WO2022237425A1 - 晶体振荡器健康度检测方法、装置及电子设备 - Google Patents

晶体振荡器健康度检测方法、装置及电子设备 Download PDF

Info

Publication number
WO2022237425A1
WO2022237425A1 PCT/CN2022/086147 CN2022086147W WO2022237425A1 WO 2022237425 A1 WO2022237425 A1 WO 2022237425A1 CN 2022086147 W CN2022086147 W CN 2022086147W WO 2022237425 A1 WO2022237425 A1 WO 2022237425A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal oscillator
frequency offset
parameter
preset
frequency
Prior art date
Application number
PCT/CN2022/086147
Other languages
English (en)
French (fr)
Inventor
王喜
易哲
黄景丰
王斌
穆海明
陈建辉
甘浩
刘昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022237425A1 publication Critical patent/WO2022237425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present application relates to the field of communication technology, and in particular to a method, device and electronic equipment for detecting the health of a crystal oscillator.
  • Embodiments of the present application provide a crystal oscillator health degree detection method, device, electronic equipment, and computer-readable storage medium.
  • an embodiment of the present application provides a method for detecting the health of a crystal oscillator.
  • the method includes: acquiring characteristic parameters of the crystal oscillator; determining frequency offset parameters of the crystal oscillator according to the characteristic parameters; The frequency deviation parameter and the preset threshold of the crystal oscillator determine the health of the crystal oscillator.
  • the embodiment of the present application provides a device for detecting the health of a crystal oscillator, including: an acquisition module configured to acquire the characteristic parameters of the crystal oscillator; a first determination module configured to determine according to the characteristic parameters A frequency offset parameter of the crystal oscillator; a second determining module configured to determine the health of the crystal oscillator according to the frequency offset parameter of the crystal oscillator and a preset threshold.
  • an embodiment of the present application provides an electronic device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the application is implemented.
  • the method for detecting the health of a crystal oscillator provided in the embodiment.
  • the embodiment of the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, implements the crystal oscillator health detection method provided in the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for detecting the health of a crystal oscillator provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a specific implementation process of step S300 in FIG. 1;
  • FIG. 3A is an analysis table of the aging coefficient distribution ratio involved in the embodiment of the present application.
  • Fig. 3B is a schematic diagram of the probability distribution of the aging coefficient involved in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of another specific implementation process of step S300 in FIG. 1;
  • FIG. 5 is a schematic diagram of another specific implementation process of step S300 in FIG. 1;
  • FIG. 6 is a schematic diagram of another specific implementation process of step S300 in FIG. 1;
  • Fig. 7A is the temperature coefficient distribution ratio analysis table involved in the embodiment of the present application.
  • Fig. 7B is a schematic diagram of the temperature coefficient probability distribution involved in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another specific implementation process of step S300 in FIG. 1;
  • FIG. 9 is a schematic diagram of another specific implementation process of step S300 in FIG. 1;
  • FIG. 10 is a schematic structural diagram of a crystal oscillator health degree detection device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • At least one of the following and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
  • the crystal oscillator (may be referred to as crystal oscillator) involved in the embodiment of the present application may specifically be an Oven Controlled Crystal Oscillator (OCXO), which is widely used in various communication devices as a local clock source.
  • OXO Oven Controlled Crystal Oscillator
  • the outage of the base station and the interruption of the network of the cell due to the failure of the crystal oscillator occur from time to time, and even the nearby base stations cannot work normally in serious cases.
  • OCXO failures have become the most common type of equipment single-board failures.
  • the method of evaluating the health of the crystal oscillator is to learn from the empirical rules of the previous repair data and refer to the process parameters provided by the crystal oscillator manufacturer.
  • This solution has many shortcomings: it can only qualitatively analyze some brand batches of crystal oscillators in the field through sampling, and the sample coverage is small; the detection requires manual analysis by experts, which is inefficient; it is impossible to predict the potential risks of crystal oscillators in advance. It can be seen that, among the related technical solutions, there is no effective solution for the health degree detection of the crystal oscillator.
  • the embodiment of the present application provides a crystal oscillator health detection method, device, electronic equipment and computer-readable storage medium, by obtaining the characteristic parameters of the crystal oscillator, and then determining the frequency offset parameter of the crystal oscillator according to the characteristic parameters , and further determine the health degree of the crystal oscillator according to the frequency offset parameter of the crystal oscillator and the preset threshold, so as to achieve the purpose of effectively evaluating the health degree of the crystal oscillator.
  • FIG. 1 shows a flowchart of a method for detecting the health of a crystal oscillator provided by an embodiment of the present application.
  • the method for detecting the health of a crystal oscillator in the embodiment of the present application includes the following steps:
  • the characteristic parameters here may include factory voltage control word, voltage control voltage control word and voltage control sensitivity.
  • the factory voltage control word indicates the voltage control word of the crystal oscillator when it leaves the factory
  • the voltage control voltage control word indicates the voltage control word when the crystal oscillator is running
  • Voltage control sensitivity which indicates the amount of aging frequency offset change caused by the change of unit voltage control voltage.
  • the data acquisition period can be set in advance, such as 15 minutes, 30 minutes, 60 minutes, etc.; then according to the preset data acquisition period, the complete data of the crystal oscillator when it is running in the field is collected; Filter the data to eliminate abnormal data, and only retain the factory voltage control word, voltage control voltage control word and voltage control sensitivity data useful for crystal oscillator health detection.
  • these characteristic parameters can be used to determine the frequency offset parameters of the crystal oscillator.
  • the calculation method of the frequency offset parameter of the crystal oscillator can refer to the following formula (1).
  • F is the frequency deviation parameter, the unit is ppb; fDa and cDa are the factory voltage control word and the voltage control voltage control word respectively, and the unit is mV; V 0 and R 0 are proportional coefficients, which are used to convert 0
  • the control words fDa and cDa in the range of -R 0 (mV) are mapped to the real voltage value of 0-V 0 (mV); kf is the voltage control sensitivity, and the unit is ppb/mV.
  • the health of the crystal oscillator can be determined through the following steps:
  • the time of collection is also recorded to obtain the time parameter; and the temperature information of the crystal oscillator is collected to obtain the temperature parameter.
  • the temperature parameter can be the environment where the crystal oscillator is located. ambient temperature. In this way, time parameters and temperature parameters corresponding to the characteristic parameters of the crystal oscillator are obtained. After the corresponding frequency offset parameter is obtained according to the characteristic parameter of the crystal oscillator, the time parameter and the temperature parameter corresponding to the frequency offset parameter can be determined according to the corresponding relationship between the characteristic parameter and the frequency offset parameter.
  • the function expression of the aging frequency offset linear regression model can refer to the following formula (2).
  • F is the dependent variable, representing the frequency offset parameter
  • dayval and T are independent variables, representing the time parameter and temperature parameter respectively
  • coa represents the aging coefficient, which can be understood as representing the frequency offset per unit time (such as one day)
  • the amount of change cot means the temperature coefficient, which can be understood as the amount of change in frequency offset representing a unit temperature (for example, 1°C); const is a constant.
  • the value of the frequency offset parameter F is obtained through the formula (1)
  • the value of the frequency offset parameter F, the time parameter dayval and the temperature parameter T corresponding to the frequency offset parameter can be substituted into the formula (2), and then the Combined to get the aging coefficient coa of the crystal oscillator.
  • the reliability of the obtained aging coefficient coa can be determined based on the coefficient of determination (R 2 ) of the goodness of fit, and the closer R 2 is to 1, the higher the reliability of the aging coefficient coa.
  • the aging frequency offset linear regression model provided in the embodiment of the present application generates a time and temperature dual-parameter linear regression model according to the relationship between the frequency offset of the crystal oscillator and time and temperature.
  • This dual-parameter linear regression model can well fit the aging frequency offset
  • the aging coefficient obtained by fitting the aging frequency offset curve is more accurate and reliable.
  • the threshold value of the aging coefficient may be set according to statistical analysis on the aging coefficient of the crystal oscillator in the external field.
  • FIG. 3A and FIG. 3B are respectively the aging coefficient distribution ratio analysis table and the aging coefficient probability distribution diagram obtained after statistical analysis of the aging coefficients of 3092 constant temperature crystal oscillators in the external field. From the distribution ratio/probability of the aging coefficient shown in Figure 3A and Figure 3B, it can be seen that the aging coefficient of the crystal oscillator is mainly distributed in the interval [-0.5,0.5], so the aging coefficient threshold can be set to 0.5. When the aging coefficient coa obtained in step S312 is greater than 0.5, it can be determined that the health degree of the crystal oscillator is severely aged.
  • determining the health of the crystal oscillator can also be achieved through the following steps:
  • steps S321 to S322 refer to the related descriptions of steps S311 to S312 above, which will not be repeated here.
  • the residual frequency offset parameter of the crystal oscillator can be determined by combining the aging coefficient with the voltage control voltage control word and voltage control sensitivity in the characteristic parameters.
  • uDa in the formula (3) is the remaining adjustable voltage-controlled voltage control word, which represents the difference between cDa and the threshold boundary of the voltage-controlled voltage. It should be understood that uDa needs to be determined according to the aging coefficient obtained in the previous steps. For a crystal oscillator with an aging coefficient greater than 0, the voltage-controlled voltage threshold boundary is the upper limit R 0 of the voltage-controlled voltage control word; for a crystal oscillator with an aging coefficient less than 0, The voltage-controlled voltage threshold boundary is the lower limit 0 of the voltage-controlled voltage control word.
  • RF in formula (3) is the residual frequency offset parameter, the unit is ppb; kf is the voltage control sensitivity, the unit is ppb /mV ; The control words fDa and cDa are mapped to real voltage values of 0-V 0 (mV).
  • the remaining frequency offset parameter of the crystal oscillator After the remaining frequency offset parameter of the crystal oscillator is obtained, the remaining frequency offset parameter and the aging coefficient can be combined to obtain a reference value of the remaining service life of the crystal oscillator, so as to predict the remaining service life of the crystal oscillator.
  • the calculation method of the remaining life reference value of the crystal oscillator can refer to the following formula (4).
  • rul represents the reference value of remaining life, and the unit is day (d); RF is the remaining frequency offset parameter, and the unit is ppb; coa is the aging coefficient, and the unit is ppb/d.
  • the remaining life reference value of the crystal oscillator is compared with a preset remaining life threshold, and when the remaining life reference value is less than the preset remaining life threshold, the health of the crystal oscillator can be determined for severe aging.
  • the remaining life reference value calculated by formula (4) is 8 days
  • the preset remaining life threshold is 10 days.
  • determining the health of the crystal oscillator according to the frequency offset parameters of the crystal oscillator and the preset threshold can also be implemented through the following step S331 .
  • the first preset time period may include a plurality of data acquisition periods, and the characteristic parameters of the crystal oscillator are acquired once in each data acquisition period, and then the frequency offset parameters of the crystal oscillator are calculated according to the characteristic parameters, that is, each data acquisition period Correspondingly, one frequency offset parameter is obtained, so multiple frequency offset parameters can also be obtained within the first preset time period.
  • the first preset time period is 1 day, and the data collection period is 15 minutes, so that 96 data collection periods are included in the first preset time period (1 day), so the first preset time period (1 day) corresponds to There can be 96 frequency offset parameters.
  • step S331 After obtaining a plurality of frequency offset parameters of the crystal oscillator within the first preset time period, these frequency offset parameters are compared, and a maximum frequency offset parameter and a minimum frequency offset parameter are determined therefrom. For example, step S331 obtains 96 frequency offset parameters, the maximum value of the 96 frequency offset parameters is 30ppb, and the minimum value is 15ppb, that is, the maximum frequency offset parameter is 30ppb, and the minimum frequency offset parameter is 15ppb.
  • the difference between the maximum frequency deviation parameter and the minimum frequency deviation parameter is used as the frequency hopping parameter of the crystal oscillator.
  • the maximum frequency deviation parameter is 30ppb
  • the minimum frequency deviation parameter is 15ppb
  • the difference between the maximum frequency deviation parameter and the minimum frequency deviation parameter is 15ppb, so the frequency hopping parameter of the crystal oscillator is 15ppb.
  • the frequency hopping parameter of the crystal oscillator After the frequency hopping parameter of the crystal oscillator is determined, it can be determined whether the health of the crystal oscillator is abnormal frequency hopping according to the frequency hopping parameter of the crystal oscillator and a preset frequency hopping parameter threshold.
  • the preset frequency hopping parameter threshold is 10ppb, if the current frequency hopping parameter of the crystal oscillator is 15ppb, that is, the current frequency hopping parameter of the crystal oscillator is greater than the preset frequency hopping parameter threshold, so it can be determined that the crystal oscillator The health of is abnormal frequency jump.
  • determining the health of the crystal oscillator according to the frequency offset parameters of the crystal oscillator and the preset threshold can also be implemented through the following steps S341-S347.
  • the temperature information of the crystal oscillator is also collected to obtain the temperature parameter, where the temperature parameter can be the temperature of the environment where the crystal oscillator is located. ambient temperature.
  • the temperature parameter corresponding to the characteristic parameters of the crystal oscillator are obtained.
  • the temperature parameter corresponding to the frequency offset parameter can be determined according to the corresponding relationship between the characteristic parameter and the frequency offset parameter.
  • the temperature parameter corresponding to the frequency offset parameter may be acquired at the same time.
  • the embodiment of the present application also considers the correlation between the frequency offset parameter and the temperature parameter.
  • the correlation between the frequency offset parameter and the temperature parameter can be calculated.
  • the first correlation coefficient may be a Kendall correlation coefficient.
  • the first correlation coefficient may be a Kendall correlation coefficient.
  • the first correlation coefficient may also be a Pearson correlation coefficient or a Spearman correlation coefficient, and the embodiment of the present application does not specifically limit the type of the first correlation coefficient.
  • the preset correlation coefficient threshold is 0.3. If the value of the first correlation coefficient is greater than 0.3, it is determined that the frequency offset parameter in the first time period is related to the temperature parameter, otherwise it is determined that the frequency offset parameter in the first time period is related to the temperature parameter. Parameters are not relevant.
  • the frequency hopping parameter obtained in step S343 needs to be adjusted to deduct the influence of temperature fluctuation on the frequency hopping parameter, so that the subsequent Health detection is more accurate.
  • the adjustment process of the frequency hopping parameter may include: determining the first temperature fluctuation value in the first preset time period, adjusting the frequency hopping parameter of the crystal oscillator according to the first temperature fluctuation value, and adjusting the frequency hopping parameter of the crystal oscillator to Updated with adjusted frequency hopping parameters.
  • F1 represents the frequency hopping parameter obtained in step S343, which can be defined as the initial frequency hopping parameter.
  • F represents an adjusted frequency hopping parameter, which may be defined as a final frequency hopping parameter; F2 represents an adjusted variation.
  • ⁇ T represents the first temperature fluctuation value in the first preset time period, and ⁇ T can be determined according to the temperature parameters in the first time period.
  • FIG. 7A and FIG. 7B are respectively the temperature coefficient distribution ratio analysis table and the temperature coefficient probability distribution diagram obtained after statistical analysis of the temperature coefficients of 3092 constant temperature crystal oscillators in the external field. From the distribution ratio/probability of the aging coefficient shown in Figure 7A and Figure 7B, it can be seen that the temperature coefficient of the crystal oscillator is mainly distributed in the [-0.5,0.5] interval, so it can be determined that 0.5 is the boundary of the main variation interval of the temperature coefficient, that is, the ⁇ can be determined The value of is 0.5.
  • the frequency hopping parameter F is replaced by the adjusted most frequency hopping parameter F from the initial frequency hopping parameter F1.
  • the final frequency offset parameter F is compared with the preset frequency hopping parameter threshold to determine whether the health of the crystal oscillator is abnormal frequency hopping.
  • the adjusted frequency hopping parameter F is compared with the preset frequency hopping parameter threshold, and when the frequency hopping parameter of the crystal oscillator is greater than In the case of the preset frequency hopping parameter threshold, it is determined that the health of the crystal oscillator is abnormal frequency hopping.
  • determining the health of the crystal oscillator according to the frequency offset parameters of the crystal oscillator and the preset threshold can also be implemented through the following steps S351 - S354 .
  • the second preset time period should be greater than or equal to the time length of one data collection cycle.
  • the time length of one data collection period is 15 minutes, thus, the second preset time period can be set to 15 minutes or longer than 15 minutes.
  • S352. Determine the absolute value of the frequency offset change of the crystal oscillator within the second preset time period according to the multiple frequency deviation parameters of the crystal oscillator within the second preset time period.
  • the second preset time period can be Two frequency offset parameters are obtained.
  • the absolute value of the frequency offset change of the crystal oscillator within the second preset time period can be obtained by calculating the absolute value of the difference between the final frequency offset parameter and the initial frequency offset parameter within 15 minutes.
  • the time length of the third preset time period should be greater than the time length of the second preset time period, for example, the time length of the second preset time period is 15 minutes, and the time length of the third preset time period is 4 days .
  • the absolute value of the frequency offset change of the crystal oscillator is collected every 15 minutes, and then statistics are made on the frequency offset change intervals in which each absolute value of the frequency offset change falls within 4 days.
  • the number of preset frequency offset change intervals may be one or more.
  • the multiple frequency offset change intervals should be continuous in the numerical range, that is, the frequency offset change intervals include multiple continuous frequency offset change intervals.
  • a frequency threshold should be set corresponding to each frequency offset change interval, so as to facilitate comparison in subsequent steps.
  • the preset frequency offset change intervals include: [0,0.5), [0.5,3.0), [3.0,10.0). After collecting the absolute value of the frequency offset change of the crystal oscillator every 15 minutes, determine which frequency offset change interval the absolute value of the frequency offset change falls into, and add 1 to the cumulative number of frequency offset change intervals corresponding to the absolute value of the frequency offset change ; For each frequency offset change interval, count the number of times that the absolute value of the frequency offset change falls within the frequency offset change interval within 4 days.
  • the number of times data is compared with the corresponding preset number of times threshold, and then it is judged that the health of the crystal oscillator is abnormal frequency hopping.
  • the number data corresponding to each frequency offset change interval should be greater than the preset number threshold corresponding to the frequency offset change interval, in order to determine the health of the crystal oscillator The degree is abnormal frequency hopping.
  • the frequency offset change interval [0,0.5), [0.5,3.0), [3.0,10.0) corresponding to the frequency threshold distribution is 3, 9, 2; if the absolute value of the frequency offset change within 4 days falls within the above frequency offset
  • the times of change intervals correspond to 5, 10, and 3, which means that the health of the crystal oscillator is determined to be abnormal frequency hopping; if the absolute value of frequency offset changes within 4 days falls within the above frequency offset change intervals, the numbers correspond to 5, 8, and 3. Since the count data corresponding to [0.5, 3.0) is not greater than the corresponding count threshold, that is, the preset comparison condition is not met, it cannot be determined that the health of the crystal oscillator is an abnormal frequency jump.
  • determining the health of the crystal oscillator can also be achieved through the following steps S361-S367:
  • S362. Determine the absolute value of the frequency offset change of the crystal oscillator within the second preset time period according to the multiple frequency deviation parameters of the crystal oscillator within the second preset time period.
  • the time length of the third preset time period is greater than the time length of the second preset time period.
  • the temperature information of the crystal oscillator can also be collected to obtain the temperature parameter, where the temperature parameter can be the temperature of the environment where the crystal oscillator is located. ambient temperature.
  • the temperature parameter corresponding to the characteristic parameters of the crystal oscillator are obtained.
  • the temperature parameter corresponding to the frequency offset parameter can be determined according to the corresponding relationship between the characteristic parameter and the frequency offset parameter.
  • the temperature parameter corresponding to the frequency offset parameter may be acquired at the same time.
  • the correlation between the frequency offset parameter and the temperature parameter can be calculated.
  • the second correlation coefficient may be a Kendall correlation coefficient.
  • the second correlation coefficient may be a Kendall correlation coefficient.
  • the second correlation coefficient may also be a Pearson correlation coefficient or a Spearman correlation coefficient, and the embodiment of the present application does not specifically limit the type of the first correlation coefficient.
  • the preset correlation coefficient threshold is 0.3. If the value of the second correlation coefficient is greater than 0.3, it is determined that the frequency offset parameter in the third time period is related to the temperature parameter, otherwise it is determined that the frequency offset parameter in the third time period is related to the temperature parameter. Parameters are not relevant.
  • the absolute value of the frequency offset change obtained in step S362 needs to be adjusted to deduct the influence of temperature fluctuation on the absolute value of the frequency offset change , making subsequent health detection more accurate.
  • the adjustment process of the frequency hopping parameter may include: determining the second temperature fluctuation value in the third preset time period, and adjusting the absolute value of the frequency offset change of the crystal oscillator according to the second temperature fluctuation value, and adjusting the frequency of the crystal oscillator to The absolute value of the deviation change is updated to the adjusted absolute value of the frequency deviation change.
  • the absolute value of the frequency offset change obtained in step S362 is represented by B1, which can be defined as the absolute value of the initial frequency offset change.
  • B1- B2 the absolute value of the frequency offset parameter in the third time period is related to the temperature parameter.
  • B represents the absolute value of the adjusted frequency offset change, which may be defined as the final absolute value of the frequency offset change; B2 represents the adjusted change amount.
  • ⁇ T represents the first temperature fluctuation value in the first preset time period, and ⁇ T can be determined according to the temperature parameters in the third time period.
  • represents the boundary of the main variation interval of the temperature coefficient.
  • the temperature coefficient of the crystal oscillator is mainly concentrated in the interval [-0.5,0.5], so it can be determined that 0.5 is the boundary of the main variation range of the temperature coefficient, that is, the value of ⁇ can be determined to be 0.5.
  • the absolute value of frequency offset change B is replaced by the adjusted final absolute value of frequency offset change B from the initial absolute value of frequency offset change B1.
  • the final absolute value of frequency offset change B is used to calculate which preset frequency offset change interval the final absolute value of frequency offset change B falls into.
  • S366 Determine the number of times that the absolute value of the frequency offset change falls within the preset frequency offset change interval within the third preset time period, and obtain the number data corresponding to the frequency offset change interval, wherein the time length of the third preset time period The length of time greater than the second preset time period.
  • the embodiments of the present application may output health indication information corresponding to the health of the crystal oscillator after determining that the health of the crystal oscillator is seriously aged or the frequency hopping is abnormal, for example, for a severely aged crystal oscillator output
  • the first indication information is to output the second indication information for the crystal oscillator with abnormal frequency hopping, so as to remind the staff to replace the seriously aging or abnormal frequency hopping crystal oscillator in time.
  • the crystal oscillator health detection method provided in the embodiment of the present application is applicable to the detection of crystal oscillators in the entire network, can promptly and quickly feed back the detection results, avoid the disadvantages of manual detection, and improve the service quality of the wireless network.
  • FIG. 10 is a schematic structural diagram of a crystal oscillator health detection device provided in an embodiment of the present application.
  • the entire process of the crystal oscillator health detection method provided in an embodiment of the present application involves the crystal oscillator health detection device
  • the acquiring module is configured to: acquire characteristic parameters of the crystal oscillator.
  • the first determining module is configured to: determine the frequency offset parameter of the crystal oscillator according to the characteristic parameter.
  • the second determining module is configured to: determine the health of the crystal oscillator according to the frequency offset parameter of the crystal oscillator and a preset threshold.
  • FIG. 11 shows an electronic device 500 provided by an embodiment of the present application.
  • the electronic device 500 includes but not limited to the following components.
  • the memory 501 is used for storing programs.
  • the processor 502 is configured to execute the program stored in the memory 501.
  • the processor 502 executes the program stored in the memory 501, the processor 502 is configured to execute the above method for detecting the health of a crystal oscillator.
  • the processor 502 and the memory 501 may be connected through a bus or in other ways.
  • the memory 501 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the crystal oscillator health detection method described in any embodiment of the present application.
  • the processor 502 executes the non-transitory software programs and instructions stored in the memory 501 to implement the above method for detecting the health of the crystal oscillator.
  • the memory 501 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the above crystal oscillator health detection method.
  • the memory 501 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 501 may include memory located remotely relative to the processor 502, and these remote memories may be connected to the processor 502 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the above crystal oscillator health detection method are stored in the memory 501, and when executed by one or more processors 502, the crystal oscillator health provided by any embodiment of the present application is executed. degree detection method.
  • the embodiment of the present application also provides a storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above method for detecting the health of a crystal oscillator.
  • the storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 502, for example, executed by one of the processors 502 in the electronic device 500, so that the above-mentioned One or more processors 502 execute the crystal oscillator health detection method provided by any embodiment of the present application.
  • the characteristic parameters of the crystal oscillator are obtained; then, according to the characteristic parameters, the frequency offset parameters of the crystal oscillator are determined; and then the crystal oscillator is determined according to the frequency offset parameters of the crystal oscillator and a preset threshold.
  • Oscillator health The scheme of the embodiment of the present application can effectively evaluate the health of crystal oscillators, and has the advantages of fast detection and high accuracy. Abnormal crystal oscillator jumps, thereby improving the quality of wireless network service.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种晶体振荡器健康度检测方法、装置及电子设备,方法包括:获取晶体振荡器的特征参数(S100);根据特征参数,确定晶体振荡器的频偏参数(S200);根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度(S300)。

Description

晶体振荡器健康度检测方法、装置及电子设备
相关申请的交叉引用
本申请基于申请号为202110516829.7、申请日为2021年5月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别是涉及一种晶体振荡器健康度检测方法、装置及电子设备。
背景技术
在各大通信运营商的实际网络环境中,由于晶体振荡器失效导致基站退服、小区网络中断的情况时有发生,情况严重的甚至造成附近的基站无法正常工作。因此,为了保证无线网络服务质量,十分有必要对网络环境中的晶体振荡器的健康度进行评估,然而相关的技术方案中,关于晶体振荡器的健康度检测尚未有有效的方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种晶体振荡器健康度检测方法、装置、电子设备及计算机可读存储介质。
第一方面,本申请实施例提供一种晶体振荡器健康度检测方法,所述方法包括:获取晶体振荡器的特征参数;根据所述特征参数,确定晶体振荡器的频偏参数;根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度。
第二方面,本申请实施例提供一种晶体振荡器健康度检测装置,包括:获取模块,被设置成获取晶体振荡器的特征参数;第一确定模块,被设置成根据所述特征参数,确定晶体振荡器的频偏参数;第二确定模块,被设置成根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度。
第三方面,本申请实施例提供一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本申请实施例提供的晶体振荡器健康度检测方法。
第四方面,本申请实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,实现本申请实施例提供的晶体振荡器健康度检测方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和得到。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的一种晶体振荡器健康度检测方法的流程示意图;
图2是图1中步骤S300的一种具体实现过程示意图;
图3A是本申请实施例涉及的老化系数分布比例分析表;
图3B是本申请实施例涉及的老化系数概率分布示意图;
图4是图1中步骤S300的另一种具体实现过程示意图;
图5是图1中步骤S300的另一种具体实现过程示意图;
图6是图1中步骤S300的另一种具体实现过程示意图;
图7A是本申请实施例涉及的温度系数分布比例分析表;
图7B是本申请实施例涉及的温度系数概率分布示意图;
图8是图1中步骤S300的另一种具体实现过程示意图;
图9是图1中步骤S300的另一种具体实现过程示意图;
图10是本申请实施例提供的一种晶体振荡器健康度检测装置的结构示意图;
图11是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例涉及的晶体振荡器(可以简称晶振)具体可以是恒温控制晶体振荡器(Oven Control Crystal Oscillator,OCXO),其广泛应用于各类通讯设备中以作为本地的时钟源。在各大通信运营商的实际网络环境中,由于晶体振荡器失效导致基站退服、小区网络中断的情况时有发生,情况严重的甚至造成附近的基站无法正常工作。OCXO故障已成为设备单板故障最主要的故障类型。
相关的技术方案中,评估晶振健康度的方法为借鉴既往返修数据形成的经验规律以及参考晶振厂商提供的工艺参数。这种方案存在诸多不足:只能通过采样定性分析外场部分品牌批次的晶振,样本覆盖面小;检测需要专家人工分析,效率低下;无法提前预测晶振的潜在风险。由此可见,相关的技术方案中,关于晶体振荡器的健康度检测尚未有有效的方案。
基于以上,本申请实施例提供一种晶体振荡器健康度检测方法、装置、电子设备及计算机可读存储介质,通过获取晶体振荡器的特征参数,然后根据特征参数确定晶体振荡器的频偏参数,再进一步根据晶体振荡器的频偏参数和预设的阈值确定晶体振荡器的健康度,以达到有效评估晶体振荡器的健康度的目的。
请参见图1,图1示出了本申请实施例提供的一种晶体振荡器健康度检测方法的流程。如图1所示,本申请实施例的晶体振荡器健康度检测方法包括以下步骤:
S100,获取晶体振荡器的特征参数。
这里的特征参数可以包括出厂电压控制字、压控电压控制字和压控灵敏度。其中,
出厂电压控制字,表示晶体振荡器出厂时的电压控制字;
压控电压控制字,表示晶体振荡器运行时的电压控制字;
压控灵敏度,表示单位压控电压变化引起的老化频偏变化量。
具体实现过程中,可以预先设置好数据采集周期,例如15分钟、30分钟、60分钟等;然后按照预设的数据采集周期,采集晶体振荡器在外场运行时的完整数据;再对采集的完整 数据中进行过滤,以剔除异常的数据,以及仅保留对晶体振荡器健康度检测有用的出厂电压控制字、压控电压控制字和压控灵敏度数据。
S200,根据特征参数,确定晶体振荡器的频偏参数。
在获取到晶体振荡器的特征参数出厂电压控制字、压控电压控制字和压控灵敏度后,即可以利用这些特征参数确定晶体振荡器的频偏参数。
在一些示例中,晶体振荡器的频偏参数的计算方法可以参见下面公式(1)。
F=(fDa-cDa)*V 0*kf/R 0   (1)
公式(1)中,F为频偏参数,单位为ppb;fDa、cDa分别为出厂电压控制字、压控电压控制字,单位均为mV;V 0和R 0为比例系数,用于将0-R 0(mV)范围的控制字fDa和cDa映射成0-V 0(mV)的真实电压值;kf为压控灵敏度,单位为ppb/mV。
S300,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度。
请参见图2,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,可以通过以下步骤实现:
S311,获取与晶体振荡器的频偏参数对应的时间参数和温度参数。
可以理解,在采集晶体振荡器的特征参数时,还对采集的时间进行记录,得到时间参数;并对晶体振荡器的温度信息进行采集,得到温度参数,温度参数可以是晶体振荡器所处环境的环境温度。如此,得到与晶体振荡器的特征参数对应的时间参数和温度参数。在根据晶体振荡器的特征参数得到对应的频偏参数后,即可根据特征参数与频偏参数的对应关系,确定该频偏参数对应的时间参数和温度参数。
S312,根据预设的老化频偏线性回归模型,将晶体振荡器的频偏参数、时间参数及温度参数进行线性拟合,得到晶体振荡器的老化系数。
在一些示例中,老化频偏线性回归模型的函数表达式可以参见下面公式(2)。
F=coa*dayval+cot*T+const   (2)
在公式(2)中,F为因变量,表示频偏参数;dayval、T是自变量,分别表示时间参数和温度参数;coa表示老化系数,可理解为表征单位时间(例如一天)的频偏变化量;cot表示温度系数,可理解为表征单位温度(例如1℃)的频偏变化量;const是常数。
在通过公式(1)得到频偏参数F的值后,即可将该频偏参数F的值以及频偏参数对应的时间参数dayval和温度参数T代入至公式(2)中,然后通过线性拟合得到晶体振荡器的老化系数coa。所得到的老化系数coa的可信度可基于拟合优度的决定系数(R 2)确定,R 2越接近1,说明老化系数coa的可信度越高。
本申请实施例提供的老化频偏线性回归模型,根据晶振的频偏与时间、温度的关系,生成时间、温度双参数线性回归模型,该双参数线性回归模型能很好地拟合老化频偏曲线,通过拟合老化频偏曲线而得到的老化系数更加准确、更加可靠。
S313,在晶体振荡器的老化系数大于预设的老化系数阈值的情况下,确定晶体振荡器的健康度为严重老化。
其中,老化系数阈值可以根据对外场的晶振的老化系数进行统计分析后设定。
在一些示例中,图3A、图3B分别为对外场3092个恒温晶振的老化系数进行统计分析后,得到的老化系数分布比例分析表、老化系数概率分布图。由图3A和图3B所示的老化系数分布比例/概率可知,晶振的老化系数主要集中分布在[-0.5,0.5]区间,因此可以将老化系数阈值设定为0.5。当通过步骤S312得到的老化系数coa大于0.5,即可判定晶体振荡器的健康度为严重老化。
请参见图4,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,还可以通过以下步骤实现:
S321,获取与晶体振荡器的频偏参数对应的时间参数和温度参数。
S322,根据预设的老化频偏线性回归模型,将晶体振荡器的频偏参数、时间参数及温度参数进行线性拟合,得到晶体振荡器的老化系数。
步骤S321至S322的具体实现方式可参见前面步骤S311至S312的相关描述,此处不再赘述。
S323,根据压控电压控制字、压控灵敏度及老化系数,确定晶体振荡器的剩余频偏参数。
在得到晶体振荡器的老化系数之后,即可结合该老化系数和特征参数中的压控电压控制字、压控灵敏度来确定晶体振荡器的剩余频偏参数。
晶体振荡器的剩余频偏参数的计算方法可以参见下面的公式(3)。
RF=uDa*V 0*kf/R 0   (3)
公式(3)中的uDa为剩余可调压控电压控制字,表示cDa与压控电压门限边界的差值。应理解,uDa需根据前面步骤得到的老化系数确定,对于老化系数大于0的晶体振荡器,压控电压门限边界为压控电压控制字的上限R 0;对于老化系数小于0的晶体振荡器,压控电压门限边界为压控电压控制字的下限0。
公式(3)中的RF为剩余频偏参数,单位为ppb;kf为压控灵敏度,单位为ppb/mV;V 0和R 0为比例系数,用于将0-R 0(mV)范围的控制字fDa和cDa映射成0-V 0(mV)的真实电压值。
S324,根据晶体振荡器的剩余频偏参数和老化系数,确定晶体振荡器的剩余寿命参考值。
在得到晶体振荡器的剩余频偏参数之后,即可结合该剩余频偏参数和老化系数,求取晶体振荡器的剩余寿命参考值,以预测晶体振荡器的剩余使用寿命。
晶体振荡器的剩余寿命参考值的计算方法可以参见下面的公式(4)。
rul=(RF*0.95)/coa   (4)
公式(4)中,rul表示剩余寿命参考值,单位为天(d);RF为剩余频偏参数,单位为ppb;coa为老化系数,单位为ppb/d。
S325,在晶体振荡器的剩余寿命参考值小于预设的剩余寿命阈值的情况下,确定晶体振荡器的健康度为严重老化。
在确定晶体振荡器的剩余寿命参考值之后,将该剩余寿命参考值与预设的剩余寿命阈值进行比较,当剩余寿命参考值小于预设的剩余寿命阈值,即可确定晶体振荡器的健康度为严重老化。例如,通过公式(4)计算得到的剩余寿命参考值为8天,预设的剩余寿命阈值为10天,通过比较剩余寿命参考值与预设的剩余寿命阈值可确定该晶体振荡器的健康度为严重老化。
请参见图5,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,也可以通过以下步骤S331实现。
S331,获取第一预设时间段内晶体振荡器的多个频偏参数。
应理解,第一预设时间段可以包含多个数据采集周期,每个数据采集周期获取一次晶体振荡器的特征参数,然后根据特征参数计算晶体振荡器的频偏参数,即每个数据采集周期对应得到一个频偏参数,故第一预设时间段内也可以得到多个频偏参数。例如,第一预设时间段为1天,数据采集周期为15分钟,这样第一预设时间段(1天)内包含96个数据采集周期,因而第一预设时间段(1天)对应可以有96个频偏参数。
S332,从第一预设时间段内晶体振荡器的多个频偏参数确定最大频偏参数和最小频偏参数。
在获得第一预设时间段内晶体振荡器的多个频偏参数之后,比较这些频偏参数,从中确定最大频偏参数和最小频偏参数。例如,步骤S331获取到96个频偏参数,96个频偏参数中最大值为30ppb、最小值为15ppb,即最大频偏参数为30ppb、最小频偏参数为15ppb。
S333,根据最大频偏参数和最小频偏参数,确定晶体振荡器的频跳参数。
在一些示例中,将最大频偏参数和最小频偏参数之差,作为晶体振荡器的频跳参数。例 如,最大频偏参数为30ppb、最小频偏参数为15ppb,最大频偏参数和最小频偏参数之差为15ppb,故晶体振荡器的频跳参数为15ppb。
S334,在晶体振荡器的频跳参数大于预设的频跳参数阈值的情况下,确定晶体振荡器的健康度为频跳异常。
在确定晶体振荡器的频跳参数之后,即可根据晶体振荡器的频跳参数和预设的频跳参数阈值,判断晶体振荡器的健康度是否为频跳异常。
举例来说,预设的频跳参数阈值为10ppb,如果当前晶体振荡器的频跳参数为15ppb,即当前晶体振荡器的频跳参数大于预设的频跳参数阈值,故可以确定晶体振荡器的健康度为频跳异常。
请参见图6,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,还可以通过以下步骤S341-S347实现。
S341,获取第一预设时间段内晶体振荡器的多个频偏参数。
S342,从第一预设时间段内晶体振荡器的多个频偏参数确定最大频偏参数和最小频偏参数。
S343,根据最大频偏参数和最小频偏参数,确定晶体振荡器的频跳参数。
以上步骤S341至S343的具体实现方式可参见前面步骤S331至S333的相关描述,此处不再赘述。
S344,获取第一预设时间段内与晶体振荡器的频偏参数对应的温度参数。
可以理解的是,针对每个数据采集周期,在获取晶体振荡器的特征参数时,还对晶体振荡器的温度信息进行采集,得到温度参数,这里的温度参数可以是晶体振荡器所处环境的环境温度。如此,得到与晶体振荡器的特征参数对应的温度参数。在根据晶体振荡器的特征参数得到对应的频偏参数后,即可根据特征参数与频偏参数的对应关系,确定该频偏参数对应的温度参数。具体实现时,可以在获取第一预设时间段内的频偏参数时,同时获取该频偏参数对应的温度参数。
S345,确定第一预设时间段晶体振荡器的频偏参数与温度参数的第一相关系数。
针对由于温度剧烈变化导致的频跳现象,本申请实施例还考虑频偏参数与温度参数的相关性。
在获取到第一预设时间段内的频偏参数和与频偏参数对应的温度参数后,即可计算频偏参数与温度参数的相关性。
作为示例,第一相关系数可以是肯德尔(kendall)相关系数。具体实现时,通过计算第一预设时间段内的频偏参数和温度参数的kendall相关系数,以根据该kendall相关系数判断频偏参数与温度参数是否相关。
应理解,第一相关系数还可以是皮尔森相关系数或者斯皮尔曼相关系数,本申请实施例对第一相关系数的类型不作具体限定。
S346,在第一相关系数大于预设的相关系数阈值的情况下,确定第一预设时间段的第一温度波动值,并根据第一温度波动值对晶体振荡器的频跳参数进行调整,以及将晶体振荡器的频跳参数更新为调整后的频跳参数。
在确定第一预设时间段晶体振荡器的频偏参数与温度参数的第一相关系数之后,将该第一相关系数与预设的相关系数阈值进行比较,根据比较结果判断频偏参数与温度参数是否相关。例如,预设的相关系数阈值为0.3,如果第一相关系数的数值大于0.3,即确定第一时间段内的频偏参数与温度参数相关,否则确定第一时间段内的频偏参数与温度参数不相关。
可以理解的是,在确定第一时间段内的频偏参数与温度参数相关的情况下,需对步骤S343得到的频跳参数进行调整,以扣除温度波动对频跳参数的影响,使后续的健康度检测更加准确。
频跳参数的调整过程可以包括:确定第一预设时间段的第一温度波动值,并根据第一温度波动值对晶体振荡器的频跳参数进行调整,以及将晶体振荡器的频跳参数更新为调整后的 频跳参数。
举例来说,以F1表示步骤S343得到的频跳参数,可定义为初始频跳参数,在确定第一时间段内的频偏参数与温度参数相关的情况下,F=F1-F2,F2=|α*△T|。
其中,F表示调整后的频跳参数,可定义为最终频跳参数;F2表示调整变化量。
△T表示第一预设时间段的第一温度波动值,△T可以根据第一时间段内的温度参数确定。
α表示温度系数主要变化区间的边界。在一些示例中,图7A、图7B分别为对外场3092个恒温晶振的温度系数进行统计分析后,得到的温度系数分布比例分析表、温度系数概率分布示意图。由图7A和图7B所示的老化系数分布比例/概率可知,晶振的温度系数主要集中分布在[-0.5,0.5]区间,因此可以确定0.5为温度系数主要变化区间的边界,即可以确定α的取值为0.5。
在得到调整后的频跳参数F后,将频跳参数从初始频跳参数F1替换为调整后的最频跳参数F。在后续步骤中使用最终频偏参数F与预设的频跳参数阈值进行比较,判断晶体振荡器的健康度是否为频跳异常。
应理解,在确定第一时间段内的频偏参数与温度参数不相关的情况下,F=F1-F2,F2=0;即最终频偏参数F与初始频偏参数F1相等。
S347,在晶体振荡器的频跳参数大于预设的频跳参数阈值的情况下,确定晶体振荡器的健康度为频跳异常。
应理解,在进行第一时间段内的频偏参数与温度参数相关性判断后,将调整后的频跳参数F与预设的频跳参数阈值进行比较,在晶体振荡器的频跳参数大于预设的频跳参数阈值的情况下,确定晶体振荡器的健康度为频跳异常。
请参见图8,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,还可以通过以下步骤S351-S354实现。
S351,获取第二预设时间段内晶体振荡器的多个频偏参数。
应理解,第二预设时间段应大于或等于一个数据采集周期的时间长度。例如,一个数据采集周期的时间长度为15分钟,这样,第二预设时间段可设置成15分钟或者15分钟以上的时间长度。
S352,根据第二预设时间段内晶体振荡器的多个频偏参数,确定第二预设时间段内晶体振荡器的频偏变化绝对值。
举例来说,假设第二预设时间段为15分钟,由于一个数据采集周期的时间长度为15分钟,所以前后两个数据采集周期的时间间隔也为15分钟,故第二预设时间段可以获取到两个频偏参数。具体实现时,可以通过计算15分钟内的最终频偏参数和起始频偏参数之差的绝对值,得到第二预设时间段内晶体振荡器的频偏变化绝对值。
S353,确定第三预设时间段内频偏变化绝对值落入预设的频偏变化区间内的次数,得到对应于频偏变化区间的次数数据,其中,第三预设时间段的时间长度大于第二预设时间段的时间长度。
应理解,第三预设时间段的时间长度应当大于第二预设时间段的时间长度,例如第二预设时间段的时间长度为15分钟,第三预设时间段的时间长度为4天。这样,每15分钟采集一次晶体振荡器的频偏变化绝对值,然后对4天内各个频偏变化绝对值所落入的频偏变化区间进行统计。
应理解,预设的频偏变化区间数量可以是一个或者多个。
在预设的频偏变化区间数量有多个的情况下,在数值范围中,这多个频偏变化区间应当是连续的,即:频偏变化区间包括多个连续的频偏变化区间。另外,每个频偏变化区间应当对应设置一个次数阈值,以便后续步骤中进行比较。
例如,预设的频偏变化区间包括:[0,0.5)、[0.5,3.0)、[3.0,10.0)。在每15分钟采集一次晶体振荡器的频偏变化绝对值后,确定该频偏变化绝对值落入哪个频偏变化区间内, 该频偏变化绝对值对应的频偏变化区间的累计次数加1;针对每个频偏变化区间,统计4天内频偏变化绝对值落入该频偏变化区间的次数。
S354,根据对应于频偏变化区间的次数数据和预设的次数阈值,确定晶体振荡器的健康度为频跳异常。
可以理解的是,在得到频偏变化区间的次数数据后,将该次数数据与对应的预设次数阈值进行比较,进而判断晶体振荡器的健康度为频跳异常。
应理解,在预设的频偏变化区间数量有多个的情况下,应当每个频偏变化区间对应的次数数据均大于频偏变化区间对应的预设次数阈值,才能确定晶体振荡器的健康度为频跳异常。
举例来说,频偏变化区间[0,0.5)、[0.5,3.0)、[3.0,10.0)对应的次数阈值分布为3、9、2;如果4天内频偏变化绝对值落入以上频偏变化区间的次数对应为5、10、3,即确定晶体振荡器的健康度为频跳异常;如果4天内频偏变化绝对值落入以上频偏变化区间的次数对应为5、8、3,由于[0.5,3.0)对应的次数数据没有大于对应的次数阈值,即不满足预设的比较条件,不能确定晶体振荡器的健康度为频跳异常。
请参见图9,根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度,还可以通过以下步骤S361-S367实现:
S361,获取第二预设时间段内晶体振荡器的多个频偏参数。
S362,根据第二预设时间段内晶体振荡器的多个频偏参数,确定第二预设时间段内晶体振荡器的频偏变化绝对值。
以上步骤S361至S362的具体实现方式可参见前面步骤S351至S352的相关描述,此处不再赘述。
S363,获取第三预设时间段内与晶体振荡器的频偏参数对应的温度参数。
应理解,第三预设时间段的时间长度大于第二预设时间段的时间长度。具体实现时,可以针对每个数据采集周期,在获取晶体振荡器的特征参数时,还对晶体振荡器的温度信息进行采集,得到温度参数,这里的温度参数可以是晶体振荡器所处环境的环境温度。如此,得到与晶体振荡器的特征参数对应的温度参数。在根据晶体振荡器的特征参数得到对应的频偏参数后,即可根据特征参数与频偏参数的对应关系,确定该频偏参数对应的温度参数。具体实现时,可以在获取第三预设时间段内的频偏参数时,同时获取该频偏参数对应的温度参数。
S364,确定频偏参数与温度参数的第二相关系数。
在获取到第三预设时间段内的频偏参数和与频偏参数对应的温度参数后,即可计算频偏参数与温度参数的相关性。
作为示例,第二相关系数可以是肯德尔(kendall)相关系数。具体实现时,通过计算第二预设时间段内的频偏参数和温度参数的kendall相关系数,以根据该kendall相关系数判断频偏参数与温度参数是否相关。
应理解,第二相关系数还可以是皮尔森相关系数或者斯皮尔曼相关系数,本申请实施例对第一相关系数的类型不作具体限定。
S365,在第二相关系数大于预设的相关系数阈值的情况下,确定第三预设时间段的第二温度波动值,并根据第二温度波动值对晶体振荡器的频偏变化绝对值进行调整,以及将晶体振荡器的频偏变化绝对值更新为调整后的频偏变化绝对值。
在确定第三预设时间段晶体振荡器的频偏参数与温度参数的第二相关系数之后,将该第二相关系数与预设的相关系数阈值进行比较,根据比较结果判断频偏参数与温度参数是否相关。例如,预设的相关系数阈值为0.3,如果第二相关系数的数值大于0.3,即确定第三时间段内的频偏参数与温度参数相关,否则确定第三时间段内的频偏参数与温度参数不相关。
可以理解的是,在确定第三时间段内的频偏参数与温度参数相关的情况下,需对步骤S362得到的频偏变化绝对值进行调整,以扣除温度波动对频偏变化绝对值的影响,使后续的健康度检测更加准确。
频跳参数的调整过程可以包括:确定第三预设时间段的第二温度波动值,并根据第二温 度波动值对晶体振荡器的频偏变化绝对值进行调整,以及将晶体振荡器的频偏变化绝对值更新为调整后的频偏变化绝对值。
举例来说,以B1表示步骤S362得到的频偏变化绝对值,可定义为初始频偏变化绝对值,在确定第三时间段内的频偏参数与温度参数相关的情况下,B=B1-B2,B2=|α*△T|。
其中,B表示调整后的频偏变化绝对值,可定义为最终频偏变化绝对值;B2表示调整变化量。
△T表示第一预设时间段的第一温度波动值,△T可以根据第三时间段内的温度参数确定。
α表示温度系数主要变化区间的边界。例如,根据统计,晶振的温度系数主要集中分布在[-0.5,0.5]区间,因此可以确定0.5为温度系数主要变化区间的边界,即可以确定α的取值为0.5。
在得到调整后的频偏变化绝对值B后,将频偏变化绝对值从初始频偏变化绝对值B1替换为调整后的最终频偏变化绝对值B。在后续步骤S366中使用最终频偏变化绝对值B,统计最终频偏变化绝对值B落入哪个预设的频偏变化区间。
应理解,在确定第三时间段内的频偏参数与温度参数不相关的情况下,B=B1-B2,B2=0;即最终频偏变化绝对值B与初始频偏变化绝对值B1相等。
S366,确定第三预设时间段内频偏变化绝对值落入预设的频偏变化区间内的次数,得到对应于频偏变化区间的次数数据,其中,第三预设时间段的时间长度大于第二预设时间段的时间长度。
S367,根据对应于频偏变化区间的次数数据和预设的次数阈值,确定晶体振荡器的健康度为频跳异常。
以上步骤S366至S367的具体实现方式可参见前面步骤S353至S354的相关描述,此处不再赘述。
应理解,本申请实施例可以在确定晶体振荡器的健康度为严重老化或者频跳异常后,输出与晶体振荡器的健康度对应的健康度指示信息,例如,针对严重老化的晶体振荡器输出第一指示信息,针对频跳异常的晶体振荡器输出第二指示信息,以提示工作人员及时对严重老化或者频跳异常的晶体振荡器进行更换。
本申请实施例提供的晶体振荡器健康度检测方法适用于对全网的晶体振荡器进行检测,能够及时快速反馈检测结果,避免人工检测的弊端,提升无线网络服务质量。
参见图10,图10是本申请实施例提供的晶体振荡器健康度检测装置的结构示意图,本申请实施例提供的晶体振荡器健康度检测方法的整个流程中涉及晶体振荡器健康度检测装置中的以下模块:获取模块、第一确定模块和第二确定模块。
其中,获取模块被设置成:获取晶体振荡器的特征参数。
第一确定模块被设置成:根据特征参数,确定晶体振荡器的频偏参数。
第二确定模块被设置成:根据晶体振荡器的频偏参数和预设的阈值,确定晶体振荡器的健康度。
需要说明的是,上述装置的模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图11示出了本申请实施例提供的电子设备500。该电子设备500包括但不限于以下部件。
存储器501,用于存储程序。
处理器502,用于执行存储器501存储的程序,当处理器502执行存储器501存储的程序时,处理器502用于执行上述的晶体振荡器健康度检测方法。
处理器502和存储器501可以通过总线或者其他方式连接。
存储器501作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的晶体振荡器健康度检测方法。处理器502 通过运行存储在存储器501中的非暂态软件程序以及指令,从而实现上述的晶体振荡器健康度检测方法。
存储器501可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的晶体振荡器健康度检测方法。此外,存储器501可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器501可包括相对于处理器502远程设置的存储器,这些远程存储器可以通过网络连接至该处理器502。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的晶体振荡器健康度检测方法所需的非暂态软件程序以及指令存储在存储器501中,当被一个或者多个处理器502执行时,执行本申请任意实施例提供的晶体振荡器健康度检测方法。
本申请实施例还提供了一种存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的晶体振荡器健康度检测方法。
在一实施例中,该存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器502执行,比如,被上述电子设备500中的一个处理器502执行,可使得上述一个或多个处理器502执行本申请任意实施例提供的晶体振荡器健康度检测方法。
本申请实施例,获取晶体振荡器的特征参数;然后根据所述特征参数,确定晶体振荡器的频偏参数;进而根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度。本申请实施例的方案能够有效地评估晶体振荡器的健康度,具有快速检测、准确率高等优点,特别适用于检测外场在用的大批量晶体振荡器的健康度,及时查找出老化严重或者频跳异常的晶体振荡器,进而提升无线网络服务质量。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (12)

  1. 一种晶体振荡器健康度检测方法,所述方法包括:
    获取晶体振荡器的特征参数;
    根据所述特征参数,确定晶体振荡器的频偏参数;
    根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度。
  2. 根据权利要求1所述的方法,其中,所述特征参数包括:出厂电压控制字、压控电压控制字和压控灵敏度。
  3. 根据权利要求1所述的方法,其中,所述根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度,包括:
    获取与所述晶体振荡器的频偏参数对应的时间参数和温度参数;
    根据预设的老化频偏线性回归模型,将所述晶体振荡器的频偏参数、所述时间参数及所述温度参数进行线性拟合,得到所述晶体振荡器的老化系数;
    在所述晶体振荡器的老化系数大于预设的老化系数阈值的情况下,确定所述晶体振荡器的健康度为严重老化。
  4. 根据权利要求3所述的方法,其中,所述特征参数包括:压控电压控制字和压控灵敏度;
    所述得到所述晶体振荡器的老化系数之后,还包括:
    根据所述压控电压控制字、所述压控灵敏度及所述老化系数,确定所述晶体振荡器的剩余频偏参数;
    根据所述晶体振荡器的所述剩余频偏参数及所述老化系数,确定所述晶体振荡器的剩余寿命参考值;
    在所述晶体振荡器的剩余寿命参考值小于预设的剩余寿命阈值的情况下,确定所述晶体振荡器的健康度为严重老化。
  5. 根据权利要求1所述的方法,其中,所述根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度,包括:
    获取第一预设时间段内所述晶体振荡器的多个频偏参数;
    从第一预设时间段内所述晶体振荡器的多个频偏参数中确定最大频偏参数和最小频偏参数;
    根据所述最大频偏参数和所述最小频偏参数,确定所述晶体振荡器的频跳参数;
    在所述晶体振荡器的频跳参数大于预设的频跳参数阈值的情况下,确定所述晶体振荡器的健康度为频跳异常。
  6. 根据权利要求5所述的方法,其中,所述在所述晶体振荡器的频跳参数大于预设的频跳参数阈值的情况下,确定所述晶体振荡器的健康度为频跳异常之前,还包括:
    获取第一预设时间段内与所述晶体振荡器的频偏参数对应的温度参数;
    确定第一预设时间段的所述晶体振荡器的频偏参数与所述温度参数的第一相关系数;
    在所述第一相关系数大于预设的相关系数阈值的情况下,确定第一预设时间段的第一温度波动值,并根据所述第一温度波动值对所述晶体振荡器的频跳参数进行调整,以及将所述晶体振荡器的频跳参数更新为调整后的所述频跳参数。
  7. 根据权利要求1所述的方法,其中,所述根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度,包括:
    获取第二预设时间段内所述晶体振荡器的多个频偏参数;
    根据所述第二预设时间段内所述晶体振荡器的多个频偏参数,确定所述第二预设时间段内所述晶体振荡器的频偏变化绝对值;
    确定第三预设时间段内所述频偏变化绝对值落入预设的频偏变化区间内的次数,得到对应于所述频偏变化区间的次数数据,其中,所述第三预设时间段的时间长度大于所述第二预 设时间段的时间长度;
    根据所述对应于所述频偏变化区间的次数数据和预设的次数阈值,确定所述晶体振荡器的健康度为频跳异常。
  8. 根据权利要求7所述的方法,其中,所述频偏变化区间包括多个连续的频偏变化区间,每个频偏变化区间对应一个次数阈值;
    所述根据所述对应于所述频偏变化区间的次数数据和预设的次数阈值,确定所述晶体振荡器的健康度为频跳异常,包括:
    在每个频偏变化区间对应的次数数据均大于所述频偏变化区间对应的预设次数阈值的情况下,确定所述晶体振荡器的健康度为频跳异常。
  9. 根据权利要求7所述的方法,其中,所述确定第三预设时间段内所述频偏变化绝对值落入预设的频偏变化区间内的次数之前,还包括:
    获取第三预设时间段内与所述晶体振荡器的频偏参数对应的温度参数;
    确定所述频偏参数与所述温度参数的第二相关系数;
    在所述第二相关系数大于预设的相关系数阈值的情况下,确定第三预设时间段的第二温度波动值,并根据所述第二温度波动值对所述晶体振荡器的频偏变化绝对值进行调整,以及将所述晶体振荡器的频偏变化绝对值更新为调整后的所述频偏变化绝对值。
  10. 一种晶体振荡器健康度检测装置,包括:
    获取模块,被设置成获取晶体振荡器的特征参数;
    第一确定模块,被设置成根据所述特征参数,确定晶体振荡器的频偏参数;
    第二确定模块,被设置成根据所述晶体振荡器的频偏参数和预设的阈值,确定所述晶体振荡器的健康度。
  11. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时,实现如权利要求1至9任意一项所述的晶体振荡器健康度检测方法。
  12. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时,实现如权利要求1至9任意一项所述的晶体振荡器健康度检测方法。
PCT/CN2022/086147 2021-05-12 2022-04-11 晶体振荡器健康度检测方法、装置及电子设备 WO2022237425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110516829.7 2021-05-12
CN202110516829.7A CN115343544A (zh) 2021-05-12 2021-05-12 晶体振荡器健康度检测方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022237425A1 true WO2022237425A1 (zh) 2022-11-17

Family

ID=83947149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086147 WO2022237425A1 (zh) 2021-05-12 2022-04-11 晶体振荡器健康度检测方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115343544A (zh)
WO (1) WO2022237425A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790412A (en) * 1997-06-05 1998-08-04 The United States Of America As Represented By The Secretary Of The Army Recursive frequency aging estimation and prediction devices, methods and computer programs for crystal oscillators
JP2003344472A (ja) * 2002-05-24 2003-12-03 Canon Inc 製品の使用状況検査方法と検査装置、及びその製品
CN104198846A (zh) * 2014-08-18 2014-12-10 广东大普通信技术有限公司 一种晶体振荡器老化特性的自动测试方法及系统
CN108037356A (zh) * 2017-11-21 2018-05-15 北京无线电计量测试研究所 一种晶体振荡器频率监测系统及方法
CN109743022A (zh) * 2019-01-09 2019-05-10 西安电子科技大学 一种改善晶体振荡器老化漂移率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790412A (en) * 1997-06-05 1998-08-04 The United States Of America As Represented By The Secretary Of The Army Recursive frequency aging estimation and prediction devices, methods and computer programs for crystal oscillators
JP2003344472A (ja) * 2002-05-24 2003-12-03 Canon Inc 製品の使用状況検査方法と検査装置、及びその製品
CN104198846A (zh) * 2014-08-18 2014-12-10 广东大普通信技术有限公司 一种晶体振荡器老化特性的自动测试方法及系统
CN108037356A (zh) * 2017-11-21 2018-05-15 北京无线电计量测试研究所 一种晶体振荡器频率监测系统及方法
CN109743022A (zh) * 2019-01-09 2019-05-10 西安电子科技大学 一种改善晶体振荡器老化漂移率的方法

Also Published As

Publication number Publication date
CN115343544A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US7647326B2 (en) Method and system for evaluating media-playing sets
US20230140836A9 (en) Anomaly detection method and device, terminal and storage medium
CN108989889B (zh) 一种视频播放量预测方法、装置及电子设备
CN111209274B (zh) 一种数据质量检核方法、系统、设备及可读存储介质
WO2021248690A1 (zh) 光通道性能劣化智能预警方法、装置、设备及存储介质
CN110890998B (zh) 一种确定阈值的方法及装置
WO2022237425A1 (zh) 晶体振荡器健康度检测方法、装置及电子设备
CN109213057B (zh) 智能诊断装置和方法
CN112926807A (zh) 考虑预测误差的机柜设备发热量超短期预测方法及系统
US20240077862A1 (en) System and method for manufacturing system data analysis
US20050038544A1 (en) Management system of monitor wafers
CN103713218A (zh) 晶体振荡器温度特性自动测量方法和系统
JP2015118505A (ja) コントローラシステム
CN109614299A (zh) 一种系统异常检测方法、装置及电子设备
CN106649798B (zh) 一种基于北斗高精度的结构监测数据对比及关联分析方法
CN105447518A (zh) 一种基于K-means遥测数据判读系统
EP4120588A1 (en) Data processing method and apparatus
CN114459523A (zh) 一种在线质量检测仪器的标定预警方法
CN113783649A (zh) 终端校时方法、系统、电子设备及存储介质
CN115685948B (zh) 数据处理方法、装置、设备及介质
CN116614211A (zh) 一种网络数字模型的校正方法及校正装置
CN108449206B (zh) 一种时间同步方法、装置、设备及存储介质
CN111784008B (zh) 产品生命周期预估方法、装置、电子设备及存储介质
CN115950430B (zh) 一种人员行动轨迹分析方法及系统
CN117558118B (zh) 电表数据采集方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806395

Country of ref document: EP

Kind code of ref document: A1