resonator 1a due to the short wavelength effect, and a change in conductivity in the region adjacent to the resonator 1a. This induces a change in the peak intensity of the resonance peak when the resonator 1a resonates.
  • the conversion unit 1d when it is desired to detect the strain generated inside the inspection target object M by the state detection system U, the conversion unit 1d is selectively made of A material that reacts and changes physical properties is used. If the state detection system U is to detect the composition of the constituent material of the object M to be inspected, the conversion unit 1d may be a material whose physical properties change in response to the composition of the constituent material of the object M to be inspected. is used.
  • the material of the conversion portion 1d includes, for example, a liquid crystal material (e.g., nematic liquid crystal, cholesteric liquid crystal), a phase transition material (e.g., wax, microcapsule, phenanthrene), or polymerized or crosslinked material in response to heat or light. , irritant irreversibly reactive materials that decompose, etc. may be used. These materials can effectively cause a change in the dielectric constant of the conversion section 1d due to a change in the state of the surrounding environment.
  • a liquid crystal material e.g., nematic liquid crystal, cholesteric liquid crystal
  • a phase transition material e.g., wax, microcapsule, phenanthrene
  • polymerized or crosslinked material in response to heat or light.
  • irritant irreversibly reactive materials that decompose, etc. may be used. These materials can effectively cause a change in the dielectric constant of the conversion section 1d due to a change in the state of the surrounding environment.
  • Examples of the material of the conversion portion 1d include a semiconductor doped with an active point (a substance that converts a semiconductor into a conductor in response to a change in the external environment, such as a copper complex that adsorbs gas molecules), an anisotropic conductive material, and the like.
  • an active point a substance that converts a semiconductor into a conductor in response to a change in the external environment, such as a copper complex that adsorbs gas molecules
  • an anisotropic conductive material such as a copper complex that adsorbs gas molecules
  • a conductor doped with a metal having a different ionization tendency than the conductor forming the resonator may be used. These materials can effectively cause a change in conductivity of the conversion portion 1d due to a change in the state of the surrounding environment.
  • the conversion section 1d is arranged integrally with the resonator 1a, for example, and in this embodiment, the conversion section 1d is arranged so as to entirely cover the resonator 1 (that is, the strip conductor). .
  • the conversion portion 1d may be located at a position where at least a part of the conversion portion 1d is in contact with the resonator 1a and a change in the electromagnetic wave reflection characteristics of the resonator 1a can be induced.
  • the conversion section 1d may be provided inside the isolation layer 1b or may be provided on the side of the resonator 1a.
  • the converter 1d changes the electromagnetic wave reflection characteristic of the resonator 1a (that is, changes the reflected wave spectrum), so that the reader 2 selectively detects the specific material state of the inspection target object M. allow it to be captured.
  • FIG. 12A is a diagram showing the configuration of the sensor tag 1 according to Modification 2.
  • FIG. 12A is a diagram showing the configuration of the sensor tag 1 according to Modification 2.
  • FIG. 12A is a diagram showing the configuration of the sensor tag 1 according to Modification 2.
  • FIG. FIG. 12B is a modification of the sensor tag 1 shown in FIG. 12A, and shows a configuration in which the sensor tag 1 shown in FIG. 12A is provided with a conversion section 1d.
  • the sensor tag 1 according to Modification 2 is composed of an electromagnetic wave reflector 1e and a slot-type resonator 1a formed in the electromagnetic wave reflector 1e.
  • the electromagnetic wave reflector 1e is made of a plate-like, sheet-like, film-like, or foil-like conductive material such as aluminum or copper.
  • the electromagnetic wave reflector 1e has a rectangular slot formed by cutting out a part of a solid conductor material, and the slot forms a resonator 1a. This resonator 1a typically resonates when the length of the slot corresponds to approximately ⁇ /2 of the wavelength of the irradiated electromagnetic wave.
  • the principle of detecting the material state of the object M to be inspected in the sensor tag 1 according to Modification 2 is the same as that of the sensor tag 1 shown in FIG. That is, the sensor tag 1 according to Modification 2 is configured such that the change in the state of at least one of the resonator 1a and the electromagnetic wave reflector 1e is linked to the change in the material state of the object M to be inspected.
  • the sensor tag 1 according to Modification 2 changes its own electromagnetic wave reflection characteristics based on, for example, changes in the dielectric constant of an inspection target object M (not shown) arranged on the base of the resonator 1a, and performs inspection.
  • the material state of the target object M is detected.
  • a conversion unit 1d may be provided as shown in FIG. 12B.
  • modified examples of the sensor tag 1 include a mode using a ring-shaped or U-shaped resonator 1a.
  • a mode using a ring-shaped or U-shaped resonator 1a when it is desired to avoid the directional dependence of the sensitivity of the sensor tag 1 (the polarization direction of the electromagnetic wave and the direction of change in the material state of the object M to be inspected), it is preferable to use the ring-shaped resonator 1a.
  • the reader 2 when acquiring a reflected wave spectrum from the sensor tag 1, the reader 2 is arranged so as to be directly facing the inspection object M (that is, the sensor tag 1) at a distance of several centimeters to several meters. Then, the reader 2 transmits an electromagnetic wave to each inspection target position Ma where the sensor tag 1 in the inspection target object M is arranged, receives a reflected wave from each inspection target position Ma, and receives a reflected wave from each inspection target position Ma. Acquire the reflected wave spectrum at the position Ma.
  • FIG. 13 is a diagram showing an example of the configuration of the reader 2 and the analysis device 3.
  • the reader 2 includes a transmitter 21, a receiver 22, and a controller 23.
  • the transmission unit 21 includes, for example, a transmission antenna (eg, phased array antenna), an oscillator, and the like.
  • the transmitter 21 transmits, for example, sinusoidal electromagnetic waves having peak intensity at a single frequency. Then, the transmission unit 21 temporally changes the transmission frequency of the electromagnetic wave transmitted from the transmission antenna, and sweeps the frequency within a preset predetermined frequency band.
  • the transmission unit 21, for example, within the frequency band (range of 3.1 GHz to 3 THz) of the UWB band, millimeter wave band or sub-millimeter wave band, for example, every bandwidth of 500 MHz or less, preferably every 10 MHz bandwidth A frequency sweep is performed while changing the transmission frequency in a pattern.
  • the frequency band of the electromagnetic wave transmitted by the transmitter 1 is set so as to include the resonance frequency of the resonator 1a of the sensor tag 1.
  • the transmitting unit 21 may temporarily collectively irradiate electromagnetic waves having a specific intensity profile in a predetermined frequency band (ie, impulse method).
  • the transmission unit 21 temporally sequentially changes the transmission direction of the electromagnetic wave so as to scan the inspection target area of the inspection target object M.
  • the electromagnetic wave scanning method by the transmission unit 21 is arbitrary, for example, the transmission unit 21 raster scans the inspection target object M by electronic scanning using a phased array antenna. That is, the transmission unit 21 changes the transmission direction of the electromagnetic wave to be transmitted while sweeping the frequency of the electromagnetic wave to be transmitted so that the reflected wave spectrum of each inspection target position Ma of the inspection target object M can be obtained.
  • the receiving unit 22 includes, for example, a receiving antenna (for example, a phased array antenna) and a received signal processing circuit that detects the intensity and phase of the reflected wave based on the received signal of the reflected wave acquired by the receiving antenna. be done. Then, the receiving unit 22 receives the reflected wave from the inspection target object M (that is, the sensor tag 1) generated when the transmitting unit 21 transmits the electromagnetic wave with the receiving antenna, and the received signal processing circuit receives the reflected wave. A received wave signal is received and processed to generate a reflected wave spectrum of the inspection target object M from the intensity of the reflected wave detected at each transmission frequency of the electromagnetic wave.
  • a receiving antenna for example, a phased array antenna
  • a received signal processing circuit that detects the intensity and phase of the reflected wave based on the received signal of the reflected wave acquired by the receiving antenna. be done. Then, the receiving unit 22 receives the reflected wave from the inspection target object M (that is, the sensor tag 1) generated when the transmitting unit 21 transmits the electromagnetic wave
  • the receiving unit 22 temporally sequentially changes the receiving direction of the reflected wave so as to correspond to the scanning position (that is, the electromagnetic wave transmitting direction) by the transmitting unit 21 .
  • a scanning method in the receiving direction by the receiving unit 22 for example, electronic scanning using a phased array antenna is used as in the case of the transmitting unit 21.
  • FIG. the receiving unit 22 acquires the reflected wave spectrum (frequency spectrum) of each inspection target position Ma of the inspection target object M.
  • the signal processing circuits of the transmitting section 21 and the receiving section 22 may be integrally configured by a vector network analyzer.
  • the control unit 23 is a microcomputer including, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and controls the reader 2 in an integrated manner.
  • the control unit 23 may cause the transmission unit 21 and the reception unit 22 to execute the above-described processing at predetermined time intervals in order to sequentially monitor the material state of the object M to be detected.
  • the transmission unit 21 and the reception unit 22 may be caused to execute the above-described processing in response to the reflected wave spectrum acquisition command.
  • the reader 2 may have a camera in order to confirm the location of the object M to be inspected where the electromagnetic wave scanning has been performed by the transmitting unit 21 and the receiving unit 22. good.
  • the analysis device 3 includes a material state estimating unit 31 for estimating the distribution of the material state of the inspection target object M, and an image display unit 32 for displaying an image of the distribution of the material state of the inspection target object M estimated by the material state estimating unit 31.
  • FIG. 14 is a diagram illustrating an example of a method of estimating the distribution of the material state of the inspection target object M by the analysis device 3 (material state estimating unit 31).
  • FIG. 14 shows reflected wave spectra acquired at different positions in the inspection object M during the same time period.
  • the reflected wave spectrum obtained at the second point in the inspection object M has a frequency shift of about 0.2 GHz from the reflected wave spectrum obtained at the first point in the inspection object M. , where the second point in the inspected object M is presumed to be in an abnormal state.
  • the material state estimation unit 31 acquires the reflected wave spectrum of the inspection target object M (that is, the reflected wave spectrum characterized by the electromagnetic wave reflection characteristics of the sensor tag 1) from the reader 2, and obtains the reflected wave spectrum Based on this, the material state of the object M to be inspected is estimated.
  • the material condition estimating unit 31 refers to the reflected wave spectra obtained at a plurality of inspection target positions Ma of the inspection target object M in the same time period, and compares them with each other and/or based on them. , the distribution of the material state of the object M (for example, normal and abnormal distributions) is estimated.
  • the electromagnetic wave reflection characteristic itself of the sensor tag 1 may change due to the state of materials other than the detection target of the inspection target object M (for example, the sensor tag 1 may Even with a configuration that detects the pressure state, the electromagnetic wave reflection characteristics of the sensor tag 1 may change under the influence of the temperature in the object M to be inspected).
  • the reflected wave spectrum acquired by the reader 2 also includes reflected wave components from the inspection target object M itself and reflected wave components from surrounding objects of the inspection target object M. And since these are affected by various factors of the surrounding environment (for example, temperature, humidity, light intensity, magnetic field, etc.), even if the material state of the object M to be detected is the same, the reader 2 The acquired reflected wave spectrum changes from time to time.
  • the method of estimating the state of the material of the object M to be detected by collating it with the data of the reference pattern prepared in advance may lack accuracy.
  • the material state estimating unit 31 does not estimate the material properties of the inspection object M only with the reflected wave spectrum obtained at one position of the inspection object M, but rather estimates the material properties of the inspection object M in the same time zone (for example , during one electromagnetic wave scan), refer to the reflected wave spectra obtained at each of a plurality of inspection positions Ma of the inspection object M, and compare them with each other and/or generate reference data based on them By doing so, the distribution of the material state in the object M to be inspected is estimated (see FIG. 14). For example, the material state estimation unit 31 estimates the presence or absence of an abnormal point of the material state in the object M to be inspected.
  • the abnormal point of the material state in the object M to be inspected is, for example, a position where corrosion occurs in the object M to be inspected or an abnormality in the composition of the constituent material in the object M to be inspected. means position.
  • the reflected wave spectra obtained at two mutually adjacent locations in the inspection object M in the same time period have substantially the same noise components superimposed on these reflected wave spectra. Therefore, it is based on the technical idea that if the material state of the object M to be inspected is the same at the two locations, the pattern will be the same. In other words, when the patterns of reflected wave spectra obtained at two adjacent locations in the inspection object M are different in the same time period, it means that one of the two locations is in an abnormal state. do.
  • the reflected wave spectrum of the estimated position in the inspection target object M with, for example, the reflected wave spectra obtained at the surrounding positions, it is possible to determine whether the material state of the estimated target position is normal. It is possible to estimate whether it is in an abnormal state.
  • the material state estimation unit 31 when estimating the distribution of the material state in the inspection target object M, the material state estimation unit 31 does not necessarily need to estimate which position is abnormal and which position is normal. For example, the material state estimation unit 31 may estimate only the uniformity of the distribution of the material state in the object M to be inspected. In this case, the material state estimating section 31 may only estimate whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M are the same.
  • the material state estimating unit 31 calculates the reflected wave spectrum obtained at each of the plurality of inspection target positions Ma in the inspection target object M (that is, each of the plurality of inspection target positions Ma in the inspection target object M).
  • the electromagnetic wave reflection characteristics of the sensor tag 1 appearing in the frequency spectrum obtained in ) are compared, and an analysis regarding their identity is performed to estimate the uniformity of the distribution of the material state in the inspection target object M.
  • the material state estimation unit 31 determines that the specific reflected wave spectrum
  • the inspection target position Ma from which the reflected wave spectrum is obtained is specified as an abnormal state (that is, majority rule).
  • the identity analysis by the material state estimator 31 is typically performed by determining the electromagnetic wave reflection characteristics of the sensor tag 1 appearing in the reflected wave spectrum (resonance peak peak position and/or peak intensity).
  • the material state estimation unit 31 preferably performs analysis based on pattern matching such as template matching and trained learner models (for example, SVM (Support Vector Machine) and neural networks). . From the reflected wave spectrum acquired by the reader 2, it is often difficult to accurately identify the peak position and peak intensity of the resonance peak of the sensor tag 1.
  • the identity of the two reflected wave spectra is determined based on the amount of frequency shift of the entire pattern of the reflected wave spectrum and the amount of change in the peak intensity of the entire vicinity of the resonance peak in the reflected wave spectrum. to judge.
  • the material state estimation unit 31 refers to discrimination reference data stored in advance in a storage unit (for example, the ROM of the analysis device 3 not shown) to determine the two reflected wave spectra. (for example, the amount of frequency shift or the amount of change in peak intensity) is greater than or equal to a threshold value, it may be determined that the estimation target position is abnormal.
  • discrimination reference data can be obtained in advance through experiments or simulations, for example. Further, such discrimination reference data may be stored in association with the degree of change in the state of the material according to the magnitude of the difference.
  • the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M are referred to in the same time zone, and these are compared with each other.
  • a method of estimating the distribution of the material state of the object M for example, distribution related to normal and abnormal is adopted.
  • the distribution of the material state of the inspection target object M (for example, the normal and abnormal distributions) can be obtained even under circumstances in which only reflected wave spectra that change from time to time due to various factors in the surrounding environment can be obtained. can be estimated accurately.
  • this makes it possible to estimate the distribution of the material state of the object M to be inspected without pre-storing reference patterns of all reflected wave spectra obtained under various different conditions.
  • the "reflected wave spectra obtained at each of a plurality of inspection target positions Ma in the inspection target object M in the same time zone" referred to here means that the surrounding environment of the inspection target object M is close to the extent that the surrounding environment does not change. It means a time zone, and does not necessarily have to be the reflected wave spectrum obtained at each inspection target position Ma in the inspection target object M in one electromagnetic wave scanning.
  • the image display unit 32 converts the distribution of the material state of the object to be inspected M obtained by the analysis into, for example, an image pattern (hereinafter referred to as a “material distribution image”), and displays it on the display unit (for example, the analysis device 3 LCD display).
  • the image display unit 32 associates the type of the material state of the detection target with the image color using a conversion table prepared in advance, and for each inspection target position Ma of the inspection target object M, displays the inspection target position Ma.
  • a material distribution image is generated by changing the image color according to the material state.
  • the image generation unit 32 converts the material distribution image into an electromagnetic wave reflection intensity image (for example, an image expressing the reflection intensity for each scanning position in gray scale) obtained when the inspection target object M is scanned with electromagnetic waves.
  • an electromagnetic wave reflection intensity image for example, an image expressing the reflection intensity for each scanning position in gray scale
  • a superimposed display image is generated and the display image is output to the display unit (see FIG. 16A).
  • the image generator 32 may generate a display image in which the material distribution image is superimposed on the camera image instead of the electromagnetic wave reflection intensity image.
  • the method of estimating the distribution of the material state of the object M (for example, distribution related to normal and abnormal) can be modified in various ways.
  • the electromagnetic wave reflection characteristics of the sensor tag 1 are calculated from these reflected wave spectra. may be extracted, and the sameness analysis may be performed using the electromagnetic wave reflection characteristics of the extracted sensor tag 1 .
  • the material state estimating unit 31 generates reference data for estimating the normal state and the abnormal state based on the reflected wave spectrum obtained at each of the plurality of inspection target positions Ma in the inspection target object M. good too.
  • the material condition estimation unit 31 may generate reflected wave spectra obtained at a plurality of positions around the estimation target position as the reference data.
  • the material state estimation unit 31 acquires the reflected wave spectrum at each inspection target position Ma of the inspection target object M when the entire inspection target object M is in a normal state, for example, immediately after the inspection target object M is manufactured. Then, differences in reflected wave spectra (for example, differences in peak positions and peak intensities of resonance peaks) obtained at mutually different positions of the inspection target object M may be grasped. Then, in the subsequent comparison processing, the material state estimating unit 31 estimates whether the estimation target position is normal or abnormal based on changes in the difference in the reflected wave spectra obtained at mutually different positions of the inspection target object M. may be performed.
  • FIG. 15A and 15B are diagrams for explaining an example of the operation of the state detection system U.
  • FIG. Note that the processing of the flowchart of FIG. 15 is processing that is executed, for example, triggered by an inspection command start command from the user.
  • step S10 the reader 2 transmits electromagnetic waves to irradiate the inspection target area of the inspection target object M (that is, the area in which the plurality of sensor tags 1 are dispersedly arranged), and the electromagnetic wave is reflected from the inspection target object M. receive waves. Then, the reader 2 switches the electromagnetic wave transmission direction of the transmission unit 21 and the electromagnetic wave reception direction of the reception unit 22, and scans the inspection target area of the inspection target object M with electromagnetic waves. At this time, the reader 2 sweeps the transmission frequency at each scanning position, and obtains the reflected wave spectrum from the inspection object M in a predetermined frequency band. The reader 2 then transmits the reflected wave spectrum obtained at each scanning position of the object M to be inspected to the analysis device 3 via a communication line.
  • step S20 the analysis device 3 refers to the reflected wave spectrum of each scanning position of the inspection target object M obtained in step S10, and compares them with each other and/or generates reference data based on them.
  • the distribution of the material state in the object M to be inspected (for example, the distribution of normal and abnormal) is estimated.
  • step S30 the analysis device 3 generates a material distribution image of the inspection object M using the information regarding the distribution of the material state in the inspection object M obtained in step S20. Then, the analysis device 3 generates a display image (for example, see FIG. 16A) in which the material distribution image of the inspection object M is superimposed on the electromagnetic wave reflection intensity image obtained when the inspection object M is scanned with electromagnetic waves. Then, the display image is output to the display unit.
  • a display image for example, see FIG. 16A
  • the state detection system U provides the user with information on the distribution of the material state in the object M to be inspected.
  • FIG. 16A is a diagram illustrating an implementation of the state detection system U according to the first embodiment.
  • the left diagram in FIG. 16A shows a camera image of reinforced concrete (inspection target object M of the present embodiment) photographed by the reader 2, and the right diagram in FIG. 16A is based on the reflected wave spectrum acquired by the reader 2.
  • FIG. 16B shows an electromagnetic wave reflection intensity image of the reinforced concrete in the left diagram of FIG. Note that FIG. 16A shows a mode in which the material state distribution image of reinforced concrete is displayed in a form superimposed on the electromagnetic wave reflection intensity image (the right diagram in FIG. 16A).
  • the reinforced concrete used in buildings is not permanent and deteriorates as the reinforcing steel corrodes.
  • the composition of reinforced concrete is adjusted so that it becomes basic at the construction stage, but this is the process of corrosion, in the following manner: concrete neutralization ⁇ reinforcing bar corrosion (rust) ⁇ concrete cracking ⁇ concrete peeling ⁇ reinforcing bar breaking ⁇ collapse Corrosion progresses.
  • rust rust
  • concrete cracking ⁇ concrete peeling
  • reinforcing bar breaking ⁇ collapse Corrosion progresses.
  • the industry dislikes this inspection because it involves the risk of drilling a hole and is time-consuming, there is currently no means of non-destructive inspection.
  • the state detection system U is applied to detecting the state of corrosion of reinforcing bars in the reinforced concrete (hereinafter referred to as "reinforced concrete M1") using reinforced concrete as the inspection target object M. It is
  • FIG. 16B is a diagram showing an example of how the sensor tag 1 is arranged in the reinforced concrete M1.
  • FIG. 16C is a diagram showing an example of changes over time in the peak intensity of the resonance peak of the sensor tag 1 due to corrosion of reinforcing bars in the reinforced concrete M1.
  • the sensor tags 1 are embedded in, for example, a plurality of positions of the reinforced concrete M1 (for example, 28 inspection target positions Ma shown as black areas in the left diagram of FIG. 16A). be.
  • the sensor tag 1 according to the present embodiment is formed by embedding a resonator 1a (here, a strip conductor) at a position about 3 to 10 mm away from the reinforcing bars in the concrete when the reinforced concrete M1 is constructed.
  • the sensor tag 1 according to this embodiment has the sensor structure shown in FIG. and a rear reflector 1c made of a reinforcing bar of M1 (see FIG. 16B).
  • the corroded portion M1Q when the corroded portion M1Q occurs in the reinforcing bar of the reinforced concrete M1, the corroded portion M1Q causes the conductivity of the reinforcing bar (that is, the back reflector 1c) to decrease. This causes an electromagnetic wave reflection characteristic that reduces the resonance peak of the resonator 1a (see FIG. 16C).
  • a plurality of such sensor tags 1 are embedded in the concrete along the extending direction of the reinforcing bars, for example, when the reinforced concrete M1 is constructed.
  • the sensor tag 1 is attached to the surface of the reinforced concrete M1, it is difficult for the sensor tag 1 to detect the state of corrosion of the reinforcing bars inside the reinforced concrete M1. Therefore, in the state detection system U according to the present embodiment, the sensor tag 1 is arranged inside the reinforced concrete M1.
  • the reader 2 acquires the reflected wave spectrum of each inspection target position Ma of the reinforced concrete M1 while scanning the inspection target area of the reinforced concrete M1 with electromagnetic waves.
  • the analysis device 3 refers to the reflected wave spectra obtained at each inspection target position Ma of the reinforced concrete M1 and compares them to estimate the distribution of the state of corrosion of the reinforcing bars in the reinforced concrete. Corrosion of reinforcing bars in the reinforced concrete M1 progresses locally from easily corroded portions over time after construction of the reinforced concrete M1. From this point of view, the analysis device 3 finds the inspection target position Ma where the corroded portion M1Q occurs, for example, by analyzing the identity of the reflected wave spectrum obtained at each inspection target position Ma of the reinforced concrete M1. Then, the analysis device 3 determines whether or not the reinforcing bars are corroded at all inspection target positions Ma of the reinforced concrete M1, and generates a material state distribution image (see the right diagram of FIG. 16A) from the determination result.
  • the state detection system U makes it possible to grasp the presence or absence of the corroded portion M1Q in the reinforced concrete M1 and the location of the corroded portion M1Q.
  • the analysis device 3 may store in advance corrosion degree determination reference data that associates the degree of decrease in the peak intensity of the resonance peak of the sensor tag 1 with the degree of corrosion of the reinforcement.
  • the analysis device 3 for example, from the degree of decrease in the peak intensity of the resonance peak in the reflected wave spectrum at the inspection target position Ma where the corroded portion M1Q occurs with respect to the reflected wave spectrum of the uncorroded rebar, The corrosion degree of the reinforcing bar at the inspection target position Ma may be estimated by referring to the corrosion degree discrimination reference data.
  • the analysis device 3 monitors, for example, the time-dependent change in the reflected wave spectrum (for example, the time-dependent change in the peak intensity of the resonance peak) obtained at each inspection timing, and is used as a reference for estimating the state of corrosion of the reinforcing bars in the reinforced concrete M1. Information is preferred. This makes it possible to more accurately estimate the distribution of the state of corrosion of reinforcing bars in reinforced concrete.
  • the state detection system U can monitor the state of corrosion of reinforcing bars in the reinforced concrete M1 and reliably perform maintenance and management of the reinforced concrete M1.
  • FIG. 17A is a diagram illustrating an embodiment of the state detection system U according to the second embodiment.
  • fiber reinforced resins such as CFRTP have attracted attention as lightweight and strong materials.
  • Injection molding is generally used as one of the means for molding fiber reinforced resin, but when a large area member is molded by injection molding, at the end away from the injection nozzle in the fiber reinforced resin, the fibers The problem is that the content decreases, the fibers become unaligned, and the strength of the fiber-reinforced resin decreases.
  • the state detection system U uses a fiber reinforced resin as an inspection target object M, and the fiber content and the fiber content in the fiber reinforced resin (hereinafter referred to as "fiber reinforced resin M2") and/or to detect the distribution of fiber alignment (ie, orientation).
  • a plurality of sensor tags 1 are arranged, for example, by affixing method over the entire back surface of the injection-molded fiber reinforced resin M2.
  • a sensor tag 1 for detecting the degree of alignment of fibers see FIGS. 9A and 9B
  • a sensor tag 1 for detecting the content of fibers see FIGS. 7A and 7B
  • FIG. 17B is a diagram showing differences in reflected wave spectra of the sensor tag 1 due to differences in the degree of alignment of fibers in the fiber reinforced resin M2.
  • the fibers in the fiber-reinforced resin M2 are aligned parallel to the extending direction of the resonator length of the resonator 1a of the sensor tag 1, the resonance peak in the sensor tag 1 (resonance The peaks f2a, f2b, f2c) increase. Therefore, when the degree of alignment of the fibers in the fiber reinforced resin M2 is high (that is, the orientation is high), the reflected wave spectrum of the sensor tag 1 becomes a reflected wave spectrum like the solid line in FIG. When the fibers inside are not aligned, the reflected wave spectrum is such that the resonance peaks f2a, f2b, and f2c disappear, as indicated by the dotted line in FIG. 17B.
  • FIG. 17C is a diagram showing differences in reflected wave spectra due to differences in fiber content in the fiber reinforced resin M2.
  • the amount of fiber content in the fiber reinforced resin M2 is expressed as a change in dielectric constant of the fiber reinforced resin M2, for example. Therefore, when the fiber content in the fiber reinforced resin M2 is high, the reflected wave spectrum of the sensor tag 1 has a resonance peak (resonance The position of the peak f2d) will change.
