WO2022236976A1 - 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺 - Google Patents

厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺 Download PDF

Info

Publication number
WO2022236976A1
WO2022236976A1 PCT/CN2021/110539 CN2021110539W WO2022236976A1 WO 2022236976 A1 WO2022236976 A1 WO 2022236976A1 CN 2021110539 W CN2021110539 W CN 2021110539W WO 2022236976 A1 WO2022236976 A1 WO 2022236976A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
strength
thick
gauge
bridge steel
Prior art date
Application number
PCT/CN2021/110539
Other languages
English (en)
French (fr)
Inventor
黄一新
谯明亮
刘涛
崔强
王军
李松
陈林恒
尹雨群
王红鸿
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to JP2023552174A priority Critical patent/JP7489553B2/ja
Publication of WO2022236976A1 publication Critical patent/WO2022236976A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Definitions

  • the invention belongs to the technical field of bridge steels, and in particular relates to a submerged arc welding process of thick-gauge TMCP state high-strength and low-yield ratio bridge steels.
  • Welding is the most important processing method for bridge steel to realize its application value, and welding performance is also one of the most important performances of high-strength and high-toughness bridge steel.
  • the strength and toughness of the joint is determined by various conditions such as the chemical composition of the base metal, the manufacturing process, and the welding heat cycle. Different welding processes will cause different structures in the weld seam and the heat-affected zone. The welding heat input affects the impact of the welded joint. The key to toughness and strength.
  • TMCP steel has the advantages of relatively simple manufacturing process, controlled rolling and controlled cooling to reduce the yield ratio, etc. , has become the development direction of bridge steel in the new era, but due to the poor structure uniformity and large stress of TMCP steel compared with QT steel, it has caused difficulties in the welding construction of bridge steel.
  • Nanjing Iron and Steel United Co., Ltd. adopts low-carbon, Nb-Cr-Ni-Mo and other multi-element (micro) alloying technologies, and utilizes the effects of precipitation strengthening, solid solution strengthening and fine-grain strengthening to develop and produce steel alloys with excellent toughness and cold bending properties.
  • the actual level is yield strength ReL ⁇ 690MPa, tensile strength Rm ⁇ 770MPa, yield strength ratio YR ⁇ 0.86, elongation A ⁇ 14%, -40°C impact energy Akv ⁇ 200J, while ensuring joints
  • the strength is not lower than that of the base metal, and the impact toughness at -40°C low temperature of each part of the joint (WM, FL, FL+1, FL+2) is Akv ⁇ 60J, and the cold bending performance is qualified.
  • This technical requirement is currently the highest among 690MPa bridge steels in my country. Strict, but also the world's advanced level.
  • the present invention provides a submerged arc welding process for bridge steel in thick gauge TMCP state with high strength and low yield ratio, so as to ensure the welded joints of bridge steel in thick gauge, high strength and low yield ratio TMCP state at the same time Strength, low temperature toughness and cold-formability.
  • a kind of submerged arc welding process of thick gauge TMCP state high-strength and low-yield ratio bridge steel uses welding wire and flux matching the properties of the base metal, and the tensile strength of the welding wire is above 850Mpa;
  • the shape of the opening is a symmetrical V-shaped groove;
  • welding parameters include: the preheating temperature before welding is controlled at 80-100°C, the submerged arc flux is dried, the bottom welding current is 450-460A, the arc voltage is 30-32V, and the welding speed is 540 ⁇ 543mm/min, bottoming welding heat input 15 ⁇ 16kJ/cm; filling welding current 490 ⁇ 650A, arc voltage 30 ⁇ 38V, welding speed 350 ⁇ 353mm/min, filling welding heat input 25 ⁇ 42kJ/cm;
  • the butt joints are welded by multi-layer multi-pass submerged arc welding and the temperature between the weld layers is controlled at 80-120 °C.
  • the first thing to consider is that the strength of the weld metal and the impact toughness at -40°C match the base metal as much as possible.
  • the strength Rm is 870 ⁇ 890MPa
  • the elongation A is 14 ⁇ 16%
  • the impact energy at -40°C is Akv ⁇ 200J. Therefore, the submerged arc welding wire has a tensile strength Rm ⁇ 850MPa .
  • the grade of the welding wire is CHW-S80CF, and the diameter is 4mm.
  • the composition of the welding wire used includes: C: 0.03-0.06%, Mn: 1.0-1.5%, Si: 0.2-0.5%, S: ⁇ 0.003%, P: ⁇ 0.005%, Ni: 2.5-4.5%, Mo: 0.3-0.6%, Nb: 0.01-0.03%, Ti: 0.02-0.04%, Alt: 0.02-0.04%, and the balance includes Fe and unavoidable impurities.
  • the flux grade CHF606 as the welding material, the formed weld metal has a high degree of purity, and the weld structure is mainly composed of fine acicular ferrite, which has both strength and toughness.
  • the present invention conducts a controllable thermal restraint (CTS) test according to the EN10225-2009 appendix G standard, which is used to evaluate the hydrogen-induced crack sensitivity of the heat-affected zone of steel welding; conducts a welding crack test according to the API RP 2Z-2005 standard, and is used for evaluation Crack sensitivity at the root of the welding heat-affected zone of butt joints; according to the provisions of the EN10225-2009 Appendix F standard, the surface welding hardness test is carried out to evaluate the cold crack tendency of steel welding.
  • CTS controllable thermal restraint
  • the present invention researches the microstructure and properties of TMCP state thickness specification high strength and low yield strength ratio bridge steel submerged arc welding joints under 25 ⁇ 42kJ/cm line energy, the room temperature and high temperature tensile properties of the butt joints, each part -40 °C Charpy V-notch impact energy and the cold bending performance of the joint were measured.
  • the present invention overcomes the technical barriers of submerged arc welding process of bridge steel in thick gauge TMCP state with high strength and low yield ratio, adopts welding materials and welding process parameters that match high-performance bridge steel, and solves the problem of Under the condition of large heat input, it is difficult to balance the low temperature toughness, strength and cold bending performance of welded joints of thick gauge bridge steel. It has reached the high standard requirement that the impact toughness of each part of the joint at -40°C is higher than 60J, and has excellent strength and toughness matching. and cold formability.
  • the invention realizes the process of low-temperature preheating before welding and heat-free treatment after welding in the manufacturing process of submerged arc welding of bridge steel with high strength and low yield ratio in TMCP state. During the implementation process, both excellent performance of welded joints and good weld formation can be achieved. It is suitable for the promotion and application of high-strength and low-yield-ratio bridge steel for heavy-duty engineering with long-span structures.
  • Fig. 1 is the symmetrical V-groove pattern adopted in the embodiment of the present invention.
  • Embodiment 1 adopts the submerged arc welding process of the bridge steel in the thick specification TMCP state of the present invention with high strength and low yield ratio, and specifically includes the following steps:
  • thermomechanical controlled rolling (TMCP).
  • the chemical composition and weight percentage of welding wire are: C: 0.03 ⁇ 0.06%, Mn: 1.0 ⁇ 1.5%, Si: 0.2 ⁇ 0.5%, S: ⁇ 0.003%, P: ⁇ 0.005%, Ni : 2.5 ⁇ 4.5%, Mo: 0.3 ⁇ 0.6%, Nb: 0.01 ⁇ 0.03%, Ti: 0.02 ⁇ 0.04%, Alt: 0.02 ⁇ 0.04%, the balance is Fe and unavoidable impurities, welding wire grade CHW-S80CF, diameter ⁇ 4mm, tensile strength ⁇ 850MPa, flux grade CHF606;;
  • Submerged arc welding groove adopt a symmetrical V-shaped groove as shown in Figure 1, the angle of the front groove and the reverse groove are both 60°, and the root is left with a blunt edge of 4mm;
  • Preheating temperature before welding is 80 ⁇ 100°C, submerged arc flux is dried at 200 ⁇ 300°C ⁇ 2h, welding current is 450 ⁇ 460A, arc voltage is 30 ⁇ 32V, welding speed is 540 ⁇ 543mm /min, bottom welding heat input 15 ⁇ 16kJ/cm; filling welding current 490 ⁇ 500A, arc voltage 30 ⁇ 32V, welding speed 350 ⁇ 353mm/min, filling welding heat input 25 ⁇ 27kJ/cm.
  • the butt joints of combined steel plates with a thickness of 50mm+50mm are welded by multi-layer and multi-pass submerged arc welding, and the temperature between the weld layers is controlled at 80-120 °C.
  • Embodiment 2-4 is roughly the same as embodiment 1, the difference is:
  • the welding process parameters of the step (4) of embodiment 2 the preheating temperature before welding is 80 ⁇ 100 °C, the submerged arc flux is processed at 200 ⁇ 300 °C ⁇ 2h, the welding current of backing is 450 ⁇ 460A, the arc voltage is 30 ⁇ 32V, welding The speed is 540-543mm/min, the heat input of bottom welding is 15-16kJ/cm; the filling welding current is 545-555A, the arc voltage is 32-34V, the welding speed is 350-353mm/min, and the heat input of filling welding is 30-32kJ/cm.
  • the butt joints of combined steel plates with a thickness of 50mm+50mm are welded by multi-layer and multi-pass submerged arc welding, and the temperature between the weld layers is controlled at 80-120 °C.
  • the welding process parameters of the step (4) of embodiment 3 the preheating temperature before welding is 80 ⁇ 100 °C, the submerged arc flux is processed at 200 ⁇ 300 °C ⁇ 2h, the welding current 450 ⁇ 460A, arc voltage 30 ⁇ 32V, welding The speed is 540-543mm/min, the heat input of bottom welding is 15-16kJ/cm; the filling welding current is 600-610A, the arc voltage is 34-36V, the welding speed is 350-353mm/min, and the heat input of filling welding is 35-37kJ/cm.
  • the butt joints of combined steel plates with a thickness of 50mm+50mm are welded by multi-layer and multi-pass submerged arc welding, and the temperature between the weld layers is controlled at 80-120 °C.
  • the welding process parameters of the step (4) of embodiment 4 preheating temperature before welding 80 ⁇ 100 °C, submerged arc flux is carried out 200 ⁇ 300 °C ⁇ 2h treatment, backing welding current 450 ⁇ 460A, arc voltage 30 ⁇ 32V, welding
  • the speed is 540-543mm/min, the heat input of bottom welding is 15-16kJ/cm; the filling welding current is 640-650A, the arc voltage is 36-38V, the welding speed is 350-353mm/min, and the heat input of filling welding is 40-42kJ/cm.
  • the butt joints of combined steel plates with a thickness of 50mm+50mm are welded by multi-layer and multi-pass submerged arc welding, and the temperature between the weld layers is controlled at 80-120 °C.
  • the welded joints obtained in Examples 1 to 4 above have excellent comprehensive mechanical properties, good strength-toughness matching at room temperature, and qualified cold-bending performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,该工艺采用与高性能桥梁钢相匹配的焊接材料和焊接工艺参数,焊丝牌号为CHW-S80CF,焊剂牌号为CHF606,焊丝抗拉强度在850Mpa以上;采用对称V型坡口进行焊接,焊前低温预热;焊接过程,对打底和填充时的焊接电流、电弧电压、焊接速度、焊接热输入参数进行设定;在较大热输入条件下焊接接头低温韧性、强度和冷弯性能得到兼顾,-40℃接头各部位冲击韧性高于60J的要求,具有较好的强韧匹配度和冷弯成形性能。

Description

厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺 技术领域
本发明属于桥梁钢技术领域,具体涉及一种厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺。
背景技术
随着经济的快速发展和内需拉动,基础建设投资大量增加,大跨度、多车道、重载荷桥梁工程也明显增多。如今桥梁用钢正朝着高强、高韧、低屈强比及高焊接性的方向发展,高强度高焊接性桥梁用钢的大规模使用是实现我国钢结构桥梁行业快速升级与跨越式发展的重要标志,是我国钢结构桥梁行业处于世界领先水平的重要指标。
焊接是桥梁用钢实现其应用价值最重要的加工手段,焊接性能也是高强高韧桥梁用钢最重要的使用性能之一。随着钢材强度的提高,钢材的焊接质量要求也随之提高,接头质量直接影响桥梁的使用安全性和可靠性。接头的强韧性是由母材的化学成分、制造工艺及焊接热循环等多种条件决定的,不同的焊接工艺会导致焊缝和热影响区产生不同的组织,焊接热输入是影响焊接接头冲击韧性和强度的关键。在厚规格桥梁钢的实际应用中,为了提高焊接效率,通常会尽可能采用较大的线能量进行焊接,但值得注意的是,在焊接热循环过程中由于峰值温度较高,焊缝金属易产生粗大的先共析铁素体,尤其是板厚较大时,由于高温停留时间长,粗晶热影响区易产生更粗大的板条贝氏体和粒状贝氏体,这会导致接头发生脆化,接头性能难以保证。同时,在实际工程应用中,690MPa级工程机械、海工及结构钢的交货状态以QT态为主,但此类钢板不仅生产周期长,工序复杂,工艺成本高,且因调质处理后回火索氏体组织的产生导致屈强比较高(>0.93),抗震性能难以保证;TMCP态钢材由于其相对简单的制造工艺、可通过控轧控冷进行组织调控以降低屈强比等优点,成为新时期桥梁钢的发展方向,但由于TMCP态钢材相对QT态存在组织均匀性差及应力较大等问题,给桥梁钢的焊接施工造成困难。
为保证TMCP态高强低屈强比桥梁钢的焊接质量,同时兼顾接头的力学性能(低温韧性、强度等)与冷弯性能,开发高性能低屈强比桥梁钢、合理匹配焊接材料和选择焊接工艺参数是技术关键。为此,南京钢铁联合有限公司采用低碳、Nb-Cr-Ni-Mo等多元(微)合金化技术,利用析出强化、固溶强化和细晶强化效 果,研发生产强韧性优良、冷弯性能良好的厚规格桥梁用钢,实物水平为屈服强度ReL≥690MPa,抗拉强度Rm≥770MPa,屈强比YR≤0.86,延伸率A≥14%,-40℃冲击功Akv≥200J,同时保证接头强度不低于母材,接头各部位(WM、FL、FL+1、FL+2)-40℃低温冲击韧性Akv≥60J,冷弯性能合格,该技术要求是目前我国690MPa级别桥梁钢中最严苛的,也是世界先进水平。
发明内容
发明目的:为了克服现有技术的缺陷,本发明提供一种厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,以同时保证厚规格高强度低屈强比TMCP态桥梁钢焊接接头的强度、低温韧性与冷弯成形性能。
技术方案:本发明所述的一种厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,选用与母材性能匹配的焊丝和焊剂,所述焊丝的抗拉强度在850Mpa以上;坡口形式为对称V型坡口;焊接参数包括:焊前预热温度控制为80~100℃,埋弧焊剂进行烘干处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流490~650A,电弧电压30~38V,焊接速度350~353mm/min,填充焊接热输入25~42kJ/cm;对组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
该工艺的机理如下:
(1)焊接材料
在选用焊接材料时,首先考虑的是焊缝金属的强度和-40℃冲击韧性与母材尽可能匹配,其中,所述母材为厚板,其性能为屈服强度ReL 760~780MPa,抗拉强度Rm 870~890MPa,延伸率A 14~16%,-40℃冲击功Akv≥200J,因此,选用埋弧焊丝抗拉强度R m≥850MPa,焊丝的牌号为CHW-S80CF,直径为4mm。所用焊丝的成分以重量百分比计包括:C:0.03~0.06%,Mn:1.0~1.5%,Si:0.2~0.5%,S:≤0.003%,P:≤0.005%,Ni:2.5~4.5%,Mo:0.3~0.6%,Nb:0.01~0.03%,Ti:0.02~0.04%,Alt:0.02~0.04%,余量包括Fe及不可避免的杂质。配焊剂牌号CHF606作为焊接材料,形成的焊缝金属纯净度较高,且焊缝组织以细小的针状铁素体为主,强韧性兼备。
(2)焊接预热温度
本发明按EN10225-2009附录G标准的规定进行可控热拘束(CTS)试验,用于评价钢材焊接热影响区氢致裂纹敏感性;按API RP 2Z-2005标准进行焊接裂纹试验,用于评价对接接头焊接热影响区根部裂纹敏感性;按EN10225-2009附 录F标准的规定进行表面堆焊硬度试验,用于评价钢材焊接冷裂纹倾向。通过不同焊前预热温度试验,确定所用TMCP态厚规格高强低屈强比桥梁钢埋弧焊接高拘束条件下应进行80~100℃的低温预热。
(3)焊接热输入
由于焊接热输入直接影响成本,尤其针对于厚规格钢材,较低的热输入量大大降低了多层多道埋弧焊接效率使成本增加,鉴于目前在桥梁钢实际埋弧焊接中采用线能量在25kJ/cm左右,本发明在25~42kJ/cm线能量下研究TMCP态厚规格高强低屈强比桥梁钢埋弧焊接接头的组织性能,对接头的室温和高温拉伸性能、各部位-40℃夏比V型缺口冲击功和接头的冷弯性能进行测定。
焊接后测试焊接接头的性能:抗拉强度R m≥870MPa,接头拉伸断裂位置于母材处;接头侧弯d=3a,180°合格,钢板表层和1/2厚度的焊缝、熔合线及线外1mm、2mm处-40℃冲击功Akv≥60J。
有益效果:与现有技术相比,本发明攻克厚规格TMCP态高强低屈强比桥梁钢埋弧焊接工艺技术壁垒,采用与高性能桥梁钢相匹配的焊接材料和焊接工艺参数,解决了在较大热输入条件下厚规格桥梁钢焊接接头低温韧性、强度和冷弯性能难以兼顾的问题,达到了-40℃接头各部位冲击韧性高于60J的高标准要求,具有优良的强韧匹配度和冷弯成形性能。本发明实现TMCP态厚规格高强低屈强比桥梁钢埋弧焊制造过程中焊前低温预热,焊后免热处理工艺,在实施过程中可达到焊接接头性能优良和焊缝成形良好二者兼顾的效果,实用性强,高效节能,具有较大的经济效益,适用于大跨结构重载工程用高强低屈强比桥梁钢的推广应用。
附图说明
图1是本发明实施例中采用的对称V型坡口型式。
具体实施方式
实施例1采用本发明的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,具体包括以下几个步骤:
(1)采用热机械控制轧制(TMCP)生产的强韧性优良的50mm厚桥梁用钢,焊接试板组合为50mm+50mm,试板尺寸为800mm(长)×200mm(宽)×50mm(厚);
(2)匹配的焊接材料:焊丝化学成分及重量百分比为:C:0.03~0.06%,Mn:1.0~1.5%,Si:0.2~0.5%,S:≤0.003%,P:≤0.005%,Ni:2.5~4.5%, Mo:0.3~0.6%,Nb:0.01~0.03%,Ti:0.02~0.04%,Alt:0.02~0.04%,余量为Fe及不可避免杂质,焊丝牌号CHW-S80CF,直径Φ4mm,抗拉强度≥850MPa,焊剂牌号CHF606;;
(3)埋弧焊坡口:采用如图1所示对称V型坡口,正面坡口和反面坡口角度均为60°,根部留钝边4mm;
(4)焊接工艺参数:焊前预热温度80~100℃,埋弧焊剂进行200~300℃×2h烘干处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流490~500A、电弧电压30~32V、焊接速度350~353mm/min,填充焊接热输入25~27kJ/cm。对厚度为50mm+50mm组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
实施例2-4与实施例1大致相同,区别在于:
实施例2的步骤(4)的焊接工艺参数:焊前预热温度80~100℃,埋弧焊剂进行200~300℃×2h处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流545~555A、电弧电压32~34V、焊接速度350~353mm/min,填充焊接热输入30~32kJ/cm。对厚度为50mm+50mm组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
实施例3的步骤(4)的焊接工艺参数:焊前预热温度80~100℃,埋弧焊剂进行200~300℃×2h处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流600~610A、电弧电压34~36V、焊接速度350~353mm/min,填充焊接热输入35~37kJ/cm。对厚度为50mm+50mm组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
实施例4的步骤(4)的焊接工艺参数:焊前预热温度80~100℃,埋弧焊剂进行200~300℃×2h处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流640~650A、电弧电压36~38V、焊接速度350~353mm/min,填充焊接热输入40~42kJ/cm。对厚度为50mm+50mm组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
经过上述实施例1~4的焊接方法对50mm厚TMCP态高强低屈强比桥梁钢 Q690qE进行埋弧焊焊接后,对焊接接头性能进行检测。接头的拉伸性能和冷弯性能列于表1,-40℃冲击性能列于表2。
表1焊接接头的拉伸及冷弯性能
Figure PCTCN2021110539-appb-000001
表2焊接接头的冲击性能
Figure PCTCN2021110539-appb-000002
可见,上述实施例1~4得到的焊接接头的综合力学性能优良,室温下具有良好的强韧匹配度,冷弯成形性能合格。接头室温拉伸抗拉强度R m≥870MPa,断裂位置于母材,接头WM,FL,FL+1,FL+2处-40℃冲击功平均值Akv≥60J。

Claims (8)

  1. 一种厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:选用与母材性能匹配的焊丝和焊剂,所述焊丝的抗拉强度在850Mpa以上;坡口形式为对称V型坡口;焊接参数包括:焊前预热温度控制为80~100℃,埋弧焊剂进行烘干处理,打底焊接电流450~460A、电弧电压30~32V、焊接速度540~543mm/min,打底焊接热输入15~16kJ/cm;填充焊接电流490~650A,电弧电压30~38V,焊接速度350~353mm/min,填充焊接热输入25~42kJ/cm;对组合钢板对接接头采用多层多道埋弧焊焊接并控制其焊缝层间温度为80~120℃。
  2. 根据权利要求1所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述母材的性能为屈服强度R eL760~780MPa,抗拉强度R m870~890MPa,延伸率A 14~16%,-40℃冲击功Akv≥200J。
  3. 根据权利要求1所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述焊丝的牌号为CHW-S80CF,直径为4mm。
  4. 根据权利要求3所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述焊丝的成分以质量百分比计包括C:0.03~0.06%,Mn:1.0~1.5%,Si:0.2~0.5%,S:≤0.003%,P:≤0.005%,Ni:2.5~4.5%,Mo:0.3~0.6%,Nb:0.01~0.03%,Ti:0.02~0.04%,Alt:0.02~0.04%,余量包括Fe及不可避免的杂质。
  5. 根据权利要求1所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述焊剂的牌号为CHF606。
  6. 根据权利要求1所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述对称V型坡口的正面坡口和反面坡口角度为45~60°,根部留钝边3~5mm。
  7. 根据权利要求6所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:所述对称V型坡口的正面坡口和反面坡口角度为60°,根部留钝边4mm。
  8. 根据权利要求1所述的厚规格TMCP态高强低屈强比桥梁钢的埋弧焊接工艺,其特征在于:焊接后测试焊接接头的性能:抗拉强度R m≥870MPa,接头拉伸断裂位置于母材处;接头侧弯d=3a,180°合格,钢板表层和1/2厚度的焊缝、熔合线及线外1mm、2mm处-40℃冲击功Akv≥60J。
PCT/CN2021/110539 2021-05-12 2021-08-04 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺 WO2022236976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552174A JP7489553B2 (ja) 2021-05-12 2021-08-04 Tmcp状態の厚肉・高強度・低降伏比橋梁鋼のサブマージアーク溶接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520230.0 2021-05-12
CN202110520230.0A CN113182652B (zh) 2021-05-12 2021-05-12 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺

Publications (1)

Publication Number Publication Date
WO2022236976A1 true WO2022236976A1 (zh) 2022-11-17

Family

ID=76981378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110539 WO2022236976A1 (zh) 2021-05-12 2021-08-04 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺

Country Status (3)

Country Link
JP (1) JP7489553B2 (zh)
CN (1) CN113182652B (zh)
WO (1) WO2022236976A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182652B (zh) * 2021-05-12 2022-10-14 南京钢铁股份有限公司 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺
CN114734127A (zh) * 2022-04-19 2022-07-12 南京钢铁股份有限公司 一种485MPa级厚规格耐候桥梁钢的埋弧焊接工艺
CN115415642B (zh) * 2022-08-15 2023-12-15 南京钢铁股份有限公司 一种tmcp态超高强海工钢的气保焊焊接工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337301A (zh) * 2008-08-06 2009-01-07 武汉钢铁(集团)公司 一种不同强度级别桥梁钢埋弧焊接的方法
CN103317220A (zh) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 屈服强度≥500MPa级桥梁钢大线能量埋弧焊接方法
CN106825993A (zh) * 2017-03-03 2017-06-13 四川大西洋焊接材料股份有限公司 用于抗拉强度900~1000MPa高强钢埋弧焊焊剂及其制备方法
CN107553003A (zh) * 2017-09-20 2018-01-09 中国石油天然气集团公司管材研究所 一种低温服役环境x90钢级弯管、管件用埋弧焊丝
CN107931888A (zh) * 2017-11-27 2018-04-20 四川大西洋焊接材料股份有限公司 水电工程用高强钢焊条及其制备方法
CN108747072A (zh) * 2018-05-21 2018-11-06 武汉钢铁有限公司 一种抗拉强度≥810MPa桥梁钢厚板大线能量埋弧复合焊接方法
CN108746945A (zh) * 2018-05-21 2018-11-06 武汉钢铁有限公司 一种抗拉强度≥810MPa桥梁钢厚板埋弧复合焊接方法
CN110303268A (zh) * 2019-06-17 2019-10-08 首钢集团有限公司 一种1000MPa级水电用钢埋弧焊丝及其制备方法和焊接方法
CN113182652A (zh) * 2021-05-12 2021-07-30 南京钢铁股份有限公司 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127993B2 (ja) 2000-10-06 2008-07-30 株式会社神戸製鋼所 サブマージアーク溶接継手
JP5218312B2 (ja) 2009-07-17 2013-06-26 新日鐵住金株式会社 高温特性と靭性に優れた耐火構造用1パス大入熱溶接継手およびその製造方法
JP6025620B2 (ja) 2013-03-07 2016-11-16 株式会社神戸製鋼所 サブマージアーク溶接方法、当該サブマージアーク溶接方法を用いる鋼管を製造する方法、溶接継手、及び当該溶接継手を有する鋼管
CN110666297A (zh) * 2019-09-06 2020-01-10 中铁九桥工程有限公司 一种810MPa级高性能耐候桥梁钢复合焊缝贴衬垫单面焊对接方法
CN110666299A (zh) * 2019-09-09 2020-01-10 中铁九桥工程有限公司 一种810MPa级高性能耐候桥梁钢复合焊对接方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337301A (zh) * 2008-08-06 2009-01-07 武汉钢铁(集团)公司 一种不同强度级别桥梁钢埋弧焊接的方法
CN103317220A (zh) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 屈服强度≥500MPa级桥梁钢大线能量埋弧焊接方法
CN106825993A (zh) * 2017-03-03 2017-06-13 四川大西洋焊接材料股份有限公司 用于抗拉强度900~1000MPa高强钢埋弧焊焊剂及其制备方法
CN107553003A (zh) * 2017-09-20 2018-01-09 中国石油天然气集团公司管材研究所 一种低温服役环境x90钢级弯管、管件用埋弧焊丝
CN107931888A (zh) * 2017-11-27 2018-04-20 四川大西洋焊接材料股份有限公司 水电工程用高强钢焊条及其制备方法
CN108747072A (zh) * 2018-05-21 2018-11-06 武汉钢铁有限公司 一种抗拉强度≥810MPa桥梁钢厚板大线能量埋弧复合焊接方法
CN108746945A (zh) * 2018-05-21 2018-11-06 武汉钢铁有限公司 一种抗拉强度≥810MPa桥梁钢厚板埋弧复合焊接方法
CN110303268A (zh) * 2019-06-17 2019-10-08 首钢集团有限公司 一种1000MPa级水电用钢埋弧焊丝及其制备方法和焊接方法
CN113182652A (zh) * 2021-05-12 2021-07-30 南京钢铁股份有限公司 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
LI HOUYI, ZHOU YOULONG, ZHANG YUANWANG, JIA FUJUN, LIAO QI, XIE WEI: "Welding Technology Test of Hydropower 780mpa-level Low-Alloy High-Strength Steel SX780CF", WELDING TECHNOLOGY, vol. 45, no. 7, 31 July 2016 (2016-07-31), pages 58 - 60, XP093003682, ISSN: 1002-025X, DOI: 10.13846/j.cnki.cn12-1070/tg.2016.07.017 *
LUO SHUANDING, ZHOU LIN: "The Application of WSD690E high-tensile steel at Hohhot pumped-storage power station program", CHINA SCIENCE AND TECHNOLOGY INFORMATION, no. 5, 1 March 2014 (2014-03-01), pages 118 - 121, XP093003697, ISSN: 1001-8972, DOI: 10.3969/j.issn.1001-8972.2014.05.035 *
QIU FUXIANG, LUO SONGYUN;CHENG HAOXUAN;AI AIGUO;TAN XIAOBIN;XING YAOJIN;OU YONG: "Study on Welding Performance of 800 MPa High Strength Steel for Hydropower", METAL MATERIALS AND METALLURGY ENGINEERING, vol. 49, no. 2, 28 April 2021 (2021-04-28), pages 16 - 23, XP093003693, ISSN: 2095-5014 *
WU JIANPENG, LANG YONGSHENG, LIU JUN: "Research on weldability of high strength steel XCS790D", WELDING TECHNOLOGY, vol. 47, no. 7, 28 July 2014 (2014-07-28), pages 8 - 10, XP093003702, ISSN: 1002-025X, DOI: 10.13846/j.cnki.cn12-1070/tg.2018.07.003 *
ZHANG XUEFENG, XIAOYAN LIU, HUIMING ZHOU: "Experimental Research on Welding Procedure of P690QL1 Quenched and Tempered High Strength Steel Plate", WIDE AND HEAVY PLATE, vol. 18, no. 6, 30 December 2012 (2012-12-30), XP093003690, ISSN: 1009-7864 *
ZHOU LIN, QU GANG: "The Welding Test and Engineering Application for Domestic WSD690E High-tensile Steel", SCIENCE TECHNOLOGY AND ENGINEERING, ZHONGGUO JISHU JINGJI YANJIUHUI, CN, vol. 14, no. 6, 28 February 2014 (2014-02-28), CN , pages 247 - 250, XP093003698, ISSN: 1671-1815 *
ZHOU, LIN; LIAO, JUN: "Research on the Technology of 800MPa Grade Ultra High Strength Quenched and Tempered Steel", HYDROPOWER AND PUMPED STORAGE, CN, vol. 2, no. 2, 20 April 2016 (2016-04-20), CN, pages 7 - 13, 73, XP009541032, ISSN: 2096-093X *
ZOU, YANG ET AL.: "Development of 800MPa-level High Strength Steel Plate for Shougang Hydroelectric Pressure Steel Pipe", HYDROPOWER STATION PRESSURE PIPELINE, CN, 31 August 2014 (2014-08-31), CN, pages 557 - 565, XP009541298 *

Also Published As

Publication number Publication date
JP2024510396A (ja) 2024-03-07
JP7489553B2 (ja) 2024-05-23
CN113182652B (zh) 2022-10-14
CN113182652A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022236976A1 (zh) 厚规格tmcp态高强低屈强比桥梁钢的埋弧焊接工艺
JP5445720B1 (ja) アレスト性に優れた高強度厚鋼板
KR100506967B1 (ko) 고인장강도 강 및 이의 제조방법
JP5068645B2 (ja) 延性破壊特性に優れた高強度鋼板及び高強度溶接鋼管並びにそれらの製造方法
WO2013145770A1 (ja) 耐歪時効特性に優れた低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
WO2013145771A1 (ja) 耐歪時効特性に優れた低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
WO2015088040A1 (ja) 鋼板およびその製造方法
CN102666899A (zh) 高压缩强度和高韧性优异的管线管用焊接钢管及其制造方法
WO2007136019A1 (ja) 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
JP5413537B2 (ja) 変形性能及び低温靭性に優れた高強度鋼板及び高強度鋼管並びにこれらの製造方法
JPWO2013051231A1 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP6123973B2 (ja) 高強度・高靭性鋼板およびその製造方法
JP5991175B2 (ja) 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP6128057B2 (ja) 低yrクラッド鋼板及びその製造方法
JP2012241266A (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP6149776B2 (ja) 高靭性高延性高強度熱延鋼板及びその製造方法
Stalheim The use of high temperature processing (HTP) steel for high strength oil and gas transmission pipeline applications
WO2003099482A1 (fr) Tuyau en acier uoe presentant une excellente resistance aux impacts, et procede de fabrication du tuyau en acier uoe
JPWO2020004410A1 (ja) クラッド鋼板およびその製造方法
CN112372117A (zh) 一种屈服强度460MPa级60mm厚耐火钢大热输入埋弧焊接方法
CN103194678A (zh) 一种uoe焊管及其制造方法
JP2013139627A (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
CN114734127A (zh) 一种485MPa级厚规格耐候桥梁钢的埋弧焊接工艺
CN110629109B (zh) 一种特大口径厚壁uoe直缝埋弧焊管及其制造方法
JPH066743B2 (ja) 高強度極厚鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552174

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941545

Country of ref document: EP

Kind code of ref document: A1