WO2022234974A1 - Apparatus and method for evaluating meridian muscle activity - Google Patents

Apparatus and method for evaluating meridian muscle activity Download PDF

Info

Publication number
WO2022234974A1
WO2022234974A1 PCT/KR2022/005484 KR2022005484W WO2022234974A1 WO 2022234974 A1 WO2022234974 A1 WO 2022234974A1 KR 2022005484 W KR2022005484 W KR 2022005484W WO 2022234974 A1 WO2022234974 A1 WO 2022234974A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
activity
foot
lower extremity
user
Prior art date
Application number
PCT/KR2022/005484
Other languages
French (fr)
Korean (ko)
Inventor
이상관
정지연
서정우
Original Assignee
원광대학교산학협력단
한국 한의학 연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단, 한국 한의학 연구원 filed Critical 원광대학교산학협력단
Publication of WO2022234974A1 publication Critical patent/WO2022234974A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/397Analysis of electromyograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training

Definitions

  • the present invention relates to an apparatus and method for evaluating carotid muscle activity, and more specifically, to an apparatus and method for providing an apparatus and method for evaluating carotid muscle activity for evaluating each activity for a plurality of muscle groups using measurement data and a simulation model using a sensor is about
  • Hemiplegic gait after stroke causes a decrease in gait speed and changes in gait temporal and spatial parameters. It becomes longer than the general population, causing an asymmetrical gait pattern.
  • the measurement can be performed only at a specific place or institution containing expensive equipment and medical staff, and also, the activity of each cartilage muscle of the lower extremity composed of a plurality of cervical roots is evaluated only by analyzing the image. Therefore, a systematic treatment or rehabilitation method cannot be suggested.
  • the present invention has been devised to solve the problems of the prior art, and an object of the present invention is to provide an apparatus and method capable of analyzing a user's gait state using only an inertial sensor and a pressure sensor.
  • an object of the present invention is to provide information that can be used for rehabilitation or treatment by evaluating the activity of each cervical muscle of the lower extremity.
  • an object of the present invention is to provide a guide for oriental medicine treatment based on the activity of each light muscle based on oriental medicine.
  • an apparatus for assessing cervical muscle activity comprising: a measuring unit for measuring a user's gait; a calculation unit for calculating the user's lower extremity joint torque value by using the measurement result of the measuring unit; and an evaluation unit that evaluates the activity of each of the user's lower extremities based on the torque value of the lower extremity joint.
  • the measuring unit is mounted on the segment (pelvis, femur, lower leg and foot) of the user's lower extremity, the inertial sensor for measuring the joint angle, acceleration and yaw rate (yaw rate); and a pressure sensor capable of measuring a ground reaction force caused by the walking of the user.
  • the calculator may calculate the torque value of the lower extremity joint based on a Lagrange equation of motion.
  • the evaluation unit evaluates the activity based on a dynamic dynamics-based simulation model, and the simulation model measures the lower extremity joint angle, ground reaction force, and electromyography to generate dynamic dynamics analysis and muscle activity estimate, and between the estimated value and the measured value. Models can be created by comparison.
  • the activation ratio of the unaffected side and the affected side may be evaluated for each activity of the pedimentary muscle, the pediculus pedis, and the pedicle pole.
  • the tibialis plantar muscle starts from the little toe and goes up to the outer ankle bone and knee, leads to the heel outward of the leg, and goes up from the heel again to the gluteus maximus, hamstring and calf muscles.
  • the pediculus femoris muscle rises from the third toe to the outside of the instep, fibula, and knee, and is divided into the anterior thigh and the outer thigh, and includes the rectus femoris and tibialis anterior
  • the sphincter of the foot goes up to the outside of the knee from the fourth toe through the malleolus and tibia, and is a gluteus minimus, Vastus lateralis, and Tibialis anterior muscle passing through the outside of the thigh.
  • a cartilaginous muscle activity evaluation model includes: a measurement unit measuring a user's lower extremity joint angle, ground reaction force, and lower extremity EMG using a plurality of sensors; a calculation unit for calculating an estimate of the cartilaginous muscle activity by using the joint angle of the lower extremity and the ground reaction force measured by the measuring unit, and calculating an actual measured value of the carotid muscle activity based on the electromyogram of the lower extremity; and a model forming unit that develops a simulation model by comparing the estimated value with the measured value.
  • the calculator may calculate a lower extremity joint torque value based on the lower extremity joint angle and ground reaction force data to calculate the cartilaginous muscle activity estimate.
  • the calculation unit and the model forming unit calculate and compare the muscle group consisting of three groups: gluteus maximus, hamstring, and gluteus maximus. It includes (Hamstring) and the calf muscle (Gastrocnemius), and the sphincter of the foot includes the rectus femoris (Rectus femoris) and the tibialis anterior (Tibialis anterior). It may include the muscle (Vastus lateralis) and the tibialis anterior (Tibialis anterior).
  • the simulation model can be configured based on statistics for each individual, age, gender, and symptom, and uses any one of a parameter-based mathematical model, deep learning, neural network, decision tree, and SVM (Support Vector Machine).