  • the reader 2 is arranged above the fiber reinforced resin M2 being conveyed by the conveyor and separated from the conveyor by several meters. An electromagnetic wave is transmitted to the existence position of 1, and the reflected wave spectrum of each inspection target position Ma of the fiber reinforced resin M2 is acquired.
  • the analysis device 3 compares the reflected wave spectrum obtained at each inspection target position Ma of the fiber reinforced resin M2, and the distribution of the fiber content and/or the degree of alignment (that is, orientation) of the fibers in the fiber reinforced resin M2. to estimate For example, the analysis device 3 determines that an abnormal position exists in the fiber reinforced resin M2 when the fiber content rate and orientation are uneven among a plurality of inspection target positions Ma in the fiber reinforced resin M2. do. Then, when the fiber content rate and orientation are uneven in the manufactured fiber reinforced resin M2, the analysis device 3 instructs the conveying device to discard the fiber reinforced resin M2.
  • the analysis device 3 estimates the reflected wave spectrum in a normal state from the reflected wave spectrum obtained at the central position near the injection nozzle in the fiber reinforced resin M2, and based on this, from the injection nozzle in the fiber reinforced resin M2 Abnormality or the like at the remote end may be determined.
  • the state detection system U can suppress unevenness in the fiber content and orientation in the fiber reinforced resin M2.
  • the sensitivity of the sensor tag 1 to the degree of alignment of the fibers in the fiber reinforced resin M2 may be reduced. Therefore, in the state detection system U according to the present embodiment, when using the configuration of the sensor tag 1 shown in FIG. It is preferable to provide sensor tags 1 of different types. On the other hand, in order to avoid direction dependence of the sensitivity of the sensor tag 1, the resonator 1a of the sensor tag 1 may be ring-shaped.
  • FIG. 18A is a diagram illustrating an embodiment of the state detection system U according to the third embodiment.
  • the state detection system U uses a winding core around which a sheet product is wound as an object M to be inspected, and the distribution of pressure applied to the winding core (hereinafter referred to as "winding core M3"). It is used for detecting
  • FIG. 18B is a diagram showing an example of changes in reflected wave spectrum of the sensor tag 1 observed when pressure unevenness occurs in the winding core M3.
  • FIG. 18C is a diagram showing an example of a material state distribution image generated by the analysis device 3.
  • the sensor tag 1 is attached to the outer peripheral surface of the winding core M3, for example, before the sheet-shaped product Mf is wound, and the sheet-shaped product Mf is attached to the winding core M3. At each winding timing, the pressure applied from the sheet product Mf to the winding core M3 is detected.
  • the sensor tag 1 according to this embodiment for example, one having a conversion portion 1d made of an anisotropic conductive film whose conductivity changes with pressure is used (see FIG. 11A).
  • the sensor tag 1 converts changes in the pressure applied to the winding core M3 into changes in its own electromagnetic wave reflection characteristics. That is, the sensor tag 1 changes the conductivity of the conversion portion 1d in accordance with the change in the pressure applied to the winding core M3, thereby changing the peak intensity of the resonance peak in the reflected wave spectrum.
  • such sensor tags 1 are arranged over the entire area of the winding core M3 (see, for example, the left diagram of FIG. 18C), and the pressure distribution applied to the winding core M3 is detected. .
  • the reader 2 is arranged, for example, on the inner peripheral surface side of the winding core M3, and at each timing when the sheet-like product Mf is wound around the winding core M3, the reader 2 detects each inspection target position Ma of the winding core M3. An electromagnetic wave is transmitted and received, and a reflected wave spectrum of each inspection target position Ma of the winding core M3 is obtained.
  • the analysis device 3 compares the reflected wave spectra obtained at each inspection target position Ma of the winding core M3 at each timing when the sheet product Mf is wound around the winding core M3, and performs each inspection of the winding core M3. Estimate the distribution of pressure applied to the target position Ma. At this time, the analysis device 3 determines, for example, whether or not the reflected wave spectra obtained at each inspection target position Ma of the winding core M3 have the same pattern. Always monitor whether or not pressure unevenness occurs.
  • the analysis device 3 adjusts the curvature of the rollers in the upstream process, etc., and eliminates the pressure unevenness applied to the winding core M3. At this time, the analysis device 3 determines at which position in the winding core M3 the reflected wave spectrum has changed to an abnormal state, and whether the change in the reflected wave spectrum is in the increasing direction of the peak intensity of the resonance peak or in the decreasing direction. and the degree of the change, the curvature and the like of the rollers in the upstream process are adjusted.
  • the state detection system U can suppress pressure unevenness occurring in the winding core M3.
  • the state detection system U by detecting the pressure itself applied to the core M3, it is possible to adjust the curvature of the rollers in the upstream process, etc. It is possible to eliminate unevenness in the pressure applied to the core M3 at an earlier stage than the timing of detecting the occurrence of a change in the appearance of the Mf due to deterioration in quality. Therefore, according to the state detection system U according to the present embodiment, it is possible to reliably avoid deterioration in product quality due to uneven pressure applied to the winding core M3.
  • the configuration of the state detection system U for detecting the distribution of pressure applied to the winding core M3 is shown.
  • the configuration of the state detection system U for detecting the pressure distribution can also be realized with a configuration similar to that described above.
  • FIG. 19A is a diagram illustrating an embodiment of the state detection system U according to the fourth embodiment.
  • the state detection system U is applied to detect the wear distribution of a tire (hereinafter referred to as "tire M4") using a vehicle tire as an inspection target object M. ing.
  • FIG. 19B is a diagram showing an example of changes in reflected wave spectrum of the sensor tag 1 observed when the tire M4 wears.
  • FIG. 19C is a diagram showing an example of a material state distribution image generated by the analysis device 3.
  • the sensor tag 1 is embedded, for example, inside the tire M4 (for example, the area between the tread and the belt that constitute the tire M4). Then, when the tread of the tire M4 wears, the sensor tag 1 changes a part of the underlying portion of the sensor tag 1 into an air layer, and the sensor tag 1 resonates its own reflected wave spectrum so as to respond to the state in which the dielectric constant is lowered. Change the position of the peak to the high frequency side (see FIG. 19B).
  • the sensor tag 1 is arranged, for example, over the entire circumference of the tire M4, and the wear condition of the entire surface of the tire M4 is sequentially monitored.
  • the reader 2 is arranged, for example, at a position facing the tire M4 inside the vehicle, separated from the tread outer peripheral surface of the tire M4 by about 30 cm. An electromagnetic wave is transmitted to one existing position, and the reflected wave spectrum of each of the plurality of inspection target positions Ma of the tire M4 is acquired. In addition, the reader 2 may be arranged under the road surface in order to deal with a vehicle not equipped with a reader.
  • the analysis device 3 compares the reflected wave spectra obtained at each of the plurality of inspection target positions Ma of the tire M4, and estimates the distribution of the wear state of the plurality of inspection target positions Ma in the tire M4. At this time, the analysis device 3, for example, determines whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the tire M4 have the same pattern. Whether or not it has occurred is constantly monitored, and the monitoring result is output as a material state distribution image (see FIG. 19C).
  • the analysis device 3 determines whether a reflected wave spectrum indicating an abnormal state is found among the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the tire M4.
  • the degree of wear at that location may be determined based on the amount of frequency shift in the wave spectrum.
  • the state detection system U can reliably detect wear occurring in the tire M4 with the configuration described above.
  • FIG. 20A is a diagram illustrating an embodiment of the state detection system U according to the fifth embodiment.
  • belt conveyors are known to break due to deterioration over time when operated in a poor environment. Once broken, it takes a long time to replace, resulting in downtime loss.
  • Typical causes of breakage of such belt conveyors include peeling of the belts at the belt joints that connect the belts, and cracks that occur in the belt main body.
  • the state detection system U uses a belt conveyor as an inspection target object M to detect peeling and cracking of the belt that occurs in the belt conveyor (hereinafter referred to as "belt conveyor M5"). It is used for detecting
  • FIG. 20B shows changes in the reflected wave spectrum of the sensor tag 1 observed when the belt peeling occurs at the belt joint portion ML1 of the belt conveyor M5 and when a crack occurs at the belt main body portion ML2 of the belt conveyor M5. It is a figure which shows an example.
  • the sensor tag 1 is interposed between one belt and the other belt at the belt junction ML1 of the belt conveyor M5, as shown in the enlarged view of FIG. , and is arranged on the back side of the belt main body ML2 of the belt conveyor M5.
  • the belt joint ML1 of the belt conveyor M5 separates from the sensor tag 1 disposed at the belt joint ML1 of the belt conveyor M5, part of the periphery of the sensor tag 1 changes into an air layer, and the underlying portion of the sensor tag 1 changes. Detects that the dielectric constant of That is, the sensor tag 1 disposed at the belt joint portion ML1 of the belt conveyor M5 detects the separation state of the belt joint portion ML1 as a change in the peak position of the resonance peak in the reflected wave spectrum (here, shifting to the high frequency side). information related to the occurrence of is passed to the reader 2.
  • the sensor tag 1 disposed on the belt main body ML2 of the belt conveyor M5 changes part of the periphery of the sensor tag 1 into an air layer, and the underlying portion of the sensor tag 1 changes. Detects a decrease in dielectric constant. That is, the sensor tag 1 disposed on the belt main body ML2 of the belt conveyor M5 detects cracks in the belt main body ML2 as changes in the peak position of the resonance peak in the reflected wave spectrum (here, shifting to the high frequency side). Information related to the occurrence is passed to the reader 2 .
  • the sensor tag 1 arranged at the belt joint portion ML1 and the sensor tag 1 arranged at the belt main body portion ML2 have different resonance frequencies. Sensor tag 1 is adopted. In other words, this allows the reader 2 to detect both the state of the belt joint portion ML1 and the state of the belt main body portion ML2 by transmitting and receiving electromagnetic waves once.
  • such sensor tags 1 are arranged over the entire circumference of the belt conveyor M5.
  • the reader 2 is arranged, for example, several meters apart from the belt conveyor M5, transmits an electromagnetic wave to the existing position of the sensor tag 1 in the belt conveyor M5, and detects the reflected wave spectrum of each inspection target position Ma of the belt conveyor M5. to get Then, the analysis device 3 compares the reflected wave spectra obtained at each inspection target position Ma of the belt conveyor M5, and estimates the distribution of the peeling occurrence state and the crack occurrence state at each inspection target position Ma of the belt conveyor M5.
  • the state detection system U can reliably perform maintenance management of the belt conveyor M5 and prevent damage to the belt conveyor M5.
  • FIG. 21 is a diagram illustrating an embodiment of the state detection system U according to the sixth embodiment.
  • the state detection system U uses a rubber product as an inspection target object M, and the rubber product (hereinafter referred to as "rubber product M6") partially generates It is used for detecting changes in dielectric constant.
  • rubber product M6 the rubber product
  • the configuration for detecting the dielectric constant distribution in the rubber product M6 will be shown, but the configuration for detecting the dielectric constant distribution in the sheet-like product can also be realized with the same configuration. .
  • the sensor tag 1 is attached, for example, to the back surface of the rubber product M6.
  • the sensor tags 1 are arranged over the entire area of the rubber product M6 to detect the dielectric constant of each inspection target position Ma of the rubber product M6.
  • the peak position of the resonance peak changes. , to detect changes in the dielectric constant of the rubber product M6.
  • the reader 2 is arranged, for example, during the quality control process of the manufactured rubber product M6.
  • the leader 2 is spaced apart from the rubber product M6 during the process in which the manufactured rubber product M6 is conveyed.
  • An electromagnetic wave is transmitted to the existing position of the sensor tag 1 of the product M6, and the reflected wave spectrum of each of the plurality of inspection target positions Ma in the rubber product M6 is obtained.
  • the analysis device 3 determines whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the rubber product M6 have the same pattern, thereby determining the dielectric constant in the rubber product M6. It constantly monitors whether or not any abnormality has occurred, and outputs the monitoring result as a material condition distribution image.
  • the state detection system U can reliably perform quality control of the rubber product M6.
  • Example 7 22A, 22B, and 22C are diagrams illustrating an embodiment of the state detection system U according to the seventh embodiment.
  • the state detection system U is applied to detect the hardened state of the joints in the sheet-like product M7 as the inspection target object M. .
  • FIG. 22A schematically shows the manufacturing process of the sheet product M7.
  • FIG. 22B shows an arrangement mode of the sensor tag 1 for performing peeling inspection in the sheet-like product M7.
  • FIG. 22C is a diagram showing an example of changes in the reflected wave spectrum observed when a peeled portion M7Q occurs in the sheet-like product M7.
  • the sensor tag 1 detects, for example, the peeled state of the joints in the sheet product M7 from the change in the dielectric constant of the underlying portion of the sensor tag 1. That is, the sensor tag 1 detects that when the joint in the sheet product M7 is peeled off, part of the part changes to an air layer and the dielectric constant around the sensor tag 1 (resonator) decreases. .
  • the sensor tags 1 are arranged, for example, on a sensor group installation sheet 100 on which many sensor tags 1 are arranged on the entire surface.
  • the sensor group installation sheet 100 is placed so that the sensor tag 1 is brought into contact with one surface of the completed sheet product M7 during the quality control process.
  • the reader 2 transmits electromagnetic waves to the sensor group installation sheet 100 and the sheet-like product M7 in a state where the sensor group installation sheet 100 is placed on the sheet-like product M7. Acquire the reflected wave spectrum of Ma.
  • the analysis device 3 compares the reflected wave spectra obtained at each of the positions Ma to be inspected in the sheet-like product M7, and determines whether the reflected wave spectra obtained at each of the positions Ma to be inspected in the sheet-like product M7 have the same pattern. It is determined whether or not. Based on this, it is estimated whether or not the peeled portion M7Q is generated at any position in the entire area of the sheet-shaped product M7.
  • the state detection system U can reliably perform quality control of the sheet product M7.
  • FIG. 23A is a diagram illustrating an embodiment of the state detection system U according to the eighth embodiment.
  • the state detection system U detects the distribution of the water content in the soil (hereinafter referred to as "soil M8"), which is the soil in the greenhouse as the inspection target object M. It is applied for the use to do.
  • FIG. 23B is a diagram showing an example of an arrangement mode of sensor tags 1 for monitoring the moisture content distribution of soil M8.
  • FIG. 23C shows the reflected wave spectrum of the sensor tag 1 observed when there is sufficient moisture in the soil M8, and the sensor tag 1 observed when there is no moisture in the soil M8 (dry state). is a diagram showing a reflected wave spectrum of .
  • the sensor tag 1 is arranged on or inside the soil M8, for example.
  • the sensor tag 1 according to the present embodiment has a structure having a conversion part 1d that affects the resonance state of the resonator 1a according to changes in the moisture content of the soil M8 (see FIG. 12B). .
  • the conversion unit 1d collects water in the soil M8, and causes a change in the peak position and/or the peak intensity of the resonance peak of the resonator 1a according to the change in the water content of the soil M8.
  • the conversion unit 1d collects the water in the soil M8, suppresses the flow of the resonance current around the resonator 1a, and suppresses the resonance current of the resonator 1a. It works to reduce peaks.
  • the conversion unit 1d may be configured to cause a change in permittivity around the resonator 1a in accordance with a change in the moisture content of the soil M8. That is, the sensor tag 1 according to this embodiment detects changes in the water content of the soil M8 as changes in the peak position and/or the peak intensity of the resonance peak.
  • the sensor tag 1 is arranged at each position (inspection target position Ma) where the plant to be observed exists in the entire area of the soil M8, and each inspection target position Ma of the soil M8 is arranged. to detect the moisture content of
  • the reader 2 transmits electromagnetic waves to the position where the sensor tag 1 exists in the soil M8, and acquires the reflected wave spectrum of each inspection target position Ma in the soil M8. Further, the analysis device 3 determines, for example, whether or not the reflected wave spectrum of each inspection target position Ma in the soil M8 has the same pattern. It constantly monitors whether or not there is any, and outputs the monitoring result as a material state distribution image.
  • water is selectively supplied to the dry place to suppress root rot of the plant.
  • the state detection system U can monitor the occurrence of unevenness in the amount of moisture in the soil M8 inside the house.
  • FIG. 24A is a diagram illustrating an embodiment of the state detection system U according to the ninth embodiment.
  • Example 8 we focused on the importance of detecting the amount of moisture in the soil inside the greenhouse, but in smart agriculture, in addition to detecting the amount of moisture in the soil, we are also interested in monitoring the temperature distribution. In particular, there is a demand for monitoring the surface temperature of crops because excessive heat applied to crops before harvest by sunlight deteriorates the quality of the crops.
  • the state detection system U is used to detect the distribution of temperature in a plant (hereinafter referred to as "plant M9") in a greenhouse as an object to be inspected M. applied to
  • FIG. 24B is a diagram showing an example of changes in the reflected wave spectrum of the sensor tag 1 according to changes in the temperature of the plant M9.
  • the sensor tag 1 is attached, for example, to the surface of the fruit in the plant M9.
  • the sensor structure shown in FIG. 12B is applied to the sensor tag 1 according to the present embodiment, and the conversion unit 1d responds to the temperature of the fruit to cause a change in dielectric constant around the resonator 1a.
  • FIG. 24B shows changes in the reflected wave spectrum when a paraffin-impregnated nonwoven fabric that melts at 60 degrees is used as the converting portion 1d. The position of the resonance peak of the resonator 1a changes when the frequency exceeds the degree.
  • the sensor tag 1 is arranged for each fruit (inspection target position Ma) in the plant M9 to detect the temperature of each fruit in the plant M9.
  • the reader 2 transmits electromagnetic waves to each inspection target position Ma in the plant M9, and acquires the reflected wave spectrum of each inspection target position Ma in the plant M9.
  • the analysis device 3 determines whether or not the reflected wave spectrum of each inspection target position Ma in the plant M9 has the same pattern. It constantly monitors whether or not (for example, partial direct sunlight) is generated, and outputs the monitoring result as a material condition distribution image.
  • a heat shielding curtain is selectively applied to the inspection target position Ma. may be performed.
  • the state detection system U can monitor the occurrence of temperature unevenness in the plant M9.
  • the state detection system U is an electromagnetic wave responsive material disposed in a state of being responsive to the state of the material to be detected of the object to be inspected, and changing its own electromagnetic wave reflection characteristics according to the state of the material; a reader that transmits an electromagnetic wave from the outside of the object to be inspected to the position where the electromagnetic wave responsive material is arranged in the object to be inspected, receives the reflected wave, and acquires the spectrum of the reflected wave; , By referring to the spectra acquired at a plurality of positions in the object to be inspected during the same time period by the reader and comparing them with each other and/or generating reference data based thereon, an analysis device for estimating the distribution of the material state in the inspected object; Prepare.
  • an abnormality occurring in a part of the inspection object M (for example, the inspection object M occurrence of internal corrosion and abnormalities in the composition of the constituent materials in the object M to be inspected) can be detected accurately and easily.
  • this makes it difficult to store, in advance, identifiable reference data of reflected wave spectra of all patterns assuming various environmental changes through experiments and simulations, as in the state detection system according to the prior art. and complicated work can be avoided.
  • the state detection system U it is possible to provide the user with the distribution of the state of materials in the object M to be inspected as a state distribution image.
  • the user can easily grasp the material condition of the entire inspection object M without overlooking an abnormality occurring in a part of the inspection object M.
  • this also enables the user to easily perform, for example, repair work (for example, reinforcement work for a concrete structure) on the object M to be inspected.
  • the chipless sensor tag 1 is shown as an example of the electromagnetic wave responsive material arranged in the object M to be inspected.
  • the state detection system U if the electromagnetic wave response material responds to the state of the material to be detected of the object to be inspected and changes its own electromagnetic wave reflection characteristics according to the state of the material, the chipless Unlike the sensor tag 1, it may not have a resonator 1a.
  • the state detection system it is possible to more accurately detect the distribution of the material state of the object.
  • U state detection system 1 Chipless sensor tag (electromagnetic wave response material) 1a resonator 1b isolation layer 1c rear reflector 1d converter 1e electromagnetic wave reflector 2 reader 21 transmitter 22 receiver 23 controller 3 analyzer 31 material state estimator 32 image display M (M1, M2, M3, M4 , M5, M6, M7, M8, M9) Object to be inspected Ma Position to be inspected

Abstract

This state detection system is of an electromagnetic wave reading type and comprises: an electromagnetic wave responsive material (1) that is arranged so as to be sensitive to a material state to be detected in a testing target object (M) and that changes its own electromagnetic wave reflection characteristics in accordance with the material state; a reader (2) that acquires the spectrum of a reflected wave by transmitting an electromagnetic wave to the location where the electromagnetic wave responsive material (1) is arranged in the testing target object (M) from outside of the testing target object (M) and receiving the reflected wave thereof; and an analysis device (3) that estimates the distribution of the material state in the testing target object (M) on the basis of spectra acquired at a plurality of locations in the testing target object (M) during the same window of time.

Description

状態検出システムState detection system
 本開示は、状態検出システムに関する。 The present disclosure relates to a state detection system.
 近年、ハイパースペクトルイメージングを用いて、物体中の材料状態の分布を検出する状態検出システムが注目されている。ハイパースペクトルイメージングは、画素ごとのスペクトル情報として、物体の各検査対象位置の材料状態を捉えることが可能であり、従来の画像技術にはない情報量を取得することが可能である。特に、画像の持つ空間情報と、スペクトルの持つ物性情報との併用という特徴を生かした広範囲の物性評価の用途は、特筆すべきハイパースペクトルイメージングの用途の一つである。 In recent years, attention has been focused on state detection systems that detect the distribution of material states in objects using hyperspectral imaging. Hyperspectral imaging can capture the material state of each inspected position of an object as spectral information for each pixel, and can acquire an amount of information not found in conventional imaging techniques. In particular, one of the notable uses of hyperspectral imaging is the use of wide-range physical property evaluation that makes use of the feature of combining spatial information of images and physical property information of spectra.
 尚、特許文献1では、ハイパースペクトルイメージングにて、土地被覆分類を行う技術が開示されている。 Patent Document 1 discloses a technique for land cover classification using hyperspectral imaging.
特開2015-207235号公報JP 2015-207235 A
 ところで、この種の状態検出システムを実用化するにあたっては、検出感度を向上させ、検出対象の状態を推定した際のその正確度を確保することが喫緊の課題である。 By the way, in putting this type of state detection system into practical use, it is an urgent issue to improve the detection sensitivity and ensure the accuracy when estimating the state of the detection target.
 この点、ハイパースペクトルイメージングを用いた状態検出システムでは、通常、物体の外観に顕著に表れる材料状態しか検出することができず、物体の外観に表れにくい材料状態(例えば、加圧状態や温度状態)、物体の材料状態の微弱な経時変化、及び、物体の内部の材料状態(例えば、組成状態)等を検出することができないという課題がある。そのため、ハイパースペクトルイメージングを用いた状態検出システムでは、物体に発生した異常状態の検出遅れにつながったり、製品として出荷される物体の品質不良を適確に発見することができない。 In this regard, a state detection system using hyperspectral imaging can usually detect only the material state that is conspicuously visible in the external appearance of the object, and the material state that is difficult to appear in the external appearance of the object (for example, pressurized state or temperature state). ), weak changes in the material state of the object over time, and the material state (for example, composition state) inside the object cannot be detected. Therefore, a state detection system using hyperspectral imaging leads to a delay in detection of an abnormal state occurring in an object, and cannot accurately detect quality defects in an object shipped as a product.
 本開示は、かかる問題点に鑑みてなされたもので、より正確に、物体の材料状態の分布を検出することを可能とする状態検出システムを提供することを目的とする。 The present disclosure has been made in view of such problems, and aims to provide a state detection system capable of detecting the distribution of the material state of an object more accurately.
 前述した課題を解決する主たる本開示は、
 電磁波読み取り式の状態検出システムであって、
 検査対象物体の検出対象の材料状態に感応する状態で配設された電磁波応答材と、
 前記検査対象物体の外部から、前記検査対象物体中で前記電磁波応答材が配設された位置に対して電磁波を送信すると共にその反射波を受信して、前記反射波のスペクトルを取得するリーダーと、
 同一の時間帯に前記検査対象物体中の複数位置で取得された前記スペクトルに基づいて、前記検査対象物体中の前記材料状態の分布を推定する解析装置と、
 を備える状態検出システムである。
The main disclosure that solves the above-mentioned problems is
An electromagnetic wave reading type state detection system,
an electromagnetic wave responsive material disposed in a state sensitive to the state of the material to be detected of the object to be inspected;
a reader that transmits an electromagnetic wave from the outside of the object to be inspected to the position where the electromagnetic wave responsive material is arranged in the object to be inspected, receives the reflected wave, and acquires the spectrum of the reflected wave; ,
an analysis device for estimating the distribution of the material state in the object to be inspected based on the spectra obtained at a plurality of positions in the object to be inspected during the same time period;
A condition detection system comprising:
 本開示に係る状態検出システムによれば、より正確に、物体の材料状態の分布を検出することが可能となる。 According to the state detection system according to the present disclosure, it is possible to more accurately detect the distribution of the material state of the object.
