WO2022237697A1 - 一种便携式电动汽车充电器 - Google Patents

一种便携式电动汽车充电器 Download PDF

Info

Publication number
WO2022237697A1
WO2022237697A1 PCT/CN2022/091563 CN2022091563W WO2022237697A1 WO 2022237697 A1 WO2022237697 A1 WO 2022237697A1 CN 2022091563 W CN2022091563 W CN 2022091563W WO 2022237697 A1 WO2022237697 A1 WO 2022237697A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
electric vehicle
conversion circuit
circuit
Prior art date
Application number
PCT/CN2022/091563
Other languages
English (en)
French (fr)
Inventor
郝世强
平定钢
Original Assignee
浙江富特科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江富特科技股份有限公司 filed Critical 浙江富特科技股份有限公司
Priority to EP22806663.5A priority Critical patent/EP4223580A1/en
Publication of WO2022237697A1 publication Critical patent/WO2022237697A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of electric vehicle chargers, in particular to a portable electric vehicle charger.
  • a method and device for adjusting the output voltage of an on-board charger and an electric vehicle include the following steps: determining the calibrated output voltage of the on-board charger according to the current voltage of the battery to be charged; obtaining the output voltage of the on-board charger.
  • the actual output voltage according to the voltage deviation value between the calibrated output voltage of the on-board charger and the actual output voltage, determine the voltage adjustment method of the on-board charger; adopt the determined voltage adjustment method to control the on-board charger
  • the actual output voltage is adjusted, wherein the voltage adjustment method is switching frequency adjustment or pulse width adjustment.
  • the on-board charger (OBC) of the new energy electric vehicle converts the grid voltage into a DC voltage matching the vehicle power battery, and provides different levels of charging power for the power battery.
  • OBC on-board charger
  • the on-board charger has a long development cycle, high failure rate and high requirements for components, thus increasing the cost and failure rate of electric vehicles. If the charging equipment is moved outside the vehicle and carried with the vehicle, it can reduce the requirements for the selection of charger components, and at the same time reduce the cost and vehicle failure rate. Therefore, portable vehicle chargers are one of the development trends of new energy vehicle charging equipment in the future. .
  • the invention solves the problem that the vehicle-mounted charger increases the cost and failure rate of the electric vehicle, and proposes a portable electric vehicle charger, which can directly charge the power battery of the electric vehicle without the participation of the vehicle-mounted charger or charging pile, and is small in size and It is light in weight, low in heat generation, and can use the bidirectional power conversion function to provide backup power for electrical equipment.
  • a portable electric vehicle charger comprising:
  • the charging control box has a first port connected to the power grid and a second port connected to the charging gun head on its outer surface, and an EMC filter connected to the first port is provided inside it, and the EMC filter is connected to the second port.
  • a power conversion circuit, the first power conversion circuit is electrically connected to a grid-side controller, and is controlled by the grid-side controller to convert and control the AC voltage from the grid;
  • the charging gun head has a third port connected to the charging control box on its outer surface and a fourth DC power supply port connected to the electric vehicle, and a second power conversion circuit connected to the third port inside it, and a second power conversion circuit connected to the electric vehicle.
  • the insulation detection circuit connected to the second power conversion circuit, the second power conversion circuit and the insulation detection circuit are electrically connected to a battery-side controller, the second power conversion circuit is controlled by the battery-side controller, and the output is connected to the electric motor DC voltage or current to match the car's battery voltage;
  • the cable is used to connect the second port and the third port, and contains a power connection line inside, which is used to connect the first power conversion circuit and the second power conversion circuit, and includes a signal connection line, which is used for the grid side controller and the battery side Communication between controllers.
  • the first power conversion circuit and the second power conversion circuit include a number of power electronic switching devices.
  • the first power conversion circuit of the present invention realizes the AC-to-DC function, that is, realizes the AC/DC function.
  • the second power conversion circuit of the present invention The power conversion circuit realizes the isolated DC/DC function, that is, the DC conversion function, so that the converted DC voltage can be adapted to the charging voltage of the electric vehicle.
  • the second power conversion circuit of the present invention realizes the isolated AC/DC function, that is, the direct current of the energy storage battery of the electric vehicle is converted into alternating current and output to the first power conversion circuit, and the first power conversion circuit realizes AC /AC function, and transform the alternating current input from the second power conversion circuit into alternating current suitable for electric appliances.
  • the first power conversion circuit and the second power conversion circuit realize the bidirectional flow of energy, and convert the energy stored in the power battery of the electric vehicle into an AC voltage that can match the electric load.
  • the standard power supply plug integrated outside the charging control box it provides For external electrical equipment.
  • the power electronic conversion device and the corresponding control circuit are integrated inside the charger. Compared with traditional charging equipment, it can directly charge the power battery of electric vehicles without the participation of on-board chargers or charging piles. It is small in size, light in weight, and high in efficiency. It generates less heat, which saves the volume and cost of the equipment, and is easy to carry. At the same time, it can also have the function of bidirectional power conversion to provide backup power for electrical equipment.
  • a soft start circuit is provided inside the charging control box, the soft start circuit is connected between the EMC filter and the first power conversion circuit, a main power switch is provided inside the charging gun head, and the main power The switch is connected between the second power conversion circuit and the fourth port, and is electrically connected with the battery-side controller.
  • a leakage current detection and insulation detection circuit is provided inside the charging control box, and the leakage current detection and insulation detection circuit is connected between the soft start circuit and the first power conversion circuit, and is electrically connected to the grid side controller , the purpose of the present invention is to set the leakage current detection and insulation detection circuit and the insulation detection circuit to monitor the working process of the charger, and send a prompt when the charger leaks, so as to cut off the working circuit of the charger and improve the safety of the charger.
  • the exterior of the charging control box includes control buttons for controlling the start, stop of charging and stop of discharge of the charger.
  • the control button of the present invention is arranged outside the charging control box, and is provided with a clear mark, which is convenient for the user to select the function of the charger.
  • the first port of the charging control box is connected to a standard plug through a cable, and the standard plug is used to connect to a standard socket to supply power to the charger.
  • the first port of the charging control box is connected with a standard plug for connecting to a standard socket to supply power to the charger.
  • a portable electric vehicle charger comprising:
  • the charging gun head its outer surface contains the fifth port connected to the power plug and the DC power supply port connected to the electric vehicle, and its interior includes an EMC filter, a soft start circuit, a first power conversion circuit, and a second power conversion circuit connected in sequence circuit, a main power switch, the fifth port is connected to the EMC filter, the main power switch is connected to the DC power supply port connected to the electric vehicle, the soft start circuit and the first power conversion circuit are electrically connected to the grid side controller , the second power conversion circuit and the main power switch are electrically connected to the battery-side controller, and the grid-side controller and the battery-side controller are connected in communication;
