WO2022237793A1 - 传输方法、通信装置、计算机可读存储介质和芯片 - Google Patents

传输方法、通信装置、计算机可读存储介质和芯片 Download PDF

Info

Publication number
WO2022237793A1
WO2022237793A1 PCT/CN2022/092019 CN2022092019W WO2022237793A1 WO 2022237793 A1 WO2022237793 A1 WO 2022237793A1 CN 2022092019 W CN2022092019 W CN 2022092019W WO 2022237793 A1 WO2022237793 A1 WO 2022237793A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
transmission opportunity
power control
adjustment value
domain window
Prior art date
Application number
PCT/CN2022/092019
Other languages
English (en)
French (fr)
Inventor
李君瑶
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237793A1 publication Critical patent/WO2022237793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present disclosure relates to the field of communication, and more particularly, to a transmission method, a communication device, a computer-readable storage medium, and a chip.
  • the terminal device and the access network device can perform various communications such as signaling, information, and data.
  • the terminal device When the terminal device performs uplink transmission to the access network device, the terminal device needs to determine the uplink transmission power before transmission.
  • the current uplink transmission power determination scheme is not perfect, and even the uplink transmission power that meets the requirements cannot be determined.
  • Example embodiments of the present disclosure provide a scheme for determining transmission power based on a time domain window.
  • a transmission method includes: the terminal device determines a power control adjustment value at the current transmission opportunity based on a time domain window before the current transmission opportunity, wherein the time domain window includes at least two transmission opportunities; the terminal device determines the current transmission opportunity based on the power control adjustment value transmit power; and the terminal device transmits at the transmit power at the current transmission opportunity.
  • the terminal device can determine the transmission power based on the time domain window, so that the determined transmission power can match the actual scene, thereby ensuring communication performance.
  • determining the power control adjustment value at the current transmission opportunity includes: determining the power control adjustment value at the current transmission opportunity based on the initial power control adjustment value and accumulation of the initial transmission opportunity of the time domain window value, where the accumulation is the accumulation of the first parameter values in all downlink control information DCI received between the first moment associated with the initial transmission opportunity and the second moment associated with the current transmission opportunity.
  • the terminal device determines the power control adjustment value, it can fully consider all accumulations in the time domain window, avoid omission of the transmission power control command value, truly reflect the power control adjustment, and ensure communication performance.
  • determining the power control adjustment value at the current transmission opportunity includes: determining a scaling factor based on a time domain window; obtaining a second parameter corresponding to a TPC command field parameter in the DCI from the access network device value; based on the second parameter value and the scaling factor, determine a power control adjustment value at the current transmission occasion.
  • the terminal device can determine the power control adjustment value on the basis of the second parameter value combined with the proportional factor, which can better adapt to the power adjustment range actually required, thereby ensuring communication performance.
  • determining the scaling factor based on the time domain window includes: determining the scaling factor based on the total length between the initial transmission opportunity and the current transmission opportunity of the time domain window; or, determining the scaling factor based on the time domain window Length, which determines the scale factor.
  • the terminal device determines the scaling factor through the span of the time domain window, etc., which is simple and easy to implement, and can improve the efficiency of determining the transmission power.
  • determining the scaling factor based on the time-domain window includes: obtaining an interval length, wherein the interval length is the total length between the initial transmission opportunity of the time-domain window and the current transmission opportunity or the length of the time-domain window Length: based on the correspondence between the interval length and the scale factor, the scale factor corresponding to the interval length is obtained, wherein the correspondence is configured or predefined by the RRC of the access network device.
  • the terminal device determines the interval length through the span of the time domain window, etc., and determines the scaling factor based on the RRC configuration, which has certain flexibility.
  • determining the scaling factor based on the time-domain window includes: obtaining an interval length, wherein the interval length is the total length between the initial transmission opportunity of the time-domain window and the current transmission opportunity or the length of the time-domain window length; obtain the scaling factor from RRC signaling or DCI from the access network device; determine the scaling factor based on the interval length and the scaling factor.
  • the terminal device determines the interval length through the span of the time domain window, etc., and combines the scaling factor in RRC or DCI to determine the scaling factor.
  • This method has certain flexibility and considers various factors to make the determined scaling factor more accurate. .
  • determining the power control adjustment value at the current transmission opportunity based on the second parameter value and the scaling factor includes: determining the power control adjustment value at the current transmission opportunity based on the product of the second parameter value and the scaling factor Adjust the value.
  • determining the power control adjustment value at the current transmission opportunity includes: obtaining an interval length, where the interval length is the total length or time between the initial transmission opportunity of the time domain window and the current transmission opportunity The length of the domain window; obtain the TPC command field parameter in the DCI from the access network device; determine the power control adjustment value at the current transmission opportunity based on the interval length and the TPC command field parameter.
  • the expansion of the TPC command value is realized, which is not only related to the TPC command field but also to the interval length.
  • Such expansion makes the power control adjustment value range larger, the adjustment amount more fine, and more suitable for actual scenarios.
  • the adjustment range of the power control ensures the communication performance.
  • the time domain window is used for joint channel estimation, and the time domain resource not used for joint channel estimation is further included between the current transmission opportunity and the initial transmission opportunity of the time domain window.
  • a communication device in a second aspect, includes: a first determining unit configured to determine a power control adjustment value at the current transmission opportunity based on a time domain window before the current transmission opportunity, wherein the time domain window includes at least two transmission opportunities; a second determining unit is configured to It is configured to determine the transmission power of the current transmission opportunity based on the power control adjustment value of the current transmission opportunity; and the transmission unit is configured to transmit at the current transmission opportunity with the transmission power.
  • the first determination unit is configured to: determine the power control adjustment value at the current transmission opportunity based on the initial power control adjustment value of the initial transmission opportunity of the time domain window and the accumulation, wherein the accumulation is the accumulation of first parameter values in all downlink control information DCI received between the first moment associated with the initial transmission opportunity and the second moment associated with the current transmission opportunity.
  • the first determination unit is configured to: determine the scale factor based on the time domain window; obtain the second parameter value corresponding to the TPC command field parameter in the DCI from the access network device; Two parameter values and a scale factor determine the power control adjustment value at the current transmission opportunity.
  • the first determination unit is configured to: determine the scale factor based on the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity; or, based on the length of the time domain window , to determine the scale factor.
  • the first determination unit is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window ; Obtain the scaling factor corresponding to the interval length based on the corresponding relationship between the interval length and the scaling factor, wherein the corresponding relationship is configured or predefined by the RRC of the access network device.
  • the first determination unit is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window ; Obtain a scaling factor from RRC signaling or DCI from the access network device; determine the scaling factor based on the interval length and the scaling factor.
  • the first determining unit is configured to: determine the power control adjustment value at the current transmission opportunity based on the product of the second parameter value and the scaling factor.
  • the first determination unit is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window ; Obtain the TPC command field parameter in the DCI from the access network device; determine the power control adjustment value at the current transmission opportunity based on the interval length and the TPC command field parameter.
  • the time domain window is used for joint channel estimation, and the time domain resources not used for joint channel estimation are further included between the current transmission opportunity and the initial transmission opportunity of the time domain window.
  • a communication device including a transceiver, a processor, and a memory
  • the memory stores instructions executed by the processor, and when the instructions are executed by the processor, the device realizes: based on the current transmission opportunity determining a power control adjustment value at the current transmission opportunity in the previous time domain window, wherein the time domain window includes at least two transmission opportunities; based on the power control adjustment value of the current transmission opportunity, determining the transmit power of the current transmission opportunity; and via the transceiver Transmit at the transmit power at the current transmit occasion.
  • the processor executes instructions, so that the device realizes: determining the power control adjustment value at the current transmission opportunity based on the initial power control adjustment value and the accumulation of the initial transmission opportunity of the time domain window, wherein The accumulation is the accumulation of the first parameter values in all downlink control information DCI received between the first moment associated with the initial transmission opportunity and the second moment associated with the current transmission opportunity.
  • the processor executes instructions, so that the device implements: determining the scaling factor based on the time domain window; acquiring the second parameter value corresponding to the TPC command field parameter in the DCI from the access network device; based on The second parameter value and the scaling factor determine the power control adjustment value at the current transmission opportunity.
  • the processor executes instructions, so that the device realizes: determining the scaling factor based on the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity; or, based on the time domain window Length, which determines the scale factor.
  • the processor executes instructions, so that the device realizes: obtaining the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window Length: based on the correspondence between the interval length and the scale factor, the scale factor corresponding to the interval length is obtained, wherein the correspondence is configured or predefined by the RRC of the access network device.
  • the processor executes instructions, so that the device realizes: obtaining the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window length; obtain the scaling factor from RRC signaling or DCI from the access network device; determine the scaling factor based on the interval length and the scaling factor.
  • the processor executes the instruction, so that the apparatus realizes: based on the product of the second parameter value and the scaling factor, determining the power control adjustment value at the current transmission opportunity.
  • the processor executes instructions, so that the device realizes: obtaining the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window length; obtain the TPC command field parameter in the DCI from the access network device; determine the power control adjustment value at the current transmission opportunity based on the interval length and the TPC command field parameter.
  • the time domain window is used for joint channel estimation, and the time domain resources not used for joint channel estimation are further included between the current transmission opportunity and the initial transmission opportunity of the time domain window.
  • a transmission method includes: the terminal device acquires power indication information, wherein the power indication information is used to indicate a power adjustment value of a current time domain resource, the power indication information includes TPC indication information, and the current time domain resource includes at least two transmission opportunities or the The previous time domain resource of the current time domain resource includes at least two transmission opportunities; the terminal device determines the power control adjustment value of the current time domain resource based on the power indication information; the terminal device determines the power control adjustment value of the current time domain resource based on the power control adjustment value, Determine the transmit power of the resource in the current time domain; the terminal device transmits with the transmit power in the resource of the current time domain.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of bits occupied by the TPC indication information is greater than 2, and/or, the number of elements in the value set is greater than 4.
  • the set of values is determined from at least two sets of values based on a predefined criterion, or the set of values is determined from at least two sets of values based on an index from RRC definite.
  • the value set is configured by RRC signaling or the value set is predefined.
  • determining the power control adjustment value of the resource in the current time domain based on the power indication information includes: determining the power control adjustment value of the resource in the current time domain based on the scale factor and the power adjustment value indicated by the TPC indication information value.
  • the scaling factor is a predetermined value; or, the scaling factor is determined based on a third message and/or a predefined criterion, wherein the third message is carried in RRC signaling.
  • the scaling factor is determined based on a third message including the scaling factor.
  • the scaling factor is determined based on the third message and the fourth message, wherein the fourth message is used to determine one of the scaling factors.
  • the terminal device receives a third message, where the third message includes multiple scale factors; the terminal device receives a fourth message, where the fourth message includes scale factor indication information; the terminal device obtains the scale factor from the multiple scale factors The scale factor indicates the scale factor indicated by the information.
  • the fourth message is DCI or MAC-CE.
  • the scale factor is determined based on a predefined criterion, wherein the predefined criterion is an interval length, and the interval length is the length of the previous time domain resource or the length of the previous time domain resource. The length between one transmission opportunity and the first transmission opportunity of the current time domain resource.
  • the scaling factor is determined based on a third message including the scaling factor and a predefined criterion being the interval length. In some embodiments, the product of the scaling factor and the interval length is used as the scaling factor.
  • a communication device in a fifth aspect, includes: an acquiring unit configured to acquire power indication information, wherein the power indication information is used to indicate a power adjustment value of resources in the current time domain, the power indication information includes TPC indication information, and the current time domain resources include at least two The transmission opportunity or the previous time domain resource of the current time domain resource includes at least two transmission opportunities; the first determination unit is configured to determine the power control adjustment value of the current time domain resource based on the power indication information; the second determination unit , configured to determine the transmission power of the current time domain resource based on the power control adjustment value of the current time domain resource; the transmission unit is configured so that the terminal device transmits at the current time domain resource with the transmission power.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of bits occupied by the TPC indication information is greater than 2, and/or, the number of elements in the value set is greater than 4.
  • the set of values is determined from at least two sets of values based on a predefined criterion, or the set of values is determined from at least two sets of values based on an index from RRC definite.
  • the value set is configured by RRC signaling or the value set is predefined.
  • the first determining unit is configured to: determine the power control adjustment value of the resource in the current time domain based on the scale factor and the power adjustment value indicated by the TPC indication information.
  • the scaling factor is a predetermined value; or, the scaling factor is determined based on a third message and/or a predefined criterion, wherein the third message is carried in RRC signaling.
  • the scaling factor is determined based on a third message including the scaling factor.
  • the scaling factor is determined based on the third message and the fourth message, wherein the fourth message is used to determine one of the scaling factors.
  • the obtaining unit is configured to receive a third message, wherein the third message includes multiple scale factors; receive a fourth message, where the fourth message includes scale factor indication information; and acquire the scale from the multiple scale factors The scale factor indicated by the factor indication information.
  • the fourth message is DCI or MAC-CE.
  • the scale factor is determined based on a predefined criterion, wherein the predefined criterion is an interval length, and the interval length is the length of the previous time domain resource or the length of the previous time domain resource. The length between one transmission opportunity and the first transmission opportunity of the current time domain resource.
  • the scaling factor is determined based on a third message including the scaling factor and a predefined criterion, the predefined criterion being the interval length. In some embodiments, the product of the scaling factor and the interval length is used as the scaling factor.
  • a communication device including a transceiver, a processor, and a memory
  • the memory stores instructions executed by the processor, and when the instructions are executed by the processor, the device realizes: obtaining a power indication via the transceiver information, wherein the power indication information is used to indicate the power adjustment value of the resource in the current time domain, the power indication information includes TPC indication information, and the current time domain resource includes at least two transmission opportunities or the previous time domain of the current time domain resource The resource includes at least two transmission opportunities; based on the power indication information, determine the power control adjustment value of the resource in the current time domain; determine the transmission power of the resource in the current time domain based on the power control adjustment value of the resource in the current time domain; via the transceiver The resource in the current time domain transmits at the transmit power.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of bits occupied by the TPC indication information is greater than 2, and/or, the number of elements in the value set is greater than 4.
  • the set of values is determined from at least two sets of values based on predefined criteria, or the set of values is determined from at least two sets of values based on an index from RRC definite.
  • the value set is configured by RRC signaling or the value set is predefined.
  • the processor executes the instruction, so that the device implements: determining the power control adjustment value of the resource in the current time domain based on the scale factor and the power adjustment value indicated by the TPC indication information.
  • the scaling factor is a predetermined value; or, the scaling factor is determined based on a third message and/or a predefined criterion, wherein the third message is carried in RRC signaling.
  • the scaling factor is determined based on a third message including the scaling factor.
  • the scaling factor is determined based on the third message and the fourth message, wherein the fourth message is used to determine one of the scaling factors.
  • the processor executes instructions, so that the device realizes via the transceiver: receiving a third message, wherein the third message includes a plurality of scaling factors; receiving a fourth message, the fourth message including scaling factor indication information; The scaling factor indicated by the scaling factor indication information is obtained from the multiple scaling factors.
  • the fourth message is DCI or MAC-CE.
  • the scale factor is determined based on a predefined criterion, wherein the predefined criterion is an interval length, and the interval length is the length of the previous time domain resource or the length of the previous time domain resource. The length between one transmission opportunity and the first transmission opportunity of the current time domain resource.
  • the scaling factor is determined based on a third message including the scaling factor and a predefined criterion being the interval length. In some embodiments, the product of the scaling factor and the interval length is used as the scaling factor.
  • a transmission method includes: the access network device sends power indication information to the terminal device, wherein the power indication information is used to indicate the power adjustment value of the current time domain resource, the power indication information includes TPC indication information, and the current time domain resource includes at least two The transmission opportunity or the previous time domain resource of the current time domain resource includes at least two transmission opportunities; the access network device receives the transmission performed by the terminal device at the transmission power in the current time domain resource, and the TPC indication information is used to determine the transmission power Base. For example, the terminal device may determine transmit power based on the TPC indication information.
  • the number of bits occupied by the TPC indication information is greater than 2.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of elements in the value set is greater than four.
  • the access network device sends a third message to the terminal device, where the third message is used for the terminal device to determine transmission power, where the third message is carried in RRC signaling,
  • This third message includes a scaling factor or scaling factor.
  • the access network device sends a third message to the terminal device, where the third message includes multiple scaling factors; the access network device further sends a fourth message to the terminal device, where the first Four messages are used to indicate one of multiple scaling factors, where the third message is carried in RRC signaling, the fourth message is DCI or MAC-CE, and the third and fourth messages are used by the terminal device to determine transmit power.
  • it further includes: the access network device sending configuration information to the terminal device, where the configuration information is used to configure multiple sets.
  • it further includes: the access network device sending set indication information to the terminal device, where the set indication information is used by the terminal device to determine the value set from multiple sets.
  • a communication device includes: a sending unit configured to send power indication information to a terminal device, where the power indication information is used to indicate a power adjustment value of a current time domain resource, the power indication information includes TPC indication information, and the current time domain resource includes at least The two transmission opportunities or the previous time domain resource of the current time domain resource include at least two transmission opportunities; the receiving unit is configured to receive the transmission performed by the terminal device at the transmission power in the current time domain resource, and the TPC indication information is determined The basis of the transmit power. For example, the terminal device may determine transmit power based on the TPC indication information.
  • the number of bits occupied by the TPC indication information is greater than 2.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of elements in the value set is greater than four.
  • the sending unit is further configured to: send a third message to the terminal device, where the third message is used for the terminal device to determine transmit power, where the third message is carried in RRC signaling, This third message includes a scaling factor or scaling factor.
  • the sending unit is further configured to: send a third message to the terminal device, where the third message includes multiple scaling factors; send a fourth message to the terminal device, where the fourth message is used to indicate One of multiple scaling factors, wherein the third message is carried in RRC signaling, the fourth message is DCI or MAC-CE, and the third message and the fourth message are used for the terminal equipment to determine transmission power.
  • the sending unit is further configured to: send configuration information to the terminal device, where the configuration information is used to configure multiple sets.
  • the sending unit is further configured to: send set indication information to the terminal device, where the set indication information is used by the terminal device to determine the value set from multiple sets.
  • a communication device in a ninth aspect, includes a transceiver, a processor, and a memory.
  • the memory stores instructions executed by the processor.
  • the device realizes: sending power indication information to the terminal device via the transceiver, wherein the power indication information Used to indicate the power adjustment value of the current time domain resource, the power indication information includes TPC indication information, the current time domain resource includes at least two transmission opportunities or the previous time domain resource of the current time domain resource includes at least two transmission opportunities ; Receive the transmission performed by the terminal device at the transmission power in the current time domain resource via the transceiver, and the TPC indication information is the basis for determining the transmission power. For example, the terminal device may determine transmit power based on the TPC indication information.
  • the number of bits occupied by the TPC indication information is greater than 2.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of elements in the value set is greater than four.
  • the processor executes instructions, so that the apparatus implements: sending a third message to the terminal device via the transceiver, where the third message is used for the terminal device to determine transmission power, where the third message is carried In RRC signaling, the third message includes a scaling factor or scaling factor.
  • the processor executes instructions, so that the apparatus implements: sending a third message to the terminal device via a transceiver, the third message including a plurality of scaling factors; sending a fourth message to the terminal device, the The fourth message is used to indicate one of multiple scaling factors, where the third message is carried in RRC signaling, the fourth message is DCI or MAC-CE, and the third message and the fourth message are used for terminal equipment Determine transmit power.
  • the processor executes instructions, so that the apparatus implements: sending configuration information to the terminal device via the transceiver, where the configuration information is used to configure the plurality of sets.
  • the processor executes instructions, so that the apparatus implements: sending set indication information to the terminal device via the transceiver, where the set indication information is used for the terminal device to determine the value set from multiple sets.
  • a terminal device In a tenth aspect, a terminal device is provided.
  • the terminal device can be used to implement the method described in the first aspect, the fourth aspect, or any implementation manner thereof.
  • an access network device is provided.
  • the access network device can be used to implement the method described in the above seventh aspect or any implementation manner thereof.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the An operation of the method described in any implementation thereof.
  • a chip or a chip system includes a processing circuit configured to perform the operations of the method according to the first aspect, the fourth aspect, the seventh aspect or any implementation thereof.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions.
  • the computer-executable instructions When the computer-executable instructions are run on a computer, the computer executes the above-mentioned first aspect, fourth aspect, and seventh aspect. or an operation of the method described in any implementation thereof.
  • a wireless communication system in a fifteenth aspect, includes an access network device and a terminal device, wherein the terminal device can be configured to implement the operation of the method described in the first aspect, the fourth aspect, or any implementation thereof, wherein the access network device can be configured to The operation of the method described in the above seventh aspect or any implementation manner thereof is realized.
  • FIG. 1 shows a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented
  • FIG. 2 shows a schematic flowchart of a transmission method 200 according to an embodiment of the present disclosure
  • FIG. 3 shows a time domain schematic diagram 300 for terminal device transmission according to an embodiment of the present disclosure
  • FIG. 4 shows another time domain schematic diagram 400 for terminal device transmission according to an embodiment of the present disclosure
  • FIG. 5 shows yet another time domain schematic diagram 500 for terminal device transmission according to an embodiment of the present disclosure
  • FIG. 6 shows a time domain schematic diagram 600 for PUSCH transmission according to an embodiment of the present disclosure
  • FIG. 7 shows another time domain schematic diagram 700 for PUSCH transmission according to an embodiment of the present disclosure
  • FIG. 8 shows another schematic flowchart of a transmission method 800 according to an embodiment of the present disclosure
  • FIG. 9 shows another schematic flowchart of a transmission method 900 according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to an embodiment of the present disclosure
  • FIG. 11 shows another schematic block diagram of a communication device 1100 according to an embodiment of the present disclosure
  • Fig. 12 shows another schematic block diagram of a communication device 1200 according to an embodiment of the present disclosure
  • FIG. 13 shows a simplified block diagram of an example apparatus 1300 according to an embodiment of the disclosure.
  • the term “comprising” and its similar expressions should be interpreted as an open inclusion, that is, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the term “one embodiment” or “the embodiment” should be read as “at least one embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object.
  • Embodiments of the present disclosure may be implemented according to any suitable communication protocol, including but not limited to, third generation (3rd Generation, 3G), fourth generation (4G) and fifth generation (5G) cellular communication protocols, such as electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • the technical solutions of the embodiments of the present disclosure are applied to communication systems that follow any appropriate communication protocols, such as: General Packet Radio Service (General Packet Radio Service, GPRS), Global System for Mobile Communications (Global System for Mobile Communications, GSM), Enhanced Data Rate GSM Evolution System (Enhanced Data rate for GSM Evolution, EDGE), Universal Mobile Telecommunications System (Universal Mobile Telecommunications Service, UMTS), Long Term Evolution (LTE) system, Wideband Code Division Multiple Access System (Wideband Code Division Multiple Access System) Access, WCDMA), Code Division Multiple Access (CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Frequency Division Duplex , FDD) system, time division duplex (Time Division Duplex, TDD), fifth generation (5G) system or new wireless (New Radio, NR), etc.
  • General Packet Radio Service General Packet Radio Service
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • Universal Mobile Telecommunications Service Universal Mobile Telecommunications Service
  • embodiments of the present disclosure are described below in the context of a 5G 3rd Generation Partnership Project (3GPP) communication system.
  • 3GPP 3rd Generation Partnership Project
  • the embodiments of the present disclosure are not limited to the 3GPP communication system applied to 5G, but can be applied to any communication system with similar problems, such as wireless local area network (WLAN), wired communication system, or future development other communication systems, etc.
  • WLAN wireless local area network
  • wired communication system or future development other communication systems, etc.
  • terminal device refers to any terminal device capable of wired or wireless communication with network devices or with each other.
  • the terminal equipment may sometimes be called user equipment (User Equipment, UE).
  • a terminal device may be any type of mobile terminal, stationary terminal or portable terminal.
  • terminal equipment may include a mobile handset, station, unit, device, mobile terminal (Mobile Terminal, MT), subscription station, portable subscription station, Internet node, communicator, desktop computer, laptop computer, notebook computer, tablet Computers, personal communication system devices, personal navigation devices, personal digital assistants (Personal Digital Assistant, PDA), positioning devices, radio broadcast receivers, e-book devices, game devices, Internet of Things (IoT) devices, vehicle-mounted devices , aircraft, virtual reality (Virtual Reality, VR) devices, augmented reality (Augmented Reality, AR) devices, wearable devices, terminal devices in 5G networks or evolved Public Land Mobile Networks (Public Land Mobile Network, PLMN) Any terminal device, other device that can be used for communication, or any combination of the above. Embodiments of the present disclosure do not limit this.
  • the term "access network device” as used in this disclosure is an entity or node that can be used to communicate with terminal devices.
  • the access network device may be a device deployed in the radio access network to provide a wireless communication function for the mobile terminal, for example, it may be a radio access network (Radio Access Network, RAN) network device.
  • Access network equipment may include various types of base stations. As an example, the access network equipment may include various forms of macro base stations, micro base stations, pico base stations, femto base stations, relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH ), Remote Radio Head (RRH) and so on.
  • RRU Remote Radio Unit
  • RH Remote Radio Head
  • the names of access network equipment may be different, for example, in a Long Term Evolution (LTE) network, it is called an evolved NodeB (evolved NodeB, eNB or eNodeB), which is called Node B (NodeB, NB) in 3G network, can be called gNode B (gNB) or NR Node B (NR NB) in 5G network, and so on.
  • LTE Long Term Evolution
  • eNB evolved NodeB
  • NodeB NodeB
  • gNB gNode B
  • NR NB NR Node B
  • the access network device may include a central unit (Central Unit, CU) and/or a distributed unit (Distributed Unit, DU).
  • Central Unit Central Unit
  • DU distributed Unit
  • the CU and DU can be placed in different places, for example, the DU is remote and placed in a high-traffic area, and the CU is placed in the central equipment room. Alternatively, the CU and DU can also be placed in the same equipment room. The CU and DU can also be different components under one rack.
  • access network devices which are not specifically limited in the embodiments of the present disclosure.
  • JCE Joint Channel Estimation
  • PUSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • Joint channel estimation can be used for one scheduling or between repetitions of different schedulings, or between different schedulings.
  • Joint channel estimation can be performed on a time domain window (Time Domain Window, TW) spanning several time slots or symbols, and the condition for performing joint channel estimation is the need to maintain the continuity of the phase and the consistency of the transmit power.
  • Joint channel estimation may also be called “Cross-Slot Channel Estimation” or “Demodulation Reference Signal bundling (DMRS bundling)”, etc.
  • the term "slot" used in this disclosure is a time unit of data scheduling.
  • various scheduling time units such as frames, subframes, slots, and symbols.
  • the time length of a frame is 10ms, including 10 subframes, and the corresponding time length of each subframe is 1ms.
  • Each subframe consists of several time slots. Under the normal cyclic prefix, one slot includes 14 symbols; under the extended cyclic prefix, one slot includes 12 symbols.
  • the symbols may be Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time slot in the embodiment of the present disclosure may be a time slot including 14 symbols, or may be a mini-slot (mini-slot), which will not be specifically distinguished hereinafter.
  • the term "repetition” used in this disclosure may refer to the number of repeated transmissions during PUSCH and/or PUCCH transmission.
  • Repetition may be a repetition factor, number of repetitions, number of repeated transmission slots, etc., which are configured through radio resource control (Radio Resource Control, RRC) or through downlink control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • Repetition type A is to send a repetition on each time slot, and occupy the same position and number of consecutive symbols on each time slot.
  • the repetition factor configured by RRC or DCI is equal to the number of repetitions. Equal to the number of repeated transmission slots.
  • repetition factor configured by RRC or DCI refers to the number of nominal repetitions, the number of symbols allocated to each nominal repetition time domain resource is the same, and the time domain resources of adjacent nominal repetitions are continuous, Nominal repetitions can also be referred to as nominal repetitions. Since repetition type B transmissions cannot use invalid symbols and cannot cross slot boundaries, nominal repetitions of repetition type B need to wrap around invalid symbols or slot boundaries when encountering invalid symbols or slot boundaries Boundaries are sliced into actual repetitions. For PUCCH, there is a repetition type, and the repetition of PUCCH is similar to repetition type A of PUSCH.
  • TO Transmission Occasion
  • the terminal device needs to determine the transmission power before performing uplink transmission.
  • the terminal device does not consider factors such as joint channel estimation when determining the transmission power, which leads to low accuracy of the determined transmission power and affects the efficiency of uplink transmission.
  • Embodiments of the present disclosure provide a transmission scheme.
  • the terminal device can determine the transmission power based on the time domain window, so that the determined transmission power is more accurate, and the efficiency of uplink transmission is guaranteed.
  • Embodiments according to the present disclosure are described in more detail below with reference to FIGS. 1 to 8 .
  • FIG. 1 shows a schematic diagram of a communication system 100 in which embodiments of the present disclosure may be implemented.
  • the system 100 includes an access network device 110 and a terminal device 120 , and communication can be performed between the access network device 110 and the terminal device 120 .
  • the access network device 110 may configure high-level signaling to the terminal device 120, where the high-level signaling refers to signaling sent by a high-level protocol layer, and the high-level protocol layer is at least one protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: a medium access control (Medium Access Control, MAC) layer, a radio link control (Radio Link Control, RLC) layer, a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio resource control (Radio Resource Control, RRC) layer and non-access stratum (Non Access Stratum, NAS), etc.
  • Fig. 2 shows a schematic flowchart of a transmission method 200 according to an embodiment of the present disclosure.
  • the method 200 may be implemented at the terminal device 120 shown in FIG. 1 .
  • the following describes the transmission method 200 by taking the terminal device 120 as an example, but this is only exemplary, and is not intended to limit the embodiments of the present disclosure.
  • Method 200 begins at block 210 .
  • the terminal device 120 determines a power control adjustment value (power control adjustment state) at the current transmission opportunity based on a time domain window before the current transmission opportunity, wherein the time domain window includes at least two transmission opportunities.
  • the current transmission opportunity is a transmission opportunity that requires power control to re-determine the transmit power.
  • a time domain window can cover at least two transmission opportunities, and power control needs to be performed at the initial transmission opportunity of the time domain window.
  • At least two transmission opportunities in the time domain window may have the same transmission characteristic information, wherein the same transmission characteristic information includes at least one of the following: the same Transmitted Precoding Matrix Indicator (TPMI ) precoder, the same transmit power, the same frequency domain resource occupation (such as physical resource block (Physical Resource Block, PRB)), phase continuity, the same antenna port, etc.
