WO2022236468A1 - 一种用于微弱电信号采集的有源电极电路 - Google Patents

一种用于微弱电信号采集的有源电极电路 Download PDF

Info

Publication number
WO2022236468A1
WO2022236468A1 PCT/CN2021/092363 CN2021092363W WO2022236468A1 WO 2022236468 A1 WO2022236468 A1 WO 2022236468A1 CN 2021092363 W CN2021092363 W CN 2021092363W WO 2022236468 A1 WO2022236468 A1 WO 2022236468A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
active electrode
lead wire
acquisition
processing device
Prior art date
Application number
PCT/CN2021/092363
Other languages
English (en)
French (fr)
Inventor
张金勇
廖坚灿
梅逢城
曹建民
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Priority to PCT/CN2021/092363 priority Critical patent/WO2022236468A1/zh
Publication of WO2022236468A1 publication Critical patent/WO2022236468A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods

Definitions

  • the invention relates to the technical field of sensors, and more specifically relates to an active electrode circuit for collecting weak electrical signals.
  • the weak bioelectrical signals on the skin surface reflect the real-time physiological state of the human body, and play an extremely important role in health monitoring, disease diagnosis and treatment, and sports health.
  • High-precision, portable bioelectrical signal monitoring equipment combined with smart wearable device usage scenarios has broad application prospects. Since the bioelectrical signal is very weak, and at the same time, the sensor is collected from the human body, the interference of the daily activities of the human body and the environmental noise have brought great challenges to the signal collection. Therefore, in order to obtain accurate bioelectrical signals, a sophisticated amplifier system must be used. At the same time, good acquisition conditions are required, such as using wet electrodes with conductive glue, cleaning agents must be used on the skin before acquisition, and shielded lead wires must be used for acquisition cables.
  • wet electrodes are widely used in current high-precision bioelectrical signal acquisition equipment.
  • this electrode has obvious disadvantages: on the one hand, the skin and the electrode need to be pretreated before measurement, the cuticle of the skin must be cleaned, and the conductive paste is applied to make the electrode fully contact with the skin, which is inconvenient to apply.
  • the wet electrode itself has conductive glue, and the skin will feel uncomfortable after a period of use, so it is not suitable for long-term monitoring.
  • the main method is to embed the amplifier chip in the traditional electrode shell, and at the same time, the traditional shielded lead wire is used for signal transmission.
  • the specific implementation scheme includes: (1) The amplifier used in the electrode is generally a unity-gain operational amplifier, and the amplifier circuit usually adopts a conventional operational amplifier. Although this design can provide high input impedance and low output impedance, it can realize the function of impedance conversion. (2) The amplifier used in the electrode is based on the "virtual ground” feedback operational amplifier structure, through this "virtual ground” to solve the common ground problem of different wire electrodes in the system.
  • the noise shielding of the active electrode is realized through the stacked structure of three PCBs, in which the upper and lower PCB boards provide shielding, and the middle PCB board circuit provides the function of realizing impedance conversion.
  • the circuit board of the electrode in the power supply scheme using the operational amplifier, the circuit board of the electrode generally adopts an independent power supply mode, that is, a local power supply needs to be embedded with a battery in the active electrode.
  • the integrated unity gain buffer can obtain lower impedance characteristics through impedance conversion, the unity gain amplifier has no signal amplification function, and the rear end signal of the unity gain amplifier is in the lead wire
  • the signal-to-noise ratio of the transmission signal is low, especially the signal environment noise interference is large, and the effect is poor when the wire transmission distance is long.
  • the "virtual ground” feedback active amplifier structure in the above (2) makes the circuit design complicated, and the stability of the circuit is difficult to be guaranteed.
  • each electrode uses a "virtual ground” structure. It is not easy to ensure that the signal collection of each electrode point is on the same common ground plane, which may easily cause distortion and instability of the collected signal.
  • an active electrode with a stacked structure of upper, middle and lower PCB circuit boards is adopted, which makes the volume of the active electrode larger and heavier, making it inconvenient to use.
  • the power supply mode of the active electrode structure described in (4) above adopts an independent local power supply. On the one hand, using a button battery or a lithium battery for the power supply will increase the volume of the electrode. Attenuation or no output, it is not easy to troubleshoot. Furthermore, the replacement or charging of the battery during subsequent use also brings inconvenience to the use.
  • the technical problem to be solved by the present invention is to provide an active electrode circuit for collecting weak electrical signals in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is: to construct an active electrode circuit for collecting weak electrical signals, including: a first electrode, and a first active electrode processing device corresponding to the first electrode and a first signal lead wire;
  • the first electrode is used to place on the surface of the measured object during signal collection, so as to obtain the first induction signal
  • the first active electrode processing device collects the first sensing signal obtained by the first electrode, and outputs the first sensing signal after amplifying and pre-processing the first sensing signal;
  • the first signal lead wire receives the first acquisition signal and transmits the first acquisition signal to a signal acquisition device
  • the first signal lead wire is a shielded lead wire; the power supply signal of the first active electrode processing device is a system power signal, and the ground signal of the first active electrode processing device is a system ground signal.
  • the active electrode circuit for collecting weak electrical signals it further includes: a second electrode, a second active electrode processing device corresponding to the second electrode, and a second signal lead wire;
  • the second electrode is used to place on the surface of the measured object during signal collection, so as to obtain the second induction signal
  • the second active electrode processing device collects the second sensing signal obtained by the second electrode, and outputs the second sensing signal after amplifying and pre-processing the second sensing signal;
  • the second signal lead wire receives the second acquisition signal and transmits the second acquisition signal to a signal acquisition device
  • the second signal lead wire is a shielded lead wire; the power supply signal of the second active electrode processing device is a system power signal, and the ground signal of the second active electrode processing device is a system ground signal.
  • the active electrode circuit for collecting weak electrical signals it also includes: the signal collecting device;
  • the first end of the first signal lead wire is connected to the first active electrode processing device, and the second end of the first signal lead wire is connected to the first input end of the signal acquisition device;
  • the first end of the second signal lead wire is connected to the second active electrode processing device, and the second end of the second signal lead wire is connected to the second input end of the signal acquisition device;
  • the signal acquisition device is used to respectively receive the first acquisition signal and the second acquisition signal, and respectively process the first acquisition signal and the second acquisition signal to output first bioelectrical signals respectively and the second bioelectric signal.
  • the active electrode circuit for collecting weak electrical signals it also includes: a reference electrode;
  • the reference electrode is connected to the signal acquisition device through a cable, and is used for receiving a reference voltage generated by the signal acquisition device during signal acquisition, and outputting the reference voltage to the surface of the measured object.
  • both the first active electrode processing device and the second active electrode processing device include: a front input buffer and a rear Programmable gain amplifier;
  • the positive input end of the front input buffer receives the first induction signal or the second induction signal
  • the negative input end of the front input buffer is connected to its output end
  • the power supply end of the front input buffer connected to a reference power supply
  • the output end of the front input buffer is connected to the input end of the rear programmable gain amplifier
  • the output end of the rear programmable gain amplifier is connected to the first signal lead line of the first end or the first end of the second signal lead wire
  • the power supply end of the rear programmable gain amplifier is connected to the reference power supply
  • the ground end of the rear programmable gain amplifier is connected to the reference ground
  • the reference power supply is a system power supply
  • the reference ground is a system ground.