  • a parameter-based mathematical model deep learning, neural network, decision tree, and SVM (Support Vector Machine).
  • SVM Small Vector Machine
  • the method for evaluating carob activity includes: measuring movement data of a user's lower extremities using an inertial sensor and a pressure sensor; calculating an activity estimate for each cartilage muscle of the lower extremity based on the lower extremity movement data; measuring the user's EMG and calculating an actual measured value for each hard muscle; and generating a simulation model based on the estimated value and the measured value.
  • the method for evaluating carob activity includes: measuring movement data of a user's lower extremities using an inertial sensor and a pressure sensor; calculating an activity estimate for each cartilage muscle of the lower extremity based on the lower extremity movement data; measuring the user's EMG and calculating an actual measured value for each hard muscle; and generating a simulation model based on the estimated value and the measured value.
  • the method may further include evaluating the activity of the user for each cartilage muscle by using the user's lower extremity movement data and the simulation model.
  • the lower extremity movement data may be mounted on the thigh, shin, and ankle, respectively, with the inertial sensor to calculate joint angle and acceleration values based on the measured data, and measure the ground reaction force using the pressure sensor.
  • the sphincter of the foot includes the sphincter of the foot, the sphincter of the foot, and the sphincter of the foot
  • the gluteus maximus of the foot includes a gluteus maximus, a hamstring, and a gastrocnemius
  • the foot sphincter of the foot includes the sphincter of the foot It includes the rectus femoris and the tibialis anterior
  • the levator sphincter muscle may include the gluteus minimus, the vastus lateralis (Vastus lateralis) and the tibialis anterior.
  • the apparatus and method for evaluating cervical muscle activity of the present invention can detect the user's asymmetrical gait with only a device having a simple structure.
  • oriental medicine treatment such as acupuncture or moxibustion can be performed using the activity of each light root.
  • FIG. 1 is a block diagram of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for forming a simulation model of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
  • FIG. 3 is a diagram of a sensor configuration and measurement data of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
  • FIG. 4 is a view related to a method for calculating muscle activity in the apparatus for measuring cervical muscle activity according to an embodiment of the present invention.
  • 5A to 5D are diagrams illustrating a degree of similarity between EMG data and measured data for each age.
  • 6A to 6C are diagrams showing the cervical root used in an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of forming a simulation model for measuring carotid muscle activity according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for measuring carotid muscle activity according to an embodiment of the present invention.
  • the present invention is an invention for a patient whose asymmetrical gait occurs when walking due to cerebral hemorrhage, traffic accident, and congenital disorder / deformity, etc. It can also be applied to animals. In addition, although animals are included below, since the invention is generally applicable to humans, it will be collectively referred to as 'users' to be described.
  • FIG. 1 is a block diagram of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
  • the apparatus for measuring carotid muscle activity may include a measurement unit 110 , a calculation unit 120 , an evaluation unit 130 , and a simulation model 140 .
  • the measurement unit 110 is for measuring the user's gait information, and may include an Inertial Measurement Unit (IMU) sensor 111 and a pressure sensor 112 .
  • IMU Inertial Measurement Unit
  • the IMU sensor 111 as shown in FIG. 3 (a) in order to measure the movement of the lower extremity joint of 5 degrees of freedom generated according to the configuration of the ankle, knee, and hip joint where the pelvis, thigh, lower leg and foot are connected while the user walks.
  • the IMU sensor 111 is mounted on the pelvis, thigh, lower leg, and foot, but is not limited thereto, and may have various forms, such as locating each joint or locating a plurality of sensors at each position.
  • the angle, acceleration, and yaw rate of the joint may be measured using the IMU sensor 111 .
  • the pressure sensor 112 may measure the force that the user presses on the ground (ground reaction force, force plate).
  • the pressure sensor 112 is attached to the user's sole to measure the ground reaction force as shown in FIG. 3 (a), or a mat type including the pressure sensor is placed in the pedestrian's walking path to perform general walking and rehabilitation exercise.
  • the ground reaction force generated by walking, etc. can be measured.
  • the calculator 120 may calculate a lower extremity joint torque value, which is a joint moment generated from lower extremity muscles, based on the gait data measured by the measurer 110 . Specifically, the gait data measured for joint motion of the lower extremity with 5 degrees of freedom is converted into a two-dimensional sagittal plane form, and the Lagrange equation of motion viewed from the converted two-dimensional sagittal plane is obtained. It can be used to calculate the torque value, which is the joint moment of each joint of the lower extremity.
  • FIG. 3 The right side of FIG. 3 is a simplified configuration of the left side, and the movement of the knee and ankle joints around the hip joint is expressed in a two-dimensional sagittal plane.
  • Torque values for the hip joint (M H ), knee ( M K ), and ankle (MA ) using the Lagrangian equation of motion may be calculated through Equations 1 to 3 below.