本開示に係る状態検出システムの全体構成の一例を示す図A diagram showing an example of the overall configuration of a state detection system according to the present disclosure 本開示に係る状態検出システムが検出する物体の材料特性の分布について、模式的に説明する図FIG. 4 is a diagram schematically explaining the distribution of material properties of an object detected by the state detection system according to the present disclosure; 本開示に係るリーダー側から見た検査対象物体中におけるセンサの配設態様の一例を示す図A diagram showing an example of an arrangement mode of sensors in an object to be inspected as seen from the reader side according to the present disclosure. 本開示に係るセンサの具体的構成の一例を示す図A diagram showing an example of a specific configuration of a sensor according to the present disclosure 本開示に係るセンサの反射波スペクトルの一例を示す図A diagram showing an example of a reflected wave spectrum of a sensor according to the present disclosure 本開示に係るセンサにて、検査対象物体の伸縮状態(即ち、形状変化)を検出する態様を示す図FIG. 11 is a diagram showing a mode of detecting an expansion/contraction state (that is, shape change) of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の伸縮状態(即ち、形状変化)を検出する態様を示す図FIG. 11 is a diagram showing a mode of detecting an expansion/contraction state (that is, shape change) of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の厚さを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the thickness of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の厚さを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the thickness of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の材料組成を検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the material composition of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の材料組成を検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the material composition of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の酸化度合いを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the degree of oxidation of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の酸化度合いを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the degree of oxidation of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の電気的な異方性(例えば、配向)の強さを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the strength of electrical anisotropy (eg, orientation) of an object to be inspected by a sensor according to the present disclosure; 本開示に係るセンサにて、検査対象物体の電気的な異方性(例えば、配向)の強さを検出する態様を示す図FIG. 4 is a diagram showing a mode of detecting the strength of electrical anisotropy (eg, orientation) of an object to be inspected by a sensor according to the present disclosure; 本開示に係るリーダー側から見た検査対象物体中におけるセンサの他の配設態様の一例を示す図FIG. 4 is a diagram showing an example of another arrangement of sensors in an object to be inspected as viewed from the reader side according to the present disclosure; 変形例1に係るセンサの構成を示す図FIG. 10 is a diagram showing the configuration of a sensor according to Modification 1; 変形例1に係るセンサを用いて、状態検出を行うメカニズムの一例を説明する図FIG. 11 is a diagram illustrating an example of a mechanism for detecting a state using a sensor according to Modification 1; 変形例2に係るセンサの構成を示す図The figure which shows the structure of the sensor based on the modification 2. 変形例2に係るセンサの構成を示す図The figure which shows the structure of the sensor based on the modification 2. 本開示に係るリーダー及び解析装置の構成の一例を示す図A diagram showing an example of the configuration of a reader and an analysis device according to the present disclosure 本開示に係る解析装置による検査対象物体の材料状態の分布の推定手法の一例を説明する図FIG. 5 is a diagram illustrating an example of a method for estimating the distribution of the material state of an object to be inspected by the analysis apparatus according to the present disclosure; 本開示に係る状態検出システムの動作の一例を説明する図FIG. 5 is a diagram explaining an example of the operation of the state detection system according to the present disclosure; 実施例1に係る状態検出システムの実施態様を説明する図FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment; FIG. 実施例1に係る状態検出システムの実施態様を説明する図FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment; FIG. 実施例1に係る状態検出システムの実施態様を説明する図FIG. 2 is a diagram for explaining an embodiment of the state detection system according to the first embodiment; FIG. 実施例2に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment; 実施例2に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment; 実施例2に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a second embodiment; 実施例3に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment; 実施例3に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment; 実施例3に係る状態検出システムの実施態様を説明する図FIG. 10 is a diagram illustrating an embodiment of a state detection system according to a third embodiment; 実施例4に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment; 実施例4に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment; 実施例4に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fourth embodiment; 実施例5に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fifth embodiment; 実施例5に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to a fifth embodiment; 実施例6に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a sixth embodiment; 実施例7に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment; 実施例7に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment; 実施例7に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a seventh embodiment; 実施例8に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment; 実施例8に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment; 実施例8に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram illustrating an embodiment of a state detection system according to an eighth embodiment; 実施例9に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a ninth embodiment; 実施例9に係る状態検出システムの実施態様を説明する図FIG. 11 is a diagram for explaining an embodiment of a state detection system according to a ninth embodiment;
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functions are denoted by the same reference numerals, thereby omitting redundant description.
<本開示に至る経緯>
 本開示に係る状態検出システムの構成について説明するにあたって、まず、その経緯について説明する。
<Background leading up to this disclosure>
Before describing the configuration of the state detection system according to the present disclosure, the background will be described first.
 本願の発明者らは、検査対象の物体中の材料状態の分布を検出する手法について鋭意検討し、ハイパースペクトルイメージングに代わる状態検出システムとして、まず、電磁波読取式のチップレスセンサタグ(以下、「センサタグ」と略称する)を用いた状態検出システムを着想した。 The inventors of the present application have made intensive studies on a method for detecting the distribution of the state of materials in an object to be inspected. We came up with the idea of a state detection system using sensor tags.
 この種の状態検出システムは、一般に、検査対象物体の材料状態に感応する状態で配設され、当該物体の材料状態に応じて自身の電磁波反射特性を変化させるセンサタグと、電磁波を送受信して、検査対象物体からの反射波の周波数スペクトル(以下、「反射波スペクトル」と称する)を取得するリーダーと、によって構成される。そして、この種の状態検出システムでは、リーダーにて、センサタグに対して電磁波を送信した際のセンサタグからの反射波を受信することによって、センサタグの電磁波反射特性の変化を取得し、これにより、検査対象物体の状態変化を推定する。 This type of state detection system is generally arranged in a state sensitive to the material state of an object to be inspected, and transmits and receives electromagnetic waves to and from a sensor tag that changes its own electromagnetic wave reflection characteristics according to the material state of the object, and a reader for acquiring the frequency spectrum of the reflected wave from the object to be inspected (hereinafter referred to as the "reflected wave spectrum"). In this type of state detection system, the reader receives a reflected wave from the sensor tag when an electromagnetic wave is transmitted to the sensor tag, thereby obtaining a change in the electromagnetic wave reflection characteristic of the sensor tag. Estimate the state change of the target object.
 尚、この種の状態検出システムでは、典型的には、予め、実験等により、センサタグの電磁波反射特性の基準パターンのデータを記憶しておき、当該基準パターンのデータと、今回得られたセンサタグの電磁波反射特性とを照合することで、検査対象物体の状態変化を推定する手法が取られている。 Incidentally, in this type of state detection system, typically, data of the reference pattern of the electromagnetic wave reflection characteristics of the sensor tag is stored in advance by experiment or the like, and the data of the reference pattern and the sensor tag obtained this time are stored. A method of estimating a state change of an object to be inspected is adopted by collating it with electromagnetic wave reflection characteristics.
 このように、電磁波読取式のセンサタグを用いた状態検出システムでは、検査対象物体の状態変化を、センサタグの電磁波反射特性の変化として捉えるため、検査対象物体そのものの外観から検査対象物体の材料状態を捉えるハイパースペクトルイメージングを用いた状態検出システムに比べて、感度の向上を図ることが可能である。又、電磁波読取式のセンサタグを用いた状態検出システムでは、検査対象物体の特定の材料状態を選択的に検出することが可能となり、検査対象物体の材料状態の微弱な変化や、検査対象物体の内部状態を検出することが可能となる。 In this way, in a state detection system using electromagnetic wave reading type sensor tags, changes in the state of an object to be inspected are captured as changes in the electromagnetic wave reflection characteristics of the sensor tag. Sensitivity can be improved compared to condition detection systems that use captured hyperspectral imaging. In addition, in a state detection system using an electromagnetic wave reading type sensor tag, it is possible to selectively detect a specific material state of an object to be inspected. It becomes possible to detect the internal state.
 しかしながら、電磁波読取式のチップレスセンサタグを用いた状態検出システムでは、センサタグからの反射波の強度を確保し難いため、良好なSN比を確保し難く、推定精度又は正確性の点で改善の余地があることが分かってきた。 However, in a state detection system using an electromagnetic wave reading type chipless sensor tag, it is difficult to secure the intensity of the reflected wave from the sensor tag, so it is difficult to secure a good SN ratio, and it is difficult to improve in terms of estimation accuracy or accuracy. It turns out that there is room.
 本願の発明者らは、このような問題点に鑑みて、以下に示す本開示に係る状態検出システムの構成に想到した。 In view of such problems, the inventors of the present application came up with the following configuration of the state detection system according to the present disclosure.
<本開示に係る状態検出システムの基本構成>
 以下、図1A、図1Bを参照して、本開示の一実施形態に係る状態検出システム(以下、「状態検出システムU」と称する)の基本構成について説明する。尚、本開示に係る状態検出システムUは、上記した電磁波読取式のセンサタグを用いた状態検出システムをベースとして構築されている。
<Basic configuration of state detection system according to the present disclosure>
A basic configuration of a state detection system (hereinafter referred to as “state detection system U”) according to an embodiment of the present disclosure will be described below with reference to FIGS. 1A and 1B. The state detection system U according to the present disclosure is constructed based on the state detection system using the electromagnetic wave reading type sensor tag described above.
 図1Aは、状態検出システムUの全体構成の一例を示す図である。図1Bは、状態検出システムUが検出する物体Mの材料特性の分布について、模式的に説明する図である。 FIG. 1A is a diagram showing an example of the overall configuration of the state detection system U. FIG. FIG. 1B is a diagram schematically explaining the distribution of material properties of an object M detected by the state detection system U. As shown in FIG.
 状態検出システムUは、センサタグ1と、リーダー2と、解析装置3と、を備えている。 The state detection system U includes a sensor tag 1, a reader 2, and an analysis device 3.
 ここで、センサタグ1(本発明の「電磁波反射材」に相当)は、検査対象物体Mの表面又は内部等に、当該物体Mの特定の材料状態(即ち、検出対象の材料状態)に感応する状態で配設されている。センサタグ1は、例えば、物体Mの特定の材料状態に応じて共振状態が変化する共振器を有し、外部(ここでは、リーダー2)から照射された電磁波に対する反射特性(以下、「センサタグ1の電磁波反射特性」又は「センサタグ1の反射波スペクトル」とも称する)として、物体Mの材料状態に係る情報をリーダー2に対して受け渡す(詳細は後述)。尚、センサタグ1は、検査対象物体M中の複数の検査対象位置Ma(図1Bを参照)それぞれに、少なくとも一個ずつ配設されている。 Here, the sensor tag 1 (corresponding to the "electromagnetic wave reflector" of the present invention) is sensitive to the specific material condition of the object M (that is, the material condition to be detected) on the surface or inside of the object M to be inspected. placed in a state. The sensor tag 1 has, for example, a resonator whose resonance state changes according to the specific material state of the object M, and has a reflection characteristic (hereinafter referred to as "the sensor tag 1's Also referred to as "electromagnetic wave reflection characteristics" or "reflected wave spectrum of the sensor tag 1"), information relating to the material state of the object M is transferred to the reader 2 (details will be described later). At least one sensor tag 1 is arranged at each of a plurality of inspection target positions Ma (see FIG. 1B) in the inspection target object M. As shown in FIG.
 リーダー2は、検査対象物体Mのセンサタグ1の存在位置(即ち、検査対象物体Mの検査対象位置Ma)に対して電磁波を送信すると共にその反射波を受信し、当該存在位置における反射波スペクトル(即ち、センサタグ1の電磁波反射特性に由来して特徴付けられた反射波スペクトル)を取得する。この際、リーダー2は、電子走査等により、検査対象物体Mの複数の検査対象位置Maそれぞれで反射波スペクトルを取得する。 The reader 2 transmits an electromagnetic wave to the presence position of the sensor tag 1 of the inspection target object M (that is, the inspection target position Ma of the inspection target object M) and receives the reflected wave, and the reflected wave spectrum ( That is, the reflected wave spectrum characterized by the electromagnetic wave reflection characteristics of the sensor tag 1 is acquired. At this time, the reader 2 acquires the reflected wave spectrum at each of the plurality of inspection target positions Ma of the inspection target object M by electronic scanning or the like.
 解析装置3は、リーダー2により検査対象物体M中の複数の検査対象位置Maそれぞれで取得された反射波スペクトルに基づいて、物体M中の検出対象の材料状態の分布を推定する(例えば、後述する図16Aを参照)。この際、解析装置3は、検査対象物体Mの複数の検査対象位置Maそれぞれで得られた反射波スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、検査対象物体Mの各検査対象位置の材料状態(例えば、正常及び異常に係る分布)を推定する構成となっており、これにより、高精度な状態推定を可能としている(詳細は後述)。 The analysis device 3 estimates the distribution of the state of the material to be detected in the object M based on the reflected wave spectrum acquired by the reader 2 at each of the plurality of inspection positions Ma in the object M to be inspected (for example, (see FIG. 16A). At this time, the analysis device 3 refers to the reflected wave spectra obtained at each of the plurality of inspection target positions Ma of the inspection target object M, and compares them with each other and/or generates reference data based on them. Thus, the material state (for example, normal and abnormal distribution) of each inspection target position of the inspection target object M is estimated, thereby enabling highly accurate state estimation (details will be described later). ).
 状態検出システムUの検査対象物体Mは、例えば、コンクリート構造体、樹脂材、セラミック材、又はシート状材料等である。そして、状態検出システムUは、例えば、検査対象物体Mの内部に生じた腐食、検査対象物体M中のクラック、及び、検査対象物体Mの構成材料の組成等を検出し、これらの検査対象物体Mの製造現場における品質管理や、実環境で使用が開始されている際の劣化状況のチェック等に適用される。 The object M to be inspected by the state detection system U is, for example, a concrete structure, a resin material, a ceramic material, or a sheet material. Then, the state detection system U detects, for example, corrosion occurring inside the inspection target object M, cracks in the inspection target object M, composition of constituent materials of the inspection target object M, and the like, and detects these inspection target object It is applied to the quality control at the manufacturing site of M and the check of the deterioration state when the use is started in the actual environment.
 但し、検査対象物体Mは、上記に限らず、任意の誘電体材料であってよい。又、状態検出システムUの検出対象とする材料状態も、検査対象物体Mの任意の材質特性及び/又は構造特性であってよい。 However, the object M to be inspected is not limited to the above, and may be any dielectric material. Further, the material condition to be detected by the condition detection system U may be any material property and/or structural property of the object M to be inspected.
 尚、本実施形態に係る状態検出システムUは、典型的には、UWB帯域、ミリ波帯域又はサブミリ波帯域の周波数帯域(3.1GHz~3THzの範囲)の電磁波を用いることを基調として構築されている。即ち、かかる帯域の電磁波に応答するようにセンサタグ1を構成すると共に、かかる帯域の電磁波を用いて検査対象物体の位置毎の材料特性を検出するようにリーダー2を構成している。かかる帯域の電磁波は、波長が短い上、電磁波の指向特性(即ち、直進性)が高く、且つ、検出時の周波数分解能も高いという特性を有する。かかる帯域の電磁波を用いることで、検査対象物体Mの材料特性の分布を把握する際に高い面積分解能を実現することが可能となり、且つ、センサタグ1を小型化することもできる。 The state detection system U according to the present embodiment is typically constructed based on the use of electromagnetic waves in the UWB band, millimeter wave band, or sub-millimeter wave band (range of 3.1 GHz to 3 THz). ing. That is, the sensor tag 1 is configured to respond to electromagnetic waves in such a band, and the reader 2 is configured to detect the material properties for each position of the object to be inspected using the electromagnetic waves in this band. Electromagnetic waves in such a band have characteristics such as a short wavelength, high directivity (that is, rectilinearity) of the electromagnetic wave, and high frequency resolution at the time of detection. By using electromagnetic waves in such a band, it is possible to achieve high area resolution when grasping the distribution of the material properties of the object M to be inspected, and the size of the sensor tag 1 can also be reduced.
<センサタグ1の構成>
 図2~図10Bを参照して、センサタグ1の構成の一例について説明する。
<Structure of sensor tag 1>
An example of the configuration of the sensor tag 1 will be described with reference to FIGS. 2 to 10B.
 図2は、リーダー2側から見た検査対象物体M中におけるセンサタグ1の配設態様の一例を示す図である。 FIG. 2 is a diagram showing an example of how the sensor tags 1 are arranged in the inspection object M viewed from the reader 2 side.
 図3は、センサタグ1の具体的構成の一例を示す図である。図4は、センサタグ1の反射波スペクトルの一例を示す図である。 FIG. 3 is a diagram showing an example of a specific configuration of the sensor tag 1. FIG. FIG. 4 is a diagram showing an example of the reflected wave spectrum of the sensor tag 1. FIG.
 検査対象物体Mの検査対象領域の表面又は内部には、例えば、複数個のセンサタグ1が、検査対象物体Mの検出対象の材料状態に感応する状態で分散して配設されている。検査対象物体Mの検査対象領域は、例えば、複数の小領域に区画され、センサタグ1は、当該小領域毎に少なくとも一個配設される。換言すると、図1Bの複数の検査対象位置Maは、それぞれ、検査対象物体Mの検査対象領域を区画した小領域毎の位置である。そして、各センサタグ1が、各検査対象位置Maにおける検査対象物体Mの材料状態を検出する。 For example, a plurality of sensor tags 1 are dispersedly arranged on the surface or inside the inspection target region of the inspection target object M in a state sensitive to the material state of the detection target of the inspection target object M. The inspection target area of the inspection target object M is divided into, for example, a plurality of small areas, and at least one sensor tag 1 is provided for each small area. In other words, the plurality of inspection target positions Ma in FIG. 1B are the positions of the small areas obtained by partitioning the inspection target area of the inspection target object M, respectively. Each sensor tag 1 detects the material state of the inspection target object M at each inspection target position Ma.
 センサタグ1は、例えば、共振器1a(例えば、図3を参照)の共振状態として物体Mの検出対象の材料状態を検出し、当該材料状態に係る情報を、リーダー2から電磁波を照射された際の反射波スペクトルのパターンに係る情報(即ち、共振ピークの位置、及び共振ピークにおけるピーク強度)に変換する。尚、センサタグ1の反射波は、検査対象物体M自体の反射波に重畳する形で、リーダー2に取得されることになるが、センサタグ1の反射波スペクトルは、物体Mの材料状態毎に、共振器1aの共振ピーク位置を中心とした独特のパターンを描く。そのため、センサタグ1の反射波スペクトルのパターン(例えば、図4を参照)は、検査対象物体M自体の反射波スペクトルのパターンから明確に識別することが可能なものとなっている。 The sensor tag 1 detects, for example, the state of the material to be detected of the object M as the resonance state of the resonator 1a (see, for example, FIG. 3), and transmits information on the state of the material when electromagnetic waves are emitted from the reader 2. (ie, the position of the resonance peak and the peak intensity at the resonance peak) regarding the pattern of the reflected wave spectrum of . The reflected wave of the sensor tag 1 is superimposed on the reflected wave of the inspection target object M itself, and is acquired by the reader 2. A unique pattern centered on the resonance peak position of the resonator 1a is drawn. Therefore, the reflected wave spectrum pattern of the sensor tag 1 (see, for example, FIG. 4) can be clearly identified from the reflected wave spectrum pattern of the inspection object M itself.
 図2では、一例として、8個のセンサタグ1が、検査対象物体Mの8箇所の検査対象位置Maに、分散して配設された態様を示しており、8箇所に配設されたセンサタグ1それぞれが、8箇所の検査対象位置Maそれぞれの材料状態を検出する。そして、リーダー2は、例えば、検査対象物体Mの8箇所の検査対象位置Maそれぞれに対して電磁波を送信した際に得られる反射波スペクトルから抽出される8個のセンサタグ1の電磁波反射特性に基づいて、検査対象物体M中の材料状態の分布(図1Bを参照)を検出する。 FIG. 2 shows, as an example, a mode in which eight sensor tags 1 are distributed and arranged at eight inspection target positions Ma of an inspection target object M. Each detects the material state of each of the eight inspection target positions Ma. Then, the reader 2, for example, based on the electromagnetic wave reflection characteristics of the eight sensor tags 1 extracted from the reflected wave spectrum obtained when the electromagnetic wave is transmitted to each of the eight inspection target positions Ma of the inspection target object M to detect the distribution of the material state in the object M to be inspected (see FIG. 1B).
 センサタグ1は、例えば、外部から所定の周波数の電磁波が照射された際に共振し、当該電磁波を吸収又は反射する共振構造を有している。本実施形態に係るセンサタグ1は、自身の共振周波数に合致する周波数の電磁波を吸収し、それ以外の周波数の電磁波が照射された場合には反射する電磁波反射特性を有する(図4を参照)。 The sensor tag 1 has, for example, a resonant structure that resonates when externally irradiated with an electromagnetic wave of a predetermined frequency and absorbs or reflects the electromagnetic wave. The sensor tag 1 according to the present embodiment has an electromagnetic wave reflection characteristic that absorbs electromagnetic waves with a frequency that matches its own resonance frequency and reflects electromagnetic waves with frequencies other than that (see FIG. 4).
 センサタグ1は、例えば、前面側から順に配設された、共振器1a、アイソレーション層1b、及び、裏面反射材1cによって構成されている。 The sensor tag 1 is composed of, for example, a resonator 1a, an isolation layer 1b, and a back reflector 1c, which are arranged in order from the front side.
 共振器1aは、例えば、ストリップ状に形成された導体パターンであり、自身の共振周波数に合致する周波数の電磁波を吸収し、それ以外の周波数の電磁波を照射された場合には、当該電磁波を反射する。共振器1aは、例えば、共振器長(共振器1aの長手方向の長さ)が1/2λに相当する周波数の電磁波が照射されたときに共振する。 The resonator 1a is, for example, a conductor pattern formed in a strip shape, absorbs an electromagnetic wave of a frequency matching its own resonance frequency, and reflects the electromagnetic wave when irradiated with an electromagnetic wave of a frequency other than that. do. The resonator 1a resonates, for example, when it is irradiated with an electromagnetic wave having a frequency corresponding to 1/2λ of the resonator length (length in the longitudinal direction of the resonator 1a).
 尚、図3では、1個の共振器1aのみを図示しているが、センサタグ1には、互いに異なる共振周波数を有する複数個の共振器1aが設けられるのが好ましい。これによって、センサタグ1の反射波スペクトルのパターンを、より多様化することが可能であり、且つ、検査対象物体M自体の反射波スペクトルのパターンからの識別性を向上することが可能である。 Although FIG. 3 shows only one resonator 1a, the sensor tag 1 is preferably provided with a plurality of resonators 1a having mutually different resonance frequencies. This makes it possible to further diversify the reflected wave spectrum pattern of the sensor tag 1 and improve the distinguishability from the reflected wave spectrum pattern of the inspection target object M itself.
 アイソレーション層1bは、絶縁材料層又は絶縁空間層(物体非配置の空間を含む)であって、共振器1aと裏面反射材1cとの間に形成され、共振器1aと裏面反射材1cとの間を絶縁する。尚、アイソレーション層1bは、その一部又は全部が、検査対象物体Mによって構成されてもよい。 The isolation layer 1b is an insulating material layer or an insulating space layer (including a space where no object is arranged), is formed between the resonator 1a and the back reflector 1c, and is formed between the resonator 1a and the back reflector 1c. insulate between The isolation layer 1b may be partially or entirely composed of the object M to be inspected.
 裏面反射材1cは、銀、金、銅、若しくはアルミニウム等の金属材料などの電磁波を反射する特性を有する材料であって、アイソレーション層1bを介して共振器1aに対向して配設され、センサタグ1に照射された電磁波を反射する。尚、裏面反射材1cは、共振器1aにおいて生ずる共振現象を増幅するようにも機能する。具体的には、裏面反射材1cが存在する場合、共振器1aにおいて生ずる共振現象は、共振器1aと裏面反射材1cとの間でも発生し、当該共振現象は増幅されることになる。つまり、裏面反射材1cは、共振器1aにおいて共振現象が生じた場合の共振ピークを大きくする。尚、裏面反射材1cは、その一部又は全部が、検査対象物体Mによって構成されてもよい。 The back reflector 1c is a material having characteristics of reflecting electromagnetic waves, such as a metal material such as silver, gold, copper, or aluminum, and is disposed facing the resonator 1a via the isolation layer 1b, The electromagnetic wave irradiated to the sensor tag 1 is reflected. The rear reflector 1c also functions to amplify the resonance phenomenon that occurs in the resonator 1a. Specifically, when the back reflector 1c exists, the resonance phenomenon occurring in the resonator 1a also occurs between the resonator 1a and the back reflector 1c, and the resonance phenomenon is amplified. That is, the back reflector 1c increases the resonance peak when a resonance phenomenon occurs in the resonator 1a. A part or the whole of the back reflector 1c may be composed of the object M to be inspected.
 図4の反射波スペクトル中の周波数f0における共振ピークは、共振器1aの共振による電力損失(吸収)を表している。又、図4の反射波スペクトル中のベースバンド領域は、共振器1aが共振していないときの裏面反射材1cの電磁波の反射を表している。 The resonance peak at frequency f0 in the reflected wave spectrum of FIG. 4 represents power loss (absorption) due to resonance of the resonator 1a. The baseband region in the reflected wave spectrum of FIG. 4 represents the reflection of the electromagnetic wave from the rear reflector 1c when the resonator 1a is not resonating.
 センサタグ1は、例えば、共振器1a、アイソレーション層1b又は裏面反射材1cのうちの少なくともいずれかの状態の変化が、検査対象物体Mの検出対象の材料状態の変化(例えば、形状変化、構造変化、周囲雰囲気の変化、及び、物性変化等)に連動するように構成される。 In the sensor tag 1, for example, a change in the state of at least one of the resonator 1a, the isolation layer 1b, or the back reflector 1c is a change in the state of the material to be detected of the object M to be inspected (e.g., shape change, structure change, etc.). change, ambient atmosphere change, physical property change, etc.).
 尚、センサタグ1による検査対象物体Mの検出対象の材料状態は、任意である。かかる検出対象の材料状態としては、例えば、検査対象物体M中の構成材料の伸縮、検査対象物体M中の構成材料の厚さ、検査対象物体M中の構成材料の腐食状態(酸化度合い)、検査対象物体M中の構成材料の配向状態、検査対象物体M中の構成材料の組成状態、検査対象物体M中の加圧状態、検査対象物体M中の摩耗状態、検査対象物体M中のクラック発生状態、検査対象物体M中の誘電率、検査対象物体M中の複数の部材間を接合する領域の剥離状態、検査対象物体M中の水分含有量、及び、検査対象物体M中の温度等が挙げられる。 It should be noted that the material state of the object M to be detected by the sensor tag 1 is arbitrary. The state of the material to be detected includes, for example, the expansion and contraction of the constituent material in the object M to be inspected, the thickness of the constituent material in the object M to be inspected, the corrosion state (degree of oxidation) of the constituent material in the object M to be inspected, Orientation state of constituent materials in the inspection object M, composition state of the constituent materials in the inspection object M, pressure state in the inspection object M, wear state in the inspection object M, cracks in the inspection object M Occurrence state, dielectric constant in the object M to be inspected, detachment state of the region joining a plurality of members in the object M to be inspected, moisture content in the object M to be inspected, temperature in the object M to be inspected, etc. is mentioned.
 図5A~図9Bは、センサタグ1による検査対象物体Mの材料状態の検出態様の一例を示す図である。 5A to 9B are diagrams showing an example of detection modes of the material state of the inspection target object M by the sensor tag 1. FIG.
 図5A、図5Bは、センサタグ1にて、検査対象物体Mの伸縮状態(即ち、形状変化)を検出する態様を示す図である。この態様においては、センサタグ1は、例えば、共振器1aが長手方向に伸縮可能な部材で構成されている。そして、センサタグ1は、検査対象物体Mの伸縮状態を、共振器1aの長さの変化として検出する。尚、共振器1aの長さの変化は、センサタグ1の反射波スペクトルにおいては、共振周波数の変化として表出することになる。 FIGS. 5A and 5B are diagrams showing how the sensor tag 1 detects the expansion/contraction state (that is, shape change) of the object M to be inspected. In this embodiment, the sensor tag 1 is made of, for example, a member that allows the resonator 1a to expand and contract in the longitudinal direction. Then, the sensor tag 1 detects the expansion/contraction state of the object M to be inspected as a change in the length of the resonator 1a. A change in the length of the resonator 1a is expressed as a change in resonance frequency in the reflected wave spectrum of the sensor tag 1. FIG.