  • the pre-input buffer is an operational amplifier with high input impedance and low offset voltage.
  • the post programmable gain amplifier includes: a low noise amplifier and a feedback loop;
  • the positive input terminal of the low noise amplifier is used as the input terminal of the post programmable gain amplifier to connect the output terminal of the front input buffer, and the output terminal of the low noise amplifier is used as the post programmable gain amplifier
  • the output end of the first signal lead wire is connected to the first end of the first signal lead wire or the first end of the second signal lead wire;
  • the first end of the feedback loop is connected to the negative input end of the low noise amplifier, the second end of the feedback loop is connected to the output end of the low noise amplifier, and the third end of the feedback loop is connected to the The reference ground; the third end of the feedback loop is the ground end of the post programmable gain amplifier.
  • the feedback loop includes: a feedback resistor and a variable resistor group;
  • the first terminal of the variable resistor group is connected to the negative input terminal of the low noise amplifier and the first terminal of the feedback resistor, the second terminal of the variable resistor group is connected to the reference ground, and the feedback resistor The second terminal of the variable resistor group is connected to the output terminal of the low noise amplifier; the control terminal of the variable resistance group is connected to an external control circuit;
  • the first end of the variable resistor group and the connection end of the feedback resistor are the first end of the feedback loop, the second end of the feedback resistor is the second end of the feedback loop, and the The second end of the variable resistance group is the third end of the feedback loop.
  • variable resistance group includes: a plurality of parallel input resistance branches;
  • the input resistance branch includes: a sub-resistance, and an access switch connected in series with the sub-resistance; the control terminal of the access switch is connected to the external control circuit.
  • the first signal lead wire and the second signal lead wire are two-core wires, and the outer layer of the two-core wires is The conductive wrapping layer is connected to the reference ground.
  • the active electrode circuit for collecting weak electrical signals implementing the present invention has the following beneficial effects: comprising: a first electrode, a first active electrode processing device corresponding to the first electrode, and a first signal lead wire; An electrode is used to place on the surface of the measured object during signal collection to obtain the first induction signal; the first active electrode processing device collects the first induction signal obtained by the first electrode, and amplifies and preprocesses the first induction signal Afterwards, the first acquisition signal is output; the first signal lead line receives the first acquisition signal and transmits the first acquisition signal to the signal acquisition device; the first signal lead line is a shielded lead line; the first active electrode processing device The power supply signal of the first active electrode processing device is a system ground signal, and the ground signal of the first active electrode processing device is a system ground signal.
  • the invention can improve the transmission signal-to-noise ratio of weak signals, can adapt to the collection requirements of different signals, and can realize signal shielding and anti-interference ability while realizing global system power supply.
  • Fig. 1 is a functional block diagram of an active electrode circuit for weak electrical signal acquisition provided by an embodiment of the present invention
  • Fig. 2 is a circuit diagram of an active electrode circuit for weak electrical signal acquisition provided by an embodiment of the present invention
  • FIG. 3 is a circuit diagram of the first active electrode processing device and the second active electrode processing device of the present invention.
  • Fig. 4 is a circuit diagram of the variable resistance group of the present invention.
  • the active electrode circuit for collecting weak electrical signals provided by the embodiments of the present invention has an impedance conversion function and a certain amplification capability, which can improve the transmission signal-to-noise ratio of weak signals.
  • the embedded amplification circuit has a configurable amplification factor, which can adapt to the acquisition requirements of different signals.
  • the active electrode and signal acquisition system of the present invention can realize the overall system power supply and have the ability of signal shielding and anti-interference, and has a wide range of applications.
  • FIG. 1 it is a circuit diagram of an alternative embodiment of an active electrode circuit for collecting weak electrical signals provided by the present invention.
  • the active electrode circuit for collecting weak electrical signals includes: a first electrode 11 , a first active electrode processing device 12 corresponding to the first electrode 11 , and a first signal lead wire 13 .
  • the first electrode 11 is used for placing on the surface of the measured object during signal collection, so as to obtain the first induction signal.
  • the first active electrode processing device 12 collects the first sensing signal obtained by the first electrode 11 , and outputs the first sensing signal after amplifying and pre-processing the first sensing signal.
  • the first signal lead line 13 receives the first acquisition signal and transmits the first acquisition signal to the signal acquisition device 30 .
  • the first signal lead wire 13 is a shielded lead wire.
  • the measured object may be a biological body, such as a human being.
  • the power supply signal of the first active electrode processing device 12 is a system power signal
  • the ground signal of the first active electrode processing device 12 is a system ground signal.
  • the corresponding induction signal can be obtained.
  • the first signal lead line 13 is transmitted to the signal acquisition device 30 to complete the high-precision acquisition of the entire signal.
  • the active electrode circuit for collecting weak electrical signals further includes: a second electrode 21 , and a second active electrode processing device corresponding to the second electrode 21 22 and the second signal lead wire 23.
  • the second electrode 21 is used for placing on the surface of the measured object during signal collection, so as to obtain the second induction signal.
  • the second active electrode processing device 22 collects the second sensing signal obtained by the second electrode 21 , and outputs the second sensing signal after amplifying and preprocessing the second sensing signal.
  • the second signal lead line 23 receives the second acquisition signal and transmits the second acquisition signal to the signal acquisition device 30 .
  • the second signal lead wire 23 is a shielded lead wire; the power supply signal of the second active electrode processing device 22 is a system power signal, and the ground signal of the second active electrode processing device 22 is a system ground signal.
  • Figure 1 shows the signal acquisition of two channels, where the two channels are independent of each other. In practical applications, multiple channels can be set according to actual needs.
  • the active electrode circuit for collecting weak electrical signals further includes: a signal collecting device 30 .
  • the first end of the first signal lead wire 13 is connected with the first active electrode processing device 12, and the second end of the first signal lead wire 13 is connected with the first input end of the signal acquisition device 30; the second signal lead The first end of the line 23 is connected with the second active electrode processing device 22, and the second end of the second signal lead wire 23 is connected with the second input end of the signal acquisition device 30; the signal acquisition device 30 is used to receive the first Collecting the signal and the second collecting signal, and processing the first collecting signal and the second collecting signal respectively to output the first bioelectrical signal and the second bioelectrical signal respectively.
  • the active electrode circuit for collecting weak electrical signals further includes: a reference electrode 31 .
  • the reference electrode 31 is connected to the signal acquisition device 30 through a cable, and is used for receiving the reference voltage generated by the signal acquisition device 30 during signal acquisition, and outputting the reference voltage to the surface of the measured object.
  • the signal acquisition device 30 includes an amplification circuit, a band-pass filter circuit, an analog-to-digital converter, a microprocessor, and a reference electrode 31 circuit for generating a reference voltage.
  • both the first active electrode processing device 12 and the second active electrode processing device 22 include: a front input buffer and a post programmable gain amplifier.
  • the positive input end of the front input buffer receives the first induction signal or the second induction signal
  • the negative input end of the front input buffer is connected to its output end
  • the power supply end of the front input buffer is connected to the reference power supply
