WO2022239321A1 - Control device, resource allocation control method, and computer program - Google Patents

Control device, resource allocation control method, and computer program Download PDF

Info

Publication number
WO2022239321A1
WO2022239321A1 PCT/JP2022/003893 JP2022003893W WO2022239321A1 WO 2022239321 A1 WO2022239321 A1 WO 2022239321A1 JP 2022003893 W JP2022003893 W JP 2022003893W WO 2022239321 A1 WO2022239321 A1 WO 2022239321A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
communication quality
quality deterioration
resource
delay
Prior art date
Application number
PCT/JP2022/003893
Other languages
French (fr)
Japanese (ja)
Inventor
晴久 平山
忍 難波
宏之 新保
Original Assignee
株式会社Kddi総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kddi総合研究所 filed Critical 株式会社Kddi総合研究所
Publication of WO2022239321A1 publication Critical patent/WO2022239321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices

Definitions

  • the present invention relates to a control device, resource allocation control method, and computer program.
  • This application claims priority based on Japanese Patent Application No. 2021-80541 filed in Japan on May 11, 2021, the content of which is incorporated herein.
  • a radio access network such as a fifth generation (5G) mobile communication system (hereinafter referred to as a 5G system)
  • RAN radio access network
  • 5G fifth generation
  • the same resources radio resources, computer resources, transmission paths resources
  • 5QI 5G QoS Indicator
  • S-NSSAI SubNetwork Slice Selection Assist Information, RAN slice identifier
  • each service resources allocated to the service are allocated to each UE (User Equipment, user terminal). At this time, if the resources allocated to the service are sufficient, the communication quality requirements of the service can be met for each UE, but if the resources are insufficient, the communication quality requirements of the service cannot be met.
  • the amount of resources required by each service varies according to the radio quality and traffic of UEs using each service. Therefore, in order to guarantee the communication quality of services, the amount of resources required by each service is estimated periodically, and control is performed to change the allocation of resources to each service.
  • Non-Patent Document 1 the technology described in Non-Patent Document 1 is known as a technology for guaranteeing the communication quality of services.
  • the technology described in Non-Patent Document 1 controls allocation of radio resources to services using radio quality information and requested traffic information when allocating resources to each service.
  • Non-Patent Document 2 defines parameters that can be collected in the 5G system.
  • Non-Patent Document 1 an error occurs between the amount of resources allocated to a service and the amount of resources actually requested by the service, making efficient resource allocation impossible. .
  • a momentary shortage of resources in one service may cause deterioration in communication quality, while other services may have a surplus because the allocated resources are not all used.
  • the present invention has been made in consideration of such circumstances, and its object is to prevent deterioration of communication quality when controlling the resource allocation of the radio access network for each service accommodated in the radio access network. To achieve efficient resource allocation while suppressing
  • a control device that controls allocation of resources in the radio access network for each service accommodated in the radio access network acquires a resource usage rate that indicates the usage rate of the resource for each service.
  • a packet number information acquiring unit for acquiring, via an interface between a base station and a base station, information on the number of packets aggregated based on the amount of packet delay for each service; and for each service a communication quality deterioration degree calculation unit that calculates a communication quality deterioration degree indicating a degree of delay deterioration of the service based on the information on the number of packets; and a past resource usage rate and the communication quality deterioration for each service.
  • a control unit for controlling the margin for the requested resource amount based on the degree.
  • the communication quality deterioration degree calculation unit includes, for each of the services, the number of packets transmitted to the terminal within the requested delay and the number of packets transmitted to the terminal exceeding the requested delay. The communication quality deterioration degree is calculated based on the number of transmitted packets. According to one aspect of the present invention, in the above control device, the communication quality deterioration degree calculation unit calculates the communication quality based on the number of packets transmitted to the terminal within the required delay and the total number of packets for each service. Calculate the degree of quality deterioration.
  • the communication quality deterioration degree calculator calculates, for each service, based on the number of packets transmitted to the terminal exceeding the required delay and the total number of packets, The degree of communication quality deterioration is calculated.
  • the communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on the packet delay frequency distribution information for each of the services.
  • the control unit reduces the margin associated with past services with low resource usage rates and increases the margin associated with past services with high communication quality degradation. , the margin for the requested resource amount is controlled for each service.
  • a resource allocation control method executed by a control device for controlling allocation of resources of the radio access network for each service accommodated in the radio access network, wherein the control device performs a resource usage rate acquisition step of acquiring a resource usage rate indicating the resource usage rate; a step of obtaining information on the number of packets obtained through an interface of the communication quality in which the control device calculates, for each service, a degree of communication quality deterioration indicating a degree of deterioration in the delay of the service based on the information on the number of packets; a deterioration degree calculation step; and a control step in which the control device controls a margin for a requested resource amount based on the past resource usage rate and the communication quality deterioration degree for each service.
  • a computer program stores a resource utilization rate for each service in a computer of a control device that controls allocation of resources in the radio access network for each service accommodated in the radio access network.
  • a resource usage rate acquisition step of acquiring the resource usage rate indicated; and a packet number information acquisition step of acquiring information on the number of packets aggregated based on the packet delay amount for each service via an interface with the base station.
  • a communication quality deterioration degree calculation step of calculating, for each service, a communication quality deterioration degree indicating a deterioration degree of delay of the service based on the information on the number of packets; and a step of calculating the past resource usage for each service. and a control step of controlling a margin for the requested resource amount based on the rate and the degree of communication quality deterioration.
  • FIG. 1 is a block diagram showing a configuration example of a radio access network according to an embodiment
  • FIG. 4 is a block diagram showing a configuration example of a control node according to one embodiment
  • FIG. FIG. 4 is a flow diagram showing the overall procedure of a resource allocation control method according to one embodiment
  • It is a figure which shows the example of a parameter definition which concerns on one Embodiment.
  • It is a figure which shows the example of a parameter definition which concerns on one Embodiment.
  • 5 is a table showing an example of packet delay frequency distribution information according to one embodiment
  • FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment
  • FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment
  • FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment
  • 5 is a graph showing an example of temporal change of a margin correction coefficient according to one embodiment
  • FIG. 1 is a block diagram showing a configuration example of a radio access network according to one embodiment.
  • a radio access network (RAN) 1 comprises a radio unit RU, a base station BS and a control node 2 .
  • the base station BS accommodates one or a plurality of services (service #1, service #2, and service #3 in the example of FIG. 1) among a plurality of services accommodated in RAN1.
  • Services include, for example, a 4K video distribution service and a connected car communication service.
  • a control node 2 controls one or more base stations BS.
  • the control node 2 controls resource allocation of RAN1 for each service accommodated in RAN1.
  • the control node 2 acquires various information 110 from the base station BS via the interface 100 with the base station BS.
  • the control node 2 performs resource allocation control for each service (service #1, service #2, service #3) accommodated in the base station BS based on the information 110 acquired from the base station BS.
  • the resources allocated to the service are radio resources, computer resources, transmission path resources, etc. of RAN1.
  • the control node 2 notifies the base station BS via the interface 100 of resource allocation result information 120 indicating the resource allocation results for each service (service #1, service #2, service #3).
  • resource allocation result information 120 indicating the resource allocation results for each service (service #1, service #2, service #3).
  • each resource (resource RS #1 for service #1, resource RS # for service #2) 2.
  • Allocation of resource RS#3) is performed for service #3.
  • the base station BS communicates with UEs (UE#1, UE#2, UE#3: user terminals) using each service (service #1, service #2, service #3) via the radio equipment RU.
  • UE #1 is a UE that uses service #1.
  • UE#2 is a UE that uses service #2.
  • UE#3 is a UE that uses service #3.
  • Each resource (resource RS#1, resource RS#2, resource RS#3) allocated to each service (service #1, service #2, service #3) is allocated to each UE (UE#1, UE#2, UE#3).
  • Resource RS#1 is a resource allocated to service #1.
  • Resource RS#2 is a resource allocated to service #2.
  • Resource RS#3 is a resource allocated to service #3.
  • Each UE uses each service (service #1, service #2, service #3) with resources allocated to itself.
  • RAN1 may be a RAN to which RAN slicing technology is applied.
  • RAN1 may be a 5G system.
  • the services according to this embodiment may be bundled in units such as 5QI and S-NSSAI.
  • FIG. 2 is a block diagram showing a configuration example of a control node according to this embodiment.
  • the control node 2 (control device) includes a resource usage rate acquisition unit 21 , a packet count information acquisition unit 26 , a communication quality deterioration degree calculation unit 24 and a control unit 25 .
  • the control node 2 corresponds to a control device.
  • Each part of the control node 2 realizes its function by having a CPU (Central Processing Unit) execute a computer program for realizing the function of each part.
  • CPU Central Processing Unit
  • the resource usage rate acquisition unit 21 acquires the resource usage rate for each service.
  • the resource usage rate acquisition unit 21 acquires the resource usage rate of each service (service #1, service #2, service #3) from the base station BS via the interface 100.
  • the resource utilization rate for service #1 is the ratio of resources used by service #1 to resources allocated to service #1.
  • a PRB (Physical Resource Block) usage rate for each DU (Distributed Unit) may be used as the resource usage rate.
  • the PRB usage rate for each DU is specified in Non-Patent Document 2 regarding the interface 100 with the base station BS.
  • the packet number information acquisition unit 26 acquires information on the number of packets aggregated based on the delay amount of packets for each service (aggregated packet number information) via the interface 100 with the base station BS.
  • the packet number information acquisition unit 26 acquires total packet number information of each service (service #1, service #2, service #3) from the base station BS via the interface 100.
  • the total number of packets information of service #1 is information of the number of packets totaled based on the amount of delay of packets of service #1 for all UE#1 using service #1.
  • the total number of packets information of service #1 is the number of packets transmitted from the base station BS to UE #1 within the delay time (requested delay) requested by service #1, or the number of packets transmitted from the base station BS exceeding the requested delay. It is the number of packets transmitted from the BS to UE#1.
  • the total number of packets information of service #1 is information (packet delay frequency distribution information) indicating frequency distribution of delay of packets of service #1 in the base station BS.
  • the communication quality deterioration degree calculation unit 24 calculates the communication quality deterioration degree for each service.
  • the degree of communication quality deterioration is information indicating the degree of deterioration of service delay.
  • the communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the total number of packets information.
  • the communication quality deterioration degree calculation unit 24 calculates each service (service #1, service # 2. Calculate the degree of communication quality deterioration indicating the degree of delay deterioration of service #3).
  • the communication quality deterioration degree calculation unit 24 calculates, for each service, the communication quality indicating the deterioration degree of the service delay based on the number of packets transmitted to the UE within the required delay and the number of packets transmitted to the UE exceeding the required delay. Calculate the degree of deterioration. For example, for service #1, the communication quality deterioration degree calculation unit 24 determines the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1, and the number of packets transmitted from the base station BS exceeding the requested delay. A communication quality deterioration degree indicating the degree of delay deterioration of service #1 is calculated based on the number of packets transmitted to UE #1.
  • the degree of delay deterioration of service #1 is, for example, the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the requested delay. A value based on the ratio to the number of packets sent.
  • the communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the number of packets transmitted to the UE within the requested delay and the total number of packets. For example, for service #1, the communication quality deterioration degree calculation unit 24 determines the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1, and the number of packets transmitted from the base station BS to all UE #1. The communication quality deterioration degree indicating the delay deterioration degree of service #1 is calculated based on the total number of packets obtained.
  • the total number of packets for service #1 is the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the required delay. It is the total number with the number of packets.
  • the degree of delay degradation of service #1 is, for example, a value based on the ratio of the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 to the total number of packets of service #1.
  • the communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the number of packets transmitted to the UE with a delay exceeding the required delay and the total number of packets. For example, for service #1, the communication quality deterioration degree calculation unit 24 calculates the number of packets transmitted from the base station BS to UE #1 exceeding the required delay of service #1, and the number of packets transmitted from the base station BS to all UE #1. A communication quality deterioration degree indicating the degree of delay deterioration of service #1 is calculated based on the total number of transmitted packets.
  • the total number of packets for service #1 is the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the required delay. It is the total number with the number of packets.
  • the degree of delay degradation of service #1 is, for example, a value based on the ratio of the number of packets transmitted from the base station BS to UE #1 exceeding the required delay of service #1 with respect to the total number of packets of service #1. be.
  • the communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on packet delay frequency distribution information (packet delay frequency distribution information). For example, the communication quality deterioration degree calculation unit 24 calculates the communication quality deterioration degree indicating the degree of delay deterioration of service #1 based on the packet delay frequency distribution information of service #1.
  • the control unit 25 controls resource allocation of the RAN1 for each service.
  • the control unit 25 controls the margin for the requested resource amount based on the past resource usage rate and communication quality deterioration degree for each service.
  • FIG. 3 is a flowchart showing the overall procedure of the resource allocation control method according to this embodiment.
  • k is a time step number that identifies a time step at which resource allocation control is executed.
  • s is a service number that identifies a service.
  • ⁇ _ ⁇ _k,s is the resource budget of service s at timestep k.
  • ⁇ _k,s is the requested resource amount of service s at timestep k.
  • the requested resource amount ⁇ _k,s is a value estimated from the radio quality C_k ⁇ 1,s and the traffic amount V_k ⁇ 1,s of the service s at the time step (k ⁇ 1).
  • ⁇ _k,s is a margin correction factor for the requested resource amount ⁇ _k,s of service s at time step k.
  • d_k,s is the communication quality deterioration degree of service s at time step k.
  • u_k,s is the resource utilization of service s at timestep k.
  • u_ ⁇ _k is the average value of resource utilization rates u_k,s of all services at timestep k.
  • d_ ⁇ _k is the average value of the communication quality deterioration degrees d_k,s of all services at time step k.
  • the resource allocation ⁇ _ ⁇ _k,s of service s at time step k is calculated using the margin correction factor ⁇ _k,s of service s at time step k.
  • the margin correction coefficient ⁇ _k,s of the service s at the time step k is the degree of communication quality deterioration (“d_k- 1,s",”d_k-2,s",...) and resource utilization ("u_k-1,s",”u_k-2,s",).
  • the resource allocation amount ⁇ _ ⁇ _k,s of service s is feedback-controlled based on the degree of communication quality deterioration and resource usage rate of service s based on past resource allocation results of service s.
  • Step S1 Using the resource allocation model of each service s, the control unit 25 calculates the resource allocation amount ⁇ _ ⁇ _k,s at each time step k for each service s.
  • a resource allocation model for service s is shown in the following equation (2).
  • the resource allocation amount ⁇ _ ⁇ _k,s of service s at time step k is calculated by multiplying the requested resource amount ⁇ _k,s of service s at time step k by the margin correction coefficient ⁇ _k,s of service s at time step k. be.
  • Step S2 The resource allocation amount ⁇ _ ⁇ _k,s of each service s calculated in step S1 is notified from the control node 2 to the base station BS by the resource allocation result information 120, and the resource allocation of each service s is updated. .
  • the communication quality deterioration degree d_k,s and the resource usage rate u_k,s of each service s observed are acquired.
  • the observed values are the degree of communication quality degradation d_k ⁇ 1,s observed as a result of resource allocation update at time step (k ⁇ 1) and the resource usage rate Let u_k-1,s.
  • Step S3 Using the communication quality deterioration degree d_k-1,s and the resource usage rate u_k-1,s at time step (k-1), the control unit 25 calculates the margin of service s at the next time step k A correction coefficient ⁇ _k,s is calculated.
  • the margin correction coefficient ⁇ _k,s is represented by the following equation (3).
  • the margin correction coefficient ⁇ _k,s of the service s at the time step k calculated in step S3 is used to calculate the resource allocation amount ⁇ __k,s of the service s at the time step k (step S1, above (2) formula).
  • the resource allocation control method focuses on the trade-off between the amount of available resources and the deterioration of communication quality, and uses both information to determine resources including an appropriate margin for each service. Perform feedback control for allocation. In addition, considering that the required delay is different for each service and the appropriate margin is also different, a margin adapted to each service is provided.
  • E_k,s is the past n time steps "(k ⁇ n) to (k ⁇ 1 )” is the moving average value of the margin correction coefficients ⁇ _k,s. n is preset.
  • Expression (4) is for the case where the degree of communication quality deterioration d_k-1,s is smaller than the threshold d_th,s for all services s.
  • the margin correction coefficient ⁇ _k,s is adjusted according to the difference between the resource usage rate u_k ⁇ 1,s and the resource usage average value u_ ⁇ _k ⁇ 1 using equation (4). This reduces the difference in resource usage between services.
  • Expression (5) is for a case where the degree of communication quality deterioration d_k ⁇ 1,s is smaller than the threshold d_th,s for some services s.
  • the margin correction coefficients ⁇ _k, s are adjusted for each case (5a, 5b, 5c) according to equation (5).
  • the resource usage rate u_k ⁇ 1,s is higher than the threshold u_th,s and the communication quality deterioration degree d_k ⁇ 1,s is smaller than the threshold d_th,s”
  • the previous margin correction coefficient ⁇ _k ⁇ 1,s is used as the margin correction coefficient ⁇ _k,s. This is because it can be determined that an appropriate margin is secured for the requested resource amount ⁇ _k ⁇ 1,s.
  • the margin correction coefficient ⁇ _k,s is adjusted. As a result, the margin for the requested resource amount ⁇ _k,s is increased for the service s with a large communication quality deterioration degree d_k ⁇ 1,s.
  • the margin correction coefficient ⁇ _k,s is adjusted according to the resource usage rate u_k-1,s by equation (5c). As a result, the margin for the requested resource amount ⁇ _k,s is reduced for service s with a low resource usage rate u_k ⁇ 1,s.
  • Expression (6) is for the case where the degree of communication quality deterioration d_k-1,s is greater than the threshold d_th,s for all services s.
  • the margin correction coefficient ⁇ _k,s is adjusted according to the difference between the degree of deterioration of communication quality d_k ⁇ 1,s and the average value d_ ⁇ _k ⁇ 1 of the degree of deterioration of communication quality using equation (6). This reduces the difference in the degree of communication quality deterioration between services.
  • the margin for the requested resource amount is reduced for services with low past resource usage rates, and for services with large past communication quality deterioration, It can be controlled so that the margin for the requested resource amount is large. As a result, it is possible to effectively use resources left over from a certain service in another service, and to suppress deterioration in communication quality.
  • the degree of service delay deterioration is calculated as the communication quality deterioration degree.
  • the service delay deterioration degree is calculated as a value based on the total number of packets information. Therefore, the total number of packets information of each service is used to calculate the degree of service delay deterioration.
  • the number of packets transmitted to the UE within the required delay and the number of packets transmitted to the UE with the excess of the required delay for each service are used as total packet number information. and are used.
  • information on the frequency distribution of packet delays (packet delay frequency distribution information) is used for each service as the total number of packets information.
  • the number of packets counted based on the amount of packet delay for each service is added. For example, a provision for the number of packets counted based on the amount of packet delay for each service identifier (5QI, QCI, S-NSSAI) is added.
  • the number of packets transmitted to the UE within the required delay, the number of packets transmitted to the UE exceeding the required delay, and the frequency distribution of packet delays for each service as the total packet number information according to the present embodiment. (packet delay frequency distribution information), etc., can be acquired via the interface 100 with the base station BS.
  • FIG. 4 and 5 are diagrams showing examples of defining parameters according to this embodiment.
  • FIG. 4 shows additional portions (underlined portions in FIG. 4) 211 and 212 with respect to the provisions of Non-Patent Document 2.
  • FIG. 5 shows additional portions (underlined portions in FIG. 5) 221 and 222 with respect to the provisions of Non-Patent Document 2.
  • packet delay frequency distribution information for each service identifier (5QI, QCI, S-NSSAI) in a specified time window is added. By adding this provision, the control node 2 can acquire the packet delay frequency distribution information of each service via the interface 100 .
  • the communication quality deterioration degree d_k-1,s indicating the degree of delay deterioration of the service at time step (k-1) is the service s for which the communication quality deterioration degree is to be calculated (target service) at time step (k-1). It is calculated by the following equation (8), for example, using the total number of packets information.
  • Formula (8) is a calculation formula corresponding to example 2 of the communication quality deterioration degree calculation method described above.
  • FIG. 6 shows an example of packet delay frequency distribution information according to this embodiment.
  • example 4 of the communication quality deterioration degree calculation method described above using the packet delay frequency distribution information at the time step (k-1) illustrated in FIG.
  • the communication quality deterioration degree d_k ⁇ 1,s indicating the deterioration degree of service delay at time step (k ⁇ 1) is calculated from the frequency ratio of 50 ms or less by the following equation (9).
  • FIGS. 7, 8, and 9 are explanatory diagrams of specific examples of resource allocation control according to this embodiment.
  • the threshold d_th,s for the degree of communication quality deterioration and the threshold u_th,s for the resource usage rate are the same for all services s.
  • FIG. 7 shows a specific example 1 of resource allocation control when the communication quality deterioration degree d_k ⁇ 1,s is smaller than the threshold value d_th,s for all services s.
  • the margin correction coefficient ⁇ _k,s is adjusted according to the difference between the resource usage rate u_k ⁇ 1,s and the resource usage average value u_ ⁇ _k ⁇ 1 by the above equation (4).
  • the resource usage rate u_k, s is higher than the average resource usage rate u_ ⁇ _k ⁇ 1 ( (See explanatory diagram 302), by increasing the margin correction coefficient ⁇ _k,s, control is performed so as to increase the margin for the required resource amount ⁇ _k,s, and as a result of this control, the resource utilization rate u_k , s decrease (see explanatory diagram 303).
  • the margin correction coefficient ⁇ _k By lowering s, control is performed so as to reduce the margin for the required resource amount ⁇ _k,s, and as a result of this control, the resource usage rate u_k,s at time step k one time step later increases (see explanatory diagram 303).
  • FIG. 8 shows a specific example 2 of resource allocation control when the communication quality deterioration degree d_k ⁇ 1,s is smaller than the threshold d_th,s for some services s.
  • FIG. 9 shows a specific example 3 of resource allocation control when the communication quality deterioration degree d_k ⁇ 1,s is larger than the threshold d_th,s for all services s.
  • the degree of communication quality deterioration d_k ⁇ 1,s is greater than the average value d_ ⁇ _k ⁇ 1 of the degree of communication quality deterioration. Therefore, by increasing the margin correction coefficient ⁇ _k,s, the margin for the required resource amount ⁇ _k,s is increased. As a result of this control, the communication quality at time step k after one time step is The degree of deterioration d_k,s decreases (see explanatory diagram 323).
  • FIG. 10 is a graph showing an example of temporal changes in margin correction coefficients according to the present embodiment.
  • the margin correction factor ⁇ _k,s is automatically adjusted so that the approaches the threshold u_th,s.
  • each service s has a different required delay, so the susceptibility to deterioration in communication quality due to a momentary resource shortage differs from service to service. Therefore, the appropriate margin for each service s is also different, but according to this embodiment, the margin correction coefficients ⁇ _k, s of each service s are automatically adjusted so that an appropriate margin is secured for each service s. be done. As a result, deterioration of communication quality can be suppressed regardless of the communication quality required by each service s.
  • a computer program for realizing the functions of the devices described above may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by the computer system.
  • the “computer system” referred to here may include hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” includes writable nonvolatile memories such as flexible discs, magneto-optical discs, ROMs and flash memories, portable media such as DVDs (Digital Versatile Discs), and computer system built-in media.
  • a storage device such as a hard disk that
  • “computer-readable recording medium” means a volatile memory (e.g., DRAM (Dynamic Random Access Memory)), which holds the program for a certain period of time, is also included.
  • the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium.
  • the "transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.

Abstract

According to the present invention, a control device that controls allocation of the resources of a wireless access network comprises a resource usage rate acquisition unit that acquires a resource usage rate for every service, a packet count information acquisition unit that acquires information about a packet count for every service via an interface with a base station, the packet count being totaled on the basis of delay amounts for packets, a communication quality degradation level calculation unit that calculates a communication quality degradation level for every service, the communication quality degradation level indicating a degradation level for delay of the service that is based on the information about the packet count, and a control unit that controls a margin for a requested resource amount for every service on the basis of past resource usage rates and communication quality degradation levels.

Description

制御装置、リソース割当制御方法及びコンピュータプログラムCONTROL DEVICE, RESOURCE ALLOCATION CONTROL METHOD, AND COMPUTER PROGRAM
 本発明は、制御装置、リソース割当制御方法及びコンピュータプログラムに関する。
 本願は、2021年5月11日に、日本に出願された特願2021-80541号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a control device, resource allocation control method, and computer program.
This application claims priority based on Japanese Patent Application No. 2021-80541 filed in Japan on May 11, 2021, the content of which is incorporated herein.
 第5世代(5G)移動通信システム(以下、5Gシステムと称する)等の無線アクセスネットワーク(Radio Access Network:RAN)において多様なサービスが収容される場合、同じリソース(無線リソース、計算機リソース、伝送路リソースなど)は複数のサービスで同時に使用することができない。このため、サービスの通信品質が保証されるためには、各サービスが必要とするリソースが確保される必要がある。ここでサービスとは、例えば5QI(5G QoS Indicator)やS-NSSAI(Sub Network Slice Selection Assist Information、RANスライスの識別子)等の単位で束ねられるものである。 When various services are accommodated in a radio access network (RAN) such as a fifth generation (5G) mobile communication system (hereinafter referred to as a 5G system), the same resources (radio resources, computer resources, transmission paths resources) cannot be used simultaneously by multiple services. Therefore, in order to guarantee the communication quality of services, it is necessary to secure the resources required by each service. Here, services are bundled in units such as 5QI (5G QoS Indicator) and S-NSSAI (SubNetwork Slice Selection Assist Information, RAN slice identifier).
 各サービスにおいて、サービスに割り当てられたリソースが各UE(User Equipment、ユーザ端末)に割り当てられる。このとき、サービスに割り当てられたリソースが十分であれば各UEに対してサービスの通信品質の要求を満たせるが、不足すればサービスの通信品質の要求を満たすことができない。各サービスが必要とするリソース量は、各サービスを利用するUEの無線品質やトラヒックに応じて変動する。このため、サービスの通信品質を保証するためには、各サービスが必要とするリソース量を定期的に見積り、各サービスに対するリソースの割当を変更する制御が行われる。  In each service, resources allocated to the service are allocated to each UE (User Equipment, user terminal). At this time, if the resources allocated to the service are sufficient, the communication quality requirements of the service can be met for each UE, but if the resources are insufficient, the communication quality requirements of the service cannot be met. The amount of resources required by each service varies according to the radio quality and traffic of UEs using each service. Therefore, in order to guarantee the communication quality of services, the amount of resources required by each service is estimated periodically, and control is performed to change the allocation of resources to each service.
 サービスの通信品質を保証するための技術として、例えば非特許文献1に記載される技術が知られている。非特許文献1に記載される技術では、各サービスにリソースを割り当てる際に、無線品質情報と要求トラヒック情報とを用いてサービスに対する無線リソースの割当を制御している。 For example, the technology described in Non-Patent Document 1 is known as a technology for guaranteeing the communication quality of services. The technology described in Non-Patent Document 1 controls allocation of radio resources to services using radio quality information and requested traffic information when allocating resources to each service.
 また非特許文献2には、5Gシステムにおいて取集可能なパラメータが規定されている。 In addition, Non-Patent Document 2 defines parameters that can be collected in the 5G system.
 しかし、上述した非特許文献1に記載される技術では、サービスに割り当てたリソース量と実際にサービスが要求するリソース量との間に誤差が生じ、効率的なリソース割当を行うことができなかった。例えば、あるサービスにおいてリソースが瞬時的に不足することにより通信品質の劣化が発生する一方、他のサービスでは割り当てられたリソースが全ては使われず余りが生じる場合があった。 However, with the technology described in Non-Patent Document 1, an error occurs between the amount of resources allocated to a service and the amount of resources actually requested by the service, making efficient resource allocation impossible. . For example, a momentary shortage of resources in one service may cause deterioration in communication quality, while other services may have a surplus because the allocated resources are not all used.
 本発明は、このような事情を考慮してなされたものであり、その目的は、無線アクセスネットワークに収容されるサービス毎に当該無線アクセスネットワークのリソースの割当を制御する際に、通信品質の劣化を抑えつつ、効率的なリソース割当を図ることにある。 The present invention has been made in consideration of such circumstances, and its object is to prevent deterioration of communication quality when controlling the resource allocation of the radio access network for each service accommodated in the radio access network. To achieve efficient resource allocation while suppressing
 本発明の一態様によれば、無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置は、前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得部と、前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得部と、前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出部と、前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御部と、を備える。
 本発明の一態様によれば、上記の制御装置において、前記通信品質劣化度算出部は、前記サービス毎に、要求遅延以内に端末へ送信されたパケット数と前記要求遅延を超過して端末へ送信されたパケット数とに基づいて前記通信品質劣化度を算出する。
 本発明の一態様によれば、上記の制御装置において、前記通信品質劣化度算出部は、前記サービス毎に、要求遅延以内に端末へ送信されたパケット数と全パケット数とに基づいて前記通信品質劣化度を算出する。
 本発明の一態様によれば、上記の制御装置において、前記通信品質劣化度算出部は、前記サービス毎に、要求遅延を超過して端末へ送信されたパケット数と全パケット数とに基づいて前記通信品質劣化度を算出する。
 本発明の一態様によれば、上記の制御装置において、前記通信品質劣化度算出部は、前記サービス毎に、前記パケットの遅延の度数分布の情報に基づいて前記通信品質劣化度を算出する。
 本発明の一態様によれば、上記の制御装置において、前記制御部は、過去の前記リソース使用率が低いサービスに関するマージンを小さくし、過去の前記通信品質劣化度が大きいサービスに関するマージンを大きくするように、前記サービス毎に前記要求リソース量に対するマージンを制御する。
According to one aspect of the present invention, a control device that controls allocation of resources in the radio access network for each service accommodated in the radio access network acquires a resource usage rate that indicates the usage rate of the resource for each service. a packet number information acquiring unit for acquiring, via an interface between a base station and a base station, information on the number of packets aggregated based on the amount of packet delay for each service; and for each service a communication quality deterioration degree calculation unit that calculates a communication quality deterioration degree indicating a degree of delay deterioration of the service based on the information on the number of packets; and a past resource usage rate and the communication quality deterioration for each service. and a control unit for controlling the margin for the requested resource amount based on the degree.
According to one aspect of the present invention, in the above control device, the communication quality deterioration degree calculation unit includes, for each of the services, the number of packets transmitted to the terminal within the requested delay and the number of packets transmitted to the terminal exceeding the requested delay. The communication quality deterioration degree is calculated based on the number of transmitted packets.
According to one aspect of the present invention, in the above control device, the communication quality deterioration degree calculation unit calculates the communication quality based on the number of packets transmitted to the terminal within the required delay and the total number of packets for each service. Calculate the degree of quality deterioration.
According to one aspect of the present invention, in the control device described above, the communication quality deterioration degree calculator calculates, for each service, based on the number of packets transmitted to the terminal exceeding the required delay and the total number of packets, The degree of communication quality deterioration is calculated.
According to one aspect of the present invention, in the above control device, the communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on the packet delay frequency distribution information for each of the services.
According to one aspect of the present invention, in the control device described above, the control unit reduces the margin associated with past services with low resource usage rates and increases the margin associated with past services with high communication quality degradation. , the margin for the requested resource amount is controlled for each service.
 本発明の一態様によれば、無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置が実行するリソース割当制御方法は、前記制御装置が、前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得ステップと、前記制御装置が、前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得ステップと、前記制御装置が、前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出ステップと、前記制御装置が、前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御ステップと、を含む。 According to one aspect of the present invention, a resource allocation control method executed by a control device for controlling allocation of resources of the radio access network for each service accommodated in the radio access network, wherein the control device performs a resource usage rate acquisition step of acquiring a resource usage rate indicating the resource usage rate; a step of obtaining information on the number of packets obtained through an interface of the communication quality in which the control device calculates, for each service, a degree of communication quality deterioration indicating a degree of deterioration in the delay of the service based on the information on the number of packets; a deterioration degree calculation step; and a control step in which the control device controls a margin for a requested resource amount based on the past resource usage rate and the communication quality deterioration degree for each service.
 本発明の一態様によれば、コンピュータプログラムは、無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置のコンピュータに、前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得ステップと、前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得ステップと、前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出ステップと、前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御ステップと、を実行させる。 According to one aspect of the present invention, a computer program stores a resource utilization rate for each service in a computer of a control device that controls allocation of resources in the radio access network for each service accommodated in the radio access network. a resource usage rate acquisition step of acquiring the resource usage rate indicated; and a packet number information acquisition step of acquiring information on the number of packets aggregated based on the packet delay amount for each service via an interface with the base station. a communication quality deterioration degree calculation step of calculating, for each service, a communication quality deterioration degree indicating a deterioration degree of delay of the service based on the information on the number of packets; and a step of calculating the past resource usage for each service. and a control step of controlling a margin for the requested resource amount based on the rate and the degree of communication quality deterioration.
 本発明によれば、無線アクセスネットワークに収容されるサービス毎に当該無線アクセスネットワークのリソースの割当を制御する際に、通信品質の劣化を抑えつつ、効率的なリソース割当を図ることができるという効果が得られる。 Advantageous Effects of Invention According to the present invention, it is possible to efficiently allocate resources while suppressing degradation of communication quality when controlling allocation of resources in a radio access network for each service accommodated in the radio access network. is obtained.
一実施形態に係る無線アクセスネットワークの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a radio access network according to an embodiment; FIG. 一実施形態に係る制御ノードの構成例を示すブロック図である。4 is a block diagram showing a configuration example of a control node according to one embodiment; FIG. 一実施形態に係るリソース割当制御方法の全体手順を示すフロー図である。FIG. 4 is a flow diagram showing the overall procedure of a resource allocation control method according to one embodiment; 一実施形態に係るパラメータの規定例を示す図である。It is a figure which shows the example of a parameter definition which concerns on one Embodiment. 一実施形態に係るパラメータの規定例を示す図である。It is a figure which shows the example of a parameter definition which concerns on one Embodiment. 一実施形態に係るパケット遅延度数分布情報の例を示す表である。5 is a table showing an example of packet delay frequency distribution information according to one embodiment; 一実施形態に係るリソース割当制御の具体例の説明図である。FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment; 一実施形態に係るリソース割当制御の具体例の説明図である。FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment; 一実施形態に係るリソース割当制御の具体例の説明図である。FIG. 4 is an explanatory diagram of a specific example of resource allocation control according to one embodiment; 一実施形態に係るマージン補正係数の時間変化の例を示すグラフである。5 is a graph showing an example of temporal change of a margin correction coefficient according to one embodiment;
 以下、図面を参照し、本発明の実施形態について説明する。
 図1は、一実施形態に係る無線アクセスネットワークの構成例を示すブロック図である。図1において、無線アクセスネットワーク(RAN)1は、無線装置RUと基地局BSと制御ノード2とを備える。基地局BSは、RAN1に収容される複数のサービスのうち、一又は複数のサービス(図1の例では、サービス#1,サービス#2,サービス#3)を収容する。サービスとしては、例えば、4K映像の配信サービスやコネクテッドカーの通信サービス等が挙げられる。制御ノード2は、一又は複数の基地局BSを制御する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration example of a radio access network according to one embodiment. In FIG. 1 a radio access network (RAN) 1 comprises a radio unit RU, a base station BS and a control node 2 . The base station BS accommodates one or a plurality of services (service #1, service #2, and service #3 in the example of FIG. 1) among a plurality of services accommodated in RAN1. Services include, for example, a 4K video distribution service and a connected car communication service. A control node 2 controls one or more base stations BS.
 制御ノード2は、RAN1に収容されるサービス毎にRAN1のリソースの割当を制御する。制御ノード2は、基地局BSとの間のインターフェース100を介して基地局BSから各種の情報110を取得する。制御ノード2は、基地局BSから取得した情報110に基づいて、基地局BSに収容される各サービス(サービス#1,サービス#2,サービス#3)に対するリソースの割当制御を行う。サービスに割り当てられるリソースは、RAN1の無線リソースや計算機リソースや伝送路リソース等である。 The control node 2 controls resource allocation of RAN1 for each service accommodated in RAN1. The control node 2 acquires various information 110 from the base station BS via the interface 100 with the base station BS. The control node 2 performs resource allocation control for each service (service #1, service #2, service #3) accommodated in the base station BS based on the information 110 acquired from the base station BS. The resources allocated to the service are radio resources, computer resources, transmission path resources, etc. of RAN1.
 制御ノード2は、各サービス(サービス#1,サービス#2,サービス#3)に対するリソースの割当結果を示すリソース割当結果情報120を、インターフェース100を介して基地局BSへ通知する。これにより、基地局BSにおいて、各サービス(サービス#1,サービス#2,サービス#3)に対して、各リソース(サービス#1に対してリソースRS#1、サービス#2に対してリソースRS#2、サービス#3に対してリソースRS#3)の割当が行われる。 The control node 2 notifies the base station BS via the interface 100 of resource allocation result information 120 indicating the resource allocation results for each service (service #1, service #2, service #3). As a result, in the base station BS, for each service (service #1, service #2, service #3), each resource (resource RS #1 for service #1, resource RS # for service #2) 2. Allocation of resource RS#3) is performed for service #3.
 基地局BSは、無線装置RUを介して、各サービス(サービス#1,サービス#2,サービス#3)を利用するUE(UE#1,UE#2,UE#3:ユーザ端末)と通信する。UE#1はサービス#1を利用するUEである。UE#2はサービス#2を利用するUEである。UE#3はサービス#3を利用するUEである。 The base station BS communicates with UEs (UE#1, UE#2, UE#3: user terminals) using each service (service #1, service #2, service #3) via the radio equipment RU. . UE #1 is a UE that uses service #1. UE#2 is a UE that uses service #2. UE#3 is a UE that uses service #3.
 各サービス(サービス#1,サービス#2,サービス#3)に割り当てられた各リソース(リソースRS#1、リソースRS#2、リソースRS#3)は、各UE(UE#1,UE#2,UE#3)に割り当てられる。リソースRS#1はサービス#1に割り当てられたリソースである。リソースRS#2はサービス#2に割り当てられたリソースである。リソースRS#3はサービス#3に割り当てられたリソースである。 Each resource (resource RS#1, resource RS#2, resource RS#3) allocated to each service (service #1, service #2, service #3) is allocated to each UE (UE#1, UE#2, UE#3). Resource RS#1 is a resource allocated to service #1. Resource RS#2 is a resource allocated to service #2. Resource RS#3 is a resource allocated to service #3.
 各UE(UE#1,UE#2,UE#3)は、自己に割り当てられたリソースによって、各サービス(サービス#1,サービス#2,サービス#3)を利用する。 Each UE (UE#1, UE#2, UE#3) uses each service (service #1, service #2, service #3) with resources allocated to itself.
 なお、RAN1は、RANスライシング技術が適用されたRANであってもよい。例えば、RAN1は、5Gシステムであってもよい。また、本実施形態に係るサービスは、例えば5QIやS-NSSAI等の単位で束ねられるものであってもよい。 Note that RAN1 may be a RAN to which RAN slicing technology is applied. For example, RAN1 may be a 5G system. Also, the services according to this embodiment may be bundled in units such as 5QI and S-NSSAI.
 図2は、本実施形態に係る制御ノードの構成例を示すブロック図である。図2において、制御ノード2(制御装置)は、リソース使用率取得部21と、パケット数情報取得部26と、通信品質劣化度算出部24と、制御部25とを備える。本実施形態において制御ノード2は制御装置に対応する。 FIG. 2 is a block diagram showing a configuration example of a control node according to this embodiment. In FIG. 2 , the control node 2 (control device) includes a resource usage rate acquisition unit 21 , a packet count information acquisition unit 26 , a communication quality deterioration degree calculation unit 24 and a control unit 25 . In this embodiment, the control node 2 corresponds to a control device.
 制御ノード2の各部は、各部の機能を実現するためのコンピュータプログラムをCPU(Central Processing Unit:中央演算処理装置)が実行することによりその機能が実現される。 Each part of the control node 2 realizes its function by having a CPU (Central Processing Unit) execute a computer program for realizing the function of each part.
 リソース使用率取得部21は、サービス毎にリソース使用率を取得する。リソース使用率取得部21は、基地局BSから各サービス(サービス#1,サービス#2,サービス#3)のリソース使用率を、インターフェース100を介して取得する。例えば、サービス#1のリソース使用率は、サービス#1に割り当てられたリソースに対するサービス#1で使用されたリソースの割合である。リソース使用率として、例えば、DU(Distributed Unit)毎のPRB(Physical Resource Block)使用率を用いてもよい。DU毎のPRB使用率は、基地局BSとの間のインターフェース100に関して、非特許文献2に規定されている。 The resource usage rate acquisition unit 21 acquires the resource usage rate for each service. The resource usage rate acquisition unit 21 acquires the resource usage rate of each service (service #1, service #2, service #3) from the base station BS via the interface 100. FIG. For example, the resource utilization rate for service #1 is the ratio of resources used by service #1 to resources allocated to service #1. As the resource usage rate, for example, a PRB (Physical Resource Block) usage rate for each DU (Distributed Unit) may be used. The PRB usage rate for each DU is specified in Non-Patent Document 2 regarding the interface 100 with the base station BS.
 パケット数情報取得部26は、サービス毎のパケットの遅延量を基準に集計されたパケット数の情報(集計パケット数情報)を、基地局BSとの間のインターフェース100を介して取得する。パケット数情報取得部26は、基地局BSから各サービス(サービス#1,サービス#2,サービス#3)の集計パケット数情報を、インターフェース100を介して取得する。例えば、サービス#1の集計パケット数情報は、サービス#1を利用する全UE#1を集計対象にして、サービス#1のパケットの遅延量を基準に集計されたパケット数の情報である。例えば、サービス#1の集計パケット数情報は、サービス#1が要求する遅延時間(要求遅延)以内に基地局BSからUE#1へ送信されたパケット数や、当該要求遅延を超過して基地局BSからUE#1へ送信されたパケット数である。例えば、サービス#1の集計パケット数情報は、基地局BSにおけるサービス#1のパケットの遅延の度数分布を示す情報(パケット遅延度数分布情報)である。 The packet number information acquisition unit 26 acquires information on the number of packets aggregated based on the delay amount of packets for each service (aggregated packet number information) via the interface 100 with the base station BS. The packet number information acquisition unit 26 acquires total packet number information of each service (service #1, service #2, service #3) from the base station BS via the interface 100. FIG. For example, the total number of packets information of service #1 is information of the number of packets totaled based on the amount of delay of packets of service #1 for all UE#1 using service #1. For example, the total number of packets information of service #1 is the number of packets transmitted from the base station BS to UE #1 within the delay time (requested delay) requested by service #1, or the number of packets transmitted from the base station BS exceeding the requested delay. It is the number of packets transmitted from the BS to UE#1. For example, the total number of packets information of service #1 is information (packet delay frequency distribution information) indicating frequency distribution of delay of packets of service #1 in the base station BS.
 通信品質劣化度算出部24は、サービス毎に通信品質劣化度を算出する。本実施形態において、通信品質劣化度は、サービスの遅延の劣化度を示す情報である。通信品質劣化度算出部24は、サービス毎に、集計パケット数情報に基づいたサービスの遅延の劣化度を示す通信品質劣化度を算出する。通信品質劣化度算出部24は、基地局BSに収容される各サービス(サービス#1,サービス#2,サービス#3)の集計パケット数情報を使用して、各サービス(サービス#1,サービス#2,サービス#3)の遅延の劣化度を示す通信品質劣化度を算出する。 The communication quality deterioration degree calculation unit 24 calculates the communication quality deterioration degree for each service. In this embodiment, the degree of communication quality deterioration is information indicating the degree of deterioration of service delay. The communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the total number of packets information. The communication quality deterioration degree calculation unit 24 calculates each service (service #1, service # 2. Calculate the degree of communication quality deterioration indicating the degree of delay deterioration of service #3).
 ここで、通信品質劣化度算出方法のいくつかの例を説明する。 Here, several examples of methods for calculating the degree of communication quality deterioration will be explained.
(通信品質劣化度算出方法の例1)
 通信品質劣化度算出部24は、サービス毎に、要求遅延以内にUEへ送信されたパケット数と要求遅延超過でUEへ送信されたパケット数とに基づいてサービスの遅延の劣化度を示す通信品質劣化度を算出する。例えば、通信品質劣化度算出部24は、サービス#1について、サービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数と、当該要求遅延を超過して基地局BSからUE#1へ送信されたパケット数とに基づいてサービス#1の遅延の劣化度を示す通信品質劣化度を算出する。サービス#1の遅延の劣化度は、例えば、サービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数と、当該要求遅延を超過して基地局BSからUE#1へ送信されたパケット数との比率に基づいた値である。
(Example 1 of communication quality deterioration degree calculation method)
The communication quality deterioration degree calculation unit 24 calculates, for each service, the communication quality indicating the deterioration degree of the service delay based on the number of packets transmitted to the UE within the required delay and the number of packets transmitted to the UE exceeding the required delay. Calculate the degree of deterioration. For example, for service #1, the communication quality deterioration degree calculation unit 24 determines the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1, and the number of packets transmitted from the base station BS exceeding the requested delay. A communication quality deterioration degree indicating the degree of delay deterioration of service #1 is calculated based on the number of packets transmitted to UE #1. The degree of delay deterioration of service #1 is, for example, the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the requested delay. A value based on the ratio to the number of packets sent.
(通信品質劣化度算出方法の例2)
 通信品質劣化度算出部24は、サービス毎に、要求遅延以内にUEへ送信されたパケット数と全パケット数とに基づいてサービスの遅延の劣化度を示す通信品質劣化度を算出する。例えば、通信品質劣化度算出部24は、サービス#1について、サービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数と、基地局BSから全UE#1へ送信された総パケット数とに基づいてサービス#1の遅延の劣化度を示す通信品質劣化度を算出する。サービス#1の総パケット数は、サービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数と、当該要求遅延を超過して基地局BSからUE#1へ送信されたパケット数との合計数である。サービス#1の遅延の劣化度は、例えば、サービス#1の総パケット数に対するサービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数の割合に基づいた値である。
(Example 2 of communication quality deterioration degree calculation method)
The communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the number of packets transmitted to the UE within the requested delay and the total number of packets. For example, for service #1, the communication quality deterioration degree calculation unit 24 determines the number of packets transmitted from the base station BS to UE #1 within the requested delay of service #1, and the number of packets transmitted from the base station BS to all UE #1. The communication quality deterioration degree indicating the delay deterioration degree of service #1 is calculated based on the total number of packets obtained. The total number of packets for service #1 is the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the required delay. It is the total number with the number of packets. The degree of delay degradation of service #1 is, for example, a value based on the ratio of the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 to the total number of packets of service #1.
(通信品質劣化度算出方法の例3)
 通信品質劣化度算出部24は、サービス毎に、要求遅延超過でUEへ送信されたパケット数と全パケット数とに基づいてサービスの遅延の劣化度を示す通信品質劣化度を算出する。例えば、通信品質劣化度算出部24は、サービス#1について、サービス#1の要求遅延を超過して基地局BSからUE#1へ送信されたパケット数と、基地局BSから全UE#1へ送信された総パケット数とに基づいてサービス#1の遅延の劣化度を示す通信品質劣化度を算出する。サービス#1の総パケット数は、サービス#1の要求遅延以内に基地局BSからUE#1へ送信されたパケット数と、当該要求遅延を超過して基地局BSからUE#1へ送信されたパケット数との合計数である。サービス#1の遅延の劣化度は、例えば、サービス#1の総パケット数に対するサービス#1の要求遅延を超過して基地局BSからUE#1へ送信されたパケット数の割合に基づいた値である。
(Example 3 of communication quality deterioration degree calculation method)
The communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the number of packets transmitted to the UE with a delay exceeding the required delay and the total number of packets. For example, for service #1, the communication quality deterioration degree calculation unit 24 calculates the number of packets transmitted from the base station BS to UE #1 exceeding the required delay of service #1, and the number of packets transmitted from the base station BS to all UE #1. A communication quality deterioration degree indicating the degree of delay deterioration of service #1 is calculated based on the total number of transmitted packets. The total number of packets for service #1 is the number of packets transmitted from the base station BS to UE #1 within the required delay of service #1 and the number of packets transmitted from the base station BS to UE #1 exceeding the required delay. It is the total number with the number of packets. The degree of delay degradation of service #1 is, for example, a value based on the ratio of the number of packets transmitted from the base station BS to UE #1 exceeding the required delay of service #1 with respect to the total number of packets of service #1. be.
(通信品質劣化度算出方法の例4)
 通信品質劣化度算出部24は、サービス毎に、パケットの遅延の度数分布の情報(パケット遅延度数分布情報)に基づいてサービスの遅延の劣化度を示す通信品質劣化度を算出する。例えば、通信品質劣化度算出部24は、サービス#1について、サービス#1のパケット遅延度数分布情報に基づいてサービス#1の遅延の劣化度を示す通信品質劣化度を算出する。
(Example 4 of communication quality deterioration degree calculation method)
The communication quality deterioration degree calculation unit 24 calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on packet delay frequency distribution information (packet delay frequency distribution information). For example, the communication quality deterioration degree calculation unit 24 calculates the communication quality deterioration degree indicating the degree of delay deterioration of service #1 based on the packet delay frequency distribution information of service #1.
 上記した通信品質劣化度算出方法の例1,例2,例3,例4のうちいずれの方法が用いられてもよい。 Any one of Examples 1, 2, 3, and 4 of the communication quality deterioration degree calculation method described above may be used.
 説明を図2に戻す。
 制御部25は、サービス毎にRAN1のリソースの割当を制御する。サービス毎にRAN1のリソースの割当を制御する際に、制御部25は、サービス毎に、過去のリソース使用率及び通信品質劣化度に基づいて要求リソース量に対するマージンを制御する。
Returning to FIG.
The control unit 25 controls resource allocation of the RAN1 for each service. When controlling the resource allocation of RAN1 for each service, the control unit 25 controls the margin for the requested resource amount based on the past resource usage rate and communication quality deterioration degree for each service.
 次に本実施形態に係るリソース割当制御方法を説明する。 Next, the resource allocation control method according to this embodiment will be described.
 図3を参照して本実施形態に係るリソース割当制御方法の全体手順を説明する。図3は、本実施形態に係るリソース割当制御方法の全体手順を示すフロー図である。 The overall procedure of the resource allocation control method according to this embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the overall procedure of the resource allocation control method according to this embodiment.
 本実施形態のリソース割当制御方法に係るパラメータが次の(1)式に示される。なお、以下では、下付き文字及び上付き文字の例えば「a」を「_a」と表記する場合がある。 The parameters related to the resource allocation control method of this embodiment are shown in the following equation (1). In the following, subscripts and superscripts such as "a" may be written as "_a".
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 kはリソース割当制御が実行されるタイムステップを識別するタイムステップ番号である。
 sはサービスを識別するサービス番号である。
 Ω_^_k,sはタイムステップkにおけるサービスsのリソース割当量である。
 ω_k,sはタイムステップkにおけるサービスsの要求リソース量である。要求リソース量ω_k,sは、タイムステップ(k-1)におけるサービスsの無線品質C_k-1,sとトラヒック量V_k-1,sから見積られた値である。
 ε_k,sはタイムステップkにおけるサービスsの要求リソース量ω_k,sに対するマージン補正係数である。
k is a time step number that identifies a time step at which resource allocation control is executed.
s is a service number that identifies a service.
Ω_^_k,s is the resource budget of service s at timestep k.
ω_k,s is the requested resource amount of service s at timestep k. The requested resource amount ω_k,s is a value estimated from the radio quality C_k−1,s and the traffic amount V_k−1,s of the service s at the time step (k−1).
ε_k,s is a margin correction factor for the requested resource amount ω_k,s of service s at time step k.
 d_k,sはタイムステップkにおけるサービスsの通信品質劣化度である。
 u_k,sはタイムステップkにおけるサービスsのリソース使用率である。
 u_^_kはタイムステップkにおける全サービスのリソース使用率u_k,sの平均値である。
 d_^_kはタイムステップkにおける全サービスの通信品質劣化度d_k,sの平均値である。
d_k,s is the communication quality deterioration degree of service s at time step k.
u_k,s is the resource utilization of service s at timestep k.
u_^_k is the average value of resource utilization rates u_k,s of all services at timestep k.
d_^_k is the average value of the communication quality deterioration degrees d_k,s of all services at time step k.
 図3において、タイムステップkにおけるサービスsのリソース割当量Ω_^_k,sは、タイムステップkにおけるサービスsのマージン補正係数ε_k,sを使用して算出される。そのタイムステップkにおけるサービスsのマージン補正係数ε_k,sは、タイムステップk以前の過去のタイムステップ(k-1,k-2,・・・)におけるサービスsの通信品質劣化度(「d_k-1,s」,「d_k-2,s」,・・・)及びリソース使用率(「u_k-1,s」,「u_k-2,s」,・・・)を使用して算出される。これにより、サービスsのリソース割当量Ω_^_k,sは、サービスsの過去のリソース割当結果によるサービスsの通信品質劣化度及びリソース使用率に基づいてフィードバック制御される。 In FIG. 3, the resource allocation Ω_̂_k,s of service s at time step k is calculated using the margin correction factor ε_k,s of service s at time step k. The margin correction coefficient ε_k,s of the service s at the time step k is the degree of communication quality deterioration (“d_k- 1,s","d_k-2,s",...) and resource utilization ("u_k-1,s","u_k-2,s",...). As a result, the resource allocation amount Ω_̂_k,s of service s is feedback-controlled based on the degree of communication quality deterioration and resource usage rate of service s based on past resource allocation results of service s.
(ステップS1) 制御部25は、各サービスsのリソース割当モデルを使用して、サービスs毎に各タイムステップkにおけるリソース割当量Ω_^_k,sを算出する。サービスsのリソース割当モデルは、次の(2)式に示される。 (Step S1) Using the resource allocation model of each service s, the control unit 25 calculates the resource allocation amount Ω_^_k,s at each time step k for each service s. A resource allocation model for service s is shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 タイムステップkにおけるサービスsのリソース割当量Ω_^_k,sは、タイムステップkにおけるサービスsの要求リソース量ω_k,sとタイムステップkにおけるサービスsのマージン補正係数ε_k,sとの乗算により算出される。 The resource allocation amount Ω_^_k,s of service s at time step k is calculated by multiplying the requested resource amount ω_k,s of service s at time step k by the margin correction coefficient ε_k,s of service s at time step k. be.
(ステップS2) ステップS1で算出された各サービスsのリソース割当量Ω_^_k,sがリソース割当結果情報120により制御ノード2から基地局BSへ通知され、各サービスsのリソース割当が更新される。この結果として観測された各サービスsの通信品質劣化度d_k,s及びリソース使用率u_k,sが取得される。ここでは、説明の便宜上、図3に示されるように、観測値は、タイムステップ(k-1)におけるリソース割当の更新の結果として観測された通信品質劣化度d_k-1,s及びリソース使用率u_k-1,sとする。 (Step S2) The resource allocation amount Ω_^_k,s of each service s calculated in step S1 is notified from the control node 2 to the base station BS by the resource allocation result information 120, and the resource allocation of each service s is updated. . As a result, the communication quality deterioration degree d_k,s and the resource usage rate u_k,s of each service s observed are acquired. Here, for convenience of explanation, as shown in FIG. 3, the observed values are the degree of communication quality degradation d_k−1,s observed as a result of resource allocation update at time step (k−1) and the resource usage rate Let u_k-1,s.
(ステップS3) 制御部25は、タイムステップ(k-1)における通信品質劣化度d_k-1,s及びリソース使用率u_k-1,sを使用して、次のタイムステップkにおけるサービスsのマージン補正係数ε_k,sを算出する。マージン補正係数ε_k,sは、次の(3)式で表される。 (Step S3) Using the communication quality deterioration degree d_k-1,s and the resource usage rate u_k-1,s at time step (k-1), the control unit 25 calculates the margin of service s at the next time step k A correction coefficient ε_k,s is calculated. The margin correction coefficient ε_k,s is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ステップS3で算出されたタイムステップkにおけるサービスsのマージン補正係数ε_k,sは、タイムステップkにおけるサービスsのリソース割当量Ω_^_k,sの算出に使用される(ステップS1、上記(2)式)。 The margin correction coefficient ε_k,s of the service s at the time step k calculated in step S3 is used to calculate the resource allocation amount Ω__k,s of the service s at the time step k (step S1, above (2) formula).
 上記したステップS1-S3が繰り返し実行される。 The above steps S1-S3 are repeatedly executed.
 本実施形態に係るリソース割当制御方法では、空きリソースの量と通信品質の劣化とがトレードオフであることに着目し、その両方の情報を用いて、各サービスに適切なマージンを含めたリソースを割り当てるためのフィードバック制御を行う。また、サービス毎に要求遅延が異なり、適切なマージンも異なることに着目し、各サービスに適応するマージンを設ける。 The resource allocation control method according to the present embodiment focuses on the trade-off between the amount of available resources and the deterioration of communication quality, and uses both information to determine resources including an appropriate margin for each service. Perform feedback control for allocation. In addition, considering that the required delay is different for each service and the appropriate margin is also different, a margin adapted to each service is provided.
(マージン補正係数の算出方法)
 マージン補正係数ε_k,sの算出方法を説明する。マージン補正係数ε_k,sは、次の(4)式、(5)式、(6)式、及び(7)式により表される。
(Calculation method of margin correction coefficient)
A method of calculating the margin correction coefficient ε_k,s will be described. The margin correction coefficient ε_k,s is represented by the following equations (4), (5), (6) and (7).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (4)式、(5)式、及び(6)式において、E_k,sは、(7)式に示されるように、過去のn個のタイムステップ「(k-n)から(k-1)まで」におけるマージン補正係数ε_k,sの移動平均値である。nは予め設定される。 In equations (4), (5), and (6), E_k,s is the past n time steps "(k−n) to (k−1 )” is the moving average value of the margin correction coefficients ε_k,s. n is preset.
 (4)式は、全てのサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい場合である。この場合、(4)式により、リソース使用率u_k-1,sとリソース使用率の平均値u_^_k-1との差に応じてマージン補正係数ε_k,sを調節する。これにより、サービス間のリソース使用率の差が小さくなるようにする。 Expression (4) is for the case where the degree of communication quality deterioration d_k-1,s is smaller than the threshold d_th,s for all services s. In this case, the margin correction coefficient ε_k,s is adjusted according to the difference between the resource usage rate u_k−1,s and the resource usage average value u_̂_k−1 using equation (4). This reduces the difference in resource usage between services.
 (5)式は、一部のサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい場合である。この場合、(5)式により、それぞれの場合(5a,5b、5c)に分けてマージン補正係数ε_k,sの調節を行う。
 「リソース使用率u_k-1,sが閾値u_th,sより高く且つ通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい」ときは、(5a)式により、前回のマージン補正係数ε_k-1,sをそのままマージン補正係数ε_k,sにする。これは、要求リソース量ω_k-1,sに対して適切なマージンが確保されていると判断することができるからである。
 「リソース使用率u_k-1,sが閾値u_th,sより高く且つ通信品質劣化度d_k-1,sが閾値d_th,sよりも大きい」ときは、(5b)式により、通信品質劣化度d_k-1,sに応じてマージン補正係数ε_k,sを調節する。これにより、通信品質劣化度d_k-1,sが大きいサービスsに対して要求リソース量ω_k,sに対するマージンを増やすようにする。
 「リソース使用率u_k-1,sが閾値u_th,sより低い」ときは、(5c)式により、リソース使用率u_k-1,sに応じてマージン補正係数ε_k,sを調節する。これにより、リソース使用率u_k-1,sが低いサービスsに対して要求リソース量ω_k,sに対するマージンを減らすようにする。
Expression (5) is for a case where the degree of communication quality deterioration d_k−1,s is smaller than the threshold d_th,s for some services s. In this case, the margin correction coefficients ε_k, s are adjusted for each case (5a, 5b, 5c) according to equation (5).
When “the resource usage rate u_k−1,s is higher than the threshold u_th,s and the communication quality deterioration degree d_k−1,s is smaller than the threshold d_th,s”, the previous margin correction coefficient ε_k −1,s is used as the margin correction coefficient ε_k,s. This is because it can be determined that an appropriate margin is secured for the requested resource amount ω_k−1,s.
When "the resource usage rate u_k-1,s is higher than the threshold u_th,s and the communication quality deterioration degree d_k-1,s is higher than the threshold d_th,s", the communication quality deterioration degree d_k- 1, s, the margin correction coefficient ε_k, s is adjusted. As a result, the margin for the requested resource amount ω_k,s is increased for the service s with a large communication quality deterioration degree d_k−1,s.
When "the resource usage rate u_k-1,s is lower than the threshold value u_th,s", the margin correction coefficient ε_k,s is adjusted according to the resource usage rate u_k-1,s by equation (5c). As a result, the margin for the requested resource amount ω_k,s is reduced for service s with a low resource usage rate u_k−1,s.
 (6)式は、全てのサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも大きい場合である。この場合、(6)式により、通信品質劣化度d_k-1,sと通信品質劣化度の平均値d_^_k-1との差に応じてマージン補正係数ε_k,sを調節する。これにより、サービス間の通信品質劣化度の差が小さくなるようにする。 Expression (6) is for the case where the degree of communication quality deterioration d_k-1,s is greater than the threshold d_th,s for all services s. In this case, the margin correction coefficient ε_k,s is adjusted according to the difference between the degree of deterioration of communication quality d_k−1,s and the average value d_̂_k−1 of the degree of deterioration of communication quality using equation (6). This reduces the difference in the degree of communication quality deterioration between services.
 本実施形態に係るリソース割当制御方法によれば、過去のリソース使用率が低いサービスに対しては要求リソース量に対するマージンが小さくなるように、また過去の通信品質劣化度が大きいサービスに対しては要求リソース量に対するマージンが大きくなるように制御することができる。これにより、あるサービスで余りとなっていたリソースを他のサービスで有効に利用することができると共に、通信品質の劣化を抑制することができる。 According to the resource allocation control method according to the present embodiment, the margin for the requested resource amount is reduced for services with low past resource usage rates, and for services with large past communication quality deterioration, It can be controlled so that the margin for the requested resource amount is large. As a result, it is possible to effectively use resources left over from a certain service in another service, and to suppress deterioration in communication quality.
(通信品質劣化度の算出方法)
 本実施形態では、通信品質劣化度として、サービスの遅延の劣化度を算出する。上記した通信品質劣化度算出方法の例1,例2,例3,例4に示されるように、サービスの遅延の劣化度は、集計パケット数情報に基づいた値として算出される。したがって、サービスの遅延の劣化度の算出には、各サービスの集計パケット数情報が使用される。通信品質劣化度算出方法の例1,例2,例3では、集計パケット数情報として、サービス毎に、要求遅延以内にUEへ送信されたパケット数と要求遅延超過でUEへ送信されたパケット数とが使用される。通信品質劣化度算出方法の例4では、集計パケット数情報として、サービス毎に、パケットの遅延の度数分布の情報(パケット遅延度数分布情報)が使用される。
(Calculation method of communication quality deterioration degree)
In this embodiment, the degree of service delay deterioration is calculated as the communication quality deterioration degree. As shown in Examples 1, 2, 3, and 4 of the communication quality deterioration degree calculation method described above, the service delay deterioration degree is calculated as a value based on the total number of packets information. Therefore, the total number of packets information of each service is used to calculate the degree of service delay deterioration. In examples 1, 2, and 3 of the communication quality deterioration degree calculation method, the number of packets transmitted to the UE within the required delay and the number of packets transmitted to the UE with the excess of the required delay for each service are used as total packet number information. and are used. In example 4 of the communication quality deterioration degree calculation method, information on the frequency distribution of packet delays (packet delay frequency distribution information) is used for each service as the total number of packets information.
 このため、基地局BSとの間のインターフェース100に関し、非特許文献2に規定される既存のインターフェースに対して、サービス毎のパケットの遅延量を基準に集計されたパケット数の規定を追加する。例えば、サービス識別子(5QI、QCI、S-NSSAI)毎にパケットの遅延量を基準に集計されたパケット数の規定を追加する。これにより、本実施形態に係る集計パケット数情報として、サービス毎に、要求遅延以内にUEへ送信されたパケット数や、要求遅延超過でUEへ送信されたパケット数や、パケットの遅延の度数分布の情報(パケット遅延度数分布情報)などを、基地局BSとの間のインターフェース100を介して取得することができる。 For this reason, regarding the interface 100 between the base station BS and the existing interface defined in Non-Patent Document 2, the number of packets counted based on the amount of packet delay for each service is added. For example, a provision for the number of packets counted based on the amount of packet delay for each service identifier (5QI, QCI, S-NSSAI) is added. As a result, the number of packets transmitted to the UE within the required delay, the number of packets transmitted to the UE exceeding the required delay, and the frequency distribution of packet delays for each service as the total packet number information according to the present embodiment. (packet delay frequency distribution information), etc., can be acquired via the interface 100 with the base station BS.
 図4,図5は、本実施形態に係るパラメータの規定例を示す図である。図4には、非特許文献2の規定に対する追加部分(図4中の下線部分)211,212が示される。図5には、非特許文献2の規定に対する追加部分(図5中の下線部分)221,222が示される。具体的には、指定したタイムウィンドウにおけるサービス識別子(5QI、QCI、S-NSSAI)毎のパケット遅延度数分布情報を追加する。この規定の追加によって、制御ノード2は、インターフェース100を介して、各サービスのパケット遅延度数分布情報を取得することができる。 4 and 5 are diagrams showing examples of defining parameters according to this embodiment. FIG. 4 shows additional portions (underlined portions in FIG. 4) 211 and 212 with respect to the provisions of Non-Patent Document 2. As shown in FIG. FIG. 5 shows additional portions (underlined portions in FIG. 5) 221 and 222 with respect to the provisions of Non-Patent Document 2. As shown in FIG. Specifically, packet delay frequency distribution information for each service identifier (5QI, QCI, S-NSSAI) in a specified time window is added. By adding this provision, the control node 2 can acquire the packet delay frequency distribution information of each service via the interface 100 .
 タイムステップ(k-1)におけるサービスの遅延の劣化度を示す通信品質劣化度d_k-1,sは、通信品質劣化度の算出対象のサービスs(対象サービス)のタイムステップ(k-1)における集計パケット数情報を使用して、例えば次の(8)式で算出される。(8)式は、上記した通信品質劣化度算出方法の例2に対応する算出式である。 The communication quality deterioration degree d_k-1,s indicating the degree of delay deterioration of the service at time step (k-1) is the service s for which the communication quality deterioration degree is to be calculated (target service) at time step (k-1). It is calculated by the following equation (8), for example, using the total number of packets information. Formula (8) is a calculation formula corresponding to example 2 of the communication quality deterioration degree calculation method described above.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図6には、本実施形態に係るパケット遅延度数分布情報の例が示される。上記した通信品質劣化度算出方法の例4では、図6に例示されるタイムステップ(k-1)におけるパケット遅延度数分布情報を使用して、サービスの要求遅延が例えば50ミリ秒(ms)である場合に次の(9)式により、50ms以下の度数の割合から、タイムステップ(k-1)におけるサービスの遅延の劣化度を示す通信品質劣化度d_k-1,sが算出される。 FIG. 6 shows an example of packet delay frequency distribution information according to this embodiment. In example 4 of the communication quality deterioration degree calculation method described above, using the packet delay frequency distribution information at the time step (k-1) illustrated in FIG. In some cases, the communication quality deterioration degree d_k−1,s indicating the deterioration degree of service delay at time step (k−1) is calculated from the frequency ratio of 50 ms or less by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に図7、図8、図9を参照して本実施形態に係るリソース割当制御の具体例を説明する。図7、図8、図9は、本実施形態に係るリソース割当制御の具体例の説明図である。なお、ここでは、説明の便宜上、通信品質劣化度の閾値d_th,s及びリソース使用率の閾値u_th,sは、全てのサービスsで同じにしている。また各サービスs(s=1,2,3)のマージン補正係数ε_k,sの移動平均値E_k,sは、全て「1.0」にしている。 Next, a specific example of resource allocation control according to this embodiment will be described with reference to FIGS. 7, 8, and 9 are explanatory diagrams of specific examples of resource allocation control according to this embodiment. Here, for convenience of explanation, the threshold d_th,s for the degree of communication quality deterioration and the threshold u_th,s for the resource usage rate are the same for all services s. Moving average values E_k,s of margin correction coefficients ε_k,s for each service s (s=1, 2, 3) are all set to "1.0".
(リソース割当制御の具体例1)
 図7には、全てのサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい場合のリソース割当制御の具体例1が示される。図7の説明図301において、3つのサービスs(s=1,2,3)は、いずれも、通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい。このため、上記(4)式により、リソース使用率u_k-1,sとリソース使用率の平均値u_^_k-1との差に応じてマージン補正係数ε_k,sを調節する。具体的には、上記(4)式により、各サービスs(s=1,2,3)のマージン補正係数ε_k,sは、「ε_k,1=1.015」、「ε_k,2=0.98」、「ε_k,3=1.005」になる。
(Specific example 1 of resource allocation control)
FIG. 7 shows a specific example 1 of resource allocation control when the communication quality deterioration degree d_k−1,s is smaller than the threshold value d_th,s for all services s. In the explanatory diagram 301 of FIG. 7, the degree of communication quality deterioration d_k−1,s for all three services s (s=1, 2, 3) is smaller than the threshold d_th,s. For this reason, the margin correction coefficient ε_k,s is adjusted according to the difference between the resource usage rate u_k−1,s and the resource usage average value u_̂_k−1 by the above equation (4). Specifically, according to Equation (4) above, the margin correction coefficients ε_k,s for each service s (s=1, 2, 3) are "ε_k,1=1.015", "ε_k,2=0. 98" and "ε_k, 3=1.005".
 これにより、図7に示されるように、2つのサービスs(s=1,3)に対しては、リソース使用率u_k,sがリソース使用率の平均値u_^_k-1よりも高いので(説明図302参照)、マージン補正係数ε_k,sを上げることにより、要求リソース量ω_k,sに対するマージンを増やすように制御され、この制御の結果、1タイムステップ後のタイムステップkにおけるリソース使用率u_k,sが下がる(説明図303参照)。一方、1つのサービスs(s=2)に対しては、リソース使用率u_k,sがリソース使用率の平均値u_^_k-1よりも低いので(説明図302参照)、マージン補正係数ε_k,sを下げることにより、要求リソース量ω_k,sに対するマージンを減らすように制御され、この制御の結果、1タイムステップ後のタイムステップkにおけるリソース使用率u_k,sが上がる(説明図303参照)。 As a result, as shown in FIG. 7, for two services s (s=1, 3), the resource usage rate u_k, s is higher than the average resource usage rate u_^_k−1 ( (See explanatory diagram 302), by increasing the margin correction coefficient ε_k,s, control is performed so as to increase the margin for the required resource amount ω_k,s, and as a result of this control, the resource utilization rate u_k , s decrease (see explanatory diagram 303). On the other hand, for one service s (s=2), since the resource usage rate u_k,s is lower than the average resource usage rate u_^_k−1 (see explanatory diagram 302), the margin correction coefficient ε_k, By lowering s, control is performed so as to reduce the margin for the required resource amount ω_k,s, and as a result of this control, the resource usage rate u_k,s at time step k one time step later increases (see explanatory diagram 303).
 これら制御により、図7の説明図302,303に示されるように、1タイムステップ後のタイムステップkでは、サービス間でのリソース使用率の差が小さくなる。また、全てのサービスs(s=1,2,3)に対してリソースのマージンが分け与えられるので、全てのサービスs(s=1,2,3)で通信品質の劣化を抑制することができる。 By these controls, as shown in explanatory diagrams 302 and 303 of FIG. 7, at time step k after one time step, the difference in resource usage rate between services becomes smaller. In addition, since resource margins are given to all services s (s=1, 2, 3), deterioration of communication quality can be suppressed for all services s (s=1, 2, 3). .
(リソース割当制御の具体例2)
 図8には、一部のサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい場合のリソース割当制御の具体例2が示される。
(Specific example 2 of resource allocation control)
FIG. 8 shows a specific example 2 of resource allocation control when the communication quality deterioration degree d_k−1,s is smaller than the threshold d_th,s for some services s.
 図8の説明図311,312において、1つのサービスs(s=1)は、リソース使用率u_k-1,sが閾値u_th,sより高く且つ通信品質劣化度d_k-1,sが閾値d_th,sよりも小さい。このため、サービスs(s=1)に対しては、要求リソース量ω_k-1,sに対して適切なマージンが確保されているので、上記(5a)式により、前回のマージン補正係数「ε_k-1,1=1.0」をそのままマージン補正係数ε_k,1にする。 In explanatory diagrams 311 and 312 of FIG. 8, one service s (s=1) has a resource usage rate u_k−1,s higher than a threshold u_th,s and a communication quality deterioration degree d_k−1,s exceeding a threshold d_th,s. smaller than s. Therefore, for the service s (s=1), an appropriate margin is secured for the required resource amount ω_k−1,s. −1,1=1.0” is used as the margin correction coefficient ε_k,1.
 図8の説明図311,312において、1つのサービスs(s=2)は、リソース使用率u_k-1,sが閾値u_th,sより高く且つ通信品質劣化度d_k-1,sが閾値d_th,sよりも大きい。このため、サービスs(s=2)に対しては、要求リソース量に対するマージンが不足しているので、上記(5b)式により、通信品質劣化度d_k-1,sに応じてマージン補正係数ε_k,sを上げる(「ε_k,2=1.02」)。 In explanatory diagrams 311 and 312 of FIG. 8, one service s (s=2) has a resource usage rate u_k-1,s higher than a threshold u_th,s and a communication quality deterioration degree d_k-1,s higher than a threshold d_th,s. greater than s. Therefore, since the margin for the requested resource amount is insufficient for the service s (s=2), the margin correction coefficient ε_k , s (“ε_k, 2=1.02”).
 図8の説明図311,312において、1つのサービスs(s=3)は、リソース使用率u_k-1,sが閾値u_th,sより低い。このため、サービスs(s=3)に対しては、余分にマージンが確保されているので、上記(5c)式により、「1-u_k-1,s」に応じてマージン補正係数ε_k,sを下げる(「ε_k,3=0.85」)。 In explanatory diagrams 311 and 312 of FIG. 8, one service s (s=3) has a resource usage rate u_k-1,s lower than the threshold u_th,s. Therefore, since an extra margin is secured for the service s (s=3), the margin correction coefficient ε_k,s (“ε_k, 3=0.85”).
 これら制御により、図8の説明図313,314に示されるように、1タイムステップ後のタイムステップkでは、通信品質劣化度d_k-1,sが大きいサービスs(s=2)に対して、リソース使用率u_k-1,sが低いサービスs(s=3)の空きリソースが融通されることになり、通信品質の劣化を抑制することができる。 With these controls, as shown in explanatory diagrams 313 and 314 in FIG. Free resources for service s (s=3) with a low resource usage rate u_k−1,s are accommodated, and deterioration in communication quality can be suppressed.
(リソース割当制御の具体例3)
 図9には、全てのサービスsで通信品質劣化度d_k-1,sが閾値d_th,sよりも大きい場合のリソース割当制御の具体例3が示される。図9の説明図321において、3つのサービスs(s=1,2,3)は、いずれも、通信品質劣化度d_k-1,sが閾値d_th,sよりも大きい。このため、上記(6)式により、通信品質劣化度d_k-1,sと通信品質劣化度の平均値d_^_k-1との差に応じてマージン補正係数ε_k,sを調節する。具体的には、上記(6)式により、各サービスs(s=1,2,3)のマージン補正係数ε_k,sは、「ε_k,1=0.988」、「ε_k,2=1.026」、「ε_k,3=0.986」になる。
(Specific example 3 of resource allocation control)
FIG. 9 shows a specific example 3 of resource allocation control when the communication quality deterioration degree d_k−1,s is larger than the threshold d_th,s for all services s. In the explanatory diagram 321 of FIG. 9, all three services s (s=1, 2, 3) have a communication quality deterioration degree d_k−1,s larger than the threshold d_th,s. Therefore, the margin correction coefficient ε_k,s is adjusted according to the difference between the communication quality deterioration degree d_k−1,s and the communication quality deterioration degree average value d_̂_k−1 using the above equation (6). Specifically, according to the equation (6), the margin correction coefficients ε_k,s of each service s (s=1, 2, 3) are "ε_k,1=0.988", "ε_k,2=1. 026" and "ε_k, 3=0.986".
 これにより、図9に示されるように、1つのサービスs(s=2)に対しては、通信品質劣化度d_k-1,sが通信品質劣化度の平均値d_^_k-1よりも大きいので(説明図321参照)、マージン補正係数ε_k,sを上げることにより、要求リソース量ω_k,sに対するマージンを増やすように制御され、この制御の結果、1タイムステップ後のタイムステップkにおける通信品質劣化度d_k,sが下がる(説明図323参照)。一方、2つのサービスs(s=1,3)に対しては、通信品質劣化度d_k-1,sが通信品質劣化度の平均値d_^_k-1よりも小さいので(説明図321参照)、マージン補正係数ε_k,sを下げることにより、要求リソース量ω_k,sに対するマージンを減らすように制御され、この制御の結果、1タイムステップ後のタイムステップkにおける通信品質劣化度d_k,sが上がる(説明図323参照)。 As a result, as shown in FIG. 9, for one service s (s=2), the degree of communication quality deterioration d_k−1,s is greater than the average value d_̂_k−1 of the degree of communication quality deterioration. Therefore, by increasing the margin correction coefficient ε_k,s, the margin for the required resource amount ω_k,s is increased. As a result of this control, the communication quality at time step k after one time step is The degree of deterioration d_k,s decreases (see explanatory diagram 323). On the other hand, for two services s (s=1, 3), since the communication quality deterioration degree d_k-1,s is smaller than the communication quality deterioration degree average value d_^_k-1 (see explanatory diagram 321) , the margin correction coefficient ε_k,s is lowered to control the margin for the required resource amount ω_k,s. (See explanatory diagram 323).
 これら制御により、図9の説明図321,322,323,324に示されるように、1タイムステップ後のタイムステップkでは、通信品質劣化度d_k-1,sが大きいサービスs(s=2)に対して、通信品質劣化度d_k-1,sが小さいサービスs(s=1,3)からリソースが融通されることになり、通信品質劣化度d_k-1,sが大きいサービスs(s=2)の通信品質の劣化を抑制することができる。 With these controls, as shown in explanatory diagrams 321, 322, 323, and 324 in FIG. , resources are accommodated from the service s (s=1, 3) with the lowest communication quality deterioration degree d_k−1,s, and the service s (s= 2) deterioration of communication quality can be suppressed.
 図10は、本実施形態に係るマージン補正係数の時間変化の例を示すグラフ図である。本実施形態に係るフィードバック制御が連続して実行されることにより、図10に例示されるように、通信品質劣化度d_k,sが閾値d_th,sに近づくように、またリソース使用率u_k,sが閾値u_th,sに近づくように、マージン補正係数ε_k,sが自動的に調節される。 FIG. 10 is a graph showing an example of temporal changes in margin correction coefficients according to the present embodiment. By continuously executing the feedback control according to the present embodiment, as illustrated in FIG. The margin correction factor ε_k,s is automatically adjusted so that the approaches the threshold u_th,s.
 一般に、各サービスsによって要求遅延が違うので、瞬時的なリソースの不足による通信品質の劣化の起こりやすさはサービス毎に異なる。このため、各サービスsに適切なマージンも異なるが、本実施形態によれば、各サービスsに適切なマージンが確保されるように、各サービスsのマージン補正係数ε_k,sが自動的に調節される。これにより、各サービスsが要求する通信品質によらずに通信品質の劣化を抑制することができる。 In general, each service s has a different required delay, so the susceptibility to deterioration in communication quality due to a momentary resource shortage differs from service to service. Therefore, the appropriate margin for each service s is also different, but according to this embodiment, the margin correction coefficients ε_k, s of each service s are automatically adjusted so that an appropriate margin is secured for each service s. be done. As a result, deterioration of communication quality can be suppressed regardless of the communication quality required by each service s.
 上述したように本実施形態によれば、無線アクセスネットワーク(RAN1)に収容されるサービス毎に当該無線アクセスネットワークのリソースの割当を制御する際に、効率的なリソース割当を図ることができるという効果が得られる。 As described above, according to the present embodiment, when controlling resource allocation of the radio access network (RAN1) for each service accommodated in the radio access network, efficient resource allocation can be achieved. is obtained.
 なお、これにより、例えば無線アクセスネットワークにおける総合的なサービス品質の向上を実現することができることから、国連が主導する持続可能な開発目標(SDGs)の目標9「レジリエントなインフラを整備し、持続可能な産業化を推進するとともに、イノベーションの拡大を図る」に貢献することが可能となる。 As a result, it will be possible to improve overall service quality in radio access networks, for example. It will be possible to contribute to the promotion of industrialization and the expansion of innovation.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the present invention.
 また、上述した各装置の機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
Alternatively, a computer program for realizing the functions of the devices described above may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by the computer system. Note that the “computer system” referred to here may include hardware such as an OS and peripheral devices.
In addition, "computer-readable recording medium" includes writable nonvolatile memories such as flexible discs, magneto-optical discs, ROMs and flash memories, portable media such as DVDs (Digital Versatile Discs), and computer system built-in media. A storage device such as a hard disk that
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Furthermore, "computer-readable recording medium" means a volatile memory (e.g., DRAM (Dynamic Random Access Memory)), which holds the program for a certain period of time, is also included. Further, the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Further, the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
 1      無線アクセスネットワーク(RAN)
 2      制御ノード(制御装置)
 BS     基地局
 RU     無線装置
 UE     ユーザ端末
 21     リソース使用率取得部
 26     パケット数情報取得部
 24     通信品質劣化度算出部
 25     制御部
 100    インターフェース
1 Radio Access Network (RAN)
2 control node (control device)
BS base station RU radio device UE user terminal 21 resource usage rate acquisition unit 26 packet number information acquisition unit 24 communication quality deterioration degree calculation unit 25 control unit 100 interface

Claims (8)

  1.  無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置において、
     前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得部と、
     前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得部と、
     前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出部と、
     前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御部と、
     を備える制御装置。
    In a control device that controls resource allocation of the radio access network for each service accommodated in the radio access network,
    a resource usage rate acquisition unit that acquires a resource usage rate indicating the usage rate of the resource for each of the services;
    a packet number information acquisition unit that acquires information on the number of packets aggregated based on the packet delay amount for each service via an interface with a base station;
    a communication quality deterioration degree calculation unit that calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the information on the number of packets;
    a control unit that controls a margin for a requested resource amount based on the past resource usage rate and the degree of communication quality deterioration for each service;
    A control device comprising:
  2.  前記通信品質劣化度算出部は、前記サービス毎に、要求遅延以内に端末へ送信されたパケット数と前記要求遅延を超過して前記端末へ送信されたパケット数とに基づいて前記通信品質劣化度を算出する請求項1に記載の制御装置。 The communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on the number of packets transmitted to the terminal within a required delay and the number of packets transmitted to the terminal exceeding the required delay for each service. 2. The control device according to claim 1, which calculates
  3.  前記通信品質劣化度算出部は、前記サービス毎に、要求遅延以内に端末へ送信されたパケット数と全パケット数とに基づいて前記通信品質劣化度を算出する請求項1に記載の制御装置。 The control device according to claim 1, wherein the communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on the number of packets transmitted to the terminal within the requested delay and the total number of packets for each service.
  4.  前記通信品質劣化度算出部は、前記サービス毎に、要求遅延を超過して端末へ送信されたパケット数と全パケット数とに基づいて前記通信品質劣化度を算出する請求項1に記載の制御装置。 2. The control according to claim 1, wherein the communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on the total number of packets and the number of packets transmitted to the terminal exceeding the required delay for each of the services. Device.
  5.  前記通信品質劣化度算出部は、前記サービス毎に、前記パケットの遅延の度数分布の情報に基づいて前記通信品質劣化度を算出する請求項1に記載の制御装置。 The control device according to claim 1, wherein the communication quality deterioration degree calculation unit calculates the communication quality deterioration degree based on information on the frequency distribution of the delay of the packet for each of the services.
  6.  前記制御部は、過去の前記リソース使用率が低いサービスに関するマージンを小さくし、過去の前記通信品質劣化度が大きいサービスに関するマージンを大きくするように、前記サービス毎に前記要求リソース量に対するマージンを制御する請求項1から5のいずれか1項に記載の制御装置。 The control unit controls the margin for the requested resource amount for each service so as to reduce the margin for services with low resource usage in the past and increase the margin for services with high communication quality deterioration in the past. The control device according to any one of claims 1 to 5.
  7.  無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置が実行するリソース割当制御方法であって、
     前記制御装置が、前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得ステップと、
     前記制御装置が、前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得ステップと、
     前記制御装置が、前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出ステップと、
     前記制御装置が、前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御ステップと、
     を含むリソース割当制御方法。
    A resource allocation control method executed by a control device that controls allocation of resources in the radio access network for each service accommodated in the radio access network,
    a resource usage rate acquisition step in which the control device acquires a resource usage rate indicating the resource usage rate for each of the services;
    a packet number information acquisition step in which the control device acquires information on the number of packets aggregated based on the delay amount of packets for each service via an interface with a base station;
    a communication quality deterioration degree calculation step in which the control device calculates, for each service, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the information on the number of packets;
    a control step in which the control device controls a margin for a requested resource amount based on the past resource usage rate and the communication quality deterioration degree for each service;
    resource allocation control method, including
  8.  無線アクセスネットワークに収容されるサービス毎に前記無線アクセスネットワークのリソースの割当を制御する制御装置のコンピュータに、
     前記サービス毎に前記リソースの使用率を示すリソース使用率を取得するリソース使用率取得ステップと、
     前記サービス毎のパケットの遅延量を基準に集計されたパケット数の情報を、基地局との間のインターフェースを介して取得するパケット数情報取得ステップと、
     前記サービス毎に、前記パケット数の情報に基づいた前記サービスの遅延の劣化度を示す通信品質劣化度を算出する通信品質劣化度算出ステップと、
     前記サービス毎に、過去の前記リソース使用率及び前記通信品質劣化度に基づいて要求リソース量に対するマージンを制御する制御ステップと、
     を実行させるためのコンピュータプログラム。
    A computer of a control device that controls resource allocation of the radio access network for each service accommodated in the radio access network,
    a resource usage rate acquisition step of acquiring a resource usage rate indicating the usage rate of the resource for each of the services;
    a packet number information obtaining step of obtaining, through an interface with a base station, information on the number of packets aggregated based on the packet delay amount for each service;
    a communication quality deterioration degree calculating step of calculating, for each of the services, a communication quality deterioration degree indicating the degree of delay deterioration of the service based on the information on the number of packets;
    a control step of controlling a margin for a requested resource amount based on the past resource usage rate and the degree of communication quality deterioration for each of the services;
    A computer program for executing
PCT/JP2022/003893 2021-05-11 2022-02-01 Control device, resource allocation control method, and computer program WO2022239321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080541A JP2022174621A (en) 2021-05-11 2021-05-11 Control device, resource allocation control method, and computer program
JP2021-080541 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022239321A1 true WO2022239321A1 (en) 2022-11-17

Family

ID=84029044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003893 WO2022239321A1 (en) 2021-05-11 2022-02-01 Control device, resource allocation control method, and computer program

Country Status (2)

Country Link
JP (1) JP2022174621A (en)
WO (1) WO2022239321A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200172A (en) * 2016-04-27 2017-11-02 株式会社東芝 Radio resource slicing in radio access network
CN112737823A (en) * 2020-12-22 2021-04-30 国网北京市电力公司 Resource slice allocation method and device and computer equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200172A (en) * 2016-04-27 2017-11-02 株式会社東芝 Radio resource slicing in radio access network
CN112737823A (en) * 2020-12-22 2021-04-30 国网北京市电力公司 Resource slice allocation method and device and computer equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Conclusions on Enhancements for RAN Slicing", 3GPP DRAFT; R3-212070, vol. RAN WG3, 6 May 2021 (2021-05-06), pages 1 - 6, XP052001484 *

Also Published As

Publication number Publication date
JP2022174621A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9794825B2 (en) System and method for determining cell congestion level
US9986580B2 (en) Dynamic frequency and power resource allocation with granular policy management
TWI437866B (en) Methods and systems for resizing multimedia content based on quality and rate information
ES2711546T3 (en) Method and system to plan the downlink in networks of long-term evolution (LTE) based on quality of service (QoS)
CN107079179B (en) For handling the network node and method that control the process of data transmission relevant to the video data of video streaming services
US8761108B2 (en) Table based link adaption for wireless communication transmissions with one codeword
EP2764750B1 (en) Improving adaptive streaming video quality by optimizing resource allocation
US6801776B2 (en) Systems and methods for dimensioning a wireless communication system
JP2009525704A (en) Method and system for resizing multimedia content based on quality and rate information
US20150029950A1 (en) Uplink transmission scheduling for wireless communication networks
US9474064B2 (en) System and method for controlling an operation of an application by forecasting a smoothed transport block size
US8923156B1 (en) Quality of service aware channel quality indicator
WO2018163556A1 (en) Device and method for communication network
JP2013098993A (en) Method for scheduling scalable video coding stream in wireless mobile network
Khatibi et al. Modelling of virtual radio resource management for cellular heterogeneous access networks
WO2022239321A1 (en) Control device, resource allocation control method, and computer program
KR20190086192A (en) Apparatus and method for scheudling in wireless communication system
WO2022239320A1 (en) Control device, resource allocation control method and computer program
JP6276206B2 (en) Bandwidth allocation control device and bandwidth allocation control method
US10827400B2 (en) Allocating radio resources in a cellular network
JP5506696B2 (en) Method for prioritizing user throughput and user throughput limits for best effort applications in a cdma20001xEV-DO wireless communication system
Pandit et al. Content aware optimization for video delivery over WCDMA
US20230038198A1 (en) Dynamic wireless network throughput adjustment
Farrokh et al. Opportunistic scheduling for streaming users in high-speed downlink packet access (HSDPA)
KR20180110353A (en) Method for optimizing memory size and backhaul acllocation for cache-enbled base station and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE