WO2022239256A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2022239256A1
WO2022239256A1 PCT/JP2021/018504 JP2021018504W WO2022239256A1 WO 2022239256 A1 WO2022239256 A1 WO 2022239256A1 JP 2021018504 W JP2021018504 W JP 2021018504W WO 2022239256 A1 WO2022239256 A1 WO 2022239256A1
Authority
WO
WIPO (PCT)
Prior art keywords
mac
serving cell
information
csi
serving cells
Prior art date
Application number
PCT/JP2021/018504
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023520741A priority Critical patent/JPWO2022239256A1/ja
Priority to PCT/JP2021/018504 priority patent/WO2022239256A1/en
Publication of WO2022239256A1 publication Critical patent/WO2022239256A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • Layer1/layer2 (L1/L2) inter-cell mobility to facilitate more efficient (lower delay and overhead) DL/UL beam management in future wireless communication systems It is
  • L1/L2 inter-cell mobility it is possible to change the serving cell using functions such as beam control without reconfiguring Radio Resource Control (RRC). In other words, it is possible to transmit to and receive from non-serving cells without handover.
  • RRC Radio Resource Control
  • L1/L2 inter-cell mobility that does not require handover is preferable because there is a period during which data communication is not possible, such as the need for RRC reconnection for handover.
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately activate/deactivate non-serving cells.
  • a terminal includes a receiving unit that receives a Medium Access Control Control Element (MAC CE) including information used for at least one of activation and deactivation of non-serving cells, and based on the information, and a control unit that controls transmission and reception with a non-serving cell.
  • MAC CE Medium Access Control Control Element
  • activation/deactivation of non-serving cells can be appropriately performed.
  • FIG. 1A shows an example of inter-cell mobility involving non-serving cells.
  • FIG. 1B shows an example of a multi-TRP scenario.
  • 2A and 2B are diagrams showing a first example of MAC CE of the first embodiment.
  • 3A and 3B are diagrams showing a second example of the MAC CE of the first embodiment.
  • 4A and 4B are diagrams showing examples of MAC CE of the second embodiment.
  • FIG. 5 is a diagram showing examples of TCI codepoints for PDSCH specified in DCI.
  • FIG. 6 is a diagram illustrating a first example of non-serving cell/TCI states that cases 1 to 5 include.
  • FIG. 7 is a diagram illustrating a second example of non-serving cell/TCI states that Cases 1 to 5 include.
  • FIG. 8 is a diagram showing examples of non-serving cell/TCI states including cases 1 to 5 and case X.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the UE measures the channel state using a predetermined reference signal (or resource for the reference signal) and feeds back (reports) channel state information (CSI) to the base station.
  • CSI channel state information
  • channel state information reference signal Channel State Information-Reference Signal: CSI-RS
  • CSI-RS Channel State Information-Reference Signal
  • SS Physical Broadcast Channel
  • SS synchronization signal
  • DMRS DeModulation Reference Signal
  • the CSI-RS resource may include at least one of Non Zero Power (NZP) CSI-RS and CSI-Interference Management (IM).
  • the SS/PBCH block is a block containing synchronization signals (e.g., Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)) and PBCH (and corresponding DMRS), and the SS block ( SSB) or the like.
  • An SSB index may be given for the temporal position of the SSB within the half-frame.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), SS/PBCH block resource indicator ( SS/PBCH Block Indicator: SSBRI), Layer Indicator: LI, Rank Indicator: RI, Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal received power in Layer 1), At least one of L1-Reference Signal Received Quality (RSRQ), L1-Signal to Interference plus Noise Ratio (SINR), L1-Signal to Noise Ratio (SNR), etc. may be included.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SS/PBCH Block Indicator SSBRI
  • Layer Indicator: LI Layer Indicator: LI
  • Rank Indicator: RI Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal
  • CSI may have multiple parts.
  • a first part of CSI may contain information with a relatively small number of bits (eg, RI).
  • a second part of CSI (CSI part 2) may include information with a relatively large number of bits (eg, CQI), such as information determined based on CSI part 1.
  • Period CSI Period CSI: P-CSI
  • Aperiodic CSI A (AP)-CSI
  • semi-permanent Targeted Semi-persistent, semi-persistent CSI: SP-CSI
  • the UE notifies information on CSI reporting (may be called CSI report configuration information) using higher layer signaling, physical layer signaling (for example, downlink control information (DCI)) or a combination thereof.
  • CSI report configuration information may be configured using, for example, the RRC information element "CSI-ReportConfig".
  • the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • MAC PDU MAC Protocol Data Unit
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information : OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI OSI
  • the CSI report configuration information may include, for example, information on the reporting period, offset, etc., and these may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.).
  • the CSI report configuration information may include a configuration ID (CSI-ReportConfigId). Parameters such as the type of CSI reporting method (SP-CSI or not, etc.) and reporting cycle may be specified by the configuration ID.
  • the CSI reporting configuration information may include information (CSI-ResourceConfigId) indicating which signal (or resource for which signal) is used to report the measured CSI.
  • Beam management So far, in Rel-15 NR, a method of beam management (BM) has been studied. In the beam management, it is considered to perform beam selection based on the L1-RSRP reported by the UE. Changing (switching) the beam of a signal/channel may correspond to changing the (Transmission Configuration Indication state) of that signal/channel.
  • the beam selected by beam selection may be a transmission beam (Tx beam) or a reception beam (Rx beam). Also, the beam selected by beam selection may be a UE beam or a base station beam.
  • the UE may report (transmit) measurement results for beam management using PUCCH or PUSCH.
  • the measurement result may be, for example, CSI including at least one of L1-RSRP, L1-RSRQ, L1-SINR, L1-SNR, and the like.
  • the measurement result may be called a beam measurement, a beam measurement result, a beam report, a beam measurement report, or the like.
  • CSI measurements for beam reporting may include interferometric measurements.
  • the UE may use resources for CSI measurement to measure channel quality, interference, etc. and derive beam reports.
  • the resource for CSI measurement may be, for example, at least one of SS/PBCH block resources, CSI-RS resources, other reference signal resources, and the like.
  • the CSI measurement report configuration information may be configured in the UE using higher layer signaling.
  • a beam report may include the result of at least one of channel quality measurement and interference measurement.
  • the results of channel quality measurements may include, for example, L1-RSRP.
  • the results of the interference measurements may include L1-SINR, L1-SNR, L1-RSRQ, other indicators of interference (eg, any indicator that is not L1-RSRP), and the like.
  • the CSI measurement resource for beam management may be called a beam measurement resource.
  • the CSI measurement target signal/channel may be referred to as a beam measurement signal.
  • CSI measurement/report may be read as at least one of measurement/report for beam management, beam measurement/report, radio link quality measurement/report, and the like.
  • the CSI report configuration information that considers the current NR beam management is included in the RRC information element "CSI-ReportConfig".
  • the information in the RRC information element "CSI-ReportConfig" will be explained.
  • the CSI report configuration information may include report amount information ("report amount”, which may be represented by the RRC parameter "reportQuantity”), which is information on parameters to report.
  • the reporting volume information is the ASN. 1 object type. Therefore, one of the parameters (cri-RSRP, ssb-Index-RSRP, etc.) defined as the report amount information is set.
  • a UE in which a higher layer parameter (eg, RRC parameter "groupBasedBeamReporting") included in the CSI reporting configuration information is set to enabled has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
  • a higher layer parameter eg, RRC parameter "groupBasedBeamReporting”
  • RRC parameter "groupBasedBeamReporting” included in the CSI reporting configuration information has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
  • a UE for which the number of RS resources to be reported is set to one or more by a higher layer parameter (for example, the RRC parameter "nrofReportedRS") included in the CSI report configuration information is one or more beam measurement resources for each report configuration.
  • the IDs and their corresponding one or more measurements may be included in the beam report.
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; • QCL Type D (QCL-D): Spatial reception parameters.
  • the UE cannot assume that a given Control Resource Set (CORESET), channel or reference signal is in a specific QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal. , may be called the QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • the TCI state information element (“TCI-state IE" of RRC) set by higher layer signaling may contain one or more pieces of QCL information ("QCL-Info").
  • the QCL information may include at least one of information (RS related information) regarding RSs that are QCL related and information indicating the QCL type (QCL type information).
  • the RS related information includes the index of the RS (eg, SSB index, Non-Zero-Power (NZP) CSI-RS resource ID (Identifier)), the index of the cell in which the RS is located, and the location of the RS. It may contain information such as the Bandwidth Part (BWP) index.
  • BWP Bandwidth Part
  • both QCL type A RS and QCL type D RS or only QCL type A RS can be configured for the UE as at least one TCI state of PDCCH and PDSCH.
  • a TRS When a TRS is set as a QCL type A RS, the TRS is different from the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)), and it is assumed that the same TRS will be transmitted periodically over a long period of time. be done.
  • DMRS DeModulation Reference Signal
  • the UE can measure the TRS and calculate the average delay, delay spread, etc.
  • a UE configured with the TRS as a QCL type A RS in a PDCCH or PDSCH DMRS TCI state has the same QCL type A parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH DMRS and the TRS. Therefore, the DMRS type A parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH can be obtained from the TRS measurement results.
  • the UE can use the TRS measurement result to perform more accurate channel estimation.
  • a UE configured with a QCL type D RS can use the QCL type D RS to determine the UE receive beam (spatial domain receive filter, UE spatial domain receive filter).
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • TRP Transmission/Reception Points
  • MTRP Multi-TRP
  • Inter-cell mobility (L1/L2 inter-cell mobility) that facilitates more efficient (lower delay and overhead) DL/UL beam management in future wireless communication systems is being considered. .
  • L1/L2 inter-cell mobility it is possible to change the serving cell using functions such as beam control without RRC reconfiguration. In other words, it is possible to transmit to and receive from non-serving cells without handover.
  • L1/L2 inter-cell mobility that does not require handover is preferable because there is a period during which data communication is not possible, such as the need for RRC reconnection for handover.
  • a UE may receive channels/signals from multiple cells/TRPs in inter-cell mobility (eg, L1/L2 inter-cell mobility) (see FIGS. 1A and 1B).
  • inter-cell mobility eg, L1/L2 inter-cell mobility
  • FIG. 1A shows an example of inter-cell mobility (eg, single TRP inter-cell mobility) including non-serving cells.
  • Single TRP may refer to the case where only one TRP out of multiple TRPs transmits to the UE (which may be referred to as single mode).
  • a CORESET pool index may point to a single TRP.
  • the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). showing. For example, this corresponds to the case where the UE switches/switches from cell #1 to cell #3 (eg, fast cell switch).
  • the DCI/MAC CE may update the TCI state and dynamically select the port (eg, antenna port)/TRP/point.
  • Different physical cell IDs eg, PCI are set for cell #1 and cell #3.
  • FIG. 1B shows an example of a multi-TRP scenario (for example, multi-TRP inter-cell mobility when using multi-TRP).
  • the UE is shown receiving channels/signals from TRP#1 and TRP2.
  • TRP#1 exists in cell #1 (PCI#1)
  • TRP#2 exists in cell #2 (PCI#2).
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • NJT non-coherent joint transmission
  • FIG. 1B a case is shown where NCJT is performed between a plurality of cells (for example, cells of different PCIs). Note that the same serving cell configuration may be applied/configured to TRP#1 and TRP#2.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) to a first signal/channel using a first precoding. (eg, PDSCH).
  • TRP#2 also modulation-maps a second codeword and layer-maps a second number of layers (e.g., two layers) to a second signal/channel (e.g., PDSCH).
  • Multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode ).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of a multi-TRP.
  • a configuration that utilizes one DCI in multi-TRP may be referred to as single DCI-based multi-TRP (mTRP/MTRP).
  • a case (which may be called a master-slave mode) in which each multi-TRP transmits part of the control signal to the UE and the multi-TRP transmits the data signal may be applied.
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) respectively (multimaster mode). Multiple DCIs may be transmitted from multiple TRPs respectively.
  • M-DCI multiple DCI
  • PDCCH multiple PDCCH
  • Multiple DCIs may be transmitted from multiple TRPs respectively.
  • a configuration that utilizes multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be referred to as separate feedback, separate CSI feedback, and so on.
  • “separate” may be read interchangeably with “independent.”
  • CSI-RS can be set as the TCI state of PDSCH/PDCCH (PDSCH/PDCCH DMRS) (PDSCH/PDCCH TCI state refers to CSI-RS).
  • SSB can be set as the TCI state of the CSI-RS. However, it was not possible to directly set SSB as the TCI state of PDSCH/PDCCH. In the new mechanism of Rel. 17 using unified TCI state (single TRP inter-cell mobility), setting SSB (directly) as the TCI state for PDSCH/PDCCH is being considered.
  • a base station can indicate a TCI state associated with one of a number of non-serving cells.
  • RRC has configured many non-serving cells, but MAC CE activates limited (partial) non-serving cells (for example, PCI #1 or #3 in FIG. 1 as active non-serving cells/PCI ), the UE processing complexity is significantly reduced compared to the unrestricted case.
  • non-serving cell indexes/PCIs may be set in advance by RRC, and an active non-serving cell index/PCI may be selected in the new MAC CE to be described later.
  • the inventors conceived of a terminal that can appropriately activate non-serving cells.
  • CSI reporting, beam reporting, and L1 beam reporting may be read interchangeably.
  • Report and measurement may be read interchangeably.
  • the panel Uplink (UL) transmitting entity, point, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, codeword, base station, antenna port of a signal (e.g., for demodulation Reference signal (DeModulation Reference Signal (DMRS) port), antenna port group for a certain signal (e.g. DMRS port group), group for multiplexing (e.g. Code Division Multiplexing (CDM)) group, reference signal group, CORESET group), CORESET pool, CORESET subset, CW, redundancy version (RV), layer (MIMO layer, transmission layer, spatial layer) may be read interchangeably.
  • panel identifier (ID) and panel may be read interchangeably.
  • TRP index, TRP ID, CORESET pool index, TCI state ordinal numbers (first, second) in two TCI states, and TRP may be read interchangeably.
  • beams, spatial domain filters, spatial settings, TCI states, DL TCI states, UL TCI states, joint TCI states, unified TCI states, unified beams, joint TCI states of unified TCI states, unified TCI states DL/UL TCI state, common TCI state, common beam, TCI assumption, QCL assumption, QCL parameters, spatial domain receive filter, UE spatial domain receive filter, UE receive beam, DL beam, DL receive beam, DL precoding , DL precoder, DL-RS, TCI state/QCL assumed QCL type D RS, TCI state/QCL assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be interchanged.
  • single TRP single TRP
  • channels with single TRP channels with one TCI state/spatial relationship
  • multi-TRP not enabled by RRC/DCI multiple TCI states/spatial relations enabled by RRC/DCI shall not be set
  • neither CORESET Pool Index (CORESETPoolIndex) value of 1 shall be set for any CORESET
  • neither codepoint of the TCI field shall be mapped to two TCI states.
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs may be read interchangeably.
  • cells, CCs, carriers, BWPs, and bands may be read interchangeably.
  • indexes, IDs, indicators, and resource IDs may be read interchangeably.
  • A/B may be read as “at least one of A and B”.
  • RS may refer to at least one of CRI and SSBRI in CSI reporting.
  • L1-RSRP and L1-SINR may be read interchangeably.
  • SSB, SSB index, and SSBRI may be read interchangeably.