  • the front input buffer The output terminal of the device is connected to the input terminal of the rear programmable gain amplifier, and the output terminal of the rear programmable gain amplifier is connected to the first end of the first signal lead wire 13 or the first end of the second signal lead wire 23, and the rear
  • the power supply terminal of the programmable gain amplifier is connected to the reference power supply, and the ground terminal of the rear programmable gain amplifier is connected to the reference ground; the reference power supply is the system power supply, and the reference ground is the system ground.
  • Vi is the electrode output signal
  • Vo is the output signal of the rear editable gain amplifier
  • AGND is the system ground
  • AVDD is the system power supply.
  • the pre-input buffer is an operational amplifier with high input impedance and low offset voltage (A1 in FIG. 3 ).
  • the post programmable gain amplifier includes: a low noise amplifier A2 and a feedback loop.
  • the pre-input buffer is an operational amplifier with high input impedance and low offset voltage, and its output is connected to the negative input terminal to form a buffer structure with a closed-loop amplification position of 1.
  • the positive input terminal of the low noise amplifier A2 is connected to the output terminal of the front input buffer as the input terminal of the post programmable gain amplifier, and the output terminal of the low noise amplifier A2 is connected to the output terminal of the post programmable gain amplifier as the output terminal of the post programmable gain amplifier.
  • the output terminal of the amplifier A2 and the third terminal of the feedback loop are connected to the reference ground; the third terminal of the feedback loop is the ground terminal of the rear programmable gain amplifier.
  • the feedback loop includes: a feedback resistor Rf and a variable resistor group Rs.
  • the first terminal of the variable resistor group Rs is connected to the negative input terminal of the low noise amplifier A2 and the first terminal of the feedback resistor Rf, the second terminal of the variable resistor group Rs is connected to the reference ground, and the second terminal of the feedback resistor Rf is connected to the low noise
  • the output end of the amplifier A2; the control end of the variable resistance group Rs is connected to the external control circuit; the connection end of the first end of the variable resistance group Rs and the feedback resistor Rf is the first end of the feedback loop, and the second end of the feedback resistor Rf end is the second end of the feedback loop, and the second end of the variable resistor group Rs is the third end of the feedback loop.
  • the rear programmable gain amplifier selects a low-noise amplifier A2 with a certain output driving capability and low noise to form a negative feedback structure with a resistor network, wherein the resistance of the feedback path is realized by the feedback resistor Rf, and the negative input node The resistance to reference ground is realized by variable resistor set Rs.
  • the impedance conversion is performed by the pre-unit input buffer to obtain a lower impedance input while also having the function of signal isolation.
  • the signal passing through the buffer is amplified by the post programmable gain amplifier, and the signal can obtain a higher signal-to-noise ratio and dynamic range.
  • the embodiments of the present invention can support the use of dry electrodes whose electrode materials are metal or fabric.
  • the programmable gain can select different amplification factors for different input signals to obtain a suitable dynamic range. It can be applied to the signal transmission of longer wires while having excellent signal accuracy.
  • the rear programmable gain amplifier adopts a closed-loop feedback structure, in which the resistance value of the feedback circuit is fixed, and the variable resistance group Rs can be realized by a resistance array network of different resistance values, and the circuit can be controlled by an external switch choose different resistance values to achieve different system magnifications.
  • the closed-loop gain of the system can be expressed as:
  • variable resistance group Rs includes: a plurality of input resistance branches arranged in parallel.
  • the input resistance branch includes: a sub-resistance and an access switch connected in series with the sub-resistance; the control end of the access switch is connected to an external control circuit.
  • variable resistance group Rs may include n input resistance branches, wherein the first input resistance branch includes: a first sub-resistance and a first switch; the first input resistance branch includes: a first input resistance branch The second sub-resistance and the second switch; the third input resistance branch includes: the third sub-resistance and the third switch; ...; the nth input resistance branch includes: the nth sub-resistance and the nth switch. Therefore, different sub-resistors can be connected to obtain different resistance values by controlling the first switch, the second switch, the third switch, . . .
  • the power supply of the first active electrode processing device 12 and the second active electrode processing device 22 can be realized through the first signal lead wire 13 and the second signal lead wire 23 respectively.
  • both the first signal lead wire 13 and the second signal lead wire 23 are two-core wires.
  • the outer layer of the two-core wire is a conductive wrapping layer, and the conductive wrapping layer is connected to the reference ground.
  • the two-core wire in the middle of the cable contains the signal line and the power supply (AVDD), and the outer layer of the two-core wire is a conductive coating layer, which can be directly connected to the reference ground (AGND). At 30 o'clock, it will be automatically connected to AVDD and AGND of the system to complete the power supply of the active electrode processing device.
  • the active electrode circuit for collecting weak electrical signals in the embodiment of the present invention can ensure that the active electrodes that are relatively far away from each other and independent of each other have the same reference ground and reference power supply, and ensure that the amplitude of the signal passes through the active electrodes. The time is not affected by different reference power sources.
  • using the wrapping layer of the lead wire can shield the signal wire inside the wire while realizing power supply, which enhances the anti-interference ability of the signal in the lead wire.
  • this power supply mode does not require a built-in independent battery inside the active electrode, so it is smaller in size and lighter in weight. At the same time, it will not cause signal failure due to low power or no power in the built-in battery of the active electrode. The problem of misjudgment due to failure to collect.
  • the signal input electrode is an active electrode, and the reference electrode 31 does not need to use an active electrode.
  • the structure of the active electrode amplifying circuit and the signal acquisition system of the present invention is simple and easy to realize, and can be realized by adopting separate components and devices or by the scheme of integrated circuit chip design.
  • the active electrode processing device of the present invention constitutes a unit gain buffer by selecting operational amplifiers with high input impedance and low offset voltage, has high input impedance, and can support the use of other new dry electrodes such as metal electrodes and conductive fabric electrodes.
  • the configurable gain structure in the active electrode has flexible magnification setting and selection, which can effectively enhance the anti-interference ability of electrodes and lead wires to transmit weak electrical signals, alleviate the signal attenuation problem caused by long wire transmission, and improve the performance of weak signals. Acquisition accuracy and fidelity. Different magnifications can also be set for weak signals of different amplitudes, and the active electrode based on this is more flexible in use and has a wider application range.
  • the active electrode processing device of the present invention and the rear-end signal acquisition device 30 collect the same power supply and ground, so the active electrode structure does not need to be powered by a built-in independent battery, and it is easy to embed in the active electrode structure, further reducing active Electrode complexity, weight and volume.
  • the power supply through the cable can not only solve the problem of power supply, but also provide a shielding effect for signal transmission, and enhance the anti-interference ability of the signal during transmission.
  • the active electrode circuit for collecting weak electrical signals in the embodiment of the present invention can be applied to the field of weak electrical signal sensing, including the collection of weak bioelectrical signals for health information monitoring, and the high-level sensing of other weak electrical signals in the IoT sensing system. Precision sensing acquisition.
  • the adjustable gain of the rear programmable gain amplifier can also be realized by changing the resistance value of the feedback resistor Rf, generally by using an integrated operational amplifier with adjustable gain.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明涉及一种用于微弱电信号采集的有源电极电路,包括:第一电极、与第一电极对应设置的第一有源电极处理装置以及第一信号导联线;第一电极用于在信号采集时放置于被测物表面,以获取第一感应信号;第一有源电极处理装置采集第一电极获取的第一感应信号,并对第一感应信号进行放大预处理后,输出第一采集信号;第一信号导联线接收第一采集信号并将第一采集信号传输至信号采集装置;第一信号导联线为屏蔽导联线;第一有源电极处理装置的供电信号为系统电源信号,第一有源电极处理装置的接地信号为系统接地信号。本发明可提升微弱信号的传输信噪比,可适应不同信号的采集需求,且可以在实现全局系统供电的同时具有信号屏蔽防干扰能力。