 図6A、図6Bは、センサタグ1にて、検査対象物体Mの厚さを検出する態様を示す図である。この態様においては、センサタグ1は、例えば、検査対象物体Mの厚さと連動してアイソレーション層1bの厚さ(即ち、共振器1aと裏面反射材1cとの間の距離)が変化するように構成されている。そして、センサタグ1は、検査対象物体Mの厚さを、アイソレーション層1bの厚さの変化として検出する。尚、図3に示すセンサタグ1の構造においては、センサタグ1からの反射波の強度は、共振器1aと裏面反射材1cとの間の距離が所定距離のときに最大となり、共振器1aと裏面反射材1cとの間の距離が所定距離から離れるにつれて小さくなる。即ち、アイソレーション層1bの厚さの変化は、センサタグ1の反射波スペクトルにおいては、共振ピークのピーク強度の変化として表出することになる。 FIGS. 6A and 6B are diagrams showing modes of detecting the thickness of the inspection target object M with the sensor tag 1. FIG. In this embodiment, the sensor tag 1 is arranged such that the thickness of the isolation layer 1b (that is, the distance between the resonator 1a and the back reflector 1c) changes in conjunction with the thickness of the inspection object M, for example. It is configured. Then, the sensor tag 1 detects the thickness of the object M to be inspected as a change in the thickness of the isolation layer 1b. In the structure of the sensor tag 1 shown in FIG. 3, the intensity of the reflected wave from the sensor tag 1 becomes maximum when the distance between the resonator 1a and the back surface reflector 1c is a predetermined distance. The distance to the reflector 1c becomes smaller as the distance from the predetermined distance increases. In other words, a change in the thickness of the isolation layer 1b appears as a change in the peak intensity of the resonance peak in the reflected wave spectrum of the sensor tag 1. FIG.
 図7A、図7Bは、センサタグ1にて、検査対象物体Mの材料組成を検出する態様を示す図である。この態様においては、センサタグ1は、例えば、アイソレーション層1b内に検査対象物体Mの一部が配された構造、又は、アイソレーション層1bそのものを検査対象物体Mで構成した構造を有する。そして、センサタグ1は、検査対象物体Mの材料組成の変化を、アイソレーション層1bの誘電率変化として検出する。尚、アイソレーション層1bの誘電率変化の変化は、センサタグ1の反射波スペクトルにおいては、共振器1aの共振周波数の変化として表出することになる。 FIGS. 7A and 7B are diagrams showing modes of detecting the material composition of the inspection target object M with the sensor tag 1. FIG. In this embodiment, the sensor tag 1 has, for example, a structure in which a portion of the object M to be inspected is arranged in the isolation layer 1b, or a structure in which the object M to be inspected is the isolation layer 1b itself. Then, the sensor tag 1 detects a change in the material composition of the object M to be inspected as a change in dielectric constant of the isolation layer 1b. The change in the dielectric constant of the isolation layer 1b is expressed as a change in the resonance frequency of the resonator 1a in the reflected wave spectrum of the sensor tag 1. FIG.
 図8A、図8Bは、センサタグ1にて、検査対象物体Mの酸化度合いを検出する態様を示す図である。この態様においては、センサタグ1は、例えば、裏面反射材1cが検査対象物体Mの一部として構成されている。そして、センサタグ1は、検査対象物体Mの酸化度合いを、裏面反射材1cの導電率の変化として検出する。尚、裏面反射材1cの導電率の変化は、センサタグ1の反射波スペクトルにおいては、共振ピークのピーク強度の変化として表出することになる。 FIGS. 8A and 8B are diagrams showing modes in which the sensor tag 1 detects the degree of oxidation of the object M to be inspected. In this aspect, the sensor tag 1 is configured such that the back reflector 1c is part of the object M to be inspected, for example. Then, the sensor tag 1 detects the degree of oxidation of the object M to be inspected as a change in conductivity of the back reflector 1c. A change in the conductivity of the back reflector 1c is expressed as a change in the peak intensity of the resonance peak in the reflected wave spectrum of the sensor tag 1. FIG.
 図9A、図9Bは、センサタグ1にて、検査対象物体Mの電気的な異方性(例えば、配向)の強さを検出する態様を示す図である。この態様においては、センサタグ1は、例えば、アイソレーション層1b内に検査対象物体Mの一部が配された構造を有する。そして、センサタグ1は、検査対象物体Mの電気的な異方性の強さを、共振ピークのピーク強度の大きさから検出する。 FIGS. 9A and 9B are diagrams showing how the sensor tag 1 detects the strength of the electrical anisotropy (eg, orientation) of the object M to be inspected. In this aspect, the sensor tag 1 has, for example, a structure in which a portion of the object M to be inspected is arranged within the isolation layer 1b. Then, the sensor tag 1 detects the strength of the electrical anisotropy of the object M to be inspected from the magnitude of the peak intensity of the resonance peak.
 図9A、図9Bの態様において、センサタグ1にて、検査対象物体Mの電気的な異方性の強さを検出する原理は、共振器1aにおける共振現象の強さが、共振器1aの周囲に発生する電磁界の共振現象の起こりやすさに依拠する点を利用したものである。つまり、センサタグ1において、共振器1aが共振する際に通流する共振電流は、共振器1aの延在方向に沿って通流する。そして、この共振電流の通流方向が、共振器1aの周囲(例えば、アイソレーション層1b)に発生する電磁界の方向を決定する。そのため、検査対象物体Mが電気的な異方性を有し、検査対象物体Mの配設方向(即ち、検査対象物体Mの分極方向)が、この共振電流に伴って発生する電磁界の方向に沿っている場合には、検査対象物体Mの存在が、共振器1aの周囲に発生する電磁界の共振現象を強めるように機能し、共振ピークのピーク強度を大きくすることになる。 9A and 9B, the sensor tag 1 detects the strength of the electrical anisotropy of the object M to be inspected. This is based on the fact that it depends on the ease of occurrence of the resonance phenomenon of the electromagnetic field generated in the That is, in the sensor tag 1, the resonance current that flows when the resonator 1a resonates flows along the extending direction of the resonator 1a. The direction of flow of this resonant current determines the direction of the electromagnetic field generated around the resonator 1a (for example, the isolation layer 1b). Therefore, the object M to be inspected has electrical anisotropy, and the arrangement direction of the object M to be inspected (that is, the polarization direction of the object M to be inspected) is the direction of the electromagnetic field generated by this resonance current. , the presence of the inspection object M functions to strengthen the resonance phenomenon of the electromagnetic field generated around the resonator 1a, increasing the peak intensity of the resonance peak.
 ここで、検査対象物体M中におけるセンサタグ1の配設位置について、説明する。 Here, the arrangement position of the sensor tag 1 in the object M to be inspected will be explained.
 センサタグ1は、検査対象物体Mの表面又は内部に、検査対象物体Mの検出対象の材料状態に感応する状態で配設されている。かかるセンサタグ1を検査対象物体Mの表面に配設するか又は内部に配設するかは、検査対象物体Mの検出対象の材料状態の種別や、検査対象物体M中の検出対象の部位に応じて、好ましい態様が異なる。 The sensor tag 1 is arranged on the surface or inside of the object M to be inspected so as to be responsive to the state of the material to be detected of the object M to be inspected. Whether the sensor tag 1 is arranged on the surface of the object M to be inspected or arranged inside it depends on the type of material condition of the object M to be inspected and the portion of the object M to be detected. Therefore, preferred embodiments are different.
 検査対象物体M中の検出対象の部位が、検査対象物体Mの表層部のみである場合には、センサタグ1は、例えば、貼付法又は塗布法によって、検査対象物体Mの表面に配設されればよい。又、センサタグ1の検出対象の部位が、検査対象物体Mの表層部のみである場合には、センサタグ1を、センサ群設置シートの表面に貼付又は塗布しておき、検査時に、当該センサ群設置シートを検査対象物体M上に載置するようにしてもよい(例えば、後述する図22Bを参照)。これらのセンサタグ1の配設方法は、簡便であり、状態検出システムUを構築する上での製造コストを低コスト化することが可能である点、センサタグ1そのものが検査対象物体Mの材料状態(例えば、材料強度)に影響を及ぼしてしまうことを回避できる点、及び、複数箇所に設けるセンサタグ1(共振器1a)を容易に整列させることが可能である点等の観点で、センサタグ1を、検査対象物体Mの内部に混ぜ込む態様よりも好ましい。 When the part to be detected in the object M to be inspected is only the surface layer of the object M to be inspected, the sensor tag 1 is arranged on the surface of the object M to be inspected by, for example, a sticking method or a coating method. Just do it. Further, when the part to be detected by the sensor tag 1 is only the surface layer part of the object M to be inspected, the sensor tag 1 is attached or coated on the surface of the sensor group installation sheet, and the sensor group installation sheet is installed at the time of inspection. A sheet may be placed on the inspection target object M (see, for example, FIG. 22B described later). The method of arranging these sensor tags 1 is simple, and the manufacturing cost for constructing the state detection system U can be reduced. For example, the sensor tag 1 can be avoided from affecting the material strength), and the sensor tag 1 (resonator 1a) provided at a plurality of locations can be easily aligned. It is more preferable than the aspect of mixing inside the object M to be inspected.
 一方、センサタグ1にて、検査対象物体Mの内部の材料状態まで検出することを意図する場合には、センサタグ1は、検査対象物体Mの内部に、検査対象物体Mを構成する材料と一体的に配設されるのが好ましい(例えば、後述する図16Bを参照)。センサタグ1は、例えば、検査対象物体Mが形成される過程で、検査対象物体Mを構成する材料に混ぜ込まれるようにして、検査対象物体Mの内部に埋設されてもよいし、検査対象物体Mを構成する材料の間に挟み込まれるようにして、検査対象物体Mの内部に埋設されてもよい。又、かかる構成においては、センサタグ1は、全ての構成が検査対象物体Mの内部に埋設されてもよいし、一部の構成のみ(例えば、共振器1aのみ)が、検査対象物体Mの内部に埋設されてもよい。 On the other hand, when the sensor tag 1 is intended to detect the state of the material inside the object M to be inspected, the sensor tag 1 is integrated with the material constituting the object M to be inspected inside the object M to be inspected. (see, eg, FIG. 16B below). For example, the sensor tag 1 may be embedded inside the inspection target object M so as to be mixed with the material constituting the inspection target object M in the process of forming the inspection target object M, or may be embedded in the inspection target object M. It may be embedded inside the object to be inspected M so as to be sandwiched between the materials constituting M. In such a configuration, the sensor tag 1 may be entirely embedded inside the object M to be inspected, or only a part of the configuration (for example, only the resonator 1a) may be embedded inside the object M to be inspected. may be embedded in
 又、検査対象物体M中において、センサタグ1は、等間隔に配設されるのが好ましい(例えば、図2を参照)。これによって、検査対象物体M中のセンサタグ1の存在密度の相違に起因して、リーダー2にて反射波スペクトルを読み取る際の反射波強度が検出対象の位置毎に大きく変化する事態を抑制することができる。 Further, it is preferable that the sensor tags 1 are arranged at regular intervals in the inspection target object M (see, for example, FIG. 2). As a result, it is possible to suppress a situation in which the reflected wave intensity when reading the reflected wave spectrum by the reader 2 changes greatly for each position of the detection target due to the difference in the existence density of the sensor tags 1 in the inspection target object M. can be done.
 又、検査対象物体M中において、センサタグ1は、共振器1aの向きを揃えた状態で配設されるのが好ましい(例えば、図2を参照)。これによって、検査対象位置Ma毎に、電磁波の偏波方向に対する高感度方向が異なる状態となることを抑制することができる。 In addition, it is preferable that the sensor tags 1 are arranged in the inspection target object M with the resonators 1a oriented in the same direction (see FIG. 2, for example). As a result, it is possible to prevent the high-sensitivity direction from being different with respect to the polarization direction of the electromagnetic wave for each inspection target position Ma.
 又、検査対象物体M中において、センサタグ1は、検査対象位置Ma毎に、共振周波数が異なるものが用いられてもよい。これによって、検査対象物体M中の検査対象位置Ma毎の識別性を高めることができる。 Further, in the inspection target object M, sensor tags 1 having different resonance frequencies for each inspection target position Ma may be used. Thereby, the identifiability of each inspection target position Ma in the inspection target object M can be enhanced.
 図10は、リーダー2側から見た検査対象物体M中におけるセンサタグ1の他の配設態様の一例を示す図である。 FIG. 10 is a diagram showing an example of another arrangement mode of the sensor tag 1 in the inspection target object M viewed from the reader 2 side.
 検査対象物体M中において、センサタグ1は、図10のように、検査対象位置Ma(即ち、検査対象物体M中の小領域)毎に、互いに共振周波数が異なる共振器1aを有するものが複数種類配設されるのが好ましい。図10では、検査対象物体M中において、検査対象位置Ma毎に、互いに共振周波数が異なる共振器1aを有する2種類のセンサタグ1X、1Yが配設された態様を示している。 As shown in FIG. 10, in the object M to be inspected, the sensor tag 1 has a plurality of types of resonators 1a having different resonance frequencies for each position Ma to be inspected (that is, a small area in the object M to be inspected). is preferably provided. FIG. 10 shows a mode in which two types of sensor tags 1X and 1Y having resonators 1a with mutually different resonance frequencies are arranged at each inspection target position Ma in the inspection target object M. FIG.
 検査対象位置Ma毎に配設するセンサタグ1の数を、1種類のみとした場合、検出対象の材料状態の高感度帯が狭い帯域に制約されるケースがある。この点、検査対象位置Ma毎に、複数種類のセンサタグ1X、1Yを配設し、複数種類のセンサタグ1X、1Yそれぞれで、検出対象の材料状態に対する高感度帯を分散させることで、より高感度な材料状態検出が可能となる。例えば、センサタグ1X、1Yを検査対象物体M内の温度を検出する用途に適用する場合、検査対象位置Ma毎に、30℃前後の温度に対して高感度帯を有するセンサタグ1Xと、50℃前後の温度に対して高感度帯を有するセンサタグ1Yと配設することで、温度に対してより高感度な材料状態検出が可能となる。 If only one type of sensor tag 1 is provided for each inspection target position Ma, the high-sensitivity band of the state of the material to be detected may be restricted to a narrow band. In this respect, multiple types of sensor tags 1X and 1Y are arranged for each inspection target position Ma, and the multiple types of sensor tags 1X and 1Y are each provided with a high sensitivity band for the state of the material to be detected. material state can be detected. For example, when the sensor tags 1X and 1Y are used for detecting the temperature inside the object M to be inspected, the sensor tag 1X having a high sensitivity band to a temperature of around 30° C. and the sensor tag 1Y having a high sensitivity band to a temperature of around 50° C. By arranging the sensor tag 1Y having a high-sensitivity band with respect to the temperature, it is possible to detect the state of the material with higher sensitivity with respect to the temperature.
 尚、複数種類のセンサタグ1X、1Yは、アイソレーション層1bと裏面反射材1cとが共有され、共振器1aの構成(即ち、共振器長)のみが異なるものであってもよい。 It should be noted that the plurality of types of sensor tags 1X and 1Y may share the isolation layer 1b and the back reflector 1c, and may differ only in the configuration of the resonator 1a (that is, the resonator length).
[センサタグ1の変形例1]
 図11Aは、変形例1に係るセンサタグ1の構成を示す図である。図11Bは、変形例1に係るセンサタグ1を用いて、状態検出を行うメカニズムについて説明する図である。
[Modification 1 of sensor tag 1]
11A is a diagram showing the configuration of the sensor tag 1 according to Modification 1. FIG. FIG. 11B is a diagram illustrating a mechanism for detecting a state using the sensor tag 1 according to Modification 1. FIG.
 図11Aに示すセンサタグ1は、図3に示したセンサタグ1に対して、変換部1dが追加された構成となっている。 The sensor tag 1 shown in FIG. 11A has a configuration in which a conversion unit 1d is added to the sensor tag 1 shown in FIG.
 変換部1dは、検査対象物体Mの特定の材料状態(即ち、検出対象の材料状態)に感応する材料で形成されている。変換部1dは、共振器1aと接して配設され、自身の物性変化により、共振器1aの電磁波反射特性を変化させる。即ち、センサタグ1は、変換部1dの物性変化が、検査対象物体Mの材料状態の変化に連動するように構成される。 The conversion unit 1d is made of a material that responds to a specific material condition of the object M to be inspected (that is, the material condition to be detected). The conversion unit 1d is arranged in contact with the resonator 1a, and changes the electromagnetic wave reflection characteristics of the resonator 1a by changing the physical properties of the conversion unit 1d. That is, the sensor tag 1 is configured such that the change in the physical properties of the conversion portion 1d is linked to the change in the material state of the object M to be inspected.
 具体的には、変換部1dは、自身が感応する検査対象物体Mの特定の材料状態の変化に応じて、誘電率、誘電正接(tanδ)、又は導電率の少なくとも一つが変化する材料で構成される。そして、変換部1dは、当該材料状態の変化が生じた際に、自身の誘電率、誘電正接、又は導電率の変化を通じて、共振器1aの近接領域の誘電率、誘電正接、又は、導電率を変化させ、共振器1aの電磁波反射特性変化を変化させる。変換部1dは、例えば、共振器1aの近接領域の誘電率及び誘電正接の変化により、短波長効果により共振器1aの共振周波数の変化が誘起し、共振器1aの近接領域の導電率の変化により、共振器1aが共振した際の共振ピークのピーク強度の変化が誘起する。 Specifically, the conversion unit 1d is made of a material that changes at least one of the dielectric constant, the dielectric loss tangent (tan δ), and the conductivity in accordance with changes in the specific material state of the inspection object M to which the conversion unit 1d is sensitive. be done. When the change in the material state occurs, the conversion unit 1d changes the dielectric constant, dielectric loss tangent, or electrical conductivity of the region adjacent to the resonator 1a through the change in its own dielectric constant, dielectric loss tangent, or electrical conductivity. is changed to change the electromagnetic wave reflection characteristic change of the resonator 1a. In the converter 1d, for example, a change in the dielectric constant and dielectric loss tangent of the region adjacent to the resonator 1a induces a change in the resonance frequency of the resonator 1a due to the short wavelength effect, and a change in conductivity in the region adjacent to the resonator 1a. This induces a change in the peak intensity of the resonance peak when the resonator 1a resonates.
 変換部1dの材料としては、状態検出システムUで検査対象物体Mの内部に生じた歪みを検出したい場合には、変換部1dとしては、検査対象物体Mの内部に生じた歪みに選択的に反応して物性変化をする材料が用いられる。又、状態検出システムUで検査対象物体Mの構成材料の組成を検出したい場合には、変換部1dとしては、検査対象物体Mの構成材料の組成に選択的に反応して物性変化をする材料が用いられる。 As for the material of the conversion unit 1d, when it is desired to detect the strain generated inside the inspection target object M by the state detection system U, the conversion unit 1d is selectively made of A material that reacts and changes physical properties is used. If the state detection system U is to detect the composition of the constituent material of the object M to be inspected, the conversion unit 1d may be a material whose physical properties change in response to the composition of the constituent material of the object M to be inspected. is used.
 尚、変換部1dの材料としては、例えば、液晶材料(例えば、ネマティック液晶、コレステリック液晶)、相転移材料(例えば、ワックス、マイクロカプセル、フェナントレン)、又は、熱や光に応答して重合、架橋、分解される刺激性不可逆反応性材料等が用いられてもよい。これらの材料は、周囲環境の状態変化から、変換部1dの誘電率変化を効果的に引き起こすことが可能である。又、変換部1dの材料としては、例えば、活性点(ガス分子を吸着する銅錯体のように、外部環境の変化を受けて半導体を導体に変換する物質)がドープされた半導体、異方導電体、又は、共振部を形成する導体に対しイオン化傾向の異なる金属がドープされた導電体等が用いられてもよい。これらの材料は、周囲環境の状態変化から、変換部1dの導電率変化を効果的に引き起こすことが可能である。 The material of the conversion portion 1d includes, for example, a liquid crystal material (e.g., nematic liquid crystal, cholesteric liquid crystal), a phase transition material (e.g., wax, microcapsule, phenanthrene), or polymerized or crosslinked material in response to heat or light. , irritant irreversibly reactive materials that decompose, etc. may be used. These materials can effectively cause a change in the dielectric constant of the conversion section 1d due to a change in the state of the surrounding environment. Examples of the material of the conversion portion 1d include a semiconductor doped with an active point (a substance that converts a semiconductor into a conductor in response to a change in the external environment, such as a copper complex that adsorbs gas molecules), an anisotropic conductive material, and the like. Alternatively, a conductor doped with a metal having a different ionization tendency than the conductor forming the resonator may be used. These materials can effectively cause a change in conductivity of the conversion portion 1d due to a change in the state of the surrounding environment.
 変換部1dは、例えば、共振器1aと一体的に配設され、本実施形態では、変換部1dは、共振器1(即ち、ストリップ導体)を全体的に被覆するように配設されている。但し、変換部1dは、変換部1dの少なくとも一部が共振器1aと接し、共振器1aの電磁波反射特性の変化を誘起し得る位置であればよい。例えば、変換部1dは、アイソレーション層1b内に配設されていてもよいし、共振器1aの側部に配設されていてもよい。 The conversion section 1d is arranged integrally with the resonator 1a, for example, and in this embodiment, the conversion section 1d is arranged so as to entirely cover the resonator 1 (that is, the strip conductor). . However, the conversion portion 1d may be located at a position where at least a part of the conversion portion 1d is in contact with the resonator 1a and a change in the electromagnetic wave reflection characteristics of the resonator 1a can be induced. For example, the conversion section 1d may be provided inside the isolation layer 1b or may be provided on the side of the resonator 1a.
 このように、変換部1dは、共振器1aの電磁波反射特性を変化(即ち、反射波スペクトルの変化)させることで、リーダー2にて、検査対象物体Mの特定の材料状態を、選択的に捉えることを可能とする。 In this way, the converter 1d changes the electromagnetic wave reflection characteristic of the resonator 1a (that is, changes the reflected wave spectrum), so that the reader 2 selectively detects the specific material state of the inspection target object M. allow it to be captured.
[センサタグ1の変形例2]
 図12Aは、変形例2に係るセンサタグ1の構成を示す図である。
[Modification 2 of sensor tag 1]
FIG. 12A is a diagram showing the configuration of the sensor tag 1 according to Modification 2. FIG.
 図12Aは、変形例2に係るセンサタグ1の構成を示す図である。又、図12Bは、図12Aに示すセンサタグ1の変形態様であり、図12Aに示すセンサタグ1に変換部1dを設けた構成を示す図である。 12A is a diagram showing the configuration of the sensor tag 1 according to Modification 2. FIG. FIG. 12B is a modification of the sensor tag 1 shown in FIG. 12A, and shows a configuration in which the sensor tag 1 shown in FIG. 12A is provided with a conversion section 1d.
 変形例2に係るセンサタグ1は、電磁波反射材1e、及び、電磁波反射材1e内に形成されたスロット型の共振器1aによって構成されている。 The sensor tag 1 according to Modification 2 is composed of an electromagnetic wave reflector 1e and a slot-type resonator 1a formed in the electromagnetic wave reflector 1e.
 電磁波反射材1eは、例えば、板状、シート状、膜状又は箔状のアルミ材や銅材等の導電材料で形成されている。そして、電磁波反射材1eは、ベタ状の導体材料の一部をくり抜くように形成された長方形状のスロットを有し、当該スロットによって、共振器1aが形成されている。この共振器1aは、典型的には、スロットの長さが、照射された電磁波の波長の略λ/2程度に相当するときに共振する。 The electromagnetic wave reflector 1e is made of a plate-like, sheet-like, film-like, or foil-like conductive material such as aluminum or copper. The electromagnetic wave reflector 1e has a rectangular slot formed by cutting out a part of a solid conductor material, and the slot forms a resonator 1a. This resonator 1a typically resonates when the length of the slot corresponds to approximately λ/2 of the wavelength of the irradiated electromagnetic wave.
 変形例2に係るセンサタグ1にて、検査対象物体Mの材料状態を検出する原理は、図3に示したセンサタグ1と同様である。即ち、変形例2に係るセンサタグ1は、共振器1a、又は電磁波反射材1eのうちの少なくともいずれかの状態の変化が、検査対象物体Mの材料状態の変化に連動するように構成される。変形例2に係るセンサタグ1は、例えば、共振器1aの下地に配設される検査対象物体M(図示せず)の誘電率の変化等に基づいて、自身の電磁波反射特性を変化させ、検査対象物体Mの材料状態を検出する。 The principle of detecting the material state of the object M to be inspected in the sensor tag 1 according to Modification 2 is the same as that of the sensor tag 1 shown in FIG. That is, the sensor tag 1 according to Modification 2 is configured such that the change in the state of at least one of the resonator 1a and the electromagnetic wave reflector 1e is linked to the change in the material state of the object M to be inspected. The sensor tag 1 according to Modification 2 changes its own electromagnetic wave reflection characteristics based on, for example, changes in the dielectric constant of an inspection target object M (not shown) arranged on the base of the resonator 1a, and performs inspection. The material state of the target object M is detected.
 尚、この変形例2に係るセンサタグ1においても、図12Bに示すように、変換部1dが設けられてもよい。 Also in the sensor tag 1 according to Modification 2, a conversion unit 1d may be provided as shown in FIG. 12B.
 尚、センサタグ1のその他の変形例としては、リング状やU字状の共振器1aを利用した態様等が挙げられる。特に、センサタグ1の感度の方向依存性(電磁波の偏波方向や、検査対象物体Mの材料状態の変化の方向)を回避したい場合には、リング状の共振器1aを用いるのが好ましい。 Other modified examples of the sensor tag 1 include a mode using a ring-shaped or U-shaped resonator 1a. In particular, when it is desired to avoid the directional dependence of the sensitivity of the sensor tag 1 (the polarization direction of the electromagnetic wave and the direction of change in the material state of the object M to be inspected), it is preferable to use the ring-shaped resonator 1a.
 以上に示したセンサタグ1の構成の詳細は、例えば、本出願人の先願である国際出願番号PCT/JP2019/042609、特願2020-077776、及び国際出願番号PCT/JP2020/031705を参照されたい。 For details of the configuration of the sensor tag 1 shown above, see, for example, International Application No. PCT/JP2019/042609, Japanese Patent Application No. 2020-077776, and International Application No. PCT/JP2020/031705, which are prior applications of the present applicant. .
<リーダー2の構成>
 次に、リーダー2の構成の一例について説明する。リーダー2は、例えば、センサタグ1から反射波スペクトルを取得する際には、検査対象物体M(即ち、センサタグ1)から数cm~数m離間する正対位置となるように、配設される。そして、リーダー2は、検査対象物体M中のセンサタグ1が配設された各検査対象位置Maに対して、電磁波を送信し、各検査対象位置Maからの反射波を受信して、各検査対象位置Maにおける反射波スペクトルを取得する。
<Configuration of Reader 2>
Next, an example of the configuration of the reader 2 will be described. For example, when acquiring a reflected wave spectrum from the sensor tag 1, the reader 2 is arranged so as to be directly facing the inspection object M (that is, the sensor tag 1) at a distance of several centimeters to several meters. Then, the reader 2 transmits an electromagnetic wave to each inspection target position Ma where the sensor tag 1 in the inspection target object M is arranged, receives a reflected wave from each inspection target position Ma, and receives a reflected wave from each inspection target position Ma. Acquire the reflected wave spectrum at the position Ma.
 図13は、リーダー2及び解析装置3の構成の一例を示す図である。 FIG. 13 is a diagram showing an example of the configuration of the reader 2 and the analysis device 3.
 リーダー2は、送信部21、受信部22、及び、制御部23を備えている。 The reader 2 includes a transmitter 21, a receiver 22, and a controller 23.
 送信部21は、例えば、送信アンテナ(例えば、フェーズドアレイアンテナ)、及び発振器等を含んで構成される。送信部21は、例えば、単一の周波数にピーク強度を有する正弦波状の電磁波を送信する。そして、送信部21は、送信アンテナから送信させる電磁波の送信周波数を時間的に変化させ、予め設定した所定周波数帯域内の周波数スイープを行う。送信部21は、例えば、UWB帯域、ミリ波帯域又はサブミリ波帯域の周波数帯域(3.1GHz~3THzの範囲)内で、例えば、500MHz以下の帯域幅毎、好ましくは10MHzの帯域幅毎にステップ状に送信周波数を変化させながら、周波数スイープを行う。尚、送信部1が送信する電磁波の周波数帯域は、センサタグ1の共振器1aの共振周波数が含まれるように設定される。 The transmission unit 21 includes, for example, a transmission antenna (eg, phased array antenna), an oscillator, and the like. The transmitter 21 transmits, for example, sinusoidal electromagnetic waves having peak intensity at a single frequency. Then, the transmission unit 21 temporally changes the transmission frequency of the electromagnetic wave transmitted from the transmission antenna, and sweeps the frequency within a preset predetermined frequency band. The transmission unit 21, for example, within the frequency band (range of 3.1 GHz to 3 THz) of the UWB band, millimeter wave band or sub-millimeter wave band, for example, every bandwidth of 500 MHz or less, preferably every 10 MHz bandwidth A frequency sweep is performed while changing the transmission frequency in a pattern. The frequency band of the electromagnetic wave transmitted by the transmitter 1 is set so as to include the resonance frequency of the resonator 1a of the sensor tag 1. FIG.
 尚、送信部21は、周波数スイープに代えて、所定周波数帯において特定の強度プロファイルを有する電磁波を一時的に一括して照射を行ってもよい(即ち、インパルス方式)。 Instead of frequency sweeping, the transmitting unit 21 may temporarily collectively irradiate electromagnetic waves having a specific intensity profile in a predetermined frequency band (ie, impulse method).
 又、送信部21は、検査対象物体Mの検査対象領域を走査するように、電磁波の送信方向を時間的に順次変更させる。送信部21による電磁波の走査方法は、任意であるが、例えば、送信部21は、フェーズドアレーアンテナを用いた電子走査により、検査対象物体Mをラスタスキャンする。つまり、送信部21は、検査対象物体Mの各検査対象位置Maの反射波スペクトルを得られるように、送信する電磁波の周波数スイープを行いながら、送信する電磁波の送信方向を変更していく。 In addition, the transmission unit 21 temporally sequentially changes the transmission direction of the electromagnetic wave so as to scan the inspection target area of the inspection target object M. Although the electromagnetic wave scanning method by the transmission unit 21 is arbitrary, for example, the transmission unit 21 raster scans the inspection target object M by electronic scanning using a phased array antenna. That is, the transmission unit 21 changes the transmission direction of the electromagnetic wave to be transmitted while sweeping the frequency of the electromagnetic wave to be transmitted so that the reflected wave spectrum of each inspection target position Ma of the inspection target object M can be obtained.
 受信部22は、例えば、受信アンテナ(例えば、フェーズドアレイアンテナ)、及び受信アンテナが取得した反射波の受信信号に基づいて、反射波の強度や位相を検出する受信信号処理回路等を含んで構成される。そして、受信部22は、受信アンテナにて、送信部21が電磁波を送信した際に発生する検査対象物体M(即ち、センサタグ1)からの反射波を受信し、受信信号処理回路にて、反射波の受信信号を受信処理して、電磁波の各送信周波数において検出される反射波の強度から、検査対象物体Mの反射波スペクトルを生成する。 The receiving unit 22 includes, for example, a receiving antenna (for example, a phased array antenna) and a received signal processing circuit that detects the intensity and phase of the reflected wave based on the received signal of the reflected wave acquired by the receiving antenna. be done. Then, the receiving unit 22 receives the reflected wave from the inspection target object M (that is, the sensor tag 1) generated when the transmitting unit 21 transmits the electromagnetic wave with the receiving antenna, and the received signal processing circuit receives the reflected wave. A received wave signal is received and processed to generate a reflected wave spectrum of the inspection target object M from the intensity of the reflected wave detected at each transmission frequency of the electromagnetic wave.
 又、受信部22は、送信部21による走査位置(即ち、電磁波送信方向)に対応するように、反射波の受信方向を時間的に順次変更する。受信部22による受信方向の走査方法としては、例えば、送信部21と同様に、フェーズドアレーアンテナを用いた電子走査が用いられる。これによって、受信部22は、検査対象物体Mの各検査対象位置Maの反射波スペクトル(周波数スペクトル)を取得する。 In addition, the receiving unit 22 temporally sequentially changes the receiving direction of the reflected wave so as to correspond to the scanning position (that is, the electromagnetic wave transmitting direction) by the transmitting unit 21 . As a scanning method in the receiving direction by the receiving unit 22, for example, electronic scanning using a phased array antenna is used as in the case of the transmitting unit 21. FIG. Thereby, the receiving unit 22 acquires the reflected wave spectrum (frequency spectrum) of each inspection target position Ma of the inspection target object M. FIG.
 尚、送信部21及び受信部22の信号処理回路は、ベクトルネットワークアナライザによって、一体的に構成されてもよい。 The signal processing circuits of the transmitting section 21 and the receiving section 22 may be integrally configured by a vector network analyzer.
 制御部23は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含んで構成されるマイコンであって、リーダー2を統括制御する。尚、制御部23は、例えば、検出対象の物体Mの材料状態を逐次監視するため、所定の時間間隔で、送信部21及び受信部22に上記した処理を実行させてもよいし、ユーザーからの反射波スペクトル取得指令を契機として、送信部21及び受信部22に上記した処理を実行させてもよい。 The control unit 23 is a microcomputer including, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and controls the reader 2 in an integrated manner. For example, the control unit 23 may cause the transmission unit 21 and the reception unit 22 to execute the above-described processing at predetermined time intervals in order to sequentially monitor the material state of the object M to be detected. The transmission unit 21 and the reception unit 22 may be caused to execute the above-described processing in response to the reflected wave spectrum acquisition command.
 尚、リーダー2は、上記構成の他、送信部21及び受信部22にて、検査対象物体M中の電磁波走査を行った場所を確認することを可能とするため、カメラを有していてもよい。 In addition to the above configuration, the reader 2 may have a camera in order to confirm the location of the object M to be inspected where the electromagnetic wave scanning has been performed by the transmitting unit 21 and the receiving unit 22. good.
<解析装置3の構成>
 解析装置3は、検査対象物体Mの材料状態の分布を推定する材料状態推定部31と、材料状態推定部31が推定した検査対象物体Mの材料状態の分布を画像表示する画像表示部32とを備える。 
<Configuration of analysis device 3>
The analysis device 3 includes a material state estimating unit 31 for estimating the distribution of the material state of the inspection target object M, and an image display unit 32 for displaying an image of the distribution of the material state of the inspection target object M estimated by the material state estimating unit 31. Prepare.
 図14は、解析装置3(材料状態推定部31)による検査対象物体Mの材料状態の分布の推定手法の一例を説明する図である。尚、図14には、同一の時間帯に、検査対象物体M中の異なる位置で取得された反射波スペクトルを示している。図14では、検査対象物体M中の第2地点で得られた反射波スペクトルは、検査対象物体M中の第1地点で得られた反射波スペクトルから、0.2GHz程度の周波数シフトが生じており、ここでは、検査対象物体M中の第2地点は、異常状態であると推定される。 FIG. 14 is a diagram illustrating an example of a method of estimating the distribution of the material state of the inspection target object M by the analysis device 3 (material state estimating unit 31). FIG. 14 shows reflected wave spectra acquired at different positions in the inspection object M during the same time period. In FIG. 14, the reflected wave spectrum obtained at the second point in the inspection object M has a frequency shift of about 0.2 GHz from the reflected wave spectrum obtained at the first point in the inspection object M. , where the second point in the inspected object M is presumed to be in an abnormal state.
 材料状態推定部31は、リーダー2から、検査対象物体Mの反射波スペクトル(即ち、センサタグ1の電磁波反射特性に由来して特徴付けられた反射波スペクトル)を取得して、当該反射波スペクトルに基づいて、検査対象物体Mの材料状態を推定する。この際、材料状態推定部31は、同一の時間帯に検査対象物体Mの複数の検査対象位置Maで得られた反射波スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、物体Mの材料状態の分布(例えば、正常及び異常に係る分布)を推定する。 The material state estimation unit 31 acquires the reflected wave spectrum of the inspection target object M (that is, the reflected wave spectrum characterized by the electromagnetic wave reflection characteristics of the sensor tag 1) from the reader 2, and obtains the reflected wave spectrum Based on this, the material state of the object M to be inspected is estimated. At this time, the material condition estimating unit 31 refers to the reflected wave spectra obtained at a plurality of inspection target positions Ma of the inspection target object M in the same time period, and compares them with each other and/or based on them. , the distribution of the material state of the object M (for example, normal and abnormal distributions) is estimated.
 リーダー2が取得する反射波スペクトルには、センサタグ1が捉えた検査対象物体Mの検出対象の材料状態に依拠した反射波成分の他、様々なノイズ成分が重畳する。具体的には、センサタグ1の電磁波反射特性自体が、検査対象物体Mの検出対象以外の材料状態に影響を受けて変化してしまう場合もある(例えば、センサタグ1が、検査対象物体M中の圧力状態を検出する構成であっても、センサタグ1の電磁波反射特性は、検査対象物体M中の温度に影響を受けて変化してしまう場合もある)。又、リーダー2が取得する反射波スペクトルには、検査対象物体M自体からの反射波成分、及び、検査対象物体Mの周囲物体からの反射波成分も含まれる。そして、これらは、周囲環境の様々な要素(例えば、温度、湿度、光度、及び磁場等)に影響を受けるため、検査対象物体Mの検出対象の材料状態が同一であっても、リーダー2が取得する反射波スペクトルは、その時々で変化する。 Various noise components are superimposed on the reflected wave spectrum acquired by the reader 2, in addition to reflected wave components that depend on the state of the material of the inspection object M captured by the sensor tag 1. Specifically, the electromagnetic wave reflection characteristic itself of the sensor tag 1 may change due to the state of materials other than the detection target of the inspection target object M (for example, the sensor tag 1 may Even with a configuration that detects the pressure state, the electromagnetic wave reflection characteristics of the sensor tag 1 may change under the influence of the temperature in the object M to be inspected). The reflected wave spectrum acquired by the reader 2 also includes reflected wave components from the inspection target object M itself and reflected wave components from surrounding objects of the inspection target object M. And since these are affected by various factors of the surrounding environment (for example, temperature, humidity, light intensity, magnetic field, etc.), even if the material state of the object M to be detected is the same, the reader 2 The acquired reflected wave spectrum changes from time to time.
 このように、リーダー2に取得される反射波スペクトルには、多くのノイズが重畳したものとなっており、従来技術に係る状態検出システムのように、リーダー2に取得される反射波スペクトルを、予め準備した基準パターンのデータと照合することで、検査対象物体Mの検出対象の材料状態を推定する手法では、正確性に欠けるおそれがある。 In this way, the reflected wave spectrum acquired by the reader 2 is superimposed with a lot of noise. The method of estimating the state of the material of the object M to be detected by collating it with the data of the reference pattern prepared in advance may lack accuracy.
 かかる観点から、材料状態推定部31は、検査対象物体Mの一つの位置で得られた反射波スペクトルのみをもって、検査対象物体Mの材料特性を推定するのではなく、同一の時間帯に(例えば、一回の電磁波走査中)、検査対象物体Mの複数の検査対象位置Maそれぞれで得られた反射波スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、検査対象物体M中の材料状態の分布を推定する(図14を参照)。材料状態推定部31は、例えば、これにより、検査対象物体M中の材料状態の異常点の有無を推定する。尚、検査対象物体M中の材料状態の異常点とは、例えば、検査対象物体M中において腐食が発生している位置や、検査対象物体M中の構成材料の組成に異常が発生している位置のことを意味する。 From this point of view, the material state estimating unit 31 does not estimate the material properties of the inspection object M only with the reflected wave spectrum obtained at one position of the inspection object M, but rather estimates the material properties of the inspection object M in the same time zone (for example , during one electromagnetic wave scan), refer to the reflected wave spectra obtained at each of a plurality of inspection positions Ma of the inspection object M, and compare them with each other and/or generate reference data based on them By doing so, the distribution of the material state in the object M to be inspected is estimated (see FIG. 14). For example, the material state estimation unit 31 estimates the presence or absence of an abnormal point of the material state in the object M to be inspected. The abnormal point of the material state in the object M to be inspected is, for example, a position where corrosion occurs in the object M to be inspected or an abnormality in the composition of the constituent material in the object M to be inspected. means position.
 材料状態推定部31のかかる解析手法は、同一の時間帯に、検査対象物体M中の互いに近接する2箇所で得られる反射波スペクトルは、これらの反射波スペクトルに重畳するノイズ成分も略同一となるため、当該2箇所で検査対象物体Mの材料状態が同一である場合には、同一のパターンとなる、という技術的思想に基づく。換言すると、同一の時間帯に、検査対象物体M中の近接する2箇所で得られる反射波スペクトルのパターンが異なる場合には、当該2箇所のうちの一方が異常状態となっていることを意味する。つまり、検査対象物体M中の推定対象位置の反射波スペクトルを、例えば、その周囲の位置で得られた反射波スペクトルと比較することによって、その推定対象位置の材料状態が正常状態であるか、異常状態であるのかを推定することが可能である。 According to this analysis method of the material condition estimation unit 31, the reflected wave spectra obtained at two mutually adjacent locations in the inspection object M in the same time period have substantially the same noise components superimposed on these reflected wave spectra. Therefore, it is based on the technical idea that if the material state of the object M to be inspected is the same at the two locations, the pattern will be the same. In other words, when the patterns of reflected wave spectra obtained at two adjacent locations in the inspection object M are different in the same time period, it means that one of the two locations is in an abnormal state. do. That is, by comparing the reflected wave spectrum of the estimated position in the inspection target object M with, for example, the reflected wave spectra obtained at the surrounding positions, it is possible to determine whether the material state of the estimated target position is normal. It is possible to estimate whether it is in an abnormal state.
 但し、材料状態推定部31は、検査対象物体M中の材料状態の分布を推定する際、必ずしも、いずれの位置が異常であり、いずれの位置が正常であるかを推定する必要はない。例えば、材料状態推定部31は、検査対象物体M中の材料状態の分布の均一性のみを推定してもよい。この場合、材料状態推定部31は、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトルが同一であるか否かのみを推定してもよい。 However, when estimating the distribution of the material state in the inspection target object M, the material state estimation unit 31 does not necessarily need to estimate which position is abnormal and which position is normal. For example, the material state estimation unit 31 may estimate only the uniformity of the distribution of the material state in the object M to be inspected. In this case, the material state estimating section 31 may only estimate whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M are the same.
 具体的には、材料状態推定部31は、例えば、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトル(即ち、検査対象物体M中の複数の検査対象位置Maそれぞれで取得された周波数スペクトルに表出するセンサタグ1の電磁波反射特性)を比較して、これらの同一性に係る解析を行って、検査対象物体M中の材料状態の分布の均一性を推定する。この場合、材料状態推定部31は、例えば、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトルのうち、特異的な反射波スペクトルが存在する場合、当該特異的な反射波スペクトルが得られた検査対象位置Maを異常状態と特定する(即ち、多数決方式)。 Specifically, the material state estimating unit 31, for example, calculates the reflected wave spectrum obtained at each of the plurality of inspection target positions Ma in the inspection target object M (that is, each of the plurality of inspection target positions Ma in the inspection target object M). The electromagnetic wave reflection characteristics of the sensor tag 1 appearing in the frequency spectrum obtained in ) are compared, and an analysis regarding their identity is performed to estimate the uniformity of the distribution of the material state in the inspection target object M. In this case, for example, when there is a specific reflected wave spectrum among the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M, the material state estimation unit 31 determines that the specific reflected wave spectrum The inspection target position Ma from which the reflected wave spectrum is obtained is specified as an abnormal state (that is, majority rule).
 材料状態推定部31による同一性の解析は、典型的には、検査対象位置Maそれぞれで得られた反射波スペクトルから、当該反射波スペクトルに表出するセンサタグ1の電磁波反射特性(共振ピークのピーク位置及び/又はピーク強度)の同一性を評価するものである。この際、材料状態推定部31は、例えば、テンプレートマッチングや、学習済みの学習器モデル(例えば、SVM(Support Vector Machine)や、ニューラルネットワーク)等のパターンマッチングを基調とした解析を行うのが好ましい。リーダー2が取得する反射波スペクトルからは、センサタグ1の共振ピークのピーク位置やピーク強度を正確に特定することが困難な場合も多いが、パターンマッチングを基調とした解析手法を用いることで、反射波スペクトル中から共振ピークのピーク位置やピーク強度を特定する処理を行うことなく、反射波スペクトルのパターン全体の比較により、2つの反射波スペクトルの同一性を判断することが可能となる。尚、かかる手法では、典型的には、反射波スペクトルのパターン全体の周波数シフト量や、反射波スペクトル中の共振ピーク付近全体のピーク強度の変化量に基づいて、2つの反射波スペクトルの同一性を判断する。 The identity analysis by the material state estimator 31 is typically performed by determining the electromagnetic wave reflection characteristics of the sensor tag 1 appearing in the reflected wave spectrum (resonance peak peak position and/or peak intensity). At this time, the material state estimation unit 31 preferably performs analysis based on pattern matching such as template matching and trained learner models (for example, SVM (Support Vector Machine) and neural networks). . From the reflected wave spectrum acquired by the reader 2, it is often difficult to accurately identify the peak position and peak intensity of the resonance peak of the sensor tag 1. However, by using an analysis method based on pattern matching, the reflected It is possible to determine the identity of two reflected wave spectra by comparing the entire patterns of the reflected wave spectra without performing processing for specifying the peak position and peak intensity of the resonance peak in the wave spectrum. In such a method, typically, the identity of the two reflected wave spectra is determined based on the amount of frequency shift of the entire pattern of the reflected wave spectrum and the amount of change in the peak intensity of the entire vicinity of the resonance peak in the reflected wave spectrum. to judge.
 尚、材料状態推定部31は、2つの反射波スペクトルを比較した際、予め記憶部(例えば、図示しない解析装置3のROM)に記憶された判別基準データを参照して、2つの反射波スペクトルの差分(例えば、周波数シフト量やピーク強度の変化量)が閾値以上である場合には、推定対象位置が異常であると判断してもよい。かかる判別基準データは、例えば、予め実験やシミュレーションにより取得可能である。又、かかる判別基準データには、その差分の大きさに応じた材料状態の変化の度合いが関連付けて記憶されていてもよい。 When comparing the two reflected wave spectra, the material state estimation unit 31 refers to discrimination reference data stored in advance in a storage unit (for example, the ROM of the analysis device 3 not shown) to determine the two reflected wave spectra. (for example, the amount of frequency shift or the amount of change in peak intensity) is greater than or equal to a threshold value, it may be determined that the estimation target position is abnormal. Such discrimination reference data can be obtained in advance through experiments or simulations, for example. Further, such discrimination reference data may be stored in association with the degree of change in the state of the material according to the magnitude of the difference.
 以上のように、本実施形態に係る解析装置3においては、同一の時間帯に、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成して、物体Mの材料状態の分布(例えば、正常及び異常に係る分布)を推定する手法を採用する。 As described above, in the analysis apparatus 3 according to the present embodiment, the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M are referred to in the same time zone, and these are compared with each other. By doing and/or generating reference data based on these, a method of estimating the distribution of the material state of the object M (for example, distribution related to normal and abnormal) is adopted.
 これによって、周囲環境の様々な要素に起因して、その時々で変化する反射波スペクトルしか得られない状況下においても、検査対象物体Mの材料状態の分布(例えば、正常及び異常に係る分布)を正確に推定することが可能となる。又、これによって、予め、種々の異なる状況下で得られる全ての反射波スペクトルの基準パターンを記憶しておくことなく、検査対象物体Mの材料状態の分布を推定することが可能となる。 As a result, the distribution of the material state of the inspection target object M (for example, the normal and abnormal distributions) can be obtained even under circumstances in which only reflected wave spectra that change from time to time due to various factors in the surrounding environment can be obtained. can be estimated accurately. In addition, this makes it possible to estimate the distribution of the material state of the object M to be inspected without pre-storing reference patterns of all reflected wave spectra obtained under various different conditions.
 尚、ここで言う「同一の時間帯に、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトル」とは、検査対象物体Mの周囲環境が変化しない程度に近接した時間帯を意味し、必ずしも、一回の電磁波走査において、検査対象物体M中の各検査対象位置Maで得られた反射波スペクトルである必要はない。 It should be noted that the "reflected wave spectra obtained at each of a plurality of inspection target positions Ma in the inspection target object M in the same time zone" referred to here means that the surrounding environment of the inspection target object M is close to the extent that the surrounding environment does not change. It means a time zone, and does not necessarily have to be the reflected wave spectrum obtained at each inspection target position Ma in the inspection target object M in one electromagnetic wave scanning.
 画像表示部32は、解析により得られた検査対象物体Mの材料状態の分布を、例えば、画像パターン(以下、「材料分布画像」と称する)に変換して、表示部(例えば、解析装置3が有する液晶ディスプレイ)に出力する。画像表示部32は、例えば、予め準備した変換テーブルを用いて検出対象の材料状態の種別と画像色とを対応付けて、検査対象物体Mの検査対象位置Ma毎に、当該検査対象位置Maの材料状態に応じて、画像色を異ならせて、材料分布画像を生成する。 The image display unit 32 converts the distribution of the material state of the object to be inspected M obtained by the analysis into, for example, an image pattern (hereinafter referred to as a “material distribution image”), and displays it on the display unit (for example, the analysis device 3 LCD display). For example, the image display unit 32 associates the type of the material state of the detection target with the image color using a conversion table prepared in advance, and for each inspection target position Ma of the inspection target object M, displays the inspection target position Ma. A material distribution image is generated by changing the image color according to the material state.
 その際、画像生成部32は、例えば、材料分布画像を、検査対象物体Mを電磁波走査する際に得られる電磁波反射強度画像(例えば、走査位置毎の反射強度をグレースケールで表現した画像)に重ね合わせた表示用画像を生成して、当該表示用画像を表示部に出力するのが好ましい(図16Aを参照)。これによって、検査対象物体M全体の形態の認識が可能となるため、ユーザーに対して、検査対象物体Mの位置と、検査対象物体Mの材料状態との対応関係を明確化した情報を提供することが可能である。 At that time, for example, the image generation unit 32 converts the material distribution image into an electromagnetic wave reflection intensity image (for example, an image expressing the reflection intensity for each scanning position in gray scale) obtained when the inspection target object M is scanned with electromagnetic waves. Preferably, a superimposed display image is generated and the display image is output to the display unit (see FIG. 16A). As a result, it is possible to recognize the shape of the entire inspection target object M, so that the user is provided with information that clarifies the correspondence relationship between the position of the inspection target object M and the material state of the inspection target object M. It is possible.
 但し、画像生成部32は、材料分布画像を、電磁波反射強度画像に代えて、カメラ画像に重ね合わせた表示用画像を生成してもよい。 However, the image generator 32 may generate a display image in which the material distribution image is superimposed on the camera image instead of the electromagnetic wave reflection intensity image.
 尚、本実施形態に係る解析装置3(材料状態推定部31)において、物体Mの材料状態の分布(例えば、正常及び異常に係る分布)を推定する手法は、種々に変形可能である。 In addition, in the analysis device 3 (material state estimation unit 31) according to the present embodiment, the method of estimating the distribution of the material state of the object M (for example, distribution related to normal and abnormal) can be modified in various ways.
 例えば、材料状態推定部31は、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトルの同一性の解析を行う際、これらの反射波スペクトルからセンサタグ1の電磁波反射特性を抽出し、抽出したセンサタグ1の電磁波反射特性を用いて、同一性の解析を行ってもよい。 For example, when the material state estimating unit 31 analyzes the identity of the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the inspection target object M, the electromagnetic wave reflection characteristics of the sensor tag 1 are calculated from these reflected wave spectra. may be extracted, and the sameness analysis may be performed using the electromagnetic wave reflection characteristics of the extracted sensor tag 1 .
 又、材料状態推定部31は、検査対象物体M中の複数の検査対象位置Maそれぞれで得られた反射波スペクトルを元に、正常状態と異常状態とを推定するための基準データを生成してもよい。例えば、材料状態推定部31は、推定対象位置の周囲の複数の位置で得られた反射波スペクトルを基準データとして生成してもよい。 Further, the material state estimating unit 31 generates reference data for estimating the normal state and the abnormal state based on the reflected wave spectrum obtained at each of the plurality of inspection target positions Ma in the inspection target object M. good too. For example, the material condition estimation unit 31 may generate reflected wave spectra obtained at a plurality of positions around the estimation target position as the reference data.
 又、材料状態推定部31は、例えば、検査対象物体Mを製造した直後等、検査対象物体M全体が正常状態であるときに、検査対象物体Mの各検査対象位置Maで反射波スペクトルを取得しておき、検査対象物体Mの互いに異なる位置で得られる反射波スペクトルの相違(例えば、共振ピークのピーク位置やピーク強度の相違)を把握しておいてもよい。そして、材料状態推定部31は、その後の比較処理の際には、検査対象物体Mの互いに異なる位置で得られる反射波スペクトルの相違の変化に基づいて、推定対象位置の正常又は異常等の推定を行ってもよい。 Further, the material state estimation unit 31 acquires the reflected wave spectrum at each inspection target position Ma of the inspection target object M when the entire inspection target object M is in a normal state, for example, immediately after the inspection target object M is manufactured. Then, differences in reflected wave spectra (for example, differences in peak positions and peak intensities of resonance peaks) obtained at mutually different positions of the inspection target object M may be grasped. Then, in the subsequent comparison processing, the material state estimating unit 31 estimates whether the estimation target position is normal or abnormal based on changes in the difference in the reflected wave spectra obtained at mutually different positions of the inspection target object M. may be performed.
<状態検出システムUの動作>
 図15は、状態検出システムUの動作の一例を説明する図である。尚、図15のフローチャートの処理は、例えば、ユーザーによる検査指令開始指令を契機として、実行される処理である。
<Operation of state detection system U>
15A and 15B are diagrams for explaining an example of the operation of the state detection system U. FIG. Note that the processing of the flowchart of FIG. 15 is processing that is executed, for example, triggered by an inspection command start command from the user.
 ステップS10において、リーダー2は、電磁波を送信して、検査対象物体Mの検査対象領域(即ち、複数個のセンサタグ1が分散配置された領域)に対して照射し、検査対象物体Mからの反射波を受信する。そして、リーダー2は、送信部21の電磁波送信方向及び受信部22の電磁波受信方向を切り替え、検査対象物体Mの検査対象領域を電磁波走査する。この際、リーダー2は、各走査位置で、送信周波数の周波数スイープを行い、所定の周波数帯域についての検査対象物体Mからの反射波スペクトルを取得する。そして、リーダー2は、検査対象物体Mの各走査位置で得られた反射波スペクトルを、通信回線を介して、解析装置3に対してデータ送信する。 In step S10, the reader 2 transmits electromagnetic waves to irradiate the inspection target area of the inspection target object M (that is, the area in which the plurality of sensor tags 1 are dispersedly arranged), and the electromagnetic wave is reflected from the inspection target object M. receive waves. Then, the reader 2 switches the electromagnetic wave transmission direction of the transmission unit 21 and the electromagnetic wave reception direction of the reception unit 22, and scans the inspection target area of the inspection target object M with electromagnetic waves. At this time, the reader 2 sweeps the transmission frequency at each scanning position, and obtains the reflected wave spectrum from the inspection object M in a predetermined frequency band. The reader 2 then transmits the reflected wave spectrum obtained at each scanning position of the object M to be inspected to the analysis device 3 via a communication line.
 ステップS20において、解析装置3は、ステップS10で得られた検査対象物体Mの各走査位置の反射波スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、検査対象物体M中の材料状態の分布(例えば、正常及び異常に係る分布)を推定する。 In step S20, the analysis device 3 refers to the reflected wave spectrum of each scanning position of the inspection target object M obtained in step S10, and compares them with each other and/or generates reference data based on them. Thus, the distribution of the material state in the object M to be inspected (for example, the distribution of normal and abnormal) is estimated.
 ステップS30において、解析装置3は、ステップS20で得られた検査対象物体M中の材料状態の分布に係る情報を用いて、検査対象物体Mの材料分布画像を生成する。そして、解析装置3は、検査対象物体Mの材料分布画像を、検査対象物体Mを電磁波走査する際に得られる電磁波反射強度画像に重ね合わせた表示用画像(例えば、図16Aを参照)を生成して、当該表示用画像を表示部に出力する。 In step S30, the analysis device 3 generates a material distribution image of the inspection object M using the information regarding the distribution of the material state in the inspection object M obtained in step S20. Then, the analysis device 3 generates a display image (for example, see FIG. 16A) in which the material distribution image of the inspection object M is superimposed on the electromagnetic wave reflection intensity image obtained when the inspection object M is scanned with electromagnetic waves. Then, the display image is output to the display unit.
 以上のような一連の処理によって、状態検出システムUは、検査対象物体M中の材料状態の分布に係る情報を、ユーザーに対して提供する。 Through the series of processes described above, the state detection system U provides the user with information on the distribution of the material state in the object M to be inspected.
 以下、本開示に係る状態検出システムUの具体的な適用例を示す。 Specific application examples of the state detection system U according to the present disclosure are shown below.
[実施例1]
 図16Aは、実施例1に係る状態検出システムUの実施態様を説明する図である。尚、図16Aの左図は、リーダー2で撮影された鉄筋コンクリート(本実施例の検査対象物体M)のカメラ画像を示し、図16Aの右図は、リーダー2で取得された反射波スペクトルに基づいて生成された図16Aの左図の鉄筋コンクリートの電磁波反射強度画像を示している。尚、図16Aでは、鉄筋コンクリートの材料状態分布画像が、電磁波反射強度画像(図16Aの右図)に重畳する形で表示された態様を示している。
[Example 1]
FIG. 16A is a diagram illustrating an implementation of the state detection system U according to the first embodiment. The left diagram in FIG. 16A shows a camera image of reinforced concrete (inspection target object M of the present embodiment) photographed by the reader 2, and the right diagram in FIG. 16A is based on the reflected wave spectrum acquired by the reader 2. FIG. 16B shows an electromagnetic wave reflection intensity image of the reinforced concrete in the left diagram of FIG. Note that FIG. 16A shows a mode in which the material state distribution image of reinforced concrete is displayed in a form superimposed on the electromagnetic wave reflection intensity image (the right diagram in FIG. 16A).
 一般に、建造物等に用いられている鉄筋コンクリートは、永久的なものではなく、鉄筋の腐食に伴い、老朽化が進むことが知られている。通常、鉄筋コンクリートは施工の段階で塩基性になるよう組成が調整されるが、これが腐食の過程で、コンクリート中性化→鉄筋腐食(錆)→コンクリートひび割れ→コンクリートはがれ→鉄筋破断→崩落のように腐食が進行する。現状、腐食の様子が把握できるのはコンクリート表面にひびが表出する腐食中期からで、腐食初期状態を検知するためにはコンクリートに穴をあけた検査が必要である。穴をあけるというリスクや手間を伴う検査であることから、業界では嫌われているものの、現状では、非破壊で検査する手段はない。 It is generally known that the reinforced concrete used in buildings is not permanent and deteriorates as the reinforcing steel corrodes. Normally, the composition of reinforced concrete is adjusted so that it becomes basic at the construction stage, but this is the process of corrosion, in the following manner: concrete neutralization → reinforcing bar corrosion (rust) → concrete cracking → concrete peeling → reinforcing bar breaking → collapse Corrosion progresses. At present, it is possible to grasp the state of corrosion from the middle stage of corrosion, when cracks appear on the concrete surface. Although the industry dislikes this inspection because it involves the risk of drilling a hole and is time-consuming, there is currently no means of non-destructive inspection.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、鉄筋コンクリートを検査対象物体Mとして、当該鉄筋コンクリート(以下、「鉄筋コンクリートM1」と称する)中の鉄筋の腐食状態を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment is applied to detecting the state of corrosion of reinforcing bars in the reinforced concrete (hereinafter referred to as "reinforced concrete M1") using reinforced concrete as the inspection target object M. It is
 図16Bは、鉄筋コンクリートM1中におけるセンサタグ1の配設状態の一例を示す図である。図16Cは、鉄筋コンクリートM1中の鉄筋腐食に伴うセンサタグ1の共振ピークのピーク強度の経時変化の一例を示す図である。 FIG. 16B is a diagram showing an example of how the sensor tag 1 is arranged in the reinforced concrete M1. FIG. 16C is a diagram showing an example of changes over time in the peak intensity of the resonance peak of the sensor tag 1 due to corrosion of reinforcing bars in the reinforced concrete M1.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、鉄筋コンクリートM1の複数位置(例えば、図16Aの左図に、黒色領域として示す28個の検査対象位置Ma)に対して、埋設される。本実施例に係るセンサタグ1は、鉄筋コンクリートM1施工時に、共振器1a(ここでは、ストリップ導体)を、コンクリート内の鉄筋から3~10mmほど離した位置に埋め込んでおくことで形成されている。具体的には、本実施例に係るセンサタグ1は、図3に示したセンサ構造を呈し、鉄筋コンクリートM1内に埋め込まれた共振器1aと、鉄筋コンクリートM1のコンクリート層からなるアイソレーション層1bと、鉄筋コンクリートM1の鉄筋からなる裏面反射材1cと、によって構成される(図16Bを参照)。そして、本実施例に係るセンサタグ1は、鉄筋コンクリートM1の鉄筋に腐食部M1Qが発生した場合、腐食部M1Qに起因して鉄筋(即ち、裏面反射材1c)の導電率が低下し、これにより、共振器1aの共振ピークを小さくする電磁波反射特性を引き起こす(図16Cを参照)。 In the state detection system U according to the present embodiment, the sensor tags 1 are embedded in, for example, a plurality of positions of the reinforced concrete M1 (for example, 28 inspection target positions Ma shown as black areas in the left diagram of FIG. 16A). be. The sensor tag 1 according to the present embodiment is formed by embedding a resonator 1a (here, a strip conductor) at a position about 3 to 10 mm away from the reinforcing bars in the concrete when the reinforced concrete M1 is constructed. Specifically, the sensor tag 1 according to this embodiment has the sensor structure shown in FIG. and a rear reflector 1c made of a reinforcing bar of M1 (see FIG. 16B). In the sensor tag 1 according to the present embodiment, when the corroded portion M1Q occurs in the reinforcing bar of the reinforced concrete M1, the corroded portion M1Q causes the conductivity of the reinforcing bar (that is, the back reflector 1c) to decrease. This causes an electromagnetic wave reflection characteristic that reduces the resonance peak of the resonator 1a (see FIG. 16C).
 本実施例に係る状態検出システムUでは、かかるセンサタグ1が、例えば、鉄筋コンクリートM1施工時に、コンクリート内に、鉄筋の延在方向に沿って、複数個埋設されることになる。尚、センサタグ1を、鉄筋コンクリートM1の表面に貼り付けるようにして配設した場合、かかるセンサタグ1では、鉄筋コンクリートM1の内部に存在する鉄筋の腐食状況まで検出するのは困難である。そのため、本実施例に係る状態検出システムUでは、鉄筋コンクリートM1の内部にセンサタグ1を配設する構成となっている。 In the state detection system U according to the present embodiment, a plurality of such sensor tags 1 are embedded in the concrete along the extending direction of the reinforcing bars, for example, when the reinforced concrete M1 is constructed. When the sensor tag 1 is attached to the surface of the reinforced concrete M1, it is difficult for the sensor tag 1 to detect the state of corrosion of the reinforcing bars inside the reinforced concrete M1. Therefore, in the state detection system U according to the present embodiment, the sensor tag 1 is arranged inside the reinforced concrete M1.
 リーダー2は、例えば、鉄筋コンクリートM1の検査対象領域に対して電磁波走査を行いながら、鉄筋コンクリートM1の各検査対象位置Maの反射波スペクトルを取得する。 For example, the reader 2 acquires the reflected wave spectrum of each inspection target position Ma of the reinforced concrete M1 while scanning the inspection target area of the reinforced concrete M1 with electromagnetic waves.
 解析装置3は、鉄筋コンクリートM1の各検査対象位置Maで得られる反射波スペクトルを参照して、これらを比較することで、鉄筋コンクリート中の鉄筋の腐食状態の分布を推定する。鉄筋コンクリートM1中の鉄筋の腐食は、鉄筋コンクリートM1を施工してから、時間の経過とともに、腐食しやすい部分から局所的に進行していく。かかる観点から、解析装置3は、例えば、鉄筋コンクリートM1の各検査対象位置Maで得られる反射波スペクトルの同一性の解析により、腐食部M1Qが発生している検査対象位置Maを発見する。そして、解析装置3は、鉄筋コンクリートM1のすべての検査対象位置Maについて鉄筋が腐食しているか否かを判定し、かかる判定結果から材料状態分布画像(図16Aの右図を参照)を生成する。 The analysis device 3 refers to the reflected wave spectra obtained at each inspection target position Ma of the reinforced concrete M1 and compares them to estimate the distribution of the state of corrosion of the reinforcing bars in the reinforced concrete. Corrosion of reinforcing bars in the reinforced concrete M1 progresses locally from easily corroded portions over time after construction of the reinforced concrete M1. From this point of view, the analysis device 3 finds the inspection target position Ma where the corroded portion M1Q occurs, for example, by analyzing the identity of the reflected wave spectrum obtained at each inspection target position Ma of the reinforced concrete M1. Then, the analysis device 3 determines whether or not the reinforcing bars are corroded at all inspection target positions Ma of the reinforced concrete M1, and generates a material state distribution image (see the right diagram of FIG. 16A) from the determination result.
 本実施例に係る状態検出システムUでは、かかる構成によって、鉄筋コンクリートM1中における腐食部M1Qの有無と、腐食部M1Qの発生位置とを把握することを可能とする。 With such a configuration, the state detection system U according to the present embodiment makes it possible to grasp the presence or absence of the corroded portion M1Q in the reinforced concrete M1 and the location of the corroded portion M1Q.
 尚、このとき、解析装置3は、予め、センサタグ1の共振ピークのピーク強度の低下度合いと鉄筋の腐食度合いとを関連付けた腐食度合い判別基準データを記憶しておいてもよい。この場合、解析装置3は、例えば、鉄筋の未腐食状態の反射波スペクトルに対する、腐食部M1Qが発生している検査対象位置Maにおける反射波スペクトル中の共振ピークのピーク強度の低下度合いから、かかる腐食度合い判別基準データを参照して、検査対象位置Maの鉄筋の腐食度合いを推定してもよい。 At this time, the analysis device 3 may store in advance corrosion degree determination reference data that associates the degree of decrease in the peak intensity of the resonance peak of the sensor tag 1 with the degree of corrosion of the reinforcement. In this case, the analysis device 3, for example, from the degree of decrease in the peak intensity of the resonance peak in the reflected wave spectrum at the inspection target position Ma where the corroded portion M1Q occurs with respect to the reflected wave spectrum of the uncorroded rebar, The corrosion degree of the reinforcing bar at the inspection target position Ma may be estimated by referring to the corrosion degree discrimination reference data.
 尚、本実施例に係る状態検出システムUでは、例えば、鉄筋コンクリートM1施工後、作業員の定期点検等によって、鉄筋コンクリートM1の状態(即ち、鉄筋の腐食度合い)の経時変化をモニタリングしていくのが好ましい。つまり、解析装置3は、例えば、毎回の点検タイミングで得られる反射波スペクトルの経時変化(例えば、共振ピークのピーク強度の経時変化)をモニタリングし、鉄筋コンクリートM1中の鉄筋の腐食状態の推定の参考情報とするのが好ましい。これによって、より正確に鉄筋コンクリート中の鉄筋の腐食状態の分布を推定することが可能となる。 In addition, in the state detection system U according to the present embodiment, for example, after the construction of the reinforced concrete M1, it is preferable to monitor the temporal change of the state of the reinforced concrete M1 (that is, the degree of corrosion of the reinforcing bars) through periodic inspections by workers. preferable. In other words, the analysis device 3 monitors, for example, the time-dependent change in the reflected wave spectrum (for example, the time-dependent change in the peak intensity of the resonance peak) obtained at each inspection timing, and is used as a reference for estimating the state of corrosion of the reinforcing bars in the reinforced concrete M1. Information is preferred. This makes it possible to more accurately estimate the distribution of the state of corrosion of reinforcing bars in reinforced concrete.
 本実施例に係る状態検出システムUは、以上のような構成により、鉄筋コンクリートM1中の鉄筋の腐食状態を監視し、鉄筋コンクリートM1の保守管理を確実に行うことが可能である。 With the configuration described above, the state detection system U according to the present embodiment can monitor the state of corrosion of reinforcing bars in the reinforced concrete M1 and reliably perform maintenance and management of the reinforced concrete M1.
[実施例2]
 図17Aは、実施例2に係る状態検出システムUの実施態様を説明する図である。
[Example 2]
FIG. 17A is a diagram illustrating an embodiment of the state detection system U according to the second embodiment.
 近年、軽量で頑丈な材料として、CFRTPなどの繊維強化樹脂が注目を集めている。繊維強化樹脂を成形する際の手段の一つとして一般に射出成形が用いられるが、大面積の部材を射出成形にて成形した場合、繊維強化樹脂中の射出ノズルから離れた端部では、繊維の含有量が少なくなったり、繊維が不整列の状態となり、繊維強化樹脂の強度が低下するといったことが課題となっている。 In recent years, fiber reinforced resins such as CFRTP have attracted attention as lightweight and strong materials. Injection molding is generally used as one of the means for molding fiber reinforced resin, but when a large area member is molded by injection molding, at the end away from the injection nozzle in the fiber reinforced resin, the fibers The problem is that the content decreases, the fibers become unaligned, and the strength of the fiber-reinforced resin decreases.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、繊維強化樹脂を検査対象物体Mとして、繊維強化樹脂(以下、「繊維強化樹脂M2」と称する)中の繊維の含有量及び/又は繊維の整列度合い(即ち、配向)の分布を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment uses a fiber reinforced resin as an inspection target object M, and the fiber content and the fiber content in the fiber reinforced resin (hereinafter referred to as "fiber reinforced resin M2") and/or to detect the distribution of fiber alignment (ie, orientation).
 本実施例に係る状態検出システムUでは、複数個のセンサタグ1が、例えば、射出成形された繊維強化樹脂M2の裏面の全体に亘って、貼付法により配設される。尚、本実施例に係る状態検出システムUでは、例えば、繊維強化樹脂M2中で、検査対象位置Ma毎に、繊維の整列度合いと繊維の含有量とをそれぞれ検出するべく、検査対象位置Ma毎に、繊維の整列度合い検出用のセンサタグ1(図9A、図9Bを参照)と、繊維の含有量検出用のセンサタグ1(図7A、図7Bを参照)と、が配設されている。 In the state detection system U according to this embodiment, a plurality of sensor tags 1 are arranged, for example, by affixing method over the entire back surface of the injection-molded fiber reinforced resin M2. In addition, in the state detection system U according to the present embodiment, for example, in order to detect the degree of alignment of the fibers and the content of the fibers for each inspection target position Ma in the fiber reinforced resin M2, for each inspection target position Ma A sensor tag 1 for detecting the degree of alignment of fibers (see FIGS. 9A and 9B) and a sensor tag 1 for detecting the content of fibers (see FIGS. 7A and 7B) are arranged.
 図17Bは、繊維強化樹脂M2中の繊維の整列度合いの相違に起因したセンサタグ1の反射波スペクトルの相違を示す図である。繊維強化樹脂M2中の繊維が、例えば、センサタグ1の共振器1aの共振器長の延在方向と平行に整列して形成されている場合には、センサタグ1における共振ピーク(図17Bでは、共振ピークf2a、f2b、f2c)が大きくなる。そのため、センサタグ1の反射波スペクトルは、繊維強化樹脂M2中の繊維の整列度合いが高い(即ち、配向性が高い)場合には、図17Bの実線のような反射波スペクトルとなり、繊維強化樹脂M2中の繊維が整列していない場合には、図17Bの点線のように、共振ピークf2a、f2b、f2cが消失した反射波スペクトルとなる。 FIG. 17B is a diagram showing differences in reflected wave spectra of the sensor tag 1 due to differences in the degree of alignment of fibers in the fiber reinforced resin M2. For example, when the fibers in the fiber-reinforced resin M2 are aligned parallel to the extending direction of the resonator length of the resonator 1a of the sensor tag 1, the resonance peak in the sensor tag 1 (resonance The peaks f2a, f2b, f2c) increase. Therefore, when the degree of alignment of the fibers in the fiber reinforced resin M2 is high (that is, the orientation is high), the reflected wave spectrum of the sensor tag 1 becomes a reflected wave spectrum like the solid line in FIG. When the fibers inside are not aligned, the reflected wave spectrum is such that the resonance peaks f2a, f2b, and f2c disappear, as indicated by the dotted line in FIG. 17B.
 図17Cは、繊維強化樹脂M2中の繊維含有率の相違に起因した反射波スペクトルの相違を示す図である。繊維強化樹脂M2中の繊維含有量の大きさは、例えば、繊維強化樹脂M2の誘電率の変化として表出する。そのため、センサタグ1の反射波スペクトルは、繊維強化樹脂M2中の繊維含有量が多い場合には、繊維強化樹脂M2中の繊維含有量が少ない場合と比較して、共振ピーク(図17Bでは、共振ピークf2d)の位置が変化することになる。 FIG. 17C is a diagram showing differences in reflected wave spectra due to differences in fiber content in the fiber reinforced resin M2. The amount of fiber content in the fiber reinforced resin M2 is expressed as a change in dielectric constant of the fiber reinforced resin M2, for example. Therefore, when the fiber content in the fiber reinforced resin M2 is high, the reflected wave spectrum of the sensor tag 1 has a resonance peak (resonance The position of the peak f2d) will change.
 リーダー2は、コンベアで搬送されている繊維強化樹脂M2の上方に、コンベアから数m離間して配設され、繊維強化樹脂M2がコンベアで搬送している最中に、繊維強化樹脂M2のセンサタグ1の存在位置に対して電磁波を送信し、繊維強化樹脂M2の各検査対象位置Maの反射波スペクトルを取得する。 The reader 2 is arranged above the fiber reinforced resin M2 being conveyed by the conveyor and separated from the conveyor by several meters. An electromagnetic wave is transmitted to the existence position of 1, and the reflected wave spectrum of each inspection target position Ma of the fiber reinforced resin M2 is acquired.
 解析装置3は、繊維強化樹脂M2の各検査対象位置Maで得られる反射波スペクトルを比較して、繊維強化樹脂M2中の繊維の含有量及び/又は繊維の整列度合い(即ち、配向)の分布を推定する。解析装置3は、例えば、繊維強化樹脂M2中の複数の検査対象位置Maの間で、繊維含有率や配向が不均一になっていた場合、繊維強化樹脂M2中に異常な位置が存在すると判定する。そして、解析装置3は、製造された繊維強化樹脂M2中で繊維含有率や配向が不均一になっていた場合、搬送装置に指令して、当該繊維強化樹脂M2を破棄させる。 The analysis device 3 compares the reflected wave spectrum obtained at each inspection target position Ma of the fiber reinforced resin M2, and the distribution of the fiber content and/or the degree of alignment (that is, orientation) of the fibers in the fiber reinforced resin M2. to estimate For example, the analysis device 3 determines that an abnormal position exists in the fiber reinforced resin M2 when the fiber content rate and orientation are uneven among a plurality of inspection target positions Ma in the fiber reinforced resin M2. do. Then, when the fiber content rate and orientation are uneven in the manufactured fiber reinforced resin M2, the analysis device 3 instructs the conveying device to discard the fiber reinforced resin M2.
 他方、解析装置3は、繊維強化樹脂M2中の射出ノズルから近い中央位置で得られる反射波スペクトルから正常状態の反射波スペクトルを推定し、これを基準として、繊維強化樹脂M2中の射出ノズルから離れた端部の異常等を判定してもよい。 On the other hand, the analysis device 3 estimates the reflected wave spectrum in a normal state from the reflected wave spectrum obtained at the central position near the injection nozzle in the fiber reinforced resin M2, and based on this, from the injection nozzle in the fiber reinforced resin M2 Abnormality or the like at the remote end may be determined.
 本実施例に係る状態検出システムUは、以上のような構成により、繊維強化樹脂M2中の繊維含有率や配向の不均一を抑制することが可能である。 With the configuration described above, the state detection system U according to the present embodiment can suppress unevenness in the fiber content and orientation in the fiber reinforced resin M2.
 尚、本実施例に係る状態検出システムUにおいて、図3に示したセンサタグ1を用いる場合、センサタグ1の共振器1aの共振器長の延在方向と繊維強化樹脂M2中の繊維の延在方向とが垂直の関係となったときには、繊維強化樹脂M2中の繊維の整列度合いに対するセンサタグ1の感度が低下してしまうおそれがある。そのため、本実施例に係る状態検出システムUにおいて、図3に示したセンサタグ1の構成を用いる場合には、検査対象位置Ma毎に、共振器1aの共振器長の延在方向が互いに異なる2種類のセンサタグ1を設けるのが好ましい。他方、センサタグ1の感度の方向依存性を回避するため、センサタグ1の共振器1aをリング状としてもよい。 In the state detection system U according to this embodiment, when using the sensor tag 1 shown in FIG. , the sensitivity of the sensor tag 1 to the degree of alignment of the fibers in the fiber reinforced resin M2 may be reduced. Therefore, in the state detection system U according to the present embodiment, when using the configuration of the sensor tag 1 shown in FIG. It is preferable to provide sensor tags 1 of different types. On the other hand, in order to avoid direction dependence of the sensitivity of the sensor tag 1, the resonator 1a of the sensor tag 1 may be ring-shaped.
[実施例3]
 図18Aは、実施例3に係る状態検出システムUの実施態様を説明する図である。
[Example 3]
FIG. 18A is a diagram illustrating an embodiment of the state detection system U according to the third embodiment.
 近年、シート状製品の薄型化等に伴い、ロール製造工程において、工程内のローラ部や、シート状製品を巻き付ける巻き芯にかかる圧力のムラがロール製品の品質に悪影響を起こすことが製造現場での課題になっている。そのため、ロール製品の巻き取り時の張力最適化のためロール内部の圧力ムラを定量的に管理したいという要望がある。 In recent years, as sheet-like products have become thinner, in the roll manufacturing process, uneven pressure applied to the rollers in the process and to the winding core around which the sheet-like products are wound has adversely affected the quality of the roll products. has become an issue. Therefore, there is a demand to quantitatively control the pressure unevenness inside the roll in order to optimize the tension during winding of the roll product.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、シート状製品を巻き付ける巻き芯を検査対象物体Mとして、巻き芯(以下、「巻き芯M3」と称する)に掛かる圧力の分布を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment uses a winding core around which a sheet product is wound as an object M to be inspected, and the distribution of pressure applied to the winding core (hereinafter referred to as "winding core M3"). It is used for detecting
 図18Bは、巻き芯M3に圧力ムラが生じた場合に観察されるセンサタグ1の反射波スペクトルの変化の一例を示す図である。図18Cは、解析装置3が生成する材料状態分布画像の一例を示す図である。 FIG. 18B is a diagram showing an example of changes in reflected wave spectrum of the sensor tag 1 observed when pressure unevenness occurs in the winding core M3. FIG. 18C is a diagram showing an example of a material state distribution image generated by the analysis device 3. FIG.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、シート状製品Mfを巻き付ける前段階で、巻き芯M3の外周面に貼付法によって配設され、シート状製品Mfが巻き芯M3に巻き付けられていく各タイミングで、シート状製品Mfから巻き芯M3に掛かる圧力を検出する。本実施例に係るセンサタグ1としては、例えば、圧力で導電性が変化する異方性導電膜からなる変換部1dを有するものを用いる(図11Aを参照)。これにより、センサタグ1は、巻き芯M3に掛かる圧力の変化を自身の電磁波反射特性の変化に変換する。即ち、センサタグ1は、巻き芯M3に掛かる圧力の変化に応じて、変換部1dの導電性を変化させて、反射波スペクトル中の共振ピークのピーク強度を変化させる。 In the state detection system U according to this embodiment, the sensor tag 1 is attached to the outer peripheral surface of the winding core M3, for example, before the sheet-shaped product Mf is wound, and the sheet-shaped product Mf is attached to the winding core M3. At each winding timing, the pressure applied from the sheet product Mf to the winding core M3 is detected. As the sensor tag 1 according to this embodiment, for example, one having a conversion portion 1d made of an anisotropic conductive film whose conductivity changes with pressure is used (see FIG. 11A). As a result, the sensor tag 1 converts changes in the pressure applied to the winding core M3 into changes in its own electromagnetic wave reflection characteristics. That is, the sensor tag 1 changes the conductivity of the conversion portion 1d in accordance with the change in the pressure applied to the winding core M3, thereby changing the peak intensity of the resonance peak in the reflected wave spectrum.
 本実施例に係る状態検出システムUでは、かかるセンサタグ1を巻き芯M3の全領域(例えば、図18Cの左図を参照)に対して配設し、巻き芯M3に掛かる圧力の分布を検出する。 In the state detection system U according to the present embodiment, such sensor tags 1 are arranged over the entire area of the winding core M3 (see, for example, the left diagram of FIG. 18C), and the pressure distribution applied to the winding core M3 is detected. .
 リーダー2は、例えば、巻き芯M3の内周面側に配設され、シート状製品Mfが巻き芯M3に巻き付けられていく際の各タイミングで、巻き芯M3の各検査対象位置Maに対して電磁波の送受信を行い、巻き芯M3の各検査対象位置Maの反射波スペクトルを取得する。 The reader 2 is arranged, for example, on the inner peripheral surface side of the winding core M3, and at each timing when the sheet-like product Mf is wound around the winding core M3, the reader 2 detects each inspection target position Ma of the winding core M3. An electromagnetic wave is transmitted and received, and a reflected wave spectrum of each inspection target position Ma of the winding core M3 is obtained.