  • a non-serving cell a candidate serving cell, a cell with a different PCI than the current serving cell, and another serving cell with a different PCI may be interchanged.
  • the UE may receive a new MAC CE that includes at least one of the following fields (information) for activating/deactivating non-serving cells: (1) to (3).
  • the UE may control transmission/reception of DL/UL signals with non-serving cells based on this information. Note that the number of the non-serving cells may be one or plural.
  • the example given below applies a MAC CE that includes multiple fields indicating multiple non-serving cell indices.
  • Non-serving cell ID used for activation.
  • the non-serving cell ID may be replaced with any information corresponding to the non-serving cell (that can identify the non-serving cell).
  • any one of (3-1) to (3-5) may be applied.
  • (3-1) PCI PCI used directly). For example, 10 bits are used.
  • (3-3) CSI-ReportConfigId (if CSI-ReportConfig corresponds to one or more non-serving cells);
  • (3-4) CSI-ResourceConfigId if CSI-ResourceConfigId corresponds to one or more non-serving cells);
  • the bitmap size (number of bits) may be the same as the number of non-serving cells configured on this CC. For example, when activating the second non-serving cell among three non-serving cells, '010' is set.
  • the activation/deactivation of non-serving cells may be applied for L1 beam measurement/reporting or other purposes/functions (see fifth embodiment below). Either the same MAC CE or different MAC CEs may be designed for different purposes/functions. If the same (single) MAC CE is designed for multiple purposes, Option 1 or Option 2 below may be applied.
  • Option 1 MAC CE may be applied for different purposes by defining UE behavior corresponding to activated/deactivated non-serving cells.
  • Option 2 The purpose is indicated as a field in the MAC CE, and one MAC CE may contain fields indicating one or more purposes. Different non-serving cells/different RSs may be indicated for different purposes.
  • one or more non-serving cell RSs may be configured for L1 beam reporting.
  • the MAC CE may indicate activated/deactivated non-serving cells corresponding to all CSI-ReportConfigIds.
  • one or more non-serving cell IDs or any of information (3-1) to (3-5) may be indicated for the serving cell.
  • the number of non-serving cells activated may be a fixed value, or a variable number up to X may be configured for a single CSI reporting configuration. Since a MAC CE may include multiple serving cell IDs/non-serving cell IDs, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
  • FIGS. 2A and 2B are diagrams illustrating a first example of MAC CE of the first embodiment.
  • 2A and 2B assume that there are 7 non-serving cells.
  • FIGS. 2A and 2B each include fields (1) to (3) above.
  • Non-serving cell ID (3-bit) may indicate one non-serving cell activated for L1 beam reporting.
  • the number of bits of the non-serving cell ID may not be 3 bits, and may vary depending on the number of non-serving cells (maximum number).
  • the "P” field may indicate whether or not the next octet (entry) exists.
  • the 'P' field may indicate whether at least one of (1) to (3) is present in the MAC CE.
  • FIG. 2A corresponds to one CC.
  • FIG. 2B corresponds to multiple CCs and includes fields (1) to (3) and a “P” field for each CC.
  • FIGS. 3A and 3B are diagrams illustrating a second example of MAC CE of the first embodiment. 3A and 3B, unlike FIGS. 2A and 2B in that the non-serving cell ID (Non-serving cell ID (3-bit)) is replaced with 7 IDs (7-bit bitmap), other Points are similar.
  • the 7 IDs correspond to (3-5) above, and each of the 7 IDs corresponds to a non-serving cell.
  • the seven IDs are T 1 , T 2 . . . It may be expressed as T7 .
  • FIG. 3A corresponds to one CC.
  • FIG. 3B corresponds to multiple CCs and includes fields (1) to (3) and a “P” field for each CC.
  • the MAC CE appropriately indicates the activation/deactivation of non-serving cells.
  • the UE includes at least one of the fields (information) indicating the following (1) to (4) for activation/deactivation of non-serving cells for L1 beam measurement/reporting (CSI measurement/reporting): , may receive a new MAC CE. Based on this information, the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural. The example given below applies a MAC CE that includes multiple fields indicating multiple non-serving cell indices.
  • the CSI reporting configuration ID may correspond to the non-serving cell being activated/deactivated.
  • CSI-ReportConfigId CSI-ReportConfigId
  • the CSI reporting configuration ID may correspond to the non-serving cell being activated/deactivated.
  • Activated/deactivated non-serving cell IDs corresponding to CSI reporting configuration IDs.
  • the non-serving cell ID may be replaced with any information corresponding to the non-serving cell (that can identify the non-serving cell).
  • any one of (4-1) to (4-4) may be applied.
  • (4-1) PCI PCI directly used). For example, 10 bits are used.
  • (4-3) CSI-ResourceConfigId (if CSI-ResourceConfigId corresponds to one or more non-serving cells);
  • the bitmap size (number of bits) may be the same as the number of non-serving cells configured on this CC. For example, when activating the second non-serving cell among three non-serving cells, '010' is set.
  • one or more non-serving cell RSs may be configured for L1 beam reporting.
  • the MAC CE may indicate activated/deactivated non-serving cells corresponding to the CSI-ReportConfigId.
  • one or more CSI reporting configuration IDs or any of information (4-1) to (4-4) may be indicated to the serving cell.
  • the number of non-serving cells activated may be a fixed value, or a variable number up to X may be configured for a single CSI reporting configuration.
  • one or more "CSI-ReportConfigId" may be indicated to update non-serving cells corresponding to each CSI reporting configuration. Since a MAC CE may include multiple serving cell IDs/non-serving cell IDs, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
  • Non-serving cell ID may indicate one non-serving cell that is activated for L1 beam reporting.
  • the number of bits of the non-serving cell ID may vary depending on the number of non-serving cells (maximum number).
  • the "P” field may indicate whether or not the next octet (entry) exists.
  • the 'P' field may indicate whether at least one of (1) to (4) is present in the MAC CE.
  • FIG. 4A corresponds to one CC.
  • FIG. 4B corresponds to multiple CCs and includes fields (1) to (4) and a “P” field for each CC.
  • MAC CE is used to appropriately indicate activation/deactivation of non-serving cells for L1 beam measurement/reporting (CSI measurement/reporting).
  • UE is used for activation / deactivation of CSI report configuration (CSI-ReportConfig) for L1 beam measurement / report (CSI measurement / report) of non-serving cells, fields indicating the following (1) ⁇ (3)
  • CSI-ReportConfig CSI report configuration
  • L1 beam measurement / report CSI measurement / report
  • a new MAC CE may be received that includes at least one of (information). Based on this information, the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural.
  • 3-1) or (3-2) may be applied.
  • multiple "CSI reporting configuration IDs" may be indicated for the serving cell. Since a MAC CE can contain multiple serving cell IDs/non-serving cell IDs, one MAC CE can indicate the L1 beam reporting configuration (CSI reporting configuration) of non-serving cells in multiple CCs.
  • MAC CE is used to appropriately indicate activation/deactivation of CSI reporting configuration for L1 beam measurement/reporting (CSI measurement/reporting) of non-serving cells.
  • the UE indicates the activation/deactivation of the reference signal (RS) (SSB) used for L1 beam measurement/reporting (CSI measurement/reporting) and corresponding to each activated non-serving cell
  • RS reference signal
  • SSB reference signal
  • This field may be added to the MAC CE of any of the first to third embodiments.
  • the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural.
  • the MAC CE may include the SSB index as the RS of the non-serving cell (the RS corresponding to the non-serving cell).
  • the SSB index may be replaced by any index that corresponds to the SSB index (that can identify the SSB index).
  • MAC CE may include any of the following (1) to (3).
  • each bit corresponds to one SSB ID.
  • multiple non-serving cells may be indicated for a serving cell. Since a MAC CE may contain multiple serving cell IDs/non-serving cells, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
  • only the non-serving cell configuration of one CC out of multiple CCs may be updated.
  • the UE may apply the same non-serving cell ID (and SSB) update to other CCs in the same RRC-configured CC list.
  • a new Logical Channel ID (LCID) corresponding to the new MAC CE may be applied.
  • a MACCE may also contain a field that indicates whether there are one or more specific fields in the MACCE, or whether there are additional specific fields in the next octet (entry). The field in question is, for example, the "P" field of FIGS. 2A, 2B, 3A, 3B, 4A and 4B.
  • activation/deactivation of the RS (SSB) of the serving cell is appropriately indicated using MAC CE.
  • UE may control the transmission of channel state information reports (CSI reports) corresponding to specific indices configured.
  • CSI reports channel state information reports
  • a new ID (for example, a re-indexed index indicating a non-serving cell, a CMR group ID) may be applied as information indicating a serving cell/non-serving cell.
  • the new ID may be configured only for the (available) serving and non-serving cells used by the UE.
  • This new ID may depend on RS configuration signaling (CSI reporting configuration/CSI resource configuration).
  • This new ID may be, for example, '0' to indicate the serving cell, '1' to indicate non-serving cell #1, and '2' to indicate non-serving cell #2. That is, this new ID may indicate either the serving cell and one or more non-serving cells.
  • a recreated index indicating a non-serving cell may be associated with part of the PCI. By using the recreated index instead of PCI, the number of information bits is reduced, and RRC signaling overhead can be reduced.
  • a rebuilt index may be referred to as a rebuilt index.
  • the new ID may be the 1-bit indicator described above. For example, a '0' may indicate a serving cell and a '1' may indicate a non-serving cell. Also, “1" may indicate a serving cell and "0" may indicate a non-serving cell.
  • the parameter name of the new ID is not limited to "New ID", "Re-indexing index of cell", etc. Any name may be used.
  • a UE may report (transmit) UE capability information indicating whether it supports at least one of the processes in this disclosure. Also, the UE may receive information indicating at least one of the processes in the present disclosure through DCI/MAC CE/higher layer signaling or the like.
  • the UE supports MAC CE for activating/deactivating non-serving cells, whether it supports MAC CE in each embodiment (at least one field in MAC CE), or
  • the allowed number of activated non-serving cells (or SSBs per non-serving cell) may be sent as UE capability information.
  • MAC CE has a field to indicate the TCI status, but for example if there are 7 non-serving cells, the UE should be prepared to indicate 1 non-serving cell out of 7 by DCI. As a result, there is a problem that the number of DCI bits (TCI code points) increases. Therefore, another MACCE may be required to further activate (indicate/designate/restrict/limit/narrow) the active non-serving cells for beam indication in order to prepare the UE to be indicated. be.
  • FIG. 5 is a diagram showing an example of TCI codepoints for PDSCH specified in DCI.
  • 8 TCI states/TCI codepoints corresponding to the serving cell and 7 non-serving cells are provided. If the number of TCI codepoints can be reduced (for example, to 3), the number of DCI bits can be reduced and the UE processing can be simplified.
  • the UE receives a MAC CE (first MAC CE) containing information used to activate/deactivate non-serving cells, and activates at least one of the active non-serving cells indicated by the first MAC CE.
  • a second MACCE may also be received containing information for further activation (indicating/designating/restricting/limiting/narrowing).
  • the UE controls transmission and reception with non-serving cells indicated in the second MAC CE.
  • the first MAC CE and the second MAC CE may have the same configuration or may have different configurations. For the second MAC CE, for example, the same configuration as the MAC CE shown in the first to fourth embodiments may be applied.
  • the maximum number of configurable TCI states associated with non-serving cells may be limited by the value reported as UE capability information.
  • a TCI state associated with a non-serving cell means, for example, that an RS set to QCL type A/D in the TCI state is associated with a non-serving cell.
  • An RS associated with a non-serving cell may mean, for example, that the non-serving cell's RS (SSB) is configured as the QCL source, or that the non-serving cell's PCI is configured.
  • SSB non-serving cell's RS
  • a non-serving cell provided by RRC as a non-serving cell configuration eg, center frequency, SSB periodicity and location, SSB power, etc.
  • Non-serving cells configured by RRC with CSI reporting configuration for L1 beam measurement/reporting. Note that the non-serving cells in Case 2 are a subset of Case 1.
  • Non-serving cells eg, non-serving cells of the second/third embodiments
  • Non-serving cells in case 3 are a subset of case 2.
  • Non-serving cells in case 4 are a subset of case 1.
  • Case 6 CORESET TCI state set by RRC.
  • the source RS QCL source
  • TCI state is associated with a non-serving cell.
  • the scope of Case 6 may be similar to Case 4.
  • FIG. 6 is a diagram showing a first example of non-serving cell/TCI states that cases 1 to 5 include.
  • Case 4 in FIG. 6 corresponds to Option 1 of Case 4 above, and the range is the same as Case 2.
  • FIG. 7 is a diagram showing a second example of non-serving cell/TCI states that cases 1 to 5 include.
  • Case 4 in FIG. 7 corresponds to Option 3 of Case 4 above, and the range is the same as Case 3.
  • Cases 1, 2, 3, 4, 5, 6, 7 may cover fewer non-serving cells/TCI states in the order of cases 1, 2, 3, 4, 5, 6, 7; The order does not have to be 2, 3, 4, 5, 6, 7.
  • a MAC CE (third MAC CE) indicating a non-serving cell with L1 beam measurement/reporting (CSI reporting) activated, and at least one non-serving cell beam (TCI state) among the non-serving cells
  • the designated MAC CE (the fourth MAC CE) is another MAC CE.
  • the non-serving cells activated by the first MAC CE can be further limited by the second MAC CE, so the overhead due to MAC CE indications can be reduced.
  • the third MAC CE/fourth MAC CE may be the same as or different from the first MAC CE/second MAC CE.
  • At least one of the CSI reporting settings for L1 beam measurement/reporting configured by RRC may be indicated by MAC CE (Case 2, 3).
  • at least one of the TCI states configured by RRC eg, TCI states corresponding to active non-serving cells
  • MAC CE cases 6 and 7.
  • the UE is a MAC CE containing one or more purposes (indications) for active non-serving cells, the same (one) or different MAC CEs containing a common non-serving cell/RS indication or different non-serving cell/RS indications. may be received. For example, the following options are possible as indications/handlings for active non-serving cells.
  • the active non-serving cell may be the non-serving cell indicated in the first MAC CE or the second MAC CE described above.
  • the UE performs RSRP/SINR (beam) measurement/reporting (CSI reporting) of active non-serving cells.
  • the UE may perform L1 beam reporting or hybrid L1/L3 beam reporting for active non-serving cells.
  • the UE may be indicated by the RRC/MAC CE/DCI the TCI state associated with active non-serving cells.
  • TCI states associated with active non-serving cells may be activated by MAC CEs (eg, 3GPP Rel. 16 MAC CEs) for TCI states of up to eight PDSCHs. Case 5 non-serving cell is a subset of this option.
  • TCI states associated with active non-serving cells may be updated for CORESET by a MAC CE for TCI states for CORESET (eg, 3GPP Rel.16 MAC CE).
  • a MAC CE for TCI states for CORESET (eg, 3GPP Rel.16 MAC CE).
  • Non-serving cells in Case 7 may be a subset of this case.
  • TCI states associated with active non-serving cells may be indicated by the DCI for PDSCH TCI states.
  • inactive non-serving cell For example, the following options are possible as indications/handlings for inactive non-serving cells.
  • the UE may not perform RSRP/SINR (beam) measurements/reports (CSI measurement reports) for inactive non-serving cells.