Description

一种用于微弱电信号采集的有源电极电路 技术领域
本发明涉及传感器的技术领域,更具体地说,涉及一种用于微弱电信号采集的有源电极电路。
背景技术
皮肤表面的微弱生物电信号反映了人体实时的生理状态,在健康监护、疾病诊断和治疗及运动健康等方面有极其重要的作用。结合智能穿戴设备使用场景的高精度、便携式生物电信号监测设备具有广阔的应用前景。由于生物电信号十分微弱,同时面向人体进行传感采集,人体日常活动的干扰和环境噪声对信号采集带来了巨大的挑战。因此,要获得准确的生物电信号必须采用精密的放大器系统,同时需要有良好的采集条件,如使用导电胶的湿电极,皮肤需要采集前使用清洁剂,采集线缆需要使用屏蔽导联线,人体需要处于平躺或者静息状态,以便获得较高的第一采集信号质量。因此,湿电极在目前高精度生物电信号采集设备中被广泛采用。然而,这种电极有明显的缺点:一方面测量前需要对皮肤和电极进行预处理,要清理皮肤的角质层,涂抹导电膏使电极与皮肤充分接触,应用起来不方便。另一方面湿电极自身带有导电胶,在使用一段时间后皮肤会出现不适感,不适合用作长时间的监测。
传统的湿电极的使用和对人体日常行动的要求极大地限制了设备在穿戴场景的应用。新型电极和导线的研究和开发主要是克服传统湿电极的不足,即电极能够更加使用方便且无需额外的预处理,其典型的代表是有源电极。
在有源电极及线缆的设计方面,主要是通过在传统电极外壳体嵌入放大器芯片,同时信号传输采用传统的屏蔽导联线。具体的实现方案包括:(1)电极中采用的放大器一般是单位增益运算放大器,放大器电路通常采用常规的运算放大器。这种设计尽管能提供较高的输入阻抗和低的输出阻抗,实现阻抗转换的功能。(2)电极中采用的放大器是基于“虚拟地”的反馈运算放大器结构,通过这个“虚拟地”解决系统不同导线电极的共地问题。(3)通过三块PCB堆叠的结构实现有源电极的噪声屏蔽,其中上下两块PCB板提供屏蔽,中间的PCB板电路提供实现阻抗转换的功能。(4)已有的有源电极结构在采用运算放大器的供电方案中,一般是电极的电路板采用独立供电方式,即局部供电需要再有源电极中内嵌电池。
对于上述(1)中的主动电极而言,集成单位增益缓冲器尽管可以通过阻抗转换获得较低的阻抗特性,但是单位增益放大器没有信号放大功能,经过单位增益放大器后端信号在导联线中的传输信号的信噪比较低,特别是信号环境噪声干扰大,导线传输距离较长时效果较差。上述(2)中的“虚拟地”反馈有源放大器结构使得电路设计变得复杂,而且电路的稳定性难以得到保证。另外多个电极应用中每一个电极都是用“虚拟地”结构,不容易保证每个电极点的信号采集处于同一共地平面,容易造成采集的信号失真和不稳定。上述(3)中采用上中下多个PCB电路板堆叠结构的有源电极,使得有源电极的体积变大重量变重,使用不便。上述(4)所述的有源电极结构的供电方式采用独立局部供电,一方面电源使用纽扣电池或者锂电池会增加电极的体积,另一方面使用过程中由于电池电量低或者无电状态导致信号衰减或无输出,不太容易排查故障。再者,后续使用过程中电池的更换或需要充电也为使用带来不便。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种用于微弱电信号采集的有源电极电路。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种用于微弱电信号采集的有源电极电路,包括:第一电极、与所述第一电极对应设置的第一有源电极处理装置以及第一信号导联线;
所述第一电极用于在信号采集时放置于被测物表面,以获取第一感应信号;
所述第一有源电极处理装置采集所述第一电极获取的第一感应信号,并对所述第一感应信号进行放大预处理后,输出第一采集信号;
所述第一信号导联线接收所述第一采集信号并将所述第一采集信号传输至信号采集装置;
所述第一信号导联线为屏蔽导联线;所述第一有源电极处理装置的供电信号为系统电源信号,所述第一有源电极处理装置的接地信号为系统接地信号。
在本发明所述的用于微弱电信号采集的有源电极电路中,还包括:第二电极、与所述第二电极对应设置的第二有源电极处理装置以及第二信号导联线;
所述第二电极用于在信号采集时放置于被测物表面,以获取第二感应信号;
所述第二有源电极处理装置采集所述第二电极获取的第二感应信号,并对所述第二感应信号进行放大预处理后,输出第二采集信号;
所述第二信号导联线接收所述第二采集信号并将所述第二采集信号传输至信号采集装置;
所述第二信号导联线为屏蔽导联线;所述第二有源电极处理装置的供电信号为系统电源信号,所述第二有源电极处理装置的接地信号为系统接地信号。
在本发明所述的用于微弱电信号采集的有源电极电路中,还包括:所述信号采集装置;
所述第一信号导联线的第一端与所述第一有源电极处理装置连接,所述第一信号导联线的第二端与所述信号采集装置的第一输入端连接;
所述第二信号导联线的第一端与所述第二有源电极处理装置连接,所述第二信号导联线的第二端与所述信号采集装置的第二输入端连接;
所述信号采集装置用于分别接收所述第一采集信号和所述第二采集信号,并分别对所述第一采集信号和所述第二采集信号进行处理,以分别输出第一生物电信号和第二生物电信号。
在本发明所述的用于微弱电信号采集的有源电极电路中,还包括:参考电极;
所述参考电极通过线缆与所述信号采集装置连接,用于在信号采集时接收所述信号采集装置产生的参考电压,并将所述参考电压输出至被测物表面。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述第一有源电极处理装置和所述第二有源电极处理装置均包括:前置输入缓冲器和后置可编程增益放大器;
所述前置输入缓冲器的正输入端接收所述第一感应信号或者第二感应信号,所述前置输入缓冲器的负输入端与其输出端连接,所述前置输入缓冲器的供电端连接参考电源,所述前置输入缓冲器的输出端连接所述后置可编程增益放大器的输入端,所述后置可编程增益放大器的输出端连接所述第一信号导联线的第一端或者所述第二信号导联线的第一端,所述后置可编程增益放大器的供电端连接所述参考电源,所述后置可编程增益放大器的接地端连接参考地;