  • the cable is used to connect the power plug and the fifth port, and contains a power connection line inside;
  • Power plug for connecting to a standard outlet connected to the mains.
  • the invention integrates the power conversion device in the inner space of the charging gun, moves the circuit originally outside the charging gun to the inside of the charging gun, fully utilizes the inner space of the charging gun, saves cost and volume, and is easy to carry.
  • the power plug is a male-female conversion plug.
  • the male-female conversion plug When the charger is charging in the forward direction, the male-female conversion plug is converted into a male plug and connected to a standard socket connected to the power grid to provide AC voltage.
  • the male-female conversion plug When the charger is discharging in the reverse direction , The male-female conversion plug is converted into a female socket, which is used to connect with the power supply plug of the external AC electrical equipment.
  • a leakage current detection and insulation detection circuit and an insulation detection circuit are provided inside the charging gun head, the leakage current detection and insulation detection circuit is connected between the soft start circuit and the first power conversion circuit, and the insulation detection The circuit is connected to the main power switch, the leakage current detection and insulation detection circuit is electrically connected to the grid side controller, and the insulation detection circuit is electrically connected to the battery side controller.
  • the exterior of the charging gun head includes control buttons for controlling the start, stop of charging and stop of discharge of the charger.
  • the beneficial effect of the present invention is: the power electronic conversion device and the corresponding control circuit are integrated in the charger, and compared with the traditional charging equipment, it can directly charge the power battery of the electric vehicle without the participation of the on-board charger or the charging pile, and the volume is small , light weight, high efficiency, and less heat generation, which saves equipment volume and cost, and is easy to carry. At the same time, it can also have a two-way power conversion function to provide backup power for electrical equipment.
  • Fig. 1 is the overall structure figure of embodiment 1;
  • Fig. 2 is the circuit configuration diagram of embodiment 1;
  • Fig. 3 is the overall structure figure of embodiment 3;
  • FIG. 4 is a circuit configuration diagram of Embodiment 3.
  • FIG. 4 is a circuit configuration diagram of Embodiment 3.
  • This embodiment proposes a portable electric vehicle charger, which includes with reference to FIG. 1:
  • the charging control box has a first port connected to the power grid and a second port connected to the charging gun head on its outer surface, and an EMC filter connected to the first port is provided inside it, and the EMC filter is connected to the first power A conversion circuit, the first power conversion circuit is electrically connected to a grid-side controller, and is controlled by the grid-side controller to convert and control the AC voltage from the grid;
  • the charging gun head has a third port connected to the charging control box on its outer surface and a fourth DC power supply port connected to the electric vehicle, and a second power conversion circuit connected to the third port inside it, and a second power conversion circuit connected to the third port.
  • the insulation detection circuit connected to the second power conversion circuit, the second power conversion circuit and the insulation detection circuit are electrically connected to a battery-side controller, and the second power conversion circuit is controlled by the battery-side controller to output a DC voltage matching the battery voltage of the electric vehicle voltage or current;
  • the cable is used to connect the second port and the third port, and contains a power connection line inside, which is used to connect the first power conversion circuit and the second power conversion circuit, and includes a signal connection line, which is used for the grid side controller and the battery side Communication between controllers.
  • the first port of the charging control box is connected with a standard plug through a cable, and the standard plug is used to connect to a standard socket to supply power for the charger.
  • the soft-start circuit and a PFC inductor inside the charging control box, and the soft-start circuit and the PFC inductor are connected between the EMC filter and the first power conversion circuit in turn.
  • There is a main power switch inside the charging gun head and the main power switch is connected to the Between the second power conversion circuit and the fourth port, and electrically connected with the battery side controller.
  • There are leakage current detection and insulation detection circuits inside the charging control box the leakage current detection and insulation detection circuits are connected between the soft start circuit and the first power conversion circuit, and are electrically connected to the grid-side controller, and the charging control box contains a control circuit outside the charging control box.
  • the button is used to control the start, stop charging and stop discharging of the charger.
  • the control button of the present invention is arranged outside the charging control box, and is provided with a clear mark, which is convenient for the user to select the function of the charger.
  • the grid-side controller is also connected with the grid-side auxiliary power supply, keypad, dry battery and sleep wake-up circuit.
  • the first power conversion circuit can take high-voltage power to the grid-side auxiliary power supply. Controller power supply.
  • the charging gun head is also equipped with an auxiliary power supply on the battery side and a communication controller.
  • the communication controller is electrically connected to the controller on the battery side for communication with the electric vehicle.
  • the auxiliary power supply on the battery side supplies power to the communication controller.
  • the high-voltage battery of the electric vehicle takes power to the auxiliary power supply on the battery side for charging.
  • the model of the grid-side controller is TMS320F280025
  • the model of the battery-side controller is TMS320F280025
  • the first power conversion circuit is provided with two SiC MOS transistors, the model of which is C3M0120065K, 2 An insulated gate bipolar transistor IGBT, the model is GRW60TS65EHR, an AL electrolytic capacitor, the model is 450V 120uF 8pcs, the second power conversion circuit has 4 transistors, the model is IPW65R041CFD7, and an isolation inductor.
  • One end of the PFC inductor is connected in parallel with the source of the silicon carbide transistor D1 and the drain of the silicon carbide transistor D2, and the drain of the silicon carbide transistor D1, the collector of the insulated gate bipolar transistor D3, and one end of the AL electrolytic capacitor C1 are connected in parallel , and connected to the drain of the transistor D5 through a cable, the source of the silicon carbide transistor D2, the emitter of the insulated gate bipolar transistor D4, and the other end of the AL electrolytic capacitor C1 are connected in parallel, and connected to the transistor D6 through a cable
  • the source of the insulated gate bipolar transistor D3 and the collector of the insulated gate bipolar transistor D4 are connected in parallel as an input or output of the first power conversion circuit.
  • the EMC filter includes a filter inductor, whose model is T21-1.5mH, and a filter capacitor, whose model is 305Vac2.2uF.
  • Capacitor C3, capacitor C4, capacitor C5, and capacitor C6 are resonant capacitors, and their models are 1000V 200nF.
  • Capacitor C7 is a film capacitor, its model is 600V 18uF. The capacitor C7 is connected with a filter inductor Lcmdc, whose model is T21-1.5mH, and the filter inductor Lcmdc is connected with an AL electrolytic capacitor, whose model is 500V 100uF.
  • the source of the transistor D5 and the drain of the transistor D6 are connected to one end of the inductor L1 in parallel, the other end of the inductor L1 is connected to one end of the isolation inductor side, and the other end of the isolation inductor side is connected to one end of the capacitor C4 and the capacitor C3.
  • the other end of the capacitor C3 is connected to the drain of the transistor D5, the other end of the capacitor C4 is connected to the source of the transistor D6, the other end of the isolation inductor is connected to one end of the inductor L2, and the other end of the inductor L2 is connected to the
  • the source of the transistor D7 is connected in parallel with the drain of the transistor D8, the other end of the isolation inductor is connected in parallel with one end of the capacitor C5 and one end of the capacitor C6, the other end of the capacitor C5 is connected with the drain of the transistor D7, and the capacitor C6
  • the other end of the transistor D8 is connected to the source of the transistor D8, the drain of the transistor D7 is used as one end of the output or input of the second power conversion circuit, and the source of the transistor D8 is used as the other end of the output or input of the second power conversion circuit, when charging When the charger is charging, it is used as the output terminal, and when the charger is discharging, it is used as the input terminal.
  • the present invention includes charging process and discharging process, and charging process comprises:
  • EMC filter The grid voltage is filtered by the EMC filter to remove high-frequency noise
  • Soft start circuit limit the charging current of the grid to the DC Bus electrolytic capacitor to realize soft start;
  • the grid side controller control the pull-in of the relay by detecting the voltage of the DC bus capacitor;
  • Leakage current detection circuit There is no need to detect leakage current during charging, and this part of the circuit does not work;
  • the first power conversion circuit through the high-frequency switching and control of the switching tube, the AC voltage from the grid is converted into a DC voltage, and the input power factor is corrected at the same time to realize the sinusoidal input current of the grid;
  • the grid side controller Real-time detection of AC voltage , current and DC side voltage, calculate the duty ratio of the switching tube, realize the closed-loop control of voltage and current, and monitor whether an overvoltage or overcurrent fault occurs and report the shutdown;
  • the second power conversion circuit Firstly, the DC voltage output by the first power conversion circuit is passed through the high-frequency inverter of the primary side switch tube to obtain high-frequency AC, and then the voltage amplitude is changed through the high-frequency transformer to achieve electrical isolation, and finally through the high-frequency transformer. Secondary side switch tube rectification to obtain a DC voltage that matches the power battery of the electric vehicle; battery side controller: real-time detection of DC output voltage and current, calculation of the duty cycle or switching rate of the switch tube, and realizing closed-loop control of voltage and current. Monitor whether there is an overvoltage or overcurrent fault and report the shutdown, and at the same time perform insulation resistance detection on the power DC output line;
  • Main power switch Pull-in relay, which transmits the DC voltage obtained by the previous stage to the DC fast charging interface, and can separate the charger from the electric vehicle in case of failure.
  • Battery side controller control the pull-in relay.
  • Communication controller communicates with the grid-side controller and battery-side controller, and communicates with the vehicle, sends the charging command of the vehicle to the grid-side controller and battery-side controller, and accepts the reported real-time voltage and current data and error code.
  • the discharge process includes:
  • Main power switch connect the high-voltage battery of the electric vehicle to the second power conversion circuit through a switch, and disconnect the charger from the electric vehicle in case of failure.
  • Battery side controller control the pull-in relay.
  • the second power conversion circuit firstly, the direct current transmitted by the main power switch is converted through the high-frequency inverter of the secondary side switch tube to obtain high-frequency alternating current, and then the voltage amplitude is changed through the high-frequency transformer to achieve electrical isolation, and finally through a The side switch tube is rectified to obtain the DC bus voltage, which provides DC input for the first power conversion circuit;
  • the battery side controller detects the battery side voltage, current and DC output voltage in real time, and calculates the duty ratio or switching ratio of the switch tube to realize Closed-loop control of output voltage and current side current, monitor whether overvoltage or overcurrent fault occurs and report shutdown;
  • the first power conversion circuit receives the DC voltage output by the second power conversion circuit, and through the high-frequency switching and control of the switch tube, and then through the LC filter, so as to output the power frequency sinusoidal voltage to supply power for AC electrical equipment; leakage current detection Circuit: This circuit detects the common-mode current of the two wires output by the AC, and obtains the leakage current after filtering, and reports it to the system; the grid side controller: detects the AC output voltage in real time, calculates the duty ratio of the switching tube, and realizes the AC output Voltage closed-loop control, and monitor whether overvoltage or overcurrent fault occurs and report shutdown, while sampling leakage current;
  • Soft-start circuit a pull-in relay, which transmits the AC voltage to the next-level circuit, and can separate the system from the AC load when a fault occurs;
  • grid-side controller a relay that controls the soft-start circuit;
  • EMC filter AC voltage is filtered by EMC filter to remove high-frequency noise, and the voltage is transmitted to electrical equipment.
  • Communication controller communicates with the grid-side controller and battery-side controller, and communicates with the vehicle, sends the charging command of the vehicle to the grid-side controller and battery-side controller, and receives the reported real-time voltage and current data and error code.
  • the cable connecting the standard plug and the charging control box is removed, and the first port of the charging control box is directly connected with a standard plug for connecting to a standard socket to supply power for the charger.
  • a standard plug for connecting to a standard socket to supply power for the charger.
  • the connection between the cable and the standard plug is often twisted or stretched, resulting in damage to the gel coat of the cable and the internal wires of the cable. If it is exposed, electric leakage and electric shock accidents are prone to occur. Therefore, the standard plug is directly integrated on the charging control box, which can avoid electric leakage and electric shock accidents caused by the use of cables, and has a longer service life.
  • a portable electric vehicle charger includes:
  • the charging gun head its outer surface includes the fifth port connected to the power plug and the DC power supply port connected to the electric vehicle, and its interior includes an EMC filter, a soft start circuit, a PFC inductor, a first power conversion circuit, and a first power conversion circuit connected in sequence.
  • the cable is used to connect the power plug and the fifth port, and contains a power connection line inside;
  • the power plug for connecting to a standard outlet connected to the mains.
  • the power plug is a male-female conversion plug.
  • the male-female conversion plug When the charger is charging forward, the male-female conversion plug is converted into a male plug, which is connected to a standard socket connected to the power grid to provide AC voltage.
  • the male-female conversion plug Converted to a female socket for connection with the power supply plug of external AC electrical equipment.
  • the charging gun head is equipped with leakage current detection and insulation detection circuit and insulation detection circuit, the leakage current detection and insulation detection circuit is connected between the soft start circuit and the first power conversion circuit, the insulation detection circuit is connected to the main power switch, the leakage current The detection and insulation detection circuit is electrically connected to the grid-side controller, and the insulation detection circuit is electrically connected to the battery-side controller.
  • There are control buttons on the outside of the charging gun head which are used to control the start, stop charging and stop discharging of the charger.
  • the model of the grid-side controller is TMS320F280025
  • the model of the battery-side controller is TMS320F280025
  • the first power conversion circuit is provided with two silicon carbide transistors SiC MOS, the model of which is C3M0120065K, 2 One insulated gate bipolar transistor IGBT, the model is GRW60TS65EHR, one AL electrolytic capacitor, the model is 450V 120uF 8pcs, the second power conversion circuit has 4 transistors, the model is IPW65R041CFD7, one isolation inductor.
  • the specific circuit connection of this embodiment removes the cables, and other detailed connection relationships refer to the analogy in FIG. 3 , which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种便携式电动汽车充电器,包括充电控制盒、充电枪头和线缆,充电控制盒设有第一功率转换电路电连接有电网侧控制器,受电网侧控制器控制,对来自电网的交流电压进行转换与控制,充电枪头设有第二功率转换电路受电池侧控制器控制,输出与电动汽车的电池电压相匹配的直流电压或电流。该充电器无需车载充电机或充电桩的参与便可直接向电动汽车动力电池充电,体积小、重量轻、发热量小,并可利用双向功率变换功能为用电设备提供备用电力。

Description

一种便携式电动汽车充电器
本申请要求于2021年5月11日提交中国专利局、申请号为202110510676.5、申请名称为“一种便携式电动汽车充电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车充电器技术领域,尤其是一种便携式电动汽车充电器。
背景技术
参考中国专利公开号为CN107565644A的一种车载充电机输出电压的调节方法、装置及电动汽车,包括以下步骤:根据待充电电池的当前电压,确定车载充电机的标定输出电压;获取车载充电机的实际输出电压;根据所述车载充电机的标定输出电压与实际输出电压之间的电压偏差值,确定所述车载充电机的电压调节方式;采用所确定的电压调节方式,对所述车载充电机的实际输出电压进行调节,其中所述电压调节方式为开关频率调节或脉宽调节。新能源电动汽车的车载充电机(OBC)将电网电压转换为匹配汽车动力电池的直流电压,为动力电池提供不同等级的充电功率。然而,车载充电机开发周期长、故障率高且对元器件有较高要求,因此增加了电动汽车的成本与故障率。如将充电设备移至车外随车携带,可降低对充电机元器件选型的要求,同时降低成本与车辆故障率,因此便携式车用充电器是未来新能源汽车充电设备的发展趋势之一。
发明内容
本发明解决了车载充电机增加了电动汽车的成本与故障率的问题,提出一种便携式电动汽车充电器,无需车载充电机或充电桩的参与便可直接向电动汽车动力电池充电,体积小、重量轻、发热量小,并可利用双向功率变换功能为用电设备提供备用电力。
为实现上述目的,提出以下技术方案:
一种便携式电动汽车充电器,包括:
充电控制盒,其外表面设有与电网相连的第一端口以及与充电枪头相连的 第二端口,在其内部设有与第一端口连接的EMC滤波器,所述EMC滤波器连接有第一功率转换电路,所述第一功率转换电路电连接有电网侧控制器,受所述电网侧控制器控制,对来自电网的交流电压进行转换与控制;
充电枪头,其外表面设有与充电控制盒相连的第三端口以及与电动汽车相连的直流供电第四端口,在其内部设有与第三端口连接的第二功率转换电路,以及与所述第二功率转换电路连接的绝缘检测电路,所述第二功率转换电路和绝缘检测电路电连接有电池侧控制器,所述第二功率转换电路受所述电池侧控制器控制,输出与电动汽车的电池电压相匹配的直流电压或电流;
线缆,用于连接第二端口和第三端口,其内部包含功率连线,用于连接第一功率转换电路和第二功率转换电路,包含信号连线,用于电网侧控制器与电池侧控制器之间的通讯。
第一功率转换电路和第二功率转换电路包含若干电力电子开关器件,在充电器充电时,本发明的第一功率转换电路实现交流转直流电功能,即实现AC/DC功能,本发明的第二功率转换电路实现隔离型DC/DC功能,即直流变换功能,使转换的直流电压与电动汽车的充电电压适配。在充电器放电时,本发明的第二功率转换电路实现隔离型AC/DC功能,即将电动汽车的储能电池的直流电转化为交流电输出到第一功率转换电路,第一功率转换电路再实现AC/AC功能,及将从第二功率转换电路输入的交流电变换为适用于用电器的交流电。第一功率转换电路和第二功率转换电路实现能量双向流动,将存储在电动汽车动力电池中的能量转换为可匹配用电负载的交流电压,通过集成在充电控制盒外部的标准供电插头,提供给外部用电设备。
将电力电子变换装置连同相应控制电路一起集成在充电器内部,与传统充电设备相比无需车载充电机或充电桩的参与便可直接向电动汽车动力电池充电,体积小、重量轻、效率高、发热少,从而节约了设备体积和成本,并便于携带,同时可兼具双向电能转换功能,为用电设备提供备用电力。
作为优选,所述充电控制盒内部设有软启电路,所述软启电路连接在EMC 滤波器和第一功率转换电路之间,所述充电枪头内部设有主功率开关,所述主功率开关连接在第二功率转换电路和第四端口之间,并与电池侧控制器电连接。
作为优选,所述充电控制盒内部设有漏电流检测与绝缘检测电路,所述漏电流检测与绝缘检测电路连接于软启电路与第一功率转换电路之间,并与电网侧控制器电连接,本发明设置漏电流检测与绝缘检测电路以及绝缘检测电路的目的是对充电器工作过程进行监控,在充电器漏电发出提示,便于切断充电器工作电路,提高充电器用电安全性。
作为优选,所述充电控制盒外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。本发明的控制按键设置在充电控制盒外部,并设有明确的标识,方便用户对充电器的功能选择。
作为优选,所述充电控制盒的第一端口通过线缆连接有标准插头,所述标准插头用于连接至标准插座,为充电器供电。
作为优选,所述充电控制盒的第一端口接有标准插头,用于连接至标准插座,为充电器供电。
一种便携式电动汽车充电器,包括:
充电枪头,其外表面包含与电源插头相连的第五端口以及与电动汽车相连的直流供电端口,其内部包括依次连接的EMC滤波器、软启电路、第一功率转换电路、第二功率转换电路、主功率开关,所述第五端口与EMC滤波器连接,所述主功率开关与电动汽车相连的直流供电端口连接,所述软启电路、第一功率转换电路电连接于电网侧控制器,所述第二功率转换电路、主功率开关电连接于电池侧控制器,所述电网侧控制器和电池侧控制器通讯连接;
线缆,用于连接电源插头和第五端口,其内部包含功率连线;
电源插头,用于连接接入电网的标准插座。
本发明将功率变换装置集成在充电枪的内部空间,将原来在充电枪外部的电路移至充电枪内部,充分利用了充电枪内部空间,节省了成本和体积,便于携带。
作为优选,所述电源插头为公母转换插头,当充电器正向充电时,公母转换插头转换为公插头,与接入电网的标准插座相连,提供交流电压,当充电器反向放电时,公母转换插头转换为母插座,用于与外部交流用电设备的供电插头连接。
作为优选,所述充电枪头内部设有漏电流检测与绝缘检测电路和绝缘检测电路,所述漏电流检测与绝缘检测电路连接在软启电路和第一功率转换电路之间,所述绝缘检测电路连接于主功率开关,所述漏电流检测与绝缘检测电路与电网侧控制器电连接,所述绝缘检测电路与电池侧控制器电连接。
作为优选,所述充电枪头外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。
本发明的有益效果是:将电力电子变换装置连同相应控制电路一起集成在充电器内部,与传统充电设备相比无需车载充电机或充电桩的参与便可直接向电动汽车动力电池充电,体积小、重量轻、效率高、发热少,从而节约了设备体积和成本,并便于携带,同时可兼具双向电能转换功能,为用电设备提供备用电力。
附图说明
图1是实施例1的整体构成图;
图2是实施例1的电路构成图;
图3是实施例3的整体构成图;
图4是实施例3的电路构成图。
具体实施方式
实施例1:
本实施例提出一种便携式电动汽车充电器,参考图1包括:
充电控制盒,其外表面设有与电网相连的第一端口以及与充电枪头相连的第二端口,在其内部设有与第一端口连接的EMC滤波器,EMC滤波器连接有第一功率转换电路,第一功率转换电路电连接有电网侧控制器,受电网侧控制器控 制,对来自电网的交流电压进行转换与控制;
充电枪头,其外表面设有与充电控制盒相连的第三端口以及与电动汽车相连的直流供电第四端口,在其内部设有与第三端口连接的第二功率转换电路,以及与第二功率转换电路连接的绝缘检测电路,第二功率转换电路和绝缘检测电路电连接有电池侧控制器,第二功率转换电路受电池侧控制器控制,输出与电动汽车的电池电压相匹配的直流电压或电流;
线缆,用于连接第二端口和第三端口,其内部包含功率连线,用于连接第一功率转换电路和第二功率转换电路,包含信号连线,用于电网侧控制器与电池侧控制器之间的通讯。充电控制盒的第一端口通过线缆连接有标准插头,标准插头用于连接至标准插座,为充电器供电。
充电控制盒内部设有软启电路和PFC电感,软启电路和PFC电感依次连接在EMC滤波器和第一功率转换电路之间,充电枪头内部设有主功率开关,主功率开关连接在第二功率转换电路和第四端口之间,并与电池侧控制器电连接。充电控制盒内部设有漏电流检测与绝缘检测电路,漏电流检测与绝缘检测电路连接于软启电路与第一功率转换电路之间,并与电网侧控制器电连接,充电控制盒外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。本发明的控制按键设置在充电控制盒外部,并设有明确的标识,方便用户对充电器的功能选择。
电网侧控制器还连接有电网侧辅助电源和按键、干电池与休眠唤醒电路,第一功率转换电路能高压取电至电网侧辅助电源,电网侧辅助电源为按键、干电池与休眠唤醒电路及电网侧控制器供电。充电枪头还设有电池侧辅助电源,和通讯控制器,通讯控制器与电池侧控制器电连接,用于与电动汽车通讯,电池侧辅助电源为通讯控制器供电,通过主功率开关能从电动汽车的高压电池取电至电池侧辅助电源充电。
本实施例的具体电路连接参考图2,电网侧控制器的型号为TMS320F280025,电池侧控制器的型号为TMS320F280025,第一功率转换电路设有2个碳化硅晶体 管SiC MOS,其型号为C3M0120065K,2个绝缘栅双极型晶体管IGBT,其型号为GRW60TS65EHR,1个AL电解电容,其型号为450V 120uF 8pcs,第二功率转换电路设有4个晶体管,其型号为IPW65R041CFD7,1个隔离电感。PFC电感的一端与碳化硅晶体管D1的源极、碳化硅晶体管D2的漏极并接,碳化硅晶体管D1的漏极、绝缘栅双极型晶体管D3的集电极、AL电解电容C1的一端并接,并通过线缆连接到晶体管D5的漏极,碳化硅晶体管D2的源极、绝缘栅双极型晶体管D4的发射极、AL电解电容C1的另一端并接,并通过线缆连接到晶体管D6的源极,绝缘栅双极型晶体管D3的发射极与绝缘栅双极型晶体管D4的集电极并接作为第一功率转换电路的一个输入端或输出端,当充电器充电时,作为输入端,当充电器放电时,作为输出端。图2中所有继电器的型号为HF105F-1/012D-1ZSTF。EMC滤波器包括滤波电感,其型号为T21-1.5mH,以及滤波电容,其型号为305Vac2.2uF。电容C3、电容C4、电容C5、电容C6为谐振电容,其型号为1000V 200nF。电容C7为薄膜电容,其型号为600V 18uF。电容C7并接有滤波电感Lcmdc,其型号为T21-1.5mH,滤波电感Lcmdc接有AL电解电容,其型号为500V 100uF。
晶体管D5的源极与晶体管D6的漏极并接与电感L1的一端,电感L1的另一端接于隔离电感一侧的一端,隔离电感一侧的另一端与电蓉C4的一端、电容C3的一端并接,电容C3的另一端与晶体管D5的漏极连接,电容C4的另一端与晶体管D6的源极连接,隔离电感另一侧的一端接有电感L2的一端,电感L2的另一端与晶体管D7的源极与晶体管D8的漏极并接,隔离电感另一侧的另一端与电容C5的一端、电容C6的一端并接,电容C5的另一端与晶体管D7的漏极连接,电容C6的另一端与晶体管D8的源极连接,晶体管D7的漏极作为第二功率转换电路的输出或输入的一端,晶体管D8的源极作为第二功率转换电路的输出或输入的另一端,当充电器充电时,作为输出端,当充电器放电时,作为输入端。晶体管D5的漏极和晶体管D6的源极之间连接有电容C2,晶体管D7的漏极和晶体管D8的源极之间连接有电容C7。
本发明包括充电过程和放电过程,充电过程包括:
EMC滤波器:电网电压经EMC滤波器滤除高频噪声,
软启电路:限制电网对直流Bus电解电容的充电电流,实现软启;电网侧控制器:通过检测直流母线电容电压,控制继电器吸合;
漏电流检测电路:充电时无需检测漏电流,该部分电路不工作;
第一功率转换电路:通过开关管的高频切换与控制,将从电网来的AC电压转化为直流电压,同时校正输入功率因数,实现电网输入电流正弦化;电网侧控制器:实时检测AC电压、电流以及直流侧电压,计算开关管的占空比,实现电压电流闭环控制,同时监测是否发生过压或过流故障并上报停机;
第二功率转换电路:先将第一功率转换电路输出的直流电压通过一次侧开关管的高频逆变,得到高频交流,然后经高频变压器改变电压幅值并实现电气隔离,最后再经二次侧开关管整流,得到与电动汽车动力电池相匹配的直流电压;电池侧控制器:实时检测直流输出电压、电流,计算开关管的占空比或开关颊率,实现电压电流闭环控制,监测是否发生过压或过流故障并上报停机,同时对功率直流输出线路进行绝缘电阻检测;
主功率开关:吸合继电器,将前级获得的直流电压传送至直流快充接口,在发生故障时可以将充电器与电动汽车脱离。电池侧控制器:控制吸合继电器。
通讯控制器:与电网侧控制器和电池侧控制器通讯,并与整车通讯,将整车的充电指令下发至电网侧控制器和电池侧控制器,并接受上报的实时电压电流数据与故障代码。
放电过程包括:
主功率开关:将电动车高压电池经开关连接至第二功率转换电路,并在发生故障时可以将充电器与电动汽车脱离,电池侧控制器:控制吸合继电器。
第二功率转换电路:先将主功率开关传送来的直流电经二次侧开关管的高频逆变,得到高频交流,然后经高频变压器改变电压幅值并实现电气隔离,最后再经一次侧开关管整流,得到直流母线电压,为第一功率转换电路提供直流输入;电池侧控制器:实时检测电池侧电压、电流与直流输出电压,计算开关管的 占空比或开关颊率,实现输出电压与电流侧电流闭环控制,监测是否发生过压或过流故障并上报停机;
第一功率转换电路:接收第二功率转换电路输出的直流电压,并通过开关管的高频切换与控制,再经过LC滤波,从而输出工频正弦电压,为交流用电设备供电;漏电流检测电路:该电路检测AC输出的两根导线的共模电流,并经过滤波处理后得到漏电流,上报系统;电网侧控制器:实时检测AC输出电压,计算开关管的占空比,实现AC输出电压闭环控制,并监测是否发生过压或过流故障并上报停机,同时采样漏电流;
软启电路:吸合继电器,将AC电压传送至下一级电路,在发生故障时可将系统与交流负载脱离;电网侧控制器:控制软启电路的继电器;
EMC滤波器:AC电压经EMC滤波器滤除高频噪声,将电压传送至用电设备。
通讯控制器:与电网侧控制器和电池侧控制器通讯,并与整车通讯,将整车的充电指令下发至电网侧控制器和电池侧控制器,并接收上报的实时电压电流数据与故障代码。
实施例2:
本实施例在实施例1的基础上,去除了标准插头与充电控制盒之间连接的线缆,充电控制盒的第一端口直接接有标准插头,用于连接至标准插座,为充电器供电。实施例1中标准插头与充电控制盒之间存在线缆,在长期使用过程中,线缆与标准插头之间连接处经常扭动或拉伸,导致线缆胶衣破损,使线缆内部导线裸露,容易发生漏电触电的事故,因此将标准插头直接集成在充电控制盒上,能够避免因线缆使用导致的漏电触电的事故,使用寿命更长。
实施例3:
本实施例在实施例1的基础上,本发明将功率变换装置集成在充电枪的内部空间,将原来在充电枪外部的电路移至充电枪内部,充分利用了充电枪内部空间,节省了成本和体积,便于携带。参考图3,一种便携式电动汽车充电器,包括:
充电枪头,其外表面包含与电源插头相连的第五端口以及与电动汽车相连的直流供电端口,其内部包括依次连接的EMC滤波器、软启电路、PFC电感、第一功率转换电路、第二功率转换电路、主功率开关,第五端口与EMC滤波器连接,主功率开关与电动汽车相连的直流供电端口连接,软启电路、第一功率转换电路电连接于电网侧控制器,第二功率转换电路、主功率开关电连接于电池侧控制器,电网侧控制器和电池侧控制器通讯连接;
线缆,用于连接电源插头和第五端口,其内部包含功率连线;
电源插头,用于连接接入电网的标准插座。电源插头为公母转换插头,当充电器正向充电时,公母转换插头转换为公插头,与接入电网的标准插座相连,提供交流电压,当充电器反向放电时,公母转换插头转换为母插座,用于与外部交流用电设备的供电插头连接。充电枪头内部设有漏电流检测与绝缘检测电路和绝缘检测电路,漏电流检测与绝缘检测电路连接在软启电路和第一功率转换电路之间,绝缘检测电路连接于主功率开关,漏电流检测与绝缘检测电路与电网侧控制器电连接,绝缘检测电路与电池侧控制器电连接。充电枪头外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。
本实施例的具体电路连接参考图4,电网侧控制器的型号为TMS320F280025,电池侧控制器的型号为TMS320F280025,第一功率转换电路设有2个碳化硅晶体管SiC MOS,其型号为C3M0120065K,2个绝缘栅双极型晶体管IGBT,其型号为GRW60TS65EHR,1个AL电解电容,其型号为450V 120uF 8pcs,第二功率转换电路设有4个晶体管,其型号为IPW65R041CFD7,1个隔离电感。本实施例的具体电路连接相较于实施例1,去除了线缆,其他详细连接关系参考图3类比,不在累述。

Claims (10)

  1. 一种便携式电动汽车充电器,其特征是,包括:
    充电控制盒,其外表面设有与电网相连的第一端口以及与充电枪头相连的第二端口,在其内部设有与第一端口连接的EMC滤波器,所述EMC滤波器连接有第一功率转换电路,所述第一功率转换电路电连接有电网侧控制器,受所述电网侧控制器控制,对来自电网的交流电压进行转换与控制;
    充电枪头,其外表面设有与充电控制盒相连的第三端口以及与电动汽车相连的直流供电第四端口,在其内部设有与第三端口连接的第二功率转换电路,以及与所述第二功率转换电路连接的绝缘检测电路,所述第二功率转换电路和绝缘检测电路电连接有电池侧控制器,所述第二功率转换电路受所述电池侧控制器控制,输出与电动汽车的电池电压相匹配的直流电压或电流;
    线缆,用于连接第二端口和第三端口,其内部包含功率连线,用于连接第一功率转换电路和第二功率转换电路,包含信号连线,用于电网侧控制器与电池侧控制器之间的通讯。
  2. 根据权利要求1所述的一种便携式电动汽车充电器,其特征是,所述充电控制盒内部设有软启电路,所述软启电路连接在EMC滤波器和第一功率转换电路之间,所述充电枪头内部设有主功率开关,所述主功率开关连接在第二功率转换电路和第四端口之间,并与电池侧控制器电连接。
  3. 根据权利要求2所述的一种便携式电动汽车充电器,其特征是,所述充电控制盒内部设有漏电流检测与绝缘检测电路,所述漏电流检测与绝缘检测电路连接于软启电路与第一功率转换电路之间,并与电网侧控制器电连接。
  4. 根据权利要求1所述的一种便携式电动汽车充电器,其特征是,所述充电控制盒外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。
  5. 根据权利要求1所述的一种便携式电动汽车充电器,其特征是,所述充电控制盒的第一端口通过线缆连接有标准插头,所述标准插头用于连接至标准插座,为充电器供电。
  6. 根据权利要求1所述的一种便携式电动汽车充电器,其特征是,所述充电控制盒的第一端口接有标准插头,用于连接至标准插座,为充电器供电。
  7. 一种便携式电动汽车充电器,其特征在于,包括:
    充电枪头,其外表面包含与电源插头相连的第五端口以及与电动汽车相连的直流供电端口,其内部包括依次连接的EMC滤波器、软启电路、第一功率转换电路、第二功率转换电路、主功率开关,所述第五端口与EMC滤波器连接,所述主功率开关与电动汽车相连的直流供电端口连接,所述软启电路、第一功率转换电路电连接于电网侧控制器,所述第二功率转换电路、主功率开关电连接于电池侧控制器,所述电网侧控制器和电池侧控制器通讯连接;
    线缆,用于连接电源插头和第五端口,其内部包含功率连线;
    电源插头,用于连接接入电网的标准插座。
  8. 根据权利要求7所述的一种便携式电动汽车充电器,其特征是,所述电源插头为公母转换插头,当充电器正向充电时,公母转换插头转换为公插头,与接入电网的标准插座相连,提供交流电压,当充电器反向放电时,公母转换插头转换为母插座,用于与外部交流用电设备的供电插头连接。
  9. 根据权利要求7所述的一种便携式电动汽车充电器,其特征是,所述充电枪头内部设有漏电流检测与绝缘检测电路和绝缘检测电路,所述漏电流检测与绝缘检测电路连接在软启电路和第一功率转换电路之间,所述绝缘检测电路连接于主功率开关,所述漏电流检测与绝缘检测电路与电网侧控制器电连接, 所述绝缘检测电路与电池侧控制器电连接。
  10. 根据权利要求7所述的一种便携式电动汽车充电器,其特征是,所述充电枪头外部包含控制按键,用于控制充电器的启动、停止充电及停止放电。
PCT/CN2022/091563 2021-05-11 2022-05-07 一种便携式电动汽车充电器 WO2022237697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22806663.5A EP4223580A1 (en) 2021-05-11 2022-05-07 Portable charger for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110510676.5 2021-05-11
CN202110510676.5A CN112937331B (zh) 2021-05-11 2021-05-11 一种便携式电动汽车充电器

Publications (1)

Publication Number Publication Date
WO2022237697A1 true WO2022237697A1 (zh) 2022-11-17

Family

ID=76233743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091563 WO2022237697A1 (zh) 2021-05-11 2022-05-07 一种便携式电动汽车充电器

Country Status (3)

Country Link
EP (1) EP4223580A1 (zh)
CN (1) CN112937331B (zh)
WO (1) WO2022237697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937331B (zh) * 2021-05-11 2021-10-01 浙江富特科技股份有限公司 一种便携式电动汽车充电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565644A (zh) 2017-09-25 2018-01-09 北京新能源汽车股份有限公司 一种车载充电机输出电压的调节方法、装置及电动汽车
CN110228368A (zh) * 2018-03-05 2019-09-13 保时捷股份公司 集成电源箱
CN111204236A (zh) * 2018-11-22 2020-05-29 保时捷股份公司 用于车辆的充电设备和具有充电设备的车辆
CN111907354A (zh) * 2020-06-15 2020-11-10 奇瑞新能源汽车股份有限公司 一种车载电源转换与分配单元集成装置
CN112564058A (zh) * 2019-09-10 2021-03-26 奥迪股份公司 具有监控和诊断系统的、电连接的ac充电器
CN112937331A (zh) * 2021-05-11 2021-06-11 杭州富特科技股份有限公司 一种便携式电动汽车充电器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108482152B (zh) * 2018-03-26 2020-08-18 珠海小可乐科技有限公司 便携式充电器及其控制器
CN108493718A (zh) * 2018-04-02 2018-09-04 威海市泓淋电力技术股份有限公司 一种带外接功能的充放电枪
CN109501613A (zh) * 2018-11-19 2019-03-22 四川瑞可达连接系统有限公司 双向输出充电枪
US11186191B2 (en) * 2018-12-07 2021-11-30 Delta Electronics, Inc. Charging device for electric vehicle
CN210416259U (zh) * 2019-06-10 2020-04-28 广东高斯宝电气技术有限公司 一种便携式电动汽车的直流充电装置
CN110949156A (zh) * 2019-12-31 2020-04-03 深圳市高斯宝电气技术有限公司 一种电动汽车的小功率直流充电器
CN111525356A (zh) * 2020-05-06 2020-08-11 东风小康汽车有限公司重庆分公司 兼容对外放电和对车充电功能的充电枪及充电装置
CN111890962A (zh) * 2020-08-25 2020-11-06 威海市泓淋电力技术股份有限公司 一种电动汽车与家庭负荷电力互动的充电枪及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565644A (zh) 2017-09-25 2018-01-09 北京新能源汽车股份有限公司 一种车载充电机输出电压的调节方法、装置及电动汽车
CN110228368A (zh) * 2018-03-05 2019-09-13 保时捷股份公司 集成电源箱
CN111204236A (zh) * 2018-11-22 2020-05-29 保时捷股份公司 用于车辆的充电设备和具有充电设备的车辆
CN112564058A (zh) * 2019-09-10 2021-03-26 奥迪股份公司 具有监控和诊断系统的、电连接的ac充电器
CN111907354A (zh) * 2020-06-15 2020-11-10 奇瑞新能源汽车股份有限公司 一种车载电源转换与分配单元集成装置
CN112937331A (zh) * 2021-05-11 2021-06-11 杭州富特科技股份有限公司 一种便携式电动汽车充电器

Also Published As

Publication number Publication date
CN112937331B (zh) 2021-10-01
EP4223580A1 (en) 2023-08-09
CN112937331A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
US10333398B2 (en) Charging apparatus
CN107650729A (zh) 新能源汽车的高压电器的预充电装置
CN203674793U (zh) 在线式工频不间断电源
JP6708259B2 (ja) 電源システム
CN104358650B (zh) 柴油机启动与蓄电池充电一体化装置及内燃机车
KR20150073291A (ko) 전력 변환 장치
CN103743069A (zh) 一种新能源变频空调及其控制方法
WO2019095995A1 (zh) 大功率便携式用电设备及其电源控制装置及方法
CN104811020A (zh) 电源系统及供电方法
WO2022237697A1 (zh) 一种便携式电动汽车充电器
CN112350389A (zh) 一种车载充电机与dc/dc的集成控制电路
CN104201761A (zh) 一种光伏与通信电源组合使用的供电系统
CN201797365U (zh) 一种电动汽车蓄电池充电机
CN206962730U (zh) 集成pfc高压半桥谐振同步整流ac/dc电源模块
JP5673504B2 (ja) 車両の充電装置
CN205430087U (zh) 高可靠性的单相双向dc-ac变换器
CN111130198B (zh) 一种电动汽车的充电系统及方法
CN114537169A (zh) 大功率无线充电机及其车载端供电电路和控制方法
CN204068409U (zh) 一种光伏与通信电源组合使用的供电系统
Hattori et al. Performance characteristics of high power density battery charger for plug-in micro EV
CN209151004U (zh) 用于通用发动机的辅助电源电路
CN219458727U (zh) 一种直流充电枪电路
CN206510772U (zh) 一种基于准z源变换的车载充电机
CN207542867U (zh) 一种给电动汽车充电的移动充电装置
CN214412383U (zh) 地铁工程车电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022806663

Country of ref document: EP

Effective date: 20230406

NENP Non-entry into the national phase

Ref country code: DE