WO2022237760A1 - 用于方向盘触摸检测的方法及装置 - Google Patents

用于方向盘触摸检测的方法及装置 Download PDF

Info

Publication number
WO2022237760A1
WO2022237760A1 PCT/CN2022/091915 CN2022091915W WO2022237760A1 WO 2022237760 A1 WO2022237760 A1 WO 2022237760A1 CN 2022091915 W CN2022091915 W CN 2022091915W WO 2022237760 A1 WO2022237760 A1 WO 2022237760A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch detection
frequency
signal
preselected
steering wheel
Prior art date
Application number
PCT/CN2022/091915
Other languages
English (en)
French (fr)
Inventor
贺川
曾阗
朱尉
邱凭婷
Original Assignee
法雷奥汽车内部控制(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法雷奥汽车内部控制(深圳)有限公司 filed Critical 法雷奥汽车内部控制(深圳)有限公司
Publication of WO2022237760A1 publication Critical patent/WO2022237760A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present disclosure relates to the field of motor vehicles, and more particularly relates to a method for detecting a touch on a steering wheel and a device for detecting a touch on a steering wheel.
  • the touch sensor is used to sense the reference signal at this frequency, and the modulated signal is obtained at the output of the sensor, and then the modulated signal is demodulated to obtain the touch detection of the sensor signal, and determine the touch state of the steering wheel according to the touch detection signal.
  • the method has good flexibility and reliability.
  • the present disclosure provides a method for detecting a touch on a steering wheel and a device for detecting a touch on a steering wheel.
  • the method for steering wheel touch detection provided by this disclosure can effectively improve the accuracy of steering wheel touch detection on the basis of good steering wheel touch detection, and realize real-time and high-precision steering wheel touch detection, and the method has good robustness sex.
  • a method for steering wheel touch detection wherein the steering wheel includes at least one touch detection sensor, and the method includes: based on the at least one touch detection sensor, generating A plurality of touch detection signals corresponding to the frequency; for each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor, execute the Frequency pollution detection of a preselected frequency to determine a frequency pollution state of the preselected frequency; determine a target frequency according to the frequency pollution state of each preselected frequency; and perform steering wheel touch detection based on the target frequency.
  • generating a plurality of touch detection signals corresponding to a plurality of preselected frequencies based on the at least one touch detection sensor includes: generating reference signals corresponding to the plurality of preselected frequencies; Each of the reference signals is applied to each of the at least one touch detection sensor without overlapping in time, wherein each touch detection sensor modulates its applied reference signal to generate a corresponding a modulation signal; and detecting a modulation signal generated by each touch detection sensor in the at least one touch detection sensor and demodulating the modulation signal to obtain each touch in the at least one touch detection sensor under the reference signal A touch detection signal of the sensor is detected, the touch detection signal corresponding to a preselected frequency corresponding to the reference signal.
  • Contamination detection to determine the frequency pollution status of the preselected frequency includes: for each preselected frequency in the plurality of preselected frequencies, for the touch detection signal corresponding to the preselected frequency in the touch detection signal of the at least one touch detection sensor For each touch detection signal of the touch detection signal, determine the signal pollution state of the touch detection signal; based on the signal pollution state of each touch detection signal corresponding to the preselected frequency in the touch detection signal of the at least one touch detection sensor, determine the preselected frequency frequency pollution status.
  • determining the signal contamination status of the touch detection signal includes: based on the The touch detection signal, according to the correspondence table between the touch detection signal and the value of the touch detection parameter, generates the value of the touch detection parameter corresponding to the touch detection signal; the value of the touch detection parameter corresponding to the touch detection signal and the touch The threshold range of the detection parameter at the preselected frequency is compared, and the signal pollution state of the touch detection signal is determined based on the comparison result; wherein, the touch detection parameter includes at least one of capacitance and resistance.
  • the threshold range corresponding to the touch detection parameter at the preselected frequency is determined by the threshold range when the human hand and the steering wheel are at the minimum distance limit and the human hand and the steering wheel are at the maximum distance limit at the preselected frequency.
  • the detection parameters are calibrated to generate.
  • comparing the value of the touch detection parameter corresponding to the touch detection signal with the threshold range of the touch detection parameter at the preselected frequency, and determining the signal pollution state of the touch detection signal based on the comparison result includes: If the value of the touch detection parameter corresponding to the touch detection signal is within the threshold range of the touch detection parameter at the preselected frequency, determine the touch detection signal as an uncontaminated signal; If the value of the detection parameter is not within the threshold range of the touch detection parameter at the preselected frequency, the touch detection signal is determined as a contamination signal.
  • determining the frequency pollution status of the preselected frequency includes: In case each of the corresponding touch detection signals is determined as an uncontaminated signal, the preselected frequency is determined as the uncontaminated frequency.
  • the method further includes: generating a frequency pollution state table of the plurality of preselected frequencies according to the determined frequency pollution state of each preselected frequency.
  • determining the target frequency according to the frequency pollution state of each preselected frequency includes: determining a preselected frequency determined as an unpolluted frequency among the plurality of preselected frequencies as the target frequency.
  • the plurality of preselected frequencies are set at preset time intervals, and the frequency pollution status of each preselected frequency is determined for the plurality of preselected frequencies.
  • performing the steering wheel touch detection based on the target frequency includes: generating target reference signals one-to-one corresponding to the target frequency; for each of the target reference signals, applying them without overlapping in time to each touch detection sensor in the at least one touch detection sensor, wherein each touch detection sensor modulates its applied target reference signal to generate a corresponding modulation signal; Modulating signals generated by each touch detection sensor and demodulating the modulation signal to obtain touch detection signals of each touch detection sensor in the at least one touch detection sensor under the target reference signal; and based on the target reference signal The touch detection signal of each touch detection sensor in the at least one touch detection sensor under each target reference signal in the reference signal is used to determine the touch detection state of the steering wheel.
  • determining the touch detection state of the steering wheel includes: for each touch detection sensor in the at least one touch detection sensor, based on each target reference signal of the touch detection sensor in the target reference signal Under the touch detection signal, determine the touch detection state of the touch detection sensor under the respective target reference signals; for each touch detection sensor in the at least one touch detection sensor, based on the touch detection sensor in the The touch detection state under each target reference signal determines the touch detection state of the touch detection sensor; and determines the touch detection state of the steering wheel based on the touch detection state of each touch detection sensor in the at least one touch detection sensor.
  • the touch detection state at least includes a hand-off state and a hand-off state, and wherein, the touch detection state of each touch detection sensor in the at least one touch detection sensor is the case of a hand-off state Next, it is determined that the touch detection state of the steering wheel is the hands-off state.
  • the touch detection state of the touch detection sensor is determined based on the touch detection state of the touch detection sensor under the respective target reference signal , comprising: in the case that the touch detection states of the touch detection sensors under the respective target reference signals are all in the hand-off state, determining that the touch detection state of the touch detection sensor is the hand-off state; If the touch detection states of the sensor under the target reference signals are all in the hand-off state, it is determined that the touch detection state of the touch detection sensor is in the hand-off state.
  • determining the touch detection state of the touch detection sensor under the respective target reference signals includes : Based on the touch detection signal of the touch detection sensor under each target reference signal, generate a capacitance value and/or resistance value corresponding to the touch detection signal; and/or the resistance value are compared with preset measurement thresholds to determine the touch detection state of the touch detection sensor under each target reference signal.
  • a device for touch detection of a steering wheel includes at least one touch detection sensor, including: a signal generation module configured to generate a signal corresponding to the at least one touch detection sensor based on the at least one touch detection sensor A plurality of touch detection signals corresponding to a plurality of preselected frequencies; a frequency pollution state detection module configured to, for each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal of the at least one touch detection sensor and The touch detection signal corresponding to the preselected frequency performs frequency pollution detection on the preselected frequency to determine the frequency pollution state of the preselected frequency; the target frequency determination module is configured to determine the target according to the frequency pollution state of each preselected frequency frequency; a steering wheel touch detection module configured to perform steering wheel touch detection based on the target frequency.
  • the frequency pollution state detection module includes: a signal pollution state determination submodule configured to detect the touch of the at least one touch detection sensor for each preselected frequency in the plurality of preselected frequencies For each of the touch detection signals corresponding to the preselected frequency in the signal, determine the signal pollution state of the touch detection signal; the frequency pollution state determination submodule is configured for each of the plurality of preselected frequencies A preselected frequency, based on the signal pollution status of each touch detection signal corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor, determine the frequency pollution status of the preselected frequency.
  • the signal pollution state determination submodule includes: a touch detection parameter value calculation submodule, which is configured to generate, based on the touch detection signal, a correspondence table between the touch detection signal and the value of the touch detection parameter. The value of the touch detection parameter corresponding to the touch detection signal; the threshold comparison submodule configured to compare the value of the touch detection parameter corresponding to the touch detection signal with the threshold range of the touch detection parameter at the preselected frequency, Determine the signal pollution state of the touch detection signal based on the comparison result; wherein, the touch detection parameter includes at least one of capacitance and resistance.
  • the steering wheel touch detection module includes: a target signal generation sub-module configured to generate a target reference signal corresponding to a target frequency one-to-one, and for each target reference signal in the target reference signal , applying it to each of the at least one touch detection sensor without overlapping in time, wherein each touch detection sensor modulates its applied target reference signal to generate a corresponding modulation signal; signal a detection submodule configured to, for each of the target reference signals, detect a modulated signal generated by each of the at least one touch detection sensor and demodulate the modulated signal, to obtain the touch detection signals of each of the touch detection sensors in the at least one touch detection sensor under the target reference signal; and a signal processing submodule configured to be based on each of the target reference signals in the target reference signal The touch detection signal of each touch detection sensor in the at least one touch detection sensor determines the touch detection state of the steering wheel.
  • a target signal generation sub-module configured to generate a target reference signal corresponding to a target frequency one-to-one, and for each target reference signal
  • the influence of electromagnetic interference in the environment on the steering wheel touch detection process can be effectively reduced, and the accuracy and robustness of steering wheel touch detection can be improved. , and has good flexibility and reliability.
  • FIG. 1A shows an exemplary flowchart of a method 100 for steering wheel touch detection according to an embodiment of the present disclosure
  • FIG. 1B shows a schematic diagram of a steering wheel according to the present disclosure
  • FIG. 2A shows an exemplary flow chart of the process S101 of the at least one touch detection sensor generating a plurality of touch detection signals corresponding to a plurality of preselected frequencies according to an embodiment of the present disclosure
  • FIG. 2B shows a schematic diagram of the process S101 of generating a plurality of touch detection signals corresponding to a plurality of preselected frequencies by the at least one touch detection sensor according to an embodiment of the present disclosure
  • FIG. 2C shows a timing diagram of applying the preselected signals in FIG. 2B to the touch detection sensor without overlapping in time
  • FIG. 3 shows an exemplary flowchart of a process S102 of determining a frequency pollution state of a preselected frequency according to an embodiment of the present disclosure
  • FIG. 4 shows an exemplary flow chart of the process S1021 of determining the signal pollution state of the touch detection signal corresponding to the preselected frequency according to an embodiment of the present disclosure
  • FIG. 5 shows an exemplary flowchart of a process S104 of performing steering wheel touch detection based on a target frequency according to an embodiment of the present disclosure
  • FIG. 6A shows an exemplary flow chart of the process S1044 of determining the touch detection state of the steering wheel according to an embodiment of the present disclosure
  • Fig. 6B shows a schematic diagram of the process S1044 of determining the touch detection state of the steering wheel according to an embodiment of the present disclosure
  • FIG. 7 shows an exemplary flow chart of step S1042 of determining the touch detection state of the touch detection sensor under various target reference signals according to an embodiment of the present disclosure
  • Fig. 8 shows a schematic diagram of frequency pollution according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a timing sequence of steering wheel touch detection according to an embodiment of the present disclosure.
  • Fig. 10 shows an exemplary block diagram of a steering wheel touch detection device according to an embodiment of the present disclosure.
  • any number of different modules may be used and run on the user terminal and/or the server.
  • the modules are illustrative only, and different aspects of the systems and methods may use different modules.
  • the flow chart is used in this application to illustrate the operations performed by the system according to the embodiment of this application. It should be understood that the preceding or following operations are not necessarily performed in an exact order. Instead, various steps may be processed in reverse order or concurrently, as desired. At the same time, other operations can be added to these procedures, or a certain step or steps can be removed from these procedures.
  • the present application relates to a detection method and a detection device for steering wheel touch detection of a motor vehicle. Specifically, in this application, by selecting multiple pre-selected frequencies, and determining the frequency pollution status of each of the multiple pre-selected frequencies, the target frequency is finally determined based on the frequency pollution status of each pre-selected frequency, and based on the target Frequency to perform the steering wheel touch detection process. It can well reduce the problem of serious errors in the sensing signal of the sensor due to electromagnetic interference at a specific frequency during the detection process, and improve the accuracy and robustness of the touch detection.
  • the steering wheel touch detection described in this application refers to the touch detection process for the steering wheel of a motor vehicle, and the touch detection process aims to detect the touch state between the driver's hands and the steering wheel of the motor vehicle.
  • a touch detection sensor such as a capacitive sensor
  • a reference signal of a preset frequency ie, the target frequency described below
  • the touch detection sensor provided in the touch detection area on the steering wheel can modulate the reference signal to obtain a modulation signal.
  • the touch sensor is used to sense the reference signal at this frequency, and the modulated signal is obtained at the output of the sensor, and then the modulated signal is demodulated to obtain the touch of the sensor. detection signal, and determine the touch state of the steering wheel according to the touch detection signal.
  • the present application proposes a method for steering wheel touch detection.
  • the steering wheel has at least one touch detection sensor, and the touch detection sensor is used to generate a corresponding modulation signal according to a reference signal applied at a preset frequency, so as to realize the steering wheel touch detection.
  • FIG. 1A shows an exemplary flowchart of a method 100 for steering wheel touch detection according to an embodiment of the present disclosure. Next, the process and steps of the steering wheel touch detection will be described in more detail with reference to FIG. 1A .
  • step S101 based on the at least one touch detection sensor, generate a plurality of touch detection signals corresponding to a plurality of preselected frequencies.
  • the touch detection sensor refers to a sensor used to realize the steering wheel touch detection process. According to the actual needs of the actual touch detection process, one or more touch detection sensors can be set to detect the steering wheel touch.
  • At least one touch detection area can be set to know whether different parts (such as left hand and right hand) of the driver touch the steering wheel, and at least one touch detection sensor (wherein, Each touch detection sensor has its corresponding touch detection channel) to realize touch detection.
  • Fig. 1B shows a schematic diagram of a steering wheel according to the present disclosure. As shown by the dotted line in Fig.
  • Fig. 1B it exemplarily divides the steering wheel into four touch detection areas, that is, the front touch detection area (DA1) of the left part of the steering wheel, the left part of the steering wheel The back touch detection area (DA2), the front touch detection area of the right part of the steering wheel (DA3), and the back touch detection area of the right part of the steering wheel (DA4).
  • Fig. 1 shows a plurality of touch detection sensors (DS11...DS1n) for a specific position in the front touch detection area (DA1) of the left part of the steering wheel and a plurality of touch detection sensors (DS31n) for the front touch detection area DA3 of the right part of the steering wheel ...DS3n).
  • the steering wheel can be arbitrarily divided into any number of touch detection areas required and any number of touch detection sensors can be set.
  • the embodiments of the present disclosure are not limited by the specific arrangement method and arrangement number of the touch detection sensors.
  • the preselected frequency refers to a detection frequency suitable for steering wheel touch detection.
  • the pre-selected frequency may be specified by the user, or predetermined by the system, or selected according to actual needs, for example. Embodiments of the present disclosure are not limited by the number of preselected frequencies and their specific frequency values.
  • the multiple touch detection signals corresponding to multiple preselected frequencies refer to detection signals generated by the at least one touch detection sensor after performing touch detection at each of the multiple preselected frequencies. And wherein, the process of generating a plurality of touch detection signals corresponding to a plurality of preselected frequencies can be described more specifically, for example, a reference signal corresponding to each preselected frequency can be applied to the touch detection sensor, thereby A modulated signal is obtained, and then a touch detection signal of the touch detection sensor is obtained by demodulating the modulated signal.
  • step S102 After obtaining the touch detection signal corresponding to the preselected frequency, in step S102, for each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal corresponding to the preselected frequency in the at least one touch detection sensor Touch the detection signal to perform frequency pollution detection on the preselected frequency, so as to determine the frequency pollution status of the preselected frequency.
  • the frequency pollution detection refers to detecting whether the current preselected frequency is within the frequency range of electromagnetic interference in the environment, that is, detecting whether it is subjected to electromagnetic interference. If the current preselected frequency is subject to electromagnetic interference, the preselected frequency is determined as a polluted frequency; if the current preselected frequency is not subject to electromagnetic interference, the preselected frequency is determined as an unpolluted frequency.
  • Performing frequency contamination detection on the preselected frequency according to the touch detection signal corresponding to the preselected frequency in the touch detection signal of the at least one touch detection sensor may be, for example, determining the signal contamination of the touch detection signal corresponding to the preselected frequency State, according to the signal pollution state of each touch detection signal, determine the frequency pollution state of the preselected frequency.
  • step S103 the target frequency is determined according to the frequency pollution state of each preselected frequency.
  • the target frequency refers to the frequency used to perform the steering wheel touch detection process.
  • the target frequency may be, for example, a single frequency, or may also be multiple frequencies. Embodiments of the present disclosure are not limited by the specific number of the target frequencies.
  • a preselected frequency determined as an uncontaminated frequency among the preselected frequencies may be used as a target frequency.
  • the preselected frequency determined as the uncontaminated frequency may be further processed to obtain the target frequency.
  • step S104 the steering wheel touch detection is performed based on the target frequency.
  • the reference signal corresponding to the target frequency can be applied to the at least one touch detection sensor to obtain the target modulation signal, and the touch detection signal is generated through demodulation of the target modulation signal, and thus the direction of the steering wheel can be determined. Touch detection status.
  • the target frequency is finally determined based on the frequency pollution status of each pre-selected frequency, and based on the target Frequency to perform the steering wheel touch detection process.
  • this application selects multiple pre-selected frequencies and determines the target frequency according to their frequency pollution status.
  • the target frequency by selecting the pre-selected frequency without frequency pollution as the target frequency, it can Effectively improve the resistance of the steering wheel touch detection process to electromagnetic interference in the use environment, significantly reduce the problem of serious errors in the sensor sensing signal due to electromagnetic interference at a specific frequency during the detection process, and improve the accuracy of the touch detection
  • the target frequency can be selected flexibly in real time, thereby improving the robustness of the steering wheel touch detection process.
  • FIG. 2A shows an exemplary flowchart of a process S101 for at least one touch detection sensor to generate a plurality of touch detection signals corresponding to a plurality of preselected frequencies according to an embodiment of the present disclosure.
  • step S1011 reference signals corresponding to the plurality of preselected frequencies are generated one-to-one.
  • the reference signal one-to-one corresponding to a plurality of preselected frequencies means that for each preselected frequency, a reference signal at the preselected frequency is generated, and the reference signal is applied to the touch detection sensor to realize the frequency pollution of the preselected frequency detection.
  • step S1012 for each of the reference signals, apply it to each of the at least one touch detection sensor without overlapping in time, wherein each touch detection sensor
  • the applied reference signal is modulated to generate a corresponding modulated signal.
  • step S1013 After obtaining the modulated signal, in step S1013, for each of the reference signals, detect the modulated signal generated by each touch detection sensor in the at least one touch detection sensor, and demodulate the modulated signal , to obtain touch detection signals of each of the at least one touch detection sensor under the reference signal, the touch detection signal corresponding to a preselected frequency corresponding to the reference signal.
  • the above modulation and demodulation process may utilize IQ modulation-demodulation detection technology to further improve the accuracy of touch detection.
  • the touch detection sensor obtains an IQ modulated signal corresponding to the reference signal through IQ modulation, and then performs IQ demodulation on the modulated signal to obtain a touch detection signal of the touch detection sensor.
  • FIG. 2B shows a schematic diagram of a process S101 for the at least one touch detection sensor to generate a plurality of touch detection signals corresponding to a plurality of preselected frequencies according to an embodiment of the present disclosure.
  • FIG. 2C shows a timing diagram of applying the preselected signals in FIG. 2B to the touch detection sensor without overlapping in time.
  • three frequencies f1, f2, f3 are selected as pre-selected frequencies, and three touch detection sensors DS1, DS2, DS3 are arranged on the steering wheel, and each sensor corresponds to a touch detection channel (DS1 corresponds to Sensor channel 1, DS2 corresponds to sensor channel 2, DS3 corresponds to sensor channel 3), thus forming 3 sensor channels.
  • step S101 first, generate reference signals Ref_f1, Ref_f2, Ref_f3 corresponding to the three pre-selected frequencies f1, f2, f3 one by one, and then, for each of the reference signals Ref_f1, Ref_f2, Ref_f3 A reference signal is applied to the above-mentioned three touch detection sensors DS1, DS2, and DS3 without overlapping in time.
  • FIG. 2C shows that reference signals Ref_f1 and Ref_f3 are applied to the above-mentioned three touches The timing diagram of the sensor channels 1, 2, and 3 corresponding to the detection sensors DS1, DS2, and DS3. Referring to FIG.
  • the reference signal Ref_f1 may first be applied sequentially to the sensor channels 1, 2, 3 with a signal active period of period T in time, wherein during the signal active period, an idle period (i.e. no signal active period) is included. period) and the signal action period (that is, the period during which the reference signal is continuously applied). Thereafter, the reference signals Ref_f3, Ref_f2 are applied to the sensor channels 1, 2, 3 in the same way (the application process of the reference signal Ref_f2 is not shown in FIG. 2C ), and wherein the reference signal Ref_f3 is for example influenced by electromagnetic interference in the environment And be polluted.
  • each touch detection sensor DS1, DS2, DS3 modulates its applied reference signal to generate a corresponding modulation signal.
  • FIG. 2B shows the adjustment process of the sensors DS1, DS2, DS3 to the reference signal Ref_f1, Wherein, sensor DS1 generates modulation signal DS1_M_f1 corresponding to reference signal Ref_f1; sensor DS2 generates modulation signal DS2_M_f1 corresponding to reference signal Ref_f1; sensor DS3 generates modulation signal DS3_M_f1 corresponding to reference signal Ref_f1. Thereafter, the modulated signals generated by the respective touch detection sensors are detected and demodulated to obtain the touch detection signals of the respective touch detection sensors in the at least one touch detection sensor under the reference signal.
  • the touch detection signals of the three sensors DS1, DS2, and DS3 corresponding to the reference signal Ref_f1 can be obtained: DS1_T_f1, DS2_T_f1, DS3_T_f1.
  • the present application in the process of generating a plurality of touch detection signals corresponding to a plurality of preselected frequencies, by generating reference signals corresponding to the preselected frequencies one by one, and applying each reference signal to the In each sensor, the corresponding modulation signal is obtained, and then the modulation signal is demodulated to obtain the touch detection signal of each sensor under the reference signal, so that the touch detection signal corresponding to each of the multiple pre-selected frequencies can be well generated.
  • the touch detection signal is beneficial for subsequent frequency pollution detection based on the touch detection signal.
  • the frequency of the preselected frequency is performed based on the touch detection signal corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor.
  • the step S102 of pollution detection to determine the frequency pollution state of the preselected frequency can be described in more detail, for example.
  • Fig. 3 shows an exemplary flow chart of the process S102 of determining the frequency pollution state of a preselected frequency according to an embodiment of the present disclosure.
  • step S1021 for each of the plurality of preselected frequencies, for each of the touch detection signals corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor, A touch detect signal that determines the signal pollution state of the touch detect signal.
  • the touch detection signal can be compared with a preset signal threshold to determine the contamination of the touch detection signal, or the value of the corresponding touch detection parameter can be further calculated based on the touch detection signal, and the calculated touch detection parameter The value of is compared with the preset value range to determine the contamination of the touch detection signal. It should be understood that the embodiments of the present disclosure are not limited by the specific manner of determining the signal pollution state of the touch detection signal.
  • the signal pollution state may include a dirty signal and an unpolluted signal.
  • the polluted signal indicates that the signal has been subjected to electromagnetic interference
  • the unpolluted signal indicates that the signal has not been subjected to electromagnetic interference.
  • step S1022 After determining the pollution state of each touch detection signal corresponding to the preselected frequency, in step S1022, for each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal of the at least one touch detection sensor and the preselected The signal pollution state of each touch detection signal corresponding to the frequency determines the frequency pollution state of the preselected frequency.
  • the preselected frequency is determined as the uncontaminated frequency.
  • the preselected frequency is determined as the uncontaminated frequency when more than 80% of the touch detection signals corresponding to the preselected frequency are uncontaminated signals. It should be understood that the embodiments of the present disclosure are not limited by the specific manner of determining the frequency pollution status of the preselected frequency based on the signal pollution status of the touch detection signal.
  • the touch detection signals corresponding to DS1, DS2, DS3 and the preselected frequency f1 are: DS1_T_f1, DS2_T_f1, DS3_T_f1.
  • the respective signal contamination states of the touch detection signals DS1_T_f1, DS2_T_f1, and DS3_T_f1 can be determined respectively, and thus the frequency contamination state of the preselected frequency can be determined.
  • the present application when determining the frequency pollution status of the corresponding preselected frequency based on the touch detection signal, by first determining the signal pollution status of the touch detection signal corresponding to the preselected frequency, and then based on each of the corresponding preselected frequencies Touch the signal pollution state of the detection signal to determine the frequency pollution state of the preselected frequency, so that the pollution situation of the preselected frequency can be judged through the touch detection signal of the touch detection sensor at the preselected frequency, so that frequency pollution detection can be realized simply and conveniently , and make the detection result have higher accuracy and reliability.
  • the step S1021 of determining the signal pollution state of the touch detection signal for each of the touch detection signals corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor For example, it can be described more specifically.
  • FIG. 4 shows an exemplary flow chart of the process S1021 of determining the signal pollution state of the touch detection signal corresponding to the preselected frequency according to an embodiment of the present disclosure.
  • step S1021-1 based on the touch detection signal, the value of the touch detection parameter corresponding to the touch detection signal is generated according to the correspondence table between the touch detection signal and the value of the touch detection parameter.
  • the touch detection parameter refers to a related parameter quantity that is related to the touch detection state of the steering wheel and can reflect the contact between the human hand and the steering wheel.
  • the touch detection parameter may include at least one of capacitance and resistance, for example.
  • the touch detection parameter may include, for example, the capacitance (Q component) of the sensor circuit, or the touch detection parameter may also include the resistance (I component) of the sensor circuit, so that the influence caused by the accompanying resistance can be removed, and it is more accurate Accurately measure the change in capacitance due to touch to achieve more accurate steering wheel touch detection.
  • the touch detection signal when generating the value of the touch detection parameter corresponding to the touch detection signal, for example, based on the correspondence table between the touch detection signal and the value of the touch detection parameter, for any signal value of the touch detection signal, the touch detection signal can be obtained by looking up the table.
  • the capacitance of the sensor circuit and the resistance of the sensor circuit corresponding to the signal value of the detection signal can be obtained by looking up the table.
  • step S1021-2 the value of the touch detection parameter corresponding to the touch detection signal is compared with the threshold range of the touch detection parameter at the preselected frequency, and the signal contamination of the touch detection signal is determined based on the comparison result. state.
  • the threshold range of the touch detection parameter at the preselected frequency can be obtained, for example, by calibrating the value of the relevant touch detection parameter when the human hand is at the minimum distance limit and the maximum distance limit at the preselected frequency; or, the threshold range can also be obtained Can be preset by user or system. It should be understood that the embodiments of the present disclosure are not limited by the specific composition and formation method of the threshold range of the touch detection parameter at the preselected frequency.
  • the touch detection parameter may have the same threshold range at multiple preselected frequencies, or may also have different threshold ranges at each preselected frequency.
  • Embodiments of the present disclosure are not limited by the relationship between the threshold ranges of the touch detection parameter at multiple preselected frequencies.
  • the above-mentioned process of comparing the value of the touch detection parameter corresponding to the touch detection signal with the threshold range of the touch detection parameter at the preselected frequency to determine the signal pollution state may be, for example, as follows: the touch detection parameter corresponding to the touch detection signal If the value of is within the threshold range of the touch detection parameter at the preselected frequency, the touch detection signal is determined as an uncontaminated signal; otherwise, it is determined as a contaminated signal. Alternatively, other comparison methods may also be used. Embodiments of the present disclosure are not limited by the specific steps of the comparison process.
  • the value of the touch detection parameter related to the steering wheel touch detection is determined, and the calculated value of the touch detection parameter is combined with the touch detection parameter in the preselected frequency.
  • the threshold range under the frequency is compared, and the signal pollution state of the touch detection signal is determined through the comparison result.
  • the data of the core parameters (capacitance and resistance) of the touch detection can be easily and conveniently calculated through the touch detection signal, which is beneficial to more better reflect the steering wheel touch detection state corresponding to the current touch detection signal; on the other hand, by comparing the touch detection parameters with the threshold range, it is possible to simply and conveniently realize the judgment of the pollution state of the touch detection signal, and make all The determined signal pollution state has high accuracy and reliability.
  • the threshold range corresponding to the touch detection parameter at the preselected frequency is determined by the threshold range when the human hand and the steering wheel are at the minimum distance limit and the human hand and the steering wheel are at the maximum distance limit at the preselected frequency.
  • the detection parameters are calibrated to generate.
  • the minimum distance between the hands and the steering wheel is, for example, the position of the hands relative to the steering wheel when the hands are completely placed on the steering wheel; s position. It should be understood that the embodiments of the present disclosure are not limited by the specific position setting of the minimum distance limit position and the maximum distance limit position.
  • the threshold range is obtained based on the upper threshold value and the lower threshold value.
  • the threshold range is generated by calibrating the detection parameters when the human hand and the steering wheel are at the minimum distance limit and the human hand and the steering wheel are at the maximum distance limit, so that the generated threshold range can accurately correspond to the contact between the human hand and the steering wheel state and relative position, which is beneficial to improve the accuracy of the subsequent signal pollution state determined based on the threshold range, and further, is beneficial to improve the accuracy of the method for steering wheel touch detection.
  • the value of the touch detection parameter corresponding to the touch detection signal is compared with the threshold range of the touch detection parameter at the preselected frequency, and the step S1021 of determining the signal pollution state of the touch detection signal based on the comparison result -2 for example can be described more specifically.
  • the touch detection signal is determined as an uncontaminated signal. If the value of the touch detection parameter corresponding to the touch detection signal is not within the threshold range of the touch detection parameter at the preselected frequency, the touch detection signal is determined as a pollution signal.
  • the touch detection signal is judged is an uncontaminated signal. This makes it possible to simply and conveniently judge the pollution of the touch detection signal based on the comparison with the threshold range, and improves the accuracy of the signal pollution judgment, which is beneficial to further perform frequency pollution detection based on the signal pollution.
  • the step S1022 of determining the frequency pollution status of the preselected frequency includes: If each of the touch detection signals corresponding to the preselected frequency is determined as an uncontaminated signal, the preselected frequency is determined as the uncontaminated frequency.
  • the preselected frequency as an uncontaminated frequency under the condition that the touch detection signals corresponding to the preselected frequency are all uncontaminated signals, it is possible to more accurately and reliably realize whether to receive or not to each preselected frequency.
  • the detection of pollution such as electromagnetic interference can be judged, which is conducive to the subsequent flexible selection of one or more non-polluted frequencies in the preselected frequency based on the pollution state of the frequency for steering wheel touch detection, which improves the reliability and accuracy of the steering wheel touch detection.
  • the method for steering wheel touch detection further includes: generating a frequency pollution state table of the plurality of preselected frequencies according to the determined frequency pollution state of each preselected frequency.
  • the frequency pollution state table refers to a table for recording each preselected frequency and its frequency pollution state, and the table can also record: at each preselected frequency, among the touch detection signals of the touch detection sensor corresponding to the preselected frequency The signal pollution status of each of the touch detection signals.
  • Table 1 below shows an example table of a frequency pollution state table according to an embodiment of the present disclosure.
  • each touch detection sensor corresponds to a sensor channel (forming three sensors In the case of channels 1-3), based on the steps described above, at each preselected frequency, the determined examples of the signal contamination of the touch detection signals of each touch detection sensor, and the thus determined examples of each preselected frequency Example of frequency pollution state.
  • the step S103 of determining the target frequency according to the frequency pollution status of each preselected frequency includes: determining a preselected frequency determined as an unpolluted frequency among the plurality of preselected frequencies as the target frequency.
  • the target frequency is a frequency for performing steering wheel touch detection. According to actual needs, for example, one target frequency may be determined, or multiple target frequencies may be determined. Embodiments of the present disclosure are not limited by the specific number of determined target frequencies.
  • the preselected frequency determined as the non-polluted frequency As the target frequency, it is possible to exclude the preselected frequency that is in a polluted state due to electromagnetic interference in the environment, and perform steering wheel touch detection at the preselected frequency that has not received electromagnetic interference, thereby enabling Improve the resistance to electromagnetic interference in the environment during the steering wheel touch detection process, and effectively improve the accuracy and reliability of the steering wheel touch detection.
  • the plurality of preselected frequencies are set at preset time intervals, and the frequency pollution status of each preselected frequency is determined for the plurality of preselected frequencies.
  • the preset time interval may be, for example, determined by the user, or a time interval preset by the system during initialization. Embodiments of the present disclosure are not limited by the specific duration of the preset time interval.
  • the user can timely adjust the composition and number of the preselected frequency according to actual needs, such as deleting the most recent The preselected frequency that is determined as the pollution frequency in two consecutive frequency pollution detections.
  • it also makes it possible to update the frequency pollution state changes of each pre-selected frequency in time, so that when the frequency range of electromagnetic interference in the use environment changes, it is possible to timely detect and update each frequency in the new electromagnetic interference frequency range.
  • the frequency pollution state of the pre-selected frequency is beneficial to the subsequent selection of the target frequency based on the frequency pollution state, and further improves the accuracy and flexibility of the steering wheel touch detection.
  • FIG. 5 shows an exemplary flowchart of a process S104 of performing steering wheel touch detection based on a target frequency according to an embodiment of the present disclosure.
  • step S1041 a target reference signal corresponding to a target frequency one to one is generated.
  • the reference signal one-to-one corresponding to a plurality of target frequencies refers to generating a reference signal at the target frequency for each target frequency, and the reference signal is used to apply to the touch detection sensor to realize the touch at the target frequency detection process.
  • step S1042 for each target reference signal in the target reference signal, it is applied to each touch detection sensor in the at least one touch detection sensor without overlapping in time, wherein each touch The detection sensor modulates the applied target reference signal to generate a corresponding modulation signal.
  • step S1043 After obtaining the modulated signal, in step S1043, for each target reference signal in the target reference signal, detect the modulated signal generated by each touch detection sensor in the at least one touch detection sensor and decode the modulated signal adjusted to obtain the touch detection signals of each touch detection sensor in the at least one touch detection sensor under the target reference signal.
  • the above modulation and demodulation process may utilize IQ modulation-demodulation detection technology to further improve the accuracy of touch detection.
  • the touch detection sensor obtains an IQ modulated signal corresponding to the target reference signal through IQ modulation, and then performs IQ demodulation on the modulated signal to obtain a touch detection signal of the touch detection sensor.
  • step S1044 Based on the touch detection signal of each touch sensor, in step S1044, based on the touch detection signal of each touch detection sensor in the at least one touch detection sensor under each target reference signal in the target reference signal, determine the steering wheel The state of the touch detection.
  • each touch detection sensor based on the touch detection signal of the touch detection sensor under each target reference signal in the target reference signal, determine the touch of the touch detection sensor under each target reference signal detection state; and determine the touch detection state of the touch detection sensor based on the touch detection state of the touch detection sensor under each target reference signal; finally, based on the touch detection state of each touch detection sensor in the at least one touch detection sensor, A touch detection state of the steering wheel is determined.
  • the touch detection state may include a hand-off state and a hand-off state.
  • other touch detection states may also be set according to actual needs.
  • Embodiments of the present disclosure are not limited by the specific composition of the touch detection state.
  • step S1044 of determining the touch detection state of the steering wheel can be described in more detail, for example.
  • FIG. 6A shows an exemplary flow chart of the process S1044 of determining the touch detection state of the steering wheel according to an embodiment of the present disclosure.
  • FIG. 6B shows a schematic diagram of the process S1044 of determining the touch detection state of the steering wheel according to an embodiment of the present disclosure.
  • step S1044-1 for each touch detection sensor in the at least one touch detection sensor, based on the touch of the touch detection sensor under each target reference signal in the target reference signal The detection signal determines the touch detection state of the touch detection sensor under the respective target reference signals.
  • the above process of determining the touch detection state of the touch detection sensor under each target reference signal can be described in more detail, for example.
  • the steering wheel is provided with three touch detection sensors DS1, DS2, DS3, and the target frequency includes: ft1, ft2, ft3; and the three target frequencies correspond to the target reference signal Ref_ft1 respectively , Ref_ft2, Ref_ft3.
  • the touch detection sensor DS1 as an example, if the touch detection signal under the target reference signal Ref_ft1 is DS1_T_ft1, the touch detection signal under the target reference signal Ref_ft2 is DS1_T_ft2, and the touch detection signal under the target reference signal Ref_ft3 is DS1_T_ft3 , then, for example, the touch detection state of the touch detection sensor DS1 under the target reference signal Ref_ft1 can be determined according to the touch reference signal DS1_T_ft1 (in FIG. The touch detection state under the target reference signal Ref_ft2 (determined as the off-hand state in FIG.
  • the touch detection state of the touch detection sensor under the target reference signal can be determined by comparing the touch detection signal with a preset signal threshold under the target reference signal.
  • the touch detection state of the sensor under each target reference signal may be determined according to the touch detection signal of the sensor under each target reference signal in other ways.
  • step S1044-2 for each touch detection sensor in the at least one touch detection sensor, determine the touch detection sensor based on the touch detection state of the touch detection sensor under the respective target reference signal. The state of the touch detection.
  • the touch detection state of the touch detection sensor may include, for example, a hand-off state and a hand-off state. Alternatively, its status can also be set according to actual needs. Embodiments of the present disclosure are not limited by the specific composition of the touch detection state of the touch detection sensor.
  • the touch detection state of the touch detection sensor under each target reference signal is in the state of not leaving the hand, the touch detection state of the touch detection sensor is set to the state of not leaving the hand; otherwise, the touch detection state The touch detection state of the sensor is set to the hand-off state.
  • other methods or preset algorithms may be used to determine the touch detection state of the touch detection sensor according to actual needs. Embodiments of the present disclosure are not limited by the specific manner of determining the touch detection state of the touch detection sensor.
  • the above process can be specifically explained. For example, continue to refer to FIG. 6B.
  • the sensor DS1 determines that the touch detection state of the touch detection sensor DS1 under the target reference signal Ref_ft1 is not In the hand-off state
  • the touch detection signal DS1_T_ft2 it is determined that the touch detection state of the touch detection sensor DS1 under the target reference signal Ref_ft2 is the hand-off state
  • the touch detection signal DS1_T_ft3 it is determined that the touch detection state of the touch detection sensor DS1 under the target reference signal Ref_ft3 is Abandoned state.
  • the touch detection state of the touch detection sensor is set to the state of not leaving the hand, then for example, it can be determined accordingly.
  • the touch detection state of DS1 is the hands-off state.
  • step S1044-3 the touch detection status of the steering wheel is determined based on the touch detection status of each touch detection sensor in the at least one touch detection sensor.
  • the touch detection state of the steering wheel is determined as the state of not leaving the hand;
  • the touch detection state is determined as the hand-off state.
  • the touch detection state of the steering wheel is determined as the non-hands-off state when at least two-thirds of the touch detection sensors of the at least one touch detection sensor are in the non-hands-off state. It should be understood that the embodiments of the present disclosure are not limited by the specific manner of determining the touch detection state of the steering wheel.
  • the touch detection state of the steering wheel when determining the touch detection state of the steering wheel, by first determining the touch detection state of the touch detection sensor under each target reference signal, and then according to the touch detection sensor under each target reference signal The touch detection state of the touch detection sensor determines the touch detection state of the touch detection sensor, and finally determines the touch detection state of the steering wheel according to the touch detection state of each touch detection sensor, so that the touch detection signals of multiple sensors at each target frequency can be synthesized.
  • the determination of the contact state between the human hand and the steering wheel enables mutual verification of the detection results of different sensors under different target reference signals, effectively improving the accuracy and reliability of steering wheel touch detection.
  • the touch detection state includes at least a hand-off state and a hand-off state.
  • the hand-off state means that the current hand is not in contact with the steering wheel, and the hand-off state means that the current hand is at least partially in contact with the steering wheel.
  • the touch detection state of the steering wheel includes: when the touch detection state of each touch detection sensor in the at least one touch detection sensor is a hand-off state, determining that the touch detection state of the steering wheel is off-hand hand state.
  • the touch detection state by setting the touch detection state to include the hands-off state and the hands-on state, it is possible to easily and clearly distinguish two different contact situations between the human hand and the steering wheel. Further, by setting the touch detection state of the steering wheel as the hands-off state only when the touch detection states of each touch detection sensor are all in the hands-off state, the touch detection states of different touch detection sensors can be mutually verified, It prevents misjudgment of the touch detection state due to detection errors of one or several sensors, and greatly improves the detection accuracy and reliability of the steering wheel touch detection.
  • the step of determining the touch detection state of the touch detection sensor under the respective target reference signals S1044-1 example is described more specifically.
  • a capacitance value and/or a resistance value corresponding to the touch detection signal is generated.
  • the capacitance value and resistance value corresponding to the current touch detection signal can be acquired by querying the touch detection signal and the comparison table of capacitance and resistance values.
  • the capacitance value and the resistance value are the capacitance value and the resistance value of the sensor circuit of the touch detection sensor, which are associated with the touch state of the steering wheel by the human hand.
  • the preset measurement threshold may be, for example, a fixed measurement threshold for each target frequency, or different preset measurement thresholds may be set for different target frequencies. Embodiments of the present disclosure are not limited by the specific value of the measurement threshold and the numerical relationship of the measurement threshold at different target frequencies.
  • the preset measurement threshold for example, can be set by the user, for example, the capacitance value and/or resistance value when only a part of the user's hand is placed on the steering wheel is collected; or it can also be automatically generated by the system based on preset conditions. Embodiments of the present disclosure are not limited by a specific way of generating the preset measurement threshold.
  • the touch detection state of the touch detection sensor under the target reference signal is determined by comparing the capacitance value of the touch detection sensor under the target reference signal with a preset threshold, for example, it can be set when the capacitance value is greater than the preset threshold.
  • the touch detection state of the touch detection sensor under the target reference signal is determined as the hand-off state; when the capacitance value is less than the preset measurement threshold, the touch detection sensor is placed under the target reference signal
  • the touch detection state of is determined to be the state of not leaving the hand.
  • the touch detection of the touch detection sensor is determined based on the touch detection state of the touch detection sensor under the respective target reference signal
  • the step S1044-2 of the state may, for example, more specifically include: in the case that the touch detection states of the touch detection sensors under the respective target reference signals are all in the hand-off state, determining the touch detection state of the touch detection sensor is the hand-off state; in the case that the touch detection states of the touch detection sensors under the target reference signals are all in the hand-off state, determine that the touch detection state of the touch detection sensor is in the hand-off state.
  • the touch detection state of the touch detection sensor is the hand-off state only when the touch detection state of the touch detection sensor under each target reference signal is the hand-off state, so that different target reference signals
  • the touch detection status of the lower touch detection sensors is mutually verified, preventing the misjudgment of the touch detection status of the sensor due to an error in the touch detection signal under one or several target reference signals, and improving the detection of the steering wheel touch detection Accuracy and reliability.
  • FIG. 7 shows a flow chart of a steering wheel touch detection process 200 according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of frequency pollution according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a steering wheel touch detection according to an embodiment of the present disclosure. Timing diagram.
  • a preselected frequency is determined, which is a plurality of frequencies suitable for performing steering wheel touch detection. Thereafter, frequency contamination detection is performed according to the method as previously described. Specifically, for example, a reference signal corresponding to the plurality of preselected frequencies is generated one-to-one; for each reference signal in the reference signal, it is applied to the at least one touch detection sensor without overlapping in time.
  • Each touch detection sensor wherein each touch detection sensor modulates its applied reference signal to generate a corresponding modulation signal; and detects the modulation signal generated by each touch detection sensor in the at least one touch detection sensor and adjusts the Demodulate the modulated signal to obtain the touch detection signal of each touch detection sensor in the at least one touch detection sensor under the reference signal. Thereafter, for example, according to each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal corresponding to the preselected frequency among the touch detection signals of the at least one touch detection sensor, the frequency pollution of the preselected frequency is performed.
  • Detecting to determine the frequency pollution state of the preselected frequency and generating a frequency pollution state table, in which each preselected frequency and the frequency pollution state of each preselected frequency are recorded. Subsequently, the preselected frequency determined as the uncontaminated frequency among the preselected frequencies is selected as the target frequency, and the steering wheel touch detection is performed based on the target frequency.
  • the specific process of the steering wheel touch detection is as described above, and will not be repeated here.
  • the time interval t is recorded by the system clock, and the time interval t is compared with the preset time interval Ts, and if the time interval is equal to the preset time interval Ts, the preselected frequency Perform frequency pollution detection, and update the frequency pollution status table according to the detection results. If the time interval t does not reach the preset time interval, continue to record the time interval.
  • the preselected frequency f1 is in the frequency band of electromagnetic interference in the use environment and is affected by electromagnetic interference (that is, the preselected frequency f1 is polluted).
  • the process performed according to the above process 200 as shown in the figure As shown in 9, through the frequency pollution detection, the frequency pollution status of each frequency is obtained, wherein the frequency f1 shown in the gray filled box represents that the preselected frequency f1 is determined as the pollution frequency, and the frequency f2 shown in the white filled box, f3 represents the preselected frequency f2, and f3 is an uncontaminated frequency. Then, according to the frequency pollution state, only the uncontaminated preselected frequencies f2 and f3 will be used as target frequencies in the subsequent steering wheel touch detection process, and the steering wheel touch detection process will be performed only at frequencies f2 and f3.
  • the resistance of the steering wheel touch detection process to electromagnetic interference in the use environment is effectively improved, and the detection process is significantly reduced due to specific Electromagnetic interference at a high frequency causes serious errors in sensor sensing signals, improving the accuracy and reliability of the touch detection; on the other hand, improving the robustness of the steering wheel touch detection process.
  • a device for touch detection of a steering wheel is also proposed, wherein the steering wheel includes at least one touch detection sensor.
  • Fig. 10 shows an exemplary block diagram of an apparatus 300 for steering wheel touch detection according to an embodiment of the present disclosure.
  • the device 300 for steering wheel touch detection includes: a signal generation module 310 , a frequency pollution state detection module 320 , a target frequency determination module 330 , and a steering wheel touch detection module 340 .
  • the signal generation module 310 is configured to execute the process of step S101 in FIG. 1A , and generate a plurality of touch detection signals corresponding to a plurality of preselected frequencies based on the at least one touch detection sensor.
  • the preselected frequency refers to a detection frequency suitable for steering wheel touch detection. Embodiments of the present disclosure are not limited by the number of preselected frequencies and their specific frequency values.
  • the frequency pollution state detection module 320 is configured to execute the process of step S102 in FIG. 1A, for each preselected frequency in the plurality of preselected frequencies, based on the touch detection signal of the at least one touch detection sensor and the preselected frequency Corresponding to the touch detection signal, performing frequency pollution detection on the preselected frequency to determine the frequency pollution status of the preselected frequency.
  • the frequency pollution detection refers to detecting whether the current preselected frequency is within the frequency range of electromagnetic interference in the environment, that is, detecting whether it is subjected to electromagnetic interference. If the current preselected frequency is subject to electromagnetic interference, the preselected frequency is determined as a polluted frequency; if the current preselected frequency is not subject to electromagnetic interference, the preselected frequency is determined as an unpolluted frequency.
  • the target frequency determining module 330 is configured to execute the process of step S103 in FIG. 1A , and determine the target frequency according to the frequency pollution status of each preselected frequency.
  • the target frequency refers to the frequency used to perform the steering wheel touch detection process.
  • the target frequency may be, for example, a single frequency, or may also be multiple frequencies. Embodiments of the present disclosure are not limited by the specific number of the target frequencies.
  • a preselected frequency determined as an uncontaminated frequency among the preselected frequencies may be used as a target frequency.
  • the preselected frequency determined as the uncontaminated frequency may be further processed to obtain the target frequency.
  • the steering wheel touch detection module 340 is configured to execute the process of step S104 in FIG. 1A , and perform steering wheel touch detection based on the target frequency.
  • the reference signal corresponding to the target frequency can be applied to the at least one touch detection sensor to obtain the target modulation signal, and the touch detection signal is generated through demodulation of the target modulation signal, and thus the direction of the steering wheel can be determined. Touch detection status.
  • the present application selects a plurality of pre-selected frequencies and determines the target frequency according to its frequency pollution state.
  • the steering wheel touch detection process can be effectively improved.
  • the resistance to electromagnetic interference can significantly reduce the problem of serious errors in the sensor sensing signal due to electromagnetic interference at a specific frequency during the detection process, and improve the accuracy and reliability of the touch detection; on the other hand, according to each pre-selected
  • the frequency pollution status of the frequency enables flexible selection of the target frequency in real time, thereby improving the robustness of the steering wheel touch detection process.
  • the frequency pollution state detection module 320 includes: a signal pollution state determination submodule 321 and a frequency pollution state determination submodule 322 .
  • the signal pollution state determination sub-module 321 is configured to execute the process of step S1021 in FIG. Each of the touch detection signals corresponding to the frequency determines the signal contamination status of the touch detection signal.
  • the signal pollution state may include a dirty signal and an unpolluted signal.
  • the polluted signal indicates that the signal has been subjected to electromagnetic interference
  • the unpolluted signal indicates that the signal has not been subjected to electromagnetic interference.
  • the frequency pollution state determination sub-module 322 is configured to execute the process of step S1022 in FIG.
  • the signal pollution state of each touch detection signal corresponding to the frequency determines the frequency pollution state of the preselected frequency.
  • the preselected frequency is determined as the uncontaminated frequency.
  • Embodiments of the present disclosure are not limited by a specific manner of determining the frequency contamination status of the preselected frequency based on the signal contamination status of the touch detection signal.
  • the present application when determining the frequency pollution status of the corresponding preselected frequency based on the touch detection signal, by first determining the signal pollution status of the touch detection signal corresponding to the preselected frequency, and then based on each of the corresponding preselected frequencies Touch the signal pollution state of the detection signal to determine the frequency pollution state of the preselected frequency, so that the pollution situation of the preselected frequency can be judged through the touch detection signal of the touch detection sensor at the preselected frequency, so that frequency pollution detection can be realized simply and conveniently , and make the detection result have higher accuracy and reliability.
  • the signal pollution state determination submodule 321 includes: a touch detection parameter value calculation submodule 3211 and a threshold comparison submodule 3212 .
  • the touch detection parameter value calculation sub-module 3211 is configured to execute the process of step S1021-1 in FIG. The value of the touch detection parameter corresponding to the signal.
  • the touch detection signal when generating the value of the touch detection parameter corresponding to the touch detection signal, for example, based on the correspondence table between the touch detection signal and the value of the touch detection parameter, for any signal value of the touch detection signal, the touch detection signal can be obtained by looking up the table.
  • the capacitance of the sensor circuit and the resistance of the sensor circuit corresponding to the signal value of the detection signal can be obtained by looking up the table.
  • the threshold comparison sub-module 3212 is configured to execute the process of step S1021-2 in FIG. 4, and compare the value of the touch detection parameter corresponding to the touch detection signal with the threshold range of the touch detection parameter at the preselected frequency, A signal contamination state of the touch detection signal is determined based on the comparison result.
  • the touch detection parameter includes at least one of capacitance and resistance.
  • the threshold range of the touch detection parameter at the preselected frequency can be obtained by, for example, calibrating the value of the relevant touch detection parameter when the human hand is at the minimum distance limit and the maximum distance limit at the preselected frequency. It should be understood that the embodiments of the present disclosure are not limited by the specific composition and formation method of the threshold range of the touch detection parameter at the preselected frequency.
  • the touch detection parameter may have the same threshold range at multiple preselected frequencies, or may also have different threshold ranges at each preselected frequency.
  • Embodiments of the present disclosure are not limited by the relationship between the threshold ranges of the touch detection parameter at multiple preselected frequencies.
  • the steering wheel touch detection module 340 includes: a target signal generation submodule 341 , a signal detection submodule 342 , and a signal processing submodule 343 .
  • the target signal generation sub-module 341 is configured to execute the process of step S1041 and step S1042 in FIG. 5 to generate a target reference signal corresponding to the target frequency one-to-one, and for each target reference signal in the target reference signal, It is applied to respective touch detection sensors of the at least one touch detection sensor without overlapping in time, wherein each touch detection sensor modulates its applied target reference signal to generate a corresponding modulation signal.
  • the reference signal one-to-one corresponding to a plurality of target frequencies refers to generating a reference signal at the target frequency for each target frequency, and the reference signal is used to apply to the touch detection sensor to realize the touch at the target frequency detection process.
  • the signal detection sub-module 342 is configured to execute the process of step S1043 in FIG. 5, for each target reference signal in the target reference signal, detect the modulation generated by each touch detection sensor in the at least one touch detection sensor and demodulating the modulated signal to obtain touch detection signals of each of the at least one touch detection sensor under the target reference signal.
  • the above modulation and demodulation process may utilize IQ modulation-demodulation detection technology to further improve the accuracy of touch detection.
  • the touch detection sensor obtains an IQ modulated signal corresponding to the target reference signal through IQ modulation, and then performs IQ demodulation on the modulated signal to obtain a touch detection signal of the touch detection sensor.
  • the signal processing sub-module 343 is configured to execute the process of step S1044 in FIG. 5, based on the touch detection signals of each of the touch detection sensors in the at least one touch detection sensor under each of the target reference signals in the target reference signal , to determine the touch detection state of the steering wheel.
  • the touch detection state may include a hand-off state and a hand-off state.
  • other touch detection states may also be set according to actual needs.
  • Embodiments of the present disclosure are not limited by the specific composition of the touch detection state.
  • the device for detecting a touch on a steering wheel can execute the method for detecting a touch on a steering wheel as described above, and has the functions as described above.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product or combination of substances, or any combination of them Any new and useful improvements.
  • various aspects of the present application may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code on one or more computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

公开了一种用于方向盘触摸检测的方法及装置,其中,所述方向盘包括至少一个触摸检测传感器,且所述方法包括:基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号;对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态;根据各个预选频率的频率污染状态,确定目标频率;基于目标频率,执行方向盘触摸检测。

Description

用于方向盘触摸检测的方法及装置 技术领域
本公开涉及机动车辆领域,更具体地涉及一种用于方向盘触摸检测的方法及用于方向盘触摸检测的装置。
背景技术
当前,在机动车辆领域、特别是汽车领域中,越来越多的自动驾驶技术被投入使用,以提高驾驶的舒适性与安全性,方向盘触摸检测在机动车辆的行车安全判断及机动车辆的自主控制过程中具有越来越重要的作用,因此,方向盘触摸检测也面临着更高的要求。
目前在方向盘触摸检测过程中,通常在单一频率下,利用触摸传感器感测该频率下的参考信号,并在传感器的输出端得到调制信号,随后对该调制信号进行解调来获取传感器的触摸检测信号,根据该触摸检测信号确定方向盘的触摸状态。然而,在仅对单一频率下的参考信号进行感测的情况下,由于检测环境中存在电磁干扰,该单一频率的参考信号在受到电磁干扰影响时,将直接导致系统性能大幅度下降,使得触摸检测系统无法实现触摸检测过程或输出错误信号,从而导致方向盘触摸状态无法确定或被错误地确定,这将对机动车辆后续控制过程造成重大影响,降低了机动车辆的可靠性。
因此,需要一种在实现方向盘触摸检测的基础上,能够有效地降低环境中电磁干扰对方向盘触摸检测过程的影响,提高方向盘触摸检测的精确度及鲁棒性,且该用于方向盘触摸检测的方法具有良好的灵活性及可靠性。
发明内容
针对以上问题,本公开提供了一种用于方向盘触摸检测的方法及用于方向盘触摸检测的装置。利用本公开提供的用于方向盘触摸检测的方法可以在良好实现方向盘触摸检测的基础上,有效提高方向盘触摸检测的准确率,实现实时且高精度的方向盘触摸检测,且该方法具有良好的鲁棒性。
根据本公开的一方面,提出了一种用于方向盘触摸检测的方法,其中, 所述方向盘包括至少一个触摸检测传感器,且所述方法包括:基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号;对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态;根据各个预选频率的频率污染状态,确定目标频率;基于目标频率,执行方向盘触摸检测。
在一些实施例中,基于该至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号包括:生成与所述多个预选频率一一对应的参考信号;对于所述参考信号中的每个参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的参考信号进行调制,以产生对应的调制信号;以及检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,该触摸检测信号对应于与该参考信号相对应的预选频率。
在一些实施例中,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测以确定该预选频率的频率污染状态包括:对所述多个预选频率中每一个预选频率,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态;基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
在一些实施例中,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态包括:基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值;将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态;其中,所述触摸检测参量包括电容量、电阻量中的至少一 个。
在一些实施例中,所述触摸检测参量在该预选频率下所对应的阈值范围通过在该预选频率下,在人手与方向盘处于最小距离极限位、及人手与方向盘处于最大距离极限位时对该检测参量进行标定的方式来生成。
在一些实施例中,将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态包括:在该触摸检测信号所对应的触摸检测参量的数值位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为未污染信号;在该触摸检测信号所对应的触摸检测参量的数值不位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为污染信号。
在一些实施例中,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态包括:在与该预选频率相对应的触摸检测信号中的每一个触摸检测信号均被确定为未污染信号的情况下,将预选频率确定为未污染频率。
在一些实施例中,所述方法还包括:根据所确定的各个预选频率的频率污染状态,生成该多个预选频率的频率污染状态表。
在一些实施例中,根据各个预选频率的频率污染状态确定目标频率包括:将所述多个预选频率中被确定为未污染频率的预选频率确定为目标频率。
在一些实施例中,以预设的时间间隔设置所述多个预选频率,并对于所述多个预选频率确定各个预选频率的频率污染状态。
在一些实施例中,基于目标频率执行方向盘触摸检测包括:生成与目标频率一一对应的目标参考信号;对于所述目标参考信号中的每个目标参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号;以及检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号;以及基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,确定所述 方向盘的触摸检测状态。
在一些实施例中,确定所述方向盘的触摸检测状态包括:对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态;对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态;以及基于所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测状态,确定所述方向盘的触摸检测状态。
在一些实施例中,所述触摸检测状态至少包括离手状态、未离手状态,并且其中,在所述至少一个触摸检测传感器中每一个触摸检测传感器的触摸检测状态均为离手状态的情况下,确定所述方向盘的触摸检测状态为离手状态。
在一些实施例中,对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态,包括:在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为离手状态;在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为未离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为未离手状态。
在一些实施例中,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态,包括:基于所述触摸检测传感器在各个目标参考信号下的触摸检测信号,生成与该触摸检测信号对应的电容值和/或电阻值;将所述触摸检测传感器在各个目标参考信号下的所述电容值和/或电阻值与预设测量阈值进行比较,以确定所述触摸检测传感器在各个目标参考信号下的触摸检测状态。
根据本公开的另一方面,提出了一种用于方向盘触摸检测的装置,所述方向盘包括至少一个触摸检测传感器,包括:信号生成模块,其被配置为基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测 信号;频率污染状态检测模块,其被配置为对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态;目标频率确定模块,其被配置为根据各个预选频率的频率污染状态,确定目标频率;方向盘触摸检测模块,其被配置为基于目标频率,执行方向盘触摸检测。
在一些实施例中,所述频率污染状态检测模块包括:信号污染状态确定子模块,其被配置为对所述多个预选频率中每一个预选频率,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态;频率污染状态确定子模块,其被配置为对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
在一些实施例中,信号污染状态确定子模块包括:触摸检测参量数值计算子模块,其被配置为基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值;阈值比较子模块,其被配置为将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态;其中,所述触摸检测参量包括电容量、电阻量中的至少一个。
在一些实施例中,所述方向盘触摸检测模块包括:目标信号生成子模块,其被配置为生成与目标频率一一对应的目标参考信号,且对于所述目标参考信号中的每个目标参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号;信号检测子模块,其被配置为对于所述目标参考信号中的每个目标参考信号,检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号;以及信号处理子模块,其被配置为基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器 中的各个触摸检测传感器的触摸检测信号,确定所述方向盘的触摸检测状态。
利用本公开提供的方向盘触摸检测的方法及装置,在实现良好方向盘触摸检测的基础上,能够有效地降低环境中电磁干扰对方向盘触摸检测过程的影响,提高方向盘触摸检测的精确度及鲁棒性,且具有良好的灵活性及可靠性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员而言,在没有做出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本公开的主旨。
图1A示出了根据本公开实施例的用于方向盘触摸检测的方法100的示例性流程图;
图1B示出了根据本公开的方向盘的示意图;
图2A示出了根据本公开实施例的该至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号的过程S101的示例性流程图;
图2B示出了根据本公开实施例的该至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号的过程S101的示意图;
图2C示出了将图2B中的预选信号在时间上不重叠的施加至触摸检测传感器的时序示意图;
图3示出了根据本公开实施例确定预选频率的频率污染状态的过程S102的示例性流程图;
图4示出了根据本公开实施例的确定与该预选频率相对应的触摸检测信号的信号污染状态的过程S1021的示例性流程图;
图5示出了根据本公开实施例的基于目标频率执行方向盘触摸检测的过程S104的示例性流程图;
图6A示出了根据本公开实施例确定所述方向盘的触摸检测状态的过程S1044的示例性流程图;
图6B示出了根据本公开实施例确定所述方向盘的触摸检测状态的过程 S1044的示意图;
图7示出了根据本公开实施例确定触摸检测传感器在各个目标参考信号下的触摸检测状态的步骤S1042的示例性流程图;
图8示出了根据本公开实施例的频率污染示意图;
图9示出了根据本公开实施例的方向盘触摸检测的时序示意图;
图10示出了根据本公开实施例的方向盘触摸检测装置的示例性框图。
具体实施方式
下面将结合附图对本公开实施例中的技术方案进行清楚、完整地描述,显而易见地,所描述的实施例仅仅是本公开的部分实施例,而不是全部的实施例。基于本公开实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,也属于本公开保护的范围。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在用户终端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,根据需要,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本申请涉及一种用于机动车辆的方向盘触摸检测的检测方法及检测装置。具体地,本申请中,通过选取多个预选频率,并对该多个预选频率中每一个预选频率确定该频率的频率污染状态,基于各个预选频率的频率污染状态最终确定目标频率,并基于目标频率执行方向盘触摸检测过程。使得能够良好地降低在检测过程中由于受到特定频率下的电磁干扰而使得传感器感测信号出现严重误差的问题,提高该触摸检测的精确度及鲁棒性。
应了解,本申请中所述的方向盘触摸检测,是指用于机动车辆方向盘的触摸检测过程,该触摸检测过程旨在检测驾驶员的双手与机动车辆的方向盘的触摸状态。
具体地,当利用触摸检测传感器(例如电容传感器)实现方向盘触摸检测时,在该方向盘上加载预设频率(即下文中所述的目标频率)的参考信号时,当驾驶员的手部触摸或离开方向盘时,方向盘上的触摸检测区中所设置的触摸检测传感器则能够对该参考信号进行调制以得到调制信号。然后,通过对该调制信号进行相应地解调来得到触摸检测信号,通过对该触摸检测信号进行进一步处理,不仅能够推导出传感器电路的电容值(Q分量),还可以推导出传感器电路的电阻值(I分量),由此可以去除伴生电阻所造成的影响,更准确地测量出由于人手触摸而造成的电容变化,进而实现对人手与方向盘的触摸状态(亦即接触状态)的判断。
目前,在方向盘触摸检测过程中,通常在单一频率下,利用触摸传感器感测该频率下的参考信号,并在传感器的输出端得到调制信号,随后对该调制信号进行解调来获取传感器的触摸检测信号,根据该触摸检测信号确定方向盘的触摸状态。然而,在仅对单一频率下的参考信号进行感测的情况下,由于检测环境中存在电磁干扰,该单一频率的参考信号在受到电磁干扰影响时,将直接导致系统性能大幅度下降,使得触摸检测系统无法实现触摸检测过程或输出错误信号,从而导致方向盘触摸状态无法确定或被错误地确定,这将对机动车辆后续控制过程造成重大影响,降低了机动车辆的可靠性。
基于上述,本申请提出了一种用于方向盘触摸检测的方法。其中,所述方向盘具有至少一个触摸检测传感器,该触摸检测传感器用于根据在预设频率下所施加的参考信号,生成相应的调制信号,以实现方向盘触摸检测。图1A示出了根据本公开实施例的用于方向盘触摸检测的方法100的示例性流程图。接下来,将参照图1A,对该方向盘触摸检测的过程及步骤进行更具体地说明。
首先,在步骤S101中,基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号。
所述触摸检测传感器是指用于实现方向盘触摸检测过程的传感器。根据实际触摸检测过程的实际需要,可以设置一个或多个触摸检测传感器来进行 方向盘触摸检测。
例如,在对方向盘进行触摸检测时,可以设置至少一个触摸检测区以获知驾驶员不同部位(例如左手、右手)是否触摸方向盘,并在每个触摸检测区中设置至少一个触摸检测传感器(其中,每个触摸检测传感器具有其对应的触摸检测通道),以实现触摸检测。图1B示出了根据本公开的方向盘的示意图,如图1B中虚线所示,其示例性地将方向盘划分为四个触摸检测区,即方向盘左部正面触摸检测区(DA1)、方向盘左部背面触摸检测区(DA2)、方向盘右部正面触摸检测区(DA3)、方向盘右部背面触摸检测区(DA4)。且图1中示出了针对方向盘左部正面触摸检测区(DA1)中特定位置的多个触摸检测传感器(DS11…DS1n)以及针对方向盘右部正面触摸检测区DA3的多个触摸检测传感器(DS31…DS3n)。通过对相同的特定位置冗余地设置多个触摸检测传感器,可以有效地提高触摸检测的可靠性。
应了解,上述仅给出了一种触摸检测区及触摸检测传感器的示例性设置方式,根据实际需要,可以将方向盘任意划分为所需要的任意数量的触摸检测区并设置任意数量的触摸检测传感器,本公开的实施例不受该触摸检测传感器的具体设置方式及设置数目的限制。
所述预选频率是指适于进行方向盘触摸检测的检测频率。该预选频率例如可以为用户指定的,或者也可以为系统预先确定的,还可以为根据实际需要选取的。本公开的实施例不受该预选频率的个数及其具体频率值的限制。
所述与多个预选频率相对应的多个触摸检测信号,是指该至少一个触摸检测传感器在多个预选频率中的每一个预选频率下进行触摸检测后生成的检测信号。且其中,所述生成与多个预选频率相对应的多个触摸检测信号的过程例如可以更具体地描述,例如,可以将每一个预选频率所对应的参考信号施加至触摸检测传感器中,由此得到调制信号,其后经由对该调制信号进行解调得到该触摸检测传感器的触摸检测信号。
得到与预选频率相对应的触摸检测信号后,在步骤S102中,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态。
所述频率污染检测,是指检测当前的预选频率是否位于环境中电磁干扰 的频率范围内,即检测其是否受到电磁干扰。若当前的预选频率位受到电磁干扰,则该预选频率被确定为污染频率;若当前的预选频率未受到电磁干扰,则该预选频率被确定为未污染频率。
根据所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号执行对该预选频率的频率污染检测例如可以为:确定与该预选频率相对应的触摸检测信号的信号污染状态,根据各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
得到各个预选频率的频率污染状态后,在步骤S103中,根据各个预选频率的频率污染状态,确定目标频率。
所述目标频率是指用于进行方向盘触摸检测过程的频率。所述目标频率例如可以为单个频率,或者也可以为多个频率。本公开的实施例不受该目标频率的具体数目的限制。
例如,可以将该预选频率中被确定为未污染频率的预选频率作为目标频率。或者,也可以对被确定为未污染频率的预选频率进行进一步处理以得到目标频率。
得到目标频率后,在步骤S104中,基于目标频率,执行方向盘触摸检测。
例如,可以将该目标频率所对应的参考信号施加至该至少一个触摸检测传感器,以得到目标调制信号,并经由对该目标调制信号的解调,生成触摸检测信号,并由此确定该方向盘的触摸检测状态。
基于上述,本申请中,通过选取多个预选频率,并对该多个预选频率中每一个预选频率确定该频率的频率污染状态,基于各个预选频率的频率污染状态最终确定目标频率,并基于目标频率执行方向盘触摸检测过程。相较于仅在单一频率下进行方向盘触摸检测的方案,本申请通过选择多个预选频率,并根据其频率污染状态确定目标频率,一方面,通过选取未频率污染的预选频率作为目标频率,能够有效地提高了方向盘触摸检测过程对使用环境中电磁干扰的抵抗能力,显著降低在检测过程中由于受到特定频率下的电磁干扰而使得传感器感测信号出现严重误差的问题,提高该触摸检测的精确度及可靠性;另一方面,根据各个预选频率的频率污染状态,能够实时地灵活地进行目标频率的选择,从而提高了该方向盘触摸检测过程的鲁棒性。
在一些实施例中,上述生成与多个预选频率相对应的多个触摸检测信号的步骤S101例如可以更具体地描述。图2A示出了根据本公开实施例至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号的过程S101的示例性流程图。
参照图2A,首先,在步骤S1011中,生成与所述多个预选频率一一对应的参考信号。
所述与多个预选频率一一对应的参考信号,是指对于每一个预选频率,生成该预选频率下的参考信号,该参考信号用于施加至触摸检测传感器,以实现该预选频率的频率污染检测。
其后,在步骤S1012中,对于所述参考信号中的每个参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的参考信号进行调制,以产生对应的调制信号。
得到调制信号后,在步骤S1013中,对于所述参考信号中的每个参考信号,检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号,并对所述调制信号进行解调,以得到在该参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,该触摸检测信号对应于与该参考信号相对应的预选频率。
例如,上述调制及解调过程例如可以利用IQ调制-解调检测技术,以进一步提高触摸检测准确性。具体地,例如该触摸检测传感器经由IQ调制得到对应于该参考信号的IQ调制信号,其后对该调制信号进行IQ解调,以得到该触摸检测传感器的触摸检测信号。
图2B示出了根据本公开实施例的该至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号的过程S101的示意图。图2C示出了将图2B中的预选信号在时间上不重叠的施加至触摸检测传感器的时序示意图。接下来将结合图2B及图2C,对上述过程进行更具体地描述。
例如,参照图2B,例如选取3个频率f1,f2,f3作为预选频率,且在该方向盘上设置有3个触摸检测传感器DS1,DS2,DS3,每个传感器对应一个触摸检测通道(DS1对应于传感器通道1,DS2对应于传感器通道2,DS3对应于传感器通道3),由此形成3个传感器通道。则在上述步骤S101中,首先, 生成与所述三个预选频率f1,f2,f3一一对应的参考信号Ref_f1,Ref_f2,Ref_f3,其后,对于所述参考信号Ref_f1,Ref_f2,Ref_f3中的每个参考信号,在时间上不重叠地将其施加到上述三个触摸检测传感器DS1,DS2,DS3中,图2C示出了在时间上不重叠地将参考信号Ref_f1及Ref_f3施加到上述三个触摸检测传感器DS1,DS2,DS3所对应的传感器通道1、2、3的时序示意图。参照图2C,例如可以首先将参考信号Ref_f1在时间上以周期T的信号作用周期依次地施加至传感器通道1、2、3,其中在该信号作用周期内,包括空闲时段(即无信号作用的时段)及信号作用时段(即参考信号持续施加的时段)。其后将参考信号Ref_f3、Ref_f2以相同的方式施加至传感器通道1、2、3(图2C中未示出参考信号Ref_f2的施加过程),且其中,参考信号Ref_f3例如受到环境中电磁干扰的影响而被污染。其后,每个触摸检测传感器DS1,DS2,DS3对其被施加的参考信号进行调制,以产生对应的调制信号,图2B中示出了传感器DS1,DS2,DS3对参考信号Ref_f1的调整过程,其中,传感器DS1生成对应于参考信号Ref_f1的调制信号DS1_M_f1;传感器DS2生成对应于参考信号Ref_f1的调制信号DS2_M_f1;传感器DS3生成对应于参考信号Ref_f1的调制信号DS3_M_f1。其后,检测各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号。例如,以参考信号Ref_f1为例,对传感器DS1,DS2,DS3在参考信号Ref_f1下的调制信号进行解调后可以得到三个传感器DS1,DS2,DS3对应于参考信号Ref_f1的触摸检测信号:DS1_T_f1,DS2_T_f1,DS3_T_f1。
基于上述,本申请中,在生成与多个预选频率相对应的多个触摸检测信号的过程中,通过生成与预选频率一一对应的参考信号,并将每个参考信号时间不重叠的施加至各个传感器中,得到对应的调制信号,再将该调制信号进行解调,以得到该参考信号下各个传感器的触摸检测信号,使得能够良好地生成与多个预选频率中每一个预选频率相对应的触摸检测信号,有利于后续基于该触摸检测信号进行频率污染检测。
在一些实施例中,前述对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号执行对该预选频率的频率污染检测以确定该预选频率的频率污染状态 的步骤S102例如可以更具体地描述。图3示出了根据本公开实施例确定预选频率的频率污染状态的过程S102的示例性流程图。
参照图3,首先,在步骤S1021中,对所述多个预选频率中每一个预选频率,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态。
例如,可以将该触摸检测信号与预设的信号阈值相比较来确定该触摸检测信号的污染情况,或者也可以基于该触摸检测信号进一步计算相应触摸检测参量的数值,将计算得到的触摸检测参量的数值与预设数值范围相比较,以确定该触摸检测信号的污染情况。应了解,本公开的实施例不受确定该触摸检测信号的信号污染状态的具体方式的限制。
例如,该信号污染状态可以包括污染信号及未污染信号。其中,污染信号表征该信号已经受到电磁干扰,未污染信号表征该信号没有受到电磁干扰。
确定与该预选频率对应的各个触摸检测信号的污染状态后,在步骤S1022中,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
例如,可以设置在该预选频率所对应的所有触摸检测信号均为未污染信号的情况下,将该预选频率确定为未污染频率。或者也可以设置在该预选频率所对应的所有触摸检测信号中80%以上的触摸检测信号为未污染信号的情况下,将该预选频率确定为未污染频率。应了解,本公开的实施例不受基于该触摸检测信号的信号污染状态来确定预选频率的频率污染状态的具体方式的限制。
例如,若如前述图2B所示出的,选取3个频率f1,f2,f3作为预选频率,且在该方向盘上设置有3个触摸检测传感器DS1,DS2,DS3,且得到三个触摸检测传感器DS1,DS2,DS3与预选频率f1(该预选频率对应于参考信号Ref_f1)相对应的触摸检测信号为:DS1_T_f1,DS2_T_f1,DS3_T_f1。则例如可以分别确定触摸检测信号DS1_T_f1,DS2_T_f1,DS3_T_f1各自的信号污染状态,并由此确定该预选频率的频率污染状态。
基于上述,本申请中,在基于触摸检测信号确定对应的预选频率的频率 污染状态时,通过首先确定与该预选频率对应的触摸检测信号的信号污染状态,其后基于对应于该预选频率的各个触摸检测信号的信号污染状态,确定预选频率的频率污染状态,使得能够经由该预选频率下触摸检测传感器的触摸检测信号来实现对该预选频率的污染情况判断,从而能够简单便捷地实现频率污染检测,且使得该检测结果具有较高的精确度及可靠性。
在一些实施例中,上述对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态的步骤S1021例如能够更具体地描述。图4示出了根据本公开实施例的确定与该预选频率相对应的触摸检测信号的信号污染状态的过程S1021的示例性流程图。
参照图4,首先,在步骤S1021-1中,基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值。
所述触摸检测参量是指与方向盘触摸检测状态相关的,能够反映出人手与方向盘的接触情况的相关参数量。根据实际需要,该触摸检测参量例如可以包括电容量、电阻量中的至少一个。例如,该触摸检测参量例如可以包括传感器电路的电容量(Q分量),或者该触摸检测参量还可以包括传感器电路的电阻量(I分量),由此可以去除伴生电阻所造成的影响,更准确地测量出由于触摸而造成的电容变化进而实现更准确的方向盘触摸检测。
例如,生成与该触摸检测信号相对应的触摸检测参量的数值时,例如可以基于该触摸检测信号与触摸检测参量的数值的对应关系表,对于任何触摸检测信号的信号数值,查表得到该触摸检测信号的信号数值所对应的传感器电路的电容量及传感器电路的电阻量。
其后,在步骤S1021-2中,将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态。
例如,触摸检测参量在该预选频率下的阈值范围例如可以通过在该预选频率下,标定人手在最小距离极限位与最大距离极限位时相关触摸检测参量的数值来得到;或者,该阈值范围也可以由用户或系统预先设定。应了解,本公开的实施例不受触摸检测参量在该预选频率下的阈值范围的具体组成及 其形成方式的限制。
触摸检测参量在多个预选频率下例如可以具有相同的阈值范围,或者也可以在各个预选频率下具有不同的阈值范围。本公开的实施例不受该触摸检测参量在多个预选频率下所具有的阈值范围之间的相互关系的限制。
上述将触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较来确定信号污染状态的过程例如可以为:在该触摸检测信号所对应的触摸检测参量的数值位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为未污染信号;否则将其确定为污染信号。或者也可以采用其他的比较方式。本公开的实施例不受所述比较过程的具体步骤的限制。
基于上述,本申请中,通过基于特定预选频率下的触摸检测信号,确定与该方向盘触摸检测相关的触摸检测参量的数值,并将计算得到的该触摸检测参量的数值与触摸检测参量在该预选频率下的阈值范围相比较,通过比较结果来确定触摸检测信号的信号污染状态,一方面,经由该触摸检测信号简单便捷地计算得到触摸检测核心参数(电容及电阻量)的数据,有利于更好地反应出当前触摸检测信号所对应的方向盘触摸检测状态;另一方面,通过将触摸检测参量与阈值范围相比较,使得能够简单便捷地实现对触摸检测信号的污染状态的判断,且使得所确定的信号污染状态具有较高的精确度及可靠性。
在一些实施例中,所述触摸检测参量在该预选频率下所对应的阈值范围通过在该预选频率下,在人手与方向盘处于最小距离极限位、及人手与方向盘处于最大距离极限位时对该检测参量进行标定的方式来生成。
所述人手与方向盘处于最小距离极限位例如为人手完全放置在该方向盘上时人手相对于方向盘的位置;所述人手与方向盘处于最大距离极限位例如为人手完全脱离该方向盘时,人手相对于方向盘的位置。应了解,本公开的实施例不受该最小距离极限位及该最大距离极限位的具体位置设置的限制。
例如,对于特定的预选频率,当人手与方向盘处于最小距离极限位时,记录在该情况下传感器电路的电容参量的数值,并将其作为该预选频率下该电容参量的阈值范围中的阈值上限值;当人手与方向盘处于最大距离极限位时,记录在该情况下传感器电路的电容参量的数值,并将其作为该预选频率 下该电容参量的阈值范围中的阈值下限值。其后,基于该阈值上限值及阈值下限值得到该阈值范围。
基于上述,通过在人手与方向盘处于最小距离极限位、及人手与方向盘处于最大距离极限位时对检测参量进行标定来生成阈值范围,能够使得所生成的阈值范围准确地对应于人手与方向盘的接触状态及相对位置,从而有利于提高后续基于该阈值范围所确定的信号污染状态的精确度,且进一步地,有利于提高该用于方向盘触摸检测的方法的精确度。
在一些实施例中,将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态的步骤S1021-2例如可以更具体地描述。
例如,在该触摸检测信号所对应的触摸检测参量的数值位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为未污染信号。在该触摸检测信号所对应的触摸检测参量的数值不位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为污染信号。
基于上述,本申请中,通过将计算得到的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,且当该数值位于该阈值范围内时,将该触摸检测信号判定为未污染信号。使得能够根据与阈值范围的比较,简单便捷地实现对触摸检测信号污染情况的判断,且提高了该信号污染判断的精确度,有利于后续基于该信号污染情况进一步执行频率污染检测。
在一些实施例中,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态的步骤S1022包括:在与该预选频率相对应的触摸检测信号中的每一个触摸检测信号均被确定为未污染信号的情况下,将预选频率确定为未污染频率。
基于上述,本申请中,通过在该预选频率所对应的触摸检测信号均为未污染信号的情况下将该预选频率确定为未污染频率,使得能够更精确且可靠地实现对各个预选频率是否收到电磁干扰等污染进行判断,从而有利于后续基于该频率污染状态灵活地选取预选频率中的一个或多个未污染频率以进行方向盘触摸检测,提高了该方向盘触摸检测的可靠性和精确度。
在一些实施例中,该用于方向盘触摸检测的方法还包括:根据所确定的各个预选频率的频率污染状态,生成该多个预选频率的频率污染状态表。
所述频率污染状态表是指用于记录各个预选频率及其频率污染状态的表格,且该表格还可以记录:在各个预选频率下,触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号的信号污染状态。下表1示出了根据本公开实施例的频率污染状态表的示例表。
表1 频率污染状态表
Figure PCTCN2022091915-appb-000001
参照表1,其中示意性地示出了当预选频率包括频率f1,f2,f3,且例如在方向盘上设置有三个触摸检测传感器,且每个触摸检测传感器对应于一个传感器通道(形成三个传感器通道1-3)的情况下,基于如前所述的步骤,在各个预选频率下,所确定的各个触摸检测传感器的触摸检测信号的信号污染情况的示例,及由此确定的各个预选频率的频率污染状态的示例。
通过生成该多个预选频率的频率污染状态表,使得能够将直观简便地说明各个预选频率的频率污染状态,还有利于后续进一步将该频率污染状态表向用户显示,以便用户基于各个频率的污染状态进行后续的操作。
在一些实施例中,根据各个预选频率的频率污染状态确定目标频率的步骤S103包括:将所述多个预选频率中被确定为未污染频率的预选频率确定为目标频率。
所述目标频率为用于执行方向盘触摸检测的频率。根据实际需要,例如可以确定一个目标频率,也可以确定多个目标频率。本公开的实施例不受所 确定的目标频率的具体数目的限制。
通过将被确定为未污染频率的预选频率确定为目标频率,使得能够排除因受到环境中电磁干扰而处于污染状态的预选频率,在未收到电磁干扰的预选频率下执行方向盘触摸检测,从而能够提高方向盘触摸检测过程中对于环境中电磁干扰的抵抗能力,且有效地提高方向盘触摸检测的精确度及可靠性。
在一些实施例中,以预设的时间间隔设置所述多个预选频率,并对于所述多个预选频率确定各个预选频率的频率污染状态。
所述预设的时间间隔例如可以为用户确定的,或者系统在初始化过程中所预设的时间间隔。本公开的实施例不受该预设的时间间隔的具体时长的限制。
通过以预设的时间间隔周期性地执行预选频率的设定及预选频率的频率污染状态的检测过程,一方面,使得用户能够根据实际需要及时地调整预选频率的组成及数目,例如删除在最近连续两次频率污染检测中均被确定为污染频率的预选频率。另一方面,也使得能够及时地更新各个预选频率的频率污染状态的变化,从而有利于当使用环境中电磁干扰的频率范围改变时,能够及时地检测并更新在新的电磁干扰频率范围内各个预选频率的频率污染状态,有利于后续基于该频率污染状态选取目标频率,且进一步提高了该方向盘触摸检测的精确度及灵活性。
在一些实施例中,上述基于目标频率执行方向盘触摸检测的步骤S104例如可以更具体地描述。图5示出了根据本公开实施例的基于目标频率执行方向盘触摸检测的过程S104的示例性流程图。
参照图5,首先,在步骤S1041中,生成与目标频率一一对应的目标参考信号。
所述与多个目标频率一一对应的参考信号,是指对于每一个目标频率,生成该目标频率下的参考信号,该参考信号用于施加至触摸检测传感器,以实现该目标频率下的触摸检测过程。
其后,在步骤S1042中,对于所述目标参考信号中的每个目标参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号。
得到调制信号后,在步骤S1043中,对于所述目标参考信号中的每个目标参考信号,检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号。
例如,上述调制及解调过程例如可以利用IQ调制-解调检测技术,以进一步提高触摸检测准确性。具体地,例如该触摸检测传感器经由IQ调制得到对应于该目标参考信号的IQ调制信号,其后对该调制信号进行IQ解调,以得到该触摸检测传感器的触摸检测信号。
基于各个触摸传感器的触摸检测信号,在步骤S1044中,基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,确定所述方向盘的触摸检测状态。
例如,可以对于每个触摸检测传感器,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态;并基于触摸检测传感器在各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态;最终,基于所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测状态,确定所述方向盘的触摸检测状态。
然而,应了解,上述仅给出了一种确定方向盘触摸检测状态的示例。根据实际需要,还可以采用其他的方式实现对方向盘触摸检测状态的确定。本公开的实施例不受该触摸检测状态的具体确定方式的限制。
例如,所述触摸检测状态可以包括离手状态、未离手状态。然而,应了解,根据实际需要,还可以设置其他的触摸检测状态。本公开的实施例不受所述触摸检测状态的具体组成的限制。
基于上述,本申请中,基于所选取的目标频率,通过生成与目标频率一一对应的目标参考信号,并将每个目标参考信号时间不重叠的施加至各个触摸检测传感器中,得到对应的调制信号,再将该调制信号进行解调,以得到该目标参考信号下各个传感器的触摸检测信号,并由此实现方向盘触摸检测,使得能够综合利用多个触摸检测传感器在目标频率下的触摸检测信号来共同确定人手与方向盘的位置关系,有利于提高方向盘触摸检测的精确度及可靠性。
在一些实施例中,上述确定所述方向盘的触摸检测状态的步骤S1044的过程例如可以更具体地说明。图6A示出了根据本公开实施例确定所述方向盘的触摸检测状态的过程S1044的示例性流程图。图6B示出了根据本公开实施例确定所述方向盘的触摸检测状态的过程S1044的示意图。
参照图6A,首先,在步骤S1044-1中,对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态。
上述确定该触摸检测传感器在每个目标参考信号下的触摸检测状态的过程例如能够更具体地说明。例如,如图6B中所示出的,若该方向盘设置有三个触摸检测传感器DS1,DS2,DS3,且目标频率包括:ft1,ft2,ft3;且该三个目标频率分别对应于目标参考信号Ref_ft1,Ref_ft2,Ref_ft3。则例如以触摸检测传感器DS1为例,若其在目标参考信号Ref_ft1下的触摸检测信号为DS1_T_ft1,在目标参考信号Ref_ft2下的触摸检测信号为DS1_T_ft2,在目标参考信号Ref_ft3下的触摸检测信号为DS1_T_ft3,则例如可以根据触摸参考信号DS1_T_ft1来确定触摸检测传感器DS1在目标参考信号Ref_ft1下的触摸检测状态(图6B中例如确定为未离手状态),根据触摸检测信号DS1_T_ft2来确定触摸检测传感器DS1在目标参考信号Ref_ft2下的触摸检测状态(图6B中例如确定为离手状态),根据触摸检测信号DS1_T_ft3来确定触摸检测传感器DS1在目标参考信号Ref_ft3下的触摸检测状态(图6B中例如确定为离手状态)。
例如,可以通过将该触摸检测信号与该目标参考信号下的预设信号阈值相比较来确定触摸检测传感器在该目标参考信号下的触摸检测状态。或者,也可以通过其他方式根据该传感器在各个目标参考信号下的触摸检测信号来确定其在各个目标参考信号下的触摸检测状态。
其后,在步骤S1044-2中,对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态。
应了解,该触摸检测传感器的触摸检测状态例如可以包括离手状态、未离手状态。或者还可以根据实际需要进行其状态的设置。本公开的实施例不 受该触摸检测传感器的触摸检测状态的具体组成的限制。
例如,可以设置若触摸检测传感器在各个目标参考信号下的触摸检测状态均为未离手状态的情况下,将该触摸检测传感器的触摸检测状态设置为未离手状态;否则,将该触摸检测传感器的触摸检测状态设置为离手状态。或者,也可以根据实际需要,采用其他方式或预设算法来确定该触摸检测传感器的触摸检测状态。本公开的实施例不受该触摸检测传感器的触摸检测状态的具体确定方式的限制。
上述过程例如能够能具体地说明,例如继续参照图6B,如前所述,若对于传感器DS1而言,若根据触摸参考信号DS1_T_ft1确定触摸检测传感器DS1在目标参考信号Ref_ft1下的触摸检测状态为未离手状态,根据触摸检测信号DS1_T_ft2确定触摸检测传感器DS1在目标参考信号Ref_ft2下的触摸检测状态为离手状态,根据触摸检测信号DS1_T_ft3确定触摸检测传感器DS1在目标参考信号Ref_ft3下的触摸检测状态为离手状态。且例如设定仅当该传感器在各个目标参考信号下的触摸检测状态均为未离手时才将触摸检测传感器的触摸检测状态设置为未离手状态,则例如可以据此确定该触摸检测传感器DS1的触摸检测状态为离手状态。
得到各个传感器的触摸检测状态后,在步骤S1044-3中,基于所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测状态,确定所述方向盘的触摸检测状态。
例如,可以设置在该至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测状态均为未离手状态的情况下,将方向盘的触摸检测状态确定为未离手状态;否则,则将方向盘的触摸检测状态确定为离手状态。或者,也可以设置在该至少一个触摸检测传感器中的至少三分之二的触摸检测传感器的触摸检测状态为未离手状态的情况下,将方向盘的触摸检测状态确定为未离手状态。应了解,本公开的实施例不受确定该方向盘的触摸检测状态的具体方式的限制。
基于上述,本申请中,在确定所述方向盘的触摸检测状态时,通过首先确定该触摸检测传感器在各个目标参考信号下的触摸检测状态,其后根据触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态,最终根据各个触摸检测传感器所具有的触摸检测状 态确定方向盘的触摸检测状态,使得能够综合多个传感器在各个目标频率下的触摸检测信号来进行人手与方向盘的接触状态的判定,使得不同传感器在不同目标参考信号下的检测结果能够相互验证,有效地提高了方向盘触摸检测的精确度及可靠性。
在一些实施例中,所述触摸检测状态至少包括离手状态、未离手状态。离手状态是指当前人手未与方向盘相接触,未离手状态是指当前人手至少部分地与方向盘相接触。
且其中,在所述方向盘的触摸检测状态包括:在所述至少一个触摸检测传感器中每一个触摸检测传感器的触摸检测状态均为离手状态的情况下,确定所述方向盘的触摸检测状态为离手状态。
基于上述,通过设置该触摸检测状态包括离手状态及未离手状态,使得能够简便且明确地区分出人手与方向盘的两种不同接触情况。进一步地,通过设置仅在各个触摸检测传感器的触摸检测状态均为离手状态的情况下才将方向盘的触摸检测状态确定为离手状态,使得能够令不同触摸检测传感器的触摸检测状态相互验证,防止由于一个或几个传感器出现检测误差而导致对触摸检测状态进行误判的情况,极大地提高了该方向盘触摸检测的检测精确度及可靠性。
在一些实施例中,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态的步骤S1044-1例如更具体地描述。
首先,基于所述触摸检测传感器在各个目标参考信号下的触摸检测信号,生成与该触摸检测信号对应的电容值和/或电阻值。
例如,可以通过查询触摸检测信号及电容、电阻值对照表的方式,获取当前触摸检测信号所对应的电容值及电阻值。所述电容值与电阻值为该触摸检测传感器的传感器电路所具有的电容值及电阻值,其与人手同方向盘的触摸状态相关联。
其后,将所述触摸检测传感器在各个目标参考信号下的所述电容值和/或电阻值与预设测量阈值进行比较,以确定所述触摸检测传感器在各个目标参考信号下的触摸检测状态。
所述预设测量阈值例如可以对于每一个目标频率为固定的测量阈值,或 者也可以对不同的目标频率设置不同的预设测量阈值。本公开的实施例不受该测量阈值的具体数值及不同目标频率下测量阈值的数值关系的限制。
该预设测量阈值例如可以为用户自行设定的,例如采集用户手部仅一部分地放置在方向盘上时的电容值和/或电阻值;或者也可以是系统基于预设条件自动生成的。本公开的实施例不受该预设测量阈值的具体生成方式的限制。
例如,若通过将触摸检测传感器在目标参考信号下的电容值与预设阈值比较来确定该触摸检测传感器在该目标参考信号下的触摸检测状态的情况下,例如可以设置在该电容值大于预设测量阈值时,将该触摸检测传感器在该目标参考信号下的触摸检测状态确定为离手状态;在该电容值小于预设测量阈值时,将该将该触摸检测传感器在该目标参考信号下的触摸检测状态确定为未离手状态。
基于上述,本申请中,通过基于该触摸检测信号确定传感器电路的电容值和/或电阻值,并进一步将所确定的电容值和/或电阻值与预设测量阈值相比较,使得能够以简单便捷的方式确定该触摸检测传感器在各个目标参考信号下的触摸检测状态,且所述电容值和/或电阻值能够直观地反映出当前人手与方向盘的接触状态。
在一些实施例中,上述对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态的步骤S1044-2例如可以更具体地包括:在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为离手状态;在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为未离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为未离手状态。
基于上述,通过设置仅在触摸检测传感器在各个目标参考信号下的触摸检测状态均为离手状态的情况下确定所述触摸检测传感器的触摸检测状态为离手状态,使得能够令不同目标参考信号下的触摸检测传感器的触摸检测状态相互验证,防止由于一个或几个目标参考信号下的触摸检测信号出现误差而导致对传感器的触摸检测状态进行误判的情况,提高了该方向盘触摸检测的检测精确度及可靠性。
接下来将结合具体应用场景对该用于方向盘触摸检测的方法进行进一步说明。图7示出了根据本公开实施例的方向盘触摸检测过程200的流程图,图8示出了根据本公开实施例的频率污染示意图,图9示出了根据本公开实施例的方向盘触摸检测的时序示意图。
参照图7,在该方向盘触摸检测过程200中,首先,确定预选频率,该预选频率为适于执行方向盘接触检测的多个频率。其后,根据如前所述的方法执行频率污染检测。具体地,例如生成与所述多个预选频率一一对应的参考信号;对于所述参考信号中的每个参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的参考信号进行调制,以产生对应的调制信号;并检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号。其后,例如根据对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态,并生成频率污染状态表,该频率污染状态表中记录有各个预选频率与各个预选频率的频率污染状态。随后,将该预选频率中被确定为未污染频率的预选频率选择为目标频率,基于该目标频率执行方向盘触摸检测,该方向盘触摸检测的具体流程如前所述,在这里不再赘述。
且其中,在进行频率污染检测后,通过系统时钟记录时间间隔t,并将该时间间隔t与预设时间间隔Ts进行比较,若该时间间隔等于预设时间间隔Ts,则重新对该预选频率进行频率污染检测,并根据检测结果更新频率污染状态表。如果该时间间隔t未到达预设时间间隔,则继续记录时间间隔。
例如,当该预选频率包括三个频率f1,f2,f3,且参照图8,该预选频率f1处于使用环境中电磁干扰的频带内,受到电磁干扰的影响(即预选频率f1被污染)。且若该方向盘上设置有三个触摸检测传感器DS1(对应于传感器通道1),DS2(对应于传感器通道2),DS3(对应于传感器通道3),则按照上述流程200执行的过程中,如图9所示出的,经由频率污染检测,得到各个频率的频率污染状态,其中以灰色填充框示出的频率f1表征该预选频率f1被确定 为污染频率,以白色填充框示出的频率f2,f3表征该预选频率f2,f3为未污染频率。则其后,根据该频率污染状态,在之后的方向盘触摸检测过程中,将仅使用未污染的预选频率f2,f3作为目标频率,并仅在频率f2,f3下执行方向盘触摸检测过程。
基于上述,通过选择多个预选频率,并根据其频率污染状态确定目标频率,一方面,有效地提高了方向盘触摸检测过程对使用环境中电磁干扰的抵抗能力,显著降低在检测过程中由于受到特定频率下的电磁干扰而使得传感器感测信号出现严重误差的问题,提高该触摸检测的精确度及可靠性;另一方面,提高了该方向盘触摸检测过程的鲁棒性。
根据本公开的另一方面,还提出了一种用于方向盘触摸检测的装置,其中所述方向盘包括至少一个触摸检测传感器。图10示出了根据本公开实施例用于方向盘触摸检测的装置300的示例性框图。
参照图10,该用于方向盘触摸检测的装置300包括:信号生成模块310、频率污染状态检测模块320、目标频率确定模块330、方向盘触摸检测模块340。
所述信号生成模块310被配置为执行图1A中步骤S101的过程,基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号。
所述预选频率是指适于进行方向盘触摸检测的检测频率。本公开的实施例不受该预选频率的个数及其具体频率值的限制。
所述频率污染状态检测模块320被配置为执行图1A中步骤S102的过程,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态。
所述频率污染检测,是指检测当前的预选频率是否位于环境中电磁干扰的频率范围内,即检测其是否受到电磁干扰。若当前的预选频率位受到电磁干扰,则该预选频率被确定为污染频率;若当前的预选频率未受到电磁干扰,则该预选频率被确定为未污染频率。
所述目标频率确定模块330被配置为执行图1A中步骤S103的过程,根据各个预选频率的频率污染状态,确定目标频率。
所述目标频率是指用于进行方向盘触摸检测过程的频率。所述目标频率 例如可以为单个频率,或者也可以为多个频率。本公开的实施例不受该目标频率的具体数目的限制。
例如,可以将该预选频率中被确定为未污染频率的预选频率作为目标频率。或者,也可以对被确定为未污染频率的预选频率进行进一步处理以得到目标频率。
所述方向盘触摸检测模块340被配置为执行图1A中步骤S104的过程,基于目标频率,执行方向盘触摸检测。
例如,可以将该目标频率所对应的参考信号施加至该至少一个触摸检测传感器,以得到目标调制信号,并经由对该目标调制信号的解调,生成触摸检测信号,并由此确定该方向盘的触摸检测状态。
基于上述,本申请通过选择多个预选频率,并根据其频率污染状态确定目标频率,一方面,通过选取未频率污染的预选频率作为目标频率,能够有效地提高了方向盘触摸检测过程对使用环境中电磁干扰的抵抗能力,显著降低在检测过程中由于受到特定频率下的电磁干扰而使得传感器感测信号出现严重误差的问题,提高该触摸检测的精确度及可靠性;另一方面,根据各个预选频率的频率污染状态,能够实时地灵活地进行目标频率的选择,从而提高了该方向盘触摸检测过程的鲁棒性。
在一些实施例中,所述频率污染状态检测模块320包括:信号污染状态确定子模块321和频率污染状态确定子模块322。
所述信号污染状态确定子模块321被配置为执行图3中步骤S1021的过程,对所述多个预选频率中每一个预选频率,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态。
例如,该信号污染状态可以包括污染信号及未污染信号。其中,污染信号表征该信号已经受到电磁干扰,未污染信号表征该信号没有受到电磁干扰。
所述频率污染状态确定子模块322被配置为执行图3中步骤S1022的过程,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
例如,可以设置在该预选频率所对应的所有触摸检测信号均为未污染信 号的情况下,将该预选频率确定为未污染频率。本公开的实施例不受基于该触摸检测信号的信号污染状态来确定预选频率的频率污染状态的具体方式的限制。
基于上述,本申请中,在基于触摸检测信号确定对应的预选频率的频率污染状态时,通过首先确定与该预选频率对应的触摸检测信号的信号污染状态,其后基于对应于该预选频率的各个触摸检测信号的信号污染状态,确定预选频率的频率污染状态,使得能够经由该预选频率下触摸检测传感器的触摸检测信号来实现对该预选频率的污染情况判断,从而能够简单便捷地实现频率污染检测,且使得该检测结果具有较高的精确度及可靠性。
在一些实施例中,所述信号污染状态确定子模块321包括:触摸检测参量数值计算子模块3211及阈值比较子模块3212。
所述触摸检测参量数值计算子模块3211被配置为执行图4中步骤S1021-1的过程,基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值。
例如,生成与该触摸检测信号相对应的触摸检测参量的数值时,例如可以基于该触摸检测信号与触摸检测参量的数值的对应关系表,对于任何触摸检测信号的信号数值,查表得到该触摸检测信号的信号数值所对应的传感器电路的电容量及传感器电路的电阻量。
所述阈值比较子模块3212被配置为执行图4中步骤S1021-2的过程,将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态。
其中,所述触摸检测参量包括电容量、电阻量中的至少一个。
例如,触摸检测参量在该预选频率下的阈值范围例如可以通过在该预选频率下,标定人手在最小距离极限位与最大距离极限位时相关触摸检测参量的数值来得到。应了解,本公开的实施例不受触摸检测参量在该预选频率下的阈值范围的具体组成及其形成方式的限制。
触摸检测参量在多个预选频率下例如可以具有相同的阈值范围,或者也可以在各个预选频率下具有不同的阈值范围。本公开的实施例不受该触摸检测参量在多个预选频率下所具有的阈值范围之间的相互关系的限制。
基于上述,通过基于特定预选频率下的触摸检测信号,确定与该方向盘 触摸检测相关的触摸检测参量的数值,并将计算得到的该触摸检测参量的数值与触摸检测参量在该预选频率下的阈值范围相比较,通过比较结果来确定触摸检测信号的信号污染状态,一方面,有利于更好地反应出当前触摸检测信号所对应的方向盘触摸检测状态;另一方面,通过将触摸检测参量与阈值范围相比较,使得能够简单便捷地实现对触摸检测信号的污染状态的判断,且使得所确定的信号污染状态具有较高的精确度及可靠性。
在一些实施例中,所述方向盘触摸检测模块340包括:目标信号生成子模块341、信号检测子模块342、信号处理子模块343。
所述目标信号生成子模块341被配置为执行图5中步骤S1041及步骤S1042的过程,生成与目标频率一一对应的目标参考信号,且对于所述目标参考信号中的每个目标参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号。
所述与多个目标频率一一对应的参考信号,是指对于每一个目标频率,生成该目标频率下的参考信号,该参考信号用于施加至触摸检测传感器,以实现该目标频率下的触摸检测过程。
所述信号检测子模块342被配置为执行图5中步骤S1043的过程,对于所述目标参考信号中的每个目标参考信号,检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号。
例如,上述调制及解调过程例如可以利用IQ调制-解调检测技术,以进一步提高触摸检测准确性。具体地,例如该触摸检测传感器经由IQ调制得到对应于该目标参考信号的IQ调制信号,其后对该调制信号进行IQ解调,以得到该触摸检测传感器的触摸检测信号。
所述信号处理子模块343被配置为执行图5中步骤S1044的过程,基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,确定所述方向盘的触摸检测状态。
例如,所述触摸检测状态可以包括离手状态、未离手状态。然而,应了解,根据实际需要,还可以设置其他的触摸检测状态。本公开的实施例不受 所述触摸检测状态的具体组成的限制。
基于上述,本申请中,基于所选取的目标频率,通过生成与目标频率一一对应的目标参考信号,并将每个目标参考信号时间不重叠的施加至各个触摸检测传感器中,得到对应的调制信号,再将该调制信号进行解调,以得到该目标参考信号下各个传感器的触摸检测信号,并由此实现方向盘触摸检测,使得能够综合利用多个触摸检测传感器在目标频率下的触摸检测信号来共同确定人手与方向盘的位置关系,有利于提高方向盘触摸检测的精确度及可靠性。
在一些实施例中,该用于方向盘触摸检测的装置能够执行如前所述的用于方向盘触摸检测的方法,具有如前所述的功能。
本申请使用了特定词语来描述本申请的实施例。如“第一/第二实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
除非另有定义,这里使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
上面是对本公开的说明,而不应被认为是对其的限制。尽管描述了本公 开的若干示例性实施例,但本领域技术人员将容易地理解,在不背离本公开的新颖教学和优点的前提下可以对示例性实施例进行许多修改。因此,所有这些修改都意图包含在权利要求书所限定的本公开范围内。应当理解,上面是对本公开的说明,而不应被认为是限于所公开的特定实施例,并且对所公开的实施例以及其他实施例的修改意图包含在所附权利要求书的范围内。本公开由权利要求书及其等效物限定。

Claims (19)

  1. 一种用于方向盘触摸检测的方法,其中,所述方向盘包括至少一个触摸检测传感器,且所述方法包括:
    基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号;
    对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态;
    根据各个预选频率的频率污染状态,确定目标频率;
    基于目标频率,执行方向盘触摸检测。
  2. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,基于该至少一个触摸检测传感器生成与多个预选频率相对应的多个触摸检测信号包括:
    生成与所述多个预选频率一一对应的参考信号;
    对于所述参考信号中的每个参考信号,
    在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的参考信号进行调制,以产生对应的调制信号;以及
    检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,该触摸检测信号对应于与该参考信号相对应的预选频率。
  3. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测以确定该预选频率的频率污染状态包括:
    对所述多个预选频率中每一个预选频率,
    对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染 状态;
    基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
  4. 如权利要求3所述的用于方向盘触摸检测的方法,其中,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态包括:
    基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值;
    将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态;
    其中,所述触摸检测参量包括电容量、电阻量中的至少一个。
  5. 根据权利要求4所述的用于方向盘触摸检测的方法,其中,所述触摸检测参量在该预选频率下所对应的阈值范围通过在该预选频率下,在人手与方向盘处于最小距离极限位、及人手与方向盘处于最大距离极限位时对该检测参量进行标定的方式来生成。
  6. 根据权利要求4所述的用于方向盘触摸检测的方法,其中,将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态包括:
    在该触摸检测信号所对应的触摸检测参量的数值位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为未污染信号;在该触摸检测信号所对应的触摸检测参量的数值不位于该触摸检测参量在该预选频率下的阈值范围内的情况下,将该触摸检测信号确定为污染信号。
  7. 根据权利要求3所述的用于方向盘触摸检测的方法,其中,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态包括:
    在与该预选频率相对应的触摸检测信号中的每一个触摸检测信号均被确定为未污染信号的情况下,将预选频率确定为未污染频率。
  8. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,所述方法还包括:
    根据所确定的各个预选频率的频率污染状态,生成该多个预选频率的频率污染状态表。
  9. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,根据各个预选频率的频率污染状态确定目标频率包括:
    将所述多个预选频率中被确定为未污染频率的预选频率确定为目标频率。
  10. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,以预设的时间间隔设置所述多个预选频率,并对于所述多个预选频率确定各个预选频率的频率污染状态。
  11. 根据权利要求1所述的用于方向盘触摸检测的方法,其中,基于目标频率执行方向盘触摸检测包括:
    生成与目标频率一一对应的目标参考信号;
    对于所述目标参考信号中的每个目标参考信号,
    在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号;以及
    检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号;以及
    基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,确定所述方向盘的触摸检测状态。
  12. 根据权利要求11所述的用于方向盘触摸检测的方法,其中,确定所述方向盘的触摸检测状态包括:
    对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态;
    对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态;以及
    基于所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测状态,确定所述方向盘的触摸检测状态。
  13. 根据权利要求12所述的用于方向盘触摸检测的方法,其中,所述触摸检测状态至少包括离手状态、未离手状态,并且
    其中,在所述至少一个触摸检测传感器中每一个触摸检测传感器的触摸检测状态均为离手状态的情况下,确定所述方向盘的触摸检测状态为离手状态。
  14. 根据权利要求12所述的用于方向盘触摸检测的方法,其中,对于所述至少一个触摸检测传感器中的每个触摸检测传感器,基于所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态确定所述触摸检测传感器的触摸检测状态,包括:
    在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为离手状态;
    在所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态均为未离手状态的情况下,确定所述触摸检测传感器的触摸检测状态为未离手状态。
  15. 根据权利要求12所述的用于方向盘触摸检测的方法,其中,基于所述触摸检测传感器在所述目标参考信号中的各个目标参考信号下的触摸检测信号,确定所述触摸检测传感器在所述各个目标参考信号下的触摸检测状态,包括:
    基于所述触摸检测传感器在各个目标参考信号下的触摸检测信号,生成与该触摸检测信号对应的电容值和/或电阻值;
    将所述触摸检测传感器在各个目标参考信号下的所述电容值和/或电阻值与预设测量阈值进行比较,以确定所述触摸检测传感器在各个目标参考信号下的触摸检测状态。
  16. 一种用于方向盘触摸检测的装置,所述方向盘包括至少一个触摸检测传感器,包括:
    信号生成模块,其被配置为基于该至少一个触摸检测传感器,生成与多个预选频率相对应的多个触摸检测信号;
    频率污染状态检测模块,其被配置为对所述多个预选频率中每一个预选 频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号,执行对该预选频率的频率污染检测,以确定该预选频率的频率污染状态;
    目标频率确定模块,其被配置为根据各个预选频率的频率污染状态,确定目标频率;
    方向盘触摸检测模块,其被配置为基于目标频率,执行方向盘触摸检测。
  17. 如权利要求16所述的用于方向盘触摸检测的装置,其中,所述频率污染状态检测模块包括:
    信号污染状态确定子模块,其被配置为对所述多个预选频率中每一个预选频率,对所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的触摸检测信号中的每一个触摸检测信号,确定该触摸检测信号的信号污染状态;
    频率污染状态确定子模块,其被配置为对所述多个预选频率中每一个预选频率,基于所述至少一个触摸检测传感器的触摸检测信号中与该预选频率相对应的各个触摸检测信号的信号污染状态,确定该预选频率的频率污染状态。
  18. 如权利要求17所述的用于方向盘触摸检测的装置,其中,信号污染状态确定子模块包括:
    触摸检测参量数值计算子模块,其被配置为基于该触摸检测信号,根据触摸检测信号与触摸检测参量的数值的对应关系表,生成与该触摸检测信号相对应的触摸检测参量的数值;
    阈值比较子模块,其被配置为将该触摸检测信号所对应的触摸检测参量的数值与该触摸检测参量在该预选频率下的阈值范围相比较,基于比较结果确定该触摸检测信号的信号污染状态;
    其中,所述触摸检测参量包括电容量、电阻量中的至少一个。
  19. 如权利要求16所述的用于方向盘触摸检测的装置,其中,所述方向盘触摸检测模块包括:
    目标信号生成子模块,其被配置为生成与目标频率一一对应的目标参考信号,且对于所述目标参考信号中的每个目标参考信号,在时间上不重叠地将其施加到所述至少一个触摸检测传感器中的各个触摸检测传感器,其中每 个触摸检测传感器对其被施加的目标参考信号进行调制,以产生对应的调制信号;
    信号检测子模块,其被配置为对于所述目标参考信号中的每个目标参考信号,检测所述至少一个触摸检测传感器中的各个触摸检测传感器产生的调制信号并对所述调制信号进行解调,以得到在该目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号;以及
    信号处理子模块,其被配置为基于在所述目标参考信号中的各个目标参考信号下所述至少一个触摸检测传感器中的各个触摸检测传感器的触摸检测信号,确定所述方向盘的触摸检测状态。
PCT/CN2022/091915 2021-05-10 2022-05-10 用于方向盘触摸检测的方法及装置 WO2022237760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110505540.5A CN115328341A (zh) 2021-05-10 2021-05-10 用于方向盘触摸检测的方法及装置
CN202110505540.5 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022237760A1 true WO2022237760A1 (zh) 2022-11-17

Family

ID=83912901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091915 WO2022237760A1 (zh) 2021-05-10 2022-05-10 用于方向盘触摸检测的方法及装置

Country Status (2)

Country Link
CN (1) CN115328341A (zh)
WO (1) WO2022237760A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830837A (zh) * 2012-07-19 2012-12-19 深圳市汇顶科技有限公司 一种用于触摸检测的噪声抑制方法、系统及触摸终端
US9921668B1 (en) * 2013-01-25 2018-03-20 Qualcomm Incorporated Touch panel controller integrated with host processor for dynamic baseline image update
CN111078053A (zh) * 2019-12-20 2020-04-28 京东方科技集团股份有限公司 触控数据上报方法、设备及存储介质
CN112721938A (zh) * 2021-01-13 2021-04-30 恒大新能源汽车投资控股集团有限公司 一种驾驶员脱手检测方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830837A (zh) * 2012-07-19 2012-12-19 深圳市汇顶科技有限公司 一种用于触摸检测的噪声抑制方法、系统及触摸终端
US9921668B1 (en) * 2013-01-25 2018-03-20 Qualcomm Incorporated Touch panel controller integrated with host processor for dynamic baseline image update
CN111078053A (zh) * 2019-12-20 2020-04-28 京东方科技集团股份有限公司 触控数据上报方法、设备及存储介质
CN112721938A (zh) * 2021-01-13 2021-04-30 恒大新能源汽车投资控股集团有限公司 一种驾驶员脱手检测方法和装置

Also Published As

Publication number Publication date
CN115328341A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US20160299590A1 (en) Customization method, response method and mobile terminal for user-defined touch
US20100079412A1 (en) Calibrating apparatus and method
CN108304091B (zh) 触摸屏控制方法、装置及触摸屏
WO2019000409A1 (zh) 一种颜色检测的方法及终端
EP2965179B1 (en) Ultrasonic hybrid input device
US20180113563A1 (en) Touch panel apparatus
CN107390907B (zh) 触控模组、电子设备及压力校准方法
WO2011035722A1 (en) Method for identifying action on touch device and action identifying device
CN104834447B (zh) 旋转摄像头的旋转控制方法及系统、摄像装置
WO2022237760A1 (zh) 用于方向盘触摸检测的方法及装置
US9857890B2 (en) Information processing method and electronic apparatus
CN107506067B (zh) 触摸屏的工作频率调试方法、装置和终端设备
TWI498784B (zh) 觸控面板驅動方法及觸控系統
US20200264754A1 (en) Touch detection method, touch chip and electronic device
CN113038320A (zh) 一种电容检测方法、装置及一种耳机
TWI743526B (zh) 自適應觸控面板系統及其自適應方法
US11100894B1 (en) Adjusting signal settings for a display using a light sensor
WO2022237716A1 (zh) 用于方向盘触摸检测的方法和装置
CN106936891B (zh) 远程触控监控系统与其受控装置、监控装置及其控制方法
CN103516972A (zh) 摄像头控制方法及电子设备
JP2015166949A (ja) Ttp(タッチパネル)座標校正方法
US11073931B2 (en) Apparatus and method for detecting press
CN111078039A (zh) 电容触摸屏抗干扰方法、装置、触摸屏设备和存储介质
CN109725754B (zh) 一种降低触摸屏干扰的方法及装置
WO2023240917A1 (zh) 电机位置角度确定方法、装置、电子设备及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806723

Country of ref document: EP

Kind code of ref document: A1