  • Equations 1 to 3 ⁇ 1 is the femoral joint angle, ⁇ 2 is the movement angle of the lower leg, ⁇ 3 is the absolute angle of the foot, F GRF is the ground reaction force, d is each segment (thigh, lower leg and is the position of the center of gravity of the proximal joint of the foot), x and y are the position of the center of gravity of each segment, r is the distance between the points of application of the ground reaction force at the ankle, m is the weight, and c is the position of the center of gravity , I may be the weight moment of inertia.
  • Equations 1 to 3 the weight (m), the center of gravity position (c), and the weight moment of inertia (I) cannot be measured through the IMU sensor 111 and the pressure sensor 112 of the measuring unit 110 .
  • the length of each segment and the user's weight may be additionally required.
  • the weight (m), the position of the center of gravity (c), and the weight moment of inertia (I) can be calculated using Equation 4 below.
  • Equation 4 P, R, and K are a weight coefficient, a center of gravity coefficient, and a weight moment of inertia coefficient, respectively, and the values of these coefficients are determined as experimental values, and may be exemplified as shown in Table 1 below.
  • d may mean the thigh
  • p the lower leg
  • CG may mean the center of gravity
  • the calculator 120 may classify the joint moment for each time point for a general gait event of a person.
  • the calculator 120 may calculate the activity of each muscle according to an anatomical position by using a vector operation.
  • the activity of each muscle can be obtained by calculating a vector value based on the origin and insertion of the muscle by using the method of obtaining the moment arm of the muscle using vector operation.
  • FIG. 4 is a method for calculating muscle activity in the apparatus for measuring cervical muscle activity according to an embodiment of the present invention, illustrating muscle activity for hamstring muscles.
  • the activity for the hamstring muscles can be calculated using Equation 5 below.
  • Equation 5 above is a vector value for the hamstring muscle, meaning the muscle activity for the hamstring muscle, ⁇ is the rotation angle, l means the length of the segment, T is the homogeneous transformation matrix for the rotation angle ( ⁇ ) and the length of the segment (l) (homogeneous transformation matrix).
  • the muscle activity for each muscle can be obtained by performing a vector operation based on data measured through the IMU sensor 111 and the pressure sensor 112, and other locations other than the hamstring muscle. It can be calculated by using a vector arithmetic method of calculating a vector value in the form of Equation 5 above in consideration of attachment positions (origin, insertion) for each muscle in .
  • the evaluation unit 130 may evaluate the user's activity for each cervical muscle by using the lower extremity joint torque value calculated by the simulation model 140 and the calculation unit 120 .
  • Activity refers to the gait ratio generated by asymmetric gait, and is the gait ratio of the affected side (paralyzed leg) compared to the gait on the unaffected side (healthy leg).
  • the human body is composed of a total of 12 hard muscles, which are made up of muscles and connect the skeleton to enable various movements.
  • the human body uses the foot yang jyeonggeun ( ⁇ ), the foot yangmyunggyeong muscle ( ⁇ ), and the foot yangjingyeong muscle ( ⁇ ) for walking, and in the present invention, the muscles of the lower extremities are used. It can be used as a guide for oriental medicine treatment such as acupuncture, moxibustion, meridian, chuna, etc. by evaluating the activity of each root by grouping them into three groups: the foot sphenoid muscle, the pediculus pedis, and the foot sphenoid muscle.
  • 6A to 6C are diagrams showing the cervical root used in an embodiment of the present invention.
  • Fig. 6a shows the calcaneus of the foot, which is also called the calcaneus of the foot, which starts at the little toe and leads to the outer malleolus, goes up obliquely to the knee, and then to the heel along the outside of the leg. It rises again at the heel and leads to the popliteal (the part of the back of the leg where the knee bends).
  • these plantar tibialis muscles may include gluteus maximus, hamstring, and gastrocnemius.
  • Figure 6b shows the quadriceps leg muscle, which is also called the quadriceps leg muscle, starts at the tip of the fourth toe and leads to the outer malleolus, along the outside of the tibia. It goes up to the outside of the knee and then passes through the outside of the thigh.
  • the sphincter of the foot may include the rectus femoris and the tibialis anterior.
  • Figure 6c shows the jogyang myeonggyeonggeun, also called jogyangmyungjigeun ( ⁇ ), starts at the third toe and leads to the dorsum of the foot, and ascends obliquely outward to the fibula ( ), and after going up to the outside of the knee again, it splits into the front thigh and the outer thigh ) and goes up along the isthmus and leads to the spine.
  • the jojoyangmyeonggyeong muscle may include the gluteus minimus, the vastus lateralis (Vastus lateralis), and the tibialis anterior.
  • classification and activity can also be evaluated based on the torque value for the foot piriformis muscle ( ⁇ ), the foot piriformis muscle ( ⁇ ), and the foot piriformis muscle ( ⁇ ).
  • each ligament may be provided to the user in various forms such as score form, graph form, percentage, absolute value, etc. can be used for
  • the evaluation unit 130 completes the evaluation of the activity for each cervical muscle
  • the user is provided with measured and calculated information on the torque value and the joint angle for each joint through a display (not shown), while the human body
  • the activity of each spongy muscle is shown, while the detail view function is added to graph the gait information and activation ratio of the healthy side and the affected side according to the gait time of the hard muscle according to the gait flow. information can be provided.
