WO2022237250A1 - 射频电路和控制方法 - Google Patents

射频电路和控制方法 Download PDF

Info

Publication number
WO2022237250A1
WO2022237250A1 PCT/CN2022/075715 CN2022075715W WO2022237250A1 WO 2022237250 A1 WO2022237250 A1 WO 2022237250A1 CN 2022075715 W CN2022075715 W CN 2022075715W WO 2022237250 A1 WO2022237250 A1 WO 2022237250A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
antenna
switch
srs
transmit
Prior art date
Application number
PCT/CN2022/075715
Other languages
English (en)
French (fr)
Inventor
冯莉
江成
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2022237250A1 publication Critical patent/WO2022237250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of terminals, and in particular to a radio frequency circuit and a control method.
  • a fifth-generation mobile communication technology may use two networking modes for communication.
  • the two networking modes are respectively non-standalone networking (non-standalone, NSA) and independent networking (standalone, SA).
  • the dual-mode 5G mobile phone can communicate in various ways. Communication methods include: 5G new radio (new radio, NR) communication, long term evolution (long term evolution, LTE) communication, and dual connection (EUTRA-NR dual connectivity, ENDC) communication between LTE and NR.
  • NR new radio
  • LTE long term evolution
  • ENDC dual connection
  • dual-mode 5G mobile phones In the NR frequency band, dual-mode 5G mobile phones also need to support NR’s 1-transmit-4-receive (1T4R) sounding reference signal (SRS) antennas to transmit in turn.
  • SRS sounding reference signal
  • the dual-mode 5G mobile phone includes 6 antennas.
  • Embodiments of the present application provide a radio frequency circuit and a control method.
  • the antennas are shared, and LTE signals and NR signals are simultaneously received on one antenna, thereby reducing the number of antennas, reducing the space occupied by the antennas, and reducing the volume of terminal equipment.
  • the radio frequency circuit realizes switching of the transmitting antenna of the LTE signal or the transmitting antenna of the NR signal by changing the connection of the port in the switch unit, and realizes the dual-mode function of SA and NSA.
  • the embodiment of the present application provides a radio frequency circuit.
  • the radio frequency circuit includes a radio frequency transceiver, a controller, a switch unit, a first antenna, a second antenna, a third antenna, a fourth antenna, and a fifth antenna;
  • the radio frequency transceiver includes a first port, a second port, a third port, a Four ports and the fifth port, the first port is used to transmit and receive the first signal, the second port is used to receive the second signal and the first signal, the third port is used to transmit and receive the second signal, the fourth port and the first The five ports are all used for receiving the second signal.
  • the switch unit includes a sixth port, a seventh port, an eighth port, a ninth port, a tenth port, an eleventh port, a twelfth port, a thirteenth port, a fourteenth port and a fifteenth port;
  • the port, the second port, the third port, the fourth port and the fifth port are respectively connected to the sixth port, the seventh port, the eighth port, the ninth port and the tenth port; the eleventh port, the twelfth port,
  • the thirteenth port, the fourteenth port and the fifteenth port are respectively connected to the first antenna, the second antenna, the third antenna, the fourth antenna and the fifth antenna.
  • the first antenna is used to transmit and receive the first signal
  • the second antenna is used to receive the first signal and the second signal
  • the first antenna is used to receive the first signal and the second signal
  • the second antenna is used to transmit and receive the second signal.
  • a signal; any one of the third antenna, the fourth antenna and the fifth antenna is used to transmit the second signal, and the third antenna, the fourth antenna and the fifth antenna are all used to receive the second signal.
  • the controller is connected to the switch unit; the controller is used to control the sixth port and the seventh port to be connected to the eleventh port and the twelfth port respectively when the radio frequency transceiver transmits or receives the first signal, or to control the sixth port and the The seventh port is connected to the twelfth port and the eleventh port respectively.
  • the radio frequency transceiver transmits or receives the second signal
  • control the seventh port, the eighth port, the ninth port and the tenth port to communicate with the twelfth port, the thirteenth port, the fourteenth port and the fourth port respectively
  • the fifteenth port is connected, or the seventh port, the eighth port, the ninth port and the tenth port are connected to the eleventh port, the thirteenth port, the fourteenth port and the fifteenth port respectively; wherein, the first signal It is a long term evolution LTE signal, and the second signal is a new air interface NR signal.
  • the radio frequency circuit can use 5 antennas to realize LTE communication, NR communication, and LTE and NR dual connectivity (ENDC) communication, and realize the dual-mode function of SA and NSA. It is also possible to switch the antenna by changing the connection of the port in the switch unit, and then select a suitable antenna to transmit the LTE signal or NR signal, improve the quality of the LTE signal or NR signal, and improve the throughput.
  • the reduction in the number of antennas can reduce the space occupied by the antennas and reduce the size of the terminal equipment.
  • the third port is also used to transmit the sounding reference signal SRS;
  • the controller is also used to, when the third port transmits the SRS and the first antenna is used to transmit and receive the first signal, control the eighth port and the twelfth
  • the ports are connected so that the second antenna is used to transmit SRS; or the eighth port is controlled to be connected to the thirteenth port so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port so that the fourth antenna is used for transmitting SRS, or control the connection between the eighth port and the fifteenth port, so that the fifth antenna is used for transmitting SRS;
  • the eighth port is controlled to be connected to the eleventh port so that the first antenna is used to transmit SRS; or the eighth port is controlled to be connected to the tenth port Three ports are connected, so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port, so that the fourth antenna is used to transmit SRS, or the eighth port is controlled to be connected to the fifteenth port, so that the fifth antenna Used to launch SRS.
  • the switch unit includes a first switch and a second switch, both of which are three-pole three-throw switches;
  • the first switch includes a sixth port, a seventh port, an eleventh port, a twelfth port, the thirteenth port and the sixteenth port;
  • the second switch includes the eighth port, the ninth port, the tenth port, the fourteenth port, the fifteenth port and the seventeenth port; the sixteenth port and the tenth port Seven-port connection; both the first switch and the second switch are connected to the controller.
  • the controller is configured to, when the radio frequency transceiver transmits or receives the first signal, control the sixth port and the seventh port to be connected to the eleventh port and the twelfth port respectively, or control the sixth port and the seventh port to be connected to the twelfth port respectively Twelve-port and eleventh-port connections.
  • the radio frequency transceiver transmits or receives the second signal
  • control the seventh port, the sixteenth port, the eighth port, the ninth port and the tenth port to communicate with the twelfth port, the thirteenth port, the The seventeenth port, the fourteenth port and the fifteenth port are connected, or the seventh port, the sixteenth port, the eighth port, the ninth port and the tenth port are connected with the eleventh port, the thirteenth port and the Seventeenth, fourteenth and fifteenth port connections.
  • LTE communication LTE communication
  • NR communication LTE and NR dual connectivity (ENDC) communication
  • EPC LTE and NR dual connectivity
  • the third port is also used to transmit the SRS; the controller is also used to, when the radio frequency transceiver transmits the SRS and the first antenna is used to transmit and receive the first signal, control the eighth port and the sixteenth port to communicate with the The seventeenth port is connected to the twelfth port so that the second antenna is used to transmit SRS; or the eighth port and the sixteenth port are controlled to be connected to the seventeenth port and the thirteenth port respectively, so that the third antenna is used for transmitting SRS; or control the eighth port to be connected to the fourteenth port, so that the fourth antenna is used to transmit SRS; or control the eighth port to be connected to the fifteenth port, so that the fifth antenna is used to transmit SRS.
  • the eighth port and the sixteenth port are controlled to be connected to the seventeenth port and the eleventh port respectively, so that the first antenna is used for Transmit SRS; or control the eighth port and the sixteenth port to be connected to the seventeenth port and the thirteenth port respectively, so that the third antenna is used to transmit SRS; or control the eighth port to be connected to the fourteenth port, so that the fourth The antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fifteenth port so that the fifth antenna is used to transmit SRS.
  • the switch unit includes a third switch, and the third switch is a five-knife five-throw switch; the third switch includes a sixth port, a seventh port, an eighth port, a ninth port, a tenth port, an eleventh port, The twelfth port, the thirteenth port, the fourteenth port and the fifteenth port; the third switch is connected with the controller.
  • the switch unit includes a fourth switch and a fifth switch, the fourth switch is a double-pole double-throw switch, and the fourth switch is a four-pole four-throw switch;
  • the fourth switch includes a sixth port, an eleventh port, a tenth The second port and the eighteenth port;
  • the fifth switch includes the seventh port, the eighth port, the ninth port, the tenth port, the thirteenth port, the fourteenth port, the fifteenth port and the nineteenth port; the tenth port The eighth port is connected with the nineteenth port; both the fourth switch and the fifth switch are connected with the controller.
  • the controller is used to, when the radio frequency transceiver transmits or receives the first signal, control the sixth port, the seventh port and the eighteenth port to connect with the eleventh port, the nineteenth port and the twelfth port respectively, or control
  • the sixth port, the seventh port and the eighteenth port are respectively connected to the twelfth port, the nineteenth port and the eleventh port.
  • the radio frequency transceiver transmits or receives the second signal
  • control the seventh port, the eighth port, the ninth port, the tenth port and the eighteenth port to communicate with the nineteenth port, the thirteenth port, the The fourteenth port, the fifteenth port and the twelfth port are connected, or the seventh port, the eighth port, the ninth port, the tenth port and the eighteenth port are respectively connected with the nineteenth port, the thirteenth port and the Fourteenth, fifteenth and eleventh port connections.
  • the third port is also used to transmit the SRS; the controller is also used to, when the radio frequency transceiver transmits the SRS and the first antenna is used to transmit and receive the first signal, control the eighth port and the eighteenth port to communicate with the
  • the nineteenth port is connected to the twelfth port so that the second antenna is used to transmit SRS; or the eighth port is controlled to be connected to the thirteenth port so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port
  • the ports are connected so that the fourth antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fifteenth port so that the fifth antenna is used to transmit SRS.
  • the eighth port and the eighteenth port are controlled to be connected to the nineteenth port and the eleventh port respectively, so that the first antenna is used for Transmit SRS; or control the connection between the eighth port and the thirteenth port, so that the third antenna is used to transmit SRS; or control the connection between the eighth port and the fourteenth port, so that the fourth antenna is used to transmit SRS; or control the eighth port Connect with the fifteenth port, so that the fifth antenna is used to transmit SRS.
  • the switch unit includes a sixth switch, a seventh switch, and an eighth switch, both of the sixth switch and the seventh switch are double-pole four-throw switches, and the eighth switch is a single-pole double-throw switch;
  • the sixth switch includes a sixth port , the seventh port, the eleventh port, the twelfth port, the twentieth port and the twenty-first port;
  • the seventh switch includes the eighth port, the ninth port, the thirteenth port, the fourteenth port, the second The twelfth port and the twenty-third port;
  • the eighth switch includes the tenth port, the fifteenth port and the twenty-fourth port; The tenth port is connected to the twenty-fourth port;
  • the sixth switch, the seventh switch and the eighth switch are all connected to the controller.
  • the controller is configured to, when the radio frequency transceiver transmits or receives the first signal, control the sixth port and the seventh port to be connected to the eleventh port and the twelfth port respectively, or control the sixth port and the seventh port to be connected to the twelfth port respectively Twelve-port and eleventh-port connections;
  • the radio frequency transceiver transmits or receives the second signal
  • control the seventh port, the eighth port, the ninth port and the tenth port to communicate with the twelfth port, the thirteenth port, the fourteenth port and the fourth port respectively
  • the fifteenth port is connected, or the seventh port, the eighth port, the ninth port and the tenth port are connected to the eleventh port, the thirteenth port, the fourteenth port and the fifteenth port respectively.
  • LTE communication, NR communication, and dual connectivity (ENDC) communication between LTE and NR can be realized through non-equivalent switches and five antennas, and dual-mode functions of SA and NSA can be realized.
  • EPC dual connectivity
  • the third port is also used to transmit the SRS; the controller is also used to, when the radio frequency transceiver transmits the SRS and the first antenna is used to transmit and receive the first signal, control the eighth port and the twenty-first port respectively Connect with the twenty-second port and the twelfth port, so that the second antenna is used for transmitting SRS; or the eighth port is connected with the thirteenth port, so that the third antenna is used for transmitting SRS; or the eighth port and the fourteenth The ports are connected so that the fourth antenna is used to transmit SRS; or the eighth port and the twenty-fourth port are controlled to be connected to the twenty-third port and the fifteenth port respectively, so that the fifth antenna is used to transmit SRS.
  • the eighth port and the twenty-first port are controlled to be connected to the twenty-second port and the eleventh port respectively, so that the first antenna It is used to transmit SRS; or the eighth port is connected to the thirteenth port, so that the third antenna is used to transmit SRS; or the eighth port is connected to the fourteenth port, so that the fourth antenna is used to transmit SRS; or the eighth port is controlled and the twenty-fourth port are respectively connected to the twenty-third port and the fifteenth port, so that the fifth antenna is used to transmit the SRS.
  • the switch unit includes a ninth switch, a tenth switch, an eleventh switch and a twelfth switch, the ninth switch is a double-pole double-throw switch, the tenth switch is a double-pole four-throw switch, the eleventh switch and The twelfth switch is a single-pole double-throw switch; the ninth switch includes the sixth port, the eleventh port, the twelfth port and the twenty-fifth port; the tenth switch includes the seventh port, the eighth port, the thirteenth port port, twenty-sixth port, twenty-seventh port, and twenty-eighth port; the eleventh switch includes the ninth port, the fourteenth port, and the twenty-ninth port; the twelfth switch includes the tenth port, the The fifteenth port and the thirtieth port; the twenty-fifth port, the twenty-seventh port and the twenty-eighth port are connected to the twenty-sixth port, the twenty-ninth port and the thirty-
  • the controller is used to control the sixth port, the seventh port and the twenty-fifth port to connect with the eleventh port, the twenty-sixth port and the twelfth port respectively when the radio frequency transceiver transmits or receives the first signal, or , to control the connection of the sixth port, the seventh port and the twenty-fifth port with the twelfth port, the twenty-sixth port and the eleventh port respectively.
  • the radio frequency transceiver transmits or receives the second signal
  • control the seventh port, the eighth port, the ninth port, the tenth port and the twenty-fifth port to communicate with the twenty-sixth port and the thirteenth port respectively , the fourteenth port, the fifteenth port and the twelfth port, or control the seventh port, the eighth port, the ninth port, the tenth port and the twenty-fifth port respectively with the twenty-sixth port, the tenth port Three-port, fourteenth-port, fifteenth-port and eleventh-port connections.
  • the third port is also used to transmit SRS;
  • the controller is also used to, when the radio frequency transceiver transmits SRS and the first antenna is used to transmit and receive the first signal, control the eighth port and the twenty-fifth port respectively Connect with the twenty-sixth port and the twelfth port, so that the second antenna is used for transmitting SRS; or the eighth port is connected with the thirteenth port, so that the third antenna is used for transmitting SRS; or the eighth port and the twentieth Nine ports are connected to the twenty-seventh port and the fourteenth port, so that the fourth antenna is used to transmit SRS; or the eighth port and the thirtieth port are connected to the twenty-eighth port and the fifteenth port respectively, so that Five antennas are used to transmit SRS.
  • the eighth port and the twenty-fifth port are controlled to be connected to the twenty-sixth port and the eleventh port respectively, so that the first antenna For transmitting SRS;, or the eighth port is connected with the thirteenth port, so that the third antenna is used for transmitting SRS; or the eighth port and the twenty-ninth port are connected with the twenty-seventh port and the fourteenth port, so that The fourth antenna is used to transmit SRS; or the eighth port and the thirtieth port are controlled to be connected to the twenty-eighth port and the fifteenth port respectively, so that the fifth antenna is used to transmit SRS.
  • the embodiment of the present application provides a control method, which is applied to any radio frequency circuit provided in the first aspect.
  • the control method includes: the controller receives first information indicating to transmit or receive the first signal; the controller controls the sixth port and the seventh port to connect to the eleventh port and the twelfth port respectively according to the first information, or , to control the connection of the sixth port and the seventh port with the twelfth port and the eleventh port respectively.
  • the controller receives second information indicating to transmit or receive the second signal; the controller controls the seventh port, the eighth port, the ninth port and the tenth port to communicate with the twelfth port respectively according to the second information.
  • port, the thirteenth port, the fourteenth port and the fifteenth port, or control the seventh port, the eighth port, the ninth port and the tenth port respectively with the eleventh port, the thirteenth port, the fourteenth port port is connected to the fifteenth port.
  • the controller receives the third information for instructing to transmit SRS; the controller controls and controls the eighth port to be connected to the twelfth port according to the third information, so that the second antenna is used to transmit SRS; or controls the eighth The port is connected to the thirteenth port, so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port, so that the fourth antenna is used to transmit SRS, or the eighth port is controlled to be connected to the fifteenth port, The fifth antenna is made to transmit SRS.
  • the controller controls the eighth port to be connected to the eleventh port according to the third information, so that the first antenna is used to transmit SRS; or controls the eighth port to be connected to the thirteenth port, so that the third antenna is used to transmit SRS; Either the eighth port is controlled to be connected to the fourteenth port so that the fourth antenna is used to transmit SRS, or the eighth port is controlled to be connected to the fifteenth port so that the fifth antenna is used to transmit SRS.
  • the controller controls the sixth port and the seventh port to connect to the eleventh port and the twelfth port respectively according to the first information, or controls the sixth The port and the seventh port are respectively connected to the twelfth port and the eleventh port.
  • the controller controls the seventh port, the sixteenth port, the eighth port, the ninth port and the tenth port to communicate with the twelfth port, the thirteenth port, the seventeenth port, the The fourteenth port is connected with the fifteenth port, or the seventh port, the sixteenth port, the eighth port, the ninth port and the tenth port are respectively connected with the eleventh port, the thirteenth port, the seventeenth port, the Fourteenth port and fifteenth port connection.
  • the controller controls the eighth port and the sixteenth port to connect to the seventeenth port and the twelfth port respectively according to the third information, so that the second antenna is used to transmit SRS; or controls the eighth port and the tenth port
  • the six ports are respectively connected to the seventeenth port and the thirteenth port, so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port, so that the fourth antenna is used to transmit SRS; or the eighth port is controlled Connect with the fifteenth port, so that the fifth antenna is used to transmit SRS.
  • the controller controls the eighth port and the sixteenth port to connect with the seventeenth port and the eleventh port respectively according to the third information, so that the first antenna is used to transmit SRS; or controls the eighth port and the sixteenth port Connect with the seventeenth port and the thirteenth port respectively, so that the third antenna is used to transmit SRS; or control the connection between the eighth port and the fourteenth port, so that the fourth antenna is used to transmit SRS; or control the eighth port and the first Fifteen ports are connected such that the fifth antenna is used to transmit SRS.
  • the controller controls the sixth port and the seventh port to connect to the eleventh port and the twelfth port respectively according to the first information, or controls the sixth port and the seventh port Connect with the twelfth port and the eleventh port respectively.
  • the controller controls the seventh port, the eighth port, the ninth port and the tenth port to connect to the twelfth port, the thirteenth port, the fourteenth port and the fifteenth port respectively according to the second information, Or control the seventh port, the eighth port, the ninth port and the tenth port to be connected to the eleventh port, the thirteenth port, the fourteenth port and the fifteenth port respectively.
  • the controller controls the eighth port to be connected to the twelfth port according to the third information, so that the second antenna is used to transmit SRS; or controls the eighth port to be connected to the thirteenth port, so that the third antenna is used for Transmit SRS; or control the connection between the eighth port and the fourteenth port, so that the fourth antenna is used for transmitting SRS, or control the connection between the eighth port and the fifteenth port, so that the fifth antenna is used for transmitting SRS.
  • the controller controls the eighth port to be connected to the eleventh port according to the third information, so that the first antenna is used to transmit SRS; or controls the eighth port to be connected to the thirteenth port, so that the third antenna is used to transmit SRS; Either the eighth port is controlled to be connected to the fourteenth port so that the fourth antenna is used to transmit SRS, or the eighth port is controlled to be connected to the fifteenth port so that the fifth antenna is used to transmit SRS.
  • the controller controls the sixth port, the seventh port, and the eighteenth port to communicate with the eleventh port, the nineteenth port, and the The twelve ports are connected, or the sixth port, the seventh port and the eighteenth port are connected to the twelfth port, the nineteenth port and the eleventh port respectively.
  • the controller controls the seventh port, the eighth port, the ninth port, the tenth port and the eighteenth port to communicate with the nineteenth port, the thirteenth port, the fourteenth port, the The fifteenth port is connected to the twelfth port, or the seventh port, the eighth port, the ninth port, the tenth port and the eighteenth port are respectively connected to the nineteenth port, the thirteenth port, the fourteenth port, the The fifteenth port and the eleventh port are connected.
  • the controller controls the eighth port and the eighteenth port to connect to the nineteenth port and the twelfth port respectively according to the third information, so that the second antenna is used to transmit SRS; or controls the eighth port to connect to the tenth port Three ports are connected, so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port, so that the fourth antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fifteenth port, so that the fifth antenna Used to launch SRS.
  • the controller controls the eighth port and the eighteenth port to connect to the nineteenth port and the eleventh port respectively according to the third information, so that the first antenna is used to transmit SRS; or controls the eighth port to connect to the thirteenth port connected so that the third antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fourteenth port so that the fourth antenna is used to transmit SRS; or the eighth port is controlled to be connected to the fifteenth port so that the fifth antenna is used for Launch SRS.
  • the controller controls the sixth port and the seventh port to connect to the eleventh port and the twelfth port respectively according to the first information, or , to control the connection of the sixth port and the seventh port with the twelfth port and the eleventh port respectively.
  • the controller controls the seventh port, the eighth port, the ninth port and the tenth port to connect to the twelfth port, the thirteenth port, the fourteenth port and the fifteenth port respectively according to the second information, Or control the seventh port, the eighth port, the ninth port and the tenth port to be connected to the eleventh port, the thirteenth port, the fourteenth port and the fifteenth port respectively.
  • the controller controls the eighth port and the twenty-first port to connect to the twenty-second port and the twelfth port respectively according to the third information, so that the second antenna is used to transmit SRS; or the eighth port is connected to the first
  • the thirteen ports are connected so that the third antenna is used for transmitting SRS; or the eighth port is connected with the fourteenth port so that the fourth antenna is used for transmitting SRS;
  • the three ports are connected to the fifteenth port so that the fifth antenna is used to transmit SRS.
  • the controller controls the eighth port and the twenty-first port to connect to the twenty-second port and the eleventh port respectively according to the third information, so that the first antenna is used to transmit SRS; or the eighth port is connected to the thirteenth port
  • the ports are connected so that the third antenna is used to transmit SRS; or the eighth port is connected to the fourteenth port so that the fourth antenna is used to transmit SRS; or the eighth port and the twenty-fourth port are controlled to be connected to the twenty-third port Connect with the fifteenth port, so that the fifth antenna is used to transmit SRS.
  • the controller controls the sixth port, the seventh port, and the twenty-fifth port to communicate with each other according to the first information
  • the eleventh port, the twenty-sixth port and the twelfth port are connected, or the sixth port, the seventh port and the twenty-fifth port are connected to the twelfth port, the twenty-sixth port and the eleventh port respectively connect.
  • the controller controls the seventh port, the eighth port, the ninth port, the tenth port and the twenty-fifth port to communicate with the twenty-sixth port, the thirteenth port and the fourteenth port respectively according to the second information. , the fifteenth port and the twelfth port, or control the seventh port, the eighth port, the ninth port, the tenth port and the twenty-fifth port respectively with the twenty-sixth port, the thirteenth port, the tenth port Four-port, fifteenth-port and eleventh-port connections.
  • the controller controls the eighth port and the twenty-fifth port to connect to the twenty-sixth port and the twelfth port respectively according to the third information, so that the second antenna is used to transmit SRS; or the eighth port is connected to the first
  • the thirteen ports are connected so that the third antenna is used for transmitting SRS; or the eighth port and the twenty-ninth port are connected with the twenty-seventh port and the fourteenth port, so that the fourth antenna is used for transmitting SRS;
  • the port and the thirtieth port are respectively connected to the twenty-eighth port and the fifteenth port, so that the fifth antenna is used to transmit the SRS.
  • the controller controls the eighth port and the twenty-fifth port to connect to the twenty-sixth port and the eleventh port respectively according to the third information, so that the first antenna is used to transmit the SRS; or the eighth port is connected to the tenth port
  • the three ports are connected so that the third antenna is used for transmitting SRS; or the eighth port and the twenty-ninth port are connected with the twenty-seventh port and the fourteenth port so that the fourth antenna is used for transmitting SRS; or the eighth port is controlled and the thirtieth port are respectively connected to the twenty-eighth port and the fifteenth port, so that the fifth antenna is used to transmit the SRS.
  • an embodiment of the present application provides an electronic device, which includes but is not limited to a terminal device, and the terminal device may also be referred to as a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS ), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be mobile phone, smart TV, wearable device, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the electronic device includes any radio frequency circuit provided in the first aspect above, and the radio frequency circuit is used to transmit and receive the first signal and/or the second signal; wherein, the first signal is an LTE signal, and the second signal is an NR Signal.
  • Fig. 1 is the structural representation of a kind of radio frequency circuit in the possible realization
  • FIG. 2 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit provided in an embodiment of the present application
  • FIG. 7 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 26 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit according to an embodiment of the present application.
  • FIG. 27 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 31 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 32 is a schematic diagram of an antenna configuration during LTE communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 33 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit according to an embodiment of the present application.
  • FIG. 34 is a schematic diagram of an antenna configuration during SRS transmission in a radio frequency circuit according to an embodiment of the present application.
  • FIG. 35 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • FIG. 36 is a schematic diagram of an antenna configuration during ENDC communication in a radio frequency circuit provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first device and the second device are only used to distinguish different devices, and their sequence is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • the radio frequency circuit of the embodiment of the present application can be applied to an electronic device with a communication function.
  • the electronic equipment includes terminal equipment, and the terminal equipment may also be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • the terminal device can be mobile phone, smart TV, wearable device, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • NR communication requires 4*4 MIMO
  • LTE requires 2*2 MIMO
  • the terminal device needs to support LTE communication and NR communication, as well as dual connectivity (EUTRA-NR dual connectivity, ENDC) communication between LTE and NR. Therefore, 6 antennas are usually included in the terminal equipment.
  • Fig. 1 is a schematic structural diagram of a radio frequency circuit in a possible implementation.
  • the radio frequency circuit includes: radio frequency transceiver 101, controller 102, switch one 103, switch two 104, antenna one 105, antenna two 106, antenna three 107, antenna four 108, antenna five 109 and antenna six 110.
  • the radio frequency transceiver 101 is used for outputting LTE signals and/or NR signals, and performing signal processing on LTE signals and/or NR signals received by one or more antennas.
  • Signal processing includes, but is not limited to, frequency conversion, demodulation, and analog-to-digital conversion.
  • the radio frequency transceiver 101 includes 6 ports, wherein, the first port 101A is used for transmitting and receiving LTE signals; the second port 101B is used for receiving LTE signals; the third port 101C is used for transmitting and receiving NR signals; the fourth port 101D is used for For receiving NR signals; the fifth port 101E is used for receiving NR signals; the sixth port 101F is used for receiving NR signals.
  • the controller 102 is used to control the settings of switch one 103 and switch two 104, and then control antenna one 105 or antenna two 106 to transmit LTE signals, and control antenna three 107, antenna four 108, antenna five 109 or antenna six 110 to transmit NR signals.
  • Switch one 103 includes 4 ports.
  • the first port 103A and the second port 103B of the switch one 103 are respectively connected with the first port 101A and the second port 101B of the radio frequency transceiver 101; the third port 103C and the fourth port 103D of the switch one 103 are respectively connected with the antenna one 105 and Antenna 2 106 is connected.
  • Switch two 104 includes 8 ports.
  • the first port 104A, the second port 104B, the third port 104C and the fourth port 104D of the switch two 104 are respectively connected with the third port 101C, the fourth port 101D, the fifth port 101E and the sixth port 101F of the radio frequency transceiver 101
  • the fifth port 104E, the sixth port 104F, the seventh port 104G and the eighth port 104H of the switch two 104 are connected to the antenna three 107, the antenna four 108, the antenna five 109 and the antenna six 110 respectively.
  • Both the first switch 103 and the second switch 104 are connected to the controller 102 .
  • Antenna one 105 and antenna two 106 are used to transmit and/or receive LTE signals.
  • Antenna three 107 , antenna four 108 , antenna five 109 and antenna six 110 are used to transmit and/or receive NR signals.
  • the frequency bands supported by antenna one 105 and antenna two 106 are both 824 megahertz (MHz)-2170 MHz, and the frequency bands supported by antenna three 107, antenna four 108, antenna five 109 and antenna six 110 Both are 2496MHz-2690MHz.
  • the frequency bands supported by antenna one 105 and antenna two 106 are both 1710MHz-2690MHz, and the frequency bands supported by antenna three 107, antenna four 108, antenna five 109 and antenna six 110 are all 3300MHz-5000MHz .
  • the frequency bands supported by antenna one 105 and antenna two 106 are both 1710MHz-2690MHz, and the frequency bands supported by antenna three 107, antenna four 108, antenna five 109 and antenna six 110 are all 730MHz-803MHz .
  • the above radio frequency circuit can realize LTE communication, NR communication and ENDC communication.
  • the controller 102 implements LTE communication by controlling the connections between the ports of the switch one 103 .
  • the controller 102 may control the first port 103A and the second port 103B of the switch one 103 to be respectively connected to the third port 103C and the fourth port 103D of the switch one 103 .
  • the LTE signal output by the first port 101A of the radio frequency transceiver 101 is transmitted to the antenna one 105 through the switch one 103 .
  • the LTE signal received by antenna one 105 enters the radio frequency transceiver 101 from the first port 101A of the radio frequency transceiver 101 through the switch one 103 .
  • the LTE signal received by the antenna two 106 enters the radio frequency transceiver 101 from the second port 101B of the radio frequency transceiver 101 through the switch one 103 .
  • the controller 102 realizes NR communication by controlling the connection between the ports of the switch two 104 .
  • the controller 102 can control the first port 104A, the second port 104B, the third port 104C and the fourth port 104D of the switch two 104 to communicate with the fifth port 104E, the sixth port 104F, the seventh port of the switch two 104 respectively.
  • the port 104G is connected to the eighth port 104H. In this way, the NR signal output by the third port 101C of the radio frequency transceiver 101 is transmitted to the antenna three 107 via the switch two 104 .
  • the LTE signal received by the antenna three 107 enters the radio frequency transceiver 101 from the third port 101C of the radio frequency transceiver 101 through the switch two 104 .
  • the LTE signal received by the antenna four 108 enters the radio frequency transceiver 101 from the fourth port 101D of the radio frequency transceiver 101 through the switch two 104 .
  • the LTE signal received by the antenna five 109 enters the radio frequency transceiver 101 from the fifth port 101E of the radio frequency transceiver 101 through the switch two 104 .
  • the LTE signal received by the antenna six 110 enters the radio frequency transceiver 101 from the sixth port 101F of the radio frequency transceiver 101 through the switch two 104 .
  • the switches and antennas used in LTE communication and NR communication are different.
  • LTE signals and NR signals do not interfere with each other.
  • the above-mentioned radio frequency circuit includes 6 antennas, the number of antennas is large, and the occupied space is large.
  • the embodiment of the present application proposes a radio frequency circuit, which realizes antenna sharing by changing the port connection of the switch, and simultaneously receives LTE signals and NR signals on one antenna, thereby reducing the number of antennas, reducing the space occupied by the antennas, and reducing the number of terminals.
  • the volume of the device is a radio frequency circuit, which realizes antenna sharing by changing the port connection of the switch, and simultaneously receives LTE signals and NR signals on one antenna, thereby reducing the number of antennas, reducing the space occupied by the antennas, and reducing the number of terminals.
  • LTE signal refers to the signal sent according to the LTE series communication protocol.
  • LTE signals include, but are not limited to: LTE data signals transmitted via the LTE Physical Downlink Shared Channel (PDSCH) or LTE Physical Uplink Shared Channel (PU-SCH), LTE Physical Downlink Control Channel (PDCCH) or LTE Enhanced PDCCH (enhanced PDCCH, ePDCCH) or LTE physical uplink control channel (PUCCH) transmitted LTE control signal, and LTE reference signal (for example, channel state information reference signal (CSI-RS), common reference signal (CRS), demodulation reference symbol (demodulationreference symbols, DMRS), primary synchronization signal and secondary synchronization signal, etc.), as well as through the LTE physical broadcast channel (PBCH), LTE radio resource control (RRC) high-layer protocol and/or LTE medium access control (MAC) control elements (CE) transmitted LTE signal.
  • PDSCH Physical Downlink Shared Channel
  • PU-SCH LTE Physical Uplink Shared Channel
  • NR signal refers to the signal sent according to the NR series communication protocol.
  • NR signals include but are not limited to: NR data signals sent through NR PDSCH or NR PUSCH, NR control signals sent through NR PDCCH or NR PUCCHNR, and NR reference signals, as well as NR PBCH, NR RRC high-layer protocols and/or NR Other NR signals conveyed by the MAC control element.
  • NR control signal refers to any control signal sent according to the NR series communication protocol.
  • NR control signals include, but are not limited to: RRC signals, MAC Control Elements (CE), and Downlink Control Information (DCI); control signals conveyed via PBCH and Residual Minimum System Information (RMSI); and any other cell-specific, group-specific and/or UE-specific control signals.
  • the RMSI may include certain minimum system information that is not sent in the PBCH.
  • the RMSI may be transmitted through PDSCH.
  • the PDSCH resource transmitting the RMSI may be identified by a DCI message transmitted through a common search space in the PDCCH.
  • the DCI message may be scrambled by a CRC with a public RNTI such as a system information RNTI (system information RNTI, SI-RNTI).
  • Antenna a converter.
  • the antenna is used for converting radio frequency signals into electromagnetic waves of corresponding wavelengths and radiating them into the air, and/or for receiving electromagnetic waves and converting them into corresponding radio frequency signals. It can be understood that the same antenna can both transmit radio frequency signals and receive radio frequency signals.
  • Radio frequency signals may include LTE signals, NR signals, and the like.
  • RF transceiver used to output RF signals and perform signal processing on the RF signals received by the antenna.
  • Signal processing includes, but is not limited to, frequency conversion, demodulation, and analog-to-digital conversion.
  • the radio frequency transceiver may include: a frequency-division duplex (FDD), a time-division duplex (TDD), a switch and/or a combiner, and the like. Both FDD and TDD are used to separate the transmit signal and the receive signal in the channel to reduce the interference between the transmit signal and the receive signal. Both the switch and the combiner can divide one signal into two signals, which is convenient for subsequent separation and processing of different signals.
  • the embodiment of the present application does not limit or illustrate the processing process of the radio frequency signal.
  • Controller used to control the relevant settings of the radio frequency signal transmission path and/or the radio frequency signal reception path. Related settings include: port selection of the radio frequency transceiver in the radio frequency circuit and setting of the switch unit in the radio frequency circuit. In the embodiment of the present application, the controller is used to control the connection of multiple ports in the switch unit.
  • SRS used for network equipment such as base stations to determine the location and channel quality of terminal equipment.
  • the terminal device reports the states of the four antennas to network devices such as the base station by transmitting the SRS on the four antennas in turn.
  • the network device performs channel estimation according to the SRS from the terminal device.
  • antenna sharing may be implemented through a peer-to-peer switch and/or a non-peer switch.
  • the radio frequency circuit implementing antenna sharing through peer-to-peer switches will be described below with reference to FIGS. 2-22 .
  • FIG. 2 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes: a radio frequency transceiver 201, a controller 202, a first switch 203, a second switch 204, a first antenna 205, a second antenna 206, a third antenna 207, a fourth antenna 208 and Fifth antenna 209 .
  • the radio frequency transceiver 201 is used for outputting LTE signals and/or NR signals, and performing signal processing on LTE signals and/or NR signals received by one or more antennas.
  • Signal processing includes, but is not limited to, frequency conversion, demodulation, and analog-to-digital conversion.
  • the radio frequency transceiver 201 includes 5 ports, wherein, the first port 201A is used for transmitting and receiving LTE signals; the second port 201B is used for receiving LTE signals and NR signals; the third port 201C is used for transmitting and receiving NR signals; The port 201D is used for receiving NR signals; the fifth port 201E is used for receiving NR signals.
  • the third port 201C is also used to transmit the sounding reference signal SRS.
  • the radio frequency transceiver 201 may include: FDD, TDD, switch and/or combiner, etc.
  • the FDD is used to separate the LTE signal transmitted from the first port 201A of the radio frequency transceiver 201 and the received LTE signal, and/or the NR signal transmitted from the third port 201C and the received NR signal.
  • the role of TDD and FDD is the same, in the way of possible implementation, FDD can be replaced by TDD.
  • the switch is used to divide the LTE signal received by the second port 201B of the radio frequency transceiver 201 into two channels and the received NR signal to facilitate subsequent separation and processing of the received LTE signal and the received NR signal.
  • the functions of the switch and the combiner are the same, and in a possible implementation mode, the switch can be replaced by a combiner.
  • the controller 202 is used to control the setting of the first switch 203 and the second switch 204, so that the first antenna 205, the second antenna 206, the third antenna 207, the fourth antenna 208 and/or the fifth antenna 209 transmit and/or receive Radio frequency signals, and then realize LTE's 2*2MIMO, NR's 4*4MIMO, and SRS rotation.
  • Radio frequency signals may include LTE signals, NR signals and SRS.
  • the controller 202 is used to control the setting of the first switch 203 and the second switch 204, so that the first antenna 205 is used for transmitting and receiving LTE signals, and the second antenna 206 is used for For receiving LTE signals and/or NR signals, any one of the third antenna 207, the fourth antenna 208, and the fifth antenna 209 is used to transmit NR signals, and the third antenna 207, the fourth antenna 208, and the fifth antenna 209 are all For receiving NR signals; or, make the first antenna 205 for receiving LTE signals and/or NR signals, the second antenna 206 for transmitting and receiving LTE signals, the third antenna 207, the fourth antenna 208 and the fifth antenna 209 Any one of the antennas is used to transmit NR signals, and the third antenna 207, the fourth antenna 208 and the fifth antenna 209 are all used to receive NR signals.
  • the controller 202 is used to control the settings of the first switch 203 and the second switch 204, and then when the first antenna 205 is used to transmit and receive LTE signals, control the second antenna 206, the third antenna 207, The fourth antenna 208 or the fifth antenna 209 transmits SRS; or, when the second antenna 206 is used to transmit and receive LTE signals, control the first antenna 205, the third antenna 206, the fourth antenna 207 or the fifth antenna 208 to transmit SRS .
  • controller 202 may be an independent device, or may form a device together with the radio frequency transceiver 201 .
  • first switch 203 and the second switch 204 may be collectively referred to as a switch unit. Both the first switch 203 and the second switch 204 are connected to the controller 202 .
  • the first switch 203 includes 6 ports.
  • the first port 203A and the second port 203B of the first switch 203 are respectively connected with the first port 201A and the second port 201B of the radio frequency transceiver 201;
  • the third port 203C of the first switch 203 is connected with the fourth port of the second switch 204 204D connection;
  • the fourth port 203D, the fifth port 203E and the sixth port 203F of the first switch 203 are respectively connected to the first antenna 205 , the second antenna 206 and the third antenna 207 .
  • the first switch 203 is a three-pole three-throw switch (3P3T) or other switches.
  • the second switch 204 includes 6 ports.
  • the first port 204A, the second port 204B and the third port 204C of the second switch 204 are respectively connected with the third port 201C, the fourth port 201D and the fifth port 201E of the radio frequency transceiver 201;
  • the fourth port of the second switch 204 204D is connected to the third port 203C of the first switch 203;
  • the fifth port 204E and the sixth port 204F of the second switch 204 are connected to the fourth antenna 208 and the fifth antenna 209 respectively.
  • the second switch 204 is a three pole three throw switch (3P3T) or other switches.
  • the first antenna 205 may be used to transmit and/or receive LTE signals, and may also be used to transmit and/or receive NR signals.
  • the second antenna 206 may be used to transmit and/or receive LTE signals, and may also be used to transmit and/or receive NR signals.
  • the third antenna 207, the fourth antenna 208 and the fifth antenna 209 are all used to transmit and/or receive NR signals.
  • both the first antenna 205 and the second antenna 206 support LTE signals and NR signals.
  • the third antenna 207, the fourth antenna 208 and the fifth antenna 209 all support NR signals.
  • the frequency ranges supported by the first antenna 205 and the second antenna 206 are 824MHz-2170MHz and 2496MHz-2690MHz.
  • the frequency range supported by the third antenna 207 , the fourth antenna 208 and the fifth antenna 209 is 2496MHz-2690MHz.
  • the frequency ranges supported by the first antenna 205 and the second antenna 206 are 1710MHz-2690MHz and 3300MHz-5000MHz.
  • the frequency range supported by the third antenna 207 , the fourth antenna 208 and the fifth antenna 209 is 3300 MHz-5000 MHz.
  • the frequency ranges supported by the first antenna 205 and the second antenna 206 are 1710MHz-2690MHz and 730MHz-803MHz.
  • the frequency range supported by the third antenna 207 , the fourth antenna 208 and the fifth antenna 209 is 730MHz-803MHz.
  • radio frequency signals corresponding to different antennas may be the same or different. This embodiment of the present application does not limit it. In this way, the corresponding radio frequency signal can be transmitted on a suitable antenna to improve the communication quality.
  • the connection of the first switch 203 and the second switch 204 in the radio frequency circuit may refer to FIG. 3 and FIG. 4 .
  • FIG. 3 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 203A and the second port 203B of the first switch 203 are respectively connected to the fourth port 203D and the fifth port 203E of the first switch 203 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the first antenna 205 through the first switch 203 .
  • the LTE signal received by the first antenna 205 enters the radio frequency transceiver 201 from the first port 201A of the radio frequency transceiver 201 through the first switch 203 .
  • the LTE signal received by the second antenna 206 enters the radio frequency transceiver 201 from the second port 201B of the radio frequency transceiver 201 through the first switch 203 .
  • the terminal device can realize LTE communication.
  • FIG. 4 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 203A and the second port 203B of the first switch 203 are respectively connected to the fifth port 203E and the fourth port 203D of the first switch 203 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the second antenna 206 through the first switch 203 .
  • the LTE signal received by the second antenna 206 enters the radio frequency transceiver 201 from the first port 201A of the radio frequency transceiver 201 through the first switch 203 .
  • the LTE signal received by the first antenna 205 enters the radio frequency transceiver 201 from the second port 201B of the radio frequency transceiver 201 through the first switch 203 .
  • the terminal device realizes the switching between the first antenna and the second antenna by changing the connection mode of the first switch, and then can select a suitable antenna to transmit the LTE signal, thereby improving the quality of the LTE signal. Increased applicability of terminal equipment.
  • the connection between the first switch 203 and the second switch 204 in the radio frequency circuit may refer to FIG. 5 and FIG. 6 .
  • FIG. 5 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 202 controls the first port 204A of the second switch 204 and the third port of the first switch 203.
  • Port 203C is respectively connected with the fourth port 204D of the second switch 204 and the fifth port 203E of the first switch 203;
  • the fourth port 204D of the switch 204 is connected to the sixth port 203F of the first switch 203; or the first port 204A of the second switch 204 is controlled to be connected to the fifth port 204E of the second switch 204;
  • a port 204A is connected to a sixth port 204F of the second switch 204 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the first antenna 205 through the first switch 203, and the LTE signal received by the first antenna 205 is transmitted from the radio frequency transceiver 201 through the first switch 203.
  • the first port 201A of the RF transceiver 201 enters.
  • the SRS output by the third port 201C of the radio frequency transceiver 201 is transmitted on the second antenna 206 or the third antenna 207 through the second switch 204 and the first switch 203; the SRS output by the third port 201C of the radio frequency transceiver 201 is transmitted through the second The switch 204 transmits on either the fourth antenna 208 or the fifth antenna 209 .
  • the SRS output by the third port 201C of the radio frequency transceiver 201 can be used in turn on the second antenna 206, the third antenna 207, the fourth antenna 208 or the Five antennas 209 are transmitted.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the second antenna 206 , the third antenna 207 , the fourth antenna 208 or the fifth antenna 209 .
  • FIG. 6 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 202 controls the first port 204A of the second switch 204 and the third port of the first switch 203
  • Port 203C is respectively connected with the fourth port 204D of the second switch 204 and the fourth port 203D of the first switch 203;
  • the fourth port 204D of the switch 204 is connected to the sixth port 203F of the first switch 203; or the first port 204A of the second switch 204 is controlled to be connected to the fifth port 204E of the second switch 204;
  • a port 204A is connected to a sixth port 204F of the second switch 204 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the second antenna 206 through the first switch 203, and the LTE signal received by the second antenna 206 is transmitted from the radio frequency transceiver 201 through the first switch 203.
  • the first port 201A of the RF transceiver 201 enters.
  • the SRS output by the third port 201C of the radio frequency transceiver 201 is transmitted on the first antenna 205 or the third antenna 207 through the second switch 204 and the first switch 203; the SRS output by the third port 201C of the radio frequency transceiver 201 is transmitted through the second The switch 204 transmits on either the fourth antenna 208 or the fifth antenna 209 .
  • the SRS output by the third port 201C of the radio frequency transceiver 201 can be used in turn on the first antenna 205, the third antenna 207, the fourth antenna 208 or the Five antennas 209 are transmitted.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the first antenna 205 , the third antenna 207 , the fourth antenna 208 or the fifth antenna 209 .
  • connection modes shown in FIG. 5 and FIG. 6 will not affect the transmission of the LTE signal during SRS rotation, which can avoid interruption of the LTE signal. Moreover, the time of the SRS round-robin process is short, and has little impact on the reception of the LTE signal. In this way, by changing the connection mode of the first switch and the second switch, the terminal device realizes coexistence of LTE communication and SRS transmission.
  • connection of the first switch 203 and the second switch 204 in the radio frequency circuit may refer to FIG. 7 and FIG. 8 .
  • FIG. 7 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 203A, the second port 203B and the third port 203C of the first switch 203 are respectively connected with the fourth port 203D, the fifth port 203E and the sixth port 203F of the first switch 203;
  • the first port 204A, the second port 204B and the third port 204C of the switch 204 are respectively connected to the fourth port 204D, the fifth port 204E and the sixth port 204F of the second switch 204 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the first antenna 205 through the first switch 203 .
  • the LTE signal received by the first antenna 205 enters the radio frequency transceiver 201 from the first port 201A of the radio frequency transceiver 201 through the first switch 203 .
  • the LTE signal and/or the NR signal received by the second antenna 206 enters the radio frequency transceiver 201 from the second port 201B of the radio frequency transceiver 201 through the first switch 203 .
  • the NR signal output by the third port 201C of the radio frequency transceiver 201 is transmitted on the third antenna 207 through the second switch 204 and the first switch 203 .
  • the NR signal received by the third antenna 207 enters the radio frequency transceiver 201 from the third port 201C of the radio frequency transceiver 201 through the first switch 203 and the second switch 204 .
  • the NR signal received by the fourth antenna 208 and the NR signal received by the fifth antenna 209 enter the radio frequency transceiver 201 from the fourth port 201D and the fifth port 201E of the radio frequency transceiver 201 respectively through the second switch 204 .
  • the terminal device can realize dual connection communication of LTE and NR.
  • FIG. 8 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 203A, the second port 203B and the third port 203C of the first switch 203 are respectively connected with the fifth port 203E, the fourth port 203D and the sixth port 204F of the first switch 203;
  • the first port 204A, the second port 204B and the third port 204C of the switch 204 are respectively connected to the fourth port 204D, the fifth port 204E and the sixth port 204F of the second switch 204 .
  • the LTE signal output by the first port 201A of the radio frequency transceiver 201 is transmitted on the second antenna 206 through the first switch 203 .
  • the LTE signal received by the second antenna 206 enters the radio frequency transceiver 201 from the first port 201A of the radio frequency transceiver 201 through the first switch 203 .
  • the LTE signal and/or the NR signal received by the first antenna 205 enters the radio frequency transceiver 201 from the second port 201B of the radio frequency transceiver 201 through the first switch 203 .
  • the NR signal output by the third port 201C of the radio frequency transceiver 201 is transmitted on the third antenna 207 through the second switch 204 and the first switch 203 .
  • the NR signal received by the third antenna 207 enters the radio frequency transceiver 201 from the third port 201C of the radio frequency transceiver 201 through the first switch 203 and the second switch 204 .
  • the NR signal received by the fourth antenna 208 enters the radio frequency transceiver 201 from the fourth port 201D of the radio frequency transceiver 201 through the second switch 204 .
  • the NR signal received by the fifth antenna 209 enters the radio frequency transceiver 201 from the fifth port 201E of the radio frequency transceiver 201 through the second switch 204 .
  • the ports connected to the first port 204A, the second port 204B, and the third port 204C of the second switch 204 can be exchanged and connected to each other.
  • NR signals may be transmitted on the third antenna 207 or the fourth antenna 208 or the fifth antenna 209 .
  • the ports connected to the first port 204A and the second port 204B of the second switch 204 are replaced, and the first port 204A and the second port 204B of the second switch 204 are respectively connected to the fifth port 204E and the second port 204E of the second switch 204.
  • Four-port 204C connection; NR signals are transmitted on fourth antenna 208 .
  • the terminal device can switch between the third antenna, the fourth antenna and the fifth antenna by changing the connection mode of the second switch, and then can select a suitable antenna to transmit NR signals.
  • the antenna configuration in NR communication can refer to the antenna configuration when transmitting and/or receiving NR signals in the above-mentioned ENDC communication.
  • the connection mode of the signal is similar, and will not be repeated here.
  • the terminal device can realize LTE communication, SRS transmission and ENDC communication through 5 antennas and changing the connection mode of the first switch and/or the connection mode of the second switch. Dual mode function of SA and NSA. The number of antennas is reduced, the space occupied by the antennas is reduced, and the volume of the terminal equipment is reduced.
  • the terminal device can also select a suitable antenna to transmit LTE signals and/or NR signals to improve throughput. In addition, during SRS transmission or NR communication, it will not affect the transmission of LTE signals.
  • FIG. 9 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes: a radio frequency transceiver 901 , a controller 902 , a third switch 903 , a first antenna 904 , a second antenna 905 , a third antenna 906 , a fourth antenna 907 and a fifth antenna 908 .
  • the structure and function of the radio frequency transceiver 901, the controller 902, the first antenna 904, the second antenna 905, the third antenna 906, the fourth antenna 907 and the fifth antenna 908 can refer to the above related concepts and the radio frequency circuit shown in Figure 2 The description of the corresponding structure of , will not be repeated here.
  • the controller 902 is used to control the setting of the third switch 903, so that the first antenna 904, the second antenna 905, the third antenna 906, the fourth antenna 907 and/or the fifth antenna 908 transmit and/or receive radio frequency signals, thereby realizing LTE's 2*2MIMO, NR's 4*4MIMO, and SRS rotation.
  • the controller 902 is used to control the setting of the third switch 903, so that the first antenna 904 is used to transmit and receive LTE signals, and the second antenna 905 is used to receive LTE signals and /or NR signals, any one of the third antenna 906, the fourth antenna 907 and the fifth antenna 908 is used to transmit NR signals, and the third antenna 906, the fourth antenna 907 and the fifth antenna 908 are all used to receive NR signals or, make the first antenna 904 for receiving LTE signals and/or NR signals, the second antenna 905 for transmitting and receiving LTE signals, any one antenna in the third antenna 906, the fourth antenna 907 and the fifth antenna 908 It is used to transmit NR signals, and the third antenna 906, the fourth antenna 907 and the fifth antenna 908 are all used to receive NR signals.
  • the controller 902 is used to control the setting of the third switch 903, and then when the first antenna 904 is used to transmit and receive LTE signals, the second antenna 905, the third antenna 906, the fourth antenna 907 or The fifth antenna 908 transmits the SRS; or, when the second antenna 905 is used for transmitting and receiving LTE signals, control the first antenna 904, the third antenna 906, the fourth antenna 907 or the fifth antenna 908 to transmit the SRS.
  • the controller 902 is connected with the third switch 903 . It can be understood that the third switch 903 may also be called a switch unit.
  • the third switch 903 includes 10 ports.
  • the first port 903A, the second port 903B, the third port 903C, the fourth port 903D and the fifth port 903E of the third switch 903 are respectively connected with the first port 901A, the second port 901B and the third port 901C of the radio frequency transceiver 901.
  • the fourth port 901D and the fifth port 901E; the sixth port 903F, the seventh port 903G, the eighth port 903H, the ninth port 903I, and the tenth port 903J of the third switch 903 are respectively connected to the first antenna 904, the second The antenna 905, the third antenna 906, the fourth antenna 907, and the fifth antenna 908 are connected.
  • the third switch 903 is also connected to the controller 902 .
  • the third switch 903 may be a five pole five throw switch (5P5T) or other switches.
  • FIG. 10 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 903A and the second port 903B of the third switch 903 are respectively connected to the sixth port 903F and the seventh port 903G of the third switch 903 .
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the first antenna 904 through the third switch 903 .
  • the LTE signal received by the first antenna 904 enters the radio frequency transceiver 901 from the first port 901A of the radio frequency transceiver 901 through the third switch 903 .
  • the LTE signal received by the second antenna 905 enters the radio frequency transceiver 901 from the second port 901B of the radio frequency transceiver 901 through the third switch 903 .
  • the terminal device can realize LTE communication.
  • FIG. 11 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 903A and the second port 903B of the third switch 903 are respectively connected to the seventh port 903G and the sixth port 903F of the third switch 903 .
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the second antenna 905 through the third switch 903 .
  • the LTE signal received by the second antenna 905 enters the radio frequency transceiver 901 from the first port 901A of the radio frequency transceiver 901 through the third switch 903 .
  • the LTE signal received by the first antenna 904 enters the radio frequency transceiver 901 from the second port 901B of the radio frequency transceiver 901 through the third switch 903 .
  • the terminal device realizes the switching between the first antenna and the second antenna by changing the connection mode of the third switch, and then can select a suitable antenna to transmit the LTE signal, thereby improving the quality of the LTE signal. Increased applicability of terminal equipment.
  • connection of the third switch 903 in the radio frequency circuit may refer to FIG. 12 and FIG. 13 .
  • FIG. 12 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 902 controls the third port 903C of the third switch 903 to connect to the seventh port 903 of the third switch 903.
  • Port 903G is connected; or the third port 903C of the third switch 903 is connected to the seventh port 903G of the third switch 903; or the third port 903C of the third switch 903 is connected to the seventh port 903G of the third switch 903; Or control the connection between the third port 903C of the third switch 903 and the seventh port 903G of the third switch 903 .
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the first antenna 904 through the third switch 903, and the LTE signal received by the first antenna 904 is transmitted from the radio frequency transceiver 901 through the third switch 903.
  • the first port 901A enters the radio frequency transceiver 901 .
  • the SRS output by the third port 901C of the radio frequency transceiver 901 can be transmitted on the second antenna 905 , the third antenna 906 , the fourth antenna 907 or the fifth antenna 907 via the third switch 903 .
  • the SRS output by the third port 901C of the radio frequency transceiver 901 can be used in turn on the second antenna 905, the third antenna 906, the fourth antenna 907 or the 907 transmits on five antennas.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the second antenna 905 , the third antenna 906 , the fourth antenna 907 or the fifth antenna 907 .
  • FIG. 13 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 902 controls the connection between the third port 903C of the third switch 903 and the sixth port of the third switch 903.
  • Port 903F is connected; or the third port 903C of the third switch 903 is controlled to be connected to the seventh port 903G of the third switch 903; or the third port 903C of the third switch 903 is controlled to be connected to the seventh port 903G of the third switch 903; Or control the connection between the third port 903C of the third switch 903 and the seventh port 903G of the third switch 903 .
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the second antenna 905 through the third switch 903, and the LTE signal received by the second antenna 905 is transmitted from the radio frequency transceiver 901 through the third switch 903.
  • the first port 901A enters the radio frequency transceiver 901 .
  • the SRS output by the third port 901C of the radio frequency transceiver 901 can be transmitted on the first antenna 904 , the third antenna 906 , the fourth antenna 907 or the fifth antenna 907 via the third switch 903 .
  • the SRS output by the third port 901C of the radio frequency transceiver 901 can be used in turn on the first antenna 904, the third antenna 906, the fourth antenna 907 or the 907 transmits on five antennas.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the first antenna 904 , the third antenna 906 , the fourth antenna 907 or the fifth antenna 907 .
  • connection modes shown in FIG. 12 and FIG. 13 will not affect the transmission of LTE signals during SRS transmission, and can avoid interruption of LTE signals. Moreover, the time of the SRS round-robin process is short, and has little impact on the reception of the LTE signal. In this way, the terminal device realizes coexistence of LTE communication and SRS transmission by changing the connection mode of the third switch.
  • FIG. 14 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 903A, the second port 903B, the third port 903C, the fourth port 903D and the fifth port 903E of the third switch 903 are connected with the sixth port 903F and the seventh port of the third switch 903 respectively.
  • 903G, the eighth port 903H, the ninth port 903I, and the tenth port 903J are connected.
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the first antenna 904 through the third switch 903 .
  • the LTE signal received by the first antenna 904 enters the radio frequency transceiver 901 from the first port 901A of the radio frequency transceiver 901 through the third switch 903 .
  • the LTE signal and/or the NR signal received by the second antenna 905 enters the radio frequency transceiver 901 from the second port 901B of the radio frequency transceiver 901 through the third switch 903 .
  • the NR signal output by the third port 901C of the radio frequency transceiver 901 is transmitted on the third antenna 906 through the third switch 903 .
  • the NR signal received by the third antenna 906, the NR signal received by the fourth antenna 907 and the NR signal received by the fifth antenna 908 are transmitted from the third port 901C, the fourth port 901D and the fifth Port 901E enters RF transceiver 901 .
  • the terminal device can realize dual connection communication of LTE and NR.
  • FIG. 15 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 903A, the second port 903B, the third port 903C, the fourth port 903D and the fifth port 903E of the third switch 903 are respectively connected with the seventh port 903G and the sixth port of the third switch 903.
  • 903F, the eighth port 903H, the ninth port 903I, and the tenth port 903J are connected.
  • the LTE signal output by the first port 901A of the radio frequency transceiver 901 is transmitted on the second antenna 905 through the third switch 903 .
  • the LTE signal received by the second antenna 905 enters the radio frequency transceiver 901 from the first port 901A of the radio frequency transceiver 901 through the third switch 903 .
  • the LTE signal and/or the NR signal received by the first antenna 904 enters the radio frequency transceiver 901 from the second port 901B of the radio frequency transceiver 901 through the third switch 903 .
  • the NR signal output by the third port 901C of the radio frequency transceiver 901 is transmitted on the third antenna 906 through the third switch 903 .
  • the NR signal received by the third antenna 906, the NR signal received by the fourth antenna 907 and the NR signal received by the fifth antenna 908 are transmitted from the third port 901C, the fourth port 901D and the fifth Port 901E enters RF transceiver 901 .
  • the ports of the third switch 903 connected to the third port 903C, the fourth port 903D, and the fifth port 903E of the third switch 903 can be replaced with each other.
  • NR signals may be transmitted on the third antenna 906 , the fourth antenna 907 or the fifth antenna 907 .
  • the terminal device can switch between the third antenna, the fourth antenna and the fifth antenna by changing the connection mode of the third switch, and then can select a suitable antenna to transmit NR signals.
  • the antenna configuration in NR communication can refer to the antenna configuration when transmitting and/or receiving NR signals in the above-mentioned ENDC communication
  • the connection mode of the third switch in NR communication is the same as the connection when transmitting and/or receiving NR signals in the above-mentioned ENDC communication
  • the method is similar and will not be repeated here.
  • the terminal device implements LTE communication, SRS transmission and ENDC communication to realize dual-mode functions of SA and NSA through 5 antennas and changing the connection mode of the third switch.
  • the number of antennas is reduced, the space occupied by the antennas is reduced, and the volume of the terminal equipment is reduced.
  • the terminal device can also select a suitable antenna to transmit LTE signals and/or NR signals to improve throughput.
  • SRS transmission or NR communication it will not affect the transmission of LTE signals.
  • FIG. 16 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes: a radio frequency transceiver 1601, a controller 1602, a fourth switch 1603, a fifth switch 1604, a first antenna 1605, a second antenna 1606, a third antenna 1607, a fourth antenna 1608 and Fifth Antenna 1609 .
  • the structures and functions of the radio frequency transceiver 1601, the controller 1602, the first antenna 1605, the second antenna 1606, the third antenna 1607, the fourth antenna 1608 and the fifth antenna 1609 can refer to the above related concepts and the radio frequency circuit shown in Figure 2 The description of the corresponding structure of , will not be repeated here.
  • the controller 1602 is used to control the setting of the fourth switch 1603 and the fifth switch 1604, so that the first antenna 1605, the second antenna 1606, the third antenna 1607, the fourth antenna 1608 and/or the fifth antenna 1609 transmit and/or receive Radio frequency signals, and then realize LTE's 2*2MIMO, NR's 4*4MIMO, and SRS rotation.
  • the controller 1602 is used to control the setting of the fourth switch 1603 and the fifth switch 1604, so that the first antenna 1605 is used for transmitting and receiving LTE signals, and the second antenna 1606 is used for For receiving LTE signals and/or NR signals, any one of the third antenna 1607, the fourth antenna 1608 and the fifth antenna 1609 is used to transmit NR signals, and the third antenna 1607, the fourth antenna 1608 and the fifth antenna 1609 Both are used to receive NR signals; or, the first antenna 1605 is used to receive LTE signals and/or NR signals, the second antenna 1606 is used to transmit and receive LTE signals, the third antenna 1607, the fourth antenna 1608 and the fifth antenna Any one of the antennas in 1609 is used to transmit NR signals, and the third antenna 1607, the fourth antenna 1608, and the fifth antenna 1609 are all used to receive NR signals.
  • the controller 1602 is used to control the settings of the fourth switch 1603 and the fifth switch 1604, and then when the first antenna 1605 is used to transmit and receive LTE signals, the second antenna 1606, the third antenna 1607, The fourth antenna 1608 or the fifth antenna 1609 transmits the SRS; or, when the second antenna 1606 is used to transmit and receive LTE signals, control the first antenna 1605, the third antenna 1607, the fourth antenna 1608 or the fifth antenna 1609 to transmit the SRS .
  • the fourth switch 1603 and the fifth switch 1604 may be collectively referred to as a switch unit. Both the fourth switch 1603 and the fifth switch 1604 are connected to the controller 1602 .
  • the fourth switch 1603 includes 4 ports.
  • the first port 1603A of the fourth switch 1603 is connected to the first port 1601A of the radio frequency transceiver 1601;
  • the second port 1603B of the fourth switch 1603 is connected to the fifth port 1604E of the fifth switch 1604;
  • the third port of the fourth switch 1603 1603C and the fourth port 1603D are respectively connected to the first antenna 1605 and the second antenna 1606 .
  • the fourth switch 1603 is a double pole double throw switch (2P2T) or other switches.
  • the fifth switch 1604 includes 8 ports.
  • the first port 1604A, the second port 1604B, the third port 1604C and the fourth port 1604D of the fifth switch 1604 are respectively connected with the second port 1601B, the third port 1601C, the fourth port 1601D and the fifth port 1601E of the radio frequency transceiver 1601 connection;
  • the fifth port 1604E of the fifth switch 1604 is connected to the second port 1603B of the fourth switch 1603;
  • the sixth port 1604F, the seventh port 1604G and the eighth port 1604H of the fifth switch 1604 are respectively connected to the third antenna 1607, the The quad antenna 1608 and the fifth antenna 1609 are connected.
  • the fifth switch 1604 is a four pole four throw switch (4P4T) or other switches.
  • FIG. 17 and FIG. 18 For connection of the fourth switch 1603 and the fifth switch 1604 in the radio frequency circuit.
  • FIG. 17 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 1603A and the second port 1603B of the fourth switch 1603 are respectively connected to the third port 1603C and the fourth port 1603D of the fourth switch 1603; the first port 1604A of the fifth switch 1604 is connected to the fifth The fifth port 1604E of the switch 1604 is connected.
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the first antenna 1605 through the fourth switch 1603 .
  • the LTE signal received by the first antenna 1605 enters the radio frequency transceiver 1601 from the first port 1601A of the radio frequency transceiver 1601 through the fourth switch 1603 .
  • the LTE signal received by the second antenna 1606 enters the radio frequency transceiver 1601 from the second port 1601B of the radio frequency transceiver 1601 through the fourth switch 1603 and the fifth switch 1604 .
  • the terminal device can realize LTE communication.
  • FIG. 18 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 1603A and the second port 1603B of the fourth switch 1603 are respectively connected to the fourth port 1603D and the third port 1603C of the fourth switch 1603; the first port 1604A of the fifth switch 1604 is connected to the fifth The fifth port 1604E of the switch 1604 is connected.
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the second antenna 1606 through the fourth switch 1603 .
  • the LTE signal received by the second antenna 1606 enters the radio frequency transceiver 1601 from the first port 1601A of the radio frequency transceiver 1601 through the fourth switch 1603 .
  • the LTE signal received by the first antenna 1605 enters the radio frequency transceiver 1601 from the second port 1601B of the radio frequency transceiver 1601 through the fourth switch 1603 and the fifth switch 1604 .
  • the terminal device realizes switching between the first antenna and the second antenna by changing the connection mode of the fourth switch, and then can select a suitable antenna to transmit LTE signals, thereby improving the quality of LTE signals. Increased applicability of terminal equipment.
  • connection of the fourth switch 1603 and the fifth switch 1604 in the radio frequency circuit may refer to FIG. 19 and FIG. 20 .
  • FIG. 19 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 1602 controls the second port 1604B of the fifth switch 1604 and the second port 1604B of the fourth switch 1603.
  • the port 1603B is respectively connected with the fifth port 1604E of the fifth switch 1604 and the fourth port 1603D of the fourth switch 1603; or the second port 1604B of the fifth switch 1604 is connected with the sixth port 1604F of the fifth switch 1604; or the control
  • the second port 1604B of the fifth switch 1604 is connected to the seventh port 1604G of the fifth switch 1604 ; or the second port 1604B of the fifth switch 1604 is controlled to be connected to the eighth port 1604H of the fifth switch 1604 .
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the first antenna 1605 through the fourth switch 1603, and the LTE signal received by the first antenna 1605 is transmitted from the radio frequency transceiver 1601 through the fourth switch 1603.
  • the first port 1601A enters the radio frequency transceiver 1601 .
  • the SRS output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the second antenna 1606 through the fifth switch 1604 and the fourth switch 1603; the SRS output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the third transmit on the antenna 1607, the fourth antenna 1608 or the fifth antenna 1609.
  • the SRS output by the third port 1601C of the radio frequency transceiver 1601 can be used in turn on the second antenna 1606, the third antenna 1607, the fourth antenna 1608 or the 1609 transmits on five antennas.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the second antenna 1606 , the third antenna 1607 , the fourth antenna 1608 or the fifth antenna 1609 .
  • FIG. 20 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 1602 controls the second port 1604B of the fifth switch 1604 and the second port 1604B of the fourth switch 1603.
  • the port 1603B is respectively connected with the fifth port 1604E of the fifth switch 1604 and the third port 1603C of the fourth switch 1603; or the second port 1604B of the fifth switch 1604 is connected with the sixth port 1604F of the fifth switch 1604; or the control
  • the second port 1604B of the fifth switch 1604 is connected to the seventh port 1604G of the fifth switch 1604 ; or the second port 1604B of the fifth switch 1604 is controlled to be connected to the eighth port 1604H of the fifth switch 1604 .
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the second antenna 1606 through the fourth switch 1603, and the LTE signal received by the second antenna 1606 is transmitted from the radio frequency transceiver 1601 through the fourth switch 1603.
  • the first port 1601A enters the radio frequency transceiver 1601 .
  • the SRS output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the first antenna 1605 through the fifth switch 1604 and the fourth switch 1603; the SRS output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the third transmit on the antenna 1607, the fourth antenna 1608 or the fifth antenna 1609.
  • the SRS output by the third port 1601C of the radio frequency transceiver 1601 can be used in turn on the first antenna 1605, the third antenna 1607, the fourth antenna 1608 or the 1609 transmits on five antennas.
  • This embodiment of the present application does not limit the order in which the SRS is transmitted on the first antenna 1605 , the third antenna 1607 , the fourth antenna 1608 or the fifth antenna 1609 .
  • connection modes shown in FIG. 19 and FIG. 20 will not affect the transmission of LTE signals during SRS transmission, and can avoid interruption of LTE signals. Moreover, the time of the SRS round-robin process is short, and has little impact on the reception of the LTE signal. In this way, the terminal device realizes coexistence of LTE communication and SRS transmission by changing the connection mode of the fourth switch and the fifth switch.
  • connection of the fourth switch 1603 and the fifth switch 1604 in the radio frequency circuit may refer to FIG. 21 and FIG. 22 .
  • FIG. 21 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 1603A and the second port 1603B of the fourth switch 1603 are respectively connected to the third port 1603C and the fourth port 1603D of the fourth switch 1603;
  • the port 1604B, the third port 1604C and the fourth port 1604D are respectively connected to the fifth port 1604E, the sixth port 1604F, the seventh port 1604G and the eighth port 1604H of the fifth switch 1604 .
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the first antenna 1605 through the fourth switch 1603 .
  • the LTE signal received by the first antenna 1605 enters the radio frequency transceiver 1601 from the first port 1601A of the radio frequency transceiver 1601 through the fourth switch 1603 .
  • the LTE signal and/or the NR signal received by the second antenna 1606 enters the radio frequency transceiver 1601 from the second port 1601B of the radio frequency transceiver 1601 through the fourth switch 1603 and the fifth switch 1604 .
  • the NR signal output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the third antenna 1607 through the fifth switch 1604 .
  • the NR signal received by the third antenna 1607, the NR signal received by the fourth antenna 1608 and the NR signal received by the fifth antenna 1609 are transmitted from the third port 1601C, the fourth port 1601D and the fifth Port 1601E enters the radio frequency transceiver 1601 .
  • the terminal device can realize dual connection communication of LTE and NR.
  • FIG. 22 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 1603A and the second port 1603B of the fourth switch 1603 are respectively connected to the fourth port 1603D and the third port 1603C of the fourth switch 1603;
  • the port 1604B, the third port 1604C and the fourth port 1604D are respectively connected to the fifth port 1604E, the sixth port 1604F, the seventh port 1604G and the eighth port 1604H of the fifth switch 1604 .
  • the LTE signal output by the first port 1601A of the radio frequency transceiver 1601 is transmitted on the second antenna 1606 through the fourth switch 1603 .
  • the LTE signal received by the second antenna 1606 enters the radio frequency transceiver 1601 from the first port 1601A of the radio frequency transceiver 1601 through the fourth switch 1603 .
  • the LTE signal and/or the NR signal received by the first antenna 1605 enters the radio frequency transceiver 1601 from the second port 1601B of the radio frequency transceiver 1601 through the fourth switch 1603 and the fifth switch 1604 .
  • the NR signal output by the third port 1601C of the radio frequency transceiver 1601 is transmitted on the third antenna 1607 through the fifth switch 1604 .
  • the NR signal received by the third antenna 1607, the NR signal received by the fourth antenna 1608 and the NR signal received by the fifth antenna 1609 are transmitted from the third port 1601C, the fourth port 1601D and the fifth port of the radio frequency transceiver 1601 respectively through the fifth switch 1603
  • Port 1601E enters the radio frequency transceiver 1601 .
  • the ports connected to the second port 1604B, the third port 1604C, and the fourth port 1604D of the fifth switch 1604 can be exchanged and connected to each other.
  • NR signals may be transmitted on the third antenna 1607 or the fourth antenna 1608 or the fifth antenna 1609 .
  • the terminal device can switch between the third antenna, the fourth antenna and the fifth antenna by changing the connection mode of the fifth switch, and then can select a suitable antenna to transmit NR signals.
  • the antenna configuration in NR communication can refer to the antenna configuration when transmitting and/or receiving NR signals in the above ENDC communication
  • the connection mode of the fourth switch and the fifth switch in NR communication is the same as that of transmitting and/or receiving NR in the above ENDC communication
  • the connection mode of the signal is similar, and will not be repeated here.
  • the terminal device uses five antennas and changes the connection mode of the fourth switch and/or the connection mode of the fifth switch to realize LTE communication, SRS transmission and ENDC communication, and realize SA And NSA's dual mode function.
  • the number of antennas is reduced, the space occupied by the antennas is reduced, and the volume of the terminal equipment is reduced.
  • the terminal device can also select a suitable antenna to transmit LTE signals and/or NR signals to improve throughput. In addition, during SRS transmission or NR communication, it will not affect the transmission of LTE signals.
  • the following describes the radio frequency circuit for implementing antenna sharing through unequal switches with reference to FIGS. 23-29 .
  • FIG. 23 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes: a radio frequency transceiver 2301, a controller 2302, a sixth switch 2303, a seventh switch 2304, an eighth switch 2305, a first antenna 2306, a second antenna 2307, a third antenna 2308, The fourth antenna 2309 and the fifth antenna 2310 .
  • the structure and function of the radio frequency transceiver 2301, the controller 2302, the first antenna 2306, the second antenna 2307, the third antenna 2308, the fourth antenna 2309 and the fifth antenna 2310 can refer to the above related concepts and the radio frequency circuit shown in Figure 2 The description of the corresponding structure of , will not be repeated here.
  • the controller 2302 is used to control the setting of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305, so that the first antenna 2306, the second antenna 2307, the third antenna 2308, the fourth antenna 2309 and/or the fifth antenna 2310 Transmit and/or receive radio frequency signals to realize LTE 2*2MIMO, NR 4*4MIMO, and SRS rotation.
  • the controller 2302 is used to control the settings of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305, so that the first antenna 2306 is used to transmit and receive LTE signals
  • the second antenna 2307 is used to receive LTE signals and/or NR signals
  • any one of the third antenna 2308, the fourth antenna 2309 and the fifth antenna 2310 is used to transmit NR signals
  • the third antenna 2308, the fourth antenna 2309 and the fifth antenna 2310 are used to receive NR signals
  • the first antenna 2306 is used to receive LTE signals and/or NR signals
  • the second antenna 2307 is used to transmit and receive LTE signals
  • the third antenna 2308, the fourth antenna Any one of the antennas 2309 and the fifth antenna 2310 is used to transmit NR signals
  • the third antenna 2308, the fourth antenna 2309 and the fifth antenna 2310 are all used to receive NR signals.
  • the controller 2302 is used to control the settings of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305, and then when the first antenna 2306 is used to transmit and receive LTE signals, the second antenna 2307 , the third antenna 2308, the fourth antenna 2309, or the fifth antenna 2310; or, when the second antenna 2307 is used for transmitting and receiving LTE signals, the Or transmit the SRS on the fifth antenna 2310 .
  • the sixth switch 2303 , the seventh switch 2304 and the eighth switch 2305 may be collectively referred to as a switch unit.
  • the sixth switch 2303 , the seventh switch 2304 and the eighth switch 2305 are all connected to the controller 2302 .
  • the sixth switch 2303 includes 6 ports.
  • the first port 2303A and the second port 2303B of the sixth switch 2303 are respectively connected to the first port 2301A and the second port 2301B of the radio frequency transceiver 2301; the third port 2303C of the sixth switch is disconnected; the fourth port 2303D of the sixth switch It is connected with the third port 2304C of the seventh port; the fifth port 2303E and the sixth port 2303F of the sixth switch 2303 are connected with the first antenna 2306 and the second antenna 2307 respectively.
  • the sixth switch 2303 may be a double pole four throw switch (DP4T).
  • the seventh switch 2304 includes 6 ports.
  • the first port 2304A and the second port 2304B of the seventh switch 2304 are respectively connected with the third port 2301C and the fourth port 2301D of the radio frequency transceiver 2301;
  • the third port 2304C of the seventh switch 2304 is connected with the fourth port of the sixth switch 2303 2303D connection;
  • the fourth port 2304D of the seventh switch 2304 is connected to the second port 2305B of the eighth switch 2305;
  • the fifth port 2304E and the sixth port 2304F of the seventh switch 2304 are respectively connected to the third antenna 2308 and the fourth antenna 2309 .
  • the seventh switch 2304 may be a double pole four throw switch (DP4T).
  • the eighth switch 2305 includes 3 ports.
  • the first port 2305A of the eighth switch 2305 is connected with the fifth port 2301E of the radio frequency transceiver 2301;
  • the second port 2305B of the eighth switch 2305 is connected with the fourth port 2304D of the seventh switch 2304;
  • the third port of the eighth switch 2305 2305C is connected to the fifth antenna 2310 .
  • the eighth switch 2305 may be a single pole double throw switch (SP2T).
  • the connection of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305 in the radio frequency circuit may refer to FIG. 24 and FIG. 25 .
  • FIG. 24 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 2303A and the second port 2303B of the sixth switch 2303 are respectively connected to the fifth port 2303E and the sixth port 2303F of the sixth switch 2303 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the first antenna 2306 through the sixth switch 2303 .
  • the LTE signal received by the first antenna 2306 enters the radio frequency transceiver 2301 from the first port 2301A of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the LTE signal received by the second antenna 2307 enters the radio frequency transceiver 2301 from the second port 2301B of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the terminal device can realize LTE communication.
  • FIG. 25 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 2303A and the second port 2303B of the sixth switch 2303 are respectively connected to the sixth port 2303F and the fifth port 2303E of the sixth switch 2303 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the second antenna 2307 through the sixth switch 2303 .
  • the LTE signal received by the second antenna 2307 enters the radio frequency transceiver 2301 from the first port 2301A of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the LTE signal received by the first antenna 2306 enters the radio frequency transceiver 2301 from the second port 2301B of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the terminal device realizes the switching between the first antenna and the second antenna by changing the connection mode of the sixth switch, and then can select a suitable antenna to transmit the LTE signal.
  • the connection of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305 in the radio frequency circuit may refer to FIG. 26 and FIG. 27 .
  • FIG. 26 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 2302 controls the fourth port 2303D of the sixth switch 2303 and the first port 2303D of the seventh switch 2304.
  • the port 2304A is respectively connected to the sixth port 2303F of the sixth switch 2303 and the third port 2304C of the seventh switch 2304;
  • the fourth port 2304D of the switch 2304 is connected to the third port 2305C of the eighth switch 2305; or the first port 2304A of the seventh switch 2304 is connected to the fifth port 2304E of the seventh switch 2304;
  • a port 2304A is connected to a sixth port 2304F of the seventh switch 2304 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the first antenna 2306 through the sixth switch 2303, and the LTE signal received by the first antenna 2306 is transmitted from the radio frequency transceiver 2301 through the sixth switch 2303.
  • the first port 2301A enters the RF transceiver 2301.
  • the SRS output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the second antenna 2307 through the seventh switch 2304 and the sixth switch 2303; the SRS output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the third Transmit on the antenna 2308 or the fourth antenna 2309 ; the SRS output by the third port 2301C of the radio frequency transceiver 2301 transmits on the fifth antenna 2310 through the seventh switch 2304 and the eighth switch 2305 .
  • the SRS output by the third port 2301C of the radio frequency transceiver 2301 can be used in turn on the second antenna 2307, the third antenna 2308, the fourth antenna 2309 or the 2310 transmits on five antennas.
  • This embodiment of the present application does not limit the order in which the SRS is transmitted on the second antenna 2307 , the third antenna 2308 , the fourth antenna 2309 or the fifth antenna 2310 .
  • FIG. 27 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 2302 controls the fourth port 2303D of the sixth switch 2303 and the first port 2303D of the seventh switch 2304.
  • the port 2304A is respectively connected to the sixth port 2303F of the sixth switch 2303 and the third port 2304C of the seventh switch 2304;
  • the fourth port 2304D of the switch 2304 is connected to the third port 2305C of the eighth switch 2305; or the first port 2304A of the seventh switch 2304 is connected to the fifth port 2304E of the seventh switch 2304;
  • a port 2304A is connected to a sixth port 2304F of the seventh switch 2304 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the second antenna 2307 through the sixth switch 2303, and the LTE signal received by the second antenna 2307 is transmitted from the radio frequency transceiver 2301 through the sixth switch 2303.
  • the first port 2301A enters the RF transceiver 2301.
  • the SRS output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the first antenna 2306 through the seventh switch 2304 and the sixth switch 2303; the SRS output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the third Transmit on the antenna 2308 or the fourth antenna 2309 ; the SRS output by the third port 2301C of the radio frequency transceiver 2301 transmits on the fifth antenna 2310 through the seventh switch 2304 and the eighth switch 2305 .
  • the SRS output by the third port 2301C of the radio frequency transceiver 2301 can be used in turn on the first antenna 2306, the third antenna 2308, the fourth antenna 2309 or the 2310 transmits on five antennas.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the first antenna 2306 , the third antenna 2308 , the fourth antenna 2309 or the fifth antenna 2310 .
  • connection modes shown in FIG. 26 and FIG. 27 will not affect the transmission of LTE signals during SRS rotation, and can avoid interruption of LTE signals. Moreover, the time of the SRS round-robin process is short, and has little impact on the reception of the LTE signal. In this way, by changing the connection mode of the sixth switch, the seventh switch and the eighth switch, the terminal device realizes coexistence of LTE communication and SRS round-robin transmission.
  • the connection of the sixth switch 2303, the seventh switch 2304 and the eighth switch 2305 in the radio frequency circuit may refer to FIG. 28 and FIG. 29 .
  • FIG. 28 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 2303A and the second port 2303B of the sixth switch 2303 are respectively connected to the fifth port 2303E and the sixth port 2303F of the sixth switch 2303;
  • the port 2304B is connected to the fifth port 2304E and the sixth port 2304F of the seventh switch 2304 respectively;
  • the first port 2305A of the eighth switch 2305 is connected to the third port 2305C of the eighth switch 2305 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the first antenna 2306 through the sixth switch 2303 .
  • the LTE signal received by the first antenna 2306 enters the radio frequency transceiver 2301 from the first port 2301A of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the LTE signal and/or the NR signal received by the second antenna 2307 enters the radio frequency transceiver 2301 from the second port 2301B of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the NR signal output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the third antenna 2308 through the seventh switch 2304 .
  • the NR signal received by the third antenna 2308 and the NR signal received by the fourth antenna 2309 enter the radio frequency transceiver 2301 through the seventh switch 2304 respectively from the third port 2301C and the fourth port 2301D of the radio frequency transceiver 2301 .
  • the NR signal received by the fifth antenna 2310 enters the radio frequency transceiver 2301 from the fifth port 2301E of the radio frequency transceiver 2301 through the eighth switch 2305 .
  • the terminal device can realize dual connection communication of LTE and NR.
  • FIG. 29 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 2303A and the second port 2303B of the sixth switch 2303 are respectively connected to the sixth port 2303F and the fifth port 2303E of the sixth switch 2303; the first port 2304A and the second port 2303E of the seventh switch 2304
  • the port 2304B is connected to the fifth port 2304E and the sixth port 2304F of the seventh switch 2304 respectively;
  • the first port 2305A of the eighth switch 2305 is connected to the third port 2305C of the eighth switch 2305 .
  • the LTE signal output by the first port 2301A of the radio frequency transceiver 2301 is transmitted on the second antenna 2307 through the sixth switch 2303 .
  • the LTE signal received by the second antenna 2307 enters the radio frequency transceiver 2301 from the first port 2301A of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the LTE signal and/or the NR signal received by the first antenna 2306 enters the radio frequency transceiver 2301 from the second port 2301B of the radio frequency transceiver 2301 through the sixth switch 2303 .
  • the NR signal output by the third port 2301C of the radio frequency transceiver 2301 is transmitted on the third antenna 2308 through the seventh switch 2304 .
  • the NR signal received by the third antenna 2308 and the NR signal received by the fourth antenna 2309 enter the radio frequency transceiver 2301 through the seventh switch 2304 respectively from the third port 2301C and the fourth port 2301D of the radio frequency transceiver 2301 .
  • the NR signal received by the fifth antenna 2310 enters the radio frequency transceiver 2301 from the fifth port 2301E of the radio frequency transceiver 2301 through the eighth switch 2305 .
  • the ports connected to the first port 2304A of the seventh switch 2304 and the second port 2304B can be exchanged and connected to each other.
  • NR signals may be transmitted on the third antenna 2808 or the fourth antenna 2309.
  • the terminal device realizes switching between the third antenna and the fourth antenna by changing the connection mode of the seventh switch, and then can select a suitable antenna to transmit NR signals.
  • the antenna configuration in NR communication can refer to the antenna configuration when transmitting and/or receiving NR signals in the above-mentioned ENDC communication. Or the connection method when receiving NR signals is similar, and will not be repeated here.
  • the terminal device realizes LTE communication, SRS transmission and ENDC communication through 5 antennas and changing the connection mode of the sixth switch, the seventh switch and/or the eighth switch, and realizes Dual mode function of SA and NSA.
  • the number of antennas is reduced, the space occupied by the antennas is reduced, and the volume of the terminal equipment is reduced.
  • the terminal device can also select a suitable antenna to transmit LTE signals and/or NR signals to improve throughput. In addition, during SRS transmission or NR communication, it will not affect the transmission of LTE signals.
  • the following describes the radio frequency circuit for implementing antenna sharing through the peer-to-peer switch and the non-peer switch with reference to FIGS. 30-36 .
  • FIG. 30 is a schematic structural diagram of a radio frequency circuit provided by an embodiment of the present application.
  • the radio frequency circuit includes: radio frequency transceiver 3001, controller 3002, ninth switch 3003, tenth switch 3004, eleventh switch 3005, twelfth switch 3006, first antenna 3007, second antenna 3008, a third antenna 3009, a fourth antenna 3010, and a fifth antenna 3011.
  • the structure and function of the radio frequency transceiver 3001, the controller 3002, the first antenna 3007, the second antenna 3008, the third antenna 3009, the fourth antenna 3010 and the fifth antenna 3011 can refer to the above related concepts and the radio frequency circuit shown in Figure 2 The description of the corresponding structure of , will not be repeated here.
  • the controller 3002 is used to control the settings of the ninth switch 3003, the tenth switch 3004, the eleventh switch 3005 and the twelfth switch 3006, so that the first antenna 3007, the second antenna 3008, the third antenna 3009, and the fourth antenna 3010 and the fifth antenna 3011 to transmit and/or receive radio frequency signals, thereby realizing 2*2 MIMO of LTE, 4*4 MIMO of NR, and SRS transmission.
  • the controller 3002 is used to control the settings of the ninth switch 3003, the tenth switch 3004, the eleventh switch 3005 and the twelfth switch 3006, so that the first antenna 3007 uses For transmitting and receiving LTE signals, the second antenna 3008 is used to receive LTE signals and/or NR signals, any one of the third antenna 3009, the fourth antenna 3010 and the fifth antenna 3011 is used to transmit NR signals, and the third The antenna 3009, the fourth antenna 3010, and the fifth antenna 3011 are all used to receive NR signals; or, the first antenna 3007 is used to receive LTE signals and/or NR signals, and the second antenna 3008 is used to transmit and receive LTE signals. Any one of the three antennas 3009, the fourth antenna 3010 and the fifth antenna 3011 is used for transmitting NR signals, and the third antenna 3009, the fourth antenna 3010 and the fifth antenna 3011 are all used for receiving NR signals.
  • the controller 3002 is used to control the settings of the ninth switch 3003, the tenth switch 3004, the eleventh switch 3005 and the twelfth switch 3006, and then when the first antenna 3007 is used to transmit and receive LTE signals , transmit SRS on the second antenna 3008, the third antenna 3009, the fourth antenna 3010 or the fifth antenna 3011; or, when the second antenna 3008 is used to transmit and receive LTE signals, 3009. Transmit the SRS on the fourth antenna 3010 or the fifth antenna 3011.
  • the ninth switch 3003 , the tenth switch 3004 , the eleventh switch 3005 and the twelfth switch 3006 may be collectively referred to as a switch unit.
  • the ninth switch 3003 , the tenth switch 3004 , the eleventh switch 3005 and the twelfth switch 3006 are all connected to the controller 3002 .
  • the ninth switch 3003 includes 4 ports.
  • the first port 3003A of the ninth switch 3003 is connected to the first port 3001A of the radio frequency transceiver 3001;
  • the second port 3003D of the ninth switch 3003 is connected to the third port 3004C of the tenth switch 3004;
  • the third port of the ninth switch 3003 3003C and the fourth port 3003D are connected to the first antenna 3007 and the second antenna 3008 respectively.
  • the ninth switch 3003 may be a double pole double throw switch (DPDT).
  • DPDT double pole double throw switch
  • the tenth switch 3004 includes 6 ports.
  • the first port 3004A and the second port 3004B of the tenth switch 3004 are respectively connected with the second port 3001B and the third port 3001C of the radio frequency transceiver 3001;
  • the third port 3004C of the tenth switch 3004 is connected with the second port of the ninth switch 3003 3003B connection;
  • the fourth port 3004D of the tenth switch 3004 is connected to the second port 3005B of the eleventh switch 3005;
  • the fifth port 3004E of the tenth switch 3004 is connected to the third antenna 3009;
  • the sixth port 3004F of the tenth switch 3004 It is connected to the first port 3006A of the twelfth switch 3006 .
  • the tenth switch 3004 may be a double pole four throw switch (DP4T).
  • the eleventh switch 3005 includes 3 ports.
  • the first port 3005A of the eleventh switch 3005 is connected with the fourth port 3001D of the radio frequency transceiver 3001;
  • the second port 3005B of the eleventh switch 3005 is connected with the fourth port 3004D of the tenth switch 3004;
  • the third port 3005C is connected to the fourth antenna 3010 .
  • the eleventh switch may be a single pole double throw switch (SP2T).
  • the twelfth switch 3006 includes 3 ports.
  • the first port 3006A of the twelfth switch 3006 is connected with the fifth port 3004E of the tenth switch 3004;
  • the second port 3006B of the twelfth switch 3006 is connected with the fifth port 3001E of the radio frequency transceiver 3001;
  • the twelfth switch 3006 The third port 3006C is connected to the fifth antenna 3011 .
  • the twelfth switch may be a single pole double throw switch (SP2T).
  • the connection of the ninth switch 3003 , the tenth switch 3004 , the eleventh switch 3005 and the twelfth switch 3006 in the radio frequency circuit can refer to FIG. 31 and FIG. 32 .
  • FIG. 31 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 3003A and the second port 3003B of the ninth switch 3003 are respectively connected to the third port 3003C and the fourth port 3003D of the ninth switch 3003, and the first port 3004A of the tenth switch 3004 is connected to the tenth port
  • the third port 3004C of the switch 3004 is connected.
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the first antenna 3007 through the ninth switch 3003 .
  • the LTE signal received by the first antenna 3007 enters the radio frequency transceiver 3001 from the first port 3001A of the radio frequency transceiver 3001 through the ninth switch 3003 .
  • the LTE signal received by the second antenna 3008 enters the radio frequency transceiver 3001 from the second port 3001B of the radio frequency transceiver 3001 through the ninth switch 3003 and the tenth switch 3004 .
  • the terminal device can realize LTE communication.
  • FIG. 32 is a schematic diagram of an antenna configuration during LTE communication provided by an embodiment of the present application.
  • the first port 3003A and the second port 3003B of the ninth switch 3003 are respectively connected to the fourth port 3003D and the third port 3003C of the ninth switch 3003, and the first port 3004A of the tenth switch 3004 is connected to the tenth port
  • the third port 3004C of the switch 3004 is connected.
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the second antenna 3008 through the ninth switch 3003 .
  • the LTE signal received by the second antenna 3008 enters the radio frequency transceiver 3001 from the first port 3001A of the radio frequency transceiver 3001 through the ninth switch 3003 .
  • the LTE signal received by the first antenna 3007 enters the radio frequency transceiver 3001 from the second port 3001B of the radio frequency transceiver 3001 through the ninth switch 3003 and the tenth switch 3004 .
  • the terminal device realizes switching between the first antenna and the second antenna by changing the connection mode of the ninth switch, and then can select a suitable antenna to transmit LTE signals, thereby improving the quality of LTE signals. Increased applicability of terminal equipment.
  • the connection of the ninth switch 3003 , the tenth switch 3004 , the eleventh switch 3005 and the twelfth switch 3006 in the radio frequency circuit can refer to FIG. 33 and FIG. 34 .
  • FIG. 33 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 3003 controls the second port 3004B of the tenth switch 3004 and the second port 3004B of the ninth switch 3003.
  • the port 3003B is respectively connected with the third port 3004C of the tenth switch 3004 and the fourth port 3003D of the ninth switch 3003; or the second port 3004B of the tenth switch 3004 is connected with the fifth port 3004E of the tenth switch 3004; or the control
  • the second port 3004B of the tenth switch 3004 and the second port 3005B of the eleventh switch 3005 are respectively connected with the fourth port 3004D of the tenth switch 3004 and the third port 3005C of the eleventh switch 3005; or control the tenth switch 3004
  • the second port 3004B of the twelfth switch 3006 and the first port 3006A of the twelfth switch 3006 are respectively connected to the sixth port 3004F of the tenth switch 3004 and the third port 3006C of the twelfth switch 3006 .
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the first antenna 3007 through the ninth switch 3003, and the LTE signal received by the first antenna 3007 is transmitted from the radio frequency transceiver 3001 through the ninth switch 3003.
  • the first port 3001A enters the RF transceiver 3001.
  • the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted on the second antenna 3008 through the tenth switch 3004 and the ninth switch 3003; transmit on the antenna 3009; the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted on the fourth antenna 3010 through the tenth switch 3004 and the eleventh switch 3005; the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted through the first The tenth switch 3004 and the twelfth switch 3006 transmit on the fourth antenna 3010 .
  • the SRS output by the third port 3001C of the radio frequency transceiver 3001 can be used in turn on the second antenna 3008, the third antenna 3009, the fourth antenna 3010 or the Launch on 3011 with five antennas.
  • the embodiment of the present application does not limit the order in which the SRS is transmitted on the second antenna 3008 , the third antenna 3009 , the fourth antenna 3010 or the fifth antenna 3011 .
  • FIG. 34 is a schematic diagram of an antenna configuration during SRS transmission according to an embodiment of the present application.
  • the controller 3003 controls the second port 3004B of the tenth switch 3004 and the second port 3004B of the ninth switch 3003.
  • the port 3003B is respectively connected with the third port 3004C of the tenth switch 3004 and the third port 3003C of the ninth switch 3003; or the second port 3004B of the tenth switch 3004 is connected with the fifth port 3004E of the tenth switch 3004; or the control
  • the second port 3004B of the tenth switch 3004 and the second port 3005B of the eleventh switch 3005 are respectively connected with the fourth port 3004D of the tenth switch 3004 and the third port 3005C of the eleventh switch 3005; or control the tenth switch 3004
  • the second port 3004B of the twelfth switch 3006 and the first port 3006A of the twelfth switch 3006 are respectively connected to the sixth port 3004F of the tenth switch 3004 and the third port 3006C of the twelfth switch 3006 .
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the second antenna 3008 through the ninth switch 3003, and the LTE signal received by the second antenna 3008 is transmitted from the radio frequency transceiver 3001 through the ninth switch 3003.
  • the first port 3001A enters the RF transceiver 3001.
  • the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted on the first antenna 3007 through the tenth switch 3004 and the ninth switch 3003; transmit on the antenna 3009; the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted on the fourth antenna 3010 through the tenth switch 3004 and the eleventh switch 3005; the SRS output by the third port 3001C of the radio frequency transceiver 3001 is transmitted through the first The tenth switch 3004 and the twelfth switch 3006 transmit on the fourth antenna 3010 .
  • the SRS output by the third port 3001C of the radio frequency transceiver 3001 can be used in turn on the first antenna 3007, the third antenna 3009, the fourth antenna 3010 or the Launch on 3011 with five antennas.
  • This embodiment of the present application does not limit the order in which the SRS is transmitted on the first antenna 3007 , the third antenna 3009 , the fourth antenna 3010 or the fifth antenna 3011 .
  • connection modes shown in FIG. 33 and FIG. 34 will not affect the transmission of LTE signals during SRS rotation, and can avoid interruption of LTE signals. Moreover, the time of the SRS round-robin process is short, and has little impact on the reception of the LTE signal. In this way, by changing the connection mode of the sixth switch, the seventh switch and the eighth switch, the terminal device realizes coexistence of LTE communication and SRS round-robin transmission.
  • the connection of the ninth switch 3003 , the tenth switch 3004 , the eleventh switch 3005 and the twelfth switch 3006 in the radio frequency circuit can refer to FIG. 35 and FIG. 36 .
  • FIG. 35 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 3003A and the second port 3003B of the ninth switch 3003 are respectively connected to the third port 3003C and the fourth port 3003D of the ninth switch 3003; the first port 3004A and the second port 3003D of the tenth switch 3004
  • the port 3004B is respectively connected to the third port 3004C and the fifth port 3004E of the tenth switch 3004;
  • the first port 3005A of the eleventh switch 3005 is connected to the third port 3005C of the eleventh switch 3005;
  • the second port 3006B is connected to the third port 3006C of the twelfth switch 3006 .
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the first antenna 3007 through the ninth switch 3003 .
  • the LTE signal received by the first antenna 3007 enters the radio frequency transceiver 3001 from the first port 3001A of the radio frequency transceiver 3001 through the ninth switch 3003 .
  • the LTE signal and/or NR signal received by the second antenna 3008 enters the radio frequency transceiver 3001 from the second port 3001B of the radio frequency transceiver 3001 through the ninth switch 3003 and the tenth switch 3004 .
  • the NR signal received by the third antenna 3009 enters the radio frequency transceiver 3001 from the third port 3001C of the radio frequency transceiver 3001 through the tenth switch 3004 .
  • the NR signal received by the fourth antenna 3010 enters the radio frequency transceiver 3001 from the fourth port 3001D of the radio frequency transceiver 3001 through the eleventh switch 3005 .
  • the NR signal received by the fifth antenna 3011 enters the radio frequency transceiver 3001 from the fifth port 3001E of the radio frequency transceiver 3001 through the twelfth switch 3006 .
  • the terminal device can realize dual connection communication of LTE and NR.
  • FIG. 36 is a schematic diagram of an antenna configuration during ENDC communication according to an embodiment of the present application.
  • the first port 3003A and the second port 3003B of the ninth switch 3003 are respectively connected to the fourth port 3003D and the third port 3003C of the ninth switch 3003;
  • the port 3004B is respectively connected to the third port 3004C and the fifth port 3004E of the tenth switch 3004;
  • the first port 3005A of the eleventh switch 3005 is connected to the third port 3005C of the eleventh switch 3005;
  • the second port 3006B is connected to the third port 3006C of the twelfth switch 3006 .
  • the LTE signal output by the first port 3001A of the radio frequency transceiver 3001 is transmitted on the second antenna 3008 through the ninth switch 3003 .
  • the LTE signal received by the second antenna 3008 enters the radio frequency transceiver 3001 from the first port 3001A of the radio frequency transceiver 3001 through the ninth switch 3003 .
  • the LTE signal and/or the NR signal received by the first antenna 3007 enters the radio frequency transceiver 3001 from the second port 3001B of the radio frequency transceiver 3001 through the ninth switch 3003 and the tenth switch 3004 .
  • the NR signal received by the third antenna 3009 enters the radio frequency transceiver 3001 from the third port 3001C of the radio frequency transceiver 3001 through the tenth switch 3004 .
  • the NR signal received by the fourth antenna 3010 enters the radio frequency transceiver 3001 from the fourth port 3001D of the radio frequency transceiver 3001 through the eleventh switch 3005 .
  • the NR signal received by the fifth antenna 3011 enters the radio frequency transceiver 3001 from the fifth port 3001E of the radio frequency transceiver 3001 through the twelfth switch 3006 .
  • the antenna configuration in NR communication can refer to the above-mentioned antenna configuration when transmitting and/or receiving NR signals in ENDC communication
  • the connection modes of the ninth switch, the tenth switch, the eleventh switch and the twelfth switch in NR communication are the same as
  • the above-mentioned connection modes for transmitting and/or receiving NR signals in the ENDC communication are similar and will not be repeated here.
  • the terminal device implements LTE communication, SRS round-trip Send and ENDC communication to realize the dual-mode function of SA and NSA.
  • the number of antennas is reduced, the space occupied by the antennas is reduced, and the volume of the terminal equipment is reduced.
  • Terminal equipment can also select a suitable antenna to transmit LTE signals to improve throughput.
  • SRS transmission or NR communication it will not affect the transmission of LTE signals.
  • the embodiment of the present application also provides an electronic device, which includes any one of the above-mentioned radio frequency circuits, and the radio frequency circuit is used to transmit and receive the first signal and/or the second signal; wherein, the first signal is an LTE signal, and the second signal is the NR signal.
  • Electronic devices may include terminal devices.
  • the terminal device can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (MID) or a wearable device (wearable device). device) etc.
  • PDA personal digital assistant
  • MID mobile internet device
  • wearable device wearable device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供一种射频电路和控制方法。该电路包括射频收发器、控制器、开关单元、第一天线至第五天线。射频收发器包括用于发射和接收第一信号、接收第二信号和第一信号、发射和接收第二信号、接收第二信号、接收第二信号的第一端口至第五端口;开关单元包括与第一端口至第五端口和第一天线至第五天线连接的第六端口至第十五端口;控制器用于控制开关单元的端口连接,使得第一天线和第二天线中的一根用于发射和接收第一信号,一根用于接收第一信号和第二信号;第三天线至第五天线中任一根用于发射第二信号,且均用于接收第二信号。通过天线复用和端口切换,实现SA和NSA功能。天线数量减少,占用空间缩小,终端设备的体积降低。

Description

射频电路和控制方法
本申请要求于2021年05月11日提交中国国家知识产权局、申请号为202110512135.6、申请名称为“射频电路和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种射频电路和控制方法。
背景技术
目前,第五代移动通信技术(5th-generation,5G)网络可以采用两种组网方式进行通信。两种组网方式分别为非独立组网(non-standalone,NSA)和独立组网(standalone,SA)。具体的,当双模5G手机支持NSA和SA两种模态时,双模5G手机可以通过多种方式实现通信。通信方式包括:5G新空口(new radio,NR)通信、长期演进(long term evolution,LTE)通信,以及LTE和NR的双连接(EUTRA-NR dual connectivity,ENDC)通信。在NR频段,双模5G手机还需要支持NR的1发4收(1T4R)的探测参考信号(sounding reference signal,SRS)天线轮流发射。
现有设计中,当NR需要4*4的多输入多输出(multiple-input multiple-output,MIMO)通信,LTE需要2*2 MIMO时,双模5G手机中包括6根天线。
但是,双模5G手机中的天线数量多,占用的空间大。
发明内容
本申请实施例提供一种射频电路和控制方法。将天线共用,在一根天线上同时接收LTE信号和NR信号,进而减少天线数量,缩小天线占用的空间,降低终端设备的体积。并且该射频电路通过改变开关单元中端口的连接实现LTE信号的发射天线或NR信号的发射天线的切换,实现SA和NSA双模功能。
第一方面,本申请实施例提供一种射频电路。射频电路包括射频收发器、控制器、开关单元、第一天线、第二天线、第三天线、第四天线和第五天线;射频收发器包括第一端口、第二端口、第三端口、第四端口和第五端口,第一端口用于发射和接收第一信号,第二端口用于接收第二信号和第一信号,第三端口用于发射和接收第二信号,第四端口和第五端口均用于接收第二信号。
开关单元包括第六端口、第七端口、第八端口、第九端口、第十端口、第十一端口、第十二端口、第十三端口、第十四端口和第十五端口;第一端口、第二端口、第三端口、第四端口和第五端口分别与第六端口、第七端口、第八端口、第九端口和第十端口连接;第十一端口、第十二端口、第十三端口、第十四端口和第十五端口分别与第一天线、第二天线、第三天线、第四天线和第五天线连接。
第一天线用于发射和接收第一信号,第二天线用于接收第一信号和第二信号;或 者第一天线用于接收第一信号和第二信号,第二天线用于发射和接收第一信号;第三天线、第四天线和第五天线中的任意一根天线用于发射第二信号,且第三天线、第四天线和第五天线均用于接收第二信号。
控制器与开关单元连接;控制器用于在射频收发器发射或接收第一信号时,控制第六端口和第七端口分别与第十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,在射频收发器发射或接收第二信号时,控制第七端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十四端口和第十五端口连接,或者控制第七端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十四端口和第十五端口连接;其中,第一信号为长期演进LTE信号,第二信号为新空口NR信号。
这样,射频电路可以用5根天线实现LTE通信、NR通信,以及LTE和NR的双连接(ENDC)通信,实现SA和NSA的双模功能。还可以通过改变开关单元中端口的连接,实现天线的切换,进而可以选择合适的天线发射LTE信号或NR信号,提高LTE信号或NR信号的质量,改善吞吐率。天线数量的减少,可以缩小天线占用的空间,降低终端设备的体积。
可选的,第三端口还用于发射探测参考信号SRS;控制器还用于,在第三端口发射SRS且第一天线用于发射和接收第一信号时,控制第八端口与第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS;
或者,在第三端口发射SRS且第二天线用于发射和接收第一信号时,控制第八端口与第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
这样,通过改变开关单元中端口的连接,实现LTE通信和SRS轮发并存。在SRS轮发时,不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。
可选的,开关单元包括第一开关和第二开关,第一开关和第二开关均为三刀三掷开关;第一开关包括第六端口、第七端口、第十一端口、第十二端口、第十三端口和第十六端口;第二开关包括第八端口、第九端口、第十端口、第十四端口、第十五端口和第十七端口;第十六端口与第十七端口连接;第一开关和第二开关均与控制器连接。
控制器用于,在射频收发器发射或接收第一信号时,控制第六端口和第七端口分别与第十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,在射频收发器发射或接收第二信号时,控制第七端口、第十六端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十七端口、第十四端口和第十五端口连接,或者控制第七端口、第十六端口、第八端口、第九端口和第十 端口分别与第十一端口、第十三端口、第十七端口、第十四端口和第十五端口连接。
这样,通过对等开关与5根天线可以实现LTE通信、NR通信,以及LTE和NR的双连接(ENDC)通信,实现SA和NSA的双模功能。
可选的,第三端口还用于发射SRS;控制器还用于,在射频收发器发射SRS且第一天线用于发射和接收第一信号时,控制第八端口和第十六端口分别与第十七端口和第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口和第十六端口分别与第十七端口和第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,在射频收发器发射SRS且第二天线用于发射和接收第一信号时,控制第八端口和第十六端口分别与第十七端口和第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口和第十六端口分别与第十七端口和第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,开关单元包括第三开关,第三开关为五刀五掷开关;第三开关包括第六端口、第七端口、第八端口、第九端口、第十端口、第十一端口、第十二端口、第十三端口、第十四端口和第十五端口;第三开关与控制器连接。
可选的,开关单元包括第四开关和第五开关,第四开关为双刀双掷开关,第四开关为四刀四掷开关;第四开关包括第六端口、第十一端口、第十二端口和第十八端口;第五开关包括第七端口、第八端口、第九端口、第十端口、第十三端口、第十四端口、第十五端口和第十九端口;第十八端口与第十九端口连接;第四开关和第五开关均与控制器连接。
控制器用于,在射频收发器发射或接收第一信号时,控制第六端口、第七端口和第十八端口分别与第十一端口、第十九端口和第十二端口连接,或者,控制第六端口、第七端口和第十八端口分别与第十二端口、第十九端口和第十一端口连接。
和/或,在射频收发器发射或接收第二信号时,控制第七端口、第八端口、第九端口、第十端口和第十八端口分别与第十九端口、第十三端口、第十四端口、第十五端口和第十二端口连接,或者控制第七端口、第八端口、第九端口、第十端口和第十八端口分别与第十九端口、第十三端口、第十四端口、第十五端口和第十一端口连接。
可选的,第三端口还用于发射SRS;控制器还用于,在射频收发器发射SRS且第一天线用于发射和接收第一信号时,控制第八端口和第十八端口分别与第十九端口和第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,在射频收发器发射SRS且第二天线用于发射和接收第一信号时,控制第八端口和第十八端口分别与第十九端口和第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,开关单元包括第六开关、第七开关和第八开关,第六开关和第七开关均为双刀四掷开关,第八开关为单刀双掷开关;第六开关包括第六端口、第七端口、第十一端口、第十二端口、第二十端口和第二十一端口;第七开关包括第八端口、第九端口、第十三端口、第十四端口、第二十二端口和第二十三端口;第八开关包括第十端口、第十五端口和第二十四端口;第二十端口断路,第二十二端口和第二十三端口分别与第二十端口和第二十四端口连接;第六开关、第七开关和第八开关均与控制器连接。
控制器用于,在射频收发器发射或接收第一信号时,控制第六端口和第七端口分别与第十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接;
和/或,在射频收发器发射或接收第二信号时,控制第七端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十四端口和第十五端口连接,或者控制第七端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十四端口和第十五端口连接。
这样,通过非对等开关和5根天线可以实现LTE通信、NR通信,以及LTE和NR的双连接(ENDC)通信,实现SA和NSA的双模功能。
可选的,第三端口还用于发射SRS;控制器还用于,在射频收发器发射SRS且第一天线用于发射和接收第一信号时,控制第八端口和第二十一端口分别与第二十二端口和第十二端口连接,使得第二天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第二十四端口分别与第二十三端口和第十五端口连接,使得第五天线用于发射SRS。
或者,在射频收发器发射SRS且第二天线用于发射和接收第一信号时,控制第八端口和第二十一端口分别与第二十二端口和第十一端口连接,使得第一天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第二十四端口分别与第二十三端口和第十五端口连接,使得第五天线用于发射SRS。
可选的,开关单元包括第九开关、第十开关、第十一开关和第十二开关,第九开关为双刀双掷开关,第十开关为双刀四掷开关,第十一开关和第十二开关均为单刀双掷开关;第九开关包括第六端口、第十一端口、第十二端口和第二十五端口;第十开关包括第七端口、第八端口、第十三端口、第二十六端口、第二十七端口和第二十八端口;第十一开关包括第九端口、第十四端口和第二十九端口;第十二开关包括第十端口、第十五端口和第三十端口;第二十五端口、第二十七端口和第二十八端口分别与第二十六端口、第二十九端口和第三十端口连接;第九开关、第十开关、第十一开关和第十二开关均与控制器连接。
控制器用于,在射频收发器发射或接收第一信号时,控制第六端口、第七端口和第二十五端口分别与第十一端口、第二十六端口和第十二端口连接,或者,控制第六端口、第七端口和第二十五端口分别与第十二端口、第二十六端口和第十一端口连接。
和/或,在射频收发器发射或接收第二信号时,控制第七端口、第八端口、第九端 口、第十端口和第二十五端口分别与第二十六端口、第十三端口、第十四端口、第十五端口和第十二端口连接,或者控制第七端口、第八端口、第九端口、第十端口和第二十五端口分别与第二十六端口、第十三端口、第十四端口、第十五端口和第十一端口连接。
可选的,第三端口还用于发射SRS;控制器还用于,在射频收发器发射SRS且第一天线用于发射和接收第一信号时,控制第八端口和第二十五端口分别与第二十六端口和第十二端口连接,使得第二天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口和第二十九端口与第二十七端口和第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第三十端口分别与第二十八端口和第十五端口连接,使得第五天线用于发射SRS。
或者,在射频收发器发射SRS且第二天线用于发射和接收第一信号时,控制第八端口和第二十五端口分别与第二十六端口和第十一端口连接,使得第一天线用于发射SRS;,或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口和第二十九端口与第二十七端口和第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第三十端口分别与第二十八端口和第十五端口连接,使得第五天线用于发射SRS。
第二方面,本申请实施例提供一种控制方法,应用于第一方面提供的任一种射频电路。
控制方法包括:控制器接收到用于指示发射或接收第一信号的第一信息;控制器根据第一信息,控制第六端口和第七端口分别与十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,控制器接收到用于指示发射或接收第二信号的第二信息;控制器根据第二信息,控制第七端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十四端口和第十五端口连接,或者控制第七端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十四端口和第十五端口连接。
可选的,控制器接收到用于指示发射SRS的第三信息;控制器根据第三信息,控制控制第八端口与第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口与第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,当开关单元包括第一开关和第二开关时;控制器根据第一信息,控制第六端口和第七端口分别与第十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,控制器根据第二信息,控制第七端口、第十六端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十七端口、第十四端口和第十五端口 连接,或者控制第七端口、第十六端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十七端口、第十四端口和第十五端口连接。
可选的,控制器根据第三信息,控制第八端口和第十六端口分别与第十七端口和第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口和第十六端口分别与第十七端口和第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口和第十六端口分别与第十七端口和第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口和第十六端口分别与第十七端口和第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,当开关单元包括第三开关时;控制器根据第一信息,控制第六端口和第七端口分别与十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,控制器根据第二信息,控制第七端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十四端口和第十五端口连接,或者控制第七端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十四端口和第十五端口连接。
可选的,控制器根据第三信息,控制控制第八端口与第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口与第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS,或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,当开关单元包括第四开关和第五开关时;控制器根据第一信息,控制第六端口、第七端口和第十八端口分别与第十一端口、第十九端口和第十二端口连接,或者,控制第六端口、第七端口和第十八端口分别与第十二端口、第十九端口和第十一端口连接。
和/或,控制器根据第二信息,控制第七端口、第八端口、第九端口、第十端口和第十八端口分别与第十九端口、第十三端口、第十四端口、第十五端口和第十二端口连接,或者控制第七端口、第八端口、第九端口、第十端口和第十八端口分别与第十九端口、第十三端口、第十四端口、第十五端口和第十一端口连接。
可选的,控制器根据第三信息,控制第八端口和第十八端口分别与第十九端口和第十二端口连接,使得第二天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口和第十八端口分别与第十九端口和第十一端口连接,使得第一天线用于发射SRS;或者控制第八端口与第十三端口连接,使得第三天线用于发射SRS;或者控制第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口与第十五端口连接,使得第五天线用于发射SRS。
可选的,当开关单元包括第六开关、第七开关和第八开关时;控制器根据第一信息,控制第六端口和第七端口分别与第十一端口和第十二端口连接,或者,控制第六端口和第七端口分别与第十二端口和第十一端口连接。
和/或,控制器根据第二信息,控制第七端口、第八端口、第九端口和第十端口分别与第十二端口、第十三端口、第十四端口和第十五端口连接,或者控制第七端口、第八端口、第九端口和第十端口分别与第十一端口、第十三端口、第十四端口和第十五端口连接。
可选的,控制器根据第三信息,控制第八端口和第二十一端口分别与第二十二端口和第十二端口连接,使得第二天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第二十四端口分别与第二十三端口和第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口和第二十一端口分别与第二十二端口和第十一端口连接,使得第一天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口与第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第二十四端口分别与第二十三端口和第十五端口连接,使得第五天线用于发射SRS。
可选的,当开关单元包括第九开关、第十开关、第十一开关和第十二开关时;控制器根据第一信息,控制第六端口、第七端口和第二十五端口分别与第十一端口、第二十六端口和第十二端口连接,或者,控制第六端口、第七端口和第二十五端口分别与第十二端口、第二十六端口和第十一端口连接。
和/或,控制器根据第二信息,控制第七端口、第八端口、第九端口、第十端口和第二十五端口分别与第二十六端口、第十三端口、第十四端口、第十五端口和第十二端口连接,或者控制第七端口、第八端口、第九端口、第十端口和第二十五端口分别与第二十六端口、第十三端口、第十四端口、第十五端口和第十一端口连接。
可选的,控制器根据第三信息,控制第八端口和第二十五端口分别与第二十六端口和第十二端口连接,使得第二天线用于发射SRS;或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口和第二十九端口与第二十七端口和第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第三十端口分别与第二十八端口和第十五端口连接,使得第五天线用于发射SRS。
或者,控制器根据第三信息,控制第八端口和第二十五端口分别与第二十六端口和第十一端口连接,使得第一天线用于发射SRS;,或者第八端口与第十三端口连接,使得第三天线用于发射SRS;或者第八端口和第二十九端口与第二十七端口和第十四端口连接,使得第四天线用于发射SRS;或者控制第八端口和第三十端口分别与第二十八端口和第十五端口连接,使得第五天线用于发射SRS。
上述第二方面以及上述第二方面的各可能的设计中所提供的控制方法,其有益效果可以参见上述第一方面和第一方面的各可能的射频电路所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种电子设备,电子设备包括但不限于终端设备,终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、智能电视、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
电子设备包括上述第一方面提供的任一种射频电路,射频电路用于发射和接收第一信号和/或第二信号;其中,所述第一信号为LTE信号,所述第二信号为NR信号。
上述第三方面以及上述第三方面的各可能的设计中所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的射频电路所带来的有益效果,在此不再赘述。
附图说明
图1为可能的实现中一种射频电路的结构示意图;
图2为本申请实施例提供的一种射频电路的结构示意图;
图3为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图4为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图5为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图6为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图7为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图8为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图9为本申请实施例提供的一种射频电路的结构示意图;
图10为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图11为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图12为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图13为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图14为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图15为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图16为本申请实施例提供的一种射频电路的结构示意图;
图17为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图18为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图19为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图20为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图21为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图22为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图23为本申请实施例提供的一种射频电路的结构示意图;
图24为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图25为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图26为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图27为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图28为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图29为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图30为本申请实施例提供的一种射频电路的结构示意图;
图31为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图32为本申请实施例提供的一种射频电路中LTE通信时的天线配置示意图;
图33为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图34为本申请实施例提供的一种射频电路中SRS轮发时的天线配置示意图;
图35为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图;
图36为本申请实施例提供的一种射频电路中ENDC通信时的天线配置示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一设备和第二设备仅仅是为了区分不同的设备,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的射频电路可以应用于具有通信功能的电子设备中。电子设备包括终端设备,终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、智能电视、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city) 中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
目前,NR通信需要4*4 MIMO,LTE需要2*2 MIMO。当终端设备支持NSA模态和SA模态时,终端设备需要支持LTE通信和NR通信,以及LTE和NR的双连接(EUTRA-NR dual connectivity,ENDC)通信。因此,终端设备中通常包括6根天线。
示例性的,图1为可能的实现中一种射频电路的结构示意图。如图1所示,射频电路中包括:射频收发器101、控制器102、开关一103、开关二104、天线一105、天线二106、天线三107、天线四108、天线五109和天线六110。
其中,射频收发器101用于输出LTE信号和/或NR信号,以及对一个或多个天线接收的LTE信号和/或NR信号进行信号处理。信号处理包括但不限于变频、解调和模数转换等。射频收发器101包括6个端口,其中,第一端口101A用于发射和接收LTE信号;第二端口101B用于接收LTE信号;第三端口101C用于发射和接收NR信号;第四端口101D用于接收NR信号;第五端口101E用于接收NR信号;第六端口101F用于接收NR信号。
控制器102用于控制开关一103和开关二104的设置,进而控制天线一105或天线二106发射LTE信号,以及控制天线三107、天线四108、天线五109或天线六110发射NR信号。
开关一103包括4个端口。开关一103的第一端口103A和第二端口103B分别与射频收发器101的第一端口101A和第二端口101B连接;开关一103的第三端口103C和第四端口103D分别与天线一105和天线二106连接。
开关二104包括8个端口。开关二104的第一端口104A、第二端口104B、第三端口104C和第四端口104D分别与射频收发器101的第三端口101C、第四端口101D、第五端口101E和第六端口101F连接;开关二104的第五端口104E、第六端口104F、第七端口104G和第八端口104H分别与天线三107、天线四108、天线五109和天线六110连接。
开关一103和开关二104均与控制器102连接。
天线一105和天线二106用于发射和/或接收LTE信号。天线三107、天线四108、天线五109和天线六110用于发射和/或接收NR信号。
可能的实现方式一中,天线一105和天线二106的天线支持的频段范围均为824兆赫兹(MHz)-2170MHz,天线三107、天线四108、天线五109和天线六110支持的频段范围均为2496MHz-2690MHz。
可能的实现方式二中,天线一105和天线二106的天线支持的频段范围均为1710MHz-2690MHz,天线三107、天线四108、天线五109和天线六110支持的频段范围均为3300MHz-5000MHz。
可能的实现方式三中,天线一105和天线二106的天线支持的频段范围均为1710MHz-2690MHz,天线三107、天线四108、天线五109和天线六110支持的频段范围均为730MHz-803MHz。
上述射频电路,可以实现LTE通信、NR通信和ENDC通信。
控制器102通过控制开关一103的端口之间的连接,实现LTE通信。示例性的, 控制器102可以控制开关一103的第一端口103A和第二端口103B分别与开关一103的第三端口103C和第四端口103D连接。这样,射频收发器101的第一端口101A输出的LTE信号,经开关一103在天线一105发射。天线一105接收的LTE信号经开关一103从射频收发器101的第一端口101A进入射频收发器101中。天线二106接收的LTE信号经开关一103从射频收发器101的第二端口101B进入射频收发器101中。
控制器102通过控制开关二104的端口之间的连接,实现NR通信。示例性的,控制器102可以控制开关二104的第一端口104A、第二端口104B、第三端口104C和第四端口104D分别与开关二104的第五端口104E、第六端口104F、第七端口104G和第八端口104H连接。这样,射频收发器101的第三端口101C输出的NR信号,经开关二104在天线三107发射。天线三107接收的LTE信号经开关二104从射频收发器101的第三端口101C进入射频收发器101中。天线四108接收的LTE信号经开关二104从射频收发器101的第四端口101D进入射频收发器101中。天线五109接收的LTE信号经开关二104从射频收发器101的第五端口101E进入射频收发器101中。天线六110接收的LTE信号经开关二104从射频收发器101的第六端口101F进入射频收发器101中。
LTE通信和NR通信使用的开关和天线不同,当终端设备处于ENDC通信时,LTE信号和NR信号互不干扰。
但是,上述射频电路中包括6根天线,天线数量多,占用的空间大。
有鉴于此,本申请实施例提出一种射频电路,通过改变开关的端口连接实现天线共用,在一根天线上同时接收LTE信号和NR信号,进而减少天线数量,缩小天线占用的空间,降低终端设备的体积。
为了便于理解,示例的给出部分与本申请实施例相关概念的说明以供参考。
1、LTE信号:是指根据LTE系列通信协议而发送的信号。LTE信号包括但不限于:通过LTE物理下行链路共享信道(PDSCH)或LTE物理上行链路共享信道(PU-SCH)发送的LTE数据信号、通过LTE物理下行控制信道(PDCCH)或LTE增强PDCCH(enhanced PDCCH,ePDCCH)或LTE物理上行控制信道(PUCCH)发送的LTE控制信号、以及LTE参考信号(例如,信道状态信息参考信号(CSI-RS)、公共参考信号(CRS)、解调参考符号(demodulationreference symbols,DMRS)、主同步信号和辅同步信号等),还有通过LTE物理广播信道(PBCH)、LTE无线资源控制(RRC)高层协议和/或LTE媒体接入控制(MAC)控制元素(CE)传送的LTE信号。
2、NR信号:是指根据NR系列通信协议发送的信号。NR信号包括但不限于:通过NR PDSCH或NR PUSCH发送的NR数据信号、通过NR PDCCH或NR PUCCHNR发送的NR控制信号、以及NR参考信号,还有通过NR PBCH、NR RRC高层协议和/或NR MAC控制元素传送的其他NR信号。
需要说明的是,NR控制信号指根据NR系列通信协议发送的任何控制信号。NR控制信号包括但不限于:RRC信号、MAC控制元素(CE)和下行控制信息(DCI);通过PBCH和剩余最小系统信息(RMSI)传送的控制信号;还有任何其他小区特定的、组特定的和/或UE特定的控制信号。RMSI可以包括不在PBCH中发送的特定最小系 统信息。可以通过PDSCH来发送RMSI。可以由通过PDCCH中的公共搜索空间发送的DCI消息来识别发送RMSI的PDSCH资源。DCI消息可以由具有由公共RNTI例如系统信息RNTI(system information RNTI,SI-RNTI)进行CRC加扰。
3、天线:一种变换器。天线用于将射频信号转换为相应波长的电磁波并辐射至空中,和/或,用于接收电磁波并将其转换为相应的射频信号。可以理解的是,同一天线既可以发射射频信号,也可以接收射频信号。射频信号可以包括LTE信号和NR信号等。
4、射频收发器:用于输出射频信号以及对天线接收的射频信号进行信号处理。信号处理包括但不限于变频、解调和模数转换等。射频收发器可以包括:频分双工器(frequency-division duplex,FDD)、时分双工器(time-division duplex,TDD)、开关和/或合路器等。FDD和TDD均用于分离通路中发射信号和接收信号,降低发射信号和接收信号之间的干扰。开关和合路器均可以将一路信号分为两路信号,方便后续将不同的信号分开及处理。本申请实施例对射频信号的处理过程不做限定和说明。
5、控制器:用于控制射频信号发射通路和/或射频信号接收通路的相关设置。相关设置包括:射频电路中射频收发器的端口选择和射频电路中的开关单元的设置等。本申请实施例中,控制器用于控制开关单元中多个端口的连接。
6、SRS:用于基站等网络设备确定终端设备的位置和信道质量等。示例性的,终端设备通过在4根天线上轮流发射SRS,向基站等网络设备汇报4根天线的状态。网络设备根据来自终端设备的SRS进行信道估计。
下面,通过具体实施例,对本申请所示的技术方案进行详细说明。需要说明的是,对于相同或相似的内容,在不同的实施例中不再重复说明。
本申请实施例可以通过对等开关和/或不对等开关实现天线共用。下面结合图2-图22对通过对等开关实现天线共用的射频电路进行说明。
图2为本申请实施例提供的一种射频电路的结构示意图。如图2所示,射频电路中包括:射频收发器201、控制器202、第一开关203、第二开关204、第一天线205、第二天线206、第三天线207、第四天线208和第五天线209。
其中,射频收发器201用于输出LTE信号和/或NR信号,以及对一个或多个天线接收的LTE信号和/或NR信号进行信号处理。信号处理包括但不限于变频、解调和模数转换等。射频收发器201包括5个端口,其中,第一端口201A用于发射和接收LTE信号;第二端口201B用于接收LTE信号和NR信号;第三端口201C用于发射和接收NR信号;第四端口201D用于接收NR信号;第五端口201E用于接收NR信号。第三端口201C还用于发射探测参考信号SRS。
射频收发器201可以包括:FDD、TDD、开关和/或合路器等。
需要说明的是,FDD用于分离射频收发器201的第一端口201A发射的LTE信号和接收的LTE信号,和/或第三端口201C发射的NR信号和接收的NR信号。TDD与FDD的作用相同,可能实现的方式中,FDD可以用TDD代替。
开关用于将射频收发器201的第二端口201B一路接收的LTE信号和接收的NR信号分为两路,方便后续将接收的LTE信号和接收的NR信号分开及处理。开关和合路器的作用相同,可能实现的方式中,开关可以用合路器代替。
控制器202用于控制第一开关203和第二开关204的设置,使得第一天线205、第二天线206、第三天线207、第四天线208和/或第五天线209发射和/或接收射频信号,进而实现LTE的2*2MIMO、NR的4*4MIMO,以及SRS轮发。射频信号可以包括LTE信号、NR信号和SRS。
在LTE的2*2MIMO和NR的4*4MIMO中,控制器202用于控制第一开关203和第二开关204的设置,使得第一天线205用于发射和接收LTE信号,第二天线206用于接收LTE信号和/或NR信号,第三天线207、第四天线208和第五天线209任意一根天线用于发射NR信号,且第三天线207、第四天线208和第五天线209均用于接收NR信号;或者,使得第一天线205用于接收LTE信号和/或NR信号,第二天线206用于发射和接收LTE信号,第三天线207、第四天线208和第五天线209中任意一根天线用于发射NR信号,且第三天线207、第四天线208和第五天线209均用于接收NR信号。
在SRS轮发过程中,控制器202用于控制第一开关203和第二开关204的设置,进而第一天线205用于发射和接收LTE信号时,控制第二天线206、第三天线207、第四天线208或第五天线209发射SRS;或者,在第二天线206用于发射和接收LTE信号时,控制第一天线205、第三天线206、第四天线207或第五天线208发射SRS。
需要说明的是,控制器202可以为独立的器件,也可以与射频收发器201组成一个器件。
可以理解的是,第一开关203和第二开关204可以合称为开关单元。第一开关203和第二开关204均与控制器202连接。
第一开关203包括6个端口。第一开关203的第一端口203A和第二端口203B分别与射频收发器201的第一端口201A和第二端口201B连接;第一开关203的第三端口203C与第二开关204的第四端口204D连接;第一开关203的第四端口203D、第五端口203E和第六端口203F分别与第一天线205、第二天线206和第三天线207连接。第一开关203为三刀三掷开关(3P3T)或其他开关。
第二开关204包括6个端口。第二开关204的第一端口204A、第二端口204B和第三端口204C分别与射频收发器201的第三端口201C、第四端口201D和第五端口201E连接;第二开关204的第四端口204D与第一开关203的第三端口203C连接;第二开关204的第五端口204E和第六端口204F分别与第四天线208和第五天线209连接。第二开关204为三刀三掷开关(3P3T)或其他开关。
第一天线205可以用于发射和/或接收LTE信号,也可以用于发射和/或接收NR信号。第二天线206可以用于发射和/或接收LTE信号,也可以用于发射和/或接收NR信号。第三天线207、第四天线208和第五天线209均用于发射和/或接收NR信号。
本申请实施例中,第一天线205和第二天线206均支持LTE信号和NR信号。第三天线207、第四天线208和第五天线209均支持NR信号。
可能的实现方式一中,第一天线205和第二天线206支持的频段范围为824MHz-2170MHz和2496MHz-2690MHz。第三天线207、第四天线208和第五天线209支持的频段范围为2496MHz-2690MHz。
可能的实现方式二中,第一天线205和第二天线206支持的频段范围为 1710MHz-2690MHz和3300MHz-5000MHz。第三天线207、第四天线208和第五天线209支持的频段范围为3300MHz-5000MHz。
可能的实现方式三中,第一天线205和第二天线206支持的频段范围为1710MHz-2690MHz和730MHz-803MHz。第三天线207、第四天线208和第五天线209支持的频段范围为730MHz-803MHz。
需要说明的是,天线的种类有很多,不同的天线对应的射频信号可能相同,也可能不同。本申请实施例对此不作限定。这样,可以在合适的天线上发射相应的射频信号,提高通信质量。
下面根据图3-图8对图2所示的射频电路中第一开关203和第二开关204可能的连接情况进行说明。
当终端设备进行LTE通信时,射频电路中第一开关203和第二开关204的连接可以参照图3和图4。
示例性的,图3为本申请实施例提供的一种LTE通信时的天线配置示意图。如图3所示,第一开关203的第一端口203A和第二端口203B分别与第一开关203的第四端口203D和第五端口203E连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第一天线205上发射。第一天线205接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。第二天线206接收的LTE信号经第一开关203从射频收发器201的第二端口201B进入射频收发器201。
这样,终端设备可以实现LTE通信。
示例性的,图4为本申请实施例提供的一种LTE通信时的天线配置示意图。如图4所示,第一开关203的第一端口203A和第二端口203B分别与第一开关203的第五端口203E和第四端口203D连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第二天线206上发射。第二天线206接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。第一天线205接收的LTE信号经第一开关203从射频收发器201的第二端口201B进入射频收发器201。
这样,终端设备通过改变第一开关的连接方式,实现第一天线和第二天线的切换,进而可以选择合适的天线发射LTE信号,提高LTE信号的质量。终端设备的适用性增加。
当终端设备进行SRS轮发时,射频电路中第一开关203和第二开关204的连接可以参照图5和图6。
示例性的,图5为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图5所示,当第一开关203的第一端口203A与第一开关203的第四端口203D连接时,控制器202控制第二开关204的第一端口204A和第一开关203的第三端口203C分别与第二开关204的第四端口204D和第一开关203的第五端口203E连接;或者控制第二开关204的第一端口204A和第一开关203的第三端口203C分别与第二开关204的第四端口204D和第一开关203的第六端口203F连接;或者控制第二开关204的第一端口204A与第二开关204的第五端口204E连接;或者控制第二开关204的第一端口 204A与第二开关204的第六端口204F连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第一天线205上发射,第一天线205接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。
射频收发器201的第三端口201C输出的SRS经第二开关204和第一开关203在第二天线206或第三天线207上发射;射频收发器201的第三端口201C输出的SRS经第二开关204在第四天线208或第五天线209上发射。
可以理解的是,当第一天线205用于发射和接收LTE信号时,射频收发器201的第三端口201C输出的SRS可以轮流在第二天线206、第三天线207、第四天线208或第五天线209上发射。本申请实施例对SRS在第二天线206、第三天线207、第四天线208或第五天线209上发射的顺序不做限定。
示例性的,图6为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图6所示,当第一开关203的第一端口203A与第一开关203的第五端口203E连接时,控制器202控制第二开关204的第一端口204A和第一开关203的第三端口203C分别与第二开关204的第四端口204D和第一开关203的第四端口203D连接;或者控制第二开关204的第一端口204A和第一开关203的第三端口203C分别与第二开关204的第四端口204D和第一开关203的第六端口203F连接;或者控制第二开关204的第一端口204A与第二开关204的第五端口204E连接;或者控制第二开关204的第一端口204A与第二开关204的第六端口204F连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第二天线206上发射,第二天线206接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。
射频收发器201的第三端口201C输出的SRS经第二开关204和第一开关203在第一天线205或第三天线207上发射;射频收发器201的第三端口201C输出的SRS经第二开关204在第四天线208或第五天线209上发射。
可以理解的是,当第二天线206用于发射和接收LTE信号时,射频收发器201的第三端口201C输出的SRS可以轮流在第一天线205、第三天线207、第四天线208或第五天线209上发射。本申请实施例对SRS在第一天线205、第三天线207、第四天线208或第五天线209上发射的顺序不做限定。
可以理解的是,图5和图6所示的连接方式,在SRS轮发时,均不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。这样,终端设备通过改变第一开关和第二开关的连接方式,实现LTE通信和SRS轮发并存。
当终端设备进行ENDC通信时,射频电路中第一开关203和第二开关204的连接可以参照图7和图8。
示例性的,图7为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图7所示,第一开关203的第一端口203A、第二端口203B和第三端口203C分别与第一开关203的第四端口203D、第五端口203E和第六端口203F连接;第二开关204的第一端口204A、第二端口204B和第三端口204C分别与第二开关204的第四端口 204D、第五端口204E和第六端口204F连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第一天线205上发射。第一天线205接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。第二天线206接收的LTE信号和/或NR信号经第一开关203从射频收发器201的第二端口201B进入射频收发器201。
射频收发器201的第三端口201C输出的NR信号经第二开关204和第一开关203在第三天线207上发射。第三天线207接收的NR信号经第一开关203和第二开关204从射频收发器201的第三端口201C进入射频收发器201。第四天线208接收的NR信号和第五天线209接收的NR信号经第二开关204分别从射频收发器201的第四端口201D和第五端口201E进入射频收发器201。
这样,终端设备可以实现LTE和NR的双连接通信。
示例性的,图8为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图8所示,第一开关203的第一端口203A、第二端口203B和第三端口203C分别与第一开关203的第五端口203E、第四端口203D和第六端口204F连接;第二开关204的第一端口204A、第二端口204B和第三端口204C分别与第二开关204的第四端口204D、第五端口204E和第六端口204F连接。
本申请实施例中,射频收发器201的第一端口201A输出的LTE信号经第一开关203在第二天线206上发射。第二天线206接收的LTE信号经第一开关203从射频收发器201的第一端口201A进入射频收发器201。第一天线205接收的LTE信号和/或NR信号经第一开关203从射频收发器201的第二端口201B进入射频收发器201。
射频收发器201的第三端口201C输出的NR信号经第二开关204和第一开关203在第三天线207上发射。第三天线207接收的NR信号经第一开关203和第二开关204从射频收发器201的第三端口201C进入射频收发器201。第四天线208接收的NR信号经第二开关204从射频收发器201的第四端口201D进入射频收发器201。第五天线209接收的NR信号经第二开关204从射频收发器201的第五端口201E进入射频收发器201。
可能的实现方式中,图7和图8所对应的连接方式中,第二开关204的第一端口204A、第二端口204B和第三端口204C连接的端口可以互相更换连接。这样,NR信号可以在第三天线207或第四天线208或第五天线209上发射。示例性的,第二开关204的第一端口204A和第二端口204B连接的端口更换,第二开关204的第一端口204A和第二端口204B分别与第二开关204的第五端口204E和第四端口204C连接;NR信号在第四天线208上发射。
这样,终端设备通过改变第二开关的连接方式,实现第三天线、第四天线和第五天线的切换,进而可以选择合适的天线发射NR信号。
在NR通信中的天线配置可以参照上述ENDC通信中发射和/或接收NR信号时的天线配置,NR通信中的第一开关和第二开关的连接方式与上述ENDC通信中发射和/或接收NR信号时的连接方式类似,此处不再赘述。
综上,图2所示的射频电路中,终端设备通过5根天线,以及改变第一开关的连接方式和/或第二开关的连接方式,可以实现LTE通信、SRS轮发和ENDC通信,实 现SA和NSA的双模功能。天线数量减少,缩小天线占用的空间,降低终端设备的体积。终端设备还可以选择合适的天线发射LTE信号和/或NR信号,改善吞吐率。并且在SRS轮发或NR通信时,不会影响LTE信号的发射。
图9为本申请实施例提供的一种射频电路的结构示意图。如图9所示,射频电路中包括:射频收发器901、控制器902、第三开关903、第一天线904、第二天线905、第三天线906、第四天线907和第五天线908。
射频收发器901、控制器902、第一天线904、第二天线905、第三天线906、第四天线907和第五天线908的结构和作用可以参照上述相关概念和图2所示的射频电路的相应结构的说明,此处不再赘述。
控制器902用于控制第三开关903的设置,使得第一天线904、第二天线905、第三天线906、第四天线907和/或第五天线908发射和/或接收射频信号,进而实现LTE的2*2MIMO、NR的4*4MIMO,以及SRS轮发。
在LTE的2*2MIMO和NR的4*4MIMO中,控制器902用于控制第三开关903的设置,使得第一天线904用于发射和接收LTE信号,第二天线905用于接收LTE信号和/或NR信号,第三天线906、第四天线907和第五天线908任意一根天线用于发射NR信号,且第三天线906、第四天线907和第五天线908均用于接收NR信号;或者,使得第一天线904用于接收LTE信号和/或NR信号,第二天线905用于发射和接收LTE信号,第三天线906、第四天线907和第五天线908中任意一根天线用于发射NR信号,且第三天线906、第四天线907和第五天线908均用于接收NR信号。
在SRS轮发过程中,控制器902用于控制第三开关903的设置,进而在第一天线904用于发射和接收LTE信号时,第二天线905、第三天线906、第四天线907或第五天线908发射SRS;或者,在第二天线905用于发射和接收LTE信号时,控制第一天线904、第三天线906、第四天线907或第五天线908发射SRS。
控制器902与第三开关903连接。可以理解的是,第三开关903也可以称为开关单元。
第三开关903包括10个端口。第三开关903的第一端口903A、第二端口903B、第三端口903C、第四端口903D和第五端口903E分别与射频收发器901的第一端口901A、第二端口901B、第三端口901C、第四端口901D和第五端口901E连接;第三开关903的第六端口903F、第七端口903G、第八端口903H、第九端口903I、第十端口903J分别与第一天线904、第二天线905、第三天线906、第四天线907和第五天线908连接。第三开关903还与控制器902连接。第三开关903可以为五刀五掷开关(5P5T)或其他开关。
下面根据图10-图15对图9所示的射频电路中第三开关903可能的连接情况进行说明。
当终端设备进行LTE通信时,射频电路中第三开关903的连接可以参照图10和图11。
示例性的,图10为本申请实施例提供的一种LTE通信时的天线配置示意图。如图10所示,第三开关903的第一端口903A和第二端口903B分别与第三开关903的 第六端口903F和第七端口903G连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第一天线904上发射。第一天线904接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。第二天线905接收的LTE信号经第三开关903从射频收发器901的第二端口901B进入射频收发器901。
这样,终端设备可以实现LTE通信。
示例性的,图11为本申请实施例提供的一种LTE通信时的天线配置示意图。如图11所示,第三开关903的第一端口903A和第二端口903B分别与第三开关903的第七端口903G和第六端口903F连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第二天线905上发射。第二天线905接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。第一天线904接收的LTE信号经第三开关903从射频收发器901的第二端口901B进入射频收发器901。
这样,终端设备通过改变第三开关的连接方式,实现第一天线和第二天线的切换,进而可以选择合适的天线发射LTE信号,提高LTE信号的质量。终端设备的适用性增加。
当终端设备进行SRS轮发时,射频电路中第三开关903的连接可以参照图12和图13。
示例性的,图12为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图12所示,当第三开关903的第一端口903A与第三开关903的第六端口903F连接时,控制器902控制第三开关903的第三端口903C与第三开关903的第七端口903G连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第一天线904上发射,第一天线904接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。
射频收发器901的第三端口901C输出的SRS可以经第三开关903在第二天线905、第三天线906、第四天线907或第五天线907上发射。
可以理解的是,当第一天线904用于发射和接收LTE信号时,射频收发器901的第三端口901C输出的SRS可以轮流在第二天线905、第三天线906、第四天线907或第五天线907上发射。本申请实施例对SRS在第二天线905、第三天线906、第四天线907或第五天线907上发射的顺序不做限定。
示例性的,图13为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图13所示,当第三开关903的第一端口903A与第三开关903的第七端口903G连接时,控制器902控制第三开关903的第三端口903C与第三开关903的第六端口903F连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接;或者控制第三开关903的第三端口903C与第三开关903的第七端口903G连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第二天线905上发射,第二天线905接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。
射频收发器901的第三端口901C输出的SRS可以经第三开关903在第一天线904、第三天线906、第四天线907或第五天线907上发射。
可以理解的是,当第二天线905用于发射和接收LTE信号时,射频收发器901的第三端口901C输出的SRS可以轮流在第一天线904、第三天线906、第四天线907或第五天线907上发射。本申请实施例对SRS在第一天线904、第三天线906、第四天线907或第五天线907上发射的顺序不做限定。
可以理解的是,图12和图13所示的连接方式,在SRS轮发时,不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。这样,终端设备通过改变第三开关的连接方式,实现LTE通信和SRS轮发并存。
当终端设备进行ENDC通信时,射频电路中第三开关903的连接可以参照图14和图15。
示例性的,图14为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图14所示,第三开关903的第一端口903A、第二端口903B、第三端口903C、第四端口903D和第五端口903E分别与第三开关903的第六端口903F、第七端口903G、第八端口903H、第九端口903I、第十端口903J连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第一天线904上发射。第一天线904接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。第二天线905接收的LTE信号和/或NR信号经第三开关903从射频收发器901的第二端口901B进入射频收发器901。
射频收发器901的第三端口901C输出的NR信号经第三开关903在第三天线906上发射。第三天线906接收的NR信号、第四天线907接收的NR信号和第五天线908接收的NR信号经第三开关903分别从射频收发器901的第三端口901C、第四端口901D和第五端口901E进入射频收发器901。
这样,终端设备可以实现LTE和NR的双连接通信。
示例性的,图15为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图15所示,第三开关903的第一端口903A、第二端口903B、第三端口903C、第四端口903D和第五端口903E分别与第三开关903的第七端口903G、第六端口903F、第八端口903H、第九端口903I、第十端口903J连接。
本申请实施例中,射频收发器901的第一端口901A输出的LTE信号经第三开关903在第二天线905上发射。第二天线905接收的LTE信号经第三开关903从射频收发器901的第一端口901A进入射频收发器901。第一天线904接收的LTE信号和/或NR信号经第三开关903从射频收发器901的第二端口901B进入射频收发器901。
射频收发器901的第三端口901C输出的NR信号经第三开关903在第三天线906上发射。第三天线906接收的NR信号、第四天线907接收的NR信号和第五天线908接收的NR信号经第三开关903分别从射频收发器901的第三端口901C、第四端口 901D和第五端口901E进入射频收发器901。
可能的实现方式中,图14和图15所对应的连接方式中,第三开关903的第三端口903C、第四端口903D和第五端口903E连接的第三开关903的端口可以互相更换。这样,NR信号可以在第三天线906、第四天线907或第五天线907上发射。
这样,终端设备通过改变第三开关的连接方式,实现第三天线、第四天线和第五天线的切换,进而可以选择合适的天线发射NR信号。
在NR通信中的天线配置可以参照上述ENDC通信中发射和/或接收NR信号时的天线配置,NR通信中的第三开关的连接方式与上述ENDC通信中发射和/或接收NR信号时的连接方式类似,此处不再赘述。
综上,图9所示的射频电路中,终端设备通过5根天线,以及改变第三开关的连接方式,实现LTE通信、SRS轮发和ENDC通信实现SA和NSA的双模功能。天线数量减少,缩小天线占用的空间,降低终端设备的体积。终端设备还可以选择合适的天线发射LTE信号和/或NR信号,改善吞吐率。并且在SRS轮发或NR通信时,不会影响LTE信号的发射。
图16为本申请实施例提供的一种射频电路的结构示意图。如图16所示,射频电路中包括:射频收发器1601、控制器1602、第四开关1603、第五开关1604、第一天线1605、第二天线1606、第三天线1607、第四天线1608和第五天线1609。
射频收发器1601、控制器1602、第一天线1605、第二天线1606、第三天线1607、第四天线1608和第五天线1609的结构和作用可以参照上述相关概念和图2所示的射频电路的相应结构的说明,此处不再赘述。
控制器1602用于控制第四开关1603和第五开关1604的设置,使得第一天线1605、第二天线1606、第三天线1607、第四天线1608和/或第五天线1609发射和/或接收射频信号,进而实现LTE的2*2MIMO、NR的4*4MIMO,以及SRS轮发。
在LTE的2*2MIMO和NR的4*4MIMO中,控制器1602用于控制第四开关1603和第五开关1604的设置,使得第一天线1605用于发射和接收LTE信号,第二天线1606用于接收LTE信号和/或NR信号,第三天线1607、第四天线1608和第五天线1609中任意一根天线用于发射NR信号,且第三天线1607、第四天线1608和第五天线1609均用于接收NR信号;或者,使得第一天线1605用于接收LTE信号和/或NR信号,第二天线1606用于发射和接收LTE信号,第三天线1607、第四天线1608和第五天线1609中任意一根天线用于发射NR信号,且第三天线1607、第四天线1608和第五天线1609均用于接收NR信号。
在SRS轮发过程中,控制器1602用于控制第四开关1603和第五开关1604的设置,进而在第一天线1605用于发射和接收LTE信号时,第二天线1606、第三天线1607、第四天线1608或第五天线1609发射SRS;或者,在第二天线1606用于发射和接收LTE信号时,控制第一天线1605、第三天线1607、第四天线1608或第五天线1609发射SRS。
可以理解的是,第四开关1603和第五开关1604可以合称为开关单元。第四开关1603和第五开关1604均与控制器1602连接。
第四开关1603包括4个端口。第四开关1603的第一端口1603A与射频收发器1601 的第一端口1601A连接;第四开关1603的第二端口1603B与第五开关1604的第五端口1604E连接;第四开关1603的第三端口1603C和第四端口1603D分别与第一天线1605和第二天线1606连接。第四开关1603为双刀双掷开关(2P2T)或其他开关。
第五开关1604包括8个端口。第五开关1604的第一端口1604A、第二端口1604B、第三端口1604C和第四端口1604D分别与射频收发器1601的第二端口1601B、第三端口1601C、第四端口1601D和第五端口1601E连接;第五开关1604的第五端口1604E与第四开关1603的第二端口1603B连接;第五开关1604的第六端口1604F、第七端口1604G和第八端口1604H分别与第三天线1607、第四天线1608和第五天线1609连接。第五开关1604为四刀四掷开关(4P4T)或其他开关。
下面根据图17-图22对图16所示的射频电路中第四开关1603和第五开关1604可能的连接情况进行说明。
当终端设备进行LTE通信时,射频电路中第四开关1603和第五开关1604的连接可以参照图17和图18。
示例性的,图17为本申请实施例提供的一种LTE通信时的天线配置示意图。如图17所示,第四开关1603的第一端口1603A和第二端口1603B分别与第四开关1603的第三端口1603C和第四端口1603D连接;第五开关1604的第一端口1604A与第五开关1604的第五端口1604E连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第一天线1605上发射。第一天线1605接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。第二天线1606接收的LTE信号经第四开关1603和第五开关1604从射频收发器1601的第二端口1601B进入射频收发器1601。
这样,终端设备可以实现LTE通信。
示例性的,图18为本申请实施例提供的一种LTE通信时的天线配置示意图。如图18所示,第四开关1603的第一端口1603A和第二端口1603B分别与第四开关1603的第四端口1603D和第三端口1603C连接;第五开关1604的第一端口1604A与第五开关1604的第五端口1604E连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第二天线1606上发射。第二天线1606接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。第一天线1605接收的LTE信号经第四开关1603和第五开关1604从射频收发器1601的第二端口1601B进入射频收发器1601。
这样,终端设备通过改变第四开关的连接方式,实现第一天线和第二天线的切换,进而可以选择合适的天线发射LTE信号,提高LTE信号的质量。终端设备的适用性增加。
当终端设备进行SRS轮发时,射频电路中第四开关1603和第五开关1604的连接可以参照图19和图20。
示例性的,图19为本申请实施例提供的一种SRS轮发时的天线配置示意图。如 图19所示,当第四开关1603的第一端口1603A与第四开关1603的第三端口1603C连接时,控制器1602控制第五开关1604的第二端口1604B和第四开关1603的第二端口1603B分别与第五开关1604的第五端口1604E和第四开关1603的第四端口1603D连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第六端口1604F连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第七端口1604G连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第八端口1604H连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第一天线1605上发射,第一天线1605接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。
射频收发器1601的第三端口1601C输出的SRS经第五开关1604和第四开关1603在第二天线1606上发射;射频收发器1601的第三端口1601C输出的SRS经第五开关1604在第三天线1607、第四天线1608或第五天线1609上发射。
可以理解的是,当第一天线1605用于发射和接收LTE信号时,射频收发器1601的第三端口1601C输出的SRS可以轮流在第二天线1606、第三天线1607、第四天线1608或第五天线1609上发射。本申请实施例对SRS在第二天线1606、第三天线1607、第四天线1608或第五天线1609上发射的顺序不做限定。
示例性的,图20为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图20所示,当第四开关1603的第一端口1603A与第四开关1603的第四端口1603D连接时,控制器1602控制第五开关1604的第二端口1604B和第四开关1603的第二端口1603B分别与第五开关1604的第五端口1604E和第四开关1603的第三端口1603C连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第六端口1604F连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第七端口1604G连接;或者控制第五开关1604的第二端口1604B与第五开关1604的第八端口1604H连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第二天线1606上发射,第二天线1606接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。
射频收发器1601的第三端口1601C输出的SRS经第五开关1604和第四开关1603在第一天线1605上发射;射频收发器1601的第三端口1601C输出的SRS经第五开关1604在第三天线1607、第四天线1608或第五天线1609上发射。
可以理解的是,当第二天线1606用于发射和接收LTE信号时,射频收发器1601的第三端口1601C输出的SRS可以轮流在第一天线1605、第三天线1607、第四天线1608或第五天线1609上发射。本申请实施例对SRS在第一天线1605、第三天线1607、第四天线1608或第五天线1609上发射的顺序不做限定。
可以理解的是,图19和图20所示的连接方式,在SRS轮发时,不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。这样,终端设备通过改变第四开关和第五开关的连接方式,实现LTE通信和SRS轮发并存。
当终端设备进行ENDC通信时,射频电路中第四开关1603和第五开关1604的连接可以参照图21和图22。
示例性的,图21为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图21所示,第四开关1603的第一端口1603A和第二端口1603B分别与第四开关1603的第三端口1603C和第四端口1603D连接;第五开关1604的第一端口1604A、第二端口1604B、第三端口1604C和第四端口1604D分别与第五开关1604的第五端口1604E、第六端口1604F、第七端口1604G和第八端口1604H连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第一天线1605上发射。第一天线1605接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。第二天线1606接收的LTE信号和/或NR信号经第四开关1603和第五开关1604从射频收发器1601的第二端口1601B进入射频收发器1601。
射频收发器1601的第三端口1601C输出的NR信号经第五开关1604在第三天线1607上发射。第三天线1607接收的NR信号、第四天线1608接收的NR信号和第五天线1609接收的NR信号经第五开关1604分别从射频收发器1601的第三端口1601C、第四端口1601D和第五端口1601E进入射频收发器1601。
这样,终端设备可以实现LTE和NR的双连接通信。
示例性的,图22为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图22所示,第四开关1603的第一端口1603A和第二端口1603B分别与第四开关1603的第四端口1603D和第三端口1603C连接;第五开关1604的第一端口1604A、第二端口1604B、第三端口1604C和第四端口1604D分别与第五开关1604的第五端口1604E、第六端口1604F、第七端口1604G和第八端口1604H连接。
本申请实施例中,射频收发器1601的第一端口1601A输出的LTE信号经第四开关1603在第二天线1606上发射。第二天线1606接收的LTE信号经第四开关1603从射频收发器1601的第一端口1601A进入射频收发器1601。第一天线1605接收的LTE信号和/或NR信号经第四开关1603和第五开关1604从射频收发器1601的第二端口1601B进入射频收发器1601。
射频收发器1601的第三端口1601C输出的NR信号经第五开关1604在第三天线1607上发射。第三天线1607接收的NR信号、第四天线1608接收的NR信号和第五天线1609接收的NR信号经第五开关1603分别从射频收发器1601的第三端口1601C、第四端口1601D和第五端口1601E进入射频收发器1601。
可能的实现方式中,图21和图22所对应的连接方式中,第五开关1604的第二端口1604B、第三端口1604C和第四端口1604D连接的端口可以互相更换连接。这样,NR信号可以在第三天线1607或第四天线1608或第五天线1609上发射。
这样,终端设备通过改变第五开关的连接方式,实现第三天线、第四天线和第五天线的切换,进而可以选择合适的天线发射NR信号。
在NR通信中的天线配置可以参照上述ENDC通信中发射和/或接收NR信号时的天线配置,NR通信中的第四开关和第五开关的连接方式与上述ENDC通信中发射和/或接收NR信号时的连接方式类似,此处不再赘述。
综上,图16所示的射频电路中,终端设备通过5根天线,以及改变第四开关的连接方式和/或第五开关的连接方式,实现LTE通信、SRS轮发和ENDC通信,实现SA和NSA的双模功能。天线数量减少,缩小天线占用的空间,降低终端设备的体积。终端设备还可以选择合适的天线发射LTE信号和/或NR信号,改善吞吐率。并且在SRS轮发或NR通信时,不会影响LTE信号的发射。
下面结合图23-图29对通过不对等开关实现天线共用的射频电路进行说明。
图23为本申请实施例提供的一种射频电路的结构示意图。如图23所示,射频电路中包括:射频收发器2301、控制器2302、第六开关2303、第七开关2304、第八开关2305、第一天线2306、第二天线2307、第三天线2308、第四天线2309和第五天线2310。
射频收发器2301、控制器2302、第一天线2306、第二天线2307、第三天线2308、第四天线2309和第五天线2310的结构和作用可以参照上述相关概念和图2所示的射频电路的相应结构的说明,此处不再赘述。
控制器2302用于控制第六开关2303、第七开关2304和第八开关2305的设置,使得第一天线2306、第二天线2307、第三天线2308、第四天线2309和/或第五天线2310发射和/或接收射频信号,进而实现LTE的2*2MIMO、NR的4*4MIMO,以及SRS轮发。
在LTE的2*2MIMO和NR的4*4MIMO中,控制器2302用于控制第六开关2303、第七开关2304和第八开关2305的设置,使得第一天线2306用于发射和接收LTE信号,第二天线2307用于接收LTE信号和/或NR信号,第三天线2308、第四天线2309和第五天线2310中任意一根天线用于发射NR信号,且第三天线2308、第四天线2309和第五天线2310均用于接收NR信号;或者,使得第一天线2306用于接收LTE信号和/或NR信号,第二天线2307用于发射和接收LTE信号,第三天线2308、第四天线2309和第五天线2310中任意一根天线用于发射NR信号,且第三天线2308、第四天线2309和第五天线2310均用于接收NR信号。
在SRS轮发过程中,控制器2302用于控制第六开关2303、第七开关2304和第八开关2305的设置,进而在第一天线2306用于发射和接收LTE信号时,在第二天线2307、第三天线2308、第四天线2309或第五天线2310上发射SRS;或者,在第二天线2307用于发射和接收LTE信号时,在第一天线2306、第三天线2308、第四天线2309或第五天线2310上发射SRS。
可以理解的是,第六开关2303、第七开关2304和第八开关2305可以合称为开关单元。第六开关2303、第七开关2304和第八开关2305均与控制器2302连接。
第六开关2303包括6个端口。第六开关2303的第一端口2303A和第二端口2303B分别与射频收发器2301的第一端口2301A和第二端口2301B连接;第六开关的第三端口2303C断路;第六开关的第四端口2303D与第七端口的第三端口2304C连接;第六开关2303的第五端口2303E和第六端口2303F分别与第一天线2306和第二天线2307连接。第六开关2303可以为双刀四掷开关(DP4T)。
第七开关2304包括6个端口。第七开关2304的第一端口2304A和第二端口2304B分别与射频收发器2301的第三端口2301C和第四端口2301D连接;第七开关2304的 第三端口2304C与第六开关2303的第四端口2303D连接;第七开关2304的第四端口2304D与第八开关2305的第二端口2305B连接;第七开关2304的第五端口2304E和第六端口2304F分别与第三天线2308和第四天线2309连接。第七开关2304可以为双刀四掷开关(DP4T)。
第八开关2305包括3个端口。第八开关2305的第一端口2305A与射频收发器2301的第五端口2301E连接;第八开关2305的第二端口2305B与第七开关2304的第四端口2304D连接;第八开关2305的第三端口2305C与第五天线2310连接。第八开关2305可以为单刀双掷开关(SP2T)。
下面根据图24-图29对图23所示的射频电路中第六开关2303、第七开关2304和第八开关2305可能的连接情况进行说明。
当终端设备进行LTE通信时,射频电路中第六开关2303、第七开关2304和第八开关2305的连接可以参照图24和图25。
示例性的,图24为本申请实施例提供的一种LTE通信时的天线配置示意图。如图24所示,第六开关2303的第一端口2303A和第二端口2303B分别与第六开关2303的第五端口2303E和第六端口2303F连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第一天线2306上发射。第一天线2306接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。第二天线2307接收的LTE信号经第六开关2303从射频收发器2301的第二端口2301B进入射频收发器2301。
这样,终端设备可以实现LTE通信。
示例性的,图25为本申请实施例提供的一种LTE通信时的天线配置示意图。如图25所示,第六开关2303的第一端口2303A和第二端口2303B分别与第六开关2303的第六端口2303F和第五端口2303E连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第二天线2307上发射。第二天线2307接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。第一天线2306接收的LTE信号经第六开关2303从射频收发器2301的第二端口2301B进入射频收发器2301。
这样,终端设备通过改变第六开关的连接方式,实现第一天线和第二天线的切换,进而可以选择合适的天线发射LTE信号。
当终端设备进行SRS轮发时,射频电路中第六开关2303、第七开关2304和第八开关2305的连接可以参照图26和图27。
示例性的,图26为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图26所示,当第六开关2303的第一端口2303A与第六开关2303的第五端口2303E连接时,控制器2302控制第六开关2303的第四端口2303D和第七开关2304的第一端口2304A分别与第六开关2303的第六端口2303F和第七开关2304的第三端口2304C连接;或者控制第七开关2304的第一端口2304A和第八开关2305的第二端口2305B分别与第七开关2304的第四端口2304D和第八开关2305的第三端口2305C连接;或者控制第七开关2304的第一端口2304A与第七开关2304的第五端口2304E连接;或者控制第七开关2304的第一端口2304A与第七开关2304的第六端口2304F连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第一天线2306上发射,第一天线2306接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。
射频收发器2301的第三端口2301C输出的SRS经第七开关2304和第六开关2303在第二天线2307上发射;射频收发器2301的第三端口2301C输出的SRS经第七开关2304在第三天线2308或第四天线2309上发射;射频收发器2301的第三端口2301C输出的SRS经第七开关2304和第八开关2305在第五天线2310上发射。
可以理解的是,当第一天线2306用于发射和接收LTE信号时,射频收发器2301的第三端口2301C输出的SRS可以轮流在第二天线2307、第三天线2308、第四天线2309或第五天线2310上发射。本申请实施例对SRS在第二天线2307、第三天线2308、第四天线2309或第五天线2310上发射的顺序不做限定。
示例性的,图27为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图27所示,当第六开关2303的第一端口2303A与第六开关2303的第六端口2303F连接时,控制器2302控制第六开关2303的第四端口2303D和第七开关2304的第一端口2304A分别与第六开关2303的第六端口2303F和第七开关2304的第三端口2304C连接;或者控制第七开关2304的第一端口2304A和第八开关2305的第二端口2305B分别与第七开关2304的第四端口2304D和第八开关2305的第三端口2305C连接;或者控制第七开关2304的第一端口2304A与第七开关2304的第五端口2304E连接;或者控制第七开关2304的第一端口2304A与第七开关2304的第六端口2304F连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第二天线2307上发射,第二天线2307接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。
射频收发器2301的第三端口2301C输出的SRS经第七开关2304和第六开关2303在第一天线2306上发射;射频收发器2301的第三端口2301C输出的SRS经第七开关2304在第三天线2308或第四天线2309上发射;射频收发器2301的第三端口2301C输出的SRS经第七开关2304和第八开关2305在第五天线2310上发射。
可以理解的是,当第二天线2307用于发射和接收LTE信号时,射频收发器2301的第三端口2301C输出的SRS可以轮流在第一天线2306、第三天线2308、第四天线2309或第五天线2310上发射。本申请实施例对SRS在第一天线2306、第三天线2308、第四天线2309或第五天线2310上发射的顺序不做限定。
可以理解的是,图26和图27所示的连接方式,在SRS轮发时,不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。这样,终端设备通过改变第六开关、第七开关和第八开关的连接方式,实现LTE通信和SRS轮发并存。
当终端设备进行ENDC通信时,射频电路中第六开关2303、第七开关2304和第八开关2305的连接可以参照图28和图29。
示例性的,图28为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图28所示,第六开关2303的第一端口2303A和第二端口2303B分别与第六开关2303的第五端口2303E和第六端口2303F连接;第七开关2304的第一端口2304A和第二 端口2304B分别与第七开关2304的第五端口2304E和第六端口2304F连接;第八开关2305的第一端口2305A与第八开关2305的第三端口2305C连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第一天线2306上发射。第一天线2306接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。第二天线2307接收的LTE信号和/或NR信号经第六开关2303从射频收发器2301的第二端口2301B进入射频收发器2301。
射频收发器2301的第三端口2301C输出的NR信号经第七开关2304在第三天线2308上发射。第三天线2308接收的NR信号和第四天线2309接收的NR信号经第七开关2304分别从射频收发器2301的第三端口2301C和第四端口2301D进入射频收发器2301。第五天线2310接收的NR信号经第八开关2305从射频收发器2301的第五端口2301E进入射频收发器2301。
这样,终端设备可以实现LTE和NR的双连接通信。
示例性的,图29为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图29所示,第六开关2303的第一端口2303A和第二端口2303B分别与第六开关2303的第六端口2303F和第五端口2303E连接;第七开关2304的第一端口2304A和第二端口2304B分别与第七开关2304的第五端口2304E和第六端口2304F连接;第八开关2305的第一端口2305A与第八开关2305的第三端口2305C连接。
本申请实施例中,射频收发器2301的第一端口2301A输出的LTE信号经第六开关2303在第二天线2307上发射。第二天线2307接收的LTE信号经第六开关2303从射频收发器2301的第一端口2301A进入射频收发器2301。第一天线2306接收的LTE信号和/或NR信号经第六开关2303从射频收发器2301的第二端口2301B进入射频收发器2301。
射频收发器2301的第三端口2301C输出的NR信号经第七开关2304在第三天线2308上发射。第三天线2308接收的NR信号和第四天线2309接收的NR信号经第七开关2304分别从射频收发器2301的第三端口2301C和第四端口2301D进入射频收发器2301。第五天线2310接收的NR信号经第八开关2305从射频收发器2301的第五端口2301E进入射频收发器2301。
可能的实现方式中,图28和图29所对应的连接方式中,第七开关2304的第一端口2304A、和第二端口2304B连接的端口可以互相更换连接。这样,NR信号可以在第三天线2808或第四天线2309上发射。
这样,终端设备通过改变第七开关的连接方式,实现第三天线和第四天线的切换,进而可以选择合适的天线发射NR信号。
在NR通信中的天线配置可以参照上述ENDC通信中发射和/或接收NR信号时的天线配置,NR通信中第六开关、第七开关和第八开关的连接方式与上述ENDC通信中发射和/或接收NR信号时的连接方式类似,此处不再赘述。
综上,图23所示的射频电路中,终端设备通过5根天线,以及改变第六开关、第七开关和/或第八开关的连接方式,实现LTE通信、SRS轮发和ENDC通信,实现SA和NSA的双模功能。天线数量减少,缩小天线占用的空间,降低终端设备的体积。终 端设备还可以选择合适的天线发射LTE信号和/或NR信号,改善吞吐率。并且在SRS轮发或NR通信时,不会影响LTE信号的发射。
下面结合图30-图36对通过对等开关和不对等开关实现天线共用的射频电路进行说明。
图30为本申请实施例提供的一种射频电路的结构示意图。如图30所示,射频电路中包括:射频收发器3001、控制器3002、第九开关3003、第十开关3004、第十一开关3005、第十二开关3006、第一天线3007、第二天线3008、第三天线3009、第四天线3010和第五天线3011。
射频收发器3001、控制器3002、第一天线3007、第二天线3008、第三天线3009、第四天线3010和第五天线3011的结构和作用可以参照上述相关概念和图2所示的射频电路的相应结构的说明,此处不再赘述。
控制器3002用于控制第九开关3003、第十开关3004、第十一开关3005和第十二开关3006的设置,使得第一天线3007、第二天线3008、第三天线3009、第四天线3010和第五天线3011发射和/或接收射频信号,进而实现LTE的2*2MIMO、NR的4*4MIMO,以及SRS轮发。
在LTE的2*2MIMO和NR的4*4MIMO中,控制器3002用于控制第九开关3003、第十开关3004、第十一开关3005和第十二开关3006的设置,使得第一天线3007用于发射和接收LTE信号,第二天线3008用于接收LTE信号和/或NR信号,第三天线3009、第四天线3010和第五天线3011中任意一根天线用于发射NR信号,且第三天线3009、第四天线3010和第五天线3011均用于接收NR信号;或者,使得第一天线3007用于接收LTE信号和/或NR信号,第二天线3008用于发射和接收LTE信号,第三天线3009、第四天线3010和第五天线3011中任意一根天线用于发射NR信号,且第三天线3009、第四天线3010和第五天线3011均用于接收NR信号。
在SRS轮发过程中,控制器3002用于控制第九开关3003、第十开关3004、第十一开关3005和第十二开关3006设置,进而在第一天线3007用于发射和接收LTE信号时,在第二天线3008、第三天线3009、第四天线3010或第五天线3011上发射SRS;或者,在第二天线3008用于发射和接收LTE信号时,在第一天线3007、第三天线3009、第四天线3010或第五天线3011上发射SRS。
可以理解的是,第九开关3003、第十开关3004、第十一开关3005和第十二开关3006可以合称为开关单元。第九开关3003、第十开关3004、第十一开关3005和第十二开关3006均与控制器3002连接。
第九开关3003包括4个端口。第九开关3003的第一端口3003A与射频收发器3001的第一端口3001A连接;第九开关3003的第二端口3003D与第十开关3004的第三端口3004C连接;第九开关3003的第三端口3003C和第四端口3003D分别与第一天线3007和第二天线3008连接。第九开关3003可以为双刀双掷开关(DPDT)。
第十开关3004包括6个端口。第十开关3004的第一端口3004A和第二端口3004B分别与射频收发器3001的第二端口3001B和第三端口3001C连接;第十开关3004的第三端口3004C与第九开关3003的第二端口3003B连接;第十开关3004的第四端口3004D与第十一开关3005的第二端口3005B连接;第十开关3004的第五端口3004E 与第三天线3009连接;第十开关3004的第六端口3004F与第十二开关3006的第一端口3006A连接。第十开关3004可以为双刀四掷开关(DP4T)。
第十一开关3005包括3个端口。第十一开关3005的第一端口3005A与射频收发器3001的第四端口3001D连接;第十一开关3005的第二端口3005B与第十开关3004的第四端口3004D连接;第十一开关3005的第三端口3005C与第四天线3010连接。第十一开关可以为单刀双掷开关(SP2T)。
第十二开关3006包括3个端口。第十二开关3006的第一端口3006A与第十开关3004的第五端口3004E连接;第十二开关3006的第二端口3006B与射频收发器3001的第五端口3001E连接;第十二开关3006的第三端口3006C与第五天线3011连接。第十二开关可以为单刀双掷开关(SP2T)。
下面根据图31-图36对图30所示的射频电路中第九开关3003、第十开关3004、第十一开关3005和第十二开关3006可能的连接情况进行说明。
当终端设备进行LTE通信时,射频电路中第九开关3003、第十开关3004、第十一开关3005和第十二开关3006的连接可以参照图31和图32。
示例性的,图31为本申请实施例提供的一种LTE通信时的天线配置示意图。如图31所示,第九开关3003的第一端口3003A和第二端口3003B分别与第九开关3003的第三端口3003C和第四端口3003D连接,第十开关3004的第一端口3004A与第十开关3004的第三端口3004C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第一天线3007上发射。第一天线3007接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。第二天线3008接收的LTE信号经第九开关3003和第十开关3004从射频收发器3001的第二端口3001B进入射频收发器3001。
这样,终端设备可以实现LTE通信。
示例性的,图32为本申请实施例提供的一种LTE通信时的天线配置示意图。如图32所示,第九开关3003的第一端口3003A和第二端口3003B分别与第九开关3003的第四端口3003D和第三端口3003C连接,第十开关3004的第一端口3004A与第十开关3004的第三端口3004C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第二天线3008上发射。第二天线3008接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。第一天线3007接收的LTE信号经第九开关3003和第十开关3004从射频收发器3001的第二端口3001B进入射频收发器3001。
这样,终端设备通过改变第九开关的连接方式,实现第一天线和第二天线的切换,进而可以选择合适的天线发射LTE信号,提高LTE信号的质量。终端设备的适用性增加。
当终端设备进行SRS轮发时,射频电路中第九开关3003、第十开关3004、第十一开关3005和第十二开关3006的连接可以参照图33和图34。
示例性的,图33为本申请实施例提供的一种SRS轮发时的天线配置示意图。如 图33所示,当第九开关3003的第一端口3003A与第九开关3003的第三端口3003C连接时,控制器3003控制第十开关3004的第二端口3004B和第九开关3003的第二端口3003B分别与第十开关3004的第三端口3004C和第九开关3003的第四端口3003D连接;或者控制第十开关3004的第二端口3004B与第十开关3004的第五端口3004E连接;或者控制第十开关3004的第二端口3004B和第十一开关3005的第二端口3005B分别与第十开关3004的第四端口3004D和第十一开关3005的第三端口3005C连接;或者控制第十开关3004的第二端口3004B和第十二开关3006的第一端口3006A分别与第十开关3004的第六端口3004F和第十二开关3006的第三端口3006C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第一天线3007上发射,第一天线3007接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。
射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第九开关3003在第二天线3008上发射;射频收发器3001的第三端口3001C输出的SRS经第九开关3003在第三天线3009上发射;射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第十一开关3005在第四天线3010上发射;射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第十二开关3006在第四天线3010上发射。
可以理解的是,当第一天线3007用于发射和接收LTE信号时,射频收发器3001的第三端口3001C输出的SRS可以轮流在第二天线3008、第三天线3009、第四天线3010或第五天线3011上发射。本申请实施例对SRS在第二天线3008、第三天线3009、第四天线3010或第五天线3011上发射的顺序不做限定。
示例性的,图34为本申请实施例提供的一种SRS轮发时的天线配置示意图。如图34所示,当第九开关3003的第一端口3003A与第九开关3003的第四端口3003D连接时,控制器3003控制第十开关3004的第二端口3004B和第九开关3003的第二端口3003B分别与第十开关3004的第三端口3004C和第九开关3003的第三端口3003C连接;或者控制第十开关3004的第二端口3004B与第十开关3004的第五端口3004E连接;或者控制第十开关3004的第二端口3004B和第十一开关3005的第二端口3005B分别与第十开关3004的第四端口3004D和第十一开关3005的第三端口3005C连接;或者控制第十开关3004的第二端口3004B和第十二开关3006的第一端口3006A分别与第十开关3004的第六端口3004F和第十二开关3006的第三端口3006C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第二天线3008上发射,第二天线3008接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。
射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第九开关3003在第一天线3007上发射;射频收发器3001的第三端口3001C输出的SRS经第九开关3003在第三天线3009上发射;射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第十一开关3005在第四天线3010上发射;射频收发器3001的第三端口3001C输出的SRS经第十开关3004和第十二开关3006在第四天线3010上发射。
可以理解的是,当第二天线3008用于发射和接收LTE信号时,射频收发器3001 的第三端口3001C输出的SRS可以轮流在第一天线3007、第三天线3009、第四天线3010或第五天线3011上发射。本申请实施例对SRS在第一天线3007、第三天线3009、第四天线3010或第五天线3011上发射的顺序不做限定。
可以理解的是,图33和图34所示的连接方式,在SRS轮发时,不会影响LTE信号的发射,可以避免LTE信号中断情况。并且SRS轮发过程的时间短,对LTE信号的接收影响小。这样,终端设备通过改变第六开关、第七开关和第八开关的连接方式,实现LTE通信和SRS轮发并存。
当终端设备进行ENDC通信时,射频电路中第九开关3003、第十开关3004、第十一开关3005和第十二开关3006的连接可以参照图35和图36。
示例性的,图35为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图35所示,第九开关3003的第一端口3003A和第二端口3003B分别与第九开关3003的第三端口3003C和第四端口3003D连接;第十开关3004的第一端口3004A和第二端口3004B分别与第十开关3004的第三端口3004C和第五端口3004E连接;第十一开关3005的第一端口3005A与第十一开关3005的第三端口3005C连接;第十二开关3006的第二端口3006B与第十二开关3006的第三端口3006C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第一天线3007上发射。第一天线3007接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。第二天线3008接收的LTE信号和/或NR信号经第九开关3003和第十开关3004从射频收发器3001的第二端口3001B进入射频收发器3001。第三天线3009接收的NR信号经第十开关3004从射频收发器3001的第三端口3001C进入射频收发器3001。第四天线3010接收的NR信号经第十一开关3005从射频收发器3001的第四端口3001D进入射频收发器3001。第五天线3011接收的NR信号经第十二开关3006从射频收发器3001的第五端口3001E进入射频收发器3001。
这样,终端设备可以实现LTE和NR的双连接通信。
示例性的,图36为本申请实施例提供的一种ENDC通信时的天线配置示意图。如图36所示,第九开关3003的第一端口3003A和第二端口3003B分别与第九开关3003的第四端口3003D和第三端口3003C连接;第十开关3004的第一端口3004A和第二端口3004B分别与第十开关3004的第三端口3004C和第五端口3004E连接;第十一开关3005的第一端口3005A与第十一开关3005的第三端口3005C连接;第十二开关3006的第二端口3006B与第十二开关3006的第三端口3006C连接。
本申请实施例中,射频收发器3001的第一端口3001A输出的LTE信号经第九开关3003在第二天线3008上发射。第二天线3008接收的LTE信号经第九开关3003从射频收发器3001的第一端口3001A进入射频收发器3001。第一天线3007接收的LTE信号和/或NR信号经第九开关3003和第十开关3004从射频收发器3001的第二端口3001B进入射频收发器3001。第三天线3009接收的NR信号经第十开关3004从射频收发器3001的第三端口3001C进入射频收发器3001。第四天线3010接收的NR信号经第十一开关3005从射频收发器3001的第四端口3001D进入射频收发器3001。第五天线3011接收的NR信号经第十二开关3006从射频收发器3001的第五端口3001E进 入射频收发器3001。
在NR通信中的天线配置可以参照上述ENDC通信中发射和/或接收NR信号时的天线配置,NR通信中的第九开关、第十开关、第十一开关和第十二开关的连接方式与上述ENDC通信中发射和/或接收NR信号时的连接方式类似,此处不再赘述。
综上,图30所示的射频电路中,终端设备通过5根天线,以及改变第九开关、第十开关、第十一开关和/或第十二开关的连接方式,实现LTE通信、SRS轮发和ENDC通信,实现SA和NSA的双模功能。天线数量减少,缩小天线占用的空间,降低终端设备的体积。终端设备还可以选择合适的天线发射LTE信号,改善吞吐率。并且在SRS轮发或NR通信时,不会影响LTE信号的发射。
本申请实施例还提供一种电子设备,电子包括上述任一种的射频电路,射频电路用于发射和接收第一信号和/或第二信号;其中,第一信号为LTE信号,第二信号为NR信号。
电子设备可以包括终端设备。终端设备可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数字助理(personal digitalassistant,PDA)、移动上网装置(mobile internet device,MID)或可穿戴式设备(wearable device)等。
本申请实施例所提供的电子设备,其有益效果可以参见上述射频电路所带来的有益效果,在此不再赘述。
以上的实施方式、结构示意图或仿真示意图仅为示意性说明本申请的技术方案,其中的尺寸比例并不构成对该技术方案保护范围的限定,任何在上述实施方式的精神和原则之内所做的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (24)

  1. 一种射频电路,其特征在于,包括:射频收发器、控制器、开关单元、第一天线、第二天线、第三天线、第四天线和第五天线;
    所述射频收发器包括第一端口、第二端口、第三端口、第四端口和第五端口,所述第一端口用于发射和接收第一信号,所述第二端口用于接收第二信号和所述第一信号,所述第三端口用于发射和接收所述第二信号,所述第四端口和所述第五端口均用于接收所述第二信号;
    所述开关单元包括第六端口、第七端口、第八端口、第九端口、第十端口、第十一端口、第十二端口、第十三端口、第十四端口和第十五端口;
    所述第一端口、所述第二端口、所述第三端口、所述第四端口和所述第五端口分别与所述第六端口、所述第七端口、所述第八端口、所述第九端口和所述第十端口连接;
    所述第十一端口、所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口分别与所述第一天线、所述第二天线、所述第三天线、所述第四天线和所述第五天线连接;
    所述第一天线用于发射和接收所述第一信号,所述第二天线用于接收所述第一信号和所述第二信号;或者所述第一天线用于接收所述第一信号和所述第二信号,所述第二天线用于发射和接收所述第一信号;
    所述第三天线、所述第四天线和所述第五天线中的任意一根天线用于发射所述第二信号,且所述第三天线、所述第四天线和所述第五天线均用于接收所述第二信号;
    所述控制器与所述开关单元连接;
    所述控制器用于在所述射频收发器发射或接收所述第一信号时,控制所述第六端口和所述第七端口分别与所述第十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,在所述射频收发器发射或接收所述第二信号时,控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十四端口和所述第十五端口连接;
    其中,所述第一信号为长期演进LTE信号,所述第二信号为新空口NR信号。
  2. 根据权利要求1所述的射频电路,其特征在于,所述第三端口还用于发射探测参考信号SRS;
    所述控制器还用于,在所述第三端口发射所述SRS且所述第一天线用于发射和接收所述第一信号时,控制所述第八端口与所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,在所述第三端口发射所述SRS且所述第二天线用于发射和接收所述第一信 号时,控制所述第八端口与所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  3. 根据权利要求1或2所述的射频电路,其特征在于,所述开关单元包括第一开关和第二开关,所述第一开关和所述第二开关均为三刀三掷开关;
    所述第一开关包括所述第六端口、所述第七端口、所述第十一端口、所述第十二端口、所述第十三端口和第十六端口;
    所述第二开关包括所述第八端口、所述第九端口、所述第十端口、所述第十四端口、所述第十五端口和第十七端口;
    所述第十六端口与所述第十七端口连接;
    所述第一开关和所述第二开关均与所述控制器连接;
    所述控制器用于,在所述射频收发器发射或接收所述第一信号时,控制所述第六端口和所述第七端口分别与所述第十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,在所述射频收发器发射或接收所述第二信号时,控制所述第七端口、所述第十六端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十七端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第十六端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十七端口、所述第十四端口和所述第十五端口连接。
  4. 根据权利要求3所述的射频电路,其特征在于,所述第三端口还用于发射SRS;
    所述控制器还用于,在所述射频收发器发射所述SRS且所述第一天线用于发射和接收所述第一信号时,控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,在所述射频收发器发射所述SRS且所述第二天线用于发射和接收所述第一信号时,控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  5. 根据权利要求1或2所述的射频电路,其特征在于,所述开关单元包括第三开关,所述第三开关为五刀五掷开关;
    所述第三开关包括所述第六端口、所述第七端口、所述第八端口、所述第九端口、 所述第十端口、所述第十一端口、所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口;
    所述第三开关与所述控制器连接。
  6. 根据权利要求1或2所述的射频电路,其特征在于,所述开关单元包括第四开关和第五开关,所述第四开关为双刀双掷开关,所述第四开关为四刀四掷开关;
    所述第四开关包括所述第六端口、所述第十一端口、所述第十二端口和第十八端口;
    所述第五开关包括所述第七端口、所述第八端口、所述第九端口、所述第十端口、所述第十三端口、所述第十四端口、所述第十五端口和第十九端口;
    所述第十八端口与所述第十九端口连接;
    所述第四开关和所述第五开关均与所述控制器连接;
    所述控制器用于,在所述射频收发器发射或接收所述第一信号时,控制所述第六端口、所述第七端口和所述第十八端口分别与所述第十一端口、所述第十九端口和所述第十二端口连接,或者,控制所述第六端口、所述第七端口和所述第十八端口分别与所述第十二端口、所述第十九端口和所述第十一端口连接;
    和/或,在所述射频收发器发射或接收所述第二信号时,控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第十八端口分别与所述第十九端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十二端口连接,或者控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第十八端口分别与所述第十九端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十一端口连接。
  7. 根据权利要求6所述的射频电路,其特征在于,所述第三端口还用于发射SRS;
    所述控制器还用于,在所述射频收发器发射所述SRS且所述第一天线用于发射和接收所述第一信号时,控制所述第八端口和所述第十八端口分别与所述第十九端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,在所述射频收发器发射所述SRS且所述第二天线用于发射和接收所述第一信号时,控制所述第八端口和所述第十八端口分别与所述第十九端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  8. 根据权利要求1或2所述的射频电路,其特征在于,所述开关单元包括第六开关、第七开关和第八开关,所述第六开关和所述第七开关均为双刀四掷开关,所述第八开关为单刀双掷开关;
    所述第六开关包括所述第六端口、所述第七端口、所述第十一端口、所述第十二端口、第二十端口和第二十一端口;
    所述第七开关包括所述第八端口、所述第九端口、所述第十三端口、所述第十四端口、第二十二端口和第二十三端口;
    所述第八开关包括所述第十端口、所述第十五端口和第二十四端口;
    所述第二十端口断路,所述第二十二端口和所述第二十三端口分别与所述第二十端口和所述第二十四端口连接;
    所述第六开关、所述第七开关和所述第八开关均与所述控制器连接;
    所述控制器用于,在所述射频收发器发射或接收所述第一信号时,控制所述第六端口和所述第七端口分别与所述第十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,在所述射频收发器发射或接收所述第二信号时,控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十四端口和所述第十五端口连接。
  9. 根据权利要求8所述的射频电路,其特征在于,所述第三端口还用于发射SRS;
    所述控制器还用于,在所述射频收发器发射所述SRS且所述第一天线用于发射和接收所述第一信号时,控制所述第八端口和所述第二十一端口分别与所述第二十二端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第二十四端口分别与所述第二十三端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,在所述射频收发器发射所述SRS且所述第二天线用于发射和接收所述第一信号时,控制所述第八端口和所述第二十一端口分别与所述第二十二端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第二十四端口分别与所述第二十三端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  10. 根据权利要求1或2所述的射频电路,其特征在于,所述开关单元包括第九开关、第十开关、第十一开关和第十二开关,所述第九开关为双刀双掷开关,所述第十开关为双刀四掷开关,所述第十一开关和所述第十二开关均为单刀双掷开关;
    所述第九开关包括所述第六端口、所述第十一端口、所述第十二端口和第二十五端口;
    所述第十开关包括所述第七端口、所述第八端口、所述第十三端口、第二十六端口、第二十七端口和第二十八端口;
    所述第十一开关包括所述第九端口、所述第十四端口和第二十九端口;
    所述第十二开关包括所述第十端口、所述第十五端口和第三十端口;
    所述第二十五端口、所述第二十七端口和所述第二十八端口分别与所述第二十六 端口、所述第二十九端口和所述第三十端口连接;
    所述第九开关、所述第十开关、所述第十一开关和所述第十二开关均与所述控制器连接;
    所述控制器用于,在所述射频收发器发射或接收所述第一信号时,控制所述第六端口、所述第七端口和所述第二十五端口分别与所述第十一端口、所述第二十六端口和所述第十二端口连接,或者,控制所述第六端口、所述第七端口和所述第二十五端口分别与所述第十二端口、所述第二十六端口和所述第十一端口连接;
    和/或,在所述射频收发器发射或接收所述第二信号时,控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第二十五端口分别与所述第二十六端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十二端口连接,或者控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第二十五端口分别与所述第二十六端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十一端口连接。
  11. 根据权利要求10所述的射频电路,其特征在于,所述第三端口还用于发射SRS;
    所述控制器还用于,在所述射频收发器发射所述SRS且所述第一天线用于发射和接收所述第一信号时,控制所述第八端口和所述第二十五端口分别与所述第二十六端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口和所述第二十九端口与所述第二十七端口和所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第三十端口分别与所述第二十八端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,在所述射频收发器发射所述SRS且所述第二天线用于发射和接收所述第一信号时,控制所述第八端口和所述第二十五端口分别与所述第二十六端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;,或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口和所述第二十九端口与所述第二十七端口和所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第三十端口分别与所述第二十八端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  12. 一种控制方法,其特征在于,应用于如权利要求1-11任一项所述的射频电路,所述方法包括:
    所述控制器接收到用于指示发射或接收所述第一信号的第一信息;所述控制器根据所述第一信息,控制所述第六端口和所述第七端口分别与所述十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,所述控制器接收到用于指示发射或接收所述第二信号的第二信息;所述控制器根据所述第二信息,控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十四端口和所述第十五端口连接。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    所述控制器接收到用于指示发射所述SRS的第三信息;
    所述控制器根据所述第三信息,控制所述控制所述第八端口与所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口与所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  14. 根据权利要求12或13所述的方法,其特征在于,当所述开关单元包括第一开关和第二开关时;
    所述控制器根据所述第一信息,控制所述第六端口和所述第七端口分别与所述第十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,所述控制器根据所述第二信息,控制所述第七端口、所述第十六端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十七端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第十六端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十七端口、所述第十四端口和所述第十五端口连接。
  15. 根据权利要求14所述的方法,其特征在于,
    所述控制器根据所述第三信息,控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口和所述第十六端口分别与所述第十七端口和所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  16. 根据权利要求12或13所述的方法,其特征在于,当所述开关单元包括第三开关时;
    所述控制器根据所述第一信息,控制所述第六端口和所述第七端口分别与所述十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述 第十二端口和所述第十一端口连接;
    和/或,所述控制器根据所述第二信息,控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十四端口和所述第十五端口连接。
  17. 根据权利要求16所述的方法,其特征在于,
    所述控制器根据所述第三信息,控制所述控制所述第八端口与所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口与所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS,或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  18. 根据权利要求12或13所述的方法,其特征在于,当开关单元包括第四开关和第五开关时;
    所述控制器根据所述第一信息,控制所述第六端口、所述第七端口和所述第十八端口分别与所述第十一端口、所述第十九端口和所述第十二端口连接,或者,控制所述第六端口、所述第七端口和所述第十八端口分别与所述第十二端口、所述第十九端口和所述第十一端口连接;
    和/或,所述控制器根据所述第二信息,控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第十八端口分别与所述第十九端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十二端口连接,或者控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第十八端口分别与所述第十九端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十一端口连接。
  19. 根据权利要求18所述的方法,其特征在于,
    所述控制器根据所述第三信息,控制所述第八端口和所述第十八端口分别与所述第十九端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口和所述第十八端口分别与所述第十九端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者控制所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者控制所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口与所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  20. 根据权利要求12或13所述的方法,其特征在于,当所述开关单元包括第六开关、第七开关和第八开关时;
    所述控制器根据所述第一信息,控制所述第六端口和所述第七端口分别与所述第十一端口和所述第十二端口连接,或者,控制所述第六端口和所述第七端口分别与所述第十二端口和所述第十一端口连接;
    和/或,所述控制器根据所述第二信息,控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十二端口、所述第十三端口、所述第十四端口和所述第十五端口连接,或者控制所述第七端口、所述第八端口、所述第九端口和所述第十端口分别与所述第十一端口、所述第十三端口、所述第十四端口和所述第十五端口连接。
  21. 根据权利要求20所述的方法,其特征在于,
    所述控制器根据所述第三信息,控制所述第八端口和所述第二十一端口分别与所述第二十二端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第二十四端口分别与所述第二十三端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口和所述第二十一端口分别与所述第二十二端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口与所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第二十四端口分别与所述第二十三端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  22. 根据权利要求12或13所述的方法,其特征在于,当所述开关单元包括第九开关、第十开关、第十一开关和第十二开关时;
    所述控制器根据所述第一信息,控制所述第六端口、所述第七端口和所述第二十五端口分别与所述第十一端口、所述第二十六端口和所述第十二端口连接,或者,控制所述第六端口、所述第七端口和所述第二十五端口分别与所述第十二端口、所述第二十六端口和所述第十一端口连接;
    和/或,所述控制器根据所述第二信息,控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第二十五端口分别与所述第二十六端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十二端口连接,或者控制所述第七端口、所述第八端口、所述第九端口、所述第十端口和所述第二十五端口分别与所述第二十六端口、所述第十三端口、所述第十四端口、所述第十五端口和所述第十一端口连接。
  23. 根据权利要求22所述的方法,其特征在于,
    所述控制器根据所述第三信息,控制所述第八端口和所述第二十五端口分别与所述第二十六端口和所述第十二端口连接,使得所述第二天线用于发射所述SRS;或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所 述第八端口和所述第二十九端口与所述第二十七端口和所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第三十端口分别与所述第二十八端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS;
    或者,所述控制器根据所述第三信息,控制所述第八端口和所述第二十五端口分别与所述第二十六端口和所述第十一端口连接,使得所述第一天线用于发射所述SRS;,或者所述第八端口与所述第十三端口连接,使得所述第三天线用于发射所述SRS;或者所述第八端口和所述第二十九端口与所述第二十七端口和所述第十四端口连接,使得所述第四天线用于发射所述SRS;或者控制所述第八端口和所述第三十端口分别与所述第二十八端口和所述第十五端口连接,使得所述第五天线用于发射所述SRS。
  24. 一种电子设备,其特征在于,包括权利要求1-11任一项所述的射频电路,所述射频电路用于发射和接收第一信号和/或第二信号;其中,所述第一信号为LTE信号,所述第二信号为NR信号。
PCT/CN2022/075715 2021-05-11 2022-02-09 射频电路和控制方法 WO2022237250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110512135.6A CN113437993B (zh) 2021-05-11 2021-05-11 射频电路和控制方法
CN202110512135.6 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237250A1 true WO2022237250A1 (zh) 2022-11-17

Family

ID=77753406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075715 WO2022237250A1 (zh) 2021-05-11 2022-02-09 射频电路和控制方法

Country Status (2)

Country Link
CN (1) CN113437993B (zh)
WO (1) WO2022237250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437993B (zh) * 2021-05-11 2023-08-08 荣耀终端有限公司 射频电路和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180191067A1 (en) * 2017-01-03 2018-07-05 Qorvo Us, Inc. Multi-band radio frequency circuit
CN109361444A (zh) * 2018-11-30 2019-02-19 维沃移动通信有限公司 一种发射天线的切换方法及终端设备
CN109474291A (zh) * 2018-11-30 2019-03-15 维沃移动通信有限公司 一种射频结构及终端设备
CN110635821A (zh) * 2019-10-31 2019-12-31 Oppo广东移动通信有限公司 射频电路及电子设备
CN112688715A (zh) * 2020-12-21 2021-04-20 维沃移动通信有限公司 天线电路及电子设备
CN113437993A (zh) * 2021-05-11 2021-09-24 荣耀终端有限公司 射频电路和控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149132B (zh) * 2019-07-08 2021-07-20 维沃移动通信有限公司 一种发射天线的切换方法及终端设备
CN212909519U (zh) * 2020-10-30 2021-04-06 维沃移动通信有限公司 射频前端电路及电子设备
CN112769450B (zh) * 2021-01-21 2022-08-02 维沃移动通信有限公司 射频电路及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180191067A1 (en) * 2017-01-03 2018-07-05 Qorvo Us, Inc. Multi-band radio frequency circuit
CN109361444A (zh) * 2018-11-30 2019-02-19 维沃移动通信有限公司 一种发射天线的切换方法及终端设备
CN109474291A (zh) * 2018-11-30 2019-03-15 维沃移动通信有限公司 一种射频结构及终端设备
CN110635821A (zh) * 2019-10-31 2019-12-31 Oppo广东移动通信有限公司 射频电路及电子设备
CN112688715A (zh) * 2020-12-21 2021-04-20 维沃移动通信有限公司 天线电路及电子设备
CN113437993A (zh) * 2021-05-11 2021-09-24 荣耀终端有限公司 射频电路和控制方法

Also Published As

Publication number Publication date
CN113437993A (zh) 2021-09-24
CN113437993B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US11546020B2 (en) Communication method, communications apparatus, network device, and terminal
US10587329B2 (en) Transmit antenna diversity in radio front end architectures
WO2021004305A1 (zh) 射频电路及终端设备
EP2443754B1 (en) Apparatus and method for multiple wireless service coexistence
US20110065400A1 (en) Integrated antenna array and rf front end module
CN108476499B (zh) 无线网络中相同链路方向的子帧部分之间的保护时段
CN108390694A (zh) 多路选择开关、射频系统以及无线通信设备
CN108462507A (zh) 多路选择开关、射频系统以及无线通信设备
US10230482B2 (en) Radio transceiver
CN112640555A (zh) 新无线电(nr)相关通信中测量间隙配置的技术
EP3439401A1 (en) Method and device for multipoint data transmission
WO2020057390A1 (zh) 波束训练方法及装置
US9014750B2 (en) Wireless communication device
WO2022237250A1 (zh) 射频电路和控制方法
WO2023169514A1 (zh) 一种通信的方法与装置
CN111108697B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2022226682A1 (zh) 开关电路、通信装置和终端设备
WO2024065653A1 (en) Methods and systems for enhanced beam management for multiple transmission and reception points
WO2023044742A1 (en) Srs collision handling
WO2023214851A1 (ko) 이동 통신 시스템에서 실시간 미디어 전송을 위한 방법 및 장치
US20240195564A1 (en) Srs collision handling
EP4380063A1 (en) Radio-frequency receiver, radio-frequency receiving system, and electronic device
WO2024093869A1 (zh) 一种通信方法和通信装置
CN117394965A (zh) 数据转发方法及装置、存储介质、中继设备、网络设备
JP2019530340A (ja) 信号伝送方法および基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806227

Country of ref document: EP

Kind code of ref document: A1