  • FIG. 8 is a diagram showing examples of non-serving cell/TCI states that Cases 1 to 5 and Case X include. 8 is the same as FIG. 6 except for case X. FIG. As shown in FIG. 8, case X may be in the same range as case 5.
  • the UE processing can be simplified because only the TCI states associated with active non-serving cells are updated and the TCI states associated with inactive non-serving cells are not indicated.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells.
  • MAC CE Medium Access Control Control Element
  • the transmitting/receiving unit 120 may transmit the MAC CE including the channel state information (CSI) reporting configuration ID corresponding to the non-serving cell.
  • the transmitting/receiving unit 120 may transmit the MAC CE including information used for at least one of activation and deactivation of the CSI reporting configuration ID corresponding to the non-serving cell.
  • the transmitting/receiving unit 120 may transmit the MAC CE including information used for at least one of activation and deactivation of reference signals used for CSI reporting and corresponding to activated non-serving cells. .
  • the control unit 110 may control transmission and reception in the non-serving cell based on the information.
  • the transmitting/receiving unit 120 includes a first Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of a non-serving cell, and the active non-serving cell indicated in the first MAC CE.
  • MAC CE Medium Access Control Control Element
  • a second MAC CE containing information indicating at least one of the serving cells may be transmitted.
  • the control unit 110 may control transmission and reception in the non-serving cell based on the information.
  • the transmitting/receiving unit 120 provides a third MAC CE that indicates a non-serving cell for which channel state information (CSI) reporting is activated, and at least one non-serving cell among the non-serving cells indicated in the third MAC CE.
  • a fourth MAC CE may be sent indicating the TCI status.
  • the transmitting/receiving unit 120 may receive the CSI report of the active non-serving cell and not receive the CSI report of the inactive non-serving cell.
  • Controller 110 may indicate the transmission configuration indication (TCI) state associated with the active non-serving cell and not indicate the TCI state associated with the inactive non-serving cell.
  • TCI transmission configuration indication
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells.
  • MAC CE Medium Access Control Control Element
  • the transmitting/receiving unit 220 may receive the MAC CE including the channel state information (CSI) reporting configuration ID corresponding to the non-serving cell.
  • the transmitting/receiving unit 220 may receive the MAC CE including information used for at least one of activation and deactivation of the CSI reporting configuration ID corresponding to the non-serving cell.
  • the transmitting/receiving unit 220 may receive the MAC CE including information used for at least one of activation and deactivation of reference signals used for CSI reporting and corresponding to activated non-serving cells. .
  • the control unit 210 may control transmission/reception with the non-serving cell based on the information.
  • the transmitting/receiving unit 220 includes a first Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of a non-serving cell, and the active non-serving cell indicated in the first MAC CE.
  • a second MAC CE including information indicating at least one of the serving cells may be received.
  • the transmitting/receiving unit 220 provides a third MAC CE that indicates a non-serving cell for which channel state information (CSI) reporting is activated, and at least one non-serving cell out of the non-serving cells indicated in the third MAC CE.
  • a fourth MAC CE may be received indicating the TCI status.
  • the control unit 210 may control transmission/reception with the non-serving cell indicated in the second MAC CE.
  • the transmitting/receiving unit 220 may perform transmission/reception with the non-serving cell indicated in the second MAC CE.
  • the control unit 210 may perform CSI reporting for the active non-serving cells and may not perform CSI reporting for the inactive non-serving cells. Control unit 210 may assume that the transmission configuration indication (TCI) state associated with the active non-serving cell is indicated and the TCI state associated with the inactive non-serving cell is not indicated.
  • TCI transmission configuration indication
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure is characterized by comprising: a reception unit that receives a medium access control control element (MAC CE) including information which is used for at least one of activation of a non-serving cell and deactivation thereof; and a control unit that controls transmission and reception with the non-serving cell on the basis of the information. This aspect of the present disclosure makes it possible to appropriately perform the activation/deactivation of the non-serving cell.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システムにおいて、より効率的な(より低い遅延とオーバーヘッドを実現する)DL/ULビーム管理を容易にするレイヤ1/レイヤ2(layer1/layer2(L1/L2))セル間モビリティが検討されている。 Layer1/layer2 (L1/L2) inter-cell mobility to facilitate more efficient (lower delay and overhead) DL/UL beam management in future wireless communication systems It is
 L1/L2セル間モビリティでは、無線リソース制御(Radio Resource Control(RRC))再設定せずに、ビーム制御などの機能を用いてサービングセル変更が可能である。言い換えると、ハンドオーバーせずに、非サービングセルとの送受信が可能である。ハンドオーバーのためにはRRC再接続が必要になるなど、データ通信不可期間が生じるので、ハンドオーバー不要なL1/L2セル間モビリティが好ましい。 In L1/L2 inter-cell mobility, it is possible to change the serving cell using functions such as beam control without reconfiguring Radio Resource Control (RRC). In other words, it is possible to transmit to and receive from non-serving cells without handover. L1/L2 inter-cell mobility that does not require handover is preferable because there is a period during which data communication is not possible, such as the need for RRC reconnection for handover.
 しかしながら、非サービングセルを含むセル間モビリティ、及びマルチTRPシナリオの少なくとも一つが適用される場合において、非サービングセルのアクティブ化/非アクティブ化をどのように指示するかについて明確になっていない。非サービングセルのアクティブ化/非アクティブ化が適切に指示されなければ、スループットの低下又は通信品質が劣化するおそれがある。 However, it is not clear how to indicate the activation/deactivation of non-serving cells when at least one of inter-cell mobility including non-serving cells and multi-TRP scenarios is applied. If activation/deactivation of non-serving cells is not properly indicated, throughput may decrease or communication quality may deteriorate.
 そこで、本開示は、非サービングセルのアクティブ化/非アクティブ化を適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately activate/deactivate non-serving cells.
 本開示の一態様に係る端末は、非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を受信する受信部と、前記情報に基づいて、前記非サービングセルとの送受信を制御する制御部と、を有することを特徴とする。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives a Medium Access Control Control Element (MAC CE) including information used for at least one of activation and deactivation of non-serving cells, and based on the information, and a control unit that controls transmission and reception with a non-serving cell.
 本開示の一態様によれば、非サービングセルのアクティブ化/非アクティブ化を適切に行うことができる。 According to one aspect of the present disclosure, activation/deactivation of non-serving cells can be appropriately performed.
図1Aは、非サービングセルを含むセル間モビリティの一例を示している。図1Bは、マルチTRPシナリオの一例を示している。FIG. 1A shows an example of inter-cell mobility involving non-serving cells. FIG. 1B shows an example of a multi-TRP scenario. 図2A及び図2Bは、第1の実施形態のMAC CEの第1の例を示す図である。2A and 2B are diagrams showing a first example of MAC CE of the first embodiment. 図3A及び図3Bは、第1の実施形態のMAC CEの第2の例を示す図である。3A and 3B are diagrams showing a second example of the MAC CE of the first embodiment. 図4A及び図4Bは、第2の実施形態のMAC CEの例を示す図である。4A and 4B are diagrams showing examples of MAC CE of the second embodiment. 図5は、DCIにおいて指定される、PDSCHのためのTCIコードポイントの例を示す図である。FIG. 5 is a diagram showing examples of TCI codepoints for PDSCH specified in DCI. 図6は、ケース1~ケース5が含む非サービングセル/TCI状態の第1の例を示す図である。FIG. 6 is a diagram illustrating a first example of non-serving cell/TCI states that cases 1 to 5 include. 図7は、ケース1~ケース5が含む非サービングセル/TCI状態の第2の例を示す図である。FIG. 7 is a diagram illustrating a second example of non-serving cell/TCI states that Cases 1 to 5 include. 図8は、ケース1~ケース5、ケースXが含む非サービングセル/TCI状態の例を示す図である。FIG. 8 is a diagram showing examples of non-serving cell/TCI states including cases 1 to 5 and case X. In FIG. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図10は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
(CSI報告)
 NRにおいては、UEは、所定の参照信号(又は、当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(Channel State Information:CSI)を基地局にフィードバック(報告)する。
(CSI Report)
In NR, the UE measures the channel state using a predetermined reference signal (or resource for the reference signal) and feeds back (reports) channel state information (CSI) to the base station.
 UEは、チャネル状態情報参照信号(Channel State Information-Reference Signal:CSI-RS)、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、同期信号(Synchronization Signal:SS)、復調用参照信号(DeModulation Reference Signal:DMRS)などを用いて、チャネル状態を測定してもよい。 UE, channel state information reference signal (Channel State Information-Reference Signal: CSI-RS), synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel: SS / PBCH) block, synchronization signal (Synchronization Signal: SS), demodulation The channel state may be measured using a reference signal (DeModulation Reference Signal: DMRS) or the like.
 CSI-RSリソースは、ノンゼロパワー(Non Zero Power:NZP)CSI-RS及びCSI-Interference Management(IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal:PSS)、セカンダリ同期信号(Secondary Synchronization Signal:SSS))及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。ハーフフレーム内のSSBの時間位置に対してSSBインデックスが与えられてもよい。 The CSI-RS resource may include at least one of Non Zero Power (NZP) CSI-RS and CSI-Interference Management (IM). The SS/PBCH block is a block containing synchronization signals (e.g., Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)) and PBCH (and corresponding DMRS), and the SS block ( SSB) or the like. An SSB index may be given for the temporal position of the SSB within the half-frame.
 なお、CSIは、チャネル品質指標(Channel Quality Indicator:CQI)、プリコーディング行列指標(Precoding Matrix Indicator:PMI)、CSI-RSリソース指標(CSI-RS Resource Indicator:CRI)、SS/PBCHブロックリソース指標(SS/PBCH Block Indicator:SSBRI)、レイヤ指標(Layer Indicator:LI)、ランク指標(Rank Indicator:RI)、Layer 1(L1)-Reference Signal Received Power(RSRP)(レイヤ1における参照信号受信電力)、L1-Reference Signal Received Quality(RSRQ)、L1-Signal to Interference plus Noise Ratio(SINR)、L1-Signal to Noise Ratio(SNR)などの少なくとも1つを含んでもよい。 In addition, CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), SS/PBCH block resource indicator ( SS/PBCH Block Indicator: SSBRI), Layer Indicator: LI, Rank Indicator: RI, Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal received power in Layer 1), At least one of L1-Reference Signal Received Quality (RSRQ), L1-Signal to Interference plus Noise Ratio (SINR), L1-Signal to Noise Ratio (SNR), etc. may be included.
 CSIは、複数のパートを有してもよい。CSIの第1パート(CSIパート1)は、相対的にビット数の少ない情報(例えば、RI)を含んでもよい。CSIの第2パート(CSIパート2)は、CSIパート1に基づいて定まる情報などの、相対的にビット数の多い情報(例えば、CQI)を含んでもよい。 CSI may have multiple parts. A first part of CSI (CSI part 1) may contain information with a relatively small number of bits (eg, RI). A second part of CSI (CSI part 2) may include information with a relatively large number of bits (eg, CQI), such as information determined based on CSI part 1.
 CSIのフィードバック方法としては、(1)周期的なCSI(Periodic CSI:P-CSI)報告、(2)非周期的なCSI(Aperiodic CSI:A(AP)-CSI)報告、(3)半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI:SP-CSI)報告などが検討されている。 As CSI feedback methods, (1) periodic CSI (Periodic CSI: P-CSI) reporting, (2) aperiodic CSI (Aperiodic CSI: A (AP)-CSI) reporting, (3) semi-permanent Targeted (semi-persistent, semi-persistent) CSI reporting (Semi-Persistent CSI: SP-CSI) reports, etc. are being considered.
 UEは、CSI報告に関する情報(CSI報告設定情報とよばれてもよい)を、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information:DCI))又はこれらの組み合わせを用いて通知されてもよい。CSI報告設定情報は、例えば、RRC情報要素「CSI-ReportConfig」を用いて設定されてもよい。 The UE notifies information on CSI reporting (may be called CSI report configuration information) using higher layer signaling, physical layer signaling (for example, downlink control information (DCI)) or a combination thereof. may be The CSI report configuration information may be configured using, for example, the RRC information element "CSI-ReportConfig".
 ここで、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element:MAC CE)、MAC Protocol Data Unit(MAC PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block:MIB)、システム情報ブロック(System Information Block:SIB)、最低限のシステム情報(Remaining Minimum System Information:RMSI)、その他のシステム情報(Other System Information:OSI)などであってもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (MAC PDU), etc. may be used. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information : OSI).
 CSI報告設定情報は、例えば、報告周期、オフセットなどに関する情報を含んでもよく、これらは所定の時間単位(スロット単位、サブフレーム単位、シンボル単位など)で表現されてもよい。CSI報告設定情報は、設定ID(CSI-ReportConfigId)を含んでもよい。当該設定IDによってCSI報告方法の種類(SP-CSIか否か、など)、報告周期などのパラメータが特定されてもよい。CSI報告設定情報は、どの信号(又は、どの信号用のリソース)を用いて測定されたCSIを報告するかを示す情報(CSI-ResourceConfigId)を含んでもよい。 The CSI report configuration information may include, for example, information on the reporting period, offset, etc., and these may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.). The CSI report configuration information may include a configuration ID (CSI-ReportConfigId). Parameters such as the type of CSI reporting method (SP-CSI or not, etc.) and reporting cycle may be specified by the configuration ID. The CSI reporting configuration information may include information (CSI-ResourceConfigId) indicating which signal (or resource for which signal) is used to report the measured CSI.
(ビーム管理)
 これまでRel-15 NRにおいては、ビーム管理(Beam Management:BM)の方法が検討されてきた。当該ビーム管理においては、UEが報告したL1-RSRPをベースに、ビーム選択(beam selection)を行うことが検討されている。ある信号/チャネルのビームを変更する(切り替える)ことは、当該信号/チャネルの(Transmission Configuration Indication state)を変更することに相当してもよい。
(beam management)
So far, in Rel-15 NR, a method of beam management (BM) has been studied. In the beam management, it is considered to perform beam selection based on the L1-RSRP reported by the UE. Changing (switching) the beam of a signal/channel may correspond to changing the (Transmission Configuration Indication state) of that signal/channel.
 なお、ビーム選択によって選択されるビームは、送信ビーム(Txビーム)であってもよいし、受信ビーム(Rxビーム)であってもよい。また、ビーム選択によって選択されるビームは、UEのビームであってもよいし、基地局のビームであってもよい。 The beam selected by beam selection may be a transmission beam (Tx beam) or a reception beam (Rx beam). Also, the beam selected by beam selection may be a UE beam or a base station beam.
 UEは、ビーム管理のための測定結果を、PUCCH又はPUSCHを用いて報告(送信)してもよい。当該測定結果は、例えば、L1-RSRP、L1-RSRQ、L1-SINR、L1-SNRなどの少なくとも1つを含むCSIであってもよい。また、当該測定結果は、ビーム測定(beam measurement)、ビーム測定結果、ビーム報告、ビーム測定報告(beam measurement report)などと呼ばれてもよい。 The UE may report (transmit) measurement results for beam management using PUCCH or PUSCH. The measurement result may be, for example, CSI including at least one of L1-RSRP, L1-RSRQ, L1-SINR, L1-SNR, and the like. Also, the measurement result may be called a beam measurement, a beam measurement result, a beam report, a beam measurement report, or the like.
 ビーム報告のためのCSI測定は、干渉測定を含んでもよい。UEは、CSI測定用のリソースを用いてチャネル品質、干渉などを測定し、ビーム報告を導出してもよい。CSI測定用のリソースは、例えば、SS/PBCHブロックのリソース、CSI-RSのリソース、その他の参照信号リソースなどの少なくとも1つであってもよい。CSI測定報告の設定情報は、上位レイヤシグナリングを用いてUEに設定されてもよい。 CSI measurements for beam reporting may include interferometric measurements. The UE may use resources for CSI measurement to measure channel quality, interference, etc. and derive beam reports. The resource for CSI measurement may be, for example, at least one of SS/PBCH block resources, CSI-RS resources, other reference signal resources, and the like. The CSI measurement report configuration information may be configured in the UE using higher layer signaling.
 ビーム報告には、チャネル品質測定及び干渉測定の少なくとも一方の結果が含まれてもよい。チャネル品質測定の結果は、例えばL1-RSRPを含んでもよい。干渉測定の結果は、L1-SINR、L1-SNR、L1-RSRQ、その他の干渉に関する指標(例えば、L1-RSRPでない任意の指標)などを含んでもよい。 A beam report may include the result of at least one of channel quality measurement and interference measurement. The results of channel quality measurements may include, for example, L1-RSRP. The results of the interference measurements may include L1-SINR, L1-SNR, L1-RSRQ, other indicators of interference (eg, any indicator that is not L1-RSRP), and the like.
 なお、ビーム管理のためのCSI測定用のリソースは、ビーム測定用リソースと呼ばれてもよい。また、当該CSI測定対象の信号/チャネルは、ビーム測定用信号と呼ばれてもよい。また、CSI測定/報告は、ビーム管理のための測定/報告、ビーム測定/報告、無線リンク品質測定/報告などの少なくとも1つで読み替えられてもよい。 It should be noted that the CSI measurement resource for beam management may be called a beam measurement resource. In addition, the CSI measurement target signal/channel may be referred to as a beam measurement signal. Also, CSI measurement/report may be read as at least one of measurement/report for beam management, beam measurement/report, radio link quality measurement/report, and the like.
 現状のNRのビーム管理を考慮したCSI報告設定情報について、RRC情報要素「CSI-ReportConfig」に含まれている。RRC情報要素「CSI-ReportConfig」内の情報について説明する。  The CSI report configuration information that considers the current NR beam management is included in the RRC information element "CSI-ReportConfig". The information in the RRC information element "CSI-ReportConfig" will be explained.
 CSI報告設定情報(CSI-ReportConfig)は、報告するパラメータの情報である報告量情報(「報告量」、RRCパラメータ「reportQuantity」で表されてもよい)を含んでもよい。報告量情報は、「選択型(choice)」というASN.1オブジェクトの型で定義されている。このため、報告量情報として規定されるパラメータ(cri-RSRP、ssb-Index-RSRPなど)のうち1つが設定される。 The CSI report configuration information (CSI-ReportConfig) may include report amount information ("report amount", which may be represented by the RRC parameter "reportQuantity"), which is information on parameters to report. The reporting volume information is the ASN. 1 object type. Therefore, one of the parameters (cri-RSRP, ssb-Index-RSRP, etc.) defined as the report amount information is set.
 CSI報告設定情報に含まれる上位レイヤパラメータ(例えば、RRCパラメータ「groupBasedBeamReporting」)が有効(enabled)に設定されたUEは、各報告設定について、複数のビーム測定用リソースID(例えば、SSBRI、CRI)と、これらに対応する複数の測定結果(例えばL1-RSRP)と、をビーム報告に含めてもよい。 A UE in which a higher layer parameter (eg, RRC parameter "groupBasedBeamReporting") included in the CSI reporting configuration information is set to enabled has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
 CSI報告設定情報に含まれる上位レイヤパラメータ(例えば、RRCパラメータ「nrofReportedRS」)によって、1つ以上の報告対象RSリソース数を設定されたUEは、各報告設定について、1つ以上のビーム測定用リソースIDと、これらに対応する1つ以上の測定結果(例えばL1-RSRP)と、をビーム報告に含めてもよい。 A UE for which the number of RS resources to be reported is set to one or more by a higher layer parameter (for example, the RRC parameter "nrofReportedRS") included in the CSI report configuration information is one or more beam measurement resources for each report configuration. The IDs and their corresponding one or more measurements (eg, L1-RSRP) may be included in the beam report.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the reception processing (e.g., reception, demapping, demodulation, decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, encoding).
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI state may represent those that apply to downlink signals/channels. The equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like. The TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。  QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below:
QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread,
QCL type B (QCL-B): Doppler shift and Doppler spread,
QCL type C (QCL-C): Doppler shift and mean delay;
• QCL Type D (QCL-D): Spatial reception parameters.
 所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 The UE cannot assume that a given Control Resource Set (CORESET), channel or reference signal is in a specific QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal. , may be called the QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 A UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), etc. may be used. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 Physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (specified) are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 In addition, RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH). An SSB may also be called an SS/PBCH block.
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。 The TCI state information element ("TCI-state IE" of RRC) set by higher layer signaling may contain one or more pieces of QCL information ("QCL-Info"). The QCL information may include at least one of information (RS related information) regarding RSs that are QCL related and information indicating the QCL type (QCL type information). The RS related information includes the index of the RS (eg, SSB index, Non-Zero-Power (NZP) CSI-RS resource ID (Identifier)), the index of the cell in which the RS is located, and the location of the RS. It may contain information such as the Bandwidth Part (BWP) index.
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。  Rel. In 15 NR, both QCL type A RS and QCL type D RS or only QCL type A RS can be configured for the UE as at least one TCI state of PDCCH and PDSCH.
 QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。 When a TRS is set as a QCL type A RS, the TRS is different from the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)), and it is assumed that the same TRS will be transmitted periodically over a long period of time. be done. The UE can measure the TRS and calculate the average delay, delay spread, etc.
 PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。 A UE configured with the TRS as a QCL type A RS in a PDCCH or PDSCH DMRS TCI state has the same QCL type A parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH DMRS and the TRS. Therefore, the DMRS type A parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH can be obtained from the TRS measurement results. When estimating at least one of the PDCCH and PDSCH, the UE can use the TRS measurement result to perform more accurate channel estimation.
 QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。 A UE configured with a QCL type D RS can use the QCL type D RS to determine the UE receive beam (spatial domain receive filter, UE spatial domain receive filter).
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 A QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state. may
(セル間モビリティ)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
(inter-cell mobility)
In NR, one or more Transmission/Reception Points (TRP) (Multi-TRP (MTRP)) are considered to perform DL transmission to the UE. It is also being considered for UEs to perform UL transmissions on one or more TRPs.
 そして、将来の無線通信システムにおいて、より効率的な(より低い遅延とオーバーヘッドを実現する)DL/ULビーム管理を容易にするようなセル間モビリティ(L1/L2セル間モビリティ)が検討されている。 Inter-cell mobility (L1/L2 inter-cell mobility) that facilitates more efficient (lower delay and overhead) DL/UL beam management in future wireless communication systems is being considered. .
 L1/L2セル間モビリティでは、RRC再設定せずに、ビーム制御などの機能を用いてサービングセル変更が可能である。言い換えると、ハンドオーバーせずに、非サービングセルとの送受信が可能である。ハンドオーバーのためにはRRC再接続が必要になるなど、データ通信不可期間が生じるので、ハンドオーバー不要なL1/L2セル間モビリティが好ましい。 In L1/L2 inter-cell mobility, it is possible to change the serving cell using functions such as beam control without RRC reconfiguration. In other words, it is possible to transmit to and receive from non-serving cells without handover. L1/L2 inter-cell mobility that does not require handover is preferable because there is a period during which data communication is not possible, such as the need for RRC reconnection for handover.
 UEは、セル間モビリティ(例えば、L1/L2 inter cell mobility)において、複数のセル/TRPからのチャネル/信号を受信することが考えられる(図1A、B参照)。 A UE may receive channels/signals from multiple cells/TRPs in inter-cell mobility (eg, L1/L2 inter-cell mobility) (see FIGS. 1A and 1B).
 図1Aは、非サービングセルを含むセル間モビリティ(例えば、シングルTRPのセル間モビリティ)の一例を示している。シングルTRPは、マルチTRPのうち1つのTRPのみがUEに対して送信を行うケース(シングルモードと呼ばれてもよい)を意味してもよい。CORESETプールインデックスがシングルTRPを示していてもよい。ここでは、UEは、サービングセルとなるセル#1の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cell)となるセル#3の基地局/TRPとからチャネル/信号を受信する場合を示している。例えば、UEがセル#1からセル#3にスイッチ/切り替えする場合(例えば、fast cell switch)に相当する。 FIG. 1A shows an example of inter-cell mobility (eg, single TRP inter-cell mobility) including non-serving cells. Single TRP may refer to the case where only one TRP out of multiple TRPs transmits to the UE (which may be referred to as single mode). A CORESET pool index may point to a single TRP. Here, the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). showing. For example, this corresponds to the case where the UE switches/switches from cell #1 to cell #3 (eg, fast cell switch).
 この場合、DCI/MAC CEによりTCI状態のアップデートが行われ、ポート(例えば、アンテナポート)/TRP/ポイントの選択がダイナミックに行われてもよい。セル#1とセル#3に対して、異なる物理セルID(例えば、PCI)が設定される。 In this case, the DCI/MAC CE may update the TCI state and dynamically select the port (eg, antenna port)/TRP/point. Different physical cell IDs (eg, PCI) are set for cell #1 and cell #3.
 図1Bは、マルチTRPシナリオ(例えば、マルチTRPを利用する場合のセル間モビリティ(Multi-TRP inter-cell mobility))の一例を示している。ここでは、UEは、TRP#1とTRP2からチャネル/信号を受信する場合を示している。ここでは、TRP#1がセル#1(PCI#1)、TRP#2がセル#2(PCI#2)に存在する場合を示している。 FIG. 1B shows an example of a multi-TRP scenario (for example, multi-TRP inter-cell mobility when using multi-TRP). Here, the UE is shown receiving channels/signals from TRP#1 and TRP2. Here, a case is shown where TRP#1 exists in cell #1 (PCI#1) and TRP#2 exists in cell #2 (PCI#2).
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、図1Bに示すように、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。ここでは、複数のセル(例えば、異なるPCIのセル)間でNCJTが行われる場合を示している。なお、TRP#1とTRP#2に対して、同じサービングセル設定が適用/設定されてもよい。 Multi-TRPs (TRP #1, #2) may be connected by ideal/non-ideal backhauls to exchange information, data, and the like. Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP. As one form of multi-TRP transmission, non-coherent joint transmission (NCJT) may be used as shown in FIG. 1B. Here, a case is shown where NCJT is performed between a plurality of cells (for example, cells of different PCIs). Note that the same serving cell configuration may be applied/configured to TRP#1 and TRP#2.
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1の信号/チャネル(例えば、PDSCH)を送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2の信号/チャネル(例えば、PDSCH)を送信する。 In NCJT, for example, TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) to a first signal/channel using a first precoding. (eg, PDSCH). TRP#2 also modulation-maps a second codeword and layer-maps a second number of layers (e.g., two layers) to a second signal/channel (e.g., PDSCH).
 NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、TRP#1からの第1のPDSCHと、TRP#2からの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。 Multiple PDSCHs to be NCJTed (multi-PDSCH) may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap at least one of time and frequency resources.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 It may be assumed that these first PDSCH and second PDSCH are not quasi-co-located (QCL). Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。 Multiple PDSCHs from multiple TRPs (which may be referred to as multiple PDSCHs) may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode ). One DCI may be transmitted from one TRP of a multi-TRP. A configuration that utilizes one DCI in multi-TRP may be referred to as single DCI-based multi-TRP (mTRP/MTRP).
 マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)が適用されてもよい。 A case (which may be called a master-slave mode) in which each multi-TRP transmits part of the control signal to the UE and the multi-TRP transmits the data signal may be applied.
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。 Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) respectively (multimaster mode). Multiple DCIs may be transmitted from multiple TRPs respectively. A configuration that utilizes multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示に置いて、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。 It may be assumed that the UE transmits separate CSI reports (CSI reports) for each TRP for different TRPs. Such CSI feedback may be referred to as separate feedback, separate CSI feedback, and so on. In the present disclosure, "separate" may be read interchangeably with "independent."
 マルチTRPを用いるセル間モビリティに対して、Rel.15/16のTCI状態の仕組みを用いることが検討され、シングルTRPを用いるセル間モビリティに対して新規の仕組みを用いることが検討されている。Rel.15/16のTCI状態の仕組みでは、PDSCH/PDCCH(PDSCH/PDCCHのDMRS)のTCI状態としてCSI-RSを設定する(PDSCH/PDCCHのTCI状態がCSI-RSを参照する)ことができる。また、CSI-RSのTCI状態としてSSBを設定することはできる。ただし、PDSCH/PDCCHのTCI状態として直接SSBを設定することができなかった。統一TCI状態を用いたRel.17の新規の仕組み(シングルTRPのセル間モビリティ)では、PDSCH/PDCCHのTCI状態としてSSBを(直接)設定することが検討されている。  The use of the TCI state mechanism of Rel. 15/16 is under consideration for inter-cell mobility using multiple TRPs, and the use of a new mechanism for inter-cell mobility using single TRP is under consideration. In the Rel. 15/16 TCI state mechanism, CSI-RS can be set as the TCI state of PDSCH/PDCCH (PDSCH/PDCCH DMRS) (PDSCH/PDCCH TCI state refers to CSI-RS). . Also, SSB can be set as the TCI state of the CSI-RS. However, it was not possible to directly set SSB as the TCI state of PDSCH/PDCCH. In the new mechanism of Rel. 17 using unified TCI state (single TRP inter-cell mobility), setting SSB (directly) as the TCI state for PDSCH/PDCCH is being considered.
 なお、PDSCH/DCCHのTCI状態としてXを設定する、PDSCH/PDCCHのTCI状態がXを参照する、PDSCH/PDCCHのQCLソースがXである、は互いに読み替えられてもよい。 It should be noted that setting X as the TCI state of PDSCH/DCCH, referring to X as the TCI state of PDSCH/PDCCH, and having X as the QCL source of PDSCH/PDCCH may be read interchangeably.
 基地局(例えばgNB)の観点からは、多数の(たとえば、64)非サービングセルを設定できるようにすることが好ましい。これにより、UEは、多数の非サービングセルに関するビームレポートを報告できる。基地局は、多数の非サービングセルのうちの1つに関連付けられたTCI状態を示すことができる。 From the base station's (eg, gNB's) perspective, it is preferable to be able to configure a large number (eg, 64) of non-serving cells. This allows the UE to report beam reports for multiple non-serving cells. A base station can indicate a TCI state associated with one of a number of non-serving cells.
 しかしながら、UEの観点からは、UEが測定/準備する非サービングセルの数、TCI状態指示としてDCIによって示される非サービングセルの数を制限することが好ましい。ただし、RRCが例えば1つの非サービングセルを設定する場合、UEが測定する非サービングセルインデックスを更新するために、RRCの再設定が必要となる。 However, from the UE's point of view, it is preferable to limit the number of non-serving cells that the UE measures/prepares and the number of non-serving cells indicated by the DCI as a TCI status indication. However, if RRC configures eg one non-serving cell, a reconfiguration of RRC is required to update the non-serving cell index measured by the UE.
 RRCが多くの非サービングセルを設定しているが、MAC CEが限定された(1部の)非サービングセルをアクティブ化する場合(例えば、図1のPCI#1又は#3をアクティブな非サービングセル/PCIとする場合)、限定しない場合と比べて、UEの処理の複雑さは大幅に軽減される。 If RRC has configured many non-serving cells, but MAC CE activates limited (partial) non-serving cells (for example, PCI #1 or #3 in FIG. 1 as active non-serving cells/PCI ), the UE processing complexity is significantly reduced compared to the unrestricted case.
 なお、予め、非サービングセルインデックス/PCIのリスト/セットはRRCで設定されていて、その中から後述する新しいMAC CEにおいてアクティブな非サービングセルインデックス/PCIを選択するとしてもよい。 It should be noted that a list/set of non-serving cell indexes/PCIs may be set in advance by RRC, and an active non-serving cell index/PCI may be selected in the new MAC CE to be described later.
 しかしながら、非サービングセルのアクティブ化/非アクティブ化にMAC CEを用いる場合に、MAC CEをどのような構成とするかが明確になっていない。これらが明確にならなければ、非サービングセルのアクティブ化が適切に行われず、スループットの低下又は通信品質が劣化するおそれがある。 However, when MAC CE is used for activation/deactivation of non-serving cells, it is not clear what kind of configuration the MAC CE should have. If these are not clarified, activation of non-serving cells may not be properly performed, and throughput may decrease or communication quality may deteriorate.
 そこで、本発明者らは、非サービングセルのアクティブ化を適切に行うことができる端末を着想した。 Therefore, the inventors conceived of a terminal that can appropriately activate non-serving cells.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 本開示において、CSI報告、ビーム報告、L1ビーム報告は、互いに読み替えられてもよい。報告、測定は互いに読み替えられてもよい。 In the present disclosure, CSI reporting, beam reporting, and L1 beam reporting may be read interchangeably. Report and measurement may be read interchangeably.
 本開示において、パネル、Uplink(UL)送信エンティティ、ポイント、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、CORESETサブセット、CW、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRPインデックス、TRP ID、CORESETプールインデックス、2つのTCI状態におけるTCI状態の序数(第1、第2)、TRP、は、互いに読み替えられてもよい。 In this disclosure, the panel, Uplink (UL) transmitting entity, point, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, codeword, base station, antenna port of a signal (e.g., for demodulation Reference signal (DeModulation Reference Signal (DMRS) port), antenna port group for a certain signal (e.g. DMRS port group), group for multiplexing (e.g. Code Division Multiplexing (CDM)) group, reference signal group, CORESET group), CORESET pool, CORESET subset, CW, redundancy version (RV), layer (MIMO layer, transmission layer, spatial layer) may be read interchangeably. Also, panel identifier (ID) and panel may be read interchangeably. In the present disclosure, TRP index, TRP ID, CORESET pool index, TCI state ordinal numbers (first, second) in two TCI states, and TRP may be read interchangeably.
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、DL TCI状態、UL TCI状態、ジョイントTCI状態、統一(unified)TCI状態、統一ビーム、統一TCI状態のジョイントTCI状態、統一TCI状態のDL/UL TCI状態、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。 In the present disclosure, beams, spatial domain filters, spatial settings, TCI states, DL TCI states, UL TCI states, joint TCI states, unified TCI states, unified beams, joint TCI states of unified TCI states, unified TCI states DL/UL TCI state, common TCI state, common beam, TCI assumption, QCL assumption, QCL parameters, spatial domain receive filter, UE spatial domain receive filter, UE receive beam, DL beam, DL receive beam, DL precoding , DL precoder, DL-RS, TCI state/QCL assumed QCL type D RS, TCI state/QCL assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be interchanged. In this disclosure, QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS, may be read interchangeably. good.
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。 In the present disclosure, single TRP, channels with single TRP, channels with one TCI state/spatial relationship, multi-TRP not enabled by RRC/DCI, multiple TCI states/spatial relations enabled by RRC/DCI shall not be set, neither CORESET Pool Index (CORESETPoolIndex) value of 1 shall be set for any CORESET, and neither codepoint of the TCI field shall be mapped to two TCI states. .
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。 In this disclosure, multi-TRP, channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs may be read interchangeably.
 本開示において、セル、CC、キャリア、BWP、バンド、は互いに読み替えられてもよい。 In the present disclosure, cells, CCs, carriers, BWPs, and bands may be read interchangeably.
 本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。 In the present disclosure, indexes, IDs, indicators, and resource IDs may be read interchangeably.
 本開示において、「A/B」は、「A及びBの少なくとも一方」で読み替えられてもよい。 In the present disclosure, "A/B" may be read as "at least one of A and B".
 本開示において、RS、ビーム、測定結果、RSの設定は互いに読み替えられてもよい。RSは、CSI報告におけるCRI及びSSBRIの少なくとも一方を意味してもよい。L1-RSRP、L1-SINRは互いに読み替えられてもよい。SSB、SSBインデックス、SSBRIは互いに読み替えられてもよい。 In the present disclosure, RS, beams, measurement results, and RS settings may be read interchangeably. RS may refer to at least one of CRI and SSBRI in CSI reporting. L1-RSRP and L1-SINR may be read interchangeably. SSB, SSB index, and SSBRI may be read interchangeably.
 本開示において、非サービングセル、候補サービングセル、現在のサービングセルとは異なるPCIを持つセル、異なるPCIを持つ別のサービングセルは、互いに言い換えられてもよい。 In the present disclosure, a non-serving cell, a candidate serving cell, a cell with a different PCI than the current serving cell, and another serving cell with a different PCI may be interchanged.
(無線通信方法)
<第1の実施形態>
 UEは、非サービングセルのアクティブ化/非アクティブ化に用いる、次の(1)~(3)を示すフィールド(情報)の少なくとも1つを含む、新しいMAC CEを受信してもよい。UEは、当該情報に基づいて、非サービングセルとのDL信号/UL信号の送受信を制御してもよい。なお、当該非サービングセルは1つでもよいし複数でもよい。以下に示す例では、複数の非サービングセルインデックスを示す複数のフィールドを含むMAC CEを適用する。
(Wireless communication method)
<First Embodiment>
The UE may receive a new MAC CE that includes at least one of the following fields (information) for activating/deactivating non-serving cells: (1) to (3). The UE may control transmission/reception of DL/UL signals with non-serving cells based on this information. Note that the number of the non-serving cells may be one or plural. The example given below applies a MAC CE that includes multiple fields indicating multiple non-serving cell indices.
(1)サービングセルID。
(2)BWP ID。
(3)アクティベーションに用いる非サービングセルID。非サービングセルIDは、非サービングセルに対応する(非サービングセルを識別可能な)任意の情報に置き換えられてもよい。
(1) Serving Cell ID.
(2) BWP ID.
(3) Non-serving cell ID used for activation. The non-serving cell ID may be replaced with any information corresponding to the non-serving cell (that can identify the non-serving cell).
 (3)の例として、例えば(3-1)~(3-5)のいずれかが適用されてもよい。
(3-1)PCI(直接用いられるPCI)。例えば、10ビットが使用される。
(3-2)非サービングセルの再作成インデックス。例えば、後述の<非サービングセルに対応する新しいID>が適用される。
(3-3)CSI-ReportConfigId(CSI-ReportConfigが1つ又は複数の非サービングセルに対応する場合)。
(3-4)CSI-ResourceConfigId(CSI-ResourceConfigIdが1つ又は複数の非サービングセルに対応する場合)。
(3-5)各非サービングセルのアクティブ化/非アクティブ化を示すビットマップ。ビットマップのサイズ(ビット数)は、このCC上で設定された非サービングセルの数と同じであってもよい。例えば、3つの非サービングセルのうち、2番目の非サービングセルをアクティブ化する場合、「010」が設定される。
As an example of (3), for example, any one of (3-1) to (3-5) may be applied.
(3-1) PCI (PCI used directly). For example, 10 bits are used.
(3-2) Rebuild index of non-serving cell. For example, <new ID corresponding to non-serving cell>, which will be described later, is applied.
(3-3) CSI-ReportConfigId (if CSI-ReportConfig corresponds to one or more non-serving cells);
(3-4) CSI-ResourceConfigId (if CSI-ResourceConfigId corresponds to one or more non-serving cells);
(3-5) Bitmap indicating activation/deactivation of each non-serving cell. The bitmap size (number of bits) may be the same as the number of non-serving cells configured on this CC. For example, when activating the second non-serving cell among three non-serving cells, '010' is set.
 非サービングセルのアクティブ化/非アクティブ化は、L1ビーム測定/報告又はその他の目的/機能に適用される場合がある(後述する第5の実施形態参照)。異なる目的/機能のために、同じMAC CE又は異なるMAC CEのいずれかが設計されてもよい。複数の目的のための同じ(1つの)MAC CEが設計される場合、以下のオプション1又はオプション2が適用されてもよい。 The activation/deactivation of non-serving cells may be applied for L1 beam measurement/reporting or other purposes/functions (see fifth embodiment below). Either the same MAC CE or different MAC CEs may be designed for different purposes/functions. If the same (single) MAC CE is designed for multiple purposes, Option 1 or Option 2 below may be applied.
オプション1:MAC CEは、アクティブ化/非アクティブ化された非サービングセルに対応するUEの動作を定義することにより、さまざまな目的に適用されてもよい。
オプション2:目的はMAC CEのフィールドとして指示され、1つ又は複数の目的を指示するフィールドが1つのMAC CEに含まれてもよい。異なる目的のために、異なる非サービングセル/異なるRSが示されてもよい。
Option 1: MAC CE may be applied for different purposes by defining UE behavior corresponding to activated/deactivated non-serving cells.
Option 2: The purpose is indicated as a field in the MAC CE, and one MAC CE may contain fields indicating one or more purposes. Different non-serving cells/different RSs may be indicated for different purposes.
 RRCによる各CSI報告設定では、1つ又は複数の非サービングセルのRS(例えばSSB)がL1ビーム報告用に設定されてもよい。この場合、MAC CEは、全てのCSI-ReportConfigIdに対応するアクティブ化/非アクティブ化された非サービングセルを示してもよい。 For each CSI reporting configuration by RRC, one or more non-serving cell RSs (eg, SSBs) may be configured for L1 beam reporting. In this case, the MAC CE may indicate activated/deactivated non-serving cells corresponding to all CSI-ReportConfigIds.
 MAC CEでは、サービングセルに対して、1つ又は複数の非サービングセルID又は(3-1)~(3-5)のいずれかの情報が指示される場合がある。アクティブ化される非サービングセルの数は、固定値であってもよいし、単一のCSI報告設定に対して、最大Xの変動する数が設定されてもよい。MAC CEには、複数のサービングセルID/非サービングセルIDが含まれる場合もあるため、複数のCCにおける非サービングセルのL1ビーム報告設定を1つのMAC CEで示すこともできる。 In MAC CE, one or more non-serving cell IDs or any of information (3-1) to (3-5) may be indicated for the serving cell. The number of non-serving cells activated may be a fixed value, or a variable number up to X may be configured for a single CSI reporting configuration. Since a MAC CE may include multiple serving cell IDs/non-serving cell IDs, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
[具体例]
 図2A及び図2Bは、第1の実施形態のMAC CEの第1の例を示す図である。図2A及び図2Bでは、7つの非サービングセルが存在することを想定している。図2A及び図2Bは、それぞれ、上記(1)~(3)のフィールドを含んでいる。非サービングセルID(Non-serving cell ID (3-bit))は、L1ビーム報告のためにアクティベートされる一つの非サービングセルを示してもよい。非サービングセルIDのビット数は3ビットでなくてもよく、非サービングセルの数(最大数)に応じて異なってもよい。
[Concrete example]
2A and 2B are diagrams illustrating a first example of MAC CE of the first embodiment. 2A and 2B assume that there are 7 non-serving cells. FIGS. 2A and 2B each include fields (1) to (3) above. Non-serving cell ID (3-bit) may indicate one non-serving cell activated for L1 beam reporting. The number of bits of the non-serving cell ID may not be 3 bits, and may vary depending on the number of non-serving cells (maximum number).
 「P」フィールドは、次のオクテット(エントリ)が存在するか否かを示してもよい。「P」フィールドは、(1)~(3)の少なくとも1つがMAC CEに存在するかを示してもよい。図2Aは、1つのCCに対応する。図2Bは、複数のCCに対応し、CC毎に(1)~(3)のフィールド及び「P」フィールドが含まれる。 The "P" field may indicate whether or not the next octet (entry) exists. The 'P' field may indicate whether at least one of (1) to (3) is present in the MAC CE. FIG. 2A corresponds to one CC. FIG. 2B corresponds to multiple CCs and includes fields (1) to (3) and a “P” field for each CC.
 図3A及び図3Bは、第1の実施形態のMAC CEの第2の例を示す図である。図3A及び図3Bでは、非サービングセルID(Non-serving cell ID (3-bit))が7つのID(7ビットのビットマップ)に置き換えられている点で図2A及び図2Bと異なり、他の点は同様である。7つのIDは、上記(3-5)に対応し、7つのIDのそれぞれが非サービングセルに対応する。7つのIDは、T、T...Tのように表現されてもよい。図3Aは、1つのCCに対応する。図3Bは、複数のCCに対応し、CC毎に(1)~(3)のフィールド及び「P」フィールドが含まれる。 3A and 3B are diagrams illustrating a second example of MAC CE of the first embodiment. 3A and 3B, unlike FIGS. 2A and 2B in that the non-serving cell ID (Non-serving cell ID (3-bit)) is replaced with 7 IDs (7-bit bitmap), other Points are similar. The 7 IDs correspond to (3-5) above, and each of the 7 IDs corresponds to a non-serving cell. The seven IDs are T 1 , T 2 . . . It may be expressed as T7 . FIG. 3A corresponds to one CC. FIG. 3B corresponds to multiple CCs and includes fields (1) to (3) and a “P” field for each CC.
 本実施形態によれば、MAC CEにより、非サービングセルのアクティブ化/非アクティブ化が適切に指示される。 According to this embodiment, the MAC CE appropriately indicates the activation/deactivation of non-serving cells.
<第2の実施形態>
 UEは、L1ビーム測定/報告(CSI測定/報告)のための非サービングセルのアクティブ化/非アクティブ化に用いる、次の(1)~(4)を示すフィールド(情報)の少なくとも1つを含む、新しいMAC CEを受信してもよい。UEは、当該情報に基づいて、非サービングセルとのDL信号/UL信号の送受信、非サービングセルのL1ビーム測定/報告を制御してもよい。なお、当該非サービングセルは1つでもよいし複数でもよい。以下に示す例では、複数の非サービングセルインデックスを示す複数のフィールドを含むMAC CEを適用する。
<Second embodiment>
The UE includes at least one of the fields (information) indicating the following (1) to (4) for activation/deactivation of non-serving cells for L1 beam measurement/reporting (CSI measurement/reporting): , may receive a new MAC CE. Based on this information, the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural. The example given below applies a MAC CE that includes multiple fields indicating multiple non-serving cell indices.
(1)サービングセルID。
(2)BWP ID。
(3)CSI報告設定ID(CSI-ReportConfigId)。当該CSI報告設定IDは、アクティブ化/非アクティブ化される非サービングセルに対応していてもよい。
(4)CSI報告設定IDに対応する、アクティブ化/非アクティブ化される非サービングセルID。非サービングセルIDは、非サービングセルに対応する(非サービングセルを識別可能な)任意の情報に置き換えられてもよい。
(1) Serving Cell ID.
(2) BWP ID.
(3) CSI-ReportConfigId (CSI-ReportConfigId). The CSI reporting configuration ID may correspond to the non-serving cell being activated/deactivated.
(4) Activated/deactivated non-serving cell IDs corresponding to CSI reporting configuration IDs. The non-serving cell ID may be replaced with any information corresponding to the non-serving cell (that can identify the non-serving cell).
 (4)の例として、例えば(4-1)~(4-4)のいずれかが適用されてもよい。
(4-1)PCI(直接用いられるPCI)。例えば、10ビットが使用される。
(4-2)非サービングセルの再作成インデックス。例えば、後述の<非サービングセルに対応する新しいID>が適用される。
(4-3)CSI-ResourceConfigId(CSI-ResourceConfigIdが1つ又は複数の非サービングセルに対応する場合)。
(4-4)各非サービングセルのアクティブ化/非アクティブ化を示すビットマップ。ビットマップのサイズ(ビット数)は、このCC上で設定された非サービングセルの数と同じであってもよい。例えば、3つの非サービングセルのうち、2番目の非サービングセルをアクティブ化する場合、「010」が設定される。
As an example of (4), for example, any one of (4-1) to (4-4) may be applied.
(4-1) PCI (PCI directly used). For example, 10 bits are used.
(4-2) Rebuild index of non-serving cell. For example, <new ID corresponding to non-serving cell>, which will be described later, is applied.
(4-3) CSI-ResourceConfigId (if CSI-ResourceConfigId corresponds to one or more non-serving cells);
(4-4) Bitmap indicating activation/deactivation of each non-serving cell. The bitmap size (number of bits) may be the same as the number of non-serving cells configured on this CC. For example, when activating the second non-serving cell among three non-serving cells, '010' is set.
 RRCによる各CSI報告設定では、1つ又は複数の非サービングセルのRS(例えばSSB)がL1ビーム報告用に設定されてもよい。この場合、MAC CEは、CSI-ReportConfigIdに対応するアクティブ化/非アクティブ化された非サービングセルを示してもよい。 For each CSI reporting configuration by RRC, one or more non-serving cell RSs (eg, SSBs) may be configured for L1 beam reporting. In this case, the MAC CE may indicate activated/deactivated non-serving cells corresponding to the CSI-ReportConfigId.
 MAC CEでは、サービングセルに対して、1つ又は複数のCSI報告設定ID又は(4-1)~(4-4)のいずれかの情報が指示される場合がある。アクティブ化される非サービングセルの数は、固定値であってもよいし、単一のCSI報告設定に対して、最大Xの変動する数が設定されてもよい。サービングセルに対して、各CSI報告設定に対応する非サービングセルを更新するために、1つ又は複数の「CSI-ReportConfigId」が示される場合がある。MAC CEには、複数のサービングセルID/非サービングセルIDが含まれる場合もあるため、複数のCCにおける非サービングセルのL1ビーム報告設定を1つのMAC CEで示すこともできる。 In MAC CE, one or more CSI reporting configuration IDs or any of information (4-1) to (4-4) may be indicated to the serving cell. The number of non-serving cells activated may be a fixed value, or a variable number up to X may be configured for a single CSI reporting configuration. For the serving cell, one or more "CSI-ReportConfigId" may be indicated to update non-serving cells corresponding to each CSI reporting configuration. Since a MAC CE may include multiple serving cell IDs/non-serving cell IDs, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
[具体例]
 図4A及び図4Bは、第2の実施形態のMAC CEの例を示す図である。図4A及び図4Bでは、3つの非サービングセルが存在することを想定している。図4A及び図4Bは、それぞれ、上記(1)~(4)のフィールドを含んでいる。非サービングセルID(Non-serving cell ID)は、L1ビーム報告のためにアクティベートされる一つの非サービングセルを示してもよい。非サービングセルIDのビット数は、非サービングセルの数(最大数)に応じて異なってもよい。
[Concrete example]
4A and 4B are diagrams illustrating examples of MAC CEs according to the second embodiment. 4A and 4B assume that there are three non-serving cells. FIGS. 4A and 4B each include fields (1) to (4) above. Non-serving cell ID may indicate one non-serving cell that is activated for L1 beam reporting. The number of bits of the non-serving cell ID may vary depending on the number of non-serving cells (maximum number).
 「P」フィールドは、次のオクテット(エントリ)が存在するか否かを示してもよい。「P」フィールドは、(1)~(4)の少なくとも1つがMAC CEに存在するかを示してもよい。図4Aは、1つのCCに対応する。図4Bは、複数のCCに対応し、CC毎に(1)~(4)のフィールド及び「P」フィールドが含まれる。 The "P" field may indicate whether or not the next octet (entry) exists. The 'P' field may indicate whether at least one of (1) to (4) is present in the MAC CE. FIG. 4A corresponds to one CC. FIG. 4B corresponds to multiple CCs and includes fields (1) to (4) and a “P” field for each CC.
 本実施形態によれば、MAC CEを用いて、L1ビーム測定/報告(CSI測定/報告)のための非サービングセルのアクティブ化/非アクティブ化が適切に指示される。 According to this embodiment, MAC CE is used to appropriately indicate activation/deactivation of non-serving cells for L1 beam measurement/reporting (CSI measurement/reporting).
<第3の実施形態>
 UEは、非サービングセルのL1ビーム測定/報告(CSI測定/報告)のためのCSI報告設定(CSI-ReportConfig)のアクティブ化/非アクティブ化に用いる、次の(1)~(3)を示すフィールド(情報)の少なくとも1つを含む、新しいMAC CEを受信してもよい。UEは、当該情報に基づいて、非サービングセルとのDL信号/UL信号の送受信、非サービングセルのL1ビーム測定/報告を制御してもよい。なお、当該非サービングセルは1つでもよいし複数でもよい。
<Third Embodiment>
UE is used for activation / deactivation of CSI report configuration (CSI-ReportConfig) for L1 beam measurement / report (CSI measurement / report) of non-serving cells, fields indicating the following (1) ~ (3) A new MAC CE may be received that includes at least one of (information). Based on this information, the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural.
(1)サービングセルID。
(2)BWP ID。
(3)CSI報告設定ID(CSI-ReportConfigId)。
(1) Serving Cell ID.
(2) BWP ID.
(3) CSI-ReportConfigId (CSI-ReportConfigId).
 (3)の例として、例えば(3-1)、(3-2)のいずれかが適用されてもよい。
(3-1)1つ又は複数の非サービングセルに対応するCSI報告設定ID。当該CSI報告設定IDを示すことは、対応する非サービングセルのL1ビーム測定/報告レポートをアクティブ化/非アクティブ化することを意味する。
(3-2)各CSI報告設定のアクティブ化/非アクティブ化を示すビットマップ。ビットマップのサイズ(ビット数)は、このCC上で設定されたCSI報告設定IDの数と同じであってもよい。
As an example of (3), for example, either (3-1) or (3-2) may be applied.
(3-1) CSI reporting configuration IDs corresponding to one or more non-serving cells; Indicating the relevant CSI reporting configuration ID means activating/deactivating the L1 beam measurement/reporting report of the corresponding non-serving cell.
(3-2) Bitmap indicating activation/deactivation of each CSI reporting setting. The bitmap size (number of bits) may be the same as the number of CSI Reporting Configuration IDs configured on this CC.
 MAC CEでは、サービングセルに対して、複数の「CSI報告設定ID」が示される場合がある。MAC CEには、複数のサービングセルID/非サービングセルIDが含まれることができるため、複数のCCにおける非サービングセルのL1ビーム報告設定(CSI報告設定)を1つのMAC CEで示すことができる。 In MAC CE, multiple "CSI reporting configuration IDs" may be indicated for the serving cell. Since a MAC CE can contain multiple serving cell IDs/non-serving cell IDs, one MAC CE can indicate the L1 beam reporting configuration (CSI reporting configuration) of non-serving cells in multiple CCs.
 本実施形態によれば、MAC CEを用いて、非サービングセルのL1ビーム測定/報告(CSI測定/報告)のためのCSI報告設定のアクティブ化/非アクティブ化が適切に指示される。 According to this embodiment, MAC CE is used to appropriately indicate activation/deactivation of CSI reporting configuration for L1 beam measurement/reporting (CSI measurement/reporting) of non-serving cells.
<第4の実施形態>
 UEは、L1ビーム測定/報告(CSI測定/報告)に用いる参照信号(RS)(SSB)であって、アクティブ化された各非サービングセルに対応する参照信号のアクティブ化/非アクティブ化を示すフィールド(情報)を含む、新しいMAC CEを受信してもよい。当該フィールドは、第1~第3の実施形態のいずれかのMAC CEに追加されてもよい。UEは、当該情報に基づいて、非サービングセルとのDL信号/UL信号の送受信、非サービングセルのL1ビーム測定/報告を制御してもよい。なお、当該非サービングセルは1つでもよいし複数でもよい。
<Fourth Embodiment>
The UE indicates the activation/deactivation of the reference signal (RS) (SSB) used for L1 beam measurement/reporting (CSI measurement/reporting) and corresponding to each activated non-serving cell A new MAC CE containing (information) may be received. This field may be added to the MAC CE of any of the first to third embodiments. Based on this information, the UE may control transmission/reception of DL/UL signals with non-serving cells and L1 beam measurement/reporting of non-serving cells. Note that the number of the non-serving cells may be one or plural.
 MAC CEは、非サービングセルのRS(非サービングセルに対応するRS)としてSSBインデックスを含んでもよい。SSBインデックスは、SSBインデックスに対応する(SSBインデックスを識別可能な)任意のインデックスに置き換えられてもよい。例えば、MAC CEは、次の(1)~(3)のいずれかを含んでいてもよい。 The MAC CE may include the SSB index as the RS of the non-serving cell (the RS corresponding to the non-serving cell). The SSB index may be replaced by any index that corresponds to the SSB index (that can identify the SSB index). For example, MAC CE may include any of the following (1) to (3).
(1)明示的なSSB ID、又は各SSB IDのアクティブ化/非アクティブ化を示すビットマップ。この場合、各ビットが1つのSSB IDに対応する。
(2)明示的なSSBグループID、又はSSBグループIDのアクティブ化/非アクティブ化を示すビットマップ。このフィールドは、SSBインデックスが、複数のSSBグループにグループ化された場合に適用されてもよい。
(3)SSBに対応する、CSIリソース設定ID、CSI-RSリソースセットID、又はCSI-RSリソースサブセットID。
(1) Explicit SSB IDs or a bitmap indicating activation/deactivation of each SSB ID. In this case, each bit corresponds to one SSB ID.
(2) An explicit SSB group ID or a bitmap indicating activation/deactivation of the SSB group ID. This field may apply when the SSB indices are grouped into multiple SSB groups.
(3) CSI resource configuration ID, CSI-RS resource set ID, or CSI-RS resource subset ID corresponding to the SSB;
 MAC CEでは、サービングセルに対して、複数の非サービングセルが示される場合がある。MAC CEには、複数のサービングセルID/非サービングセルが含まれる場合もあるため、複数のCCにおける非サービングセルのL1ビーム報告設定を1つのMAC CEで示すこともできる。 In MAC CE, multiple non-serving cells may be indicated for a serving cell. Since a MAC CE may contain multiple serving cell IDs/non-serving cells, it is also possible to indicate L1 beam reporting settings for non-serving cells on multiple CCs with one MAC CE.
 各実施形態において、複数のCCのうちの1つのCCの非サービングセル設定のみが更新されてもよい。UEは、同じRRCにより設定されたCCリスト内の他のCCに対して、同じ非サービングセルID(及びSSB)の更新を適用してもよい。 In each embodiment, only the non-serving cell configuration of one CC out of multiple CCs may be updated. The UE may apply the same non-serving cell ID (and SSB) update to other CCs in the same RRC-configured CC list.
 各実施形態において、新しいMAC CEに対応する新しいLogical Channel ID(LCID)が適用されてもよい。また、MAC CEに1又は複数の特定のフィールドがあるかどうか、又は次のオクテット(エントリ)に追加の特定のフィールドが存在するかどうかを示すフィールドが、MACCEに含まれていてもよい。当該フィールドは、例えば、図2A、図2B、図3A、図3B、図4A、図4Bの「P」フィールドである。 In each embodiment, a new Logical Channel ID (LCID) corresponding to the new MAC CE may be applied. A MACCE may also contain a field that indicates whether there are one or more specific fields in the MACCE, or whether there are additional specific fields in the next octet (entry). The field in question is, for example, the "P" field of FIGS. 2A, 2B, 3A, 3B, 4A and 4B.
 本実施形態によれば、MAC CEを用いて、サービングセルのRS(SSB)のアクティブ化/非アクティブ化が適切に指示される。 According to this embodiment, activation/deactivation of the RS (SSB) of the serving cell is appropriately indicated using MAC CE.
<非サービングセルに対応する新しいID>
 UEは、物理セルID(Physical Cell Identifier:PCI)に基づいて作成された、物理セルIDとは別の、サービングセル及び非サービングセルを示す特定のインデックス(新しいID:Re-indexing index of cell)の設定を受信してもよい。この新しいIDは、上記(3-2)、(4-2)に対応する。UEは、設定された特定のインデックスに対応するチャネル状態情報報告(CSI報告)の送信を制御してもよい。
<New ID corresponding to non-serving cell>
UE, physical cell ID (Physical Cell Identifier: PCI), different from the physical cell ID, a specific index indicating the serving cell and non-serving cells (new ID: Re-indexing index of cell) setting may be received. This new ID corresponds to (3-2) and (4-2) above. The UE may control the transmission of channel state information reports (CSI reports) corresponding to specific indices configured.
 サービングセル/非サービングセルを示す情報として、新しいID(例えば、非サービングセルを示す再作成(re-index、再付番、re-number)されたインデックス、CMRのグループID)が適用されてもよい。新しいIDは、UEが利用する(利用可能な)サービングセル及び非サービングセルにのみ設定されてもよい。 A new ID (for example, a re-indexed index indicating a non-serving cell, a CMR group ID) may be applied as information indicating a serving cell/non-serving cell. The new ID may be configured only for the (available) serving and non-serving cells used by the UE.
 この新しいIDは、RS設定シグナリング(CSI報告設定/CSIリソース設定)に依存していてもよい。この新しいIDは、例えば、「0」がサービングセルを示し、「1」が非サービングセル#1を示し「2」が非サービングセル#2を示してもよい。すなわち、この新しいIDは、サービングセル及び1以上の非サービングセルのいずれかを示してもよい。 This new ID may depend on RS configuration signaling (CSI reporting configuration/CSI resource configuration). This new ID may be, for example, '0' to indicate the serving cell, '1' to indicate non-serving cell #1, and '2' to indicate non-serving cell #2. That is, this new ID may indicate either the serving cell and one or more non-serving cells.
 非サービングセルを示す再作成されたインデックスは、PCIの一部に関連づけられていてもよい。PCIの替わりに、当該再作成されたインデックスを用いることにより、情報ビットの数が少なくなり、RRCシグナリングのオーバーヘッドを減らすことができる。再作成されたインデックスは、再作成インデックスと呼ばれてもよい。 A recreated index indicating a non-serving cell may be associated with part of the PCI. By using the recreated index instead of PCI, the number of information bits is reduced, and RRC signaling overhead can be reduced. A rebuilt index may be referred to as a rebuilt index.
 非サービングセルが1つである場合、新しいIDは、上述の1ビットのインジケータであってもよい。例えば、「0」がサービングセルを示し、「1」が非サービングセルを示してもよい。また、「1」がサービングセルを示し、「0」が非サービングセルを示してもよい。新しいIDのパラメータ名は「New ID」、「Re-indexing index of cell」等に限られず、任意の名称が用いられてもよい。 If there is one non-serving cell, the new ID may be the 1-bit indicator described above. For example, a '0' may indicate a serving cell and a '1' may indicate a non-serving cell. Also, "1" may indicate a serving cell and "0" may indicate a non-serving cell. The parameter name of the new ID is not limited to "New ID", "Re-indexing index of cell", etc. Any name may be used.
<UE能力(capability)>
 UEは、本開示における各処理の少なくとも1つをサポートするかを示すUE能力(capability)情報を報告(送信)してもよい。また、UEは、本開示における各処理の少なくとも1つを指示する情報をDCI/MAC CE/上位レイヤシグナリング等により受信してもよい。
<UE capability>
A UE may report (transmit) UE capability information indicating whether it supports at least one of the processes in this disclosure. Also, the UE may receive information indicating at least one of the processes in the present disclosure through DCI/MAC CE/higher layer signaling or the like.
 例えば、UEは、非サービングセルのアクティブ化/非アクティブ化するためにのMAC CEをサポートするかどうか、各実施形態のMAC CE(MAC CE内の少なくとも1つのフィールド)をサポートするかどうか、又は、アクティブ化される非サービングセル(又は非サービングセル毎のSSB)の許容される数を、UE能力情報として送信してもよい。 For example, whether the UE supports MAC CE for activating/deactivating non-serving cells, whether it supports MAC CE in each embodiment (at least one field in MAC CE), or The allowed number of activated non-serving cells (or SSBs per non-serving cell) may be sent as UE capability information.
<第5の実施形態>
 MAC CEは、TCI状態を示すフィールドが存在するが、例えば、7つの非サービングセルが存在する場合、UEは、DCIによって7つのうち1つの非サービングセルを示す準備をする必要がある。これによりDCIのビット数(TCIのコードポイント)が増加するという課題がある。したがって、UEが指示される準備をするために、ビーム指示のためにアクティブな非サービングセルをさらにアクティブ化(指示/指定/制限/限定/絞り込み)するために別のMACCEが必要となる可能性がある。
<Fifth Embodiment>
MAC CE has a field to indicate the TCI status, but for example if there are 7 non-serving cells, the UE should be prepared to indicate 1 non-serving cell out of 7 by DCI. As a result, there is a problem that the number of DCI bits (TCI code points) increases. Therefore, another MACCE may be required to further activate (indicate/designate/restrict/limit/narrow) the active non-serving cells for beam indication in order to prepare the UE to be indicated. be.
 図5は、DCIにおいて指定される、PDSCHのためのTCIコードポイントの例を示す図である。図5に示す例では、サービングセル及び7つの非サービングセルに対応する8つのTCI状態/TCIコードポイントが用意される。このTCIコードポイント数を減らすこと(例えば3つにする)ができれば、DCIのビット数を削減し、UEの処理を簡略化することができる。 FIG. 5 is a diagram showing an example of TCI codepoints for PDSCH specified in DCI. In the example shown in FIG. 5, 8 TCI states/TCI codepoints corresponding to the serving cell and 7 non-serving cells are provided. If the number of TCI codepoints can be reduced (for example, to 3), the number of DCI bits can be reduced and the UE processing can be simplified.
 UEは、非サービングセルのアクティブ化/非アクティブ化に用いる情報を含むMAC CE(第1のMAC CE)を受信し、第1のMAC CEで指示されるアクティブな非サービングセルのうちの少なくとも1つをさらにアクティブ化(指示/指定/制限/限定/絞り込み)するための情報を含む第2のMACCEを受信してもよい。UEは、第2のMAC CEにおいて指示された非サービングセルとの送受信を制御する。第1のMAC CEと第2のMAC CEは、同じ構成であってもよいし、異なる構成であってもよい。第2のMAC CEは、例えば、第1~第4の実施形態で示したMAC CEと同様の構成が適用されてもよい。 The UE receives a MAC CE (first MAC CE) containing information used to activate/deactivate non-serving cells, and activates at least one of the active non-serving cells indicated by the first MAC CE. A second MACCE may also be received containing information for further activation (indicating/designating/restricting/limiting/narrowing). The UE controls transmission and reception with non-serving cells indicated in the second MAC CE. The first MAC CE and the second MAC CE may have the same configuration or may have different configurations. For the second MAC CE, for example, the same configuration as the MAC CE shown in the first to fourth embodiments may be applied.
 例えば、非サービングセルに関連するTCI状態の設定可能な最大数は、UE能力情報として報告された値により制限されてもよい。TCI状態が非サービングセルに関連することは、例えば、TCI状態のQCLタイプA/Dに設定されるRSが非サービングセルに関連していることを意味する。RSが非サービングセルに関連していることは、例えば、非サービングセルのRS(SSB)がQCLソースに設定されていること、非サービングセルのPCIが設定されていることを意味してもよい。 For example, the maximum number of configurable TCI states associated with non-serving cells may be limited by the value reported as UE capability information. A TCI state associated with a non-serving cell means, for example, that an RS set to QCL type A/D in the TCI state is associated with a non-serving cell. An RS associated with a non-serving cell may mean, for example, that the non-serving cell's RS (SSB) is configured as the QCL source, or that the non-serving cell's PCI is configured.
[複数ケースの非サービングセルの関係について分析]
 さまざまな目的によりRRCによって設定された、またはMAC CEによってアクティブ化された非サービングセルの関係について分析する。例えば、以下の複数のケースの非サービングセルが考えられる。
[Analysis of relationships between non-serving cells in multiple cases]
Analyze non-serving cell relationships set by RRC or activated by MAC CE for various purposes. For example, the following multiple cases of non-serving cells are considered.
[ケース1]
 RRCにより非サービングセル設定として、例えば、中心周波数、SSBの周期性と位置、SSB電力などが提供された非サービングセル。
[Case 1]
A non-serving cell provided by RRC as a non-serving cell configuration, eg, center frequency, SSB periodicity and location, SSB power, etc.
[ケース2]
 RRCによって、L1ビーム測定/報告用のCSI報告設定が設定された非サービングセル。なお、ケース2の非サービングセルは、ケース1のサブセットである。
[Case 2]
Non-serving cells configured by RRC with CSI reporting configuration for L1 beam measurement/reporting. Note that the non-serving cells in Case 2 are a subset of Case 1.
[ケース3]
 MAC CEによって、アクティブ化されたL1ビーム測定/報告のCSI報告設定が設定された非サービングセル(例えば、第2/第3の実施形態の非サービングセル)。ケース3の非サービングセルは、ケース2のサブセットである。
[Case 3]
Non-serving cells (eg, non-serving cells of the second/third embodiments) with activated L1 beam measurement/reporting CSI reporting configuration set by the MAC CE. Non-serving cells in case 3 are a subset of case 2.
[ケース4]
 RRCによって、QCL/TCI状態設定においてQCLソースRSとして設定された非サービングセル。ケース4の非サービングセルは、ケース1のサブセットである。
[Case 4]
A non-serving cell configured by RRC as a QCL source RS in QCL/TCI state setup. Non-serving cells in case 4 are a subset of case 1.
 ケース4とケース2又はケース3との対応関係について、以下のオプションが考えられる。
オプション1:ケース4の非サービングセルは、ケース2のサブセットであるか、ケース2と同じであってもよい。
オプション2:ケース4とケース2の間に制限はない。
オプション3:ケース4の非サービングセルは、ケース3のサブセットであるか、ケース3と同じである。
オプション4:ケース4とケース3の間に制限はない。
The following options are conceivable for the correspondence relationship between Case 4 and Case 2 or Case 3.
Option 1: The non-serving cells in case 4 are a subset of case 2 or may be the same as case 2.
Option 2: No restriction between Case 4 and Case 2.
Option 3: Case 4 non-serving cells are a subset of Case 3 or the same as Case 3.
Option 4: No restriction between Case 4 and Case 3.
[ケース5]
 MAC CEによって更新されたPDSCHのTCI状態。当該TCI状態のソースRS(QCLソース)が非サービングセルに関連付けられているとする。ケース5の非サービングセルは、ケース4/ケース2/ケース3のサブセットである。
[Case 5]
PDSCH TCI state updated by MAC CE. Suppose the source RS (QCL source) in that TCI state is associated with a non-serving cell. Case 5 non-serving cells are a subset of Case 4/Case 2/Case 3.
[ケース6]
 RRCによって設定されたCORESETのTCI状態。当該TCI状態のソースRS(QCLソース)が非サービングセルに関連付けられているとする。ケース6の範囲は、ケース4と同様であってもよい。
[Case 6]
CORESET TCI state set by RRC. Suppose the source RS (QCL source) in that TCI state is associated with a non-serving cell. The scope of Case 6 may be similar to Case 4.
[ケース7]
 MACCEによって更新されたCORESETのTCI状態。当該TCI状態のソースRS(QCLソース)が非サービングセルに関連付けられているとする。ケース7の範囲は、ケース5と同様であってもよい。
[Case 7]
CORESET TCI state updated by MACCE. Suppose the source RS (QCL source) in that TCI state is associated with a non-serving cell. The scope of case 7 may be similar to case 5.
 図6は、ケース1~ケース5が含む非サービングセル/TCI状態の第1の例を示す図である。図6のケース4は、上記ケース4のオプション1に該当し、ケース2の範囲と同様であるとする。 FIG. 6 is a diagram showing a first example of non-serving cell/TCI states that cases 1 to 5 include. Case 4 in FIG. 6 corresponds to Option 1 of Case 4 above, and the range is the same as Case 2.
 図7は、ケース1~ケース5が含む非サービングセル/TCI状態の第2の例を示す図である。図7のケース4は、上記ケース4のオプション3に該当し、ケース3の範囲と同様であるとする。 FIG. 7 is a diagram showing a second example of non-serving cell/TCI states that cases 1 to 5 include. Case 4 in FIG. 7 corresponds to Option 3 of Case 4 above, and the range is the same as Case 3.
 ケース1、2、3、4,5,6,7について、ケース1、2、3、4,5,6,7の順にカバーする非サービングセル/TCI状態が少なくなってもよいし、ケース1、2、3、4,5,6,7の順でなくてもよい。 Cases 1, 2, 3, 4, 5, 6, 7 may cover fewer non-serving cells/TCI states in the order of cases 1, 2, 3, 4, 5, 6, 7; The order does not have to be 2, 3, 4, 5, 6, 7.
 例えば、L1ビーム測定/報告(CSI報告)がアクティブ化された非サービングセルを指示するMAC CE(第3のMAC CE)と、当該非サービングセルのうちの少なくとも1つの非サービングセルのビーム(TCI状態)を指示するMAC CE(第4のMAC CE)が別のMAC CEであるとする。この場合、最初のMAC CEでアクティブ化された非サービングセルを2番目のMAC CEによりさらに限定することができるので、MAC CEの指示によるオーバーヘッドを減らすことができる。なお、第3のMAC CE/第4のMAC CEは、第1のMAC CE/第2のMAC CEと同じでもよいし、異なってもよい。 For example, a MAC CE (third MAC CE) indicating a non-serving cell with L1 beam measurement/reporting (CSI reporting) activated, and at least one non-serving cell beam (TCI state) among the non-serving cells Assume that the designated MAC CE (the fourth MAC CE) is another MAC CE. In this case, the non-serving cells activated by the first MAC CE can be further limited by the second MAC CE, so the overhead due to MAC CE indications can be reduced. Note that the third MAC CE/fourth MAC CE may be the same as or different from the first MAC CE/second MAC CE.
 例えば、RRCによって設定されたL1ビーム測定/報告用のCSI報告設定(例えばアクティブな非サービングセルに対応するCSI報告設定)のうちの少なくとも1つが、MAC CEによって、指示されてもよい(ケース2,3)。また、例えば、RRCによって設定されたTCI状態(例えばアクティブな非サービングセルに対応するTCI状態)のうちの少なくとも1つが、MAC CEによって指示されてもよい(ケース6,7)。 For example, at least one of the CSI reporting settings for L1 beam measurement/reporting configured by RRC (eg, CSI reporting settings corresponding to active non-serving cells) may be indicated by MAC CE (Case 2, 3). Also, for example, at least one of the TCI states configured by RRC (eg, TCI states corresponding to active non-serving cells) may be indicated by MAC CE (cases 6 and 7).
[アクティブな非サービングセル]
 UEは、アクティブな非サービングセルについて1又は複数の目的(指示)を含むMAC CEであって、共通の非サービングセル/RS指示又は異なる非サービングセル/RS指示を含む、同じ(1つの)又は異なるMAC CEを受信してもよい。例えば、アクティブな非サービングセルに対する指示/処理として、以下のオプションが考えられる。アクティブな非サービングセルは、上述した第1のMAC CE又は第2のMAC CEにおいて指示された非サービングセルであってもよい。
Active non-serving cell
The UE is a MAC CE containing one or more purposes (indications) for active non-serving cells, the same (one) or different MAC CEs containing a common non-serving cell/RS indication or different non-serving cell/RS indications. may be received. For example, the following options are possible as indications/handlings for active non-serving cells. The active non-serving cell may be the non-serving cell indicated in the first MAC CE or the second MAC CE described above.
[[オプション1]]
 UEは、アクティブな非サービングセルのRSRP/SINR(ビーム)測定/報告(CSI報告)を行う。UEは、アクティブな非サービングセルのL1ビーム報告又はハイブリッドL1/L3ビーム報告を行ってもよい。
[[Option 1]]
The UE performs RSRP/SINR (beam) measurement/reporting (CSI reporting) of active non-serving cells. The UE may perform L1 beam reporting or hybrid L1/L3 beam reporting for active non-serving cells.
[[オプション2]]
 UEは、アクティブな非サービングセルに関連付けられたTCI状態が、RRC/MAC CE/DCIにより指示されてもよい。
[[Option 2]]
The UE may be indicated by the RRC/MAC CE/DCI the TCI state associated with active non-serving cells.
[[オプション2-1]]
 例えば、アクティブな非サービングセルに関連するTCI状態のみが、最大8つのPDSCHのTCI状態のためのMAC CE(例えば3GPP Rel.16のMAC CE)によってアクティブ化されてもよい。ケース5の非サービングセルは、このオプションのサブセットである。
[[Option 2-1]]
For example, only TCI states associated with active non-serving cells may be activated by MAC CEs (eg, 3GPP Rel. 16 MAC CEs) for TCI states of up to eight PDSCHs. Case 5 non-serving cell is a subset of this option.
[[オプション2-2]]
 例えば、アクティブな非サービングセルに関連するTCI状態のみが、CORESETのTCI状態のためのMAC CE(例えば3GPP Rel.16のMAC CE)によってCORESET用に更新されてもよい。ケース7の非サービングセルは、このケースのサブセットであってもよい。
[[Option 2-2]]
For example, only TCI states associated with active non-serving cells may be updated for CORESET by a MAC CE for TCI states for CORESET (eg, 3GPP Rel.16 MAC CE). Non-serving cells in Case 7 may be a subset of this case.
[[オプション2-3]]
 例えば、アクティブな非サービングセルに関連するTCI状態のみが、PDSCHのTCI状態のためのDCIによって指示されてもよい。
[[Option 2-3]]
For example, only TCI states associated with active non-serving cells may be indicated by the DCI for PDSCH TCI states.
[非アクティブな非サービングセル]
 例えば、非アクティブな非サービングセルに対する指示/処理として、以下のオプションが考えられる。
[inactive non-serving cell]
For example, the following options are possible as indications/handlings for inactive non-serving cells.
[[オプション1]]
 UEは、非アクティブな非サービングセルのRSRP/SINR(ビーム)測定/報告(CSI測定報告)を行わなくてもよい。
[[Option 1]]
The UE may not perform RSRP/SINR (beam) measurements/reports (CSI measurement reports) for inactive non-serving cells.
[[オプション2]]
 UEは、非アクティブな非サービングセルに関連付けられたTCI状態が指示されることは想定しない。
[[Option 2]]
The UE does not expect the TCI state associated with the inactive non-serving cell to be indicated.
[[オプション2-1]]
 例えば、MAC CEが最大8つのPDSCHのTCI状態をアクティブ化した場合、UEは、それら(TCI状態)のいずれも非アクティブな非サービングセルに関連付けられるとは想定しない。
[[Option 2-1]]
For example, if MAC CE activates up to 8 PDSCH TCI states, the UE does not assume that any of them (TCI states) are associated with an inactive non-serving cell.
[[オプション2-2]]
 例えば、MAC CEがCORESETのTCI状態をアクティブ化した場合、UEは、それら(TCI状態)のいずれも非アクティブな非サービングセルに関連付けられるとは想定しない。
[[Option 2-2]]
For example, if the MAC CE activates the TCI states of CORESET, the UE does not assume that any of them (TCI states) are associated with inactive non-serving cells.
[[オプション2-3]]
 例えば、DCIがPDSCHのTCI状態を指示する場合、UEは、それらのいずれも非アクティブな非サービングセルに関連付けられるとは想定しない。
[[Option 2-3]]
For example, if the DCI indicates the TCI status of the PDSCH, the UE does not assume any of them are associated with inactive non-serving cells.
 新しいMAC CEが上記の新しい目的を示すように設計されていると仮定するケースXとする。例えば、アクティブな非サービングセルの関連するTCI状態のみが、最大8つのPDSCHのTCI状態に対してMAC CE(例えば3GPP Rel.16のMAC CE)によってアクティブ化できる場合(上記[アクティブな非サービングセル]のオプション2-1)、そのTCI状態をケースXとする。 Let it be case X, assuming that the new MAC CE is designed to indicate the above new purpose. For example, if only the relevant TCI states of an active non-serving cell can be activated by a MAC CE (e.g. MAC CE of 3GPP Rel. 16) for up to eight PDSCH TCI states (see above for [Active non-serving cell] Option 2-1), let the TCI state be case X;
 図8は、ケース1~ケース5、ケースXが含む非サービングセル/TCI状態の例を示す図である。図8は、ケースX以外は図6と同様である。図8に示すように、ケースXは、ケース5と同様の範囲になってもよい。 FIG. 8 is a diagram showing examples of non-serving cell/TCI states that Cases 1 to 5 and Case X include. 8 is the same as FIG. 6 except for case X. FIG. As shown in FIG. 8, case X may be in the same range as case 5.
 以上のように、アクティブな非サービングセルに関連付けられたTCI状態のみ更新し、非アクティブな非サービングセルに関連付けられたTCI状態が指示されないので、UEの処理を簡略化することができる。 As described above, the UE processing can be simplified because only the TCI states associated with active non-serving cells are updated and the TCI states associated with inactive non-serving cells are not indicated.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 10 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
 なお、送受信部120は、非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を送信してもよい。 Note that the transmitting/receiving unit 120 may transmit a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells.
 送受信部120は、前記非サービングセルに対応するチャネル状態情報(CSI)報告設定IDを含む前記MAC CEを送信してもよい。送受信部120は、前記非サービングセルに対応するCSI報告設定IDのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを送信してもよい。送受信部120は、CSI報告に用いる参照信号であって、アクティブ化された非サービングセルに対応する参照信号のアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを送信してもよい。 The transmitting/receiving unit 120 may transmit the MAC CE including the channel state information (CSI) reporting configuration ID corresponding to the non-serving cell. The transmitting/receiving unit 120 may transmit the MAC CE including information used for at least one of activation and deactivation of the CSI reporting configuration ID corresponding to the non-serving cell. The transmitting/receiving unit 120 may transmit the MAC CE including information used for at least one of activation and deactivation of reference signals used for CSI reporting and corresponding to activated non-serving cells. .
 制御部110は、前記情報に基づいて、前記非サービングセルにおける送受信を制御してもよい。 The control unit 110 may control transmission and reception in the non-serving cell based on the information.
 送受信部120は、非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む第1のMedium Access Control Control Element(MAC CE)と、前記第1のMAC CEにおいて指示されたアクティブな前記非サービングセルのうちの少なくとも1つを指示する情報を含む第2のMAC CEとを送信してもよい。 The transmitting/receiving unit 120 includes a first Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of a non-serving cell, and the active non-serving cell indicated in the first MAC CE. A second MAC CE containing information indicating at least one of the serving cells may be transmitted.
 制御部110は、前記情報に基づいて、前記非サービングセルにおける送受信を制御してもよい。 The control unit 110 may control transmission and reception in the non-serving cell based on the information.
 送受信部120は、チャネル状態情報(CSI)報告がアクティブ化された非サービングセルを指示する第3のMAC CEと、前記第3のMAC CEにおいて指示された非サービングセルのうちの少なくとも1つの非サービングセルのTCI状態を指示する第4のMAC CEを送信してもよい。 The transmitting/receiving unit 120 provides a third MAC CE that indicates a non-serving cell for which channel state information (CSI) reporting is activated, and at least one non-serving cell among the non-serving cells indicated in the third MAC CE. A fourth MAC CE may be sent indicating the TCI status.
 送受信部120は、アクティブな前記非サービングセルのCSI報告を受信し、非アクティブな前記非サービングセルのCSI報告を受信しなくてもよい。制御部110は、アクティブな前記非サービングセルに関連付けられた送信設定指示(TCI)状態を指示し、非アクティブな前記非サービングセルに関連付けられたTCI状態を指示しなくてもよい。 The transmitting/receiving unit 120 may receive the CSI report of the active non-serving cell and not receive the CSI report of the inactive non-serving cell. Controller 110 may indicate the transmission configuration indication (TCI) state associated with the active non-serving cell and not indicate the TCI state associated with the inactive non-serving cell.
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 なお、送受信部220は、非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を受信してもよい。 Note that the transmitting/receiving unit 220 may receive a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells.
 送受信部220は、前記非サービングセルに対応するチャネル状態情報(CSI)報告設定IDを含む前記MAC CEを受信してもよい。送受信部220は、前記非サービングセルに対応するCSI報告設定IDのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを受信してもよい。送受信部220は、CSI報告に用いる参照信号であって、アクティブ化された非サービングセルに対応する参照信号のアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを受信してもよい。 The transmitting/receiving unit 220 may receive the MAC CE including the channel state information (CSI) reporting configuration ID corresponding to the non-serving cell. The transmitting/receiving unit 220 may receive the MAC CE including information used for at least one of activation and deactivation of the CSI reporting configuration ID corresponding to the non-serving cell. The transmitting/receiving unit 220 may receive the MAC CE including information used for at least one of activation and deactivation of reference signals used for CSI reporting and corresponding to activated non-serving cells. .
 制御部210は、前記情報に基づいて、前記非サービングセルとの送受信を制御してもよい。 The control unit 210 may control transmission/reception with the non-serving cell based on the information.
 送受信部220は、非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む第1のMedium Access Control Control Element(MAC CE)と、前記第1のMAC CEにおいて指示されたアクティブな前記非サービングセルのうちの少なくとも1つを指示する情報を含む第2のMAC CEとを受信してもよい。 The transmitting/receiving unit 220 includes a first Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of a non-serving cell, and the active non-serving cell indicated in the first MAC CE. A second MAC CE including information indicating at least one of the serving cells may be received.
 送受信部220は、チャネル状態情報(CSI)報告がアクティブ化された非サービングセルを指示する第3のMAC CEと、前記第3のMAC CEにおいて指示された非サービングセルのうちの少なくとも1つの非サービングセルのTCI状態を指示する第4のMAC CEを受信してもよい。 The transmitting/receiving unit 220 provides a third MAC CE that indicates a non-serving cell for which channel state information (CSI) reporting is activated, and at least one non-serving cell out of the non-serving cells indicated in the third MAC CE. A fourth MAC CE may be received indicating the TCI status.
 制御部210は、前記第2のMAC CEにおいて指示された前記非サービングセルとの送受信を制御してもよい。送受信部220は、前記第2のMAC CEにおいて指示された前記非サービングセルとの送受信を行ってもよい。 The control unit 210 may control transmission/reception with the non-serving cell indicated in the second MAC CE. The transmitting/receiving unit 220 may perform transmission/reception with the non-serving cell indicated in the second MAC CE.
 制御部210は、アクティブな前記非サービングセルのCSI報告を行い、非アクティブな前記非サービングセルのCSI報告を行わなくてもよい。制御部210は、アクティブな前記非サービングセルに関連付けられた送信設定指示(TCI)状態が指示され、非アクティブな前記非サービングセルに関連付けられたTCI状態が指示されないことを想定してもよい。 The control unit 210 may perform CSI reporting for the active non-serving cells and may not perform CSI reporting for the inactive non-serving cells. Control unit 210 may assume that the transmission configuration indication (TCI) state associated with the active non-serving cell is indicated and the TCI state associated with the inactive non-serving cell is not indicated.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. In addition, words such as "uplink" and "downlink" may be replaced with words corresponding to communication between terminals (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be read as sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New - Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を受信する受信部と、
     前記情報に基づいて、前記非サービングセルとの送受信を制御する制御部と、
     を有する端末。
    a receiving unit that receives a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells;
    A control unit that controls transmission and reception with the non-serving cell based on the information;
    terminal with
  2.  前記受信部は、前記非サービングセルに対応するチャネル状態情報(CSI)報告設定IDを含む前記MAC CEを受信する
     請求項1に記載の端末。
    The terminal according to claim 1, wherein the receiver receives the MAC CE including a channel state information (CSI) reporting configuration ID corresponding to the non-serving cell.
  3.  前記受信部は、前記非サービングセルに対応するCSI報告設定IDのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを受信する
     請求項1又は2に記載の端末。
    The terminal according to claim 1 or 2, wherein the receiving unit receives the MAC CE including information used for at least one of activation and deactivation of the CSI reporting configuration ID corresponding to the non-serving cell.
  4.  前記受信部は、CSI報告に用いる参照信号であって、アクティブ化された非サービングセルに対応する参照信号のアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含む前記MAC CEを受信する
     請求項1から3のいずれかに記載の端末。
    The receiving unit is a reference signal used for CSI reporting, and receives the MAC CE including information used for at least one of activation and deactivation of a reference signal corresponding to an activated non-serving cell. 3. The terminal according to any one of 3.
  5.  非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を受信する工程と、
     前記情報に基づいて、前記非サービングセルとの送受信を制御する工程と、
     を有する端末の無線通信方法。
    receiving a Medium Access Control Control Element (MAC CE) containing information used to activate and/or deactivate non-serving cells;
    Controlling transmission/reception with the non-serving cell based on the information;
    A wireless communication method for a terminal having
  6.  非サービングセルのアクティブ化及び非アクティブ化の少なくとも一方に用いる情報を含むMedium Access Control Control Element(MAC CE)を送信する送信部と、
     前記情報に基づいて、前記非サービングセルにおける送受信を制御する制御部と、
     を有する基地局。
    A transmitting unit that transmits a Medium Access Control Control Element (MAC CE) containing information used for at least one of activation and deactivation of non-serving cells;
    A control unit that controls transmission and reception in the non-serving cell based on the information;
    A base station with
PCT/JP2021/018504 2021-05-14 2021-05-14 Terminal, wireless communication method, and base station WO2022239256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023520741A JPWO2022239256A1 (en) 2021-05-14 2021-05-14
PCT/JP2021/018504 WO2022239256A1 (en) 2021-05-14 2021-05-14 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018504 WO2022239256A1 (en) 2021-05-14 2021-05-14 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2022239256A1 true WO2022239256A1 (en) 2022-11-17

Family

ID=84028104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018504 WO2022239256A1 (en) 2021-05-14 2021-05-14 Terminal, wireless communication method, and base station

Country Status (2)

Country Link
JP (1) JPWO2022239256A1 (en)
WO (1) WO2022239256A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510252A (en) * 2018-01-04 2021-04-15 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Secondary cell status indication method and communication equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510252A (en) * 2018-01-04 2021-04-15 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Secondary cell status indication method and communication equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Summary of email discussion [Post113bis-e][061][feMIMO] InterCell mTRP and L1L2 mobility (Samsung)", 3GPP DRAFT; R2-2106314, vol. RAN WG2, 11 May 2021 (2021-05-11), pages 1 - 39, XP052007672 *

Also Published As

Publication number Publication date
JPWO2022239256A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP7238107B2 (en) Terminal, wireless communication method and system
JP7264921B2 (en) Terminal, wireless communication method, base station and system
JP7268147B2 (en) Terminal, wireless communication method, base station and system
JP7234262B2 (en) Terminal, wireless communication method, base station and system
JP7315573B2 (en) Terminal, wireless communication method, base station and system
JP7252251B2 (en) Terminal, wireless communication method and system
JP7323629B2 (en) Terminal, wireless communication method, base station and system
JP7323609B2 (en) Terminal, wireless communication method and system
WO2022176091A1 (en) Terminal, wireless communication method, and base station
JP7323607B2 (en) Terminal, wireless communication method and system
JP7299300B2 (en) Terminal, wireless communication method, base station and system
JP7230059B2 (en) Terminal, wireless communication method, base station and system
JP7168769B2 (en) Terminal, wireless communication method, base station and system
JP7181675B2 (en) Terminal, wireless communication method, base station and system
JP7337913B2 (en) Terminal, wireless communication method, base station and system
WO2022220109A1 (en) Terminal, wireless communication method, and base station
WO2022249742A1 (en) Terminal, wireless communication method, and base station
WO2022201550A1 (en) Terminal, wireless communication method, and base station
WO2022201551A1 (en) Terminal, wireless communication method, and base station
JP7474321B2 (en) Terminal, wireless communication method, base station and system
JP7455874B2 (en) Terminals, wireless communication methods, base stations and systems
WO2021156951A1 (en) Terminal, wireless communication method, and base station
WO2022239256A1 (en) Terminal, wireless communication method, and base station
WO2022239253A1 (en) Terminal, wireless communication method and base station
WO2022215123A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941986

Country of ref document: EP

Kind code of ref document: A1