所述参考电源为系统电源,所述参考地为系统地。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述前置输入缓冲器为高输入阻抗、低失调电压的运算放大器。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述后置可编程增益放大器包括:低噪声放大器和反馈环路;
所述低噪声放大器的正输入端作为所述后置可编程增益放大器的输入端连接所述前置输入缓冲器的输出端,所述低噪声放大器的输出端作为所述后置可编程增益放大器的输出端连接所述第一信号导联线的第一端或者所述第二信号导联线的第一端;
所述反馈环路的第一端连接所述低噪声放大器的负输入端,所述反馈环路的第二端连接所述低噪声放大器的输出端,所述反馈环路的第三端连接所述参考地;所述反馈环路的第三端为所述后置可编程增益放大器的接地端。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述反馈环路包括:反馈电阻和可变电阻组;
所述可变电阻组的第一端连接所述低噪声放大器的负输入端和所述反馈电阻的第一端,所述可变电阻组的第二端连接所述参考地,所述反馈电阻的第二端连接所述低噪声放大器的输出端;所述可变电阻组的控制端连接外部控制电路;
所述可变电阻组的第一端和所述反馈电阻的连接端为所述反馈环路的第一端,所述反馈电阻的第二端为所述反馈环路的第二端,所述可变电阻组的第二端为所述反馈环路的第三端。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述可变电阻组包括:多个并联设置的输入电阻支路;
所述输入电阻支路包括:子电阻、及与所述子电阻串接的接入开关;所述接入开关的控制端连接所述外部控制电路。
在本发明所述的用于微弱电信号采集的有源电极电路中,所述第一信号导联线和所述第二信号导联线为两芯导线,所述两芯导线的外层为导电包裹层,所述导电包裹层连接参考地。
有益效果
实施本发明的用于微弱电信号采集的有源电极电路,具有以下有益效果:包括:第一电极、与第一电极对应设置的第一有源电极处理装置以及第一信号导联线;第一电极用于在信号采集时放置于被测物表面,以获取第一感应信号;第一有源电极处理装置采集第一电极获取的第一感应信号,并对第一感应信号进行放大预处理后,输出第一采集信号;第一信号导联线接收第一采集信号并将第一采集信号传输至信号采集装置;第一信号导联线为屏蔽导联线;第一有源电极处理装置的供电信号为系统电源信号,第一有源电极处理装置的接地信号为系统接地信号。本发明可提升微弱信号的传输信噪比,可适应不同信号的采集需求,且可以在实现全局系统供电的同时具有信号屏蔽防干扰能力。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例提供的用于微弱电信号采集的有源电极电路的原理框图;
图2是本发明实施例提供的用于微弱电信号采集的有源电极电路的电路图;
图3是本发明第一有源电极处理装置和第二有源电极处理装置的电路图;
图4是本发明可变电阻组的电路图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明实施例提供的用于微弱电信号采集的有源电极电路具有阻抗转换功能的同时具有一定的放大能力,可以提升微弱信号的传输信噪比。同时该嵌入的放大电路具有可配置的放大倍数,可以适应不同信号的采集需求。另外,本发明的有源电极及信号采集系统可以在实现全局系统供电的同时具有信号屏蔽防干扰的能力,适应范围广。
具体的,参考图1,为本发明提供的用于微弱电信号采集的有源电极电路一可选实施例的电路图。
如图1所示,该用于微弱电信号采集的有源电极电路包括:第一电极11、与第一电极11对应设置的第一有源电极处理装置12以及第一信号导联线13。
第一电极11用于在信号采集时放置于被测物表面,以获取第一感应信号。第一有源电极处理装置12采集第一电极11获取的第一感应信号,并对第一感应信号进行放大预处理后,输出第一采集信号。第一信号导联线13接收第一采集信号并将第一采集信号传输至信号采集装置30。第一信号导联线13为屏蔽导联线。可选的,本发明实施例中,被测物可以为生物体,如人等。
其中,第一有源电极处理装置12的供电信号为系统电源信号,第一有源电极处理装置12的接地信号为系统接地信号。通过采用系统电源信号进行供电,可以实现系统全局供电。
具体的,通过第一电极11与人体皮肤接触,可以获取到相应的感应信号,该感应信号经过第一有源电极处理装置12进行放大预处理后,获得一定的信噪比,再通过带屏蔽的第一信号导联线13传输至信号采集装置30,完成整个信号的高精度采集。
进一步地,如图1所示,在一些实施例中,该用于微弱电信号采集的有源电极电路还包括:第二电极21、与第二电极21对应设置的第二有源电极处理装置22以及第二信号导联线23。
第二电极21用于在信号采集时放置于被测物表面,以获取第二感应信号。第二有源电极处理装置22采集第二电极21获取的第二感应信号,并对第二感应信号进行放大预处理后,输出第二采集信号。第二信号导联线23接收第二采集信号并将第二采集信号传输至信号采集装置30。第二信号导联线23为屏蔽导联线;第二有源电极处理装置22的供电信号为系统电源信号,第二有源电极处理装置22的接地信号为系统接地信号。
图1中示出了两个通道的信号采集,其中,两个通道是相互独立的。在实际应用中,可以根据实际需求设置多个通道。
进一步地,如图1所示,该用于微弱电信号采集的有源电极电路还包括:信号采集装置30。
第一信号导联线13的第一端与第一有源电极处理装置12连接,第一信号导联线13的第二端与信号采集装置30的第一输入端连接;第二信号导联线23的第一端与第二有源电极处理装置22连接,第二信号导联线23的第二端与信号采集装置30的第二输入端连接;信号采集装置30用于分别接收第一采集信号和第二采集信号,并分别对第一采集信号和第二采集信号进行处理,以分别输出第一生物电信号和第二生物电信号。
进一步地,该用于微弱电信号采集的有源电极电路还包括:参考电极31。
参考电极31通过线缆与信号采集装置30连接,用于在信号采集时接收信号采集装置30产生的参考电压,并将参考电压输出至被测物表面。
可选的,本发明实施例中,信号采集装置30包括放大电路、带通滤波电路、模数转换器、微处理器以及用于产生参考电压的参考电极31电路。