 解析装置3は、シート状製品Mfが巻き芯M3に巻き付けられていく際の各タイミングで、巻き芯M3の各検査対象位置Maで得られる反射波スペクトルを比較して、巻き芯M3の各検査対象位置Maに掛かる圧力の分布を推定する。このとき、解析装置3は、例えば、巻き芯M3の各検査対象位置Maで得られる反射波スペクトルが同一のパターンであるか否かを判定し、これにより、巻き芯M3の外周面の中で圧力ムラが生じていないか否かを常時監視する。 The analysis device 3 compares the reflected wave spectra obtained at each inspection target position Ma of the winding core M3 at each timing when the sheet product Mf is wound around the winding core M3, and performs each inspection of the winding core M3. Estimate the distribution of pressure applied to the target position Ma. At this time, the analysis device 3 determines, for example, whether or not the reflected wave spectra obtained at each inspection target position Ma of the winding core M3 have the same pattern. Always monitor whether or not pressure unevenness occurs.
 解析装置3は、巻き芯M3の外周面の中で圧力ムラが出始めた場合、上流工程のローラの湾曲等を調整し、巻き芯M3に掛かる圧力のムラを解消する。この際、解析装置3は、巻き芯M3中のどの位置の反射波スペクトルが異常状態に変化したか、その反射波スペクトル中の変化が共振ピークのピーク強度の増大方向の変化であるか減少方向の変化であるか、及び、その変化の程度がどの程度であるか等に基づいて、上流工程のローラの湾曲等を調整する。 When pressure unevenness begins to appear on the outer peripheral surface of the winding core M3, the analysis device 3 adjusts the curvature of the rollers in the upstream process, etc., and eliminates the pressure unevenness applied to the winding core M3. At this time, the analysis device 3 determines at which position in the winding core M3 the reflected wave spectrum has changed to an abnormal state, and whether the change in the reflected wave spectrum is in the increasing direction of the peak intensity of the resonance peak or in the decreasing direction. and the degree of the change, the curvature and the like of the rollers in the upstream process are adjusted.
 本実施例に係る状態検出システムUは、以上のような構成により、巻き芯M3に発生する圧力ムラを抑制することが可能である。 With the configuration described above, the state detection system U according to the present embodiment can suppress pressure unevenness occurring in the winding core M3.
 尚、本実施例に係る状態検出システムUでは、巻き芯M3に掛かる圧力そのものを検出することで、上流工程のローラの湾曲等を調整することが可能であるため、監視カメラ等でシート状製品Mfに品質悪化による外観変化が発生したことを検出するタイミングよりも早い段階で、巻き芯M3に掛かる圧力のムラを解消することが可能となる。従って、本実施例に係る状態検出システムUによれば、巻き芯M3に掛かる圧力のムラに起因した製品品質の悪化を確実に回避することが可能である。 In addition, in the state detection system U according to the present embodiment, by detecting the pressure itself applied to the core M3, it is possible to adjust the curvature of the rollers in the upstream process, etc. It is possible to eliminate unevenness in the pressure applied to the core M3 at an earlier stage than the timing of detecting the occurrence of a change in the appearance of the Mf due to deterioration in quality. Therefore, according to the state detection system U according to the present embodiment, it is possible to reliably avoid deterioration in product quality due to uneven pressure applied to the winding core M3.
 尚、上記では、巻き芯M3に掛かる圧力の分布を検出するための状態検出システムUの構成を示したが、製造工程内のローラ部(即ち、シート状製品Mfを支持する支持体)に掛かる圧力の分布を検出するための状態検出システムUの構成についても、上記と同様の構成で実現可能である。 In the above description, the configuration of the state detection system U for detecting the distribution of pressure applied to the winding core M3 is shown. The configuration of the state detection system U for detecting the pressure distribution can also be realized with a configuration similar to that described above.
[実施例4]
 図19Aは、実施例4に係る状態検出システムUの実施態様を説明する図である。
[Example 4]
FIG. 19A is a diagram illustrating an embodiment of the state detection system U according to the fourth embodiment.
 一般に、自動車事故の多くは タイヤトラブルに起因し、その主な原因は、タイヤの空気圧の低下と摩耗によるものである。空気圧をモニタリングするサービスは多数提供されているのに対し、摩耗を自動的に計測する技術は未だ一般化されていない。自動運転を見据えた自動車のIoT化が加速するにつれ、メンテナンスの自動化が求められるようになり、タイヤの摩耗状況を自動でリアルタイムに計測することを可能とする要請がある。特に、急ブレーキやタッチアンドゴーなど、運転の仕方によって、タイヤには、全周の中で不均一な摩耗が発生することも多く、これが、走行距離のモニタでは、タイヤの摩耗状態の計測ができない要因の一つとなっている。 In general, many car accidents are caused by tire trouble, the main cause of which is the decrease in air pressure and wear of the tires. While many services for monitoring air pressure are provided, the technology for automatically measuring wear is not yet common. As the use of IoT in automobiles accelerates in anticipation of autonomous driving, there is a demand for automation of maintenance, and there is a demand for enabling automatic real-time measurement of tire wear. In particular, depending on the driving style, such as sudden braking or touch-and-go, uneven tire wear often occurs on the entire circumference. It is one of the reasons why it is not possible.
 本実施例に係る状態検出システムUは、かかる課題を解決するべく、車両のタイヤを検査対象物体Mとして、タイヤ(以下、「タイヤM4」と称する)の摩耗の分布を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment is applied to detect the wear distribution of a tire (hereinafter referred to as "tire M4") using a vehicle tire as an inspection target object M. ing.
 図19Bは、タイヤM4が摩耗した際に観察されるセンサタグ1の反射波スペクトルの変化の一例を示す図である。図19Cは、解析装置3が生成する材料状態分布画像の一例を示す図である。 FIG. 19B is a diagram showing an example of changes in reflected wave spectrum of the sensor tag 1 observed when the tire M4 wears. FIG. 19C is a diagram showing an example of a material state distribution image generated by the analysis device 3. FIG.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、タイヤM4の内部(例えば、タイヤM4を構成するトレッドとベルトとの間の領域)に埋設される。そして、センサタグ1は、タイヤM4のトレッドが摩耗した際に、センサタグ1の下地部分の一部が空気層に変化し、誘電率が低下した状態に感応するように、自身の反射波スペクトルの共振ピークの位置を高周波側に変化させる(図19Bを参照)。 In the state detection system U according to this embodiment, the sensor tag 1 is embedded, for example, inside the tire M4 (for example, the area between the tread and the belt that constitute the tire M4). Then, when the tread of the tire M4 wears, the sensor tag 1 changes a part of the underlying portion of the sensor tag 1 into an air layer, and the sensor tag 1 resonates its own reflected wave spectrum so as to respond to the state in which the dielectric constant is lowered. Change the position of the peak to the high frequency side (see FIG. 19B).
 本実施例に係る状態検出システムUでは、かかるセンサタグ1を、例えば、タイヤM4の全周に亘って配設し、タイヤM4の全面の摩耗状態を逐次監視する。 In the condition detection system U according to this embodiment, the sensor tag 1 is arranged, for example, over the entire circumference of the tire M4, and the wear condition of the entire surface of the tire M4 is sequentially monitored.
 リーダー2は、例えば、車両内のタイヤM4に対向する位置に、タイヤM4のトレッド外周面から30cmほど離間させて配設され、車両が走行している最中の各タイミングで、タイヤM4のセンサタグ1の存在位置に対して電磁波を送信し、タイヤM4の複数の検査対象位置Maそれぞれの反射波スペクトルを取得する。又、リーダー未搭載車両にも対応するため、リーダー2は、道路の路面下に配設されてもよい。 The reader 2 is arranged, for example, at a position facing the tire M4 inside the vehicle, separated from the tread outer peripheral surface of the tire M4 by about 30 cm. An electromagnetic wave is transmitted to one existing position, and the reflected wave spectrum of each of the plurality of inspection target positions Ma of the tire M4 is acquired. In addition, the reader 2 may be arranged under the road surface in order to deal with a vehicle not equipped with a reader.
 解析装置3は、タイヤM4の複数の検査対象位置Maそれぞれで得られる反射波スペクトルを比較して、タイヤM4中の複数の検査対象位置Maの摩耗状態の分布を推定する。このとき、解析装置3は、例えば、タイヤM4中の複数の検査対象位置Maそれぞれで得られる反射波スペクトルが同一のパターンであるか否かを判定し、これにより、タイヤM4のトレッドに摩耗が生じていないか否かを常時監視し、その監視結果を材料状態分布画像として出力する(図19Cを参照)。 The analysis device 3 compares the reflected wave spectra obtained at each of the plurality of inspection target positions Ma of the tire M4, and estimates the distribution of the wear state of the plurality of inspection target positions Ma in the tire M4. At this time, the analysis device 3, for example, determines whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the tire M4 have the same pattern. Whether or not it has occurred is constantly monitored, and the monitoring result is output as a material state distribution image (see FIG. 19C).
 尚、解析装置3は、この際、例えば、タイヤM4中の複数の検査対象位置Maそれぞれで得られる反射波スペクトルの中で、異常状態を示す反射波スペクトルが発見された場合、例えば、その反射波スペクトルの周波数シフト量に基づいて、その位置の摩耗の度合いを判定してもよい。 At this time, for example, when a reflected wave spectrum indicating an abnormal state is found among the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the tire M4, the analysis device 3 The degree of wear at that location may be determined based on the amount of frequency shift in the wave spectrum.
 本実施例に係る状態検出システムUは、以上のような構成により、タイヤM4に発生する摩耗を確実に検出することが可能である。 The state detection system U according to the present embodiment can reliably detect wear occurring in the tire M4 with the configuration described above.
[実施例5]
 図20Aは、実施例5に係る状態検出システムUの実施態様を説明する図である。
[Example 5]
FIG. 20A is a diagram illustrating an embodiment of the state detection system U according to the fifth embodiment.
 一般に、ベルトコンベアは、劣悪環境で稼働すると、経時劣化で破断することが知られている。一度破断すると交換に時間がかかり、ダウンタイム損失が生じることから、破断前に手を打っておきたいという要望がある。かかるベルトコンベアの破断の原因としては、典型的には、ベルト同士を接続するベルト接合部におけるベルトの剥離、及び、ベルト本体部において生じるクラックが挙げられる。 In general, belt conveyors are known to break due to deterioration over time when operated in a poor environment. Once broken, it takes a long time to replace, resulting in downtime loss. Typical causes of breakage of such belt conveyors include peeling of the belts at the belt joints that connect the belts, and cracks that occur in the belt main body.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、ベルトコンベアを検査対象物体Mとして、当該ベルトコンベア(以下、「ベルトコンベアM5」と称する)中に発生するベルトの剥離及びクラックを検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment uses a belt conveyor as an inspection target object M to detect peeling and cracking of the belt that occurs in the belt conveyor (hereinafter referred to as "belt conveyor M5"). It is used for detecting
 図20Bは、ベルトコンベアM5のベルト接合部ML1においてベルトの剥離が発生した際、及び、ベルトコンベアM5のベルト本体部ML2においてクラックが発生した際に観察されるセンサタグ1の反射波スペクトルの変化の一例を示す図である。 FIG. 20B shows changes in the reflected wave spectrum of the sensor tag 1 observed when the belt peeling occurs at the belt joint portion ML1 of the belt conveyor M5 and when a crack occurs at the belt main body portion ML2 of the belt conveyor M5. It is a figure which shows an example.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、図20Aの拡大図に示すように、ベルトコンベアM5のベルト接合部ML1に、一方のベルトと他方のベルトとの間に介在するように配設されると共に、ベルトコンベアM5のベルト本体部ML2の裏面側に配設されている。 In the state detection system U according to the present embodiment, the sensor tag 1 is interposed between one belt and the other belt at the belt junction ML1 of the belt conveyor M5, as shown in the enlarged view of FIG. , and is arranged on the back side of the belt main body ML2 of the belt conveyor M5.
 ベルトコンベアM5のベルト接合部ML1に配設されたセンサタグ1は、ベルトコンベアM5のベルト接合部ML1が剥離した際に、センサタグ1の周囲の一部が空気層に変化し、センサタグ1の下地部分の誘電率が低下することを検出する。即ち、ベルトコンベアM5のベルト接合部ML1に配設されたセンサタグ1は、反射波スペクトル中の共振ピークのピーク位置の変化(ここでは、高周波側にシフトする)として、ベルト接合部ML1の剥離状態の発生に係る情報を、リーダー2に対して受け渡す。 When the belt joint ML1 of the belt conveyor M5 separates from the sensor tag 1 disposed at the belt joint ML1 of the belt conveyor M5, part of the periphery of the sensor tag 1 changes into an air layer, and the underlying portion of the sensor tag 1 changes. Detects that the dielectric constant of That is, the sensor tag 1 disposed at the belt joint portion ML1 of the belt conveyor M5 detects the separation state of the belt joint portion ML1 as a change in the peak position of the resonance peak in the reflected wave spectrum (here, shifting to the high frequency side). information related to the occurrence of is passed to the reader 2.
 又、ベルトコンベアM5のベルト本体部ML2に配設されたセンサタグ1は、ベルトコンベアM5にクラックが発生した際に、センサタグ1の周囲の一部が空気層に変化し、センサタグ1の下地部分の誘電率が低下することを検出する。即ち、ベルトコンベアM5のベルト本体部ML2に配設されたセンサタグ1は、反射波スペクトル中の共振ピークのピーク位置の変化(ここでは、高周波側にシフトする)として、ベルト本体部ML2のクラックの発生に係る情報を、リーダー2に対して受け渡す。 In addition, when a crack occurs in the belt conveyor M5, the sensor tag 1 disposed on the belt main body ML2 of the belt conveyor M5 changes part of the periphery of the sensor tag 1 into an air layer, and the underlying portion of the sensor tag 1 changes. Detects a decrease in dielectric constant. That is, the sensor tag 1 disposed on the belt main body ML2 of the belt conveyor M5 detects cracks in the belt main body ML2 as changes in the peak position of the resonance peak in the reflected wave spectrum (here, shifting to the high frequency side). Information related to the occurrence is passed to the reader 2 .
 尚、ここでは、ベルト接合部ML1とベルト本体部ML2と間の距離が近接するため、ベルト接合部ML1に配設するセンサタグ1とベルト本体部ML2に配設するセンサタグ1とで異なる共振周波数のセンサタグ1を採用している。換言すると、これによって、リーダー2は、一回の電磁波の送受信で、ベルト接合部ML1の状態とベルト本体部ML2の状態の両方を検出することが可能となっている。 Here, since the distance between the belt joint portion ML1 and the belt main body portion ML2 is close, the sensor tag 1 arranged at the belt joint portion ML1 and the sensor tag 1 arranged at the belt main body portion ML2 have different resonance frequencies. Sensor tag 1 is adopted. In other words, this allows the reader 2 to detect both the state of the belt joint portion ML1 and the state of the belt main body portion ML2 by transmitting and receiving electromagnetic waves once.
 本実施例に係る状態検出システムUでは、かかるセンサタグ1が、ベルトコンベアM5の全周に亘って配設されている。 In the state detection system U according to this embodiment, such sensor tags 1 are arranged over the entire circumference of the belt conveyor M5.
 リーダー2は、例えば、ベルトコンベアM5から数m離間して配設され、ベルトコンベアM5中のセンサタグ1の存在位置に対して電磁波を送信し、ベルトコンベアM5の各検査対象位置Maの反射波スペクトルを取得する。そして、解析装置3は、ベルトコンベアM5の各検査対象位置Maで得られる反射波スペクトルを比較して、ベルトコンベアM5の各検査対象位置Maの剥離発生状態やクラック発生状態の分布を推定する。 The reader 2 is arranged, for example, several meters apart from the belt conveyor M5, transmits an electromagnetic wave to the existing position of the sensor tag 1 in the belt conveyor M5, and detects the reflected wave spectrum of each inspection target position Ma of the belt conveyor M5. to get Then, the analysis device 3 compares the reflected wave spectra obtained at each inspection target position Ma of the belt conveyor M5, and estimates the distribution of the peeling occurrence state and the crack occurrence state at each inspection target position Ma of the belt conveyor M5.
 本実施例に係る状態検出システムUは、以上のような構成により、ベルトコンベアM5の保守管理を確実に行い、ベルトコンベアM5の損壊を未然に防止することが可能である。  With the configuration described above, the state detection system U according to the present embodiment can reliably perform maintenance management of the belt conveyor M5 and prevent damage to the belt conveyor M5. 
[実施例6]
 図21は、実施例6に係る状態検出システムUの実施態様を説明する図である。
[Example 6]
FIG. 21 is a diagram illustrating an embodiment of the state detection system U according to the sixth embodiment.
 一般に、ゴム製造物やシート状製品は、製造工程中に部分的に延伸し、誘電率等の材料特性が部分的に変化してしまう課題が知られている。しかしながら、ゴム製造物やシート状製品中の誘電率は、可視化されないため、従来技術に係るハイパーイメージング法では、ゴム製造物やシート状製品に生じた材料特性の変化を捉えることができない。 In general, it is known that rubber products and sheet-like products are partially stretched during the manufacturing process, causing partial changes in material properties such as dielectric constant. However, since the dielectric constant in rubber products and sheet-like products cannot be visualized, the conventional hyper-imaging method cannot capture changes in material properties that occur in rubber products and sheet-like products.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、ゴム製造物を検査対象物体Mとして、当該ゴム製造物(以下、「ゴム製造物M6」と称する)中に部分的に生じる誘電率の変化を検出する用途に適用されている。尚、以下では、ゴム製造物M6中の誘電率分布を検出するための構成のみを示すが、シート状製品中の誘電率分布を検出するための構成についても、同様の構成で実現可能である。 In order to solve this problem, the state detection system U according to the present embodiment uses a rubber product as an inspection target object M, and the rubber product (hereinafter referred to as "rubber product M6") partially generates It is used for detecting changes in dielectric constant. In the following, only the configuration for detecting the dielectric constant distribution in the rubber product M6 will be shown, but the configuration for detecting the dielectric constant distribution in the sheet-like product can also be realized with the same configuration. .
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、ゴム製造物M6の裏面に、貼付により配設される。そして、本実施例に係る状態検出システムUでは、かかるセンサタグ1をゴム製造物M6の全領域に亘って配設し、ゴム製造物M6の各検査対象位置Maの誘電率を検出する。尚、センサタグ1は、ゴム製造物M6の誘電率が変化した場合には、共振ピークのピーク位置が変化するため、本実施例に係る状態検出システムUでは、この共振ピークのピーク位置に基づいて、ゴム製造物M6の誘電率の変化を検出することになる。  In the state detection system U according to the present embodiment, the sensor tag 1 is attached, for example, to the back surface of the rubber product M6. In the state detection system U according to this embodiment, the sensor tags 1 are arranged over the entire area of the rubber product M6 to detect the dielectric constant of each inspection target position Ma of the rubber product M6. In the sensor tag 1, when the dielectric constant of the rubber product M6 changes, the peak position of the resonance peak changes. , to detect changes in the dielectric constant of the rubber product M6.
 リーダー2は、例えば、製造されたゴム製造物M6の品質管理プロセス中に配設される。リーダー2は、例えば、製造されたゴム製造物M6が搬送される工程中に、ゴム製造物M6に対向する位置に離間させて配設され、ゴム製造物M6が搬送される最中に、ゴム製造物M6のセンサタグ1の存在位置に対して電磁波を送信し、ゴム製造物M6中の複数の検査対象位置Maそれぞれの反射波スペクトルを取得する。 The reader 2 is arranged, for example, during the quality control process of the manufactured rubber product M6. For example, the leader 2 is spaced apart from the rubber product M6 during the process in which the manufactured rubber product M6 is conveyed. An electromagnetic wave is transmitted to the existing position of the sensor tag 1 of the product M6, and the reflected wave spectrum of each of the plurality of inspection target positions Ma in the rubber product M6 is obtained.
 解析装置3は、例えば、ゴム製造物M6中の複数の検査対象位置Maそれぞれで得られる反射波スペクトルが同一のパターンであるか否かを判定し、これにより、ゴム製造物M6中に誘電率の異常が生じていないか否かを常時監視し、その監視結果を材料状態分布画像として出力する。 For example, the analysis device 3 determines whether or not the reflected wave spectra obtained at each of the plurality of inspection target positions Ma in the rubber product M6 have the same pattern, thereby determining the dielectric constant in the rubber product M6. It constantly monitors whether or not any abnormality has occurred, and outputs the monitoring result as a material condition distribution image.
 本実施例に係る状態検出システムUは、以上のような構成により、ゴム製造物M6の品質管理を確実に行うことが可能である。 With the configuration described above, the state detection system U according to the present embodiment can reliably perform quality control of the rubber product M6.
 [実施例7]
 図22A、図22B、図22Cは、実施例7に係る状態検出システムUの実施態様を説明する図である。
[Example 7]
22A, 22B, and 22C are diagrams illustrating an embodiment of the state detection system U according to the seventh embodiment.
 一般に、多くのシート状製品M7は、複数枚の異なる種類の単層シートM7a、M7bの貼り合わせによって形成される(図22Aを参照)。かかるシート状製品M7を品質保証する上で、シート状製品M7中の単層シートM7a、M7b同士を接着した接合部の硬化状態を非破壊で検査する手法が求められている。 In general, many sheet products M7 are formed by laminating a plurality of different types of single-layer sheets M7a and M7b (see FIG. 22A). In order to assure the quality of the sheet-like product M7, there is a demand for a method of non-destructively inspecting the cured state of the bonded portion where the single-layer sheets M7a and M7b in the sheet-like product M7 are bonded together.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、シート状製品M7を検査対象物体Mとして、当該シート状製品M7中の接合部の硬化状態を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment is applied to detect the hardened state of the joints in the sheet-like product M7 as the inspection target object M. .
 尚、図22Aは、シート状製品M7の製造プロセスを模式的に示している。又、図22Bは、シート状製品M7中の剥離検査を行うためのセンサタグ1の配設態様を示している。又、図22Cは、シート状製品M7中に剥離箇所M7Qが発生した場合に観察される反射波スペクトルの変化の一例を示す図である。 Note that FIG. 22A schematically shows the manufacturing process of the sheet product M7. Moreover, FIG. 22B shows an arrangement mode of the sensor tag 1 for performing peeling inspection in the sheet-like product M7. Further, FIG. 22C is a diagram showing an example of changes in the reflected wave spectrum observed when a peeled portion M7Q occurs in the sheet-like product M7.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、センサタグ1の下地部分の誘電率の変化から、シート状製品M7中の接合部が剥離した状態を検出する。即ち、センサタグ1は、シート状製品M7中の接合部が剥離した際に、当該部分の一部が空気層に変化し、センサタグ1(共振器)の周辺の誘電率が低下することを検出する。 In the state detection system U according to the present embodiment, the sensor tag 1 detects, for example, the peeled state of the joints in the sheet product M7 from the change in the dielectric constant of the underlying portion of the sensor tag 1. That is, the sensor tag 1 detects that when the joint in the sheet product M7 is peeled off, part of the part changes to an air layer and the dielectric constant around the sensor tag 1 (resonator) decreases. .
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、多数のセンサタグ1を全面に配するセンサ群設置シート100に配設される。そして、本実施例に係る状態検出システムUでは、品質管理プロセス中で、完成したシート状製品M7の一面に対してセンサタグ1を接触させるように、かかるセンサ群設置シート100を載置する。 In the state detection system U according to this embodiment, the sensor tags 1 are arranged, for example, on a sensor group installation sheet 100 on which many sensor tags 1 are arranged on the entire surface. In the state detection system U according to the present embodiment, the sensor group installation sheet 100 is placed so that the sensor tag 1 is brought into contact with one surface of the completed sheet product M7 during the quality control process.
 リーダー2は、シート状製品M7上にセンサ群設置シート100が載置された状態で、センサ群設置シート100及びシート状製品M7に対して電磁波を送信し、シート状製品M7の各検査対象位置Maの反射波スペクトルを取得する。 The reader 2 transmits electromagnetic waves to the sensor group installation sheet 100 and the sheet-like product M7 in a state where the sensor group installation sheet 100 is placed on the sheet-like product M7. Acquire the reflected wave spectrum of Ma.
 解析装置3は、シート状製品M7中の各検査対象位置Maそれぞれで得られる反射波スペクトルを比較して、シート状製品M7中の各検査対象位置Maそれぞれで得られる反射波スペクトルが同一のパターンであるか否かを判定する。そして、これにより、シート状製品M7中の全領域のいずれかの位置に剥離箇所M7Qが発生しているか否かを推定する。 The analysis device 3 compares the reflected wave spectra obtained at each of the positions Ma to be inspected in the sheet-like product M7, and determines whether the reflected wave spectra obtained at each of the positions Ma to be inspected in the sheet-like product M7 have the same pattern. It is determined whether or not. Based on this, it is estimated whether or not the peeled portion M7Q is generated at any position in the entire area of the sheet-shaped product M7.
 本実施例に係る状態検出システムUは、以上のような構成により、シート状製品M7の品質管理を確実に行うことが可能である。 With the configuration described above, the state detection system U according to the present embodiment can reliably perform quality control of the sheet product M7.
[実施例8]
 図23Aは、実施例8に係る状態検出システムUの実施態様を説明する図である。
[Example 8]
FIG. 23A is a diagram illustrating an embodiment of the state detection system U according to the eighth embodiment.
 近年、就農者の減少、地球規模の気候変動、人口の増加など、食に対する懸念もあり、スマート農業が注目を集めている。スマート農業において、ハウス内部の環境は種々のセンサを用いて制御されているが、多くの物理量は広いハウスの中の代表点のセンサの値を用いており、ハウス内の場所によるばらつきは反映できていない。例えば、ハウス内の畝への灌水は水の流量から間接的に換算され、ノズルの個体差による灌水ムラなどがあった場合においても検知できないという課題がある。また日当たりや、ハウス壁面との距離など環境の差異による乾燥の速さなども加味できない。 In recent years, smart agriculture has been attracting attention due to concerns over food, such as a decrease in the number of farmers, global climate change, and population growth. In smart agriculture, the environment inside the house is controlled using various sensors, but most of the physical quantities use the values of the sensors at the representative points in the large house, and the variations depending on the location in the house cannot be reflected. not For example, watering to the ridges in the house is indirectly converted from the water flow rate, and there is a problem that even if there is unevenness in watering due to individual differences in nozzles, it cannot be detected. Moreover, the speed of drying due to differences in the environment such as sunlight and the distance from the wall of the house cannot be taken into consideration.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、ハウス内の土壌を検査対象物体Mとして、当該土壌(以下、「土壌M8」と称する)中の水分含有量の分布を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment detects the distribution of the water content in the soil (hereinafter referred to as "soil M8"), which is the soil in the greenhouse as the inspection target object M. It is applied for the use to do.
