WO2022237907A1 - Battery post and high-capacity battery - Google Patents

Battery post and high-capacity battery Download PDF

Info

Publication number
WO2022237907A1
WO2022237907A1 PCT/CN2022/092892 CN2022092892W WO2022237907A1 WO 2022237907 A1 WO2022237907 A1 WO 2022237907A1 CN 2022092892 W CN2022092892 W CN 2022092892W WO 2022237907 A1 WO2022237907 A1 WO 2022237907A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
post
battery
battery post
post according
Prior art date
Application number
PCT/CN2022/092892
Other languages
French (fr)
Inventor
Sanxue Zhang
Zhengjun LEI
Tengfei Zhai
Gaofeng Zheng
Yi Liu
Original Assignee
Sino-Australia Power Storage Technology (Xi'an) Co, Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110680701.4A external-priority patent/CN113410544A/en
Priority claimed from CN202111413475.XA external-priority patent/CN114156609A/en
Application filed by Sino-Australia Power Storage Technology (Xi'an) Co, Ltd filed Critical Sino-Australia Power Storage Technology (Xi'an) Co, Ltd
Publication of WO2022237907A1 publication Critical patent/WO2022237907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the field of batteries, in particular to a battery post and a high-capacity battery.
  • the lithium battery technology has been developed rapidly and applied in more and more domains.
  • the lithium batteries often generate great heat as a result of the internal resistance and the heat will increase gradually during repeated use.
  • the lug portion near the post is the part with the highest heat in the battery cell. If the heat accumulated at the lug portion can't be dissipated effectively, the stability of the lithium battery will be compromised and the service life of the lithium battery will be shortened. As the temperature rises further, the electrolyte and solvent inside the battery cell may be decomposed, burn and explode. In view of the safety consideration, at present, the unit size of lithium battery is very small, and the battery capacity is not high.
  • the main counter measure against the fire after the thermal runaway of a battery in the market is fire extinguishing with a conventional fire extinguishing agent.
  • a conventional fire extinguishing agent can only extinguish the external fire source of the battery, but can't extinguish the fire from the internal source of the battery. Consequently, the thermal runaway of the battery continues and may lead to secondary burning of the battery.
  • An object of the present invention is to solve at least the above-mentioned problems and/or drawbacks and provide at least the advantages described below.
  • the present invention provides a battery post, which comprises a post body and at least one heat conducting unit, wherein the heat conducting unit is a closed cavity arranged in the post body and provided with a heat transfer medium, and the closed cavity is in a vacuum state; or the heat conducting unit is a heat tube, the post body is provided with a pore channel, and the heat tube is arranged in the pore channel; or the heat conducting unit is a circulating flow channel that is arranged in the post body and contains a circulating medium.
  • a wick is provided in the closed cavity.
  • the wick has a porous capillary structure or grooved structure.
  • the heat transfer medium is at least one of methanol, acetone and ethanol.
  • the bottom of the closed cavity is provided with a weak portion, and the heat transfer medium has a fire extinguishing function.
  • the weak portion is a piece of aluminum foil or fusible metal.
  • the weak portion is provided with a temperature sensing device and a bursting device.
  • the heat transfer medium is haloalkane.
  • the haloalkane is at least one of perfluorohexanone, perfluoropentone, difluorochlorobromomethane, tetrachloromethane and trifluorobromomethane.
  • the heat tube is closely fitted with the pore channel and extends out of the battery post.
  • the battery post further comprises a heat dissipation unit, which is in an insulated connection with the battery post or the heat conducting unit.
  • the heat dissipation unit is at least one of a semiconductor cooler, heat radiating fins and a heat dissipating fan.
  • the battery post further comprises a heat exchanger, which is connected to the circulating flow channel for circulation of the circulating medium.
  • the heat exchanger is a water chiller.
  • each heat conducting unit is provided with an insulating portion for insulation between the heat conducting units.
  • the circulating flow channel is a U-shaped flow channel.
  • the circulating medium is one or more of dry air, high-purity water, coolant and heat conducting oil.
  • the present invention further provides a high-capacity battery, which comprises the battery post according to any of the above aspects.
  • the present invention attains the following beneficial effects:
  • the post is provided with at least one heat conducting unit, which is a closed cavity that is arranged inside the post, provided with a heat transfer medium, and in a vacuum state.
  • a wick and a phase change material are provided in the closed cavity.
  • the phase change material inside the post changes from liquid to vapor.
  • the vapor carries heat to a condensation section and is condensed, so that the phase change material returns to its original position under the action of the gravity and the capillary effect of the wick, thus energy exchange is completed and a closed loop is formed.
  • the heat generated by the battery cell is concentrated at the lug of the battery, which is connected to a current collector plate of the battery; the generated heat is quickly conducted by the current collector plate to the post with super-thermal conductivity in contact with the current collector plate, thus the heat generated by the battery cell can be efficiently and quickly conducted out without any additional complex heat dissipation system such as air cooling system or water cooling system, thereby the safe operation of the battery is ensured, and the safety and service life of the battery are improved.
  • the phase change material inside the post is heated and volatilized to the upper end of the post, thereby the heat of the battery cell is conducted to the outside and the temperature inside the battery is decreased quickly.
  • the temperature sensing device on the battery cell establishes a circuit, and the bursting device is initiated, so that the weak portion is ruptured; or the weak portion is a piece of fusible metal, which melts and ruptures at a high temperature, and the phase change material with a fire extinguishing function will flow out, thus the entire internal space of the battery is protected.
  • the heat conducting unit in the present application is a heat tube
  • the post is provided with a pore channel
  • the heat tube is arranged inside the pore channel and closely fitted with the post, so that the heat of the post is conducted to a condensation section of the heat tube, thereby the safety of the battery is improved.
  • the heat conducting unit in the present application is a circulating flow channel that is arranged inside the post and contains a circulating medium, the heat of the post can be conducted out by the circulating flow of the circulating medium, thus the safety of the battery is improved.
  • the heat at the heat conducting unit and the post can be conducted out in time by means of heat dissipation units such as a heat dissipating fan, heat radiating fins and a semiconductor cooler, so as to ensure the safe operation of the battery.
  • heat dissipation units such as a heat dissipating fan, heat radiating fins and a semiconductor cooler, so as to ensure the safe operation of the battery.
  • Fig. 1 is a schematic structural diagram of the post structure provided in embodiment 1 of the present application.
  • Fig. 2 is a schematic structural diagram of the post structure (with the heat conducting unit omitted) provided in embodiment 1 of the present application;
  • Fig. 3 is a schematic structural diagram of the post structure provided in embodiment 2 of the present application.
  • Fig. 4A is a schematic structural diagram of the post structure (with the heat conducting unit omitted) provided in embodiment 3 of the present application;
  • Fig. 4B is a schematic structural diagram of the post structure provided in embodiment 3 of the present application.
  • Fig. 5 is a schematic structural diagram of the high-capacity battery provided in embodiment 4 of the present application.
  • Fig. 6 is a schematic structural diagram of the high-capacity battery provided with heat dissipation units in embodiment 4 of the present application;
  • Fig. 7 is a schematic structural diagram of the high-capacity battery provided in embodiment 5 of the present application.
  • Fig. 8 is a schematic structural diagram of the high-capacity battery provided in embodiment 6 of the present application.
  • Fig. 9 is a schematic structural diagram of the post structure provided in embodiment 7 of the present application.
  • Fig. 10 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 7 of the present application;
  • Fig. 11 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 8 of the present application;
  • Fig. 12 is a schematic structural diagram of the post structure provided in embodiment 9 of the present application.
  • Fig. 13 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 9 of the present application;
  • Fig. 14 is a schematic structural diagram of the post structure provided in embodiment 10 of the present application.
  • Fig. 15 is a schematic diagram of the high-capacity battery with positive and negative lugs at one end in embodiment 10 of the present application;
  • Fig. 16 is a schematic structural diagram of the post structure in embodiment 11 of the present application.
  • Fig. 17 is a schematic diagram of the high-capacity battery in embodiment 11 of the present application.
  • Fig. 18 is a schematic structural diagram of the post structure in embodiment 12 of the present application.
  • Fig. 19 is a schematic diagram of the high-capacity battery in embodiment 12 of the present application.
  • Fig. 20 is a schematic diagram of the high-capacity battery in embodiment 13 of the present application.
  • Fig. 21 is a first schematic structural diagram of the post structure in embodiment 14 of the present application.
  • Fig. 22 is a second schematic structural diagram of the post structure in embodiment 14 of the present application.
  • Fig. 23 is a first schematic diagram of the high-capacity battery in embodiment 14 of the present application.
  • Fig. 24 is a second schematic diagram of the high-capacity battery in embodiment 14 of the present application.
  • plural means two or more.
  • a plurality of elements means two elements or more than two elements.
  • the words “exemplarily” or “for example” or the like are used to represent examples, illustrations or explanations. Any embodiment or design described with “exemplarily” or “for example” in the present application should not be interpreted as being more preferred or advantageous than other embodiments or designs. Specifically, the use of the words “exemplarily” or “for example” or the like is intended to present related concepts in a specific way.
  • Figs. 1 and 2 show schematic diagrams of the post structure provided in this embodiment.
  • the post structure 10 comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13. At least one pore channel 14 is formed in the post body 11, and the heat conducting units 13 are connected to the post body 11 through said at least one pore channel 14, and are fitted with the inner wall of each pore channel respectively.
  • said at least one pore channel is located at one side close to the post body, so that said at least one pore channel is closer to the lug of the battery during use, thereby attains a purpose of facilitating heat dissipation.
  • the heat conducting unit 13 is a heat tube that has a hollow structure, and a phase change material is injected in the heat tube in a vacuum state.
  • the working sections of the heat tube include an evaporation section and a condensation section.
  • the phase change material in the heat tube is evaporated and carries away the heat, which is the latent heat of evaporation of the phase change material.
  • the vapor flows from the central channel to the condensation section of the heat tube, is condensed into liquid, and gives off the latent heat at the same time. Under the action of the capillary force or gravity, the liquid flows back to the evaporation section.
  • the heat conduction efficiency of the heat tube is 10 ⁇ 100 times that of metal materials.
  • the heat tube technology has been widely applied in military industry, aerospace industry and other industries, and it is also used for cooling battery cells in the battery industry.
  • each of said at least one pore channel 14 is a cylindrical hole.
  • the heat conducting unit 13 may be a vertical heat tube.
  • the post body 11 is provided with a wiring post 12, at least one pore channel 14 (i.e., five cylindrical holes) is arranged near the opposite side of the wiring post 12, and the heat conducting unit 13 (i.e., a vertical heat tube) is inserted into said at least one pore channel 14.
  • Each heat conducting unit is provided with an insulating portion for insulation between the heat conducting units, and the insulating portion may be an insulating layer.
  • at least one heat dissipation unit comprises a heat dissipating fan. The heat dissipating fan is coupled to the heat conducting unit 13.
  • the post structure can be arranged in a high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
  • a post structure comprises a post body, a wiring post connected to the post body, and heat conducting units. At least one pore channel is formed in the post body, and the heat conducting units are connected to the post body through said at least one pore channel, and are fitted with the inner wall of each pore channel respectively.
  • each of said at least one pore channel is a cylindrical hole.
  • the heat conducting unit 13 may be a curved heat tube.
  • the post body 11 is provided with a wiring post 12, at least one pore channel (i.e., five cylindrical holes) is arranged near the opposite side of the wiring post 12, and the heat conducting unit 13 (i.e., a curved heat tube) is inserted into said at least one pore channel.
  • At least one heat dissipation unit comprises heat radiating fins and a semiconductor cooler.
  • the semiconductor cooler is coupled to the heat conducting unit 13 and connected in an insulating way via an insulating pad, and the semiconductor cooler is coupled to the heat radiating fins.
  • a post structure comprises a post body 11, a wiring post 12 connected to the post body, and heat conducting units 13. At least one pore channel is formed in the post body 11, and the heat conducting units 13 are connected to the post body 11 through said at least one pore channel, and are fitted with the inner wall of each pore channel respectively.
  • each of said at least one pore channel 14 is a square slot.
  • the heat conducting unit 13 may be a flat heat tube.
  • the post body 11 is provided with a wiring post 12, at least one pore channel 14 (i.e., a square slot) is arranged near the opposite side of the wiring post 12, as shown in Fig. 4B, and the heat conducting unit 13 (i.e., a flat heat tube) is inserted into said at least one pore channel 14.
  • Fig. 5 shows a high-capacity battery provided in this embodiment.
  • the high-capacity battery 20 comprises a current collector plate 21, a battery cell 22, a shell 23 and an upper cover 24, and the post structure 10 in the above embodiment 1.
  • the post structure 10 comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13.
  • the battery cell 22 and the current collector plate 21 are arranged in the shell 23, the post body 11 of each post structure 10 in said at least one post structure 10 is coupled to the current collector plate 21, and the post body 11 of each post structure 10 passes through the upper cover 24.
  • the heat conducting units 13 in the above-mentioned at least one post structure 10 are vertical heat conducting units, and the heat dissipation units of said at least one post structure 10 comprise at least one heat dissipation unit, and the vertical heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit is a heat dissipating fan 25.
  • a high-capacity battery comprises at least one post structure, a current collector plate, a battery cell, a shell and an upper cover;
  • the post structure comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13.
  • the battery cell and the current collector plate are arranged in the shell, the post body of each post structure in said at least one post structure is coupled to the current collector plate, and the post body of each post structure passes through the upper cover.
  • the post structure can be arranged in the high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
  • the heat conducting units 13 in the above-mentioned at least one post structure are curved heat conducting units, the heat dissipation units of said at least one post structure comprise at least one heat dissipation unit, and the curved heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit includes heat radiating fins 26 and a semiconductor cooler 27.
  • the semiconductor cooler 27 utilizes the Peltier effect of a semiconductor material.
  • direct current passes through a thermocouple formed by two different semiconductor materials connected in series, the two ends of the thermocouple can absorb heat and release heat respectively, thereby a purpose of cooling is attained.
  • a high-capacity battery comprises at least one post structure, a current collector plate, a battery cell, a shell and an upper cover;
  • the post structure comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13.
  • the battery cell and the current collector plate are arranged in the shell, the post body of each post structure in said at least one post structure is coupled to the current collector plate, and the post body of each post structure passes through the upper cover.
  • the post structure can be arranged in the high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
  • the heat conducting units 13 in the above-mentioned at least one post structure are flat heat conducting units, the heat dissipation units of said at least one post structure comprise at least one heat dissipation unit, and the flat heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit is composed of heat radiating fins 28.
  • a post structure comprises a post body and heat conducting units integrally arranged with the post body, wherein the heat conducting units are closed cavities arranged in the post body, which is to say, a plurality of hollow structures are worked out in the post body, and a phase change material is injected into the closed cavities.
  • the post body is a T-shaped aluminum profile specifically.
  • One end of the T-shaped aluminum profile is provided with a wiring post 2 with a closed cavity 3 therein.
  • the closed cavity 3 is vacuumized and acetone is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
  • the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is fixedly connected to the lugs at the two ends of the battery cell 4 by laser welding, the post 1 is welded to the current collector plate 5, the upper end face of the post 1 passes through the upper cover 7 and is closely attached to the heat radiating fins 8, and the contact surface of the post 1 is uniformly coated with thermal conducting and insulating silicone.
  • the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat radiating fins 8 exchange the heat, so as to attain the purpose of rapid cooling.
  • one end of the T-shaped aluminum profile is a wiring post 2 with a closed cavity 3 therein.
  • the closed cavity 3 is vacuumized and methanol is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
  • the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is fixedly connected to the lugs at the two ends of the battery cell 4 by ultrasonic welding, the post 1 is welded to the current collector plate 5, and a semiconductor cooler 9 is arranged between the heat radiating fins 8 and the post 1 and connected to the post via an insulating pad.
  • the upper end face of the post 1 passes through the upper cover 7 and is closely attached to the semiconductor cooler 9, the contact surface between the post 1 and the semiconductor cooler 9 is coated with insulating paint, and the other end face of the semiconductor cooler is connected to the heat radiating fins 8.
  • the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged to the heat radiating fins 8 through the semiconductor cooler 9, so as to attain the purpose of rapid cooling.
  • the heat radiating fins 8 can assist the semiconductor cooler 9 in cooling.
  • one end of the T-shaped aluminum profile is a wiring post 2 with a plurality of closed cavities 3 arranged side by side therein.
  • the closed cavities 3 are vacuumized and ethanol is injected into the closed cavities 3, so as to form a post 1 with super thermal conductivity.
  • the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is welded to the lugs at the two ends of the battery cell 4 by ultrasonic welding, the post 1 is welded to the current collector plate 5, and an end face of the positive and negative posts passes through the upper cover 7 and is provided with a heat dissipating fan.
  • the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat dissipating fan exchanges the heat, so as to attain the purpose of rapid cooling.
  • one end of the T-shaped aluminum profile is a wiring post 2 with a closed cavity 3 therein.
  • the closed cavity 3 is vacuumized and a mixture of acetone and methanol is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
  • the positive and negative lugs of the battery cell 4 are arranged on the same side, the current collector plate 5 is fixedly connected to the lugs on the same side of the battery cell 4 by laser welding, the post 1 is welded to the current collector plate 5, and the heat dissipation unit is composed of heat radiating fins 8, which are connected to the insulating paint on the post 1 in an insulating way, and the upper end face of the post passes through the upper cover 7 and is tightly coupled to the heat radiating fins 8.
  • the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat dissipating fan 8 exchanges the heat, so as to attain the purpose of rapid cooling.
  • one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 3 is in communication with the liquid reservoir 34; after the closed cavity 33 is vacuumized, perfluorohexanone is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed.
  • the liquid reservoir 34 is provided with a structural weak point 35, which is formed by a fusible metal sealing sheet.
  • the post 31 is arranged through the upper cover 39, the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by laser welding, and the post 31 is welded to the current collector plate 38.
  • the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling.
  • the fusible metal sheet at the structural weak point 5 melts, and the perfluorohexanone in the post flows to the battery cell through the channel at the structural weak point 35, so as to extinguish the fire or protect the entire internal space of the battery cell.
  • one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 33 is in communication with the liquid reservoir 34; after the closed cavity 3 is vacuumized, tetrachloromethane is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed.
  • the liquid reservoir 34 is provided with a structural weak point 35, which is formed by a piece of aluminum foil with a bursting device 310.
  • the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by ultrasonic welding, and the post 31 is welded to the current collector plate 38.
  • a temperature sensing cable 311 is arranged on the surface of the battery cell 37, and the temperature sensing cable 311 is connected to the bursting device 310. As the temperature of the lugs of the battery cell rises, the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling.
  • the temperature sensing cable 311 When the temperature reaches a set temperature of the temperature sensing cable 311, the temperature sensing cable forms a loop, and the bursting device 310 is initiated, thereby the aluminum foil at the structural weak point 35 is ruptured, and the tetrafluoromethane in the post 31 flows to the battery cell for fire extinguishing and protection.
  • one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 33 is in communication with the liquid reservoir 34; after the closed cavity 33 is vacuumized, difluorochlorobromomethane is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed.
  • the liquid reservoir 34 is provided with a structural weak point 35, which is formed by a piece of aluminum foil with a bursting device 310.
  • the post 31 is arranged through the upper cover 39, the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by ultrasonic welding, and the post 31 is welded to the current collector plate 38.
  • a temperature sensitive switch 312 is arranged on the surface of the battery cell 37, and the temperature sensitive switch 312 is connected to the bursting device 310. As the temperature of the lugs of the battery cell rises, the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling.
  • the temperature sensing cable forms a loop, and the bursting device 310 is initiated, thereby the aluminum foil at the structural weak point 35 is ruptured, and the difluorochlorobromomethane in the post 31 flows to the battery cell for fire extinguishing and protection.
  • a circulating flow channel is arranged in the post body 11, and the outlets 511/611 of the circulating flow channel are arranged at the outer side of the post body 11 protruding from the battery shell, and a circulating medium circulates in the circulating flow channel.
  • the circulating flow channel may be configured into different shapes according to the actual requirements; preferably, the circulating flow channel is a U-shaped flow channel.
  • the lower end of the circulating flow channel is in communication through a bottom slot, which is sealed by means of a plug.
  • the outlets 511/611 of the U-shaped circulating flow channel are provided with grooves for receiving an inlet tube 51 or an outlet tube 61 respectively, and the outlets 511/611 of the U-shaped channel are connected with the inlet tube 51 and the outlet tube 61 respectively; the circulating medium flows into the pore channel from the inlet tube 51 and then flows out from the outlet tube 61.
  • the circulating medium is one or more of dry air, high-purity water, coolant and heat conducting oil.
  • the outlet tube of the first post is in communication with the inlet tube of the second post through a connecting tube 81 between adjacent posts, so that circulated heating or cooling through a plurality of posts is realized, and the heat exchange efficiency is improved.
  • the post structure further comprises a heat dissipation unit; in this embodiment, the heat dissipation unit is a water chiller, which is in an insulated connection with the inlet tube and the outlet tube of the post respectively to form a fluid heat loop.
  • the heat dissipation unit is a water chiller, which is in an insulated connection with the inlet tube and the outlet tube of the post respectively to form a fluid heat loop.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Abstract

A battery post (10) and a high-capacity battery (20), and belongs to the field of batteries. The battery post (10) comprises a post body (11) and at least one heat conducting unit (13), wherein the heat conducting unit (13) is a closed cavity (3) arranged in the post body (11) and provided with a heat transfer medium, and the closed cavity (3) is in a vacuum state; or the heat conducting unit (13) is a heat tube, the post body (11) is provided with a pore channel (14), and the heat tube is arranged in the pore channel (14); or the heat conducting unit (13) is a circulating flow channel that is arranged in the post body (11) and contains a circulating medium. When the battery (20) is charged or discharges at high current, the heat generated by the battery cell is concentrated at the post (10) of the battery (20), and the heat transfer medium in the closed cavity (3) undergoes phase change under the heat generated from the post (10) in the vacuum state, thereby energy exchange is completed; alternatively, heat conduction may be realized by providing a heat tube or a circulating flow channel containing a circulating medium. By providing a heat dissipation unit coupled to the heat conducting unit (13), the heat from the post (10) can be dissipated in time, thus the safety and service life of the battery (20) are improved.

Description

Battery Post and High-Capacity Battery Technical Field
_______________________________________________________________________________________
The present invention belongs to the field of batteries, in particular to a battery post and a high-capacity battery.
Background Art
_______________________________________________________________________________________
In recent years, the lithium battery technology has been developed rapidly and applied in more and more domains. However, owing to the principle and structural characteristics of lithium batteries, the lithium batteries often generate great heat as a result of the internal resistance and the heat will increase gradually during repeated use. The lug portion near the post is the part with the highest heat in the battery cell. If the heat accumulated at the lug portion can't be dissipated effectively, the stability of the lithium battery will be compromised and the service life of the lithium battery will be shortened. As the temperature rises further, the electrolyte and solvent inside the battery cell may be decomposed, burn and explode. In view of the safety consideration, at present, the unit size of lithium battery is very small, and the battery capacity is not high.
Conventional heat dissipation systems mainly employ forced ventilation, water cooling and natural convection for heat dissipation, each of which has some application drawbacks: forced ventilation and water cooling belong to active heat dissipation, and such systems have a bulky and complex structure because a fan, a pump, tube lines and other accessories are required; in addition, air cooling has disadvantages of low heat exchange efficiency and uneven heat dissipation, and the air passages may be blocked by dust easily, and also affect the sealing performance of the package of a lithium battery module; water cooling has a very high cost and requires corresponding insulation treatment. Therefore, the above approaches consume the energy of the battery and decrease the actual power density and energy density of the battery. Natural convection belongs to passive heat dissipation, and achieves air cooling at maximum efficiency by optimizing the structure of the battery  pack; consequently, the heat dissipation effect is very limited when the air convection condition is poor.
From the above description, it can be seen that the research on the liquid cooling structures for batteries is not matured, and the heat exchange efficiency of the cooling structure is not high; consequently, problems such as uneven temperature inside the module may be resulted, thereby the performance and service life of the battery as well as the safety and reliability of the system are directly affected.
Moreover, at present, the main counter measure against the fire after the thermal runaway of a battery in the market is fire extinguishing with a conventional fire extinguishing agent. However, such an approach can only extinguish the external fire source of the battery, but can't extinguish the fire from the internal source of the battery. Consequently, the thermal runaway of the battery continues and may lead to secondary burning of the battery.
Contents of the Invention
_______________________________________________________________________________________
An object of the present invention is to solve at least the above-mentioned problems and/or drawbacks and provide at least the advantages described below.
The present invention provides a battery post, which comprises a post body and at least one heat conducting unit, wherein the heat conducting unit is a closed cavity arranged in the post body and provided with a heat transfer medium, and the closed cavity is in a vacuum state; or the heat conducting unit is a heat tube, the post body is provided with a pore channel, and the heat tube is arranged in the pore channel; or the heat conducting unit is a circulating flow channel that is arranged in the post body and contains a circulating medium.
Preferably, a wick is provided in the closed cavity.
Preferably, the wick has a porous capillary structure or grooved structure.
Preferably, the heat transfer medium is at least one of methanol, acetone and ethanol.
Preferably, the bottom of the closed cavity is provided with a weak portion, and the heat transfer medium has a fire extinguishing function.
Preferably, the weak portion is a piece of aluminum foil or fusible metal.
Preferably, the weak portion is provided with a temperature sensing device and a bursting device.
Preferably, the heat transfer medium is haloalkane.
Preferably, the haloalkane is at least one of perfluorohexanone, perfluoropentone, difluorochlorobromomethane, tetrachloromethane and trifluorobromomethane.
Preferably, the heat tube is closely fitted with the pore channel and extends out of the battery post.
Preferably, the battery post further comprises a heat dissipation unit, which is in an insulated connection with the battery post or the heat conducting unit.
Preferably, the heat dissipation unit is at least one of a semiconductor cooler, heat radiating fins and a heat dissipating fan.
Preferably, the battery post further comprises a heat exchanger, which is connected to the circulating flow channel for circulation of the circulating medium.
Preferably, the heat exchanger is a water chiller.
Preferably, each heat conducting unit is provided with an insulating portion for insulation between the heat conducting units.
Preferably, the circulating flow channel is a U-shaped flow channel.
Preferably, the circulating medium is one or more of dry air, high-purity water, coolant and heat conducting oil.
The present invention further provides a high-capacity battery, which comprises the battery post according to any of the above aspects.
Compared with the prior art, the present invention attains the following beneficial effects:
1. In the present application, the post is provided with at least one heat conducting unit, which is a closed cavity that is arranged inside the post, provided with a heat transfer medium, and in a vacuum state. A wick and a phase change material are provided in the closed cavity. In a vacuum state, as the post is heated, the phase change material inside the post changes from liquid to vapor. The vapor carries heat to a condensation section and is condensed, so that the phase change material returns to its original position under the action of the  gravity and the capillary effect of the wick, thus energy exchange is completed and a closed loop is formed. When the battery is charged or discharges at high current, the heat generated by the battery cell is concentrated at the lug of the battery, which is connected to a current collector plate of the battery; the generated heat is quickly conducted by the current collector plate to the post with super-thermal conductivity in contact with the current collector plate, thus the heat generated by the battery cell can be efficiently and quickly conducted out without any additional complex heat dissipation system such as air cooling system or water cooling system, thereby the safe operation of the battery is ensured, and the safety and service life of the battery are improved.
2. In the present application, the phase change material inside the post is heated and volatilized to the upper end of the post, thereby the heat of the battery cell is conducted to the outside and the temperature inside the battery is decreased quickly. When the temperature of the battery cell is too high, the temperature sensing device on the battery cell establishes a circuit, and the bursting device is initiated, so that the weak portion is ruptured; or the weak portion is a piece of fusible metal, which melts and ruptures at a high temperature, and the phase change material with a fire extinguishing function will flow out, thus the entire internal space of the battery is protected.
3. In the case that the heat conducting unit in the present application is a heat tube, the post is provided with a pore channel, the heat tube is arranged inside the pore channel and closely fitted with the post, so that the heat of the post is conducted to a condensation section of the heat tube, thereby the safety of the battery is improved.
4. In the case that the heat conducting unit in the present application is a circulating flow channel that is arranged inside the post and contains a circulating medium, the heat of the post can be conducted out by the circulating flow of the circulating medium, thus the safety of the battery is improved.
5. In the present application, the heat at the heat conducting unit and the post can  be conducted out in time by means of heat dissipation units such as a heat dissipating fan, heat radiating fins and a semiconductor cooler, so as to ensure the safe operation of the battery.
Other advantages, objects and features of the embodiments of the present invention will be reflected partially by the following description, and will be understood by those skilled in the art partially through the study and practice of the embodiments of the present invention.
Brief Description of Drawings
_______________________________________________________________________________________
Fig. 1 is a schematic structural diagram of the post structure provided in embodiment 1 of the present application;
Fig. 2 is a schematic structural diagram of the post structure (with the heat conducting unit omitted) provided in embodiment 1 of the present application;
Fig. 3 is a schematic structural diagram of the post structure provided in embodiment 2 of the present application;
Fig. 4A is a schematic structural diagram of the post structure (with the heat conducting unit omitted) provided in embodiment 3 of the present application;
Fig. 4B is a schematic structural diagram of the post structure provided in embodiment 3 of the present application;
Fig. 5 is a schematic structural diagram of the high-capacity battery provided in embodiment 4 of the present application;
Fig. 6 is a schematic structural diagram of the high-capacity battery provided with heat dissipation units in embodiment 4 of the present application;
Fig. 7 is a schematic structural diagram of the high-capacity battery provided in embodiment 5 of the present application;
Fig. 8 is a schematic structural diagram of the high-capacity battery provided in embodiment 6 of the present application;
Fig. 9 is a schematic structural diagram of the post structure provided in embodiment 7 of the present application;
Fig. 10 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 7 of the present application;
Fig. 11 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 8 of the present application;
Fig. 12 is a schematic structural diagram of the post structure provided in embodiment 9 of the present application;
Fig. 13 is a schematic diagram of the high-capacity battery with positive and negative lugs at two ends in embodiment 9 of the present application;
Fig. 14 is a schematic structural diagram of the post structure provided in embodiment 10 of the present application;
Fig. 15 is a schematic diagram of the high-capacity battery with positive and negative lugs at one end in embodiment 10 of the present application;
Fig. 16 is a schematic structural diagram of the post structure in embodiment 11 of the present application;
Fig. 17 is a schematic diagram of the high-capacity battery in embodiment 11 of the present application;
Fig. 18 is a schematic structural diagram of the post structure in embodiment 12 of the present application;
Fig. 19 is a schematic diagram of the high-capacity battery in embodiment 12 of the present application;
Fig. 20 is a schematic diagram of the high-capacity battery in embodiment 13 of the present application;
Fig. 21 is a first schematic structural diagram of the post structure in embodiment 14 of the present application;
Fig. 22 is a second schematic structural diagram of the post structure in embodiment 14 of the present application;
Fig. 23 is a first schematic diagram of the high-capacity battery in embodiment 14 of the present application;
Fig. 24 is a second schematic diagram of the high-capacity battery in embodiment 14 of the present application.
Embodiments
Hereunder the technical scheme in the embodiments of the present application will be detailed clearly and completely with reference to the accompanying drawings of the embodiments. Obviously, the embodiments described herein are only some embodiments of the present application, but not all possible embodiments of the present application. Those skilled in the art can obtain other embodiments based on the embodiments provided herein without expending any creative labor; however, all those embodiments shall be deemed as falling in the scope of protection of the present application.
The terms "first" , "second" and the like in the description of the embodiments and the claims of the present application are intended to distinguish different objects, rather than to describe the specific order of the objects.
In the description of the embodiments of the present application, unless otherwise specified, "plurality" means two or more. For example, a plurality of elements means two elements or more than two elements.
The term "and/or" used herein is intended to describe an association relationship between associated objects, indicating that three kinds of relationships may exist, and the symbol "/" used herein indicates that the associated objects are in an OR relationship, for example, "input/output" indicates input or output.
In the embodiments of the present application, the words "exemplarily" or "for example" or the like are used to represent examples, illustrations or explanations. Any embodiment or design described with "exemplarily" or "for example" in the present application should not be interpreted as being more preferred or advantageous than other embodiments or designs. Specifically, the use of the words "exemplarily" or "for example" or the like is intended to present related concepts in a specific way.
Embodiment 1
Figs. 1 and 2 show schematic diagrams of the post structure provided in this embodiment. The post structure 10 comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13. At least one pore channel 14 is formed in the post body 11, and the heat conducting units 13 are connected to the post body 11 through said at least one pore channel 14, and are fitted with the inner wall of each pore channel respectively.
Optionally, said at least one pore channel is located at one side close to the post body, so that said at least one pore channel is closer to the lug of the battery during use, thereby attains a purpose of facilitating heat dissipation.
Optionally, the heat conducting unit 13 is a heat tube that has a hollow structure, and a phase change material is injected in the heat tube in a vacuum state. The working sections of the heat tube include an evaporation section and a condensation section. When the evaporation section is heated, the phase change material in the heat tube is evaporated and carries away the heat, which is the latent heat of evaporation of the phase change material. The vapor flows from the central channel to the condensation section of the heat tube, is condensed into liquid, and gives off the latent heat at the same time. Under the action of the capillary force or gravity, the liquid flows back to the evaporation section. In that way, a closed loop is completed, thereby a large amount of heat is transferred from the heating section to the heat dissipation section. The heat conduction efficiency of the heat tube is 10~100 times that of metal materials. The heat tube technology has been widely applied in military industry, aerospace industry and other industries, and it is also used for cooling battery cells in the battery industry.
As shown in Fig. 2, each of said at least one pore channel 14 is a cylindrical hole. Correspondingly, the heat conducting unit 13 may be a vertical heat tube. It can be understood that the post body 11 is provided with a wiring post 12, at least one pore channel 14 (i.e., five cylindrical holes) is arranged near the opposite side of the wiring post 12, and the heat conducting unit 13 (i.e., a vertical heat tube) is inserted into said at least one pore channel 14. Each heat conducting unit is provided with an insulating portion for insulation between the heat conducting units, and the insulating  portion may be an insulating layer. In this embodiment of the present application, in the case that the heat conducting unit 13 is a vertical heat tube, at least one heat dissipation unit comprises a heat dissipating fan. The heat dissipating fan is coupled to the heat conducting unit 13.
Since the post structure can be arranged in a high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
Embodiment 2
In this embodiment, a post structure is provided. The post structure comprises a post body, a wiring post connected to the post body, and heat conducting units. At least one pore channel is formed in the post body, and the heat conducting units are connected to the post body through said at least one pore channel, and are fitted with the inner wall of each pore channel respectively.
In this embodiment, as shown in Fig. 3, each of said at least one pore channel is a cylindrical hole. Correspondingly, the heat conducting unit 13 may be a curved heat tube. the post body 11 is provided with a wiring post 12, at least one pore channel (i.e., five cylindrical holes) is arranged near the opposite side of the wiring post 12, and the heat conducting unit 13 (i.e., a curved heat tube) is inserted into said at least one pore channel.
In this embodiment, in the case that the heat conducting unit 13 is a curved heat tube, at least one heat dissipation unit comprises heat radiating fins and a semiconductor cooler. The semiconductor cooler is coupled to the heat conducting unit 13 and connected in an insulating way via an insulating pad, and the semiconductor cooler is coupled to the heat radiating fins.
Embodiment 3
In this embodiment, a post structure is provided. The post structure comprises a post body 11, a wiring post 12 connected to the post body, and heat conducting units 13. At least one pore channel is formed in the post body 11, and the heat conducting units 13 are connected to the post body 11 through said at least one pore channel, and are fitted with the inner wall of each pore channel respectively.
In this embodiment, as shown in Fig. 4A, each of said at least one pore channel 14 is a square slot. Correspondingly, the heat conducting unit 13 may be a flat heat tube. the post body 11 is provided with a wiring post 12, at least one pore channel 14 (i.e., a square slot) is arranged near the opposite side of the wiring post 12, as shown in Fig. 4B, and the heat conducting unit 13 (i.e., a flat heat tube) is inserted into said at least one pore channel 14.
Embodiment 4
Fig. 5 shows a high-capacity battery provided in this embodiment. The high-capacity battery 20 comprises a current collector plate 21, a battery cell 22, a shell 23 and an upper cover 24, and the post structure 10 in the above embodiment 1. The post structure 10 comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13. The battery cell 22 and the current collector plate 21 are arranged in the shell 23, the post body 11 of each post structure 10 in said at least one post structure 10 is coupled to the current collector plate 21, and the post body 11 of each post structure 10 passes through the upper cover 24.
Optionally, in this embodiment, as shown in Fig. 6, the heat conducting units 13 in the above-mentioned at least one post structure 10 are vertical heat conducting units, and the heat dissipation units of said at least one post structure 10 comprise at least one heat dissipation unit, and the vertical heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit is a heat dissipating fan 25.
Embodiment 5
As shown in Fig. 7, in this embodiment of the present application, a high-capacity battery is provided. The high-capacity battery comprises at least one post structure, a current collector plate, a battery cell, a shell and an upper cover; the post structure comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13. The battery cell and the current collector plate are arranged in the shell, the post body of each post structure in said at least one post structure is coupled to the current collector plate, and the post body of each post structure passes through the upper cover. Since the post structure can be arranged in the high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
The heat conducting units 13 in the above-mentioned at least one post structure are curved heat conducting units, the heat dissipation units of said at least one post structure comprise at least one heat dissipation unit, and the curved heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit includes heat radiating fins 26 and a semiconductor cooler 27.
In this embodiment, the semiconductor cooler 27 utilizes the Peltier effect of a semiconductor material. When direct current passes through a thermocouple formed by two different semiconductor materials connected in series, the two ends of the thermocouple can absorb heat and release heat respectively, thereby a purpose of cooling is attained.
Embodiment 6
As shown in Fig. 8, in this embodiment of the present application, a high-capacity battery is provided. The high-capacity battery comprises at least one post structure, a current collector plate, a battery cell, a shell and an upper cover; the post structure comprises a post body 11, a wiring post 12 connected to the post body 11, and heat conducting units 13. The battery cell and the current collector plate are arranged in the shell, the post body of each post structure in said at least one post structure is coupled to the current collector plate, and the post body of each post structure passes through the upper cover. Since the post structure can be arranged in the high-capacity battery, the heat generated by the battery cell is concentrated at the two ends of the lug of the battery when the high-capacity battery is charged or discharges at high current, and the lug is connected to a current collector plate, so that the generated heat is transferred by the current collector plate to the post body in contact with the current collector plate, and the heat conducting units embedded in the post can balance the heat and prevent local overheat and battery burning, thereby attain the purpose of rapid cooling.
The heat conducting units 13 in the above-mentioned at least one post structure are flat heat conducting units, the heat dissipation units of said at least one post structure comprise at least one heat dissipation unit, and the flat heat conducting units are in one-to-one correspondence to the heat dissipation units; wherein the above-mentioned at least one heat dissipation unit is composed of heat radiating fins 28.
Embodiment 7
In this embodiment, a post structure is provided. The post structure comprises a post body and heat conducting units integrally arranged with the post body, wherein the heat conducting units are closed cavities arranged in the post body, which is to say, a plurality of hollow structures are worked out in the post body, and a phase change material is injected into the closed cavities.
As shown in Fig. 9, the post body is a T-shaped aluminum profile specifically. One end of the T-shaped aluminum profile is provided with a wiring post 2 with a closed cavity 3 therein. The closed cavity 3 is vacuumized and acetone is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
As shown in Fig. 10, in the shell 6, the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is fixedly connected to the lugs at the two ends of the battery cell 4 by laser welding, the post 1 is welded to the current collector plate 5, the upper end face of the post 1 passes through the upper cover 7 and is closely attached to the heat radiating fins 8, and the contact surface of the post 1 is uniformly coated with thermal conducting and insulating silicone. When the temperature of the lugs of the battery cell is too high, the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat radiating fins 8 exchange the heat, so as to attain the purpose of rapid cooling.
Embodiment 8
As shown in Fig. 9, one end of the T-shaped aluminum profile is a wiring post 2 with a closed cavity 3 therein. The closed cavity 3 is vacuumized and methanol is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
As shown in Fig. 11, in the shell 6, the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is fixedly connected to the lugs at the two ends of the battery cell 4 by ultrasonic welding, the post 1 is welded to the current collector plate 5, and a semiconductor cooler 9 is arranged between the heat radiating fins 8 and the post 1 and connected to the post via an insulating pad. The upper end face of the post 1 passes through the upper cover 7 and is closely attached to the semiconductor cooler 9, the contact surface between the post 1 and the semiconductor cooler 9 is coated with insulating paint, and the other end face of the semiconductor cooler is connected to the heat radiating fins 8. When the temperature of the lugs of the battery cell is too high, the phase change material in the post 1 is  heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged to the heat radiating fins 8 through the semiconductor cooler 9, so as to attain the purpose of rapid cooling. The heat radiating fins 8 can assist the semiconductor cooler 9 in cooling.
Embodiment 9
As shown in Fig. 12, one end of the T-shaped aluminum profile is a wiring post 2 with a plurality of closed cavities 3 arranged side by side therein. The closed cavities 3 are vacuumized and ethanol is injected into the closed cavities 3, so as to form a post 1 with super thermal conductivity.
As shown in Fig. 13, in the shell 6, the positive and negative lugs of the battery cell 4 are arranged at the two ends, the current collector plate 5 is welded to the lugs at the two ends of the battery cell 4 by ultrasonic welding, the post 1 is welded to the current collector plate 5, and an end face of the positive and negative posts passes through the upper cover 7 and is provided with a heat dissipating fan. When the temperature of the lugs of the battery cell is too high, the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat dissipating fan exchanges the heat, so as to attain the purpose of rapid cooling.
Embodiment 10
As shown in Fig. 14, one end of the T-shaped aluminum profile is a wiring post 2 with a closed cavity 3 therein. The closed cavity 3 is vacuumized and a mixture of acetone and methanol is injected into the closed cavity 3, so as to form a post 1 with super thermal conductivity.
As shown in Fig. 15, in this embodiment, in the shell 6, the positive and negative lugs of the battery cell 4 are arranged on the same side, the current collector plate 5 is fixedly connected to the lugs on the same side of the battery cell 4 by laser welding, the post 1 is welded to the current collector plate 5, and the heat dissipation unit is  composed of heat radiating fins 8, which are connected to the insulating paint on the post 1 in an insulating way, and the upper end face of the post passes through the upper cover 7 and is tightly coupled to the heat radiating fins 8. When the temperature of the lugs of the battery cell is too high, the phase change material in the post 1 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat dissipating fan 8 exchanges the heat, so as to attain the purpose of rapid cooling.
Embodiment 11
As shown in Fig. 16, one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 3 is in communication with the liquid reservoir 34; after the closed cavity 33 is vacuumized, perfluorohexanone is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed. The liquid reservoir 34 is provided with a structural weak point 35, which is formed by a fusible metal sealing sheet.
As shown in Fig. 17, in the shell 36, the post 31 is arranged through the upper cover 39, the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by laser welding, and the post 31 is welded to the current collector plate 38. As the temperature of the lugs of the battery cell rises, the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling. When the temperature reaches the melting point of the fusible metal, the fusible metal sheet at the structural weak point 5 melts, and the perfluorohexanone in the post flows to the battery cell through the channel at the structural weak point 35, so as to extinguish the fire or protect the entire internal space of the battery cell.
Embodiment 12
As shown in Fig. 18, one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 33 is in communication with the liquid reservoir 34; after the closed cavity 3 is vacuumized, tetrachloromethane is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed. The liquid reservoir 34 is provided with a structural weak point 35, which is formed by a piece of aluminum foil with a bursting device 310.
As shown in Fig. 19, in the shell 36, the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by ultrasonic welding, and the post 31 is welded to the current collector plate 38. A temperature sensing cable 311 is arranged on the surface of the battery cell 37, and the temperature sensing cable 311 is connected to the bursting device 310. As the temperature of the lugs of the battery cell rises, the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling. When the temperature reaches a set temperature of the temperature sensing cable 311, the temperature sensing cable forms a loop, and the bursting device 310 is initiated, thereby the aluminum foil at the structural weak point 35 is ruptured, and the tetrafluoromethane in the post 31 flows to the battery cell for fire extinguishing and protection.
Embodiment 13
As shown in Fig. 18, one end of the T-shaped aluminum profile is a wiring post 32 with a closed cavity 33 therein, a liquid reservoir 34 is welded to the lower end of the closed cavity 33, and the closed cavity 33 is in communication with the liquid reservoir 34; after the closed cavity 33 is vacuumized, difluorochlorobromomethane  is injected as a phase change material as well as a fire extinguishing medium into the communication space, thus a post 31 with super thermal conductivity is formed. The liquid reservoir 34 is provided with a structural weak point 35, which is formed by a piece of aluminum foil with a bursting device 310.
As shown in Fig. 20, in the shell 36, the post 31 is arranged through the upper cover 39, the positive and negative lugs of the battery cell 37 are arranged at the two ends, the current collector plate 38 is fixedly connected to the lugs at the two ends of the battery cell 37 by ultrasonic welding, and the post 31 is welded to the current collector plate 38. A temperature sensitive switch 312 is arranged on the surface of the battery cell 37, and the temperature sensitive switch 312 is connected to the bursting device 310. As the temperature of the lugs of the battery cell rises, the phase change material in the post 31 is heated and volatilized, and transfers the heat to the upper end of the post, and the heat is exchanged with the atmosphere, so as to attain the purpose of rapid cooling. When the temperature reaches a set temperature of the temperature sensitive switch 312, the temperature sensing cable forms a loop, and the bursting device 310 is initiated, thereby the aluminum foil at the structural weak point 35 is ruptured, and the difluorochlorobromomethane in the post 31 flows to the battery cell for fire extinguishing and protection.
Embodiment 14
As shown in Figs. 21 to 23, a circulating flow channel is arranged in the post body 11, and the outlets 511/611 of the circulating flow channel are arranged at the outer side of the post body 11 protruding from the battery shell, and a circulating medium circulates in the circulating flow channel.
In the embodiments provided in the present invention, the circulating flow channel may be configured into different shapes according to the actual requirements; preferably, the circulating flow channel is a U-shaped flow channel.
As shown in Fig. 23, the lower end of the circulating flow channel is in communication through a bottom slot, which is sealed by means of a plug.
The outlets 511/611 of the U-shaped circulating flow channel are provided with grooves for receiving an inlet tube 51 or an outlet tube 61 respectively, and the outlets 511/611 of the U-shaped channel are connected with the inlet tube 51 and the outlet tube 61 respectively; the circulating medium flows into the pore channel from the inlet tube 51 and then flows out from the outlet tube 61.
The circulating medium is one or more of dry air, high-purity water, coolant and heat conducting oil.
As shown in Fig. 24, In the case that at least two posts are provided, the outlet tube of the first post is in communication with the inlet tube of the second post through a connecting tube 81 between adjacent posts, so that circulated heating or cooling through a plurality of posts is realized, and the heat exchange efficiency is improved.
The post structure further comprises a heat dissipation unit; in this embodiment, the heat dissipation unit is a water chiller, which is in an insulated connection with the inlet tube and the outlet tube of the post respectively to form a fluid heat loop.
While the present application is disclosed above in embodiments, the present application is not limited to the application set forth in the description and the embodiments. The present application is applicable to various fields in which the embodiments of the present application are suitable for use. Additional modifications can be easily implemented by those skilled in the art. Therefore, the embodiments of the present application are not limited to the specific details and the illustrations shown and described herein, without departing from the general concept defined by the claims and the equivalent scope.

Claims (18)

  1. A battery post, comprising a post body and at least one heat conducting unit, wherein
    the heat conducting unit is a closed cavity arranged in the post body and provided with a heat transfer medium, and the closed cavity is in a vacuum state; or,
    the heat conducting unit is a heat tube, the post body is provided with a pore channel, and the heat tube is arranged in the pore channel; or,
    the heat conducting unit is a circulating flow channel that is arranged in the post body and contains a circulating medium.
  2. The battery post according to claim 1, wherein a wick is provided in the closed cavity.
  3. The battery post according to claim 2, wherein the wick has a porous capillary structure or grooved structure.
  4. The battery post according to any of claims 1-3, wherein the heat transfer medium is at least one of methanol, acetone and ethanol.
  5. The battery post according to claim 1, wherein the bottom of the closed cavity has a weak portion, and the heat transfer medium has a fire extinguishing function.
  6. The battery post according to claim 5, wherein the weak portion is a piece of aluminum foil or fusible metal.
  7. The battery post according to claim 5, wherein the weak portion is provided with a temperature sensing device and a bursting device.
  8. The battery post according to any of claims 5-7, wherein the heat transfer medium is haloalkane.
  9. The battery post according to claim 8, wherein the haloalkane is at least one of perfluorohexanone, perfluoropentone, difluorochlorobromomethane, tetrachloromethane and trifluorobromomethane.
  10. The battery post according to claim 1, wherein the heat tube is closely fitted with the pore channel and extends out of the battery post.
  11. The battery post according to claim 1, further comprising a heat dissipation unit, which is in an insulated connection with the battery post or the heat conducting unit.
  12. The battery post according to claim 11, wherein the heat dissipation unit is at least one of a semiconductor cooler, heat radiating fins and a heat dissipating fan.
  13. The battery post according to claim 1, further comprising a heat exchanger,  which is connected to the circulating flow channel for circulation of the circulating medium.
  14. The battery post according to claim 1, wherein the heat exchanger is a water chiller.
  15. The battery post according to claim 1, wherein each heat conducting unit is provided with an insulating portion for insulation between the heat conducting units.
  16. The battery post according to claim 12, wherein the circulating flow channel is a U-shaped flow channel.
  17. The battery post according to any of claims 13-16, wherein the circulating medium is one or more of dry air, high-purity water, coolant and heat conducting oil.
  18. A high-capacity battery, comprising the battery post according to any of claims 1-17.
PCT/CN2022/092892 2021-05-14 2022-05-13 Battery post and high-capacity battery WO2022237907A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163188453P 2021-05-14 2021-05-14
US63/188,453 2021-05-14
CN202110680701.4A CN113410544A (en) 2021-06-18 2021-06-18 Battery with electrolyte as heat pipe phase change material
CN202110680701.4 2021-06-18
CN202111413475.XA CN114156609A (en) 2021-11-25 2021-11-25 Pole for large battery
CN202111413475.X 2021-11-25

Publications (1)

Publication Number Publication Date
WO2022237907A1 true WO2022237907A1 (en) 2022-11-17

Family

ID=84028238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092892 WO2022237907A1 (en) 2021-05-14 2022-05-13 Battery post and high-capacity battery

Country Status (1)

Country Link
WO (1) WO2022237907A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190663A1 (en) * 2014-10-09 2016-06-30 Simon Fraser University Busbars with integrated cooling system for vehicle battery assemblies
CN207320173U (en) * 2017-06-07 2018-05-04 银隆新能源股份有限公司 A kind of rectangular cell with soakage function
CN113224476A (en) * 2021-05-14 2021-08-06 陕西奥林波斯电力能源有限责任公司 Pole and high-capacity battery with super heat conductivity
CN113224475A (en) * 2021-05-14 2021-08-06 陕西奥林波斯电力能源有限责任公司 Pole structure and large-capacity battery
CN113410588A (en) * 2021-06-18 2021-09-17 陕西奥林波斯电力能源有限责任公司 Pole and large-capacity battery using same
CN113921896A (en) * 2021-10-08 2022-01-11 陕西奥林波斯电力能源有限责任公司 Laminated large-capacity lithium battery
CN114156609A (en) * 2021-11-25 2022-03-08 陕西奥林波斯电力能源有限责任公司 Pole for large battery
CN216436078U (en) * 2021-05-14 2022-05-03 陕西奥林波斯电力能源有限责任公司 Pole and high-capacity battery with super heat conductivity
CN216436079U (en) * 2021-05-14 2022-05-03 陕西奥林波斯电力能源有限责任公司 Pole structure and large-capacity battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160190663A1 (en) * 2014-10-09 2016-06-30 Simon Fraser University Busbars with integrated cooling system for vehicle battery assemblies
CN207320173U (en) * 2017-06-07 2018-05-04 银隆新能源股份有限公司 A kind of rectangular cell with soakage function
CN113224476A (en) * 2021-05-14 2021-08-06 陕西奥林波斯电力能源有限责任公司 Pole and high-capacity battery with super heat conductivity
CN113224475A (en) * 2021-05-14 2021-08-06 陕西奥林波斯电力能源有限责任公司 Pole structure and large-capacity battery
CN216436078U (en) * 2021-05-14 2022-05-03 陕西奥林波斯电力能源有限责任公司 Pole and high-capacity battery with super heat conductivity
CN216436079U (en) * 2021-05-14 2022-05-03 陕西奥林波斯电力能源有限责任公司 Pole structure and large-capacity battery
CN113410588A (en) * 2021-06-18 2021-09-17 陕西奥林波斯电力能源有限责任公司 Pole and large-capacity battery using same
CN113921896A (en) * 2021-10-08 2022-01-11 陕西奥林波斯电力能源有限责任公司 Laminated large-capacity lithium battery
CN114156609A (en) * 2021-11-25 2022-03-08 陕西奥林波斯电力能源有限责任公司 Pole for large battery

Similar Documents

Publication Publication Date Title
JP6043555B2 (en) Battery cooling structure
CN113224476A (en) Pole and high-capacity battery with super heat conductivity
WO2023206828A1 (en) Battery box body structure, battery cell and battery pack
CN211879414U (en) Sealed heat dissipation battery pack
CN116387674A (en) Heat dissipation battery box and battery pack
CN115458832A (en) Power battery cooling system with synergistic effect of multi-element composite phase change material and water cooling
CN214227005U (en) Lithium battery for industrial vehicle
CN213988982U (en) Heat dissipation laminate polymer battery group
WO2022237907A1 (en) Battery post and high-capacity battery
CN112510285A (en) Heat dissipation method and device for vehicle battery module
CN218957851U (en) Battery shell and high-capacity battery
CN218548552U (en) Battery heat abstractor and large capacity group battery
CN216597749U (en) Power battery thermal management system
CN215680784U (en) Secondary battery with heat dissipation function and battery pack thereof
CN216436078U (en) Pole and high-capacity battery with super heat conductivity
KR101352659B1 (en) Laptop-computer battery pack having a heat-pipe
WO2023066260A1 (en) Battery housing and square-housing battery
KR102308160B1 (en) A battery pack
CN115692900A (en) High-capacity battery
WO2022237806A1 (en) Pole structure and large capacity battery
CN114583352A (en) Large-capacity battery pack with temperature control device
CN209804852U (en) Concentrated radiating battery pack radiating device
CN112909377A (en) Battery pack
CN114284594A (en) Battery and battery pack
CN113871746A (en) Battery and battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806869

Country of ref document: EP

Kind code of ref document: A1