参考图2和图3,该第一有源电极处理装置12和第二有源电极处理装置22均包括:前置输入缓冲器和后置可编程增益放大器。
前置输入缓冲器的正输入端接收第一感应信号或者第二感应信号,前置输入缓冲器的负输入端与其输出端连接,前置输入缓冲器的供电端连接参考电源,前置输入缓冲器的输出端连接后置可编程增益放大器的输入端,后置可编程增益放大器的输出端连接第一信号导联线13的第一端或者第二信号导联线23的第一端,后置可编程增益放大器的供电端连接参考电源,后置可编程增益放大器的接地端连接参考地;参考电源为系统电源,参考地为系统地。
如图3所示,Vi为电极输出信号,Vo为后置可编辑增益放大器的输出信号,AGND为系统地,AVDD为系统电源。
可选的,前置输入缓冲器为高输入阻抗、低失调电压的运算放大器(如图3中的A1)。
可选的,该后置可编程增益放大器包括:低噪声放大器A2和反馈环路。如图3所示,前置输入缓冲器为采用高输入阻抗、低失调电压的运算放大器,且使其输出与输入负端相连构成闭环放大位置为1的缓冲器结构。
具体的,低噪声放大器A2的正输入端作为后置可编程增益放大器的输入端连接前置输入缓冲器的输出端,低噪声放大器A2的输出端作为后置可编程增益放大器的输出端连接第一信号导联线13的第一端或者第二信号导联线23的第一端;反馈环路的第一端连接低噪声放大器A2的负输入端,反馈环路的第二端连接低噪声放大器A2的输出端,反馈环路的第三端连接参考地;反馈环路的第三端为后置可编程增益放大器的接地端。
该反馈环路包括:反馈电阻Rf和可变电阻组Rs。
可变电阻组Rs的第一端连接低噪声放大器A2的负输入端和反馈电阻Rf的第一端,可变电阻组Rs的第二端连接参考地,反馈电阻Rf的第二端连接低噪声放大器A2的输出端;可变电阻组Rs的控制端连接外部控制电路;可变电阻组Rs的第一端和反馈电阻Rf的连接端为反馈环路的第一端,反馈电阻Rf的第二端为反馈环路的第二端,可变电阻组Rs的第二端为反馈环路的第三端。
如图3所示,后置可编程增益放大器选用具有一定输出驱动能力、低噪声的低噪声放大器A2形成以电阻网络的负反馈结构,其中,反馈路径的电阻由反馈电阻Rf实现,负输入节点到参考地的电阻由可变电阻组Rs实现。
本发明实施例通过单位前置输入缓冲器进行阻抗转换,获得较低的阻抗输入同时兼具信号隔离作用。而且经过缓冲器的信号再通过后置可编程增益放大器进行放大,信号可以获得较高的信噪比和动态范围。
本发明实施例由于具有高的输入阻抗,可支持使用电极材料为金属或者织物的干电极,同时可编程增益可以针对不同的输入信号选择不同的放大倍数以获得合适的动态范围,在保护较高的信号精度的同时可适用于较长导线的信号传输。
如图3所示,后置可编程增益放大器采用闭环反馈结构,其中,反馈电路的电阻值固定,而可变电阻组Rs可通过不同阻值的电阻阵列网络实现,并可通过外部开关控制电路选择不同的阻值来实现不同的系统放大倍数。其中,系统的闭环增益可表示为:
Figure 712394dest_path_image001
一些实施例中,如图4所示,该可变电阻组Rs包括:多个并联设置的输入电阻支路。输入电阻支路包括:子电阻、及与子电阻串接的接入开关;接入开关的控制端连接外部控制电路。
即如图4所示,该可变电阻组Rs可包括n个输入电阻支路,其中,第一输入电阻支路包括:第一子电阻和第一开关;第一输入电阻支路包括:第二子电阻和第二开关;第三输入电阻支路包括:第三子电阻和第三开关;……;第n输入电阻支路包括:第n子电阻和第n开关。因此,可以通过控制第一开关、第二开关、第三开关、……、第n开关的开或者关,接入不同的子电阻,以获得不同的电阻值。
进一步地,本发明实施例中,第一有源电极处理装置12和第二有源电极处理装置22的供电可以分别通过第一信号导联线13和第二信号导联线23实现。具体的,第一信号导联线13和第二信号导联线23均为两芯导线。两芯导线的外层为导电包裹层,导电包裹层连接参考地。其中,线缆中间的两芯导线包含信号线和电源(AVDD),两芯导线的外层为导电包裹层,可直接接参考地(AGND),因此,当导线的插头再接入信号采集装置30时,将自动连通至系统的AVDD和AGND,完成有源电极处理装置的供电。
本发明实施例的用于微弱电信号采集的有源电极电路,一方面可以保证处于相对位置远离且彼此独立的有源电极具有相同的参考地和参考电源,确保信号的幅度在经过有源电极时不因参考电源不同而受到影响。另一方面,利用导联线包裹层在实现供电的同时又能对导线内部的信号线进行屏蔽,增强了信号在导联线中的抗干扰能力。再者,此供电方式相比传统的独立供电模式,有源电极内部不需要内置独立的电池,因此体积更小重量更轻,同时也不会因为有源电极内置电池电量低或无电导致信号无法采集而产生误判的问题。
信号输入电极采用有源电极,参考电极31无需使用有源电极。
本发明的有源电极放大电路及信号采集系统结构简单容易实现,可以采用分离元器件实现也可以通过集成电路芯片设计的方案实现。
本发明的有源电极处理装置通过选用高输入阻抗和低失调电压的运放构成单位增益缓冲器,具有高的输入阻抗,能够支持使用金属电极和导电织物电极等其他新型干电极。有源电极中的可配置增益结构,具有灵活的放大倍数设置和选择,可以有效增强电极及导联线传输微弱电信号的抗干扰能力和缓解长导线传输导致的信号衰减问题,提升微弱信号的采集精度和保真度。也可以针对不同幅度的微弱信号进行不同放大倍数设置,基于此的有源电极使用更为灵活、适用范围更为广泛。另外,本发明的有源电极处理装置与后端的信号采集装置30采集采用相同的电源和地,因此有源电极结构无需内置独立电池供电,易于在主动电极结构中嵌入,进一步减小了有源电极的复杂度,重量和体积。同时通过线缆供电既能解决供电的问题又能提供信号传输的屏蔽效果,增强信号在传输过程中的抗干扰能力。
本发明实施例的用于微弱电信号采集的有源电极电路可应用于微弱电信号传感领域,包括健康信息监测的微弱生物电信号采集,以及物联网传感系统中其他微弱电信号的高精度传感采集。
在其他一些实施例中,后置可编程增益放大器的可调增益也可以通过改变反馈电阻Rf的阻值实现,一般可采用集成的具有增益可调的运算放大器实现。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。 

Claims (10)

  1. 一种用于微弱电信号采集的有源电极电路,其特征在于,包括:第一电极、与所述第一电极对应设置的第一有源电极处理装置以及第一信号导联线;
    所述第一电极用于在信号采集时放置于被测物表面,以获取第一感应信号;
    所述第一有源电极处理装置采集所述第一电极获取的第一感应信号,并对所述第一感应信号进行放大预处理后,输出第一采集信号;
    所述第一信号导联线接收所述第一采集信号并将所述第一采集信号传输至信号采集装置;
    所述第一信号导联线为屏蔽导联线;所述第一有源电极处理装置的供电信号为系统电源信号,所述第一有源电极处理装置的接地信号为系统接地信号。
  2. 根据权利要求1所述的用于微弱电信号采集的有源电极电路,其特征在于,还包括:第二电极、与所述第二电极对应设置的第二有源电极处理装置以及第二信号导联线;
    所述第二电极用于在信号采集时放置于被测物表面,以获取第二感应信号;
    所述第二有源电极处理装置采集所述第二电极获取的第二感应信号,并对所述第二感应信号进行放大预处理后,输出第二采集信号;
    所述第二信号导联线接收所述第二采集信号并将所述第二采集信号传输至信号采集装置;
    所述第二信号导联线为屏蔽导联线;所述第二有源电极处理装置的供电信号为系统电源信号,所述第二有源电极处理装置的接地信号为系统接地信号。
  3. 根据权利要求2所述的用于微弱电信号采集的有源电极电路,其特征在于,还包括:所述信号采集装置;
    所述第一信号导联线的第一端与所述第一有源电极处理装置连接,所述第一信号导联线的第二端与所述信号采集装置的第一输入端连接;
    所述第二信号导联线的第一端与所述第二有源电极处理装置连接,所述第二信号导联线的第二端与所述信号采集装置的第二输入端连接;
    所述信号采集装置用于分别接收所述第一采集信号和所述第二采集信号,并分别对所述第一采集信号和所述第二采集信号进行处理,以分别输出第一生物电信号和第二生物电信号。
  4. 根据权利要求3所述的用于微弱电信号采集的有源电极电路,其特征在于,还包括:参考电极;
    所述参考电极通过线缆与所述信号采集装置连接,用于在信号采集时接收所述信号采集装置产生的参考电压,并将所述参考电压输出至被测物表面。
  5. 根据权利要求2所述的用于微弱电信号采集的有源电极电路,其特征在于,所述第一有源电极处理装置和所述第二有源电极处理装置均包括:前置输入缓冲器和后置可编程增益放大器;
    所述前置输入缓冲器的正输入端接收所述第一感应信号或者第二感应信号,所述前置输入缓冲器的负输入端与其输出端连接,所述前置输入缓冲器的供电端连接参考电源,所述前置输入缓冲器的输出端连接所述后置可编程增益放大器的输入端,所述后置可编程增益放大器的输出端连接所述第一信号导联线的第一端或者所述第二信号导联线的第一端,所述后置可编程增益放大器的供电端连接所述参考电源,所述后置可编程增益放大器的接地端连接参考地;
    所述参考电源为系统电源,所述参考地为系统地。
  6. 根据权利要求5所述的用于微弱电信号采集的有源电极电路,其特征在于,所述前置输入缓冲器为高输入阻抗、低失调电压的运算放大器。
  7. 根据权利要求5所述的用于微弱电信号采集的有源电极电路,其特征在于,所述后置可编程增益放大器包括:低噪声放大器和反馈环路;
    所述低噪声放大器的正输入端作为所述后置可编程增益放大器的输入端连接所述前置输入缓冲器的输出端,所述低噪声放大器的输出端作为所述后置可编程增益放大器的输出端连接所述第一信号导联线的第一端或者所述第二信号导联线的第一端;
    所述反馈环路的第一端连接所述低噪声放大器的负输入端,所述反馈环路的第二端连接所述低噪声放大器的输出端,所述反馈环路的第三端连接所述参考地;所述反馈环路的第三端为所述后置可编程增益放大器的接地端。
  8. 根据权利要求7所述的用于微弱电信号采集的有源电极电路,其特征在于,所述反馈环路包括:反馈电阻和可变电阻组;
    所述可变电阻组的第一端连接所述低噪声放大器的负输入端和所述反馈电阻的第一端,所述可变电阻组的第二端连接所述参考地,所述反馈电阻的第二端连接所述低噪声放大器的输出端;所述可变电阻组的控制端连接外部控制电路;
    所述可变电阻组的第一端和所述反馈电阻的连接端为所述反馈环路的第一端,所述反馈电阻的第二端为所述反馈环路的第二端,所述可变电阻组的第二端为所述反馈环路的第三端。
  9. 根据权利要求8所述的用于微弱电信号采集的有源电极电路,其特征在于,所述可变电阻组包括:多个并联设置的输入电阻支路;
    所述输入电阻支路包括:子电阻、及与所述子电阻串接的接入开关;所述接入开关的控制端连接所述外部控制电路。
  10. 根据权利要求2所述的用于微弱电信号采集的有源电极电路,其特征在于,所述第一信号导联线和所述第二信号导联线为两芯导线,所述两芯导线的外层为导电包裹层,所述导电包裹层连接参考地。
PCT/CN2021/092363 2021-05-08 2021-05-08 一种用于微弱电信号采集的有源电极电路 WO2022236468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092363 WO2022236468A1 (zh) 2021-05-08 2021-05-08 一种用于微弱电信号采集的有源电极电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092363 WO2022236468A1 (zh) 2021-05-08 2021-05-08 一种用于微弱电信号采集的有源电极电路

Publications (1)

Publication Number Publication Date
WO2022236468A1 true WO2022236468A1 (zh) 2022-11-17

Family

ID=84027922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092363 WO2022236468A1 (zh) 2021-05-08 2021-05-08 一种用于微弱电信号采集的有源电极电路

Country Status (1)

Country Link
WO (1) WO2022236468A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150005585A1 (en) * 2013-06-27 2015-01-01 Imec Vzw Biopotential Signal Acquisition System and Method
CN106236082A (zh) * 2016-09-06 2016-12-21 华南理工大学 一种低噪声脑电信号采集系统
CN110609072A (zh) * 2019-10-17 2019-12-24 南京工业大学 一种普鲁士蓝膜生物电极的微弱信号检测电路
CN111387972A (zh) * 2020-04-20 2020-07-10 广州易风健康科技股份有限公司 弱电信号采集电路及具有该采集电路的座圈及马桶盖

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150005585A1 (en) * 2013-06-27 2015-01-01 Imec Vzw Biopotential Signal Acquisition System and Method
CN106236082A (zh) * 2016-09-06 2016-12-21 华南理工大学 一种低噪声脑电信号采集系统
CN110609072A (zh) * 2019-10-17 2019-12-24 南京工业大学 一种普鲁士蓝膜生物电极的微弱信号检测电路
CN111387972A (zh) * 2020-04-20 2020-07-10 广州易风健康科技股份有限公司 弱电信号采集电路及具有该采集电路的座圈及马桶盖

Similar Documents

Publication Publication Date Title
CN106943258B (zh) 一种多功能无线智能床垫及其人体生理信号测量方法
CN106725459A (zh) 脑电信号采集系统
CN102512159A (zh) 一种便携式无线脑电采集装置
CN102727245A (zh) 一种心音信号采集调理传输装置
WO2022236468A1 (zh) 一种用于微弱电信号采集的有源电极电路
Munge et al. A bio-impedance measurement IC for neural interface applications
CN106859634B (zh) 非接触式动态心电监测系统
CN109846498B (zh) 用于精神状态监测的穿戴式装置及监测数据的采集方法
CN209377569U (zh) 基于脑机接口的智能输出终端
CN113413156A (zh) 一种可配置有源电极及信号采集系统
Pashaei et al. Designing a low-noise, high-resolution, and portable four channel acquisition system for recording surface electromyographic signal
JP4281380B2 (ja) 生体信号測定装置
WO2016026100A1 (zh) 一种肌电信号采集装置
CN113425314A (zh) 一种阵列式高密度表面肌电采集装置及肌电采集方法
Yang et al. A multi-parameter bio-electric ASIC sensor with integrated 2-wire data transmission protocol for wearable healthcare system
CN203953643U (zh) 一种有源非接触电容式生物电信号传感器及其应用
CN206675524U (zh) 脑电信号采集系统
Yang et al. Design of a self-organized Intelligent Electrode for synchronous measurement of multiple bio-signals in a wearable healthcare monitoring system
CN200970233Y (zh) 改善心内电极输出刺激时心内电生理波形的滤波装置
CN110897632A (zh) 一种全无线分布式人体生理信号采集有源电极系统
Tsai et al. A multi-lead ECG acquisition device base on Bluetooth microcontroller
RU199832U1 (ru) Электромиографический датчик
Gosselin et al. Circuits techniques and microsystems assembly for intracortical multichannel ENG recording
CN213526386U (zh) 一种无线穴位敏化装置
CN108095719A (zh) 一种用于检测人体脑电信号的采集系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941049

Country of ref document: EP

Kind code of ref document: A1