 図23Bは、土壌M8の水分含有量の分布を監視するためのセンサタグ1の配設態様の一例を示す図である。図23Cは、土壌M8中に水分が十分に存在するときに観察されるセンサタグ1の反射波スペクトルと、土壌M8中に水分が不存在状態(乾燥状態)となったときに観察されるセンサタグ1の反射波スペクトルを示す図である。 FIG. 23B is a diagram showing an example of an arrangement mode of sensor tags 1 for monitoring the moisture content distribution of soil M8. FIG. 23C shows the reflected wave spectrum of the sensor tag 1 observed when there is sufficient moisture in the soil M8, and the sensor tag 1 observed when there is no moisture in the soil M8 (dry state). is a diagram showing a reflected wave spectrum of .
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、土壌M8の表面又は内部に配設される。本実施例に係るセンサタグ1には、例えば、土壌M8の水分含有量の変化に応じて、共振器1aの共振状態に影響を及ぼす変換部1dを有する構造が適用される(図12Bを参照)。そして、変換部1dが、土壌M8中の水分を捕集し、土壌M8の水分含有量の変化に応じて、共振器1aの共振ピークのピーク位置の変化及び/又はピーク強度の変化を引き起こす。ここでは、変換部1dは、土壌M8中に水分が十分に存在する場合、土壌M8中の水分を捕集して、共振器1a周囲の共振電流の通流を抑制し、共振器1aの共振ピークを小さくするように機能する。尚、変換部1dは、土壌M8の水分含有量の変化に応じて、共振器1a周囲の誘電率の変化を引き起こす構成とされてもよい。つまり、本実施例に係るセンサタグ1は、土壌M8の水分含有量の変化を、共振ピークのピーク位置の変化及び/又はピーク強度の変化として検出する。 In the state detection system U according to this embodiment, the sensor tag 1 is arranged on or inside the soil M8, for example. For example, the sensor tag 1 according to the present embodiment has a structure having a conversion part 1d that affects the resonance state of the resonator 1a according to changes in the moisture content of the soil M8 (see FIG. 12B). . Then, the conversion unit 1d collects water in the soil M8, and causes a change in the peak position and/or the peak intensity of the resonance peak of the resonator 1a according to the change in the water content of the soil M8. Here, when a sufficient amount of water is present in the soil M8, the conversion unit 1d collects the water in the soil M8, suppresses the flow of the resonance current around the resonator 1a, and suppresses the resonance current of the resonator 1a. It works to reduce peaks. Note that the conversion unit 1d may be configured to cause a change in permittivity around the resonator 1a in accordance with a change in the moisture content of the soil M8. That is, the sensor tag 1 according to this embodiment detects changes in the water content of the soil M8 as changes in the peak position and/or the peak intensity of the resonance peak.
 本実施例に係る状態検出システムUでは、かかるセンサタグ1を、土壌M8の全領域の観察対象の植物が存在する位置(検査対象位置Ma)毎に配設し、土壌M8の各検査対象位置Maの水分含有量を検出する。 In the state detection system U according to the present embodiment, the sensor tag 1 is arranged at each position (inspection target position Ma) where the plant to be observed exists in the entire area of the soil M8, and each inspection target position Ma of the soil M8 is arranged. to detect the moisture content of
 リーダー2は、例えば、土壌M8のセンサタグ1の存在位置に対して電磁波を送信し、土壌M8中の各検査対象位置Maの反射波スペクトルを取得する。又、解析装置3は、例えば、土壌M8中の各検査対象位置Maの反射波スペクトルが同一のパターンであるか否かを判定し、これにより、土壌M8中に乾燥状態の場所が発生していないか否かを常時監視し、その監視結果を材料状態分布画像として出力する。 The reader 2, for example, transmits electromagnetic waves to the position where the sensor tag 1 exists in the soil M8, and acquires the reflected wave spectrum of each inspection target position Ma in the soil M8. Further, the analysis device 3 determines, for example, whether or not the reflected wave spectrum of each inspection target position Ma in the soil M8 has the same pattern. It constantly monitors whether or not there is any, and outputs the monitoring result as a material state distribution image.
 尚、本実施例に係る状態検出システムUでは、例えば、土壌M8中で乾燥状態の場所が発生した場合には、当該場所に対して選択的に水を補給し、植物の根腐れを抑制してもよい。 In addition, in the state detection system U according to the present embodiment, for example, when a dry place occurs in the soil M8, water is selectively supplied to the dry place to suppress root rot of the plant. may
 本実施例に係る状態検出システムUは、以上のような構成により、ハウス内の土壌M8の水分量のムラの発生を監視することが可能である。 With the configuration described above, the state detection system U according to the present embodiment can monitor the occurrence of unevenness in the amount of moisture in the soil M8 inside the house.
[実施例9]
 図24Aは、実施例9に係る状態検出システムUの実施態様を説明する図である。
[Example 9]
FIG. 24A is a diagram illustrating an embodiment of the state detection system U according to the ninth embodiment.
 実施例8では、ハウス内の土壌中の水分量検知の重要性に着目したが、スマート農業においては、土壌中の水分量検知に加えて、温度分布のモニタも関心の対象である。特に、収穫前の作物に日照により過度な熱が加わると品質を悪化することから作物表面の温度を監視したいという要望が存在する。 In Example 8, we focused on the importance of detecting the amount of moisture in the soil inside the greenhouse, but in smart agriculture, in addition to detecting the amount of moisture in the soil, we are also interested in monitoring the temperature distribution. In particular, there is a demand for monitoring the surface temperature of crops because excessive heat applied to crops before harvest by sunlight deteriorates the quality of the crops.
 本実施例に係る状態検出システムUは、かかる課題を解決するため、ハウス内の植物を検査対象物体Mとして、当該植物(以下、「植物M9」と称する)中の温度の分布を検出する用途に適用されている。 In order to solve this problem, the state detection system U according to the present embodiment is used to detect the distribution of temperature in a plant (hereinafter referred to as "plant M9") in a greenhouse as an object to be inspected M. applied to
 図24Bは、植物M9の温度変化に応じたセンサタグ1の反射波スペクトルの変化の一例を示す図である。 FIG. 24B is a diagram showing an example of changes in the reflected wave spectrum of the sensor tag 1 according to changes in the temperature of the plant M9.
 本実施例に係る状態検出システムUでは、センサタグ1は、例えば、植物M9中の果実の表面に貼付される。本実施例に係るセンサタグ1は、例えば、図12Bに示したセンサ構造が適用されており、変換部1dが、果実の温度に感応して、共振器1aの周囲の誘電率の変化を引き起こす。尚、図24Bでは、60度で融解が起きるパラフィンが含侵した不織布を変換部1dとして用いた場合の反射波スペクトルの変化を示しており、図24Bの反射波スペクトルは、果実の温度が60度を超えたときに、共振器1aの共振ピークの位置が変化するものとなっている。 In the state detection system U according to this embodiment, the sensor tag 1 is attached, for example, to the surface of the fruit in the plant M9. For example, the sensor structure shown in FIG. 12B is applied to the sensor tag 1 according to the present embodiment, and the conversion unit 1d responds to the temperature of the fruit to cause a change in dielectric constant around the resonator 1a. Note that FIG. 24B shows changes in the reflected wave spectrum when a paraffin-impregnated nonwoven fabric that melts at 60 degrees is used as the converting portion 1d. The position of the resonance peak of the resonator 1a changes when the frequency exceeds the degree.
 本実施例に係る状態検出システムUでは、かかるセンサタグ1を、植物M9中の各果実(検査対象位置Ma)に対して配設し、植物M9中の各果実の温度を検出する。 In the state detection system U according to this embodiment, the sensor tag 1 is arranged for each fruit (inspection target position Ma) in the plant M9 to detect the temperature of each fruit in the plant M9.
 リーダー2は、例えば、植物M9中の各検査対象位置Maに対して電磁波を送信し、植物M9中の各検査対象位置Maの反射波スペクトルを取得する。又、解析装置3は、例えば、植物M9中の各検査対象位置Maの反射波スペクトルが同一のパターンであるか否かを判定し、これにより、植物M9中の各検査対象位置Maで温度異常(例えば、部分的な直射日光)が発生していないか否かを常時監視し、その監視結果を材料状態分布画像として出力する。 For example, the reader 2 transmits electromagnetic waves to each inspection target position Ma in the plant M9, and acquires the reflected wave spectrum of each inspection target position Ma in the plant M9. Further, the analysis device 3, for example, determines whether or not the reflected wave spectrum of each inspection target position Ma in the plant M9 has the same pattern. It constantly monitors whether or not (for example, partial direct sunlight) is generated, and outputs the monitoring result as a material condition distribution image.
 尚、本実施例に係る状態検出システムUでは、例えば、植物M9中で温度異常の検査対象位置Maが発生した場合には、当該検査対象位置Maに対して選択的に遮熱カーテンをかける等の作業を行ってもよい。 In addition, in the state detection system U according to the present embodiment, for example, when a temperature abnormality occurs at an inspection target position Ma in the plant M9, a heat shielding curtain is selectively applied to the inspection target position Ma. may be performed.
 本実施例に係る状態検出システムUは、以上のような構成により、植物M9中の温度のムラの発生を監視することが可能である。 With the configuration described above, the state detection system U according to the present embodiment can monitor the occurrence of temperature unevenness in the plant M9.
<効果>
 以上のように、本開示に係る状態検出システムUは、
 検査対象物体の検出対象の材料状態に感応する状態で配設され、前記材料状態に応じて自身の電磁波反射特性を変化させる電磁波応答材と、
 前記検査対象物体の外部から、前記検査対象物体中で前記電磁波応答材が配設された位置に対して電磁波を送信すると共にその反射波を受信して、前記反射波のスペクトルを取得するリーダーと、
 前記リーダーにより、同一の時間帯に前記検査対象物体中の複数位置で取得された前記スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、前記検査対象物体中の前記材料状態の分布を推定する解析装置と、
 を備える。 
<effect>
As described above, the state detection system U according to the present disclosure is
an electromagnetic wave responsive material disposed in a state of being responsive to the state of the material to be detected of the object to be inspected, and changing its own electromagnetic wave reflection characteristics according to the state of the material;
a reader that transmits an electromagnetic wave from the outside of the object to be inspected to the position where the electromagnetic wave responsive material is arranged in the object to be inspected, receives the reflected wave, and acquires the spectrum of the reflected wave; ,
By referring to the spectra acquired at a plurality of positions in the object to be inspected during the same time period by the reader and comparing them with each other and/or generating reference data based thereon, an analysis device for estimating the distribution of the material state in the inspected object;
Prepare.
 従って、本開示に係る状態検出システムUによれば、反射波スペクトル中に重畳するノイズによる影響を抑制した形で、検査対象物体M中の一部に生じている異常(例えば、検査対象物体M中の腐食の発生や、検査対象物体M中の構成材料の組成の異常)を正確に、且つ、容易に捉えることが可能となる。又、これによって、従来技術に係る状態検出システムのように、予め、実験やシミュレーションにより、種々の環境変化を想定したあらゆるパターンの反射波スペクトルの基準データを識別可能に保持しておく、という困難で且つ煩雑な作業を回避することができる。 Therefore, according to the state detection system U according to the present disclosure, an abnormality occurring in a part of the inspection object M (for example, the inspection object M occurrence of internal corrosion and abnormalities in the composition of the constituent materials in the object M to be inspected) can be detected accurately and easily. In addition, this makes it difficult to store, in advance, identifiable reference data of reflected wave spectra of all patterns assuming various environmental changes through experiments and simulations, as in the state detection system according to the prior art. and complicated work can be avoided.
 加えて、本開示に係る状態検出システムUによれば、ユーザーに対して、検査対象物体M中の材料状態の分布を状態分布画像として提供することが可能となる。これによって、ユーザーは、検査対象物体M中の一部に生じている異常を見落とすことなく、検査対象物体M全体の材料状態を容易に把握することが可能となる。又、これにより、ユーザーは、例えば、検査対象物体Mの補修作業(例えば、コンクリート構造体の補強作業)等を容易に行うことも可能となる。 In addition, according to the state detection system U according to the present disclosure, it is possible to provide the user with the distribution of the state of materials in the object M to be inspected as a state distribution image. As a result, the user can easily grasp the material condition of the entire inspection object M without overlooking an abnormality occurring in a part of the inspection object M. In addition, this also enables the user to easily perform, for example, repair work (for example, reinforcement work for a concrete structure) on the object M to be inspected.
 尚、上記実施形態では、検査対象物体M中に配設される電磁波応答材の一例として、チップレスセンサタグ1を示した。しかしながら、本開示に係る状態検出システムUにおいては、検査対象物体の検出対象の材料状態に感応して、その材料状態に応じて自身の電磁波反射特性を変化させる電磁波応答材であれば、チップレスセンサタグ1のように共振器1aを有するものでなくてもよい。 In the above embodiment, the chipless sensor tag 1 is shown as an example of the electromagnetic wave responsive material arranged in the object M to be inspected. However, in the state detection system U according to the present disclosure, if the electromagnetic wave response material responds to the state of the material to be detected of the object to be inspected and changes its own electromagnetic wave reflection characteristics according to the state of the material, the chipless Unlike the sensor tag 1, it may not have a resonator 1a.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 2021年5月10日出願の特願2021-079664の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2021-079664 filed on May 10, 2021 are incorporated herein by reference.
 本開示に係る状態検出システムによれば、より正確に、物体の材料状態の分布を検出することが可能となる。 According to the state detection system according to the present disclosure, it is possible to more accurately detect the distribution of the material state of the object.
 U 状態検出システム 
 1 チップレスセンサタグ(電磁波応答材)
 1a 共振器
 1b アイソレーション層
 1c 裏面反射材
 1d 変換部
 1e 電磁波反射材
 2 リーダー
 21 送信部
 22 受信部
 23 制御部
 3 解析装置
 31 材料状態推定部
 32 画像表示部
 M(M1、M2、M3、M4、M5、M6、M7、M8、M9) 検査対象物体
 Ma 検査対象位置
U state detection system
1 Chipless sensor tag (electromagnetic wave response material)
1a resonator 1b isolation layer 1c rear reflector 1d converter 1e electromagnetic wave reflector 2 reader 21 transmitter 22 receiver 23 controller 3 analyzer 31 material state estimator 32 image display M (M1, M2, M3, M4 , M5, M6, M7, M8, M9) Object to be inspected Ma Position to be inspected

Claims (24)

  1.  電磁波読み取り式の状態検出システムであって、
     検査対象物体の検出対象の材料状態に感応する状態で配設された電磁波応答材と、
     前記検査対象物体の外部から、前記検査対象物体中で前記電磁波応答材が配設された位置に対して電磁波を送信すると共にその反射波を受信して、前記反射波のスペクトルを取得するリーダーと、
     同一の時間帯に前記検査対象物体中の複数位置で取得された前記スペクトルに基づいて、前記検査対象物体中の前記材料状態の分布を推定する解析装置と、
     を備える状態検出システム。
    An electromagnetic wave reading type state detection system,
    an electromagnetic wave responsive material disposed in a state sensitive to the state of the material to be detected of the object to be inspected;
    a reader that transmits an electromagnetic wave from the outside of the object to be inspected to the position where the electromagnetic wave responsive material is arranged in the object to be inspected, receives the reflected wave, and acquires the spectrum of the reflected wave; ,
    an analysis device for estimating the distribution of the material state in the object to be inspected based on the spectra obtained at a plurality of positions in the object to be inspected during the same time period;
    A condition detection system comprising:
  2.  前記解析装置が推定する前記検査対象物体中の前記材料状態の分布は、前記検査対象物体中の前記材料状態の正常/異常に係る分布である、
     請求項1に記載の状態検出システム。
    The distribution of the material state in the inspection target object estimated by the analysis device is a normal/abnormal distribution of the material state in the inspection target object,
    The condition detection system of claim 1.
  3.  前記解析装置は、同一の時間帯に前記検査対象物体中の複数位置で取得された前記スペクトルを参照し、これらを互いに比較することで及び/又はこれらを元に基準データを生成することで、前記検査対象物体中の前記材料状態の分布を推定する、
     請求項1又は2に記載の状態検出システム。
    The analysis device refers to the spectra acquired at a plurality of positions in the inspection target object in the same time period, compares them with each other, and/or generates reference data based on them, estimating a distribution of the material state in the inspected object;
    The state detection system according to claim 1 or 2.
  4.  前記解析装置は、前記複数位置で取得された前記スペクトル及び/又はこれらに表出する前記電磁波応答材の前記電磁波反射特性の同一性に係る解析により、前記検査対象物体中の前記材料状態の分布を推定する、
     請求項1乃至3に記載の状態検出システム。
    The analysis device analyzes the spectrum acquired at the plurality of positions and/or the identity of the electromagnetic wave reflection characteristics of the electromagnetic wave responsive material appearing in the spectra, thereby determining the distribution of the state of the material in the object to be inspected. to estimate
    The state detection system according to any one of claims 1 to 3.
  5.  前記リーダーは、前記検査対象物体の所定領域を走査するように電磁波の送受信を行い、前記検査対象物体中の前記複数位置それぞれで前記反射波の前記スペクトルを取得する、
     請求項1乃至4のいずれか一項に記載の状態検出システム。
    The reader transmits and receives electromagnetic waves so as to scan a predetermined area of the object to be inspected, and acquires the spectrum of the reflected wave at each of the plurality of positions in the object to be inspected.
    The state detection system according to any one of claims 1 to 4.
  6.  前記解析装置は、前記検査対象物体の電磁波反射強度画像及び/又は前記検査対象物体のカメラ画像に、前記材料状態の分布を示す画像を重ね合わせて、表示出力する、
     請求項1乃至5のいずれか一項に記載の状態検出システム。
    The analysis device superimposes an image showing the distribution of the material state on the electromagnetic wave reflection intensity image of the inspection target object and/or the camera image of the inspection target object, and outputs the image for display.
    The state detection system according to any one of claims 1 to 5.
  7.  前記リーダーは、前記検査対象物体に対して、所定周波数帯域に亘る電磁波を、スイープ方式又はインパルス方式で送信することで、前記スペクトルを取得する、
     請求項1乃至6のいずれか一項に記載の状態検出システム。
    The reader obtains the spectrum by transmitting an electromagnetic wave over a predetermined frequency band to the object to be inspected by a sweep method or an impulse method.
    The state detection system according to any one of claims 1 to 6.
  8.  前記電磁波応答材は、外部から照射された特定周波数の電磁波と共振する共振器を有するチップレスセンサタグであって、
     前記電磁波応答材は、前記材料状態の変化に応じて、前記共振器の共振ピークの位置及び/又は共振ピークの信号強度が変化するように構成されている、
     請求項1乃至7のいずれか一項に記載の状態検出システム。
    The electromagnetic wave responsive material is a chipless sensor tag having a resonator that resonates with an externally irradiated electromagnetic wave of a specific frequency,
    The electromagnetic wave responsive material is configured such that the position of the resonance peak and/or the signal intensity of the resonance peak of the resonator changes according to the change in the material state.
    The condition detection system according to any one of claims 1 to 7.
  9.  前記電磁波応答材は、前記検査対象物体の前記材料状態に感応して誘電率、誘電正接、又は導電率の少なくとも一つが変化する材料で構成され、前記共振器と一体的に配設された変換部を含む、
     請求項8に記載の状態検出システム。
    The electromagnetic wave responsive material is made of a material that changes at least one of a dielectric constant, a dielectric loss tangent, and an electrical conductivity in response to the material state of the inspection target object, and is disposed integrally with the resonator. including the part
    The condition detection system according to claim 8.
  10.  前記検査対象物体の検査対象領域の全領域に亘って分散して配設され、前記検査対象物体の前記材料状態を各別に検出する複数個の前記電磁波応答材を備える、
     請求項1乃至9のいずれか一項に記載の状態検出システム。
    A plurality of electromagnetic wave responsive materials distributed over the entire inspection target area of the inspection target object and arranged to individually detect the material state of the inspection target object,
    A condition detection system according to any one of claims 1 to 9.
  11.  複数個の前記電磁波応答材は、前記検査対象物体の検査対象領域に等間隔で配設されている、
     請求項10に記載の状態検出システム。
    The plurality of electromagnetic wave responsive materials are arranged at equal intervals in the inspection target area of the inspection target object,
    The condition detection system of claim 10.
  12.  前記電磁波応答材は、前記検査対象物体の表面に、塗布又は貼付された状態で配設されている、
     請求項1乃至11のいずれか一項に記載の状態検出システム。
    The electromagnetic wave responsive material is arranged in a state of being applied or attached to the surface of the object to be inspected,
    A condition detection system according to any one of claims 1 to 11.
  13.  前記電磁波応答材は、前記検査対象物体の内部に、前記検査対象物体を構成する材料と一体的に配設されている、
     請求項1乃至12のいずれか一項に記載の状態検出システム。
    The electromagnetic wave responsive material is arranged inside the object to be inspected integrally with a material constituting the object to be inspected,
    A condition detection system according to any one of claims 1 to 12.
  14.  前記電磁波応答材は、UWB帯域、ミリ波帯域又はサブミリ波帯域の周波数帯域の電磁波に対して応答するように構成されている、
     請求項1乃至13のいずれか一項に記載の状態検出システム。
    The electromagnetic wave responsive material is configured to respond to electromagnetic waves in a frequency band of UWB band, millimeter wave band or sub-millimeter wave band,
    14. A condition detection system according to any one of claims 1-13.
  15.  検出対象の前記材料状態は、前記検査対象物体中の構成材料の腐食状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material condition to be detected is a corrosion condition of a constituent material in the inspected object;
    15. A condition detection system according to any preceding claim.
  16.  検出対象の前記材料状態は、前記検査対象物体中の構成材料の組成状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material state to be detected is the compositional state of constituent materials in the inspected object;
    15. A condition detection system according to any preceding claim.
  17.  検出対象の前記材料状態は、前記検査対象物体中の構成材料の配向状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material state to be detected is the orientation state of constituent materials in the inspected object;
    15. A condition detection system according to any preceding claim.
  18.  検出対象の前記材料状態は、前記検査対象物体中の加圧状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material condition to be detected is a pressure condition in the inspected object;
    15. A condition detection system according to any preceding claim.
  19.  検出対象の前記材料状態は、前記検査対象物体中の摩耗状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material condition to be detected is a wear condition in the inspected object;
    15. A condition detection system according to any preceding claim.
  20.  検出対象の前記材料状態は、前記検査対象物体中のクラック発生状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material condition to be detected is a crack occurrence condition in the inspected object;
    15. A condition detection system according to any preceding claim.
  21.  検出対象の前記材料状態は、前記検査対象物体中の誘電率である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material state to be detected is the dielectric constant in the object under test;
    15. A condition detection system according to any preceding claim.
  22.  検出対象の前記材料状態は、前記検査対象物体中の複数の部材間を接合する領域の剥離状態である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    The material state to be detected is a delamination state of a region where a plurality of members are joined together in the object to be inspected.
    15. A condition detection system according to any preceding claim.
  23.  検出対象の前記材料状態は、前記検査対象物体中の水分含有量である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    wherein the material condition to be detected is moisture content in the inspected object;
    15. A condition detection system according to any preceding claim.
  24.  検出対象の前記材料状態は、前記検査対象物体中の温度である、
     請求項1乃至14のいずれか一項に記載の状態検出システム。
    the material condition to be detected is the temperature in the inspected object;
    15. A condition detection system according to any preceding claim.
PCT/JP2022/009897 2021-05-10 2022-03-08 State detection system WO2022239425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520843A JPWO2022239425A1 (en) 2021-05-10 2022-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079664 2021-05-10
JP2021079664 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239425A1 true WO2022239425A1 (en) 2022-11-17

Family

ID=84029157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009897 WO2022239425A1 (en) 2021-05-10 2022-03-08 State detection system

Country Status (2)

Country Link
JP (1) JPWO2022239425A1 (en)
WO (1) WO2022239425A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523494A (en) * 2002-04-03 2005-08-04 エスアールアイ インターナショナル Sensor device for structural health monitoring
US20160061751A1 (en) * 2014-08-28 2016-03-03 William N. Carr Wireless Impedance Spectrometer
JP2016166776A (en) * 2015-03-09 2016-09-15 富士通株式会社 Reading device, reading system and reading method
JP2020064037A (en) * 2018-10-15 2020-04-23 東洋インキScホールディングス株式会社 Corrosion sensor and method for detecting corrosion
WO2020090904A1 (en) * 2018-11-02 2020-05-07 コニカミノルタ株式会社 Detecting system, and reader
WO2021039662A1 (en) * 2019-08-26 2021-03-04 コニカミノルタ株式会社 Tag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523494A (en) * 2002-04-03 2005-08-04 エスアールアイ インターナショナル Sensor device for structural health monitoring
US20160061751A1 (en) * 2014-08-28 2016-03-03 William N. Carr Wireless Impedance Spectrometer
JP2016166776A (en) * 2015-03-09 2016-09-15 富士通株式会社 Reading device, reading system and reading method
JP2020064037A (en) * 2018-10-15 2020-04-23 東洋インキScホールディングス株式会社 Corrosion sensor and method for detecting corrosion
WO2020090904A1 (en) * 2018-11-02 2020-05-07 コニカミノルタ株式会社 Detecting system, and reader
WO2021039662A1 (en) * 2019-08-26 2021-03-04 コニカミノルタ株式会社 Tag

Also Published As

Publication number Publication date
JPWO2022239425A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2009103042A2 (en) Passive wireless antenna sensor for strain, temperature, crack and fatigue measurement
US20150015275A1 (en) Passive wireless antenna sensor for strain, temperature, crack and fatigue measurement
US8624734B2 (en) Intruder identifying method, intruder identifying device and intruder identifying sensor device
Hasani et al. Implementation of a dual-interrogation-mode embroidered RFID-enabled strain sensor
US9506848B2 (en) Frequency doubling antenna sensor for wireless strain and crack sensing
US8829924B2 (en) Method and apparatus for monitoring physical properties
KR20200014751A (en) Microwave Horn Antenna-Based Transducer System for CUI Inspection Without Insulation Removal
US10520302B2 (en) Monitoring thickness uniformity
WO2022239425A1 (en) State detection system
WO2022239427A1 (en) State detection system
Kumar et al. Array of chipless RFID sensor tag for wireless detection of crack on large metallic surface
JP2007316049A (en) Road surface monitoring system
US20230147767A1 (en) State detection system
US20060044178A1 (en) Harmonic wireless transponder sensor and method
FI123129B (en) Procedures and systems for testing radio frequency transponders
Yi et al. Wireless crack sensing using an RFID-based folded patch antenna
US11592522B1 (en) Method and radar system for determining road conditions
CA3046433A1 (en) Method for detecting icing and de-icing
JP2008051811A (en) Method for conducting contactless test on antenna recorded on material belt
Maio et al. Detection of ice accretions on composite panels using FMCW radars at 60GHz
Wagih et al. Towards the Optimal RF Sensing Strategy for IoT Applications: An Ice Sensing Case Study
Matsunaga et al. Paintable wireless passive sensor based on electromagnetic waveguide to detect loose bolts for remote infrastructure inspection
EP3066457B1 (en) Device for the detection and measurement of the physical-chemical features of materials in the form of sheets, films, fabrics, layers deposited on a support or the like
Nappi et al. RFID based predictive maintenance system for chemical industry
Xu et al. Influence of transverse deformation on resonant frequency of patch antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520843

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE