WO2022237630A1 - 一种定焦镜头 - Google Patents

一种定焦镜头 Download PDF

Info

Publication number
WO2022237630A1
WO2022237630A1 PCT/CN2022/091075 CN2022091075W WO2022237630A1 WO 2022237630 A1 WO2022237630 A1 WO 2022237630A1 CN 2022091075 W CN2022091075 W CN 2022091075W WO 2022237630 A1 WO2022237630 A1 WO 2022237630A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
fixed
lens group
focus
power
Prior art date
Application number
PCT/CN2022/091075
Other languages
English (en)
French (fr)
Inventor
何剑炜
姚晨
张磊
Original Assignee
东莞市宇瞳光学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市宇瞳光学科技股份有限公司 filed Critical 东莞市宇瞳光学科技股份有限公司
Priority to SE2351315A priority Critical patent/SE2351315A1/en
Publication of WO2022237630A1 publication Critical patent/WO2022237630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the embodiments of the present application relate to lens technologies, for example, to a fixed-focus lens.
  • the embodiment of the present application provides a fixed-focus lens.
  • the fixed-focus lens has the characteristics of wide-angle, high-definition, and super-large target surface. -40°C-80°C operating conditions.
  • An embodiment of the present application provides a fixed-focus lens, including a first lens group with negative refractive power, a second lens group with negative refractive power, and a third lens group with positive refractive power arranged in sequence along the optical axis from the object side to the image side.
  • the first lens group, the fourth lens group, the fifth lens group and the sixth lens group all include glass spherical lenses, and the fourth lens group and the fifth lens group form a cemented Lens; the second lens group, the third lens group, the seventh lens group and the eighth lens group all include plastic aspheric lenses.
  • FIG. 1 is a schematic structural diagram of a fixed-focus lens provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another fixed-focus lens provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of spherical aberration of a fixed-focus lens provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of a light fan of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 5 is a spot diagram of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of field curvature distortion of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another fixed-focus lens provided in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of spherical aberration of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a light fan of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 10 is a spot diagram of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of field curvature distortion of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of spherical aberration of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a light fan of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 14 is a spot diagram of a fixed-focus lens provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of field curvature distortion of a fixed-focus lens provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a fixed-focus lens provided in Embodiment 1 of the present application.
  • the fixed-focus lens provided by the embodiment of the present application includes a first lens group 1 with negative refractive power, a second lens group 2 with negative refractive power, and a positive focal power lens group arranged in sequence along the optical axis from the object side to the image side
  • the first lens group 1, the fourth lens group 4, the fifth lens group 5 and the sixth lens group 6 all include glass spherical lenses
  • the fourth lens group 4 and the fifth lens group 5 constitute a cemented lens
  • the second lens group 2, the third lens group 3, the seventh lens group 7 and the eighth lens group 8 all include plastic aspheric lenses.
  • the focal power is equal to the difference between the image beam convergence and the object beam convergence, which characterizes the ability of the optical system to deflect light.
  • the focal power is positive, the refraction of light is converging; when the focal power is negative, the refraction of light is divergent.
  • Optical power can be applied to characterize a certain refraction surface of a lens (that is, a surface of the lens), can be applied to characterize a certain lens, and can also be used to characterize a system formed by multiple lenses (that is, a lens group).
  • each lens group includes at least one lens
  • FIG. 1 schematically shows that the sixth lens group 6 includes two lenses.
  • each lens group can be fixed in a lens barrel, and by rationally allocating the optical power of the lens, the lens can have a large amount of light.
  • the total optical length (Total Track Length, TTL) and optical back focal length (Back Focal Length, BFL) of the fixed-focus lens provided in this embodiment satisfy TTL/BFL ⁇ 12, and the aperture F can reach 1.0-1.2, supporting 1 /1.2-inch image plane, the Field of View (FOV) range can reach 120° ⁇ 150°, and the ratio of the image plane diameter IH to the entrance pupil diameter N satisfies 1.4 ⁇ IH/N ⁇ 3.2.
  • the technical solution of this embodiment is used to control the incident angle of the optical system and correct field curvature by setting the first lens group with negative refractive power; it is used to correct off-axis aberration by setting the second lens group with negative refractive power ;
  • the third lens group with positive refractive power it is used to focus the light beam in front;
  • the fourth lens group and the fifth lens group are set in a cemented form, which is used to correct off-axis chromatic aberration and has the key role of not defocusing at high and low temperatures , to ensure the normal use of the lens at high and low temperatures from -40°C to 80°C without virtual focus;
  • the seventh lens group and the eighth lens group are used to correct off-axis aberrations such as field curvature, coma, and astigmatism;
  • the entire lens guarantees this
  • the focal power of the optical system is distributed in approximate proportions to ensure the balance of the incident angles of the front and rear groups of lenses, so as to reduce the sensitivity of the lenses and improve the possibility of production
  • the first lens group 1 includes a first lens 10 with negative refractive power
  • the second lens group 2 includes a second lens 20 with negative refractive power
  • the three lens groups 3 include the third lens 30 of positive refractive power
  • the fourth lens group 4 includes the fourth lens 40 of positive refractive power
  • the fifth lens group 5 includes the fifth lens 50 of positive refractive power
  • the sixth lens group 6 includes The sixth lens 60 with positive refractive power and the seventh lens 61 with negative refractive power.
  • the seventh lens group 7 includes the eighth lens 70 with negative refractive power.
  • the eighth lens group 8 includes the ninth lens 80 with positive refractive power.
  • An aperture 9 is arranged between the second lens 2 and the third lens 3 .
  • the focal lengths of the first lens 10 to the ninth lens 80 and the focal length of the fixed-focus lens satisfy:
  • f1, f2, f3, f4, f5, f6, f7, f8 and f9 represent the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, the fifth lens 50, the The focal lengths of the six lenses 60, the seventh lens 61, the eighth lens 70, and the ninth lens 80, f represent the focal length of the fixed-focus lens.
  • the fixed-focus lens can meet the requirements of performance while satisfying the large amount of light.
  • the sixth lens 60 and the seventh lens 61 in the sixth lens group 6 are also set in the form of cementing, together with the fourth lens 40 and the fifth lens 50, they can correct off-axis chromatic aberration and have high and low temperature The function of defocusing improves the performance of the lens.
  • the refractive indices of the first lens 10, the fourth lens 40, the fifth lens 50, the seventh lens 61 and the eighth lens 70 satisfy:
  • n1, n4, n5, n7, and n8 represent the refractive indices of the first lens 10, the fourth lens 40, the fifth lens 50, the seventh lens 61, and the eighth lens 70, respectively.
  • the fixed-focus lens provided in this embodiment adopts a glass-plastic hybrid structure design of five glass spherical lenses and four plastic aspheric surfaces.
  • the glass spherical lens is easy to process
  • the plastic aspheric lens is easy to process.
  • the cost is effectively controlled while ensuring the performance of the optical system.
  • the maximum supported target surface reaches 1/1.2 inch, 8 million resolution
  • the maximum supported aperture is F1.0
  • the maximum field of view can reach 150°, which can meet the imaging needs of various application scenarios.
  • Fig. 2 is a schematic structural diagram of another fixed-focus lens provided in Embodiment 3 of the present application.
  • the first lens group 1 includes a first lens 10 with negative refractive power
  • the second lens group 2 includes The second lens 20 with negative refractive power
  • the third lens group 3 includes the third lens 30 with positive refractive power
  • the fourth lens group 4 includes the fourth lens 40 with negative refractive power
  • the fifth lens group 5 includes the positive refractive power
  • the fifth lens 50 of the sixth lens group 6 includes the sixth lens 60 of positive refractive power
  • the seventh lens group 7 includes the seventh lens 70 of negative refractive power
  • the eighth lens group 8 includes the eighth lens 80 of positive refractive power
  • a stop 9 is provided between the third lens 30 and the fourth lens 40 .
  • the focal lengths of the first lens 10 to the eighth lens 80 and the focal length of the fixed-focus lens satisfy:
  • f1, f2, f3, f4, f5, f6, f7 and f8 respectively represent the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, the fifth lens 50, and the sixth lens 60.
  • the focal length of the seventh lens 70 and the eighth lens 80, f represents the focal length of the fixed-focus lens.
  • the fixed-focus lens can meet the requirements of performance while satisfying the large amount of light.
  • the refractive indices of the first lens 10, the fourth lens 40, the fifth lens 50, the seventh lens 70 and the eighth lens 80 satisfy:
  • n1, n4, n5, n7, and n8 represent the refractive indices of the first lens 10, the fourth lens 40, the fifth lens 50, the seventh lens 70, and the eighth lens 80, respectively.
  • the fixed-focus lens provided in this embodiment adopts a glass-plastic hybrid structure design of four glass spherical lenses and four plastic aspheric surfaces.
  • the glass spherical lens is easy to process
  • the plastic aspheric lens is easy to process.
  • the cost is effectively controlled while ensuring the performance of the optical system.
  • the maximum supported target surface reaches 1/1.2 inch, 8 million resolution
  • the maximum supported aperture is F1.0
  • the maximum field of view can reach 150°, which can meet the imaging needs of various application scenarios.
  • the surface type of the aspheric lens satisfies the formula:
  • z represents the distance vector from the apex of the aspheric surface when the aspheric surface is at a position of height y along the optical axis
  • r represents the radius of curvature of the surface center
  • k represents the conic coefficient
  • A, B, C, D, E, F represent high-order aspheric coefficients respectively.
  • Table 1 shows a parameter design value of the fixed-focus lens corresponding to Figure 1:
  • CCD Charge Coupled Device
  • CMOS complementary metal oxide semiconductor
  • Table 2 is a design value of the fixed-focus lens provided in Table 1:
  • the surface numbers in Table 2 are numbered according to the surface order of each lens, wherein “1" represents the front surface of the first lens 10 (the surface near the object side), and “2" represents the rear surface of the first lens 10 ( surface close to the image side), and so on, wherein, “9” is the cemented surface of the fourth lens 40 and the fifth lens 50, “12” is the cemented surface of the sixth lens 60 and the seventh lens 61; “STO "Represents the aperture 9; the radius of curvature represents the degree of curvature of the lens surface, a positive value represents that the surface is curved to the image plane side, and a negative value represents that the surface is curved to the object plane side, where "PL” represents that the surface is a plane, and the curvature The radius is infinite (indicated by "Infinity”); the thickness represents the central axial distance from the current surface to the next surface; the refractive index represents the deflection ability of the material between the current surface and the next surface for light, and the space represents the current position is Air
  • table 3 is aspherical surface type parameter in the present embodiment:
  • Table 3 A design value of the aspheric coefficient in the fixed-focus lens
  • -1.12E-03 means that the coefficient A of surface number 3 is -1.12 ⁇ 10 -3 .
  • FIG. 3 is a schematic diagram of the spherical aberration of a fixed-focus lens provided by the embodiment of the application
  • Figure 4 is a schematic diagram of the light fan of a fixed-focus lens provided by the embodiment of the application
  • Figure 5 is a schematic diagram of a fixed-focus lens provided by the embodiment of the application
  • FIG. 6 is a schematic diagram of field curvature distortion of a fixed-focus lens provided by the embodiment of the present application. It can be seen from FIGS. 3-6 that the fixed-focus lens provided by this embodiment has good imaging capability.
  • FIG. 7 is a schematic structural diagram of another fixed-focus lens provided in Embodiment 2 of the present application. Similar to the above-mentioned embodiment, Table 4 shows a parameter design value of the fixed-focus lens corresponding to FIG. 7:
  • Table 5 is a design value of the fixed-focus lens provided in Table 4:
  • Table 5 A design value of a fixed-focus lens
  • the surface numbers in Table 5 are numbered according to the surface order of each lens, wherein “1" represents the front surface of the first lens 10 (the surface near the object side), and “2" represents the rear surface of the first lens 10 ( surface close to the image side), and so on, wherein, “9” is the cemented surface of the fourth lens 40 and the fifth lens 50, “12” is the cemented surface of the sixth lens 60 and the seventh lens 61; “STO "Represents the aperture 9; the radius of curvature represents the degree of curvature of the lens surface, a positive value represents that the surface is curved to the image plane side, and a negative value represents that the surface is curved to the object plane side, where "PL” represents that the surface is a plane, and the curvature The radius is infinite (indicated by "Infinity”); the thickness represents the central axial distance from the current surface to the next surface; the refractive index represents the deflection ability of the material between the current surface and the next surface for light, and the space represents the current position is Air
  • table 6 is aspheric surface type parameter in the present embodiment:
  • Table 6 A design value of the aspheric coefficient in the fixed-focus lens
  • -1.24E-03 means that the coefficient A of surface number 3 is -1.24 ⁇ 10 -3 .
  • FIG. 8 is a schematic diagram of spherical aberration of a fixed-focus lens provided in an embodiment of the present application
  • Fig. 9 is a schematic diagram of a light fan of a fixed-focus lens provided in an embodiment of the present application
  • Fig. 10 is a schematic diagram of a fixed-focus lens provided in an embodiment of the present application
  • FIG. 11 is a schematic diagram of field curvature distortion of a fixed-focus lens provided by the embodiment of the present application. It can be seen from FIGS. 8 to 11 that the fixed-focus lens provided by this embodiment has good imaging capability.
  • Table 7 shows a parameter design value of the fixed-focus lens corresponding to Figure 2:
  • Table 8 shows a design value of the fixed-focus lens provided in Table 7:
  • the surface numbers in Table 8 are numbered according to the surface order of each lens, wherein “1" represents the front surface of the first lens 10 (the surface near the object side), and “2” represents the rear surface of the first lens 10 ( surface close to the image side), and so on, wherein, “9” is the glued surface of the fourth lens 40 and the fifth lens 50; “STO” represents the stop 9; the radius of curvature represents the degree of curvature of the lens surface, and a positive value It means that the surface is bent to the side of the image plane, and a negative value means that the surface is bent to the side of the object plane, where "PL” means that the surface is a plane, and the radius of curvature is infinite (indicated by "Infinity”); the thickness represents the current surface to the bottom The axial distance of the center of a surface, the refractive index represents the deflection ability of the material between the current surface and the next surface to light, a blank space represents the current position is air, and the refractive index is 1; the K value
  • table 9 is aspherical surface type parameter in the present embodiment:
  • Table 9 A design value of the aspheric coefficient in the fixed-focus lens
  • -1.18E-03 means that the coefficient A of surface number 3 is -1.18 ⁇ 10 -3 .
  • FIG. 12 is a schematic diagram of the spherical aberration of a fixed-focus lens provided by the embodiment of the present application
  • Figure 13 is a schematic diagram of the light fan of a fixed-focus lens provided by the embodiment of the present application
  • Figure 14 is a schematic diagram of a fixed-focus lens provided by the embodiment of the present application
  • FIG. 15 is a schematic diagram of field curvature distortion of a fixed-focus lens provided by the embodiment of the present application. It can be seen from FIGS. 12 to 15 that the fixed-focus lens provided by this embodiment has good imaging capability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种定焦镜头,包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组(1)、负光焦度的第二透镜组(2)、正光焦度的第三透镜组(3)、正光焦度或负光焦度的第四透镜组(4)、正光焦度的第五透镜组(5)、正光焦度的第六透镜组(6)、负光焦度的第七透镜组(7)以及正光焦度的第八透镜组(8);第一透镜组(1)、第四透镜组(4)、第五透镜组(5)及第六透镜组(6)均包括玻璃球面透镜,第四透镜组(4)和第五透镜组(5)构成胶合透镜;第二透镜组(2)、第三透镜组(3)、第七透镜组(7)以及第八透镜组(8)均包括塑料非球面透镜。

Description

一种定焦镜头
本公开要求在2021年5月10日提交中国专利局、申请号为202110504671.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及镜头技术,例如涉及一种定焦镜头。
背景技术
近年来,监控镜头技术随着安防大潮的发展,为摄像机实现网络化带来了新的变革,而镜头变革最明显的体现在两个方面:高清化和大靶面化。在网络化、数字化的时代,监控对高清的追求使得摄像机对靶面的尺寸要求越来越高。一般来说,感光器件的面积越大,感光性能越好,信噪比越高,成像效果越好。而为了提升画面质量,高清网络摄像机产品往往采用大靶面的感光芯片。
相关技术中,图像传感器厂家已经推出了1/1.2英寸的大像面低照度图像传感器,拥有更好的受光能力。然而,能满足该需求的相关技术的镜头存在着光圈虚标、视场角小、清晰度低、体积大、靶面小等问题,因此广角、高清、大光圈范围的1/1.2英寸黑光镜头就显得很有必要。
发明内容
本申请实施例提供一种定焦镜头,该定焦镜头具有广角、高清、超大靶面的特点,可适用1/1.2英寸、800万像素超大靶面感光芯片,采用玻塑混合的结构可以满足-40℃-80℃的使用条件。
本申请实施例提供一种定焦镜头,包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组、负光焦度的第二透镜组、正光焦度的第三透镜组、正光焦度或负光焦度的第四透镜组、正光焦度的第五透镜组、正光焦度的第六透镜组、负光焦度的第七透镜组以及正光焦度的第八透镜组;
其中,所述第一透镜组、所述第四透镜组、所述第五透镜组以及所述第六透镜组均包括玻璃球面透镜,所述第四透镜组和所述第五透镜组构成胶合透镜;所述第二透镜组、所述第三透镜组、所述第七透镜组以及所述第八透镜组均包括塑料非球面透镜。
附图说明
图1为本申请实施例提供的一种定焦镜头的结构示意图;
图2为本申请实施例提供的另一种定焦镜头的结构示意图;
图3为本申请实施例提供的一种定焦镜头的球差示意图;
图4为本申请实施例提供的一种定焦镜头的光线光扇示意图;
图5为本申请实施例提供的一种定焦镜头的点列图;
图6为本申请实施例提供的一种定焦镜头的场曲畸变示意图;
图7为本申请实施例提供的又一种定焦镜头的结构示意图;
图8为本申请实施例提供的一种定焦镜头的球差示意图;
图9为本申请实施例提供的一种定焦镜头的光线光扇示意图;
图10为本申请实施例提供的一种定焦镜头的点列图;
图11为本申请实施例提供的一种定焦镜头的场曲畸变示意图;
图12为本申请实施例提供的一种定焦镜头的球差示意图;
图13为本申请实施例提供的一种定焦镜头的光线光扇示意图;
图14为本申请实施例提供的一种定焦镜头的点列图;
图15为本申请实施例提供的一种定焦镜头的场曲畸变示意图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可 以根据情况理解上述术语在本申请中的含义。
图1为本申请实施例一提供的一种定焦镜头的结构示意图。参考图1,本申请实施例提供的定焦镜头包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组1、负光焦度的第二透镜组2、正光焦度的第三透镜组3、正光焦度或负光焦度的第四透镜组4、正光焦度的第五透镜组5、正光焦度的第六透镜组6、负光焦度的第七透镜组7以及正光焦度的第八透镜组8;其中,第一透镜组1、第四透镜组4、第五透镜组5以及第六透镜组6均包括玻璃球面透镜,第四透镜组4和第五透镜组5构成胶合透镜;第二透镜组2、第三透镜组3、第七透镜组7以及第八透镜组8均包括塑料非球面透镜。
可以理解的是,光焦度等于像方光束汇聚度与物方光束汇聚度之差,它表征光学系统偏折光线的能力。光焦度的绝对值越大,对光线的弯折能力越强,光焦度的绝对值越小,对光线的弯折能力越弱。光焦度为正数时,光线的屈折是汇聚性的;光焦度为负数时,光线的屈折是发散性的。光焦度可以适用于表征一个透镜的某一个折射面(即透镜的一个表面),可以适用于表征某一个透镜,也可以适用于表征多个透镜共同形成的系统(即透镜组)。可选的,每个透镜组包括至少一片透镜,图1中示意性示出第六透镜组6包括两个透镜。在本实施例中,可以将各个透镜组固定于一个镜筒内,通过合理分配透镜的光焦度,可以使镜头具有大通光量。可选的,本实施例提供的定焦镜头的光学总长(Total Track Length,TTL)和光学后焦距(Back Focal Length,BFL)满足TTL/BFL<12,光圈F可以达到1.0~1.2,支持1/1.2英寸的像面,视场角(Field of View,FOV)范围可以达到120°~150°,像面直径IH与入瞳直径N的比值满足1.4≤IH/N≤3.2。
本实施例的技术方案,通过设置负光焦度的第一透镜组,用于控制光学系统入射角并且矫正场曲;通过设置负光焦度的第二透镜组,用于矫正轴外像差;通过设置正光焦度的第三透镜组,用于聚焦前面的光束;第四透镜组和第五透镜组设置为胶合的形式,用于矫正轴外色差且具有高低温不跑焦的关键作用,保证镜头在高低温为-40℃至80℃下正常使用不虚焦;第七透镜组、第八透镜组用于矫正场曲、慧差、像散等轴外像差;整个镜头保证该光学系统光焦度近似比例分配,保证前后组镜片的入射角大小的均衡性,以降低镜头的敏感度,提高生产的可能性;通过玻璃球面透镜和塑料非球面透镜的搭配,从而实现一种广角、高清、超大靶面的定焦镜头,可适用1/1.2英寸、800万像素超大靶面感光 芯片,采用玻塑混合的结构可以满足-40℃-80℃的使用条件。
在上述技术方案的基础上,继续参考图1,可选的,第一透镜组1包括负光焦度的第一透镜10、第二透镜组2包括负光焦度的第二透镜20,第三透镜组3包括正光焦度的第三透镜30,第四透镜组4包括正光焦度的第四透镜40,第五透镜组5包括正光焦度的第五透镜50,第六透镜组6包括正光焦度第六透镜60和负光焦度的第七透镜61,第七透镜组7包括负光焦度的第八透镜70,第八透镜组8包括正光焦度的第九透镜80,第二透镜2和第三透镜3之间设置有光阑9。
可选的,第一透镜10至第九透镜80的焦距与定焦镜头的焦距满足:
1.0≤|f1/f|≤6.0;
1.8≤|f2/f|≤5.5;
1.2≤|f3/f|≤6.8;
4.5≤|f4/f|≤15.2;
6.0≤|f5/f|≤17.8;
1.3≤|f6/f|≤8.7;
1.2≤|f7/f|≤26.5;
1.0≤|f8/f|≤16.3;
1.1≤|f9/f|≤6.2;
0.08≤|(f1+f2+f3)/f|≤5.7;
0.1≤|(f4+f5)/f|≤35.1;
0.1≤|(f6+f7)/f|≤28.5;
1.4≤|(f8+f9)/f|≤10.5;
本实施例中,f1、f2、f3、f4、f5、f6、f7、f8和f9分别表示第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜61、第八透镜70和第九透镜80的焦距,f表示定焦镜头的焦距。
通过设置第一透镜10至第九透镜80的焦距关系,以使定焦镜头在满足大通光量的同时,清晰度达到性能要求。本实施例中,第六透镜组6中的第六透镜60和第七透镜61也设置为胶合的形式,与第四透镜40和第五透镜50共同起到矫正 轴外色差且具有高低温不跑焦的作用,提升镜头的性能。
可选的,第一透镜10、第四透镜40、第五透镜50、第七透镜61和第八透镜70的折射率满足:
1.53≤n1;
n4≤1.95;
1.40≤n5;
1.53≤n7≤2.0;
n8≤1.77;
本实施例中,n1、n4、n5、n7、n8分别表示第一透镜10、第四透镜40、第五透镜50、第七透镜61和第八透镜70的折射率。
本实施例提供的定焦镜头,采用五片玻璃球面透镜、四片塑料非球面的玻塑混合结构设计,通过合理的材料、焦距及折射率搭配,其中玻璃球面透镜容易加工,塑料非球面透镜具有了良好的像差校正能力,确保光学系统性能的同时有效地控制了成本。最大支持靶面达到1/1.2英寸、800万分辨率,最大支持光圈至F1.0,视场角最大可达150°,满足多种应用场景下的成像需求。
图2为本申请实施例三提供的另一种定焦镜头的结构示意图,参考图2,可选的,第一透镜组1包括负光焦度的第一透镜10、第二透镜组2包括负光焦度的第二透镜20,第三透镜组3包括正光焦度的第三透镜30,第四透镜组4包括负光焦度的第四透镜40,第五透镜组5包括正光焦度的第五透镜50,第六透镜组6包括正光焦度第六透镜60,第七透镜组7包括负光焦度的第七透镜70,第八透镜组8包括正光焦度的第八透镜80,第三透镜30和第四透镜40之间设置有光阑9。
可选的,第一透镜10至第八透镜80的焦距与定焦镜头的焦距满足:
1.0≤|f1/f|≤6.0;
1.8≤|f2/f|≤5.5;
1.2≤|f3/f|≤6.8;
4.5≤|f4/f|≤15.2;
6.0≤|f5/f|≤17.8;
1.3≤|f6/f|≤8.7;
1.0≤|f7/f|≤16.3;
1.1≤|f8/f|≤6.2;
0.08≤|(f1+f2+f3)/f|≤5.7;
0.1≤|(f4+f5)/f|≤35.1;
1.4≤|(f7+f8)/f|≤10.5;
本实施例中,f1、f2、f3、f4、f5、f6、f7和f8分别表示第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50、第六透镜60、第七透镜70和第八透镜80的焦距,f表示定焦镜头的焦距。
通过设置第一透镜10至第八透镜80的焦距关系,以使定焦镜头在满足大通光量的同时,清晰度达到性能要求。
可选的,第一透镜10、第四透镜40、第五透镜50、第七透镜70和第八透镜80的折射率满足:
1.53≤n1;
n4≤1.95;
1.40≤n5;
1.53≤n7≤2.0;
n8≤1.77;
本实施例中,n1、n4、n5、n7、n8分别表示第一透镜10、第四透镜40、第五透镜50、第七透镜70和第八透镜80的折射率。
本实施例提供的定焦镜头,采用四片玻璃球面透镜、四片塑料非球面的玻塑混合结构设计,通过合理的材料、焦距及折射率搭配,其中玻璃球面透镜容易加工,塑料非球面透镜具有了良好的像差校正能力,确保光学系统性能的同时有效地控制了成本。最大支持靶面达到1/1.2英寸、800万分辨率,最大支持光圈至F1.0,视场角最大可达150°,满足多种应用场景下的成像需求。
可选的,非球面透镜的面型满足公式:
Figure PCTCN2022091075-appb-000001
上述式子中,z表示非球面沿光轴方向在高度为y的位置时,距非球面顶点的距离矢高,
Figure PCTCN2022091075-appb-000002
r表示面型中心的曲率半径,k表示圆锥系数,A、B、C、D、E、F分别表示高次非球面系数。
示例性的,表1为图1对应的定焦镜头的一种参数设计值:
表1定焦镜头的一种参数
  实施例一 下限 上限
|f1/f| 2.0 1.0 6.0
|f2/f| 3.2 1.8 5.5
|f3/f| 5.6 1.2 6.8
|f4/f| 7.5 4.5 15.2
|f5/f| 9.7 6.0 17.8
|f6/f| 5.7 1.3 8.7
|f7/f| 7.0 1.2 26.5
|f8/f| 10.5 1.0 16.3
|f9/f| 3.1 1.1 6.2
|(f1+f2+f3)/f| 0.35 0.08 5.7
|(f4+f5)/f| 17.1 0.1 35.1
|(f6+f7)/f| 1.3 0.1 28.5
|(f8+f9)/f| 7.4 1.4 10.5
n1 1.59 1.53 -
n4 1.80 - 1.95
n5 1.49 1.40 -
n7 1.80 1.53 2.0
n8 1.63 - 1.77
TTL/BFL 8.0 - 12.0
|IH/N| 2.3 1.4 3.2
表1中的“-”代表当前位置的数值不受限制。
本实施例的定焦镜头达到了如下的技术指标:
像面直径/焦距:IH/f=2.07;
光圈值:F=1.1;
视场角:FOV≥136°;
分辨率:可与800万像素高分辨率电荷耦合器件(Charge Coupled Device,CCD)或互补金属氧化物半导体(Complementary Metal-Oxide Semiconductor, CMOS)摄像机适配。
表2为表1提供的定焦镜头的一种设计值:
表2定焦镜头的一种设计值
面序号 面型 曲率半径(mm) 厚度(mm) 折射率 K值
1 球面 106.2 1.2 1.59  
2 球面 7.4 6.1    
3 非球面 22.2 2.5 1.53 7.4
4 非球面 7.2 3.9   -3.6
STO PL Infinity 0    
6 非球面 19.7 5.7 1.63 3.2
7 非球面 105.9 0.2   90.9
8 球面 19.9 1.0 1.80  
9 球面 15.0 7.2 1.49  
10 球面 -15.0 0.2 1.59  
11 球面 15.6 6.7    
12 球面 -15.6 1.0 1.80  
13 球面 110.2 0.1    
14 非球面 11.4 2.0 1.63 -4.2
15 非球面 8.5 2.7   -4.5
16 非球面 10.6 6.0 1.53 -7.2
17 非球面 318.9 4.3   199.9
表2中的面序号根据各个透镜的表面顺序来进行编号,其中“1”表示第一透镜10的前表面(靠近物方一侧的表面),“2”代表第一透镜10的后表面(靠近像方一侧的表面),依次类推,其中,“9”为第四透镜40与第五透镜50的胶合面,“12”为第六透镜60与第七透镜61的胶合面;“STO”代表光阑9;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大(用“Infinity”表示);厚度代表当前表面到下一表面的中心轴向距离;折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值代表该非球面的最佳拟合圆锥系数的数值大小,而球面镜片是没有K值的,用空格 表示。
其中,表3为本实施例中非球面面型参数:
表3定焦镜头中非球面系数的一种设计值
面序号 A B C D E F
3 -1.12E-03 7.90E-06 1.15E-07 -7.25E-09 1.37E-10 -1.05E-12
4 -3.48E-04 1.16E-06 1.05E-07 -2.73E-09 3.27E-11 -1.72E-13
6 5.89E-05 -1.92E-06 3.62E-08 -8.37E-10 9.97E-12 -5.43E-14
7 9.72E-05 5.05E-07 1.15E-08 -3.36E-10 3.82E-12 -1.72E-14
14 -2.43E-04 9.63E-06 -2.49E-07 5.39E-09 -6.13E-11 2.67E-13
15 -1.69E-04 6.23E-06 -6.99E-08 1.34E-09 1.57E-11 -3.57E-13
16 2.81E-04 -9.94E-06 2.75E-07 -3.37E-09 4.21E-11 -2.79E-13
17 1.08E-05 1.82E-06 -8.66E-08 7.75E-09 -1.84E-10 2.03E-12
其中,-1.12E-03表示面序号为表面3的系数A为-1.12×10 -3
图3为本申请实施例提供的一种定焦镜头的球差示意图,图4为本申请实施例提供的一种定焦镜头的光线光扇示意图,图5为本申请实施例提供的一种定焦镜头的点列图,图6为本申请实施例提供的一种定焦镜头的场曲畸变示意图,其中由图3~6可知,本实施例提供的定焦镜头具有良好的成像能力。
图7为本申请实施例二提供的又一种定焦镜头的结构示意图,与上述实施例类似,表4为图7对应的定焦镜头的一种参数设计值:
表4定焦镜头的一种参数
Figure PCTCN2022091075-appb-000003
Figure PCTCN2022091075-appb-000004
表4中的“-”代表当前位置的数值不受限制。
本实施例的定焦镜头达到了如下的技术指标:
像面直径/焦距:IH/f=2.02;
光圈值:F=1.1;
视场角:FOV≥132°;
分辨率:可与800万像素高分辨率CCD或CMOS摄像机适配。
表5为表4提供的定焦镜头的一种设计值:
表5定焦镜头的一种设计值
面序号 面型 曲率半径(mm) 厚度(mm) 折射率 K值
1 球面 141.0 1.2 1.59  
2 球面 7.5 5.6    
3 非球面 16.6 2.0 1.53 2.9
4 非球面 7.4 4.4   -3.4
STO PL Infinity 0.4    
6 非球面 20.7 6.2 1.63 2.5
7 非球面 189.1 0.2   -108.0
8 球面 22.5 1.0 1.80  
9 球面 15.4 7.2 1.49  
10 球面 -15.4 0.1 1.59  
11 球面 16.8 5.3    
12 球面 -16.8 1.0 1.80  
13 球面 -131.5 0.1    
14 非球面 11.7 2.0 1.63 -9.6
15 非球面 6.8 2.5   -4.1
16 非球面 8.9 6.2 1.53 -3.2
17 非球面 57.5 4.3   69.1
表5中的面序号根据各个透镜的表面顺序来进行编号,其中“1”表示第一透镜10的前表面(靠近物方一侧的表面),“2”代表第一透镜10的后表面(靠近像方一侧的表面),依次类推,其中,“9”为第四透镜40与第五透镜50的胶合面,“12”为第六透镜60与第七透镜61的胶合面;“STO”代表光阑9;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大(用“Infinity”表示);厚度代表当前表面到下一表面的中心轴向距离;折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值代表该非球面的最佳拟合圆锥系数的数值大小,而球面镜片是没有K值的,用空格表示。
其中,表6为本实施例中非球面面型参数:
表6定焦镜头中非球面系数的一种设计值
面序号 A B C D E F
3 -1.24E-03 1.11E-05 -5.81E-08 -2.09E-10 8.48E-12 -9.69E-14
4 -5.27E-04 4.84E-06 5.50E-08 -1.48E-09 1.66E-11 -9.99E-14
6 5.90E-05 -9.52E-07 2.60E-09 -3.24E-11 1.52E-12 -1.40E-14
7 1.08E-04 5.17E-07 7.03E-10 -1.35E-10 2.17E-12 -9.26E-15
14 -1.14E-04 2.99E-06 -6.25E-08 1.43E-09 -1.97E-11 1.11E-13
15 -9.06E-05 3.37E-06 7.95E-09 -9.80E-10 2.12E-11 -1.82E-13
16 8.15E-05 2.30E-06 1.22E-08 2.85E-10 -3.40E-12 2.36E-14
17 8.44E-05 6.85E-07 1.59E-07 -1.36E-09 -1.87E-11 1.13E-12
其中,-1.24E-03表示面序号为表面3的系数A为-1.24×10 -3
图8为本申请实施例提供的一种定焦镜头的球差示意图,图9为本申请实施例提供的一种定焦镜头的光线光扇示意图,图10为本申请实施例提供的一种定焦镜头的点列图,图11为本申请实施例提供的一种定焦镜头的场曲畸变示意图,其中由图8~11可知,本实施例提供的定焦镜头具有良好的成像能力。
表7为图2对应的定焦镜头的一种参数设计值:
表7定焦镜头的一种参数
Figure PCTCN2022091075-appb-000005
Figure PCTCN2022091075-appb-000006
表7中的“-”代表当前位置的数值不受限制。
本实施例的定焦镜头达到了如下的技术指标:
像面直径/焦距:IH/f=2.1;
光圈值:F=1.1;
视场角:FOV≥140°;
分辨率:可与800万像素高分辨率CCD或CMOS摄像机适配。
表8为表7提供的定焦镜头的一种设计值:
表8定焦镜头的一种设计值
面序号 面型 曲率半径(mm) 厚度(mm) 折射率 K值
1 球面 87.2 1.2 1.62  
2 球面 7.4 5.7    
3 非球面 15.2 2.5 1.53 -1.1
4 非球面 5.9 2.3   -2.2
5 非球面 22.6 5.7 1.63 6.0
6 非球面 -17.7 0.3   -5.2
STO PL Infinity 0.3    
8 球面 107.5 1.2 1.73  
9 球面 13.4 7.3 1.43  
10 球面 -13.4 0.2    
11 球面 21.9 5.8 1.59  
12 球面 -21.9 0.2    
13 非球面 12.6 2.0 1.63 -11.2
14 非球面 5.3 2.0   -2.8
15 非球面 11.5 4.9 1.53 -7.5
16 非球面 -23.2 4.4   -4.4
表8中的面序号根据各个透镜的表面顺序来进行编号,其中“1”表示第一透镜10的前表面(靠近物方一侧的表面),“2”代表第一透镜10的后表面(靠近像方一侧的表面),依次类推,其中,“9”为第四透镜40与第五透镜50的胶合面;“STO”代表光阑9;曲率半径代表透镜表面的弯曲程度,正值代表该表面弯向像面一侧,负值代表该表面弯向物面一侧,其中“PL”代表该表面为平面,曲率半径为无穷大(用“Infinity”表示);厚度代表当前表面到下一表面的中心轴向距离,折射率代表当前表面到下一表面之间的材料对光线的偏折能力,空格代表当前位置为空气,折射率为1;K值代表该非球面的最佳拟合圆锥系数的数值大小,而球面镜片是没有K值的,用空格表示。
其中,表9为本实施例中非球面面型参数:
表9定焦镜头中非球面系数的一种设计值
面序号 A B C D E F
3 -1.18E-03 1.52E-05 -9.59E-08 -1.21E-09 3.81E-11 -2.84E-13
4 -7.01E-04 1.75E-05 -2.34E-07 9.70E-10 2.61E-11 -3.01E-13
5 -7.82E-05 -1.22E-06 5.85E-08 -1.52E-09 1.70E-11 -7.06E-14
6 -9.14E-05 2.20E-06 -6.79E-08 2.15E-09 -3.69E-11 2.57E-13
13 -6.43E-04 1.03E-05 -9.52E-08 1.36E-09 -3.11E-11 2.63E-13
14 -3.07E-04 5.25E-06 4.09E-08 7.71E-10 -6.67E-11 7.68E-13
15 2.69E-04 -1.09E-05 1.13E-07 1.48E-09 -4.53E-11 1.56E-13
16 -1.20E-04 -3.39E-06 1.10E-07 -3.15E-09 5.00E-11 -4.33E-13
其中,-1.18E-03表示面序号为表面3的系数A为-1.18×10 -3
图12为本申请实施例提供的一种定焦镜头的球差示意图,图13为本申请实施例提供的一种定焦镜头的光线光扇示意图,图14为本申请实施例提供的一种定焦镜头的点列图,图15为本申请实施例提供的一种定焦镜头的场曲畸变示意 图,其中由图12~15可知,本实施例提供的定焦镜头具有良好的成像能力。

Claims (10)

  1. 一种定焦镜头,包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组、负光焦度的第二透镜组、正光焦度的第三透镜组、正光焦度或负光焦度的第四透镜组、正光焦度的第五透镜组、正光焦度的第六透镜组、负光焦度的第七透镜组以及正光焦度的第八透镜组;
    其中,所述第一透镜组、所述第四透镜组、所述第五透镜组以及所述第六透镜组均包括玻璃球面透镜,所述第四透镜组和所述第五透镜组构成胶合透镜;所述第二透镜组、所述第三透镜组、所述第七透镜组以及所述第八透镜组均包括塑料非球面透镜。
  2. 根据权利要求1所述的定焦镜头,其中,所述第一透镜组包括负光焦度的第一透镜、所述第二透镜组包括负光焦度的第二透镜,所述第三透镜组包括正光焦度的第三透镜,所述第四透镜组包括正光焦度的第四透镜,所述第五透镜组包括正光焦度的第五透镜,所述第六透镜组包括正光焦度第六透镜和负光焦度的第七透镜,所述第七透镜组包括负光焦度的第八透镜,所述第八透镜组包括正光焦度的第九透镜,所述第二透镜和所述第三透镜之间设置有光阑。
  3. 根据权利要求2所述的定焦镜头,其中,所述第一透镜至所述第九透镜的焦距与所述定焦镜头的焦距满足:
    1.0≤|f1/f|≤6.0;
    1.8≤|f2/f|≤5.5;
    1.2≤|f3/f|≤6.8;
    4.5≤|f4/f|≤15.2;
    6.0≤|f5/f|≤17.8;
    1.3≤|f6/f|≤8.7;
    1.2≤|f7/f|≤26.5;
    1.0≤|f8/f|≤16.3;
    1.1≤|f9/f|≤6.2;
    0.08≤|(f1+f2+f3)/f|≤5.7;
    0.1≤|(f4+f5)/f|≤35.1;
    0.1≤|(f6+f7)/f|≤28.5;
    1.4≤|(f8+f9)/f|≤10.5;
    其中f1、f2、f3、f4、f5、f6、f7、f8和f9分别表示所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜、所述第八透镜和所述第九透镜的焦距,f表示所述定焦镜头的焦距。
  4. 根据权利要求2所述的定焦镜头,其中,所述第一透镜、所述第四透镜、所述第五透镜、所述第七透镜和所述第八透镜的折射率满足:
    1.53≤n1;
    n4≤1.95;
    1.40≤n5;
    1.53≤n7≤2.0;
    n8≤1.77;
    其中,n1、n4、n5、n7、n8分别表示所述第一透镜、所述第四透镜、所述第五透镜、所述第七透镜和所述第八透镜的折射率。
  5. 根据权利要求1所述的定焦镜头,其中,所述第一透镜组包括负光焦度的第一透镜、所述第二透镜组包括负光焦度的第二透镜,所述第三透镜组包括正光焦度的第三透镜,所述第四透镜组包括负光焦度的第四透镜,所述第五透镜组包括正光焦度的第五透镜,所述第六透镜组包括正光焦度第六透镜,所述第七透镜组包括负光焦度的第七透镜,所述第八透镜组包括正光焦度的第八透 镜,所述第三透镜和所述第四透镜之间设置有光阑。
  6. 根据权利要求5所述的定焦镜头,其中,所述第一透镜至所述第八透镜的焦距与所述定焦镜头的焦距满足:
    1.0≤|f1/f|≤6.0;
    1.8≤|f2/f|≤5.5;
    1.2≤|f3/f|≤6.8;
    4.5≤|f4/f|≤15.2;
    6.0≤|f5/f|≤17.8;
    1.3≤|f6/f|≤8.7;
    1.0≤|f7/f|≤16.3;
    1.1≤|f8/f|≤6.2;
    0.08≤|(f1+f2+f3)/f|≤5.7;
    0.1≤|(f4+f5)/f|≤35.1;
    1.4≤|(f7+f8)/f|≤10.5;
    其中f1、f2、f3、f4、f5、f6、f7和f8分别表示所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜和所述第八透镜的焦距,f表示所述定焦镜头的焦距。
  7. 根据权利要求5所述的定焦镜头,其中,所述第一透镜、所述第四透镜、所述第五透镜、所述第七透镜和所述第八透镜的折射率满足:
    1.53≤n1;
    n4≤1.95;
    1.40≤n5;
    1.53≤n7≤2.0;
    n8≤1.77;
    其中,n1、n4、n5、n7、n8分别表示所述第一透镜、所述第四透镜、所述第五透镜、所述第七透镜和所述第八透镜的折射率。
  8. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的光圈F满足:
    1.0≤F≤1.2。
  9. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的视场角FOV满足:
    120°≤FOV≤150°。
  10. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的像面直径IH与入瞳直径N的比值满足:
    1.4≤IH/N≤3.2;
    所述定焦镜头的光学总长TTL和光学后焦距BFL满足:
    TTL/BFL<12。
PCT/CN2022/091075 2021-05-10 2022-05-06 一种定焦镜头 WO2022237630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE2351315A SE2351315A1 (en) 2021-05-10 2022-05-06 Fixed-focus lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110504671.1A CN115327742B (zh) 2021-05-10 2021-05-10 一种定焦镜头
CN202110504671.1 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022237630A1 true WO2022237630A1 (zh) 2022-11-17

Family

ID=83912436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091075 WO2022237630A1 (zh) 2021-05-10 2022-05-06 一种定焦镜头

Country Status (3)

Country Link
CN (1) CN115327742B (zh)
SE (1) SE2351315A1 (zh)
WO (1) WO2022237630A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121011A (en) * 1980-02-27 1981-09-22 Sigma:Kk Retrofocus type superwide-angle lens of large aperture
US5754345A (en) * 1995-09-19 1998-05-19 Fuji Photo Optical Co., Ltd. Wide angle imaging lens
CN101943789A (zh) * 2009-07-09 2011-01-12 凤凰光学(广东)有限公司 一种大光圈监控镜头
CN106932888A (zh) * 2016-12-24 2017-07-07 舜宇光学(中山)有限公司 一种360°全景鱼眼镜头
CN107976785A (zh) * 2017-12-02 2018-05-01 福建师范大学 短焦距宽光谱紫外光学镜头
CN109061844A (zh) * 2018-07-10 2018-12-21 东莞市宇瞳光学科技股份有限公司 一种特大光圈大靶面高清定焦镜头
CN109188657A (zh) * 2018-11-09 2019-01-11 东莞市宇瞳光学科技股份有限公司 一种超大通光量的黑光广角定焦镜头
CN110007447A (zh) * 2019-05-24 2019-07-12 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN110221401A (zh) * 2019-05-08 2019-09-10 中山联合光电科技股份有限公司 一种红外共焦广角镜头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205384402U (zh) * 2016-01-07 2016-07-13 东莞市宇瞳光学科技股份有限公司 一种大孔径广角变焦镜头
CN109507785B (zh) * 2018-12-26 2024-05-14 东莞市宇瞳光学科技股份有限公司 一种红外共焦镜头
CN209117961U (zh) * 2018-12-26 2019-07-16 东莞市宇瞳光学科技股份有限公司 一种红外共焦镜头
CN112014940A (zh) * 2019-05-28 2020-12-01 江西凤凰光学科技有限公司 一种大光圈高低温共焦成像系统
CN211123458U (zh) * 2019-11-13 2020-07-28 江西凤凰光学科技有限公司 一种大孔径大靶面高清日夜共焦监控镜头
CN211426897U (zh) * 2020-01-21 2020-09-04 福建福特科光电股份有限公司 一种广角大光圈定焦镜头
CN212905678U (zh) * 2020-09-04 2021-04-06 东莞市宇瞳光学科技股份有限公司 一种定焦镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121011A (en) * 1980-02-27 1981-09-22 Sigma:Kk Retrofocus type superwide-angle lens of large aperture
US5754345A (en) * 1995-09-19 1998-05-19 Fuji Photo Optical Co., Ltd. Wide angle imaging lens
CN101943789A (zh) * 2009-07-09 2011-01-12 凤凰光学(广东)有限公司 一种大光圈监控镜头
CN106932888A (zh) * 2016-12-24 2017-07-07 舜宇光学(中山)有限公司 一种360°全景鱼眼镜头
CN107976785A (zh) * 2017-12-02 2018-05-01 福建师范大学 短焦距宽光谱紫外光学镜头
CN109061844A (zh) * 2018-07-10 2018-12-21 东莞市宇瞳光学科技股份有限公司 一种特大光圈大靶面高清定焦镜头
CN109188657A (zh) * 2018-11-09 2019-01-11 东莞市宇瞳光学科技股份有限公司 一种超大通光量的黑光广角定焦镜头
CN110221401A (zh) * 2019-05-08 2019-09-10 中山联合光电科技股份有限公司 一种红外共焦广角镜头
CN110007447A (zh) * 2019-05-24 2019-07-12 东莞市宇瞳光学科技股份有限公司 一种定焦镜头

Also Published As

Publication number Publication date
SE2351315A1 (en) 2023-11-17
CN115327742B (zh) 2024-03-22
CN115327742A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN110794552B (zh) 光学镜头
CN110007447B (zh) 一种定焦镜头
JP2007279632A (ja) 超広角レンズ
WO2020107759A1 (zh) 光学镜头及成像设备
CN111239984A (zh) 一种定焦镜头
CN113109926A (zh) 一种低畸变光学系统及镜头
CN112305718A (zh) 一种定焦镜头
CN111796402A (zh) 一种定焦镜头
CN219016688U (zh) 一种定焦镜头
CN108873266B (zh) 广角镜头
CN114252981B (zh) 光学镜头
WO2022237630A1 (zh) 一种定焦镜头
CN215264201U (zh) 一种定焦镜头
CN111708147B (zh) 一种4p微距镜头
CN209842206U (zh) 一种定焦镜头
CN209895076U (zh) 一种定焦镜头
CN112305717A (zh) 一种定焦镜头
CN113406773A (zh) 低畸变光学系统及镜头
CN113866962A (zh) 一种低畸变广角镜头
CN113189747A (zh) 一种定焦镜头
CN114280758A (zh) 光学镜头及电子设备
CN112748555A (zh) 光学镜头及电子设备
CN213517721U (zh) 一种定焦镜头
CN213122418U (zh) 一种定焦镜头
CN215494316U (zh) 一种低畸变光学系统及镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2351315-3

Country of ref document: SE

NENP Non-entry into the national phase

Ref country code: DE