  • TPMI Transmitted Precoding Matrix Indicator
  • At least two transmission opportunities in the time domain window have the same transmission power means: no power control or power adjustment is performed at the non-initial transmission opportunities of the time domain window, so that each transmission opportunity in the time domain window can The transmit powers of the transmission opportunities are equal.
  • the time domain window may be used for joint channel estimation, or may be used in other scenarios where the transmission power in the time domain window is constant.
  • the time domain window may also be called a time window, joint transmission opportunity, constant transmission opportunity, or others.
  • the power control adjustment value may also be called a power control adjustment state value or a power control adjustment state parameter or a power control adjustment state item or a power control adjustment state or a power control adjustment parameter or others. Not limited.
  • FIG. 3 shows a time domain schematic diagram 300 for terminal device transmission according to an embodiment of the present disclosure.
  • a time domain window 310 is shown, and includes four TOs, namely TO1 to TO4 .
  • the initial transmission opportunity of the time domain window 310 is TO1 301
  • the current transmission opportunity after the time domain window 310 is TO5 302. That is, the initial transmission opportunity 301 is the first TO within the time domain window 310 , and the current transmission opportunity 302 is the first TO after the time domain window 310 .
  • the current transmission opportunity may be a starting transmission opportunity of another time domain window following the time domain window.
  • the time domain window 310 is followed by a time domain window 320, and the time domain window 320 includes 4 TOs, namely TO5 to TO8.
  • the current transmission opportunity TO5 is after the time domain window 310, and the current transmission opportunity TO5 is the initial transmission opportunity of the time domain window 320.
  • one TO may correspond to one time slot, for example, in the scenario of PUSCH repetition type A.
  • FIG. 4 shows another time-domain schematic diagram 400 for terminal device transmission according to an embodiment of the present disclosure.
  • a time domain window 410 is shown and includes 4 TOs, namely TO1 to TO4. It can be understood that the initial transmission opportunity of the time domain window 410 is TO1, and the current transmission opportunity after the time domain window 410 is TO5.
  • the length of the blackout time domain resource 420 may be 1 or more slots, or may be 1 or more symbols, and so on. In one situation, if there is a period of time after the time domain window 410 that does not require uplink transmission, this period of time constitutes the interruption time domain resource 420, that is, the interruption time domain resource 420 is not scheduled for the current terminal Transmission of equipment. In another situation, if the joint channel estimation process is interrupted due to some factors, the interrupted time constitutes the interruption time domain resource 420 .
  • the nominal time domain window may be interrupted due to some factors, so that one nominal time domain window is interrupted and divided into at least two actual time domain windows.
  • factors include, but are not limited to: dynamic slot format indication (Slot Format Indication, SFI), uplink cancellation indication (UL cancellation indication, UL CI), channel preemption with different priorities, timing adjustments (such as timing advance commands ( Timing Advance command, TA command) or time advance change (TA change)), frequency offset correction, carrier aggregation (Carrier Aggregation, CA), dual-connectivity (Dual-Connectivity, DC), etc.
  • nominal time domain windows and actual time domain windows are mentioned in this disclosure, the distinction between nominal time domain windows and actual time domain windows is to introduce interrupt time domain resources. Both the nominal time domain window and the actual time domain window may be time domain windows used for joint channel estimation.
  • FIG. 5 shows yet another time domain schematic diagram 500 for terminal device transmission according to an embodiment of the present disclosure.
  • the nominal time domain window 510 is interrupted into an actual time domain window 511 and an actual time domain window 512
  • an interrupt time domain resource 520 is between the actual time domain window 511 and the actual time domain window 512 .
  • the time domain window 511 For the time domain window 511 , its initial transmission opportunity is shown as the initial transmission opportunity 501 in FIG. 5 , and the current transmission opportunity after the time domain window 511 is shown as the current transmission opportunity 502 in FIG. 5 . It can be seen that between the initial transmission opportunity 501 and the current transmission opportunity 502, in addition to the time domain window 511, an interruption time domain resource 520 not used for joint channel estimation is also included.
  • the time domain window in 210 may refer to an actual time domain window. It can be understood that the current transmission opportunity in this embodiment of the present disclosure may be the initial transmission opportunity of the next time domain window of the time domain window in 210, or may be other transmission opportunities other than the time domain window. And it should be understood that although the time domain window in 210 includes at least two transmission occasions, the next time domain window after the time domain window may include one or more transmission occasions. For example, in FIG. 3 , the time domain window where the current transmission opportunity is located includes 4 transmission opportunities. For another example, in FIG. 5 , the time domain window where the current transmission opportunity is located includes one transmission opportunity.
  • the applicable scenario of the embodiments of the present disclosure may be: the power of the previous transmission opportunity (or last transmission opportunity) of the current transmission opportunity does not change, for example, no power update is performed or power update calculation is not performed, or The re-determined power is unchanged. More specifically, as an example, in the scenario of joint channel estimation, the previous transmission opportunity of the current transmission opportunity belongs to the non-starting transmission opportunity of the time domain window used for joint channel estimation.
  • the transmission to be performed by the terminal device 120 is PUSCH
  • the power control adjustment value determined at 210 is the PUSCH power control adjustment value.
  • the terminal device 120 performs PUSCH transmission on the carrier f of the active uplink bandwidth part (active Uplink Bandwidth Part, active UL BWP) b of the serving cell c, and the state is 1 at the transmission opportunity i
  • the PUSCH power control adjustment value is denoted as fb ,f,c (i,l).
  • the terminal device 120 may be based on the initial transmission opportunity of the time domain window an initial power control adjustment value and an accumulation to determine a power control adjustment value at the current transmission occasion, where the accumulation is all DCIs received between a first time instant associated with the initial transmission occasion and a second instant associated with the current transmission occasion The accumulation of the first parameter value in .
  • TPC Transmission Power Control
  • the terminal device 120 may acquire the initial power control adjustment value of the initial transmission opportunity of the time domain window; Accumulation of first parameter values in all DCIs; determining a power control adjustment value of the current transmission opportunity based on the initial power control adjustment value and the accumulation.
  • the TPC accumulation parameter may be configured or provided through high-layer signaling.
  • the terminal device 120 When the terminal device 120 is not provided with the TPC accumulation parameter, it may be determined based on the initial power control adjustment value of the initial transmission opportunity at the current Power control adjustment value for transmit occasions.
  • the initial power control adjustment value of the initial transmission opportunity of the time domain window can be expressed as f b, f, c (ii 0 , l), which can be determined when determining the transmission power of the initial transmission opportunity of.
  • the first parameter value may be a TPC accumulation value corresponding to a TPC command field (TPC command field) parameter in the DCI, specifically a TPC accumulation value for PUSCH.
  • the first parameter value may be indicated by the TPC command field in the DCI format that schedules the PUSCH transmission, as shown in Table 1 below.
  • the first parameter value may be DCI scrambled by transmission power control-physical uplink shared channel-radio network temporary identifier (TPC-PUSCH-RNTI) through cyclic redundancy check (Cyclic Redundancy Check, CRC) format 2_2 as indicated.
  • TPC-PUSCH-RNTI transmission power control-physical uplink shared channel-radio network temporary identifier
  • CRC Cyclic Redundancy Check
  • TPC command field TPC cumulative value of PUSCH [dB] 0 -1 1 0 2 1 3 3
  • the first parameter value used for PUSCH can be expressed as ⁇ PUSCH,b,f,c (m,l), and then the first moment associated with the initial transmission opportunity to the first moment associated with the current transmission opportunity
  • the accumulation of the first parameter values in all DCIs received between two moments is expressed as Indicates the sum of TPC accumulated values in the set D i , where the set D i is determined based on the first moment and the second moment.
  • the first moment associated with the initial transmission opportunity may be the S1-th symbol before the initial transmission opportunity. That is to say, the first moment is located before the initial transmission opportunity, and there may be an interval of S1 symbols between the first moment and the initial transmission opportunity. In other words, the first moment is located at the S1-th symbol before the initial transmission opportunity.
  • the second moment associated with the current transmission opportunity may be the S2th symbol before the current transmission opportunity. That is to say, the second moment is located before the current transmission opportunity, and the second moment and the current transmission opportunity may be separated by S2 symbols. In other words, the second moment is located at the S2th symbol before the current transmission opportunity.
  • i 0 is the smallest symbol that makes the first K PUSCH (ii 0 )-1 symbol of PUSCH transmission opportunity ii 0 earlier than the first K PUSCH (i) symbol of PUSCH transmission opportunity i integer, and ii 0 is the first transmission opportunity of the time domain window, also called the initial transmission opportunity.
  • K PUSCH (i) may be determined in the following manner. If the PUSCH transmission is scheduled by DCI, then K PUSCH (i) is the period between the last symbol of the physical downlink control channel (Physical Downlink Control Channel, PDCCH) corresponding to the DCI and the first symbol of the scheduled PUSCH transmission number of symbols.
  • PDCCH Physical Downlink Control Channel
  • K PUSCH (i) may be determined in the following manner. If the PUSCH transmission is configured by RRC, such as through "configured grant configuration (ConfiguredGrantConfig)", etc., then K PUSCH (i) is K PUSCH, min symbols, which can be equal to the number of symbols per slot (eg 12 or 14) and the minimum value indicated by the k2 field in the PUSCH-Config Common field (PUSCH-ConfigCommon).
  • the accumulation of the first parameter value is the accumulation of all first parameter values between the first moment and the second moment.
  • the accumulation can be determined once, or can be determined for each transmission opportunity and then accumulated.
  • FIG. 6 shows a time domain diagram 600 for PUSCH transmission according to an embodiment of the present disclosure.
  • the PUSCH scheduled by DCI 0_x includes 8 repeated transmissions, and each time slot is a transmission opportunity, which is respectively TO1 to TO8.
  • FIG. 6 shows two time-domain windows, namely time-domain window 601 and time-domain window 602, where each time-domain window contains 4 TOs.
  • the first moment associated with the initial transmission opportunity TO1 of the time domain window 601 is shown as the first moment 610 in FIG. 6 , specifically, it is shown as the Kth symbol before the initial transmission opportunity TO1.
  • the second moment associated with the current transmission opportunity TO5 after the time domain window 601 is shown as the second moment 620 in FIG. 6 , specifically, it is shown as the Kth symbol before the current transmission opportunity TO5.
  • the accumulation of the first parameter value from the first moment to the second moment can be obtained once, as shown in ⁇ in FIG. 6 .
  • FIG. 7 shows another time domain diagram 700 for PUSCH transmission according to an embodiment of the present disclosure. Similar to FIG. 6 , two time domain windows are shown in FIG. 7 , namely time domain window 701 and time domain window 702 , where each time domain window contains 4 TOs. Additionally, a first time instant associated with the initial transmission opportunity TO1 of the time domain window 701 is shown in FIG. This is shown as a second instant 720 in FIG. 7 . The accumulation of the first parameter value from the first moment to the second moment may be determined for each transmission opportunity and then accumulated.
  • the time domain window 701 includes 4 transmission opportunities, which are respectively TO1 to TO4. Then, a first accumulation of the first parameter value between the first moment associated with the transmission opportunity TO1 and the third moment associated with the transmission opportunity TO2 can be determined, denoted as ⁇ 1. A second accumulation, denoted ⁇ 2, of the value of the first parameter between the third instant associated with transmission occasion TO2 and the fourth instant associated with transmission occasion TO3 may be determined. A third accumulation, denoted ⁇ 3, of the value of the first parameter between the fourth time instant associated with the transmission occasion TO3 and the fifth time instant associated with the transmission occasion TO4 may be determined.
  • the transmission power of the non-initial transmission opportunities is not updated.
  • the power control adjustment value at the non-initial transmission opportunity may be updated, but the updated power control adjustment value is not used to determine the transmit power at the non-initial transmission opportunity.
  • the power control adjustment value at the transmission opportunity TO2 can be determined based on f1 and the first accumulation ⁇ 1, denoted as f2 .
  • the power control adjustment value at the transmission opportunity TO3 can be determined, denoted as f3.
  • the power control adjustment value at the transmission opportunity TO4 may be determined, denoted as f4. In this way, even for non-initial transmission opportunities of the time domain window 701, the corresponding power control adjustment value is determined.
  • the method of determining the power control adjustment value of the current transmission opportunity TO5 may be: based on the power control adjustment value f4 of the transmission opportunity TO4 and the fourth accumulated ⁇ 4, the power control adjustment value of the current transmission opportunity TO5 is determined, denoted as f5 . It can be understood that since the current transmission opportunity TO5 no longer belongs to the same time domain window, the power update needs to be performed at the current transmission opportunity TO5, so the transmission power of the current transmission opportunity TO5 is determined based on the updated power control adjustment value f5 instead of f1.
  • the initial power control adjustment value f b, f, c (ii 0 , l) and the value of the first parameter in all DCIs received between the first moment and the second moment may be accumulate Determine the power control adjustment value f b, f, c (i, l) of the current transmission opportunity.
  • the transmission power of the initial transmission opportunity ii 0 is the maximum transmission power and ⁇ 0
  • the transmission power of the initial transmission opportunity ii 0 is the minimum transmission power
  • f b, f, c (i, l) f b, f, c (ii 0 , l)
  • the terminal device 120 may determine the scaling factor based on the time domain window; obtain the DCI from the access network device A second parameter value corresponding to the TPC command field parameter; determine a power control adjustment value at the current transmission opportunity based on the second parameter value and the scaling factor.
  • TPC accumulation tpc-Accumulation
  • the TPC accumulation parameter may be configured or provided through high-layer signaling.
  • the power at the current transmission opportunity may be determined based on the scaling factor and the second parameter value. Controls the adjustment value.
  • the second parameter value may be an absolute value of TPC corresponding to a TPC command field (TPC command field) parameter in the DCI. That is to say, the second parameter value may be indicated by the TPC command field in the DCI format that schedules the PUSCH transmission, as shown in Table 2 below.
  • the second parameter value may be expressed as ⁇ ' PUSCH,b,f,c (i,l).
  • TPC command field TPC absolute value [dB] 0 -4 1 -1 2 1 3 4
  • the scaling factor may be determined based at least in part on an interval length, where the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window.
  • the length in the embodiments of the present disclosure represents the length in the time domain, which may be at least one of the following: the number of time slots, the number of symbols, the number of transmission opportunities, the number of repetitions, etc., where the number of repetitions may be a nominal repetition number or an actual repetition number, etc., which are not limited in the present disclosure.
  • the total length between the initial transmission opportunity and the current transmission opportunity of the time domain window may be equal to the length of the time domain window.
  • the total length between the initial transmission opportunity and the current transmission opportunity is equal to the length of the time domain window. Referring to FIG. 3, the total length or length is equal to 4 slots or 4 TOs.
  • the total length between the initial transmission opportunity and the current transmission opportunity of the time domain window may not be equal to the length of the time domain window.
  • the total length between the initial transmission opportunity and the current transmission opportunity may not be equal to the length of the time domain window . 5
  • the total length between the initial transmission opportunity 501 and the current transmission opportunity 502 is 3 time slots
  • the length of the time domain window 511 between the initial transmission opportunity 501 and the current transmission opportunity 502 is 2 time slots. Gap.
  • the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window may be used as the interval length, and the interval length may be used as the scaling factor.
  • the dimensionless value after de-dimensioning the interval length can be used as the scaling factor.
  • the scaling factor may be equal to 4.
  • the total length between the initial transmission opportunity and the current transmission opportunity is 3 time slots, so the scaling factor may be equal to 3.
  • the scaling factor may be equal to 2.
  • the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window may be used as the interval length; and based on the correspondence between the interval length and the scaling factor, the A scaling factor corresponding to the length, wherein the corresponding relationship is configured or predefined by the RRC of the access network device.
  • the access network device 110 may configure the correspondence between the interval length and the scale factor through RRC, and then the terminal device 120 may determine the scale factor corresponding to the interval length based on the correspondence.
  • the interval length and the scaling factor may have a one-to-one correspondence, for example, when the interval length is 3, the scaling factor is X1; when the interval length is 2, the scaling factor is X2.
  • the interval length and the scale factor may have a many-to-one correspondence, for example, when the interval length is 3 and 4, the scale factor is X1; when the interval length is 1 and 2, the scale factor is X2.
  • the interval length and the scaling factor can be the correspondence between the interval and the discrete value, for example, the interval length interval (0,2] corresponds to the scaling factor X1. It can be understood that the correspondence between the interval length and the scaling factor can also be Other forms are not listed here.
  • the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window may be used as the interval length, and the RRC signaling or DCI from the access network device may be acquired or A predefined scaling factor and determines the scaling factor based on the interval length and the scaling factor.
  • the access network device 110 may configure a scaling factor through RRC or through DCI. Or as an example, the access network device 110 may configure multiple scaling factors through RRC, and use DCI or MAC-CE to indicate one of the multiple scaling factors.
  • the product of the interval length and the scaling factor may be used as the scaling factor.
  • the product of the dimensionless value after dedimensioning the interval length and the scaling factor may be used as the scaling factor.
  • the scale factor can be determined based on the interval length through the above manner, and further the power control adjustment value at the current transmission opportunity can be determined based on the scale factor and the second parameter value.
  • the product of the second parameter value and the scaling factor may be used as the power control adjustment value at the current transmission opportunity.
  • the scaling factor may also be referred to as an adjustment factor or a power control adjustment factor or other names, and the scaling factor may be used to adjust the TPC command adjustment value to determine the power control adjustment value.
  • the power control adjustment value of the current transmission opportunity is determined based on both the scaling factor and the second parameter value, which can better adapt to the actual required power adjustment range, where the scaling factor is determined based on the interval length, taking into account
  • the time domain span between two power controls ensures the communication performance.
  • the terminal device 120 can obtain the interval length, wherein the interval length is the initial transmission of the time domain window The total length between the opportunity and the current transmission opportunity or the length of the time domain window; obtain the TPC command field parameter in the DCI from the access network device; determine the power control adjustment at the current transmission opportunity based on the interval length and the TPC command field parameter value.
  • TPC accumulation tpc-Accumulation
  • interval length reference may be made to the relevant descriptions in the above embodiments, and for the sake of brevity, it will not be repeated here.
  • the TPC command field may occupy 2 bits, and accordingly, the parameter of the TPC command field is any value from 0 to 3. In some other examples, the TPC command field may occupy 3 bits, and correspondingly, the parameter of the TPC command field is any value from 0 to 7.
  • determining the power control adjustment value at the current transmission opportunity based on the interval length and the TPC command field parameters may include: determining the TPC absolute value corresponding to the interval length and the TPC command field parameters, and using the TPC absolute value as the current transmission Opportunity's power control adjustment value.
  • the row of the TPC absolute value can be determined based on the TPC command field parameter, and the column of the TPC absolute value can be determined based on the interval length, so that the TPC absolute value can be determined based on both the TPC command field parameter and the interval length.
  • different TPC absolute values may be applied to different interval lengths.
  • Table 3 when the interval length is 3, the corresponding TPC absolute values are -8, -2, 2, and 8.
  • the corresponding TPC absolute values are -6, -1, 1, 6.
  • TPC absolute value can correspond to one or more interval lengths.
  • an interval length of 3 or 4 corresponds to the second column of Table 3, and an interval length of 1 or 2 All correspond to column 3 of Table 3; or, a certain column of the absolute value of TPC can correspond to the interval of the interval length, for example, the interval length is in the interval (2,4] corresponding to the second column of Table 3, and the interval length is in the interval (0,2 ] corresponds to column 3 of Table 3.
  • the TPC absolute value may include more or fewer columns.
  • the power control adjustment value of the current transmission opportunity is determined based on the interval length, etc., which can better adapt to the actual required power adjustment range, and the time domain span between two power controls is taken into account to ensure communication performance.
  • the expansion of the TPC command field is optionally considered, which has certain flexibility.
  • the uplink transmission to be performed by the terminal device 120 is the PUCCH
  • the power control adjustment value determined at 210 is the PUCCH power control adjustment value
  • the terminal device 120 performs PUCCH transmission on the carrier f of the active uplink bandwidth part (active Uplink Bandwidth Part, active UL BWP) b of the serving cell c, and will be in the state of 1 at the transmission opportunity i
  • the PUCCH power control adjustment value is denoted as g b,f,c (i,l).
  • the terminal device 120 may determine the power control adjustment value at the current transmission opportunity based on the initial power control adjustment value of the initial transmission opportunity of the time domain window and the accumulation, where the accumulation is the initial power control adjustment value associated with the initial transmission opportunity Accumulation of first parameter values in all DCIs received between the first moment and the second moment associated with the current transmission opportunity.
  • the terminal device 120 may acquire the initial power control adjustment value of the initial transmission opportunity of the time domain window; Accumulation of first parameter values in all DCIs; determining a power control adjustment value of the current transmission opportunity based on the initial power control adjustment value and the accumulation.
  • the TPC accumulation parameter may be configured or provided through high-layer signaling.
  • the terminal device 120 When the terminal device 120 is not provided with the TPC accumulation parameter, it may be determined based on the initial power control adjustment value of the initial transmission opportunity at the current Power control adjustment value for transmit occasions.
  • the initial power control adjustment value of the initial transmission opportunity of the time domain window can be expressed as g b, f, c (ii 0 , l), which can be determined when determining the transmission power of the initial transmission opportunity of.
  • the first parameter value may be a TPC accumulation value corresponding to a TPC command field (TPC command field) parameter in the DCI, specifically a TPC accumulation value for the PUCCH.
  • the first parameter value may be indicated by the TPC command field in the DCI format that schedules the transmission of the Physical Downlink Shared Channel (PDSCH) corresponding to the PUCCH, as shown in Table 4 below .
  • the first parameter value may be DCI scrambled by transmission power control-physical uplink shared channel-radio network temporary identifier (TPC-PUSCH-RNTI) through cyclic redundancy check (Cyclic Redundancy Check, CRC) format 2_2 as indicated.
  • TPC-PUSCH-RNTI transmission power control-physical uplink shared channel-radio network temporary identifier
  • CRC Cyclic Redundancy Check
  • TPC command field TPC accumulated value of PUCCH [dB] 0 -1 1 0 2 1 3 3
  • the first parameter value used for PUCCH can be expressed as ⁇ PUCCH,b,f,c (m,l), and then the first moment associated with the initial transmission opportunity to the first moment associated with the current transmission opportunity
  • the accumulation of the first parameter values in all DCIs received between two moments is expressed as represents the sum of TPC accumulation values in the set C i , where the set C i is determined based on the first moment and the second moment.
  • the first moment associated with the initial transmission opportunity may be the S11th symbol before the initial transmission opportunity. That is to say, the first moment is located before the initial transmission opportunity, and the interval between the first moment and the initial transmission opportunity may be S11 symbols. In other words, the first moment is located at the S11th symbol before the initial transmission opportunity.
  • the second moment associated with the current transmission opportunity may be the S12th symbol before the current transmission opportunity. That is to say, the second moment is located before the current transmission opportunity, and the second moment and the current transmission opportunity may be separated by S12 symbols. In other words, the second moment is located at the S12th symbol before the current transmission opportunity.
  • i 0 is the smallest symbol that makes the first K PUCCH (ii 0 )-1 symbols of PUCCH transmission opportunity ii 0 earlier than the first K PUCCH (i) symbols of PUCCH transmission opportunity i integer
  • ii 0 is the first transmission opportunity of the time domain window, and may also be called the initial transmission opportunity of the time domain window.
  • K PUCCH (i) may be determined in the following manner. If the PUCCH transmission is in response to the detected DCI format, K PUCCH (i) is the number of symbols between the last symbol of the PDCCH corresponding to the DCI and the first symbol of the corresponding PUCCH transmission.
  • K PUCCH (i) may be determined in the following manner. If the PUCCH transmission is not in response to a detected DCI format, then K PUCCH (i) is K PUCCH,min number of symbols, which may be equal to the number of symbols per slot (eg 12 or 14) and the minimum value indicated by the k2 field in the PUSCH-Config Common field (PUSCH-ConfigCommon).
  • the accumulation of the first parameter value is the accumulation of all first parameter values between the first moment and the second moment.
  • the accumulation can be determined once, or can be determined for each transmission opportunity and then accumulated. This process is similar to the above description for PUSCH in conjunction with FIG. 6 and FIG. 7 , and will not be repeated here for brevity.
  • the initial power control adjustment value f b, f, c (ii 0 , l) and the value of the first parameter in all DCIs received between the first moment and the second moment may be accumulate Determine the power control adjustment value f b, f, c (i, l) of the current transmission opportunity.
  • the transmission power of the initial transmission opportunity ii 0 is the maximum transmission power and ⁇ 0
  • the transmission power of the initial transmission opportunity ii 0 is the minimum transmission power
  • g b, f, c (i, l) g b, f, c (ii 0 , l).
  • the cumulative sum of the initial power control adjustment value and the first parameter value is used as the power control adjustment value of the current transmission opportunity, expressed as:
  • the adjustment of the power control by the TPC command can be truly reflected, and the transmission power control command accumulated by the TPC will not be missed due to the limitation of the power by the joint channel estimation.
  • the value is more adaptable to the actual adjustment range, which ensures the communication performance.
  • the terminal device 120 determines transmit power at the current transmission occasion based on the power control adjustment value at the current transmission occasion.
  • the uplink transmission to be performed by the terminal device 120 is PUSCH
  • the power control adjustment value determined at 210 is the PUSCH power control adjustment value
  • the PUSCH transmission power may be determined.
  • the terminal device 120 performs PUSCH transmission on the carrier f of the active uplink bandwidth part (active Uplink Bandwidth Part, active UL BWP) b of the serving cell c, using the parameter set configuration with the index j, for the state
  • the PUSCH power control adjustment value f b,f,c (i,l) of l the transmission power of PUSCH transmission opportunity i is expressed as P PUSCH,b,f,c (i,j,q d ,l), which can be calculated according to the following The formula is determined:
  • PCMAX,f,c (i) is the maximum transmission power (maximum output power) of PUSCH transmission opportunity i on carrier f of serving cell c, and the maximum transmission power is pre-configured.
  • Min indicates that the value of the transmission power is the smaller value of the upper and lower lines in curly brackets.
  • P O_PUSCH,b,f,c (j) is the sum of nominal power P O_NOMINAL_PUSCH,f,c (j) and power budget compensation P O_UE_PUSCH,b,f,c (j), which can be configured by higher layers. is the bandwidth allocated by the PUSCH resource, represented by the number of resource blocks (Resource Block, RB) used for the PUSCH transmission opportunity.
  • ⁇ b,f,c (j) is path loss compensation, which can be configured by higher layers.
  • PL b,f,c (q d ) is the downlink path loss estimate (downlink pathloss estimate) of the active DL BWP estimated using the reference signal whose index is q d , and the unit is dB.
  • ⁇ TF,b,f,c (i) is an adjustment value related to the number of transmitted bits per resource element (Bits Per Resource Element, BPRE).
  • the uplink transmission to be performed by the terminal device 120 is PUCCH
  • the power control adjustment value determined at 210 is the PUCCH power control adjustment value
  • the PUCCH transmission power may be determined.
  • the terminal device 120 performs PUCCH transmission on the carrier f of the active uplink bandwidth part (active Uplink Bandwidth Part, active UL BWP) b of the serving cell c, use the parameter set configuration with the index q u , for the state is the PUCCH power control adjustment value g b,f,c (i,l) of l, and the transmission power of PUCCH transmission opportunity i is expressed as P PUCCH,b,f,c (i,q u ,q d ,l), which can be Determined according to the following formula:
  • PCMAX,f,c (i) is the maximum transmit power of PUCCH transmission opportunity i on carrier f of serving cell c, and the maximum transmit power is configured in advance.
  • P O_PUCCH,b,f,c (q u ) is the sum of nominal power P O_NOMINAL_PUCCH,f,c (q u ) and power budget compensation P O_UE_PUCCH,b,f,c (q u ), which can be configured by higher layers of. is the bandwidth allocated by the PUCCH resource, represented by the number of resource blocks (Resource Block, RB) used for the PUCCH transmission opportunity.
  • Resource Block Resource Block
  • PL b,f,c (q d ) is the estimated value of the downlink path loss of the active DL BWP estimated using the reference signal with index q d , in dB.
  • ⁇ F_PUCCH (F) is an offset adjustment value configured separately for different PUCCH formats
  • ⁇ TF,b,f,c (i) is an adjustment value related to the transmitted BPRE.
  • the terminal device 120 transmits at the transmit power at the current transmission occasion.
  • the terminal device 120 can transmit the PUSCH with P PUSCH,b,f,c (i,j,q d ,l), or, with P PUCCH,b,f,c (i,q u ,q d ,l ) transmits the PUCCH.
  • the time domain window before the current transmission opportunity can be considered, so that the power state adjustment state can better match the value that needs to be adjusted at the opportunity to ensure communication performance.
  • the time domain window in the embodiments of the present disclosure can be used for joint channel estimation, and the joint channel estimation is not limited to between one scheduled PUSCH repetition or between one scheduled PUCCH repetition, and the joint channel estimation can be performed on different schedules Between PUSCH repetitions, or between different scheduled PUCCH repetitions, or between PUSCH and PUCCH, or between message 3 repetitions (Msg3repetition) in a random access scenario, etc. This is not limited.
  • the embodiments are described above for PUSCH and PUCCH respectively, the present disclosure may also include any combination of the above-listed embodiments, and may also include transmit power for other uplink transmissions, etc., which will not be described one by one in this disclosure. list.
  • the time domain window may also be called a joint transmission opportunity (JTO), a transmission occasion for joint channel estimation (transmission occasion for joint channel estimation, TOJ )Wait.
  • JTO joint transmission opportunity
  • TOJ transmission occasion for joint channel estimation
  • the joint transmission opportunity corresponds to a time domain window covering multiple TOs.
  • the joint transmission opportunity corresponds to actual repetition, not nominal repetition.
  • the process of determining the PUSCH power control adjustment value for the "Joint Transmission Opportunity (JTO)" may include: when the TPC accumulation parameter is not configured, determine the current PUSCH power control adjustment value based on the initial PUSCH power control adjustment value and accumulation of the last joint transmission opportunity.
  • the PUSCH power control adjustment value of the joint transmission opportunity, wherein the accumulation is the accumulation of the first PUSCH parameter value in the DCI between the first moment associated with the last joint transmission opportunity and the second moment associated with the current joint transmission opportunity.
  • the process of determining the PUCCH power control adjustment value for "Joint Transmission Opportunity (JTO)" may include: based on the initial PUCCH power control adjustment value of the last joint transmission opportunity and accumulatively determining the PUCCH power control adjustment value of the current joint transmission opportunity, The accumulation is the accumulation of the first PUCCH parameter value in the DCI between the first moment associated with the last joint transmission opportunity and the second moment associated with the current joint transmission opportunity.
  • the accumulation can be completed once or multiple times according to the TO.
  • the way of power control can refer to the existing way. In this way, only by replacing the existing TO with the JTO, the power control adjustment value meeting the actual demand can be determined, which simplifies the processing method and ensures the communication performance.
  • FIG. 8 shows another schematic flowchart of a transmission method 800 according to an embodiment of the present disclosure.
  • the method 800 may be implemented at the terminal device 120 shown in FIG. 1 .
  • the following describes the transmission method 800 by taking the terminal device 120 as an example, but this is only exemplary, and is not intended to limit the embodiments of the present disclosure.
  • Method 800 begins at block 810 .
  • the terminal device 120 acquires power indication information, where the power indication information is used to indicate a power adjustment value of resources in the current time domain, the power indication information includes TPC indication information, and the current time domain resources include at least two transmission opportunities or the A previous time domain resource of the current time domain resource includes at least two transmission opportunities.
  • the terminal device 120 determines a power control adjustment value of resources in the current time domain based on the power indication information.
  • the terminal device 120 determines the transmit power of the resource in the current time domain based on the power control adjustment value of the resource in the current time domain.
  • the terminal device 120 transmits at the transmit power on the current time domain resource.
  • the time domain resource including at least two transmission opportunities may be used for joint channel estimation, or may be used in other scenarios, etc., which is not limited in the present disclosure.
  • the time-domain resource may be a time-domain window, or may also be called a time window, a joint transmission opportunity (JTO), a constant transmission opportunity, a transmission opportunity for joint channel estimation (TOJ), or others.
  • the power control adjustment value may also be called a power control adjustment state or a power control adjustment state value or a power control adjustment state parameter or a power control adjustment state item or a power control adjustment parameter or others, which is not limited in the present disclosure. .
  • At least two transmission opportunities in the current time domain resource may have the same transmission characteristic information, where the same transmission characteristic information includes at least one of the following: the same TPMI, the same transmission power, the same frequency domain Resource occupation, phase continuity, same antenna port, etc.
  • at least two transmission opportunities in the previous time domain resource may have the same transmission characteristic information.
  • At least two transmission opportunities in the current time domain resource having the same transmit power means that no power control/power adjustment is performed on non-initial transmission opportunities of the current time domain resource.
  • power control/power adjustment is performed at the first transmission opportunity of the current time domain resource, and the transmit power of other transmission opportunities after the first transmission opportunity is equal to the transmit power of the first transmission opportunity.
  • the method 800 shown in FIG. 8 may be used to determine the PUSCH transmit power of the terminal device 120 .
  • the TPC accumulation parameter is not configured, at 820, based on the initial power control adjustment value and accumulation of the previous time domain resource of the current time domain resource, determine the PUSCH power control adjustment value of the current time domain resource value, wherein the accumulation is the accumulation of the power adjustment value indicated by the power indication information in all DCIs received between the first moment associated with the previous time domain resource and the second moment associated with the current time domain resource .
  • the power adjustment value indicated by the TPC indication information may be determined from a value set.
  • the value set may be an accumulated TPC value, specifically, an accumulated TPC value of the PUSCH.
  • the TPC indication information may be a TPC command field parameter, and the power adjustment value indicated by the power indication information may be a TPC accumulation value of the PUSCH corresponding to the TPC command field parameter.
  • the method 800 shown in FIG. 8 may be used to determine the PUSCH transmit power of the terminal device 120 .
  • the PUSCH power control value may be determined, at 820, based on the initial PUSCH power control adjustment value and PUSCH accumulation of the previous transmission opportunity of the current time domain resource.
  • the adjustment value, wherein the accumulation is the PUSCH of the power adjustment value indicated by the power indication information in all DCIs received between the first moment associated with the previous transmission opportunity and the second moment associated with the current time domain resource add up.
  • the power adjustment value indicated by the TPC indication information may be determined from the first value set.
  • the TPC indication information may be a TPC command field parameter
  • the power adjustment value indicated by the power indication information may be a TPC accumulation value of the PUSCH corresponding to the TPC command field parameter.
  • At least one element in the first value set is greater than 3, and/or at least one element in the first value set is less than -1.
  • the number of elements in the first value set may be equal to 4, or may be greater than 4.
  • the TPC indication information may be a TPC command field parameter, and the number of bits occupied by the TPC command field may be greater than 2, such as 3, so that the TPC command field parameter may be a value from 0 to 7, and correspondingly in the first value set It can also contain 8 elements, at least one of which is greater than 3 or at least one is less than -1.
  • the first value set is configured by RRC or predefined.
  • the first set of values is determined from at least two first sets.
  • the first value set may be determined from at least two first sets based on the first set indication information in the RRC signaling.
  • the first set of indication information may be an index.
  • the first value set may be determined from at least two first sets based on a predefined criterion.
  • the predefined criterion may be a scenario for joint channel estimation and the like.
  • a predefined criterion may be interval length. The interval length is the length of the previous time domain resource or the length between the first transmission opportunity of the previous time domain resource and the first transmission opportunity of the current time domain resource.
  • the at least two first sets may be predefined, for example, preconfigured or prestored in various ways.
  • part or all of the at least two first sets may be configured through RRC signaling.
  • some or all of the at least two first sets may be indicated through DCI.
  • the at least two first sets may also be configured in other ways, which will not be listed here.
  • some or all of the elements in the at least two first sets may be predefined, or may be configured through RRC signaling.
  • the embodiment of the present disclosure realizes the expansion of the TPC accumulated value of PUSCH, so that the range of the power control adjustment value is larger, the adjustment amount is finer, and it can better adapt to the power control adjustment range required by actual scenarios such as joint channel estimation. , to ensure the communication performance.
  • the method 800 shown in FIG. 8 may be used to determine the PUCCH transmit power of the terminal device 120 .
  • the PUCCH power control adjustment value of the current time domain resource is determined based on the initial power control adjustment value of the previous time domain resource and the accumulation of the current time domain resource, wherein the accumulation is Accumulation of power adjustment values indicated by power indication information in all DCIs received between the first moment associated with the domain resource and the second moment associated with the current time domain resource.
  • the power adjustment value indicated by the TPC indication information may be determined from a value set.
  • the value set may be an accumulated TPC value, specifically, an accumulated TPC value of the PUCCH.
  • the TPC indication information may be a TPC command field parameter, and the power adjustment value indicated by the TPC indication information may be a TPC accumulation value of the PUCCH corresponding to the TPC command field parameter.
  • the method 800 shown in FIG. 8 may be used to determine the PUCCH transmit power of the terminal device 120 .
  • the PUCCH power control adjustment value of the current time domain resource is determined based on the initial PUCCH power control adjustment value of the previous transmission opportunity of the current time domain resource and the PUCCH accumulation, wherein the accumulation is the same as the previous PUCCH power control adjustment value
  • the power adjustment value indicated by the TPC indication information may be determined from the second value set.
  • the TPC indication information may be a TPC command field parameter
  • the power adjustment value indicated by the power indication information may be a TPC accumulation value of the PUCCH corresponding to the TPC command field parameter.
  • At least one element in the second value set is greater than 3, and/or at least one element in the second value set is less than -1.
  • the number of elements in the second value set may be equal to 4, or may be greater than 4.
  • the TPC indication information may be a TPC command field parameter, and the number of bits occupied by the TPC command field may be greater than 2, such as 3, so that the TPC command field parameter may be a value from 0 to 7, and correspondingly in the second value set It can also contain 8 elements, at least one of which is greater than 3 or at least one is less than -1.
  • the second value set is configured by RRC or predefined.
  • the second set of values is determined from at least two second sets.
  • the second value set may be determined from at least two second sets based on the second set indication information in the RRC signaling.
  • the second set of indication information may be an index.
  • the second value set may be determined from at least two second sets based on a predefined criterion.
  • the predefined criterion may be a scenario for joint channel estimation and the like.
  • the predefined criterion may be the interval length.
  • the interval length is the length of the previous time domain resource or the length between the first transmission opportunity of the previous time domain resource and the first transmission opportunity of the current time domain resource.
  • the at least two second sets may be predefined, for example, preconfigured or prestored in various ways.
  • part or all of the at least two second sets may be configured through RRC signaling.
  • some or all of the at least two second sets may be indicated through DCI.
  • the at least two second sets may also be configured in other ways, which will not be listed here.
  • some or all of the elements in the at least two second sets may be predefined, or may be configured through RRC signaling.
  • the embodiment of the present disclosure realizes the expansion of the TPC accumulated value of PUCCH, so that the range of the power control adjustment value is larger, the adjustment amount is finer, and it can better adapt to the power control adjustment range required by actual scenarios such as joint channel estimation. , to ensure the communication performance.
  • the current time domain resource includes at least two transmission opportunities
  • the previous time domain resource may include one or more transmission opportunities.
  • the time domain resource as the time domain window as an example, in one example, as shown in Figure 3, the current time domain resource (such as the time domain window 320) includes 4 transmission opportunities, and the previous time domain resource (such as the time domain window 310) includes 4 transmission opportunities.
  • the current time-domain resource eg, time-domain window 513
  • the previous time-domain resource eg, time-domain window 512
  • the current transmission resource includes a transmission opportunity, for example, the current transmission resource is a separate transmission opportunity for joint channel estimation, or the current transmission resource is not a separate transmission opportunity for joint channel estimation.
  • the previous time domain resource includes at least two transmission opportunities. In one example, as shown in FIG. 5 , it is assumed that the current time-domain resource is a time-domain window 512, which includes a transmission opportunity. The previous time-domain resource is a time-domain window 511, which includes two transmission opportunities.
  • the method 800 shown in FIG. 8 may be used to determine the PUSCH transmit power of the terminal device 120 .
  • TPC accumulation parameters are configured, at 820, based on the scale factor and the power adjustment value indicated by the TPC indication information, determine the power control adjustment value of the resource in the current time domain.
  • scaling factors may be preconfigured or predefined. That is to say, the scaling factor is a predetermined value, so that the predefined scaling factor can be directly obtained to determine the power control adjustment value, which has high efficiency and reduces the calculation complexity of the terminal device.
  • the scaling factor may be determined based on a third message, which may be carried in RRC signaling.
  • the third message may include a scaling factor.
  • the terminal device 120 may directly obtain the scaling factor from the third message. This method is fast, efficient, and efficient, and reduces the calculation complexity of the terminal device.
  • the scaling factor may be determined based on a third message and a fourth message, where the third message may be carried in RRC signaling and the third message includes multiple scaling factors, where the fourth message may be DCI Or Media Access Control-Control Element (Medium Access Control-Control Element, MAC-CE).
  • the fourth message is used to determine one of the scaling factors.
  • the terminal device 120 may receive a third message, where the third message includes multiple scaling factors.
  • the terminal device 120 may receive a fourth message, where the fourth message includes scaling factor indication information.
  • the terminal device 120 further acquires the scale factor indicated by the scale factor indication information from the multiple scale factors.
  • the scaling factor can be determined based on both the third message and the fourth message, which can be semi-statically configured through RRC and indicated by DCI or MAC-CE, which can avoid excessive signaling overhead of DCI or MAC-CE , and this method can realize the update of the comparison scale factor more quickly and is more flexible.
  • the scale factor may be determined based on predefined criteria.
  • the predefined criterion is the interval length
  • the interval length is the length of the previous time domain resource or the distance between the first transmission opportunity of the previous time domain resource and the first transmission opportunity of the current time domain resource length.
  • the interval length can be used as the scaling factor, for example, the dimensionless value after de-dimensioning the interval length is used as the scaling factor.
  • the scale factor corresponding to the interval length may be acquired based on the correspondence between the interval length and the scale factor, where the correspondence is configured or predefined by the RRC of the access network device.
  • the scaling factor can be determined based on the interval length and a predefined scaling factor. For example, take the product of the interval length and the scaling factor as the scaling factor.
  • the length in the embodiments of the present disclosure can be at least one of the following: number of time slots, number of symbols, number of transmission opportunities, number of repetitions, etc., where the number of repetitions can be a nominal number of repetitions or an actual number of repetitions, etc. limited.
  • the scaling factor may be determined based on the third message and predefined criteria.
  • the third message is carried in RRC signaling, and the predefined criterion is the interval length, which is the length of the previous time domain resource or the first transmission opportunity of the previous time domain resource to the first transmission opportunity of the current time domain resource. The length between one transmission opportunity.
  • the third message includes a scaling factor
  • the product of the interval length and the scaling factor may be used as the scaling factor.
  • the scaling factor may be determined based on the fourth message and predefined criteria.
  • the fourth message is DCI
  • the predefined criterion is the interval length, which is the length of the previous time domain resource or the distance between the first transmission opportunity of the previous time domain resource and the first transmission opportunity of the current time domain resource. length between.
  • the product of the interval length and the scaling factor may be used as the scaling factor.
  • the scaling factor may be determined based on the third message, the fourth message and predefined criteria.
  • the third message is carried in RRC signaling
  • the fourth message is DCI or AMC-CE
  • the predefined criterion is interval length.
  • the third message includes multiple scaling factors
  • the fourth message includes scaling factor indication information
  • the scaling factor indicated by the scaling factor indication information can be obtained from the multiple scaling factors, and then the interval length and the scaling factor can be combined
  • the product of is used as a scaling factor.
  • the scaling factor may also be referred to as an adjustment factor or a power control adjustment factor or other names, and the scaling factor may be used to adjust the TPC command adjustment value to determine the power control adjustment value.
  • the power adjustment value indicated by the TPC indication information may be determined from a value set.
  • the value set or elements in the value set may be predefined.
  • the TPC indication information may be a TPC command field parameter
  • the power adjustment value indicated by the TPC indication information may be a TPC absolute value corresponding to the TPC command field parameter.
  • the power adjustment value indicated by the TPC indication information may be determined from the value set ⁇ -4, -1, 1, 4 ⁇ .
  • the value of at least one element is greater than 4.
  • the value set may be ⁇ -6,-1,1,6 ⁇ or ⁇ -8,-2,2,8 ⁇ or others.
  • the value set in which the power adjustment value indicated by the TPC indication information contains more than four elements.
  • the TPC indication information can be a TPC command field parameter, and the number of bits occupied by the TPC command field can be greater than 2, such as 3, so that the TPC command field parameter can be a value from 0 to 7, and correspondingly, the value set can also be Contains 8 elements, at least one of which is greater than 4.
  • the value set may be ⁇ -6,-4,-2,-1,1,2,4,6 ⁇ or others.
  • the value set or elements in the value set are configured by RRC, so that the terminal device 120 can determine the indicated power adjustment value from the value set based on the TPC indication information.
  • the value set may be determined from at least two value sets (hereinafter referred to as at least two sets for short).
  • the value set may be determined from at least two sets based on the set indication information in the RRC signaling.
  • the collection indication information may be an index. At least two collections may have corresponding indexes, and different collections may have different indexes. Then the corresponding value set can be determined based on the index in the RRC signaling. Taking Table 5 as an example, there are two sets of absolute values of TPC used for JCE, namely ⁇ -6,-1,1,6 ⁇ and ⁇ -8,-2,2,8 ⁇ . Suppose the set ⁇ -6,-1,1,6 ⁇ has index A1 and the set ⁇ -8,-2,2,8 ⁇ has index A2. Then, if the index in the RRC signaling is A1, it can be determined that the set of values is ⁇ -6,-1,1,6 ⁇ . If the index in the RRC signaling is A2, it can be determined that the set of values is ⁇ -8,-2,2,8 ⁇ . It is understandable that the collection indication information may also be in other forms, which will not be listed here.
  • the set of values may be determined from at least two sets based on predefined criteria.
  • the predefined criterion may be a scenario for joint channel estimation and the like.
  • TPC absolute value TPC absolute value
  • TPC absolute value TPC absolute value for JCE.
  • the value set can be determined as the column where the absolute value of TPC for JCE is located, that is, the value set is ⁇ -6,-1,1,6 ⁇ .
  • the set of values may be determined from at least two sets based on predetermined criteria.
  • a predefined criterion may be interval length.
  • the interval length is the length of the previous time domain resource or the length between the first transmission opportunity of the previous time domain resource and the first transmission opportunity of the current time domain resource.
  • the terminal device 120 may first determine the interval length, and then may determine the value set based on the interval length.
  • the actual power adjustment range can be adapted to ensure the communication performance.
  • the absolute value of TPC is expanded, which is not only related to the TPC command field, but also related to the interval length. Such expansion makes the range of power control adjustment values larger, the adjustment amount is finer, and it is more suitable for actual scenarios.
  • the power control adjustment range ensures the communication performance.
  • Table 6 is only illustrative, and a certain column of the absolute value of TPC used for JCE may correspond to one or more interval lengths.
  • an interval length of 3 or 4 corresponds to the second column of Table 6, and the interval length If it is 1 or 2, it corresponds to the third column of Table 6; or, a certain column of the absolute value of TPC used for JCE can correspond to the interval of the interval length, for example, the interval length is in the interval (2,4] corresponding to the second column of Table 6, An interval length in the interval (0,2] corresponds to column 3 of Table 6.
  • the absolute value of TPC for JCE may include more or fewer columns.
  • value set may also be determined from at least two sets in other ways, which will not be listed here.
  • At least two sets may be predefined, eg, preconfigured or prestored in various ways. In some other examples, some or all of the at least two sets may be configured through RRC signaling. In some other examples, some or all of the at least two sets may be indicated through DCI. In the embodiment of the present disclosure, at least two sets may also be configured in other ways, which will not be listed here.
  • determining the power control adjustment value of the current time domain resource may include: determining the power control adjustment value of each transmission opportunity of the current time domain resource.
  • determining the power control adjustment value of the current time domain resource may include: determining the power control adjustment value of the first transmission opportunity of the current time domain resource.
  • other transmission opportunities (that is, not the first transmission opportunity) of the current transmission resource may be determined by other rules, for example, other rules are: the transmission power of other transmission opportunities is equal to the transmission power of the first transmission opportunity .
  • the power control adjustment value of the current time domain resource is determined based on the power indication information (such as the TPC command indication information), which simplifies the processing process of the terminal device, reduces the complexity of the terminal device, and improves the determination. transmit power efficiency.
  • the power adjustment value corresponding to the TPC command indication information (such as the absolute value of TPC used for JCE) can have a larger value or a larger range, so that it can adapt to the actual required power adjustment range and ensure communication performance.
  • Fig. 9 shows another schematic flowchart of a transmission method 900 according to an embodiment of the present disclosure.
  • the method 900 may be implemented at the access network device 110 shown in FIG. 1 .
  • the transmission method 900 is described below by taking the access network device 110 as an example, but this is only exemplary, and is not intended to limit the embodiments of the present disclosure.
  • Method 900 begins at block 910 .
  • the access network device 110 sends power indication information to the terminal device 120, where the power indication information is used to indicate the power adjustment value of the current time domain resource, the power indication information includes TPC indication information, and the current time domain resource includes at least two The first transmission opportunity or the previous time domain resource of the current time domain resource includes at least two transmission opportunities.
  • the access network device 110 receives the transmission performed by the terminal device 120 at the transmission power in the current time domain resource, and the TPC indication information is a basis for determining the transmission power.
  • the time domain resource may be used for joint channel estimation, or may be used in other scenarios, etc., which is not limited in the present disclosure.
  • the time-domain resource may be a time-domain window, or may also be called a time window, a joint transmission opportunity (JTO), a constant transmission opportunity, a transmission opportunity for joint channel estimation (TOJ), or others.
  • JTO joint transmission opportunity
  • TOJ transmission opportunity for joint channel estimation
  • the power indication information may be used by the terminal device 120 to determine a power control adjustment value based on the power indication information, and further determine transmit power based on the power control adjustment value, where the power control adjustment value may also be referred to as a power control adjustment state Or the power control adjustment status value or the power control adjustment status parameter or the power control adjustment status item or the power control adjustment parameter or others, which is not limited in the present disclosure.
  • At least two transmission opportunities in the current time domain resource may have the same transmission characteristic information, where the same transmission characteristic information includes at least one of the following: the same TPMI, the same transmission power, the same frequency domain Resource occupation, phase continuity, same antenna port, etc.
  • At least two transmission opportunities in the current time domain resource having the same transmit power means that no power control/power adjustment is performed on non-initial transmission opportunities of the current time domain resource.
  • power control/power adjustment is performed at the first transmission opportunity of the current time domain resource, and the transmit power of other transmission opportunities after the first transmission opportunity is equal to the transmit power of the first transmission opportunity.
  • the previous time domain resource of the current time domain resource may include one or more transmission opportunities, and the previous time domain resource may be a time domain window used for joint channel estimation, or may be a time domain window used for non-joint channel estimation. Transmission timing.
  • the number of bits occupied by the TPC indication information is greater than 2 or equal to 2.
  • the TPC indication information may be a TPC command field parameter.
  • the power adjustment value indicated by the TPC indication information may be a transmission power control command value, such as a TPC accumulation value, a TPC absolute value, and the like.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the value set or elements in the value set may be configured by the access network device 110 through RRC signaling.
  • the number of elements in the value set may be equal to 4, or the number of elements in the value set may be greater than 4.
  • the method 900 may further include: the access network device 110 sending a third message to the terminal device 120, the third message is used for the terminal device 120 to determine the transmission power, where the third message is carried in the RRC signal In the command, the third message includes a scaling factor or scaling factor.
  • the third message includes a scaling factor, so that the terminal device 120 can determine the power control adjustment value based on the scaling factor and the power adjustment value indicated by the TPC indication information.
  • the third message includes a scaling factor, so that the terminal device 120 can determine the scaling factor based on the scaling factor and a predefined criterion (such as interval length, as described in connection with the embodiment of FIG. 8 ), and then based on the scaling factor and the power adjustment value indicated by the TPC indication information to determine the power control adjustment value.
  • a predefined criterion such as interval length, as described in connection with the embodiment of FIG. 8
  • the method 900 may further include: the access network device 110 sends a third message to the terminal device 120, where the third message includes multiple scaling factors; the access network device 110 further sends a fourth message to the terminal device 120 message, the fourth message is used to determine one of multiple scaling factors, wherein the third message is carried in RRC signaling, the fourth message is DCI or MAC-CE, the third message and the fourth The message is used by the terminal device 120 to determine transmit power.
  • the method 900 may further include: the access network device 110 sending configuration information to the terminal device 120, where the configuration information is used to configure multiple value sets (hereinafter referred to as multiple sets for short).
  • the terminal device 120 can determine a value set from multiple sets, and further, the terminal device 120 can determine the power adjustment value indicated by the TPC indication information from the value set based on the TPC indication information.
  • the method 900 may further include: the access network device 110 sending set indication information to the terminal device 120, where the set indication information is used for the terminal device 120 to determine the value set from multiple sets.
  • the set indication information can be an index or an index value, so that the terminal device 120 can determine a value set from multiple sets based on the index or index value, and further the terminal device 120 can select a value set based on the TPC indication information. Determine the power adjustment value indicated by the TPC indication information.
  • the access network device in the embodiment of the present disclosure can be configured or indicated in a semi-static or static manner, so that the scaling factor can be updated or adjusted more quickly, and the configuration manner is more flexible.
  • Fig. 10 shows a schematic block diagram of a communication device 1000 according to an embodiment of the present disclosure.
  • the apparatus 1000 may be implemented at the terminal device 120, or may be implemented as a chip or a chip system in the terminal device 120, and the scope of the present disclosure is not limited in this regard.
  • the apparatus 1000 may include a first determining unit 1010 , a second determining unit 1020 and a transmitting unit 1030 .
  • the first determining unit 1010 is configured to determine a power control adjustment value at the current transmission opportunity based on a time domain window before the current transmission opportunity, wherein the time domain window includes at least two transmission opportunities.
  • the second determining unit 1020 is configured to determine the transmit power of the current transmission opportunity based on the power control adjustment value.
  • the transmission unit 1030 is configured to perform transmission at the current transmission occasion with transmit power.
  • the first determining unit 1010 is configured to: determine the power control adjustment value at the current transmission opportunity based on the initial power control adjustment value of the initial transmission opportunity of the time domain window and the accumulation, wherein the accumulation is Accumulation of first parameter values in all downlink control information DCI received between the first moment associated with the transmission opportunity and the second moment associated with the current transmission opportunity.
  • the first determining unit 1010 is configured to: determine the scale factor based on the time domain window; acquire the second parameter value corresponding to the TPC command field parameter in the DCI from the access network device; based on the second parameter value and Scale factor, which determines the power control adjustment value at the current transmission opportunity.
  • the first determining unit 1010 is configured to: determine the scale factor based on the total length between the initial transmission opportunity and the current transmission opportunity of the time domain window; or determine the scale factor based on the length of the time domain window .
  • the first determining unit 1010 is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window; based on the interval length
  • the corresponding relationship with the scale factor is to obtain the scale factor corresponding to the interval length, where the corresponding relationship is configured by the RRC of the access network device.
  • the first determining unit 1010 is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window; The scaling factor in the RRC signaling of the network access device or in the DCI; the scaling factor is determined based on the interval length and the scaling factor.
  • the first determining unit 1010 is configured to: determine the power control adjustment value at the current transmission opportunity based on the product of the second parameter value and the scaling factor.
  • the first determining unit 1010 is configured to: acquire the interval length, wherein the interval length is the total length between the initial transmission opportunity of the time domain window and the current transmission opportunity or the length of the time domain window; The TPC command field parameter in the DCI of the network access device; based on the interval length and the TPC command field parameter, determine the power control adjustment value at the current transmission opportunity.
  • the time domain window is used for joint channel estimation, and an interrupt time domain resource not used for joint channel estimation is further included between the current transmission opportunity and the initial transmission opportunity of the time domain window.
  • the apparatus 1000 in FIG. 10 may be implemented as the terminal device 120, or may be implemented as a chip or a chip system in the terminal device 120, which is not limited in this embodiment of the present disclosure.
  • the apparatus 1000 in FIG. 10 can be used to implement the processes described above in conjunction with the terminal device 120 in FIG. 2 to FIG. 7 , and for the sake of brevity, details are not repeated here.
  • Fig. 11 shows another schematic block diagram of a communication device 1100 according to an embodiment of the present disclosure.
  • the apparatus 1100 may be implemented at the terminal device 120, or may be implemented as a chip or a chip system in the terminal device 120, and the scope of the present disclosure is not limited in this regard.
  • the apparatus 1100 may include an acquiring unit 1110 , a first determining unit 1120 , a second determining unit 1130 and a transmitting unit 1140 .
  • the acquiring unit 1110 is configured to acquire power indication information, where the power indication information is used to indicate a power adjustment value of resources in the current time domain, the power indication information includes TPC indication information, and the current time domain resources include at least two transmission opportunities or the A previous time domain resource of the current time domain resource includes at least two transmission opportunities.
  • the first determining unit 1120 is configured to determine a power control adjustment value of resources in the current time domain based on the power indication information.
  • the second determining unit 1130 is configured to determine the transmission power of the current time domain resource based on the power control adjustment value of the current time domain resource.
  • the transmission unit 1140 is configured for the terminal device to perform transmission at the transmission power in the current time domain resource.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of bits occupied by the TPC indication information is greater than 2, and/or, the number of elements in the value set is greater than 4.
  • the value set is determined from at least two value sets based on a predefined criterion, or the value set is determined from at least two value sets based on an index from RRC.
  • the value set is configured by RRC signaling or the value set is predefined.
  • the first determining unit is configured to: determine the power control adjustment value of the resource in the current time domain based on the scale factor and the power adjustment value indicated by the TPC indication information.
  • the scaling factor is a predetermined value; or, the scaling factor is determined based on a third message and/or a predefined criterion, wherein the third message is carried in RRC signaling.
  • the scaling factor is determined based on a third message including the scaling factor.
  • the scaling factor is determined based on a third message and a fourth message, where the fourth message is used to determine one of the plurality of scaling factors.
  • the obtaining unit is configured to receive a third message, wherein the third message includes multiple scale factors; receive a fourth message, where the fourth message includes scale factor indication information; and acquire the scale from the multiple scale factors The scale factor indicated by the factor indication information.
  • the fourth message is DCI or MAC-CE.
  • the scale factor is determined based on a predefined criterion, wherein the predefined criterion is an interval length, which is the length of the previous time domain resource or the first transmission opportunity of the previous time domain resource The length to the first transmission opportunity of the current time domain resource.
  • the predefined criterion is an interval length, which is the length of the previous time domain resource or the first transmission opportunity of the previous time domain resource The length to the first transmission opportunity of the current time domain resource.
  • the scaling factor is determined based on a third message including the scaling factor and a predefined criterion being the interval length. In some embodiments, the product of the scaling factor and the interval length is used as the scaling factor.
  • the apparatus 1100 in FIG. 11 may be implemented as the terminal device 120, or may be implemented as a chip or a chip system in the terminal device 120, which is not limited by the embodiment of the present disclosure.
  • the apparatus 1100 in FIG. 11 can be used to implement the processes described above in conjunction with the terminal device 120 in FIG. 8 , and details are not repeated here for brevity.
  • Fig. 12 shows another schematic block diagram of a communication device 1200 according to an embodiment of the present disclosure.
  • the apparatus 1200 may be implemented at the access network device 110, or may be implemented as a chip or a chip system in the access network device 110, and the scope of the present disclosure is not limited in this respect.
  • an apparatus 1200 may include a sending unit 1210 and a receiving unit 1220 .
  • the sending unit 1210 is configured to send power indication information to the terminal device, where the power indication information is used to indicate the power adjustment value of the current time domain resource, the power indication information includes TPC indication information, and the current time domain resource includes at least two transmission opportunities Or the previous time domain resource of the current time domain resource includes at least two transmission opportunities.
  • the receiving unit 1220 is configured to receive the transmission performed by the terminal device at the transmission power in the current time domain resource, and the TPC indication information is a basis for determining the transmission power.
  • the number of bits occupied by the TPC indication information is greater than 2.
  • the power adjustment value indicated by the TPC indication information is determined from a value set, and the value set includes at least one value greater than 4.
  • the number of elements in the value set is greater than 4.
  • the sending unit 1210 is further configured to: send a third message to the terminal device 120, the third message is used for the terminal device 120 to determine the transmit power, where the third message is carried in RRC signaling, the The third message includes a scaling factor or scaling factor.
  • the sending unit 1210 is further configured to: send a third message to the terminal device 120, where the third message includes a plurality of scaling factors; send a fourth message to the terminal device 120, where the fourth message is used to obtain the One of the scaling factors is determined, wherein the third message is carried in RRC signaling, the fourth message is DCI or MAC-CE, and the third message and the fourth message are used for the terminal device 120 to determine the transmit power.
  • the sending unit 1210 is further configured to send configuration information to the terminal device 120, where the configuration information is used to configure multiple sets.
  • the sending unit 1210 is further configured to: send set indication information to the terminal device 120, for the terminal device 120 to determine the value set from multiple sets.
  • the apparatus 1200 in FIG. 12 may be implemented as the access network device 110 , or may be implemented as a chip or chip system in the access network device 110 , which is not limited in the embodiments of the present disclosure.
  • the apparatus 1200 in FIG. 12 can be used to implement the processes described above in conjunction with the access network device 110 in FIG. 9 , and details are not repeated here for the sake of brevity.
  • FIG. 13 shows a simplified block diagram of an example apparatus 1300 according to an embodiment of the disclosure.
  • the apparatus 1300 may be used to implement the terminal device 120 or the access network device 110 as shown in FIG. 1 .
  • apparatus 1300 includes one or more processors 1310 , one or more memories 1320 coupled to processors 1310 , and communication module 1340 coupled to processors 1310 .
  • the communication module 1340 can be used for two-way communication.
  • the communication module 1340 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • Processor 1310 may be of any type suitable for the local technical network, and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a digital signal processor (Digital Signal Processor, DSP), or a control-based One or more of the multi-core controller architectures of the processor.
  • Apparatus 1300 may have multiple processors, such as application specific integrated circuit chips, slaved in time to a clock that is synchronized to a main processor.
  • Memory 1320 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include but are not limited to at least one of the following: read-only memory (Read-Only Memory, ROM) 1324, erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, hard disk , Compact Disc (CD), Digital Video Disk (Digital Versatile Disc, DVD) or other magnetic and/or optical storage.
  • Examples of volatile memory include, but are not limited to, at least one of: Random Access Memory (RAM) 1322, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • the computer program 1330 comprises computer-executable instructions executed by the associated processor 1310 .
  • Program 1330 may be stored in ROM 1324.
  • Processor 1310 may perform any suitable actions and processes by loading program 1330 into RAM 1322.
  • Embodiments of the present disclosure may be implemented by means of a program 1330 such that the apparatus 1300 may perform any process as discussed with reference to FIGS. 2 to 9 .
  • Embodiments of the present disclosure can also be realized by hardware or by a combination of software and hardware.
  • program 1330 may be tangibly embodied on a computer-readable medium, which may be included in apparatus 1300 (such as in memory 1320 ) or other storage device accessible by apparatus 1300 .
  • Program 1330 may be loaded from a computer readable medium into RAM 1322 for execution.
  • the computer readable medium may include any type of tangible nonvolatile memory such as ROM, EPROM, flash memory, hard disk, CD, DVD, and the like.
  • the communication module 1340 in the apparatus 1300 can be implemented as a transmitter and receiver (or transceiver), which can be configured to receive RRC and/or DCI, etc., and transmit PUSCH and/or PUCCH, etc.
  • the apparatus 1300 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in this disclosure.
  • the apparatus 1300 in FIG. A chip or a chip system, which is not limited in embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • a chip which may include an input interface, an output interface, and a processing circuit.
  • the above signaling or data interaction may be completed by the input interface and the output interface, and the generation and processing of the signaling or data information may be completed by the processing circuit.
  • Embodiments of the present disclosure also provide a chip system, including a processor, configured to support the terminal device 120 or the access network device 110 to implement the functions involved in any of the foregoing embodiments.
  • the system-on-a-chip may further include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device installed with the system-on-a-chip can implement the program described in any of the above-mentioned embodiments.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • Embodiments of the present disclosure also provide a processor, configured to be coupled with a memory, the memory stores instructions, and when the processor executes the instructions, the processor executes any of the above-mentioned embodiments involving the terminal device 120 or the access Methods and functions of network device 110.
  • Embodiments of the present disclosure also provide a computer program product containing instructions, which, when run on a computer, cause the computer to execute the methods and methods involving the terminal device 120 or the access network device 110 in any of the above embodiments Function.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which computer instructions are stored.
  • the processor executes the instructions, the processor executes any of the above-mentioned embodiments related to the terminal device 120 or the access network. Methods and Functions of Device 110 .
  • An embodiment of the present disclosure also provides a wireless communication system, which includes a terminal device and an access network device.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. While various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, devices, systems, techniques or methods described herein can be implemented as, without limitation Exemplary, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product comprises computer-executable instructions, for example included in program modules, which are executed in a device on a real or virtual processor of a target to perform the process/method as described above with reference to FIGS. 2 to 9 .
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided as desired among the program modules.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules may be located in both local and remote storage media.
  • Computer program codes for implementing the methods of the present disclosure may be written in one or more programming languages. These computer program codes can be provided to processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the computer or other programmable data processing devices, The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, sound, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer-readable storage media include electrical connections with one or more wires, portable computer diskettes, hard disks, random storage access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash), optical storage, magnetic storage, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本公开的实施例提供了一种传输方法、通信装置、计算机可读存储介质和芯片。在该方法中,终端设备基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中时域窗口包括至少两个传输时机;基于功率控制调整值确定当前传输时机的发射功率;以及在当前传输时机以该发射功率进行传输。以此方式,终端设备能够基于时域窗口来确定发射功率,使得确定的发射功率能够与实际场景匹配,保证了通信性能。

Description

传输方法、通信装置、计算机可读存储介质和芯片 技术领域
本公开涉及通信领域,并且更具体地,涉及一种传输方法、通信装置、计算机可读存储介质和芯片。
背景技术
在涉及终端设备和接入网设备的无线通信系统中,终端设备与接入网设备可以进行信令、信息和数据等的各种通信。
当终端设备向接入网设备进行上行传输时,终端设备在传输前需要先确定上行传输功率。但是由于现实场景的多样性和复杂性,目前的上行传输功率确定方案并不完善,甚至无法确定出满足要求的上行传输功率。
发明内容
本公开的示例实施例提供了基于时域窗口确定传输功率的方案。
第一方面,提供了一种传输方法。该方法包括:终端设备基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中时域窗口包括至少两个传输时机;终端设备基于功率控制调整值,确定当前传输时机的发射功率;以及终端设备在当前传输时机以发射功率进行传输。
如此,终端设备能够基于时域窗口来确定发射功率,使得确定的发射功率能够与实际场景匹配,保证了通信性能。
在第一方面的一些实施例中,其中确定在当前传输时机的功率控制调整值包括:基于时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
如此,终端设备在确定功率控制调整值时,能够充分考虑时域窗口内所有的累加,避免对传输功率控制命令值的遗漏,真实地反映对功控的调整,保证了通信性能。
在第一方面的一些实施例中,其中确定在当前传输时机的功率控制调整值包括:基于时域窗口确定比例因子;获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;基于第二参数值和比例因子,确定在当前传输时机的功率控制调整值。
如此,终端设备能够在第二参数值的基础上结合比例因子来确定功率控制调整值,更能够适应实际需要的功率调整幅度,保证了通信性能。
在第一方面的一些实施例中,其中基于时域窗口确定比例因子包括:基于时域窗口的起始传输时机至当前传输时机之间的总长度,确定比例因子;或者,基于时域窗口的长度,确定比例因子。
如此,终端设备通过时域窗口的跨度等确定比例因子,该方式简单易执行,能够提高确定发射功率的效率。
在第一方面的一些实施例中,其中基于时域窗口确定比例因子包括:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;基于间隔长度与比例因子的对应关系,获取与间隔长度对应的比例因子,其中对应关系是由接 入网设备的RRC所配置的或是预定义的。
如此,终端设备通过时域窗口的跨度等确定间隔长度,并基于RRC配置来确定比例因子,该方式具有一定的灵活性。
在第一方面的一些实施例中,其中基于时域窗口确定比例因子包括:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的RRC信令或DCI中的缩放因子;基于间隔长度和缩放因子,确定比例因子。
如此,终端设备通过时域窗口的跨度等确定间隔长度,并结合RRC或DCI中的缩放因子来确定比例因子,该方式具有一定的灵活性,并且考虑了多种因素使确定的比例因子更加准确。
在第一方面的一些实施例中,其中基于第二参数值和比例因子确定在当前传输时机的功率控制调整值包括:基于第二参数值与比例因子的乘积,确定在当前传输时机的功率控制调整值。
在第一方面的一些实施例中,其中确定在当前传输时机的功率控制调整值包括:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的DCI中的TPC命令字段参数;基于间隔长度和TPC命令字段参数,确定在当前传输时机的功率控制调整值。
如此,实现了对与TPC命令值的扩充,其不仅与TPC命令字段有关还与间隔长度有关,这样的扩充使得功率控制调整值的范围更大,调整量更加精细,更能适应实际场景所需的功控调整幅度,保证了通信性能。
在第一方面的一些实施例中,其中时域窗口用于联合信道估计,以及当前传输时机与时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
第二方面,提供了一种通信装置。该装置包括:第一确定单元,被配置为基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中时域窗口包括至少两个传输时机;第二确定单元,被配置为基于当前传输时机的功率控制调整值,确定当前传输时机的发射功率;以及传输单元,被配置为在当前传输时机以发射功率进行传输。
在第二方面的一些实施例中,其中第一确定单元被配置为:基于时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
在第二方面的一些实施例中,其中第一确定单元被配置为:基于时域窗口确定比例因子;获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;基于第二参数值和比例因子,确定在当前传输时机的功率控制调整值。
在第二方面的一些实施例中,其中第一确定单元被配置为:基于时域窗口的起始传输时机至当前传输时机之间的总长度,确定比例因子;或者,基于时域窗口的长度,确定比例因子。
在第二方面的一些实施例中,其中第一确定单元被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;基于间隔长度与比例因子的对应关系,获取与间隔长度对应的比例因子,其中对应关系是由接入网设备的RRC所配置的或是预定义的。
在第二方面的一些实施例中,其中第一确定单元被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的RRC信令或DCI中的缩放因子;基于间隔长度和缩放因子,确定比例因子。
在第二方面的一些实施例中,其中第一确定单元被配置为:基于第二参数值与比例因子的乘积,确定在当前传输时机的功率控制调整值。
在第二方面的一些实施例中,其中第一确定单元被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的DCI中的TPC命令字段参数;基于间隔长度和TPC命令字段参数,确定在当前传输时机的功率控制调整值。
在第二方面的一些实施例中,其中时域窗口用于联合信道估计,以及当前传输时机与时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
第三方面,提供了一种通信装置,包括收发器、处理器以及存储器,该存储器上存储有由处理器执行的指令,当该指令被所述处理器执行时使得装置实现:基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中时域窗口包括至少两个传输时机;基于当前传输时机的功率控制调整值,确定当前传输时机的发射功率;以及经由收发器在当前传输时机以发射功率进行传输。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:基于时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:基于时域窗口确定比例因子;获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;基于第二参数值和比例因子,确定在当前传输时机的功率控制调整值。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:基于时域窗口的起始传输时机至当前传输时机之间的总长度,确定比例因子;或者,基于时域窗口的长度,确定比例因子。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;基于间隔长度与比例因子的对应关系,获取与间隔长度对应的比例因子,其中对应关系是由接入网设备的RRC所配置的或是预定义的。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的RRC信令或DCI中的缩放因子;基于间隔长度和缩放因子,确定比例因子。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:基于第二参数值与比例因子的乘积,确定在当前传输时机的功率控制调整值。
在第三方面的一些实施例中,其中处理器执行指令,使得装置实现:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的DCI中的TPC命令字段参数;基于间隔长度和TPC命令字段参数,确定在当前传输时机的功率控制调整值。
在第三方面的一些实施例中,其中时域窗口用于联合信道估计,以及当前传输时机与时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
第四方面,提供了一种传输方法。该方法包括:终端设备获取功率指示信息,其中功率指示信息用于指示在当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;终端设备基于功率指示信息,确定在当前时域资源的功率控制调整值;终端设备基于在当前时域资源的功率控制调整值,确定在当前时域资源的发射功率;终端设备在当前时域资源以该发射功率进行传输。
在第四方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在第四方面的一些实施例中,其中TPC指示信息占用的比特数大于2,和/或,取值集合中的元素数量大于4。
在第四方面的一些实施例中,其中取值集合是基于预定义的准则从至少两个取值集合中确定的,或者,取值集合是基于来自RRC的索引从至少两个取值集合中确定的。
在第四方面的一些实施例中,其中取值集合是RRC信令配置的或者取值集合是预定义的。
在第四方面的一些实施例中,基于功率指示信息确定在当前时域资源的功率控制调整值包括:基于比例因子和TPC指示信息指示的功率调整值,确定在当前时域资源的功率控制调整值。
在第四方面的一些实施例中,比例因子是预定值;或者,比例因子基于第三消息和/或预定义的准则来确定的,其中第三消息被承载于RRC信令中。
在第四方面的一些实施例中,比例因子基于第三消息被确定,该第三消息包括比例因子。
在第四方面的一些实施例中,比例因子基于第三消息和第四消息被确定,其中第四消息用于确定多个比例因子中的其中一个。在一些示例中,终端设备接收第三消息,其中该第三消息包括多个比例因子;终端设备接收第四消息,该第四消息包括比例因子指示信息;终端设备从多个比例因子中获取该比例因子指示信息所指示的比例因子。
在第四方面的一些实施例中,第四消息为DCI或MAC-CE。
在第四方面的一些实施例中,比例因子基于预定义的准则被确定,其中,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
在第四方面的一些实施例中,比例因子基于第三消息和预定义的准则被确定,其中第三消息包括缩放因子,预定义的准则为间隔长度。在一些实施例中,将缩放因子于间隔长度的乘积作为比例因子。
第五方面,提供了一种通信装置。该装置包括:获取单元,被配置为获取功率指示信息,其中功率指示信息用于指示在当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;第一确定单元,被配置为基于功率指示信息,确定在当前时域资源的功率控制调整值;第二确定单元,被配置为基于在当前时域资源的功率控制调整值,确定在当前时域资源的发射功率;传输单元,被配置为终端设备在当前时域资源以该发射功率进行传输。
在第五方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确 定的,该取值集合包括至少一个大于4的值。
在第五方面的一些实施例中,其中TPC指示信息占用的比特数大于2,和/或,取值集合中的元素数量大于4。
在第五方面的一些实施例中,其中取值集合是基于预定义的准则从至少两个取值集合中确定的,或者,取值集合是基于来自RRC的索引从至少两个取值集合中确定的。
在第五方面的一些实施例中,其中取值集合是RRC信令配置的或者取值集合是预定义的。
在第五方面的一些实施例中,第一确定单元被配置为:基于比例因子和TPC指示信息指示的功率调整值,确定在当前时域资源的功率控制调整值。
在第五方面的一些实施例中,比例因子是预定值;或者,比例因子基于第三消息和/或预定义的准则来确定的,其中第三消息被承载于RRC信令中。
在第五方面的一些实施例中,比例因子基于第三消息被确定,该第三消息包括比例因子。
在第五方面的一些实施例中,比例因子基于第三消息和第四消息被确定,其中第四消息用于确定多个比例因子中的其中一个。在一些示例中,获取单元被配置为接收第三消息,其中该第三消息包括多个比例因子;接收第四消息,该第四消息包括比例因子指示信息;从多个比例因子中获取该比例因子指示信息所指示的比例因子。
在第五方面的一些实施例中,第四消息为DCI或MAC-CE。
在第五方面的一些实施例中,比例因子基于预定义的准则被确定,其中,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
在第五方面的一些实施例中,比例因子基于第三消息和预定义的准则被确定,其中第三消息包括缩放因子,预定义的准则为间隔长度。在一些实施例中,将缩放因子于间隔长度的乘积作为比例因子。
第六方面,提供了一种通信装置,包括收发器、处理器以及存储器,该存储器上存储有由处理器执行的指令,当该指令被处理器执行时使得装置实现:经由收发器获取功率指示信息,其中功率指示信息用于指示在当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;基于功率指示信息,确定在当前时域资源的功率控制调整值;基于在当前时域资源的功率控制调整值,确定在当前时域资源的发射功率;经由收发器在当前时域资源以该发射功率进行传输。
在第六方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在第六方面的一些实施例中,其中TPC指示信息占用的比特数大于2,和/或,取值集合中的元素数量大于4。
在第六方面的一些实施例中,其中取值集合是基于预定义的准则从至少两个取值集合中确定的,或者,取值集合是基于来自RRC的索引从至少两个取值集合中确定的。
在第六方面的一些实施例中,其中取值集合是RRC信令配置的或者取值集合是预定义的。
在第六方面的一些实施例中,其中处理器执行指令,使得装置实现::基于比例因子和TPC指示信息指示的功率调整值,确定在当前时域资源的功率控制调整值。
在第六方面的一些实施例中,比例因子是预定值;或者,比例因子基于第三消息和/或预定义的准则来确定的,其中第三消息被承载于RRC信令中。
在第六方面的一些实施例中,比例因子基于第三消息被确定,该第三消息包括比例因子。
在第六方面的一些实施例中,比例因子基于第三消息和第四消息被确定,其中第四消息用于确定多个比例因子中的其中一个。在一些示例中,其中处理器执行指令,使得装置经由收发器实现:接收第三消息,其中该第三消息包括多个比例因子;接收第四消息,该第四消息包括比例因子指示信息;从多个比例因子中获取该比例因子指示信息所指示的比例因子。
在第六方面的一些实施例中,第四消息为DCI或MAC-CE。
在第六方面的一些实施例中,比例因子基于预定义的准则被确定,其中,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
在第六方面的一些实施例中,比例因子基于第三消息和预定义的准则被确定,其中第三消息包括缩放因子,预定义的准则为间隔长度。在一些实施例中,将缩放因子于间隔长度的乘积作为比例因子。
第七方面,提供了一种传输方法。该方法包括:接入网设备向终端设备发送功率指示信息,其中功率指示信息用于指示当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;接入网设备在当前时域资源接收终端设备以发射功率进行的传输,该TPC指示信息为确定该发射功率的基础。例如,终端设备可以基于该TPC指示信息来确定发射功率。
在第七方面的一些实施例中,其中TPC指示信息占用的比特数大于2。
在第七方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在第七方面的一些实施例中,其中该取值集合中的元素数量大于4。
在第七方面的一些实施例中,还包括:接入网设备向终端设备发送第三消息,该第三消息用于终端设备确定发射功率,其中该第三消息被承载于RRC信令中,该第三消息包括比例因子或缩放因子。
在第七方面的一些实施例中,还包括:接入网设备向终端设备发送第三消息,该第三消息包括多个比例因子;接入网设备还向终端设备发送第四消息,该第四消息用于指示多个比例因子中的一个,其中该第三消息被承载于RRC信令中,该第四消息为DCI或MAC-CE,该第三消息和第四消息用于终端设备确定发射功率。
在第七方面的一些实施例中,还包括:接入网设备向终端设备发送配置信息,其中该配置信息用于配置多个集合。
在第七方面的一些实施例中,还包括:接入网设备向终端设备发送集合指示信息,该集合指示信息用于终端设备从多个集合中确定该取值集合。
第八方面,提供了一种通信装置。该装置包括:发送单元,被配置为向终端设备发送功率指示信息,其中功率指示信息用于指示当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;接收单元,被配置为在当前时域资源接收终端设备以发射功率进行的传输,该TPC指示信息为确定该发射功率的基础。例如,终端设备可以基于该TPC指 示信息来确定发射功率。
在第八方面的一些实施例中,其中TPC指示信息占用的比特数大于2。
在第八方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在第八方面的一些实施例中,其中该取值集合中的元素数量大于4。
在第八方面的一些实施例中,发送单元还被配置为:向终端设备发送第三消息,该第三消息用于终端设备确定发射功率,其中该第三消息被承载于RRC信令中,该第三消息包括比例因子或缩放因子。
在第八方面的一些实施例中,发送单元还被配置为:向终端设备发送第三消息,该第三消息包括多个比例因子;向终端设备发送第四消息,该第四消息用于指示多个比例因子中的一个,其中该第三消息被承载于RRC信令中,该第四消息为DCI或MAC-CE,该第三消息和第四消息用于终端设备确定发射功率。
在第八方面的一些实施例中,发送单元还被配置为:向终端设备发送配置信息,其中该配置信息用于配置多个集合。
在第八方面的一些实施例中,发送单元还被配置为:向终端设备发送集合指示信息,该集合指示信息用于终端设备从多个集合中确定该取值集合。
第九方面,提供了一种通信装置。该装置包括收发器、处理器以及存储器,该存储器上存储有由处理器执行的指令,当该指令被处理器执行时使得装置实现:经由收发器向终端设备发送功率指示信息,其中功率指示信息用于指示当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机;经由收发器在当前时域资源接收终端设备以发射功率进行的传输,该TPC指示信息为确定该发射功率的基础。例如,终端设备可以基于该TPC指示信息来确定发射功率。
在第九方面的一些实施例中,其中TPC指示信息占用的比特数大于2。
在第九方面的一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在第九方面的一些实施例中,其中该取值集合中的元素数量大于4。
在第九方面的一些实施例中,其中处理器执行指令,使得装置实现:经由收发器向终端设备发送第三消息,该第三消息用于终端设备确定发射功率,其中该第三消息被承载于RRC信令中,该第三消息包括比例因子或缩放因子。
在第九方面的一些实施例中,其中处理器执行指令,使得装置实现:经由收发器向终端设备发送第三消息,该第三消息包括多个比例因子;向终端设备发送第四消息,该第四消息用于指示多个比例因子中的一个,其中该第三消息被承载于RRC信令中,该第四消息为DCI或MAC-CE,该第三消息和第四消息用于终端设备确定发射功率。
在第九方面的一些实施例中,其中处理器执行指令,使得装置实现:经由收发器向终端设备发送配置信息,其中该配置信息用于配置多个集合。
在第九方面的一些实施例中,其中处理器执行指令,使得装置实现:经由收发器向终端设备发送集合指示信息,该集合指示信息用于终端设备从多个集合中确定该取值集合。
第十方面,提供了一种终端设备。该终端设备能够用于实现上述第一方面、第四方面、或其任一实现方式所述的方法。
第十一方面,提供了一种接入网设备。该接入网设备能够用于实现上述第七方面或其任一实现方式所述的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现根据上述第一方面、第四方面、第七方面或其任一实现方式所述的方法的操作。
第十三方面,提供了一种芯片或芯片系统。该芯片或芯片系统包括处理电路,被配置为执行根据上述第一方面、第四方面、第七方面或其任一实现方式所述的方法的操作。
第十四方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在计算机上运行时,使得计算机执行根据上述第一方面、第四方面、第七方面或其任一实现方式所述的方法的操作。
第十五方面,提供了一种无线通信系统。该系统包括接入网设备和终端设备,其中终端设备可以被配置为实现上述第一方面、第四方面、或其任一实现方式所述的方法的操作,其中接入网设备可以被配置为实现上述第七方面或其任一实现方式所述的方法的操作。
附图说明
结合附图并参考以下详细说明,本公开各实现方式的特征、优点及其他方面将变得更加明显。在此以示例性而非限制性的方式示出了本公开的若干实现方式,在附图中:
图1示出了本公开实施例可实现在其中的通信系统100的一个示意图;
图2示出了根据本公开的实施例的传输方法200的一个示意流程图;
图3示出了根据本公开实施例的用于终端设备传输的一个时域示意图300;
图4示出了根据本公开实施例的用于终端设备传输的另一个时域示意图400;
图5示出了根据本公开实施例的用于终端设备传输的又一个时域示意图500;
图6示出了根据本公开实施例的用于PUSCH的传输的一个时域示意图600;
图7示出了根据本公开实施例的用于PUSCH的传输的另一个时域示意图700;
图8示出了根据本公开实施例的传输方法800的另一个示意流程图;
图9示出了根据本公开实施例的传输方法900的另一个示意流程图;
图10示出了根据本公开的实施例的通信装置1000的一个示意框图;
图11示出了根据本公开的实施例的通信装置1100的另一个示意框图;
图12示出了根据本公开的实施例的通信装置1200的又一个示意框图;
图13示出了根据本公开的实施例的示例装置1300的简化框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的 对象。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G),第四代(4G)和第五代(5G)等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开实施例的技术方案应用于遵循任何适当通信协议的通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)、第五代(5G)系统或新无线(New Radio,NR),等等。
出于说明的目的,下文中以5G的第三代合作伙伴计划(3GPP)通信系统为背景来描述本公开的实施例。然而,应当理解,本公开的实施例不限于被应用到5G的3GPP通信系统,而是可以被应用到任何存在类似问题的通信系统中,例如无线局域网(WLAN)、有线通信系统、或者将来开发的其他通信系统等。
在本公开中使用的术语“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。作为示例,终端设备可以包括移动手机、站点、单元、设备、移动终端(Mobile Terminal,MT)、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中使用的术语“接入网设备”是可以用于与终端设备通信的实体或节点。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。作为示例,接入网设备可以包括各种形式的宏基站、微基站、微微基站、毫微微基站、中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机 房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本公开后续的实施例中,上述为移动终端提供无线通信功能的装置统称为接入网设备,本公开的实施例不再具体限定。
在本公开中使用的术语“联合信道估计(Joint Channel Estimation,JCE)”可以用于实现覆盖增强(Coverage Enhancement,CE)。联合信道估计可以用于物理上行共享信道(Physical Downlink Shared Channel,PUSCH)之间,或者可以用于物理上行控制信道(Physical Uplink Control Channel,PUCCH)之间,或者可以用于PUSCH与PUCCH之间,或者可以用于其他上行传输之间。联合信道估计可以用于一次调度或不同次调度的重复之间,也可以用于不同的调度之间。联合信道估计可以在跨若干时隙或符号的时域窗口(Time Domain Window,TW)上进行,并且进行联合信道估计的条件是需要保持相位的连续性和发射功率的一致性。联合信道估计也可以被称为“跨时隙信道估计(Cross-Slot Channel Estimation)”或者“解调参考信号捆绑(Demodulation Reference Signal bundling,DMRS bundling)”等。为方便描述,本公开后续的实施例中,基于“联合信道估计”进行阐述。
在本公开中使用的术语“时隙(slot)”是数据调度的时间单位。在无线通信系统(如5G NR)中存在多种调度时间单位,例如,帧(frame)、子帧(subframe)、时隙和符号(symbol)等。一般地,帧的时间长度为10ms,包括10个子帧,每个子帧对应的时间长度为1ms。每个子帧由若干个时隙组成。在正常循环前缀下,一个时隙包括14个符号;在扩展循环前缀下,一个时隙包括12个符号。符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。应注意的是,本公开实施例中的时隙,可以是包含14个符号的时隙,也可以是微时隙(mini-slot),下文中不再特别区分。
在本公开中使用的术语“重复(repetition)”可以是PUSCH和/或PUCCH传输时重复传输的次数。重复可以是重复因子、重复次数、重复传输时隙数等,其是通过无线资源控制(Radio Resource Control,RRC)或者通过下行控制信息(Downlink Control Information,DCI)的方式进行配置的。对于PUSCH而言,存在两种重复类型:重复类型A(repetition type A)和重复类型B(repetition type B)。重复类型A是在每个时隙上发送一次重复,且在每个时隙上占用位置和数目都相同的连续的符号,在重复类型A中,RRC或DCI配置的重复因子等于重复次数,也等于重复传输时隙数。在重复类型B中,RRC或DCI配置的重复因子是指名义重复(nominal repetition)的次数,每个名义重复时域资源分配的符号数目相同,且相邻名义重复的时域资源是连续的,名义重复也可以称为标称重复。由于重复类型B的传输不能使用无效符号(invalid symbol)并且不能跨时隙边界(slot boundary),因此重复类型B的名义重复在遇到无效符号或时隙边界时,需要围绕无效符号或时隙边界被切分成实际重复(actual repetition)。对于PUCCH而言,存在一种重复类型,PUCCH的重复与PUSCH的重复类型A是类似的。
在本公开中使用的术语“传输时机(Transmission Occasion,TO)”是时域上的表示。对于PUSCH重复类型A或者对于PUCCH重复而言,TO可以是一次重复所占用的时域资源,例如一个时隙。对于PUSCH重复类型B而言,TO可以是一次实际重复所占用的时域资源,或者可以是一个时隙。
在目前的无线通信系统中,终端设备在进行上行传输前,需要先确定发射功率。但是目前的方案中,终端设备确定发射功率时没有考虑诸如联合信道估计等因素,导致所确定的发射功率准确度低,影响了上行传输的效率。
本公开的实施例提供了一种传输方案。该方案中终端设备能够基于时域窗口来确定发射功率,使得所确定的发射功率更加准确,保证了上行传输的效率。以下通过图1至图8更加详细地描述根据本公开的实施例。
图1示出了本公开实施例可实现在其中的通信系统100的一个示意图。如图1所示,该系统100包括接入网设备110和终端设备120,接入网设备110和终端设备120之间可以进行通信。
接入网设备110可以向终端设备120配置高层信令,其中高层信令是指高层协议层发出的信令,高层协议层为物理层以上的至少一个协议层。示例性地,高层协议层可以包括以下协议层中的至少一个:媒体接入控制(Medium Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层、无线资源控制(Radio Resource Control,RRC)层和非接入层(Non Access Stratum,NAS)等。
图2示出了根据本公开的实施例的传输方法200的一个示意流程图。作为示例,方法200可以实现在图1所示的终端设备120处。为了便于理解,以下以终端设备120为例对传输方法200进行描述,但这仅仅是示例性的,无意对本公开的实施例进行任何限制。
方法200开始于框210。在210,终端设备120基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值(power control adjustment state),其中该时域窗口包括至少两个传输时机。
可理解,当前传输时机是需要进行功率控制以重新确定发射功率的传输时机。一般地,时域窗口可以覆盖至少两个传输时机,在时域窗口的起始传输时机需要进行功率控制。
本公开实施例中,时域窗口内的至少两个传输时机可以具有相同发送特征信息,其中相同发送特征信息包括以下中的至少一项:相同的发射预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)预编码器、相同的发射功率、相同的频域资源占用(如物理资源块(Physical Resource Block,PRB))、相位连续性、相同的天线端口等。
举例来说,时域窗口内的至少两个传输时机具有相同的发射功率意味着:在时域窗口的非起始传输时机不进行功率控制或功率调整,这样才能够使得时域窗口内的各个传输时机的发射功率是相等的。
本公开实施例中,时域窗口可以用于联合信道估计,或者可以用于在时域窗口内发射功率不变的其他场景。本公开实施例中,时域窗口也可以被称为时间窗口、联合传输时机、不变传输时机或其他等。本公开实施例中,功率控制调整值也可以被称为功率控制调整状态值或者功率控制调整状态参数或者功率控制调整状态项或功率控制调整状态或功率控制调整参数或其他等,本公开对此不限定。
图3示出了根据本公开实施例的用于终端设备传输的一个时域示意图300。在图3中,示出了时域窗口310,且包括4个TO,分别为TO1至TO4。可理解,时域窗口310的起始传输时机为TO1 301,且时域窗口310之后的当前传输时机为TO5 302。也就是说,起始传输时机301是时域窗口310内的第一个TO,而当前传输时机302是时域窗口310之后的第一个TO。
在一些示例中,当前传输时机可以是时域窗口之后的另一时域窗口的起始传输时机。如图3所示,时域窗口310之后是时域窗口320,时域窗口320包括4个TO,分别为TO5至TO8。当前传输时机TO5在时域窗口310之后,且当前传输时机TO5是时域窗口320的起始 传输时机。
可理解,在一些实施例中,一个TO可以对应于一个时隙,例如在PUSCH重复类型A的场景中。
图4示出了根据本公开实施例的用于终端设备传输的另一个时域示意图400。在图4中,示出了时域窗口410,且包括4个TO,分别为TO1至TO4。可理解,时域窗口410的起始传输时机为TO1,且时域窗口410之后的当前传输时机为TO5。另外,如图4所示,在时域窗口410之后且在当前传输时机TO5之前还具有中断时域资源420。
在一些示例中,中断时域资源420的长度可以为1个或多个时隙,或者可以为1个或多个符号,等等。在一种情形下,如果时域窗口410之后存在不需要进行上行传输的一段时间,则这段时间即构成中断时域资源420,也就是说,中断时域资源420未被调度用于当前终端设备的传输。在另一种情形下,如果在进行联合信道估计的过程中,由于某些因素导致了中断,则被中断的时间构成中断时域资源420。
举例来讲,对于被配置的名义时域窗口而言,可能会因为一些因素导致名义时域窗口出现中断,从而使得一个名义时域窗口被打断,分为至少两个实际时域窗口。这样的因素包括但不限于:动态时隙格式指示(Slot Format Indication,SFI)、上行链路取消指示(UL cancellation indication,UL CI)、不同优先级的信道抢占、定时调整(诸如时间提前命令(Timing Advance command,TA command)或时间提前改变(TA change))、频偏校正、载波聚合(Carrier Aggregation,CA)、双连接(Dual-Connectivity,DC)等。
应注意的是,尽管本公开中提及了名义时域窗口和实际时域窗口,但是对名义时域窗口和实际时域窗口进行区分是为了介绍中断时域资源。名义时域窗口和实际时域窗口两者都可以是用于联合信道估计的时域窗口。
图5示出了根据本公开实施例的用于终端设备传输的又一个时域示意图500。在图5中,名义时域窗口510被打断为实际时域窗口511和实际时域窗口512,且实际时域窗口511和实际时域窗口512之间为中断时域资源520。
对于时域窗口511而言,其起始传输时机在图5中示出为起始传输时机501,该时域窗口511之后的当前传输时机在图5中示出为当前传输时机502。可见,在起始传输时机501与当前传输时机502之间,除了包括时域窗口511之外,还包括不用于联合信道估计的中断时域资源520。
本公开实施例中,在210的时域窗口可以是指实际时域窗口。可理解,本公开实施例中的当前传输时机可以是210中的时域窗口的下一个时域窗口的起始传输时机,或者可以是非时域窗口的其他传输时机。并且应理解,尽管210中的时域窗口包括至少两个传输时机,但是位于该时域窗口之后的下一个时域窗口可以包括一个或多个传输时机。例如,在图3中,当前传输时机所在的时域窗口包括4个传输时机。再例如,在图5中,当前传输时机所在的时域窗口包括1个传输时机。换句话说,本公开实施例所适用的场景可以是:当前传输时机的前一个传输时机(或称上一个传输时机)的功率没有发生变化,如没有进行功率更新或者没有进行功率更新的计算或者重新确定的功率不变。更具体地,作为一例,在进行联合信道估计的场景中,当前传输时机的前一个传输时机属于用于联合信道估计的时域窗口的非起始传输时机。
在一种实现方式中,终端设备120要进行的传输是PUSCH,则在210所确定的功率控制调整值是PUSCH功率控制调整值。
为了下文的描述,假设终端设备120在服务小区c的激活上行链路部分带宽(active Uplink Bandwidth Part,active UL BWP)b的载波f上进行PUSCH传输,并将在传输时机i上状态为l的PUSCH功率控制调整值表示为f b,f,c(i,l)。
在一些实施例中,如果终端设备120未被配置有传输功率控制(Transmission Power Control,TPC)累加(tpc-Accumulation)参数,那么在210,终端设备120可以基于时域窗口的起始传输时机的初始功率控制调整值以及累加来确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加。
具体地,终端设备120可以获取时域窗口的起始传输时机的初始功率控制调整值;确定在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加;基于初始功率控制调整值以及累加,确定当前传输时机的功率控制调整值。
本公开实施例中,TPC累加参数可以是通过高层信令被配置或提供的,在终端设备120未被提供有TPC累加参数时,可以基于起始传输时机的初始功率控制调整值来确定在当前传输时机的功率控制调整值。
示例性地,可以将时域窗口的起始传输时机的初始功率控制调整值表示为f b,f,c(i-i 0,l),其可以是在确定起始传输时机的发射功率时所确定的。
示例性地,第一参数值可以是DCI中与TPC命令字段(TPC command field)参数所对应的TPC累加值,具体地为用于PUSCH的TPC累加值。在一些示例中,第一参数值可以是由调度该PUSCH传输的DCI格式中的TPC命令字段所指示的,如下表1所示。在另一些示例中,第一参数值可以是通过循环冗余校验(Cyclic Redundancy Check,CRC)由传输功率控制-物理上行共享信道-无线网络临时标识(TPC-PUSCH-RNTI)加扰的DCI格式2_2所指示的。
表1
TPC命令字段 PUSCH的TPC累加值[dB]
0 -1
1 0
2 1
3 3
示例性地,可以将用于PUSCH的第一参数值表示为δ PUSCH,b,f,c(m,l),进而将与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加表示为
Figure PCTCN2022092019-appb-000001
表示集合D i中的TPC累加值的总和,其中,集合D i是基于第一时刻和第二时刻所确定的。
与起始传输时机关联的第一时刻可以是起始传输时机的前第S1个符号。也就是说,第一时刻位于起始传输时机之前,且第一时刻与起始传输时机可以间隔有S1个符号。换句话说,第一时刻位于起始传输时机之前的第S1个符号。例如第一时刻可以是起始传输时机i-i 0的 第前K PUSCH(i-i 0)-1个符号,即S1=K PUSCH(i-i 0)-1。
与当前传输时机关联的第二时刻可以是当前传输时机的前第S2个符号。也就是说,第二时刻位于当前传输时机之前,且第二时刻与当前传输时机可以间隔有S2个符号。换句话说,第二时刻位于当前传输时机之前的第S2个符号。例如第二时刻可以是当前传输时机i的第前K PUSCH(i)个符号,即S2=K PUSCH(i)。
可理解,i 0>0,且i 0是使得PUSCH传输时机i-i 0的第前K PUSCH(i-i 0)-1个符号早于PUSCH传输时机i的第前K PUSCH(i)个符号之前的最小整数,并且i-i 0是时域窗口的第一个传输时机,也称为起始传输时机。
在一些示例中,可以通过下面的方式来确定K PUSCH(i)。如果该PUSCH传输是由DCI调度的,那么K PUSCH(i)是该DCI对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的最后一个符号到调度的PUSCH传输的第一个符号之间的符号数。
在另一些示例中,可以通过下面的方式来确定K PUSCH(i)。如果该PUSCH传输是由RRC配置的,如通过“配置的授权配置(ConfiguredGrantConfig)”等,那么K PUSCH(i)是K PUSCH,min个符号数,其可以等于每个时隙的符号数
Figure PCTCN2022092019-appb-000002
(例如12或14)与由PUSCH-配置的公共字段(PUSCH-ConfigCommon)中的k2字段所指示的最小值两者的乘积。
可理解,确定K PUSCH(i-i 0)-1的方式与确定K PUSCH(i)的方式是类似的,因此这里不再重复。
本公开实施例中,第一参数值的累加是第一时刻与第二时刻之间的所有的第一参数值的累加。该累加可以一次确定,也可以针对每个传输时机分别确定后再累加。
图6示出了根据本公开实施例的用于PUSCH的传输的一个时域示意图600。在图6中,DCI 0_x所调度的PUSCH包含8次重复传输,其中每个时隙为一个传输时机,分别为TO1至TO8。图6中示出了两个时域窗口,分别为时域窗口601和时域窗口602,其中每个时域窗口包含4个TO。另外,与时域窗口601的起始传输时机TO1相关联的第一时刻在图6中示出为第一时刻610,具体的,被示出为起始传输时机TO1前第K个符号处。与时域窗口601之后的当前传输时机TO5相关联的第二时刻在图6中示出为第二时刻620,具体的,被示出为当前传输时机TO5前第K个符号处。第一时刻至第二时刻的第一参数值的累加可以是一次得到的,如图6中的∑δ。
图7示出了根据本公开实施例的用于PUSCH的传输的另一个时域示意图700。与图6类似的,在图7中示出了两个时域窗口,分别为时域窗口701和时域窗口702,其中每个时域窗口包含4个TO。另外,与时域窗口701的起始传输时机TO1相关联的第一时刻在图7中示出为第一时刻710,以及与时域窗口701之后的当前传输时机TO5相关联的第二时刻在图7中示出为第二时刻720。第一时刻至第二时刻的第一参数值的累加可以是针对每个传输时机分别确定后再累加的。
具体的,在图7中,时域窗口701包括4个传输时机,分别为TO1至TO4。那么,可以确定与传输时机TO1关联的第一时刻到与传输时机TO2关联的第三时刻之间的第一参数值的第一累加,表示为∑δ1。可以确定与传输时机TO2关联的第三时刻到与传输时机TO3关联 的第四时刻之间的第一参数值的第二累加,表示为∑δ2。可以确定与传输时机TO3关联的第四时刻到与传输时机TO4关联的第五时刻之间的第一参数值的第三累加,表示为∑δ3。可以确定与传输时机TO4关联的第五时刻到与传输时机TO5关联的第二时刻之间的第一参数值的第四累加,表示为∑δ4。进一步地,基于第一累加、第二累加、第三累加和第四累加,得到第一时刻至第二时刻的第一参数值的累加,表示为∑δ=∑δ1+∑δ2+∑δ3+∑δ4。
对于时域窗口内的非起始传输时机而言,为了保持时域窗口内的功率一致性(即发射功率不变),非起始传输时机的发射功率不更新。在这样的非起始传输时机,可以对在非起始传输时机的功率控制调整值进行更新,但是该更新的功率控制调整值不用于确定在非起始传输时机的发射功率。
参照图7,假设时域窗口701的起始传输时机TO1的初始功率控制调整值表示为f1,那么可以基于f1以及第一累加∑δ1,确定在传输时机TO2的功率控制调整值,表示为f2。类似地,可以基于f2以及第二累加∑δ2,确定在传输时机TO3的功率控制调整值,表示为f3。可以基于f3以及第三累加∑δ3,确定在传输时机TO4的功率控制调整值,表示为f4。这样,即使对于时域窗口701的非起始传输时机,也确定了对应的功率控制调整值。应注意的是,尽管确定了在传输时机TO2、TO3和TO4的功率控制调整值,但是在确定传输时机TO2、TO3和TO4的发射功率时,是基于f1进行的,这样能够确保在时域窗口701内的功率一致性。
进一步地,确定当前传输时机TO5的功率控制调整值的方式可以是:基于传输时机TO4的功率控制调整值f4以及第四累加∑δ4,来确定当前传输时机TO5的功率控制调整值,表示为f5。可理解,由于当前传输时机TO5不再属于同一个时域窗口,在当前传输时机TO5需要进行功率更新,因此此时确定当前传输时机TO5的发射功率时所基于的是更新后的功率控制调整值f5,而不再是f1。
如此,可以得到在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加。进一步地,本公开实施例中,可以基于初始功率控制调整值f b,f,c(i-i 0,l)以及第一时刻至第二时刻之间接收到的所有DCI中的第一参数值的累加
Figure PCTCN2022092019-appb-000003
确定当前传输时机的功率控制调整值f b,f,c(i,l)。
具体地,如果(1)起始传输时机i-i 0的发射功率为最大发射功率并且
Figure PCTCN2022092019-appb-000004
≥0,或者(2)起始传输时机i-i 0的发射功率为最小发射功率并且
Figure PCTCN2022092019-appb-000005
那么f b,f,c(i,l)=f b,f,c(i-i 0,l)。否则,将初始功率控制调整值与第一参数值的累加之和作为当前传输时机的功率控制调整值,表示为:
Figure PCTCN2022092019-appb-000006
在另一些实施例中,如果终端设备120被配置有传输功率控制TPC累加(tpc-Accumulation)参数,那么在210,终端设备120可以基于时域窗口确定比例因子;获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;基于第二参数值和比例 因子,确定在当前传输时机的功率控制调整值。
本公开实施例中,TPC累加参数可以是通过高层信令被配置或提供的,在终端设备120被提供有TPC累加参数时,可以基于比例因子和第二参数值来确定在当前传输时机的功率控制调整值。
示例性地,第二参数值可以是DCI中与TPC命令字段(TPC command field)参数所对应的TPC绝对值。也就是说,第二参数值可以是由调度该PUSCH传输的DCI格式中的TPC命令字段所指示的,如下表2所示。示例性地,可以将第二参数值表示为δ′ PUSCH,b,f,c(i,l)。
表2
TPC命令字段 TPC绝对值[dB]
0 -4
1 -1
2 1
3 4
可以至少部分地基于间隔长度来确定比例因子,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度。
示例性地,本公开实施例中的长度表示时域长度,其可以为以下至少一项:时隙数、符号数、传输时机数、重复数等,其中重复数可以是名义重复数或实际重复数等,本公开对此不限定。
在一些示例中,时域窗口的起始传输时机至当前传输时机之间的总长度可以等于时域窗口的长度。可选地,在起始传输时机与当前传输时机之间不包括中断时域资源的情形下,起始传输时机至当前传输时机之间的总长度等于时域窗口的长度。参照图3,总长度或长度等于4个时隙或4个TO。
在另一些示例中,时域窗口的起始传输时机至当前传输时机之间的总长度可以不等于时域窗口的长度。可选地,在起始传输时机与传输时机之间包括不用于联合信道估计的中断时域资源的情形下,起始传输时机至当前传输时机之间的总长度可以不等于时域窗口的长度。参照图5,在起始传输时机501至当前传输时机502之间的总长度为3个时隙,而起始传输时机501至当前传输时机502之间的时域窗口511的长度为2个时隙。
在一些示例中,可以将时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度作为间隔长度,并将间隔长度作为比例因子。具体地,可以将间隔长度去量纲之后的无量纲值作为比例因子。
举例来讲,参照图3,起始传输时机至当前传输时机之间的总长度或时域窗口的长度为4个时隙,那么比例因子可以等于4。再举例来讲,参照图5,起始传输时机至当前传输时机之间的总长度为3个时隙,那么比例因子可以等于3。再举例来讲,参照图5,时域窗口的长度为2个时隙,那么比例因子可以等于2。
在另一些示例中,可以将时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度作为间隔长度;并基于间隔长度与比例因子的对应关系,获取与该间隔长度对应 的比例因子,其中该对应关系是由接入网设备的RRC所配置的或预定义的。
示例性地,接入网设备110可以通过RRC配置间隔长度与比例因子的对应关系,那么终端设备120可以基于该对应关系,确定与间隔长度对应的比例因子。
举例来讲,间隔长度与比例因子可以具有一一对应关系,例如间隔长度为3时,比例因子为X1;间隔长度为2时,比例因子为X2。再举例来讲,间隔长度与比例因子可以具有多对一的对应关系,例如间隔长度为3和4时,比例因子为X1;间隔长度为1和2时,比例因子为X2。再举例来讲,间隔长度与比例因子可以是区间与离散值的对应关系,例如间隔长度区间(0,2]对应比例因子X1。可理解,间隔长度与比例因子之间的对应关系也可以是其他的形式,这里不再罗列。
在另一些示例中,可以将时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度作为间隔长度,获取来自接入网设备的RRC信令或DCI中的或者预定义的缩放因子,并基于间隔长度和缩放因子确定比例因子。
示例性地,接入网设备110可以通过RRC或者通过DCI配置一个缩放因子。或者示例性地,接入网设备110可以通过RRC配置多个缩放因子,由DCI或MAC-CE指示多个缩放因子中的一个。示例性地,可以将间隔长度与缩放因子两者的乘积作为比例因子。具体地,可以将间隔长度去量纲之后的无量纲值与缩放因子两者的乘积作为比例因子。
这样,通过上面的方式可以基于间隔长度确定比例因子,进一步地可以基于比例因子和第二参数值确定在当前传输时机的功率控制调整值。示例性地,可以将第二参数值与比例因子的乘积,作为在当前传输时机的功率控制调整值。
具体地,将比例因子表示为β,那么可以通过f b,f,c(i,l)=β×δ′ PUSCH,b,f,c(i,l),得到在当前传输时机的功率控制调整值。
本公开实施例中,比例因子也可以被称为调整因子或功控调整因子或其他名字等,比例因子可以用于对TPC命令调整值进行调整以确定功率控制调整值。
如此,本公开实施例中基于比例因子和第二参数值两者来确定当前传输时机的功率控制调整值,更能够适应实际需要的功率调整的幅度,其中比例因子基于间隔长度被确定,考虑了两次功率控制之间的时域跨度,保证了通信性能。
在另一些实施例中,如果终端设备120被配置有传输功率控制TPC累加(tpc-Accumulation)参数,那么在210,终端设备120可以获取间隔长度,其中该间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的DCI中的TPC命令字段参数;基于间隔长度和TPC命令字段参数,确定在当前传输时机的功率控制调整值。
关于间隔长度可以参照上述实施例中的相关描述,为了简洁,这里不再重复。
在一些示例中,TPC命令字段可以占用2比特,相应地,TPC命令字段参数为0至3中任一值。在另一些示例中,TPC命令字段可以占用3比特,相应地,TPC命令字段参数为0至7中任一值。
示例性地,基于间隔长度和TPC命令字段参数确定在当前传输时机的功率控制调整值可以包括:确定与间隔长度和TPC命令字段参数所对应的TPC绝对值,并将该TPC绝对值作为当前传输时机的功率控制调整值。
作为一例,如表3所示,可以基于TPC命令字段参数确定TPC绝对值的行,可以基于间隔长度确定TPC绝对值的列,从而基于TPC命令字段参数和间隔长度两者能够确定TPC 绝对值。
本公开实施例中,针对不同的间隔长度可以适用不同的TPC绝对值。例如表3中,当间隔长度为3时,对应的TPC绝对值为-8、-2、2、8。当间隔长度为2时,对应的TPC绝对值为-6、-1、1、6。
表3
Figure PCTCN2022092019-appb-000007
应注意的是,表3仅是示意性的,TPC绝对值的某一列可以对应一个或多个间隔长度,例如间隔长度为3或4都对应表3的第2列,间隔长度为1或2都对应表3的第3列;或者,TPC绝对值的某一列可以对应间隔长度的区间,例如间隔长度处于区间(2,4]对应表3的第2列,间隔长度处于区间(0,2]对应表3的第3列。或者,TPC绝对值可以包括更多或更少的列。
如此,本公开实施例中基于间隔长度等来确定当前传输时机的功率控制调整值,更能够适应实际需要的功率调整的幅度,考虑了两次功率控制之间的时域跨度,保证了通信性能。并且可选地考虑了对于TPC命令字段的扩展,具备一定的灵活性。
在另一种实现方式中,终端设备120要进行的上行传输是PUCCH,则在210所确定的功率控制调整值是PUCCH功率控制调整值。
为了下文的描述,假设终端设备120在服务小区c的激活上行链路部分带宽(active Uplink Bandwidth Part,active UL BWP)b的载波f上进行PUCCH传输,并将在传输时机i上状态为l的PUCCH功率控制调整值表示为g b,f,c(i,l)。
具体地,在210,终端设备120可以基于时域窗口的起始传输时机的初始功率控制调整值以及累加来确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加。
具体地,终端设备120可以获取时域窗口的起始传输时机的初始功率控制调整值;确定在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加;基于初始功率控制调整值以及累加,确定当前传输时机的功率控制调整值。
本公开实施例中,TPC累加参数可以是通过高层信令被配置或提供的,在终端设备120未被提供有TPC累加参数时,可以基于起始传输时机的初始功率控制调整值来确定在当前传输时机的功率控制调整值。
示例性地,可以将时域窗口的起始传输时机的初始功率控制调整值表示为g b,f,c(i-i 0,l),其可以是在确定起始传输时机的发射功率时所确定的。
示例性地,第一参数值可以是DCI中与TPC命令字段(TPC command field)参数所对应的TPC累加值,具体地为用于PUCCH的TPC累加值。在一些示例中,第一参数值可以是由调度与该PUCCH对应的物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH) 传输的DCI格式中的TPC命令字段所指示的,如下表4所示。在另一些示例中,第一参数值可以是通过循环冗余校验(Cyclic Redundancy Check,CRC)由传输功率控制-物理上行共享信道-无线网络临时标识(TPC-PUSCH-RNTI)加扰的DCI格式2_2所指示的。
表4
TPC命令字段 PUCCH的TPC累加值[dB]
0 -1
1 0
2 1
3 3
示例性地,可以将用于PUCCH的第一参数值表示为δ PUCCH,b,f,c(m,l),进而将与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加表示为
Figure PCTCN2022092019-appb-000008
表示集合C i中的TPC累加值的总和,其中,集合C i是基于第一时刻和第二时刻所确定的。
与起始传输时机关联的第一时刻可以是起始传输时机的前第S11个符号。也就是说,第一时刻位于起始传输时机之前,且第一时刻与起始传输时机可以间隔有S11个符号。换句话说,第一时刻位于起始传输时机之前的第S11个符号。例如第一时刻可以是起始传输时机i-i 0的第前K PUCCH(i-i 0)-1个符号,即S11=K PUCCH(i-i 0)-1。
与当前传输时机关联的第二时刻可以是当前传输时机的前第S12个符号。也就是说,第二时刻位于当前传输时机之前,且第二时刻与当前传输时机可以间隔有S12个符号。换句话说,第二时刻位于当前传输时机之前的第S12个符号。例如第二时刻可以是当前传输时机i的第前K PUCCH(i)个符号,即S12=K PUCCH(i)。
可理解,i 0>0,且i 0是使得PUCCH传输时机i-i 0的第前K PUCCH(i-i 0)-1个符号早于PUCCH传输时机i的第前K PUCCH(i)个符号之前的最小整数,并且i-i 0是时域窗口的第一个传输时机,也可以称为时域窗口的起始传输时机。
在一些示例中,可以通过下面的方式来确定K PUCCH(i)。如果该PUCCH传输是响应于检测到的DCI格式,那么K PUCCH(i)是该DCI对应的PDCCH的最后一个符号到对应的PUCCH传输的第一个符号之间的符号数。
在另一些示例中,可以通过下面的方式来确定K PUCCH(i)。如果该PUCCH传输不是响应于检测到的DCI格式,那么K PUCCH(i)是K PUCCH,min个符号数,其可以等于每个时隙的符号数
Figure PCTCN2022092019-appb-000009
(例如12或14)与由PUSCH-配置的公共字段(PUSCH-ConfigCommon)中的k2字段所指示的最小值两者的乘积。
可理解,确定K PUCCH(i-i 0)-1的方式与确定K PUCCH(i)的方式是类似的,因此这里不再重复。
本公开实施例中,第一参数值的累加是第一时刻与第二时刻之间的所有的第一参数值的累加。该累加可以一次确定,也可以针对每个传输时机分别确定后再累加。该过程与上面结合图6和图7部分针对PUSCH的描述类似的,为了简洁,这里不再重复。
如此,可以得到在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有DCI中的第一参数值的累加。进一步地,本公开实施例中,可以基于初始功率控制调整值f b,f,c(i-i 0,l)以及第一时刻至第二时刻之间接收到的所有DCI中的第一参数值的累加
Figure PCTCN2022092019-appb-000010
确定当前传输时机的功率控制调整值f b,f,c(i,l)。
具体地,如果(1)起始传输时机i-i 0的发射功率为最大发射功率并且
Figure PCTCN2022092019-appb-000011
≥0,或者(2)起始传输时机i-i 0的发射功率为最小发射功率并且
Figure PCTCN2022092019-appb-000012
那么g b,f,c(i,l)=g b,f,c(i-i 0,l)。否则,将初始功率控制调整值与第一参数值的累加之和作为当前传输时机的功率控制调整值,表示为:
Figure PCTCN2022092019-appb-000013
如此,本公开实施例中,在确定当前传输时机的功率控制调整值时,能够真实反映TPC命令对功控的调整,不会因联合信道估计对功率的限制而遗漏TPC累加的传输功率控制命令值,更能够适应实际的调整幅度,保证了通信性能。
在220,终端设备120基于在当前传输时机的功率控制调整值,确定在当前传输时机的发射功率。
在一种实现方式中,终端设备120要进行的上行传输是PUSCH,在210所确定的功率控制调整值是PUSCH功率控制调整值,那么相应地,在220,可以确定PUSCH发射功率。
示例性地,如果终端设备120在服务小区c的激活上行链路部分带宽(active Uplink Bandwidth Part,active UL BWP)b的载波f上进行PUSCH传输,使用索引为j的参数集配置,对于状态为l的PUSCH功率控制调整值f b,f,c(i,l),PUSCH传输时机i的发射功率表示为P PUSCH,b,f,c(i,j,q d,l),可以根据下式确定:
Figure PCTCN2022092019-appb-000014
在上式中,P CMAX,f,c(i)为服务小区c的载波f上PUSCH传输时机i的最大发射功率(maximum output power),最大发射功率是预先被配置的。Min表示发射功率的取值是大括号中上下两行的较小值。P O_PUSCH,b,f,c(j)是标称功率P O_NOMINAL_PUSCH,f,c(j)和功率预算补偿P O_UE_PUSCH,b,f,c(j)的和,可以是由高层配置的。
Figure PCTCN2022092019-appb-000015
是PUSCH资源分配的带宽,使用用于PUSCH传输时机的资源块(Resource Block,RB)数表示。α b,f,c(j)是路损补偿,可以是由高层配置的。PL b,f,c(q d)是使用指数为q d的参考信号估计的active DL BWP的下行链路路径损耗估计值(downlink pathloss estimate),单位是dB。Δ TF,b,f,c(i)是与传输的每资源单元比特数(Bits Per Resource Element,BPRE)有关的调整值。
在另一种实现方式中,终端设备120要进行的上行传输是PUCCH,在210所确定的功率控制调整值是PUCCH功率控制调整值,那么相应地,在220,可以确定PUCCH发射功率。
示例性地,如果终端设备120在服务小区c的激活上行链路部分带宽(active Uplink Bandwidth Part,active UL BWP)b的载波f上进行PUCCH传输,使用索引为q u的参数集配置,对于状态为l的PUCCH功率控制调整值g b,f,c(i,l),PUCCH传输时机i的发射功率表示为P PUCCH,b,f,c(i,q u,q d,l),可以根据下式确定:
Figure PCTCN2022092019-appb-000016
在上式中,P CMAX,f,c(i)为服务小区c的载波f上PUCCH传输时机i的最大发射功率,该最大发射功率是预先被配置的。P O_PUCCH,b,f,c(q u)是标称功率P O_NOMINAL_PUCCH,f,c(q u)和功率预算补偿P O_UE_PUCCH,b,f,c(q u)的和,可以是由高层配置的。
Figure PCTCN2022092019-appb-000017
是PUCCH资源分配的带宽,使用用于PUCCH传输时机的资源块(Resource Block,RB)数表示。PL b,f,c(q d)是使用指数为q d的参考信号估计的active DL BWP的下行链路路径损耗估计值,单位是dB。Δ F_PUCCH(F)是不同PUCCH格式分别配置的偏置调整值,Δ TF,b,f,c(i)是与传输的BPRE有关的调整值。
在230,终端设备120在当前传输时机以发射功率进行传输。
具体地,终端设备120可以以P PUSCH,b,f,c(i,j,q d,l)传输PUSCH,或者,以P PUCCH,b,f,c(i,q u,q d,l)传输PUCCH。
如此,本公开实施例中在确定当前传输时机的发射功率时,能够考虑在该当前传输时机之前的时域窗口,使得功率状态调整状态能够更加匹配时机需要调整的值,确保通信性能。
可理解,本公开实施例中的时域窗口可以用于联合信道估计,并且联合信道估计不限于 一次调度的PUSCH重复之间或者一次调度的PUCCH重复之间,联合信道估计可以是不同次调度的PUSCH重复之间,或者可以是不同次调度的PUCCH重复之间,或者可以是PUSCH与PUCCH之间,或者可以是随机接入场景中的消息3重复(Msg3repetition)之间,等等,本公开对此不限定。尽管上面分别针对PUSCH和PUCCH描述了实施例,但是本公开还可以包括上述所列的实施例的任意组合,另外还可以包括针对其他上行传输的发射功率,等等,本公开中不再一一罗列。
可理解,尽管上述实施例针对“时域窗口”进行了描述,该时域窗口也可以被称为联合传输时机(JTO)、用于联合信道估计的传输时机(transmission occasion for joint channel estimation,TOJ)等。例如,针对PUSCH重复类型A的场景或针对PUCCH重复的场景,联合传输时机对应于覆盖多个TO的时域窗口。例如,针对PUSCH重复类型B的场景而言,联合传输时机对应于实际重复,而非名义重复。
相应地,针对“联合传输时机(JTO)”确定PUSCH功率控制调整值的过程可以包括:在未被配置有TPC累加参数时,基于上一联合传输时机的初始PUSCH功率控制调整值以及累加确定当前联合传输时机的PUSCH功率控制调整值,其中该累加为从与上一联合传输时机关联的第一时刻至与当前联合传输时机关联的第二时刻之间的DCI中第一PUSCH参数值的累加。类似地,针对“联合传输时机(JTO)”确定PUCCH功率控制调整值的过程可以包括:基于上一联合传输时机的初始PUCCH功率控制调整值以及累加确定当前联合传输时机的PUCCH功率控制调整值,其中该累加为从与上一联合传输时机关联的第一时刻至与当前联合传输时机关联的第二时刻之间的DCI中第一PUCCH参数值的累加。
可理解的是,针对“联合传输时机(JTO)”确定功率控制调整值时,其中的累加可以是一次完成的或者也可以是按照TO多次完成的,不管如何确定累加,在联合传输时机进行功控的方式可以参照已有的方式。如此仅通过将现有的TO替换为JTO便可以确定符合实际需求的功率控制调整值,简化了处理方式的同时,保证了通信性能。
图8示出了根据本公开实施例的传输方法800的另一个示意流程图。作为示例,方法800可以实现在图1所示的终端设备120处。为了便于理解,以下以终端设备120为例对传输方法800进行描述,但这仅仅是示例性的,无意对本公开的实施例进行任何限制。
方法800开始于框810。在810,终端设备120获取功率指示信息,其中功率指示信息用于指示在当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机。
在820,终端设备120基于功率指示信息,确定在当前时域资源的功率控制调整值。
在830,终端设备120基于在当前时域资源的功率控制调整值,确定在当前时域资源的发射功率。
在840,终端设备120在当前时域资源以该发射功率进行传输。
示例性地,包括至少两个传输时机的时域资源可以用于联合信道估计,或者可以用于其他场景等,本公开对此不限定。示例性地,时域资源可以是时域窗口,或者也可以称为时间窗口、联合传输时机(JTO)、不变传输时机、用于联合信道估计的传输时机(TOJ)或其他等。示例性地,功率控制调整值也可以被称为功率控制调整状态或功率控制调整状态值或者功率控制调整状态参数或者功率控制调整状态项或功率控制调整参数或其他等,本公开对此不限定。
本公开实施例中,当前时域资源内的至少两个传输时机可以具有相同发送特征信息,其中相同发送特征信息包括以下中的至少一项:相同的TPMI、相同的发射功率、相同的频域资源占用、相位连续性、相同的天线端口等。类似地,前一个时域资源内的至少两个传输时机可以具有相同发送特征信息。
举例来说,当前时域资源内的至少两个传输时机具有相同的发射功率意味着:在当前时域资源的非起始传输时机不进行功率控制/功率调整。或者可以理解为,在当前时域资源的第一个传输时机进行功率控制/功率调整,在第一个传输时机之后的其他传输时机的发射功率等于第一个传输时机的发射功率。
在一种实现方式中,图8所示的方法800可以用于确定终端设备120的PUSCH发射功率。示例性地,在未被配置有TPC累加参数的情况下,在820,基于当前时域资源的前一个时域资源的初始功率控制调整值以及累加,确定在当前时域资源的PUSCH功率控制调整值,其中所述累加为在与前一个时域资源关联的第一时刻至与当前时域资源关联的第二时刻之间接收到的所有DCI中的功率指示信息所指示的功率调整值的累加。
TPC指示信息指示的功率调整值可以是从取值集合中所确定的。作为一个示例,该取值集合可以是TPC累加值,具体的,为PUSCH的TPC累加值。举例来说,TPC指示信息可以是TPC命令字段参数,功率指示信息所指示的功率调整值可以是与TPC命令字段参数对应的PUSCH的TPC累加值。关于该实施例可以参照上述结合表1等进行的描述,为了简洁,这里不再赘述。
在另一种实现方式中,图8所示的方法800可以用于确定终端设备120的PUSCH发射功率。示例性地,在未被配置有TPC累加参数的情况下,在820,基于当前时域资源的前一个传输时机的初始PUSCH功率控制调整值以及PUSCH累加,确定在当前时域资源的PUSCH功率控制调整值,其中所述累加为在与前一个传输时机关联的第一时刻至与当前时域资源关联的第二时刻之间接收到的所有DCI中的功率指示信息所指示的功率调整值的PUSCH累加。
关于第一时刻和第二时刻可以参照上面的实施例中关于第一时刻和第二时刻的相关描述,为了简洁,这里不再重复。
TPC指示信息指示的功率调整值可以是从第一取值集合中所确定的。作为一个示例,TPC指示信息可以是TPC命令字段参数,功率指示信息所指示的功率调整值可以是与TPC命令字段参数对应的PUSCH的TPC累加值。
在该实现方式的一些示例中,该第一取值集合中的元素至少有一个大于3,和/或,该第一取值集合中的元素至少有一个小于-1。
在该实现方式的一些示例中,该第一取值集合中的元素的数量可以等于4个,或者可以大于4个。举例来说,TPC指示信息可以为TPC命令字段参数,TPC命令字段占用的比特数可以大于2,例如3,从而TPC命令字段参数可以为0至7中的值,相应地第一取值集合中也可以包含8个元素,其中至少一个大于3或者至少一个小于-1。
在一些示例中,该第一取值集合是RRC配置的或者是预定义的。
在另一些示例中,该第一取值集合是从至少两个第一集合中确定的。举例来说,可以基于RRC信令中的第一集合指示信息从至少两个第一集合中确定第一取值集合。作为一例,该第一集合指示信息可以为索引。举例来说,可以基于预定义的准则从至少两个第一集合中确定第一取值集合。预定义的准则可以是用于联合信道估计的场景等。作为一例,预定义的准 则可以是间隔长度。该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
可选地,至少两个第一集合可以是预定义的,例如通过各种方式预先配置或预先存储的。在另一些示例中,至少两个第一集合中的部分或全部可以是通过RRC信令配置的。在另一些示例中,至少两个第一集合中的部分或全部可以是通过DCI进行指示的。本公开实施例中,至少两个第一集合也可以通过其他的方式进行配置等,这里不再罗列。
可选地,至少两个第一集合中的元素的部分或全部可以是预定义的,或者可以是通过RRC信令配置的。
如此,本公开实施例中实现了对于PUSCH的TPC累加值的扩展,使得功率控制调整值的范围更大,调整量更加精细,更能适应诸如联合信道估计等实际场景所需的功控调整幅度,保证了通信性能。
在另一种实现方式中,图8所示的方法800可以用于确定终端设备120的PUCCH发射功率。示例性地,在820,基于当前时域资源的前一个时域资源的初始功率控制调整值以及累加,确定在当前时域资源的PUCCH功率控制调整值,其中所述累加为在与前一个时域资源关联的第一时刻至与当前时域资源关联的第二时刻之间接收到的所有DCI中的功率指示信息所指示的功率调整值的累加。
TPC指示信息指示的功率调整值可以是从取值集合中所确定的。作为一个示例,该取值集合可以是TPC累加值,具体的,为PUCCH的TPC累加值。举例来说,TPC指示信息可以是TPC命令字段参数,TPC指示信息指示的功率调整值可以是与TPC命令字段参数对应的PUCCH的TPC累加值。关于该实施例可以参照上述结合表4等进行的描述,为了简洁,这里不再赘述。
在另一种实现方式中,图8所示的方法800可以用于确定终端设备120的PUCCH发射功率。示例性地,在820,基于当前时域资源的前一个传输时机的初始PUCCH功率控制调整值以及PUCCH累加,确定在当前时域资源的PUCCH功率控制调整值,其中所述累加为在与前一个传输时机关联的第一时刻至与当前时域资源关联的第二时刻之间接收到的所有DCI中的功率指示信息所指示的功率调整值的PUCCH累加。
关于第一时刻和第二时刻可以参照上面的实施例中关于第一时刻和第二时刻的相关描述,为了简洁,这里不再重复。
TPC指示信息指示的功率调整值可以是从第二取值集合中所确定的。作为一个示例,TPC指示信息可以是TPC命令字段参数,功率指示信息所指示的功率调整值可以是与TPC命令字段参数对应的PUCCH的TPC累加值。
在该实现方式的一些示例中,该第二取值集合中的元素至少有一个大于3,和/或,该第二取值集合中的元素至少有一个小于-1。
在该实现方式的一些示例中,该第二取值集合中的元素的数量可以等于4个,或者可以大于4个。举例来说,TPC指示信息可以为TPC命令字段参数,TPC命令字段占用的比特数可以大于2,例如3,从而TPC命令字段参数可以为0至7中的值,相应地第二取值集合中也可以包含8个元素,其中至少一个大于3或者至少一个小于-1。
在一些示例中,该第二取值集合是RRC配置的或者是预定义的。
在另一些示例中,该第二取值集合是从至少两个第二集合中确定的。举例来说,可以基 于RRC信令中的第二集合指示信息从至少两个第二集合中确定第二取值集合。作为一例,该第二集合指示信息可以为索引。举例来说,可以基于预定义的准则从至少两个第二集合中确定第二取值集合。预定义的准则可以是用于联合信道估计的场景等。作为一例,预定义的准则可以是间隔长度。该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
可选地,至少两个第二集合可以是预定义的,例如通过各种方式预先配置或预先存储的。在另一些示例中,至少两个第二集合中的部分或全部可以是通过RRC信令配置的。在另一些示例中,至少两个第二集合中的部分或全部可以是通过DCI进行指示的。本公开实施例中,至少两个第二集合也可以通过其他的方式进行配置等,这里不再罗列。
可选地,至少两个第二集合中的元素的部分或全部可以是预定义的,或者可以是通过RRC信令配置的。
如此,本公开实施例中实现了对于PUCCH的TPC累加值的扩展,使得功率控制调整值的范围更大,调整量更加精细,更能适应诸如联合信道估计等实际场景所需的功控调整幅度,保证了通信性能。
可理解的是,在一些实施例中,当前时域资源包括至少两个传输时机,前一个时域资源可以包括一个或多个传输时机。以时域资源为时域窗口为例,在一例中,如图3,当前时域资源(如时域窗口320)包括4个传输时机,且前一个时域资源(如时域窗口310)包括4个传输时机。在另一例中,如图5,当前时域资源(如时域窗口513)包括4个传输时机,且前一个时域资源(如时域窗口512)包括1个传输时机。
可理解的是,在另一些实施例中,当前传输资源包括一个传输时机,例如,当前传输资源是用于联合信道估计的单独的传输时机,或者当前传输资源不是用于联合信道估计的单独的传输时机,前一个时域资源包括至少两个传输时机。在一例中,如图5,假设当前时域资源是时域窗口512,其包括一个传输时机。前一个时域资源是时域窗口511,其包括两个传输时机。
在另一种实现方式中,图8所示的方法800可以用于确定终端设备120的PUSCH发射功率。示例性地,在配置有TPC累加参数的情况下,在820,基于比例因子和TPC指示信息指示的功率调整值,确定在当前时域资源的功率控制调整值。
在一些示例中,比例因子可以是预先配置的或者预先定义的。也就是说,比例因子是预定值,这样能够直接获取预定义的比例因子来确定功率控制调整值,效率高,降低了终端设备的计算复杂度。
在另一些示例中,可以基于第三消息来确定比例因子,其中第三消息可以被承载于RRC信令中。
举例来说,第三消息可以包括一个比例因子,如此,终端设备120可以直接从第三消息获取比例因子,该方式快速高效,效率高,降低了终端设备的计算复杂度。
在另一些示例中,可以基于第三消息和第四消息来确定比例因子,其中第三消息可以被承载于RRC信令中且该第三消息包括多个比例因子,其中第四消息可以是DCI或媒体接入控制-控制元素(Medium Access Control-Control Element,MAC-CE)。该第四消息用于确定多个比例因子中的其中一个。
具体地,终端设备120可以接收第三消息,该第三消息包括多个比例因子。终端设备 120可以接收第四消息,该第四消息包括比例因子指示信息。终端设备120进一步从多个比例因子中获取比例因子指示信息所指示的比例因子。这样能够基于第三消息和第四消息两者来确定比例因子,这样能够通过RRC半静态地进行配置,并由DCI或MAC-CE进行指示,能够避免DCI或MAC-CE的信令开销过大,并且该方式能够更快速地实现对比例因子的更新,更加灵活。
在另一些示例中,可以基于预定义的准则来确定比例因子。举例来讲,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
在一例中,可以将间隔长度作为比例因子,例如将间隔长度去量纲之后的无量纲值作为比例因子。
在另一例中,可以基于间隔长度与比例因子的对应关系,获取与该间隔长度对应的比例因子,其中该对应关系是由接入网设备的RRC所配置的或预定义的。
在又一例中,可以基于间隔长度以及预定义的缩放因子,确定比例因子。例如,将间隔长度与缩放因子的乘积作为比例因子。
可理解,本公开实施例中的长度可以以下至少一项:时隙数、符号数、传输时机数、重复数等,其中重复数可以是名义重复数或实际重复数等,本公开对此不限定。
在另一些示例中,可以基于第三消息和预定义的准则来确定比例因子。第三消息被承载于RRC信令中,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
举例来讲,第三消息包括缩放因子,那么可以将间隔长度与缩放因子的乘积作为比例因子。
在另一些示例中,可以基于第四消息和预定义的准则来确定比例因子。第四消息为DCI,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
举例来讲,第四消息包括缩放因子,那么可以将间隔长度与缩放因子的乘积作为比例因子。
在另一些示例中,可以基于第三消息、第四消息和预定义的准则来确定比例因子。第三消息被承载于RRC信令中,第四消息为DCI或AMC-CE,预定义的准则为间隔长度。
举例来讲,第三消息包括多个缩放因子,第四消息包括缩放因子指示信息,那么可以从多个缩放因子中获取该缩放因子指示信息所指示的缩放因子,进而可以将间隔长度与缩放因子的乘积作为比例因子。
本公开实施例中,比例因子也可以被称为调整因子或功控调整因子或其他名字等,比例因子可以用于对TPC命令调整值进行调整以确定功率控制调整值。
在一些实施例中,TPC指示信息指示的功率调整值可以是从取值集合中确定的。
可选地,该取值集合或取值集合中的元素可以是预定义的。
在一例中,TPC指示信息可以为TPC命令字段参数,TPC指示信息指示的功率调整值可以是与TPC命令字段参数对应的TPC绝对值。如上面的表2所示,TPC指示信息指示的功率调整值可以是从取值集合{-4,-1,1,4}中确定的。
在另一例中,TPC指示信息指示的功率调整值所在的取值集合中,至少一个元素的值大 于4。例如,该取值集合可以是{-6,-1,1,6}或{-8,-2,2,8}或其他等。
在另一例中,TPC指示信息指示的功率调整值所在的取值集合中,所包含的元素的数量大于4。举例来说,TPC指示信息可以为TPC命令字段参数,TPC命令字段占用的比特数可以大于2,例如3,从而TPC命令字段参数可以为0至7中的值,相应地取值集合中也可以包含8个元素,其中至少一个大于4。例如,该取值集合可以是{-6,-4,-2,-1,1,2,4,6}或其他等。
在一些实施例中,该取值集合或取值集合中的元素是由RRC配置的,从而终端设备120能够基于TPC指示信息从该取值集合中确定所指示的功率调整值。
在一些实施例中,该取值集合可以是从至少两个取值集合(下面简称为至少两个集合)中确定的。
在一例中,可以基于RRC信令中的集合指示信息从至少两个集合中确定取值集合。
举例来讲,集合指示信息可以为索引。至少两个集合可以具有对应的索引,不同的集合具有不同的索引。那么可以基于RRC信令中的索引确定对应的取值集合。以表5为例,关于用于JCE的TPC绝对值存在两个集合,分别为{-6,-1,1,6}和{-8,-2,2,8}。假设集合{-6,-1,1,6}的索引为A1,集合{-8,-2,2,8}的索引为A2。那么,如果RRC信令中的索引是A1,则可以确定取值集合为{-6,-1,1,6}。如果RRC信令中的索引是A2,则可以确定取值集合为{-8,-2,2,8}。可理解,集合指示信息也可以为其他的形式,这里不再罗列。
表5
Figure PCTCN2022092019-appb-000018
在另一例中,可以基于预定义的准则从至少两个集合中确定取值集合。预定义的准则可以是用于联合信道估计的场景等。
以表5为例,与TPC命令字段对应的有两个集合,分别为:TPC绝对值和用于JCE的TPC绝对值。那么在确定用于联合信道估计的当前时域资源的发射功率时,可以确定取值集合为用于JCE的TPC绝对值所在的列,即取值集合是{-6,-1,1,6}。
在又一例中,可以基于预定准则从至少两个集合中确定取值集合。预定义的准则可以是间隔长度。该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
以表6为例,与TPC命令字段对应的有两个集合,分别为:间隔长度=3的用于JCE的TPC绝对值和间隔长度=2的用于JCE的TPC绝对值。那么,终端设备120可以首先确定间隔长度,进而可以基于间隔长度确定取值集合。
表6
Figure PCTCN2022092019-appb-000019
如此,通过对TPC命令字段在行和/或列方向上进行扩展,能够适应实际需要的功率调整幅度,保证了通信性能。具体的,将TPC绝对值进行扩充,其不仅与TPC命令字段有关,还与间隔长度有关,这样的扩充使得功率控制调整值的范围更大,调整量更加精细,更能适应实际场景所需的功控调整幅度,保证了通信性能。
应注意的是,表6仅是示意性的,用于JCE的TPC绝对值的某一列可以对应一个或多个间隔长度,例如间隔长度为3或4都对应表6的第2列,间隔长度为1或2都对应表6的第3列;或者,用于JCE的TPC绝对值的某一列可以对应间隔长度的区间,例如间隔长度处于区间(2,4]对应表6的第2列,间隔长度处于区间(0,2]对应表6的第3列。或者,用于JCE的TPC绝对值可以包括更多或更少的列。
另外,可理解,也可以通过其他的方式从至少两个集合中确定取值集合,这里不再一一罗列。
在一些示例中,至少两个集合可以是预定义的,例如通过各种方式预先配置或预先存储的。在另一些示例中,至少两个集合中的部分或全部可以是通过RRC信令配置的。在另一些示例中,至少两个集合中的部分或全部可以是通过DCI进行指示的。本公开实施例中,至少两个集合也可以通过其他的方式进行配置等,这里不再罗列。
在一些实施例中,820确定在当前时域资源的功率控制调整值,可以包括:确定当前时域资源的每个传输时机的功率控制调整值。
在一些实施例中,820确定在当前时域资源的功率控制调整值,可以包括:确定当前时域资源的第一个传输时机的功率控制调整值。可选地,对于当前传输资源的其他传输时机(即不是第一个传输时机)可以通过其他的规则进行确定,例如其他的规则为:其他传输时机的发射功率等于第一个传输时机的发射功率。
关于图8中的框830和框840,可以参见上述图2的实施例中220和230中的相关描述,为了简洁,这里不再重复。
如此,本公开实施例中基于功率指示信息(如TPC命令指示信息)来确定当前时域资 源的功率控制调整值,简化了终端设备的处理过程,降低了终端设备处的复杂性,提高了确定发射功率的效率。并且,与TPC命令指示信息对应的功率调整值(如用于JCE的TPC绝对值)可以具有更大的值或更大的范围,如此能够适应实际需要的功率调整的幅度,确保了通信性能。
图9示出了根据本公开实施例的传输方法900的又一个示意流程图。作为示例,方法900可以实现在图1所示的接入网设备110处。为了便于理解,以下以接入网设备110为例对传输方法900进行描述,但这仅仅是示例性的,无意对本公开的实施例进行任何限制。
方法900开始于框910。在910,接入网设备110向终端设备120发送功率指示信息,其中功率指示信息用于指示当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机。
在920,接入网设备110在当前时域资源接收终端设备120以发射功率进行的传输,该TPC指示信息为确定该发射功率的基础。
示例性地,时域资源可以用于联合信道估计,或者可以用于其他场景等,本公开对此不限定。示例性地,时域资源可以是时域窗口,或者也可以称为时间窗口、联合传输时机(JTO)、不变传输时机、用于联合信道估计的传输时机(TOJ)或其他等。
示例性地,功率指示信息可以用于终端设备120基于该功率指示信息确定功率控制调整值,并进一步基于功率控制调整值来确定发射功率,其中功率控制调整值也可以被称为功率控制调整状态或功率控制调整状态值或者功率控制调整状态参数或者功率控制调整状态项或功率控制调整参数或其他等,本公开对此不限定。
本公开实施例中,当前时域资源内的至少两个传输时机可以具有相同发送特征信息,其中相同发送特征信息包括以下中的至少一项:相同的TPMI、相同的发射功率、相同的频域资源占用、相位连续性、相同的天线端口等。
举例来说,当前时域资源内的至少两个传输时机具有相同的发射功率意味着:在当前时域资源的非起始传输时机不进行功率控制/功率调整。或者可以理解为,在当前时域资源的第一个传输时机进行功率控制/功率调整,在第一个传输时机之后的其他传输时机的发射功率等于第一个传输时机的发射功率。
可选地,当前时域资源的前一个时域资源可以包括一个或多个传输时机,前一个时域资源可以是用于联合信道估计的时域窗口,或者可以是用于非联合信道估计的传输时机。
在一些实施例中,其中TPC指示信息占用的比特数大于2或者等于2。作为一例,该TPC指示信息可以为TPC命令字段参数。
示例性地,TPC指示信息指示的功率调整值可以是传输功率控制命令值,例如TPC累加值、TPC绝对值等。
在一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。作为一例,该取值集合或取值集合中的元素可以是由接入网设备110通过RRC信令进行配置的。作为一例,该取值集合中的元素数量可以等于4个,或者该取值集合中的元素数量大于4个。
在一些实施例中,该方法900还可以包括:接入网设备110向终端设备120发送第三消息,该第三消息用于终端设备120确定发射功率,其中该第三消息被承载于RRC信令中,该第三消息包括比例因子或缩放因子。
在一例中,第三消息包括比例因子,从而终端设备120能够基于该比例因子以及TPC指示信息指示的功率调整值来确定功率控制调整值。
在另一例中,第三消息包括缩放因子,从而终端设备120能够基于该缩放因子和预定义的准则(如间隔长度,如结合图8的实施例所述)确定比例因子,进而基于该比例因子以及TPC指示信息指示的功率调整值来确定功率控制调整值。
在一些实施例中,该方法900还可以包括:接入网设备110向终端设备120发送第三消息,该第三消息包括多个比例因子;接入网设备110还向终端设备120发送第四消息,该第四消息用于从多个比例因子中确定其中之一,其中该第三消息被承载于RRC信令中,该第四消息为DCI或MAC-CE,该第三消息和第四消息用于终端设备120确定发射功率。
在一些实施例中,该方法900还可以包括:接入网设备110向终端设备120发送配置信息,其中该配置信息用于配置多个取值集合(下面简称为多个集合)。如此,终端设备120能够从多个集合中确定取值集合,进一步地终端设备120可以基于TPC指示信息从取值集合中确定TPC指示信息指示的功率调整值。
在一些实施例中,该方法900还可以包括:接入网设备110向终端设备120发送集合指示信息,该集合指示信息用于终端设备120从多个集合中确定该取值集合。
在一例中,该集合指示信息可以为索引或索引值,从而终端设备120能够基于该索引或索引值从多个集合中确定取值集合,进一步地终端设备120可以基于TPC指示信息从取值集合中确定TPC指示信息指示的功率调整值。
可理解的是,关于比例因子、缩放因子、取值集合、多个集合等的相关描述可以参照上面的实施例,为了简洁,这里不再重复。
如此,本公开实施例中接入网设备能够通过半静态或静态的方式进行配置或指示,这样能够更快速地更新或调整比例因子等,该配置方式更加灵活。
应理解,在本公开的实施例中,“第一”,“第二”,“第三”等只是为了表示多个对象可能是不同的,但是同时不排除两个对象之间是相同的。“第一”,“第二”,“第三”等不应当解释为对本公开实施例的任何限制。
还应理解,本公开的实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在符合逻辑的情况下,可以相互结合。
还应理解,上述内容只是为了帮助本领域技术人员更好地理解本公开的实施例,而不是要限制本公开的实施例的范围。本领域技术人员根据上述内容,可以进行各种修改或变化或组合等。这样的修改、变化或组合后的方案也在本公开的实施例的范围内。
还应理解,上述内容的描述着重于强调各个实施例之前的不同之处,相同或相似之处可以互相参考或借鉴,为了简洁,这里不再赘述。
图10示出了根据本公开的实施例的通信装置1000的一个示意框图。装置1000可以被 实现在终端设备120处,或者可以被实现为终端设备120中的芯片或芯片系统,本公开的范围在此方面不限制。
如图10所示,装置1000可以包括第一确定单元1010、第二确定单元1020和传输单元1030。第一确定单元1010被配置为基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中时域窗口包括至少两个传输时机。第二确定单元1020被配置为基于功率控制调整值,确定当前传输时机的发射功率。传输单元1030被配置为在当前传输时机以发射功率进行传输。
在一些实施例中,第一确定单元1010被配置为:基于时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在当前传输时机的功率控制调整值,其中累加为在与起始传输时机关联的第一时刻至与当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
在一些实施例中,第一确定单元1010被配置为:基于时域窗口确定比例因子;获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;基于第二参数值和比例因子,确定在当前传输时机的功率控制调整值。
在一些实施例中,第一确定单元1010被配置为:基于时域窗口的起始传输时机至当前传输时机之间的总长度,确定比例因子;或者,基于时域窗口的长度,确定比例因子。
在一些实施例中,第一确定单元1010被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;基于间隔长度与比例因子的对应关系,获取与间隔长度对应的比例因子,其中对应关系是由接入网设备的RRC所配置的。
在一些实施例中,第一确定单元1010被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的RRC信令或DCI中的缩放因子;基于间隔长度和缩放因子确定比例因子。
在一些实施例中,第一确定单元1010被配置为:基于第二参数值与比例因子的乘积,确定在当前传输时机的功率控制调整值。
在一些实施例中,第一确定单元1010被配置为:获取间隔长度,其中间隔长度为时域窗口的起始传输时机至当前传输时机之间的总长度或时域窗口的长度;获取来自接入网设备的DCI中的TPC命令字段参数;基于间隔长度和TPC命令字段参数,确定在当前传输时机的功率控制调整值。
在一些实施例中,其中时域窗口用于联合信道估计,以及当前传输时机与时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
示例性地,图10中的装置1000可以被实现为终端设备120,或者可以被实现为终端设备120中的芯片或芯片系统,本公开的实施例对此不限定。图10中的装置1000能够用于实现上述结合图2至图7中终端设备120所述的各个过程,为了简洁,这里不再赘述。
图11示出了根据本公开的实施例的通信装置1100的另一个示意框图。装置1100可以被实现在终端设备120处,或者可以被实现为终端设备120中的芯片或芯片系统,本公开的范围在此方面不限制。
如图11所示,装置1100可以包括获取单元1110、第一确定单元1120、第二确定单元1130和传输单元1140。获取单元1110被配置为获取功率指示信息,其中功率指示信息用于指示在当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机。第一确定单元1120被配置为基于功率指示信息,确定在当前时域资源的功率控制调整值。第二确定单元1130被配置为基于在当前时域资源的功率控制调整值,确定在当前时域资源的发射功率。传输单元1140被配置为终端设备在当前时域资源以该发射功率进行传输。
在一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在一些实施例中,其中TPC指示信息占用的比特数大于2,和/或,取值集合中的元素数量大于4。
在一些实施例中,其中取值集合是基于预定义的准则从至少两个取值集合中确定的,或者,取值集合是基于来自RRC的索引从至少两个取值集合中确定的。
在一些实施例中,其中取值集合是RRC信令配置的或者取值集合是预定义的。
在一些实施例中,第一确定单元被配置为:基于比例因子和TPC指示信息指示的功率调整值,确定在当前时域资源的功率控制调整值。
在一些实施例中,比例因子是预定值;或者,比例因子基于第三消息和/或预定义的准则来确定的,其中第三消息被承载于RRC信令中。
在一些实施例中,比例因子基于第三消息被确定,该第三消息包括比例因子。
在一些实施例中,比例因子基于第三消息和第四消息被确定,其中第四消息用于确定多个比例因子中的其中一个。在一些示例中,获取单元被配置为接收第三消息,其中该第三消息包括多个比例因子;接收第四消息,该第四消息包括比例因子指示信息;从多个比例因子中获取该比例因子指示信息所指示的比例因子。
在一些实施例中,第四消息为DCI或MAC-CE。
在一些实施例中,比例因子基于预定义的准则被确定,其中,预定义的准则为间隔长度,该间隔长度为前一个时域资源的长度或者为前一个时域资源的第一个传输时机至当前时域资源的第一个传输时机之间的长度。
在一些实施例中,比例因子基于第三消息和预定义的准则被确定,其中第三消息包括缩放因子,预定义的准则为间隔长度。在一些实施例中,将缩放因子于间隔长度的乘积作为比例因子。
示例性地,图11中的装置1100可以被实现为终端设备120,或者可以被实现为终端设备120中的芯片或芯片系统,本公开的实施例对此不限定。图11中的装置1100能够用于实现上述结合图8中终端设备120所述的各个过程,为了简洁,这里不再赘述。
图12示出了根据本公开的实施例的通信装置1200的又一个示意框图。装置1200可以被实现在接入网设备110处,或者可以被实现为接入网设备110中的芯片或芯片系统,本公开的范围在此方面不限制。
如图12所示,装置1200可以包括发送单元1210和接收单元1220。发送单元1210被 配置为向终端设备发送功率指示信息,其中功率指示信息用于指示当前时域资源的功率调整值,该功率指示信息包括TPC指示信息,该当前时域资源包括至少两个传输时机或者该当前时域资源的前一个时域资源包括至少两个传输时机。接收单元1220被配置为在当前时域资源接收终端设备以该发射功率进行的传输,该TPC指示信息为确定该发射功率的基础。
在一些实施例中,其中TPC指示信息占用的比特数大于2。
在一些实施例中,其中TPC指示信息指示的功率调整值是从取值集合中确定的,该取值集合包括至少一个大于4的值。
在一些实施例中,其中该取值集合中的元素数量大于4。
在一些实施例中,发送单元1210还被配置为:向终端设备120发送第三消息,该第三消息用于终端设备120确定发射功率,其中该第三消息被承载于RRC信令中,该第三消息包括比例因子或缩放因子。
在一些实施例中,发送单元1210还被配置为:向终端设备120发送第三消息,该第三消息包括多个比例因子;向终端设备120发送第四消息,该第四消息用于从多个比例因子中确定其中之一,其中该第三消息被承载于RRC信令中,该第四消息为DCI或MAC-CE,该第三消息和第四消息用于终端设备120确定发射功率。
在一些实施例中,发送单元1210还被配置为向终端设备120发送配置信息,其中该配置信息用于配置多个集合。
在一些实施例中,发送单元1210还被配置为:向终端设备120发送集合指示信息,用于终端设备120从多个集合中确定该取值集合。
示例性地,图12中的装置1200可以被实现为接入网设备110,或者可以被实现为接入网设备110中的芯片或芯片系统,本公开的实施例对此不限定。图12中的装置1200能够用于实现上述结合图9中接入网设备110所述的各个过程,为了简洁,这里不再赘述。
图13示出了根据本公开的实施例的示例装置1300的简化框图。装置1300可以用于实现如图1所示的终端设备120或接入网设备110。如图所示,装置1300包括一个或多个处理器1310,耦合到处理器1310的一个或多个存储器1320,以及耦合到处理器1310的通信模块1340。
通信模块1340可以用于双向通信。通信模块1340可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1310可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。装置1300可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1320可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1324、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random  Access Memory,RAM)1322、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1330包括由关联处理器1310执行的计算机可执行指令。程序1330可以存储在ROM 1324中。处理器1310可以通过将程序1330加载到RAM 1322中来执行任何合适的动作和处理。
可以借助于程序1330来实现本公开的实施例,使得装置1300可以执行如参考图2至图9所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
在一些实施例中,程序1330可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在装置1300中(诸如在存储器1320中)或者可以由装置1300访问的其他存储设备。可以将程序1330从计算机可读介质加载到RAM 1322以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,装置1300中的通信模块1340可以被实现为发送器和接收器(或收发器),其可以被配置为接收RRC和/或DCI等,发送PUSCH和/或PUCCH等。另外,装置1300还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图13中的装置1300可以被实现为终端设备120或接入网设备110,或者可以被实现为终端设备120中的芯片或芯片系统,或者可以被实现为接入网设备110中的芯片或芯片系统,本公开的实施例对此不限定。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成上述信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片系统,包括处理器,用于支持终端设备120或接入网设备110以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及终端设备120或接入网设备110的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及终端设备120或接入网设备110的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及终端设备120或接入网设备110的方法和功能。
本公开实施例还提供一种无线通信系统,该系统包括终端设备和接入网设备。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为, 如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考图2至图9的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (40)

  1. 一种传输方法,包括:
    终端设备基于当前传输时机之前的时域窗口,确定在所述当前传输时机的功率控制调整值,其中所述时域窗口包括至少两个传输时机;
    所述终端设备基于所述功率控制调整值,确定所述当前传输时机的发射功率;以及
    所述终端设备在所述当前传输时机以所述发射功率进行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述时域窗口为用于DMRS bundling(解调参考信号捆绑)的名义时域窗口。
  3. 根据权利要求1或2所述的方法,其特征在于,对所述时域窗口内的非起始传输时机的发射功率不进行更新。
  4. 根据权利要求1-3中任一项所述的方法,其中所述确定在所述当前传输时机的功率控制调整值包括:
    基于所述时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在所述当前传输时机的所述功率控制调整值,其中所述累加为在与所述起始传输时机关联的第一时刻至与所述当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
  5. 根据权利要求4所述的方法,所述第一参数值为通过循环冗余校验由传输功率控制-物理上行共享信道-无线网络临时标识(TPC-PUSCH-RNTI)加扰的DCI格式2_2所指示的;或
    所述第一参数值为通过循环冗余校验由传输功率控制-物理上行控制信道-无线网络临时标识(TPC-PUCCH-RNTI)加扰的DCI格式2_2所指示的。
  6. 根据权利要求1-4中任一项所述的方法,其特征在于,所述当前传输时机的功率控制调整值为PUSCH或PUCCH的功率控制调整值。
  7. 根据权利要求1所述的方法,其中所述确定在所述当前传输时机的功率控制调整值包括:
    基于所述时域窗口确定比例因子;
    获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;以及
    基于所述第二参数值和所述比例因子,确定在所述当前传输时机的所述功率控制调整值。
  8. 根据权利要求7所述的方法,其中所述基于所述时域窗口确定比例因子包括:
    基于所述时域窗口的起始传输时机至所述当前传输时机之间的总长度,确定所述比例因子;或者
    基于所述时域窗口的长度,确定所述比例因子。
  9. 根据权利要求7所述的方法,其中所述基于所述时域窗口确定比例因子包括:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机之间的总长度或所述时域窗口的长度;以及
    基于间隔长度与比例因子的对应关系,获取与所述间隔长度对应的比例因子,其中所述对应关系是由接入网设备的RRC所配置的或是预定义的。
  10. 根据权利要求7所述的方法,其中所述基于所述时域窗口确定比例因子包括:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机 之间的总长度或所述时域窗口的长度;
    获取来自接入网设备的RRC信令或DCI中的缩放因子;以及
    基于所述间隔长度和所述缩放因子,确定所述比例因子。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述终端设备未被提供有TPC累加参数tpc-Accumulation。
  12. 根据权利要求7至11中任一项所述的方法,其中基于所述第二参数值和所述比例因子确定在所述当前传输时机的功率控制调整值包括:
    基于所述第二参数值与所述比例因子的乘积,确定在所述当前传输时机的所述功率控制调整值。
  13. 根据权利要求1所述的方法,其中所述确定在所述当前传输时机的功率控制调整值包括:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机之间的总长度或所述时域窗口的长度;
    获取来自接入网设备的DCI中的TPC命令字段参数;以及
    基于所述间隔长度和所述TPC命令字段参数,确定在所述当前传输时机的所述功率控制调整值。
  14. 根据权利要求1至13中任一项所述的方法,其中所述时域窗口用于联合信道估计,以及所述当前传输时机与所述时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
  15. 一种通信装置,包括:
    第一确定单元,被配置为基于当前传输时机之前的时域窗口,确定在当前传输时机的功率控制调整值,其中所述时域窗口包括至少两个传输时机;
    第二确定单元,被配置为基于所述功率控制调整值,确定所述当前传输时机的发射功率;以及
    传输单元,被配置为在所述当前传输时机以所述发射功率进行传输。
  16. 根据权利要求15所述的装置,其特征在于,所述时域窗口为用于DMRS bundling(解调参考信号捆绑)的名义时域窗口。
  17. 根据权利要求15或16所述的装置,其特征在于,对所述时域窗口内的非起始传输时机的发射功率不进行更新。
  18. 根据权利要求15-17任一项所述的装置,其中所述第一确定单元被配置为:
    基于所述时域窗口的起始传输时机的初始功率控制调整值以及累加,确定在所述当前传输时机的所述功率控制调整值,其中所述累加为在与所述起始传输时机关联的第一时刻至与所述当前传输时机关联的第二时刻之间接收到的所有下行链路控制信息DCI中的第一参数值的累加。
  19. 根据权利要求18所述的装置,所述第一参数值为通过循环冗余校验由传输功率控制-物理上行共享信道-无线网络临时标识(TPC-PUSCH-RNTI)加扰的DCI格式2_2所指示的;或
    所述第一参数值为通过循环冗余校验由传输功率控制-物理上行控制信道-无线网络临时标识(TPC-PUCCH-RNTI)加扰的DCI格式2_2所指示的。
  20. 根据权利要求15-19中任一项所述的方法,其特征在于,所述当前传输时机的功率控 制调整值为PUSCH或PUCCH的功率控制调整值。
  21. 根据权利要求15所述的装置,其中所述第一确定单元被配置为:
    基于所述时域窗口确定比例因子;
    获取来自接入网设备的DCI中与TPC命令字段参数对应的第二参数值;以及
    基于所述第二参数值和所述比例因子,确定在所述当前传输时机的所述功率控制调整值。
  22. 根据权利要求21所述的装置,其中所述第一确定单元被配置为:
    基于所述时域窗口的起始传输时机至所述当前传输时机之间的总长度,确定所述比例因子;或者
    基于所述时域窗口的长度,确定所述比例因子。
  23. 根据权利要求22所述的装置,其中所述第一确定单元被配置为:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机之间的总长度或所述时域窗口的长度;以及
    基于间隔长度与比例因子的对应关系,获取与所述间隔长度对应的比例因子,其中所述对应关系是由接入网设备的RRC所配置的或是预定义的。
  24. 根据权利要求22所述的装置,其中所述第一确定单元被配置为:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机之间的总长度或所述时域窗口的长度;
    获取来自接入网设备的RRC信令或DCI中的缩放因子;以及
    基于所述间隔长度和所述缩放因子,确定所述比例因子。
  25. 根据权利要求15至24任一项所述的装置,其特征在于,所述终端设备未被提供有TPC累加参数tpc-Accumulation。
  26. 根据权利要求21至25中任一项所述的装置,其中所述第一确定单元被配置为:
    基于所述第二参数值与所述比例因子的乘积,确定在所述当前传输时机的所述功率控制调整值。
  27. 根据权利要求15所述的装置,其中所述第一确定单元被配置为:
    获取间隔长度,其中所述间隔长度为所述时域窗口的起始传输时机至所述当前传输时机之间的总长度或所述时域窗口的长度;
    获取来自接入网设备的DCI中的TPC命令字段参数;以及
    基于所述间隔长度和所述TPC命令字段参数,确定在所述当前传输时机的所述功率控制调整值。
  28. 根据权利要求15至27中任一项所述的装置,其中所述时域窗口用于联合信道估计,以及所述当前传输时机与所述时域窗口的起始传输时机之间还包括不用于联合信道估计的中断时域资源。
  29. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-14任意一项所述的方法。
  30. 一种芯片,包括处理电路,被配置为执行根据权利要求1至14中任一项所述的方法。
  31. 一种传输方法,包括:
    接入网设备向终端设备发送功率指示信息,其中所述功率指示信息用于指示当前时域资源的功率调整值,所述功率指示信息包括传输功率控制TPC指示信息,所述当前时域资源包括至少两个传输时机或者所述当前时域资源的前一个时域资源包括至少两个传输时机;
    所述接入网设备在所述当前时域资源接收所述终端设备以发射功率进行的传输,所述TPC指示信息为确定所述发射功率的基础。
  32. 根据权利要求31所述的方法,其中所述TPC指示信息占用的比特数大于2。
  33. 根据权利要求31或32所述的方法,其中所述TPC指示信息指示的功率调整值是从取值集合中确定的,所述取值集合包括至少一个大于4的值。
  34. 根据权利要求33所述的方法,其中所述取值集合中的元素数量大于4。
  35. 根据权利要求31-34任一项所述的方法,还包括:
    所述接入网设备向所述终端设备发送第三消息,所述第三消息包括比例因子或缩放因子,所述比例因子或缩放因子用于确定所述发射功率。
  36. 根据权利要求31-34任一项所述的方法,还包括:
    所述接入网设备向所述终端设备发送第三消息,其中所述第三消息包括多个比例因子;
    所述接入网设备向所述终端设备发送第四消息,其中所述第四消息用于指示所述多个比例因子中的一个,所述第四消息指示的比例因子用于确定所述发射功率。
  37. 根据权利要求31-36任一项所述的方法,还包括:
    所述接入网设备向所述终端设备发送配置信息,其中所述配置信息用于配置多个集合;
    所述接入网设备向所述终端设备发送集合指示信息,其中所述集合指示信息用于指示所述多个集合中的一个。
  38. 一种通信装置,包括处理器和存储器;
    其中,所述存储器存储有计算机程序;
    所述处理器调用所述存储器中的所述计算机程序以使得所述通信装置执行如权利要求31至37中任一项所述的方法。
  39. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-14或31-37任意一项所述的方法。
  40. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行如权利要求31-37任意一项所述的方法。
PCT/CN2022/092019 2021-05-10 2022-05-10 传输方法、通信装置、计算机可读存储介质和芯片 WO2022237793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110506778.X 2021-05-10
CN202110506778.XA CN115334628A (zh) 2021-05-10 2021-05-10 传输方法、通信装置、计算机可读存储介质和芯片

Publications (1)

Publication Number Publication Date
WO2022237793A1 true WO2022237793A1 (zh) 2022-11-17

Family

ID=83912128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092019 WO2022237793A1 (zh) 2021-05-10 2022-05-10 传输方法、通信装置、计算机可读存储介质和芯片

Country Status (2)

Country Link
CN (1) CN115334628A (zh)
WO (1) WO2022237793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224456A1 (en) * 2021-01-14 2022-07-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink channel in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260391A1 (en) * 2019-02-11 2020-08-13 Comcast Cable Communications, Llc Power Control and Retransmission
CN111586828A (zh) * 2019-02-18 2020-08-25 普天信息技术有限公司 一种pucch时延累积存储器、功率控制方法和基站
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
WO2021056569A1 (en) * 2019-09-29 2021-04-01 Lenovo (Beijing) Limited Method and apparatus for power control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260391A1 (en) * 2019-02-11 2020-08-13 Comcast Cable Communications, Llc Power Control and Retransmission
CN111586828A (zh) * 2019-02-18 2020-08-25 普天信息技术有限公司 一种pucch时延累积存储器、功率控制方法和基站
CN111867130A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种随机接入方法、装置及存储介质
WO2021056569A1 (en) * 2019-09-29 2021-04-01 Lenovo (Beijing) Limited Method and apparatus for power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on joint channel estimation for PUSCH", 3GPP DRAFT; R1-2108740, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057837 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224456A1 (en) * 2021-01-14 2022-07-14 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink channel in wireless communication system

Also Published As

Publication number Publication date
CN115334628A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN112534888B (zh) 上行链路传输功率分配
US20210314874A1 (en) Uplink transmissions for dual connectivity
CN113302987A (zh) 上行链路功率控制
US11576189B2 (en) Method and device for configuring semi-persistent scheduling
CN114270992A (zh) 用于管理一个或多个带宽部分的最小调度偏移的方法和装置
WO2022237793A1 (zh) 传输方法、通信装置、计算机可读存储介质和芯片
WO2021062836A1 (zh) 功率调整方法及装置
CN113708902B (zh) 用于休眠的带宽部分的信道信息报告
WO2022057175A1 (zh) 一种通信方法和装置
CN110463284B (zh) 用于确定功率控制配置的方法和设备
CN116326028A (zh) 通信方法、终端设备和计算机可读介质
WO2021223201A1 (en) Traffic priority-based energy detection threshold adaption in unlicensed band
EP4369801A1 (en) Methods and devices for power control
WO2024098338A1 (en) Power control for carrier aggregation
WO2020087548A1 (zh) 一种功率控制方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806756

Country of ref document: EP

Kind code of ref document: A1