  • FIG. 2 is a block diagram for forming a simulation model of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
  • the simulation model 140 may include a model measuring unit 210 , a model calculating unit 220 , and a model forming unit 230 .
  • model measurement unit 210 and the model calculation unit 220 can use the same equipment as the measurement unit 110 and the calculation unit 120 shown in the apparatus for measuring carotid muscle activity of FIG. 1 , so an embodiment of the present invention In the example, the same name is used, but it can be created using different equipment.
  • the model measurement unit 210 may include an IMU sensor 211 , a pressure sensor 212 , and an EMG sensor 213 .
  • the IMU sensor 211 measures the movement of the lower extremity joint of 5 degrees of freedom generated according to the configuration of the ankle, knee, and hip joint where the pelvis, thigh, lower leg, and foot are connected while the user walks, as shown in FIG. 3 .
  • the IMU sensor 211 is mounted on the lower leg and the foot, it is not limited thereto, and may have various forms, such as locating each joint or locating a plurality of sensors at each position.
  • the angle, acceleration, and yaw rate of the joint may be measured using the IMU sensor 211 .
  • the pressure sensor 212 may measure the force that the user presses on the ground (ground reaction force, force plate).
  • the pressure sensor 212 is attached to the user's sole of the foot as shown in FIG. 3 to measure the ground reaction force, or a mat including the pressure sensor is placed on the pedestrian's walking path and is caused by general walking or walking performed through rehabilitation exercise.
  • the ground reaction force can be measured.
  • the EMG sensor 213 may measure the user's lower extremity EMG. Electromyography can diagnose the pathology of a muscle by measuring the electrical activity inside a specific muscle and the nerve conduction speed due to electrical stimulation using electrodes, so that the movement of the muscles of the lower extremities of the actual user can be measured.
  • One or more EMG sensors 213 may be mounted and measured at positions capable of measuring the actual movement of each of the above-described cervical muscles.
  • the EMG sensor 213 can be worn on both the unaffected side and the unaffected side to measure gait information on the unaffected side and gait information on the affected side. It can only be measured and used as an actual measured value.
  • the model calculator 220 may generate an actual measured value of the activity of each cervical muscle based on the measurement result of the EMG sensor 213 .
  • model calculation unit 220 may calculate a lower extremity joint torque value for the user's lower extremity joint by using the measurement result of the model measuring unit 210 in the same manner as the calculation unit 120 of FIG. 1 .
  • the model calculation unit 220 may calculate an estimate of the activity of each cartilage muscle based on the joint torque value of the lower extremity.
  • the model forming unit 230 may receive the estimated value and the actual measured value from the model calculating unit 220 to form the simulation model 140 .
  • 5A to 5D are comparison graphs between actual EMG data and estimated values calculated using data from a measurement unit.
  • Figures 5a and 5b are about the electromyography (EMG) and estimates of the outer thigh muscle (Vastus lateralis) in the 20s and 70s, and Figures 5c and 5d are the anterior thigh muscles in the 20s and 70s. It is about electromyography (EMG) and measurements of the tibialis anterior.
  • EMG electromyography
  • the EMG actual value
  • the estimated values when the muscle performs a forward motion and when the muscle performs an inverse motion are different.
  • Various methods can be used to assign weights to be similar to the actual values through correction of the estimated values.
  • a simulation model is developed through learning using a mathematical model using a look up table (LUT), specific parameters, etc., or learning models such as deep learning, neural network, machine learning, decision tree, and SVM (Support Vector Machine). All methods can be used as long as the activity of each muscle can be presented by explaining the proportional relationship between the estimated value and the actual value.
  • LUT look up table
  • SVM Small Vector Machine
  • the simulation model 140 may form a customized muscle activity model for each user after the first EMG measurement for each user.
  • FIG. 7 is a flowchart of a method of forming a simulation model for measuring carotid muscle activity according to an embodiment of the present invention.
  • Motion data of the lower extremities may be collected by using the IMU sensor, the pressure sensor, and the EMG sensor (S110).
  • the IMU sensor places one or more of the lower extremity segments (pelvis, thigh, lower leg, and foot) to measure joint angle, acceleration, and yaw rate, and uses a pressure sensor to measure ground reaction force.
  • an EMG sensor can be used to measure the EMG of each muscle.
  • the Lagrangian motion equation is used, and the joint angle, acceleration, yaw rate, and ground reaction force data are substituted into the Lagrangian motion equation to calculate the torque value for the lower extremity joint, and each An estimate of activity for the ligaments can be calculated.
  • the kyphoid muscle is a grouping of the muscles of the human body, and there are a total of 12 pedicles in the human body. Among them, estimates can be calculated for the calcaneus foot, calcaneus foot, and calcaneus foot muscle, which form the movement of the lower body.
  • the sphincter of the foot includes the gluteus maximus, hamstring, and gastrocnemius, the sphincter of the foot includes the rectus femoris and and the tibialis anterior, and the tibialis anterior.
  • the gluteus minimus (Gluteus minimus), the vastus lateralis (Vastus lateralis) and the tibialis anterior (Tibialis anterior) may be included.
  • an actual value for each hard muscle may be calculated (S130).
  • the EMG sensor can measure the movement of muscles based on the EMG of each muscle, based on the movements of the muscles attached to the sphincter of the foot, the sphincter of the foot, and the sphincter of the foot It is possible to calculate the actual measured value of the activity of the cervical muscle.
  • a simulation model may be generated using the estimated value and the actual value data ( S140 ).
  • the simulation model can use a method of weighting the estimate so that the estimate can provide a result that is as similar to the actual value as possible. can utilize
  • Movement data of the lower extremities may be collected using the IMU sensor and the pressure sensor (S210).
  • the IMU sensor is positioned on one or more segments of the lower extremities (pelvis, thigh, lower leg and foot) to measure joint angle, acceleration and yaw rate, and the pressure sensor is used to measure ground reaction force.
  • the joint torque value of the lower extremities may be calculated using the motion data of the lower extremities (S220).
  • the joint torque value of the lower extremity may be calculated using the Lagrangian motion equation, and the detailed information thereof has been described in detail in the calculation unit 120 , so a description thereof will be omitted.
  • the activity of each cartilage muscle of the lower extremity can be calculated using the simulation model (S230).
  • Activity is the walking ability of the affected side compared to the unaffected side, and may be expressed as a percentile or a score.
  • the calculated activity for each hard muscle may provide information through a display (not shown).
  • the information provided may include all of the lower extremity movement data measured in step S210, the joint torque value of the lower extremities calculated in step S220, and activity data for each cartilage calculated in step S230, and if necessary, a human body model, graph, It can be provided using various methods such as diagrams and images, and all of the provided data is stored in a storage device (not shown) and can be used for collecting big data through continuous recording and observation in the future.
  • the user's asymmetrical gait can be detected only with a simple structure and device that does not use the conventional EMG sensor and camera.
  • oriental medicine treatment such as acupuncture or moxibustion can be performed using the activity of each light root.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Geometry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The objective of the present invention is to provide an apparatus and method for evaluating meridian muscle activity, wherein the activity of each of a plurality of meridian muscle groups is evaluated using measurement data measured using a sensor and a simulation model. More specifically, the present invention comprises: a measurement unit for measuring the gait of a user; a calculation unit for calculating lower extremity joint torque values of the user using measurement results of the measurement unit; and an evaluation unit for evaluating the activity for each of the meridian muscles of the lower extremities of the user on the basis of the lower extremity joint torque values. According to the invention, a user's asymmetrical gait can be detected using only an apparatus having a simple structure.

Description

경근 활성도 평가 장치 및 방법Apparatus and method for evaluating carotid muscle activity
본 발명은 경근 활성도 평가 장치 및 방법에 관한 것으로, 구체적으로 센서를 이용한 측정 데이터 및 시뮬레이션 모델을 이용하여 복수의 경근 그룹에 대한 각각의 활성도를 평가하는 경근 활성도 평가 장치 및 방법을 제공하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for evaluating carotid muscle activity, and more specifically, to an apparatus and method for providing an apparatus and method for evaluating carotid muscle activity for evaluating each activity for a plurality of muscle groups using measurement data and a simulation model using a sensor is about
뇌졸중 후 편마비 보행은 보행 속도의 감소와 더불어 보행의 시공간적인 변수에 변화를 초래하는데 그 중 분속수와 보장은 보행 속도와 관련하여 감소되는 양상을 보이며, 양하지 지지기와 비마비측 단하지 지지기는 일반인에 비해 더욱더 길어져 비대칭적인 보행 패턴을 야기시킨다. Hemiplegic gait after stroke causes a decrease in gait speed and changes in gait temporal and spatial parameters. It becomes longer than the general population, causing an asymmetrical gait pattern.
또한, 뇌졸중 환자들의 하지 근력 약화와 강직, 그리고 균형의 감소는 신체적 활동 수준의 감소로 이어지게 되고 보행 보조 도구를 이용한 보행이 증가하게 되어 비대칭적인 체중 부하로 인한 보행의 심각한 비대칭성 보행 양상을 가중시키게 된다.In addition, weakness, stiffness, and loss of balance in the lower extremity of stroke patients lead to a decrease in the level of physical activity and an increase in gait using a gait aid, which aggravates the serious asymmetric gait pattern of gait due to asymmetric weight bearing. do.
일반적으로 보행의 대칭성과 에너지 소비는 서로 관련이 있으므로 체계적인 보행은 가장 효율적인 보행 패턴이라 할 수 있다. 뇌졸중 환자들은 보행시 에너지 소비 효율이 크고 일반인과 비교하여 활동 수준이 매우 낮으며, 시간이 흐름에 따라 전반적인 활동 수준이 감소하기 때문에 편마비 환자의 비대칭적인 보행 패턴은 에너지 소비가 증가하게 되고, 비마비측 사지의 근골격계 상태에 따라 비대칭적인 보행 패턴에 부정적인 영향을 줄 수 있다.In general, since gait symmetry and energy consumption are related to each other, systematic gait is the most efficient gait pattern. Stroke patients have high energy consumption efficiency when walking and have very low activity levels compared to the general population, and since the overall activity level decreases over time, the asymmetrical gait pattern of hemiplegic patients increases energy consumption and increases non-paralysis. Depending on the condition of the musculoskeletal system of the lateral extremities, it may negatively affect the asymmetrical gait pattern.
뇌졸중 환자의 시간적 대칭성은 비마비측 사지의 수직 지면 반발력 증가와 양의 관계에 있다. 그러므로 시간이 지날수록 뇌졸중 환자의 비대칭적인 보행 패턴은 비마비측 사지의 반복적이고 증가된 체중 부하에 의해 영향을 더욱 크게 받게 된다.The temporal symmetry of stroke patients was positively related to the increase in the vertical ground repulsion force of the non-paraplegic limb. Therefore, as time goes by, the asymmetrical gait pattern of stroke patients is more greatly affected by the repeated and increased weight bearing of the non-paraplegic limb.
따라서 보행 속도와 보행의 비대칭성 관계를 파악하는 것은 매우 중요하다고 할 수 있다. 뇌졸중 환자의 비대칭적인 보행을 주제로 한 연구가 일부보고 되었으나 비대칭성에 관한 특성과 함축적인 내용에 초점이 맞추어져 있고 대다수의 연구에서상대적으로 표본 수의 크기가 작다는 것이다. 경증이거나 증등도의 뇌졸중 환자들의 경우 보행 속도와 대칭성은 신체적 장애 정도에 따라 영향을 받는다고 알려져 있다. Therefore, it is very important to understand the relationship between gait speed and gait asymmetry. Some studies on asymmetrical gait in stroke patients have been reported, but the focus is on the characteristics and implications of asymmetry, and the sample size is relatively small in most studies. It is known that in patients with mild or moderate stroke, walking speed and symmetry are affected by the degree of physical disability.
그러나, 종래의 비대칭성 보행을 측정하기 위해서는 사용자에게 보행 동작을 유도하는 화상을 투사하고, 투사한 화상에 대해 카메라 등의 영상 장치를 이용하여 보행 동작을 감지한 뒤에 영상을 분석하여 판단하는 방법을 제시하고 있다.However, in order to measure the conventional asymmetric gait, a method of projecting an image inducing a gait motion to the user, detecting the gait motion using an imaging device such as a camera, etc. for the projected image, and then analyzing the image is presenting
상기와 같은 방법의 경우에 값비싼 장비 및 의료진이 포함된 특정 장소 또는 기관에서만 측정을 수행할 수 있으며, 또한, 영상의 분석 만으로는 복수의 경근(經筋)으로 구성되는 하지의 경근 별 활성도를 평가하여 체계적인 치료 또는 재활 방법을 제시할 수 없다.In the case of the above method, the measurement can be performed only at a specific place or institution containing expensive equipment and medical staff, and also, the activity of each cartilage muscle of the lower extremity composed of a plurality of cervical roots is evaluated only by analyzing the image. Therefore, a systematic treatment or rehabilitation method cannot be suggested.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 관성센서와 압력센서만을 이용하여 사용자의 보행 상태를 분석할 수 있는 장치 및 방법을 제공하는데 그 목적이 있다.The present invention has been devised to solve the problems of the prior art, and an object of the present invention is to provide an apparatus and method capable of analyzing a user's gait state using only an inertial sensor and a pressure sensor.
또한, 본 발명은 하지 경근 별 활성도를 평가하여 재활 또는 치료에 이용할 수 있는 정보를 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide information that can be used for rehabilitation or treatment by evaluating the activity of each cervical muscle of the lower extremity.
또한, 본 발명은 한의학에 기반하여 경근 별 활성도를 바탕으로 한방치료에 대한가이드를 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide a guide for oriental medicine treatment based on the activity of each light muscle based on oriental medicine.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 경근 활성도평가 장치는 사용자의 보행을 측정하는 측정부; 상기 측정부의 측정 결과를 이용하여 상기 사용자의 하지관절 토크 값을 산출하는 계산부; 및 상기 하지관절 토크 값을 기반으로 상기 사용자 하지의 경근(經筋) 별 활성도를 평가하는 평가부;를 포함할 수 있다.In accordance with an embodiment of the present invention for solving the above technical problem, there is provided an apparatus for assessing cervical muscle activity, comprising: a measuring unit for measuring a user's gait; a calculation unit for calculating the user's lower extremity joint torque value by using the measurement result of the measuring unit; and an evaluation unit that evaluates the activity of each of the user's lower extremities based on the torque value of the lower extremity joint.
또한, 상기 측정부는 상기 사용자 하지의 분절(골반, 대퇴, 하퇴 및 발)에 장착하여 관절 각도, 가속도 및 요 레이트(yaw rate)를 측정하는 관성 센서; 및 상기 사용자의 보행에 의한 지면 반력을 측정할 수 있는 압력 센서;를 포함할 수 있다.In addition, the measuring unit is mounted on the segment (pelvis, femur, lower leg and foot) of the user's lower extremity, the inertial sensor for measuring the joint angle, acceleration and yaw rate (yaw rate); and a pressure sensor capable of measuring a ground reaction force caused by the walking of the user.
또한, 상기 계산부는 라그랑지 운동 방정식(Lagrange equation of motion)을 기반으로 상기 하지관절 토크 값을 계산할 수 있다.Also, the calculator may calculate the torque value of the lower extremity joint based on a Lagrange equation of motion.
또한, 상기 평가부는 역동역학 기반의 시뮬레이션 모델을 기반으로 활성도를 평가하며, 상기 시뮬레이션 모델은 하지 관절 각도, 지면 반력 및 근전도를 측정하여 역동역학 해석 및 근육 활성도 추정치를 생성하고, 상기 추정치와 실측치 간의 비교를 통해 모델을 생성할 수 있다.In addition, the evaluation unit evaluates the activity based on a dynamic dynamics-based simulation model, and the simulation model measures the lower extremity joint angle, ground reaction force, and electromyography to generate dynamic dynamics analysis and muscle activity estimate, and between the estimated value and the measured value. Models can be created by comparison.
또한, 상기 경근 별 활성도는, 족태양경근, 족양명경근, 족소양경근 각각의 활성도를 건측과 환측의 활성화 비율을 평가할 수 있다.In addition, as for the activity of each ligament, the activation ratio of the unaffected side and the affected side may be evaluated for each activity of the pedimentary muscle, the pediculus pedis, and the pedicle pole.
또한, 상기 족태양경근은 새끼발가락에서 시작하여 바깥쪽 복사뼈, 무릎으로 올라가 다리의 바깥쪽으로 뒤꿈치로 이어지며 다시 뒤꿈치에서 올라가 오금으로 연결되는 경근으로 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고, 상기 족양명경근은 셋째발가락에서부터 발등, 비골, 무릎바깥쪽으로올라가 앞쪽허벅지와 바깥쪽허벅지로 갈라져 올라가는 경근으로 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며, 상기 족소양경근은 넷째발가락에서부터 복사뼈, 경골(tibia)을 지나 무릎 바깥쪽으로 올라가며, 허벅지 바깥쪽을 지나가는 경근으로 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함할 수 있다.In addition, the tibialis plantar muscle starts from the little toe and goes up to the outer ankle bone and knee, leads to the heel outward of the leg, and goes up from the heel again to the gluteus maximus, hamstring and calf muscles. Including (Gastrocnemius), the pediculus femoris muscle rises from the third toe to the outside of the instep, fibula, and knee, and is divided into the anterior thigh and the outer thigh, and includes the rectus femoris and tibialis anterior And, the sphincter of the foot goes up to the outside of the knee from the fourth toe through the malleolus and tibia, and is a gluteus minimus, Vastus lateralis, and Tibialis anterior muscle passing through the outside of the thigh. ) may be included.
또 다른 실시예에 따른 경근 활성도 평가 모델은 복수의 센서를 이용하여 사용자의 하지 관절 각도, 지면 반력 및 하지 근전도를 측정하는 측정부; 상기 측정부의 하지 관절 각도 및 지면 반력 측정값을 이용으로 경근 활성도 추정치를 계산하고, 상기 하지 근전도를 기반으로 경근 활성도 실측치를 계산하는 계산부; 및 상기 추정치와 상기 실측치를 비교하여 시뮬레이션 모델을 개발하는 모델형성부;를 포함할 수 있다.A cartilaginous muscle activity evaluation model according to another embodiment includes: a measurement unit measuring a user's lower extremity joint angle, ground reaction force, and lower extremity EMG using a plurality of sensors; a calculation unit for calculating an estimate of the cartilaginous muscle activity by using the joint angle of the lower extremity and the ground reaction force measured by the measuring unit, and calculating an actual measured value of the carotid muscle activity based on the electromyogram of the lower extremity; and a model forming unit that develops a simulation model by comparing the estimated value with the measured value.
또한, 상기 계산부는 하지 관절 각도 및 지면 반력 데이터를 기반으로 하지 관절 토크 값을 계산하여 상기 경근 활성도 추정치를 계산할 수 있다.In addition, the calculator may calculate a lower extremity joint torque value based on the lower extremity joint angle and ground reaction force data to calculate the cartilaginous muscle activity estimate.
또한, 상기 계산부 및 상기 모델형성부는 족태양경근, 족양명경근, 족소양경근의 세 개의 그룹으로 구성되는 근육 그룹에 대하여 계산 및 비교를 수행하며, 상기 족태양경근은 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고, 상기 족양명경근은 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며, 상기 족소양경근은 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함할 수 있다.In addition, the calculation unit and the model forming unit calculate and compare the muscle group consisting of three groups: gluteus maximus, hamstring, and gluteus maximus. It includes (Hamstring) and the calf muscle (Gastrocnemius), and the sphincter of the foot includes the rectus femoris (Rectus femoris) and the tibialis anterior (Tibialis anterior). It may include the muscle (Vastus lateralis) and the tibialis anterior (Tibialis anterior).
또한, 상기 시뮬레이션 모델은 개인 맞춤형, 연령 별, 성별, 증상 별 통계를 기반으로 구성될 수 있으며, 파라미터 기반의 수학모델, 딥러닝, 신경망, 결정 트리, SVM(Support Vector Machine) 중 어느 하나를 이용하여 학습 및 동작을 수행할 수 있다.In addition, the simulation model can be configured based on statistics for each individual, age, gender, and symptom, and uses any one of a parameter-based mathematical model, deep learning, neural network, decision tree, and SVM (Support Vector Machine). Thus, learning and action can be performed.
또 다른 실시예에 따른 경근 활성도 평가 방법은 관성 센서 및 압력 센서를 이용하여 사용자의 하지 움직임 데이터를 측정하는 단계; 상기 하지 움직임 데이터를 기반으로 하지의 경근 별 활성도 추정치를 계산하는 단계; 상기 사용자의 근전도를 측정하여 경근 별 실측값을 계산하는 단계; 및 상기 추정치 및 실측값을 기반으로 시뮬레이션 모델을 생성하는 단계; 를 포함할 수 있다.The method for evaluating carob activity according to another embodiment includes: measuring movement data of a user's lower extremities using an inertial sensor and a pressure sensor; calculating an activity estimate for each cartilage muscle of the lower extremity based on the lower extremity movement data; measuring the user's EMG and calculating an actual measured value for each hard muscle; and generating a simulation model based on the estimated value and the measured value. may include.
또한, 상기 사용자의 하지 움직임 데이터 및 상기 시뮬레이션 모델을 이용하여 상기 사용자의 경근 별 활성도를 평가하는 단계를 더 포함할 수 있다.In addition, the method may further include evaluating the activity of the user for each cartilage muscle by using the user's lower extremity movement data and the simulation model.
또한, 상기 하지 움직임 데이터는 허벅지, 정강이 및 발목에 각각 상기 관성 센서 장착하여 측정 데이터를 기반으로 관절 각도 및 가속도 값을 계산하고, 상기 압력 센서를 이용하여 지면 반력을 측정할 수 있다.In addition, the lower extremity movement data may be mounted on the thigh, shin, and ankle, respectively, with the inertial sensor to calculate joint angle and acceleration values based on the measured data, and measure the ground reaction force using the pressure sensor.
또한, 상기 경근은 족태양경근, 족양명경근, 족소양경근을 포함하며, 상기 족태양경근은 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고, 상기 족양명경근은 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며, 상기 족소양경근은 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함할 수 있다.In addition, the sphincter of the foot includes the sphincter of the foot, the sphincter of the foot, and the sphincter of the foot, the gluteus maximus of the foot includes a gluteus maximus, a hamstring, and a gastrocnemius, and the foot sphincter of the foot includes the sphincter of the foot It includes the rectus femoris and the tibialis anterior, and the levator sphincter muscle may include the gluteus minimus, the vastus lateralis (Vastus lateralis) and the tibialis anterior.
상기와 같은 본 발명의 경근 활성도 평가 장치 및 방법은 간단한 구조의 장치만으로도 사용자의 비대칭 보행을 감지할 수 있다.As described above, the apparatus and method for evaluating cervical muscle activity of the present invention can detect the user's asymmetrical gait with only a device having a simple structure.
또한, 경근 별 활성도를 평가하여 치료를 위한 구체적인 가이드를 제공할 수 있다.In addition, it is possible to provide a specific guide for treatment by evaluating the activity of each cervical muscle.
또한, 경근 별 활성도를 이용하여 침 또는 뜸 등의 한의학적 치료를 수행할 수 있다.In addition, oriental medicine treatment such as acupuncture or moxibustion can be performed using the activity of each light root.
또한, 경근 별 활성도를 이용하여 외과적 수술결과 예측 및 가상의 환경에서 수술을 진행에 도움이 될 수 있다.In addition, it can be helpful in predicting surgical results and performing surgery in a virtual environment by using the activity of each cervical muscle.
도 1은 본 발명의 일 실시예에 따른 경근 활성도 측정 장치에 대한 블록다이어그램이다.1 is a block diagram of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 경근 활성도 측정 장치의 시뮬레이션 모델 형성에 대한 블록다이어그램이다.2 is a block diagram for forming a simulation model of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 경근 활성도 측정 장치의 센서의 구성 및 측정 데이터에 관한 도면이다.3 is a diagram of a sensor configuration and measurement data of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 경근 활성도 측정 장치에서의 근육활성도 산출 방법과 관련된 도면이다.4 is a view related to a method for calculating muscle activity in the apparatus for measuring cervical muscle activity according to an embodiment of the present invention.
도 5a 내지 5d는 연령별 근전도 데이터와 측정 데이터 간의 유사도를 나타내는 도면이다.5A to 5D are diagrams illustrating a degree of similarity between EMG data and measured data for each age.
도 6a 내지 6c는 본 발명의 일 실시예에서 이용되는 경근을 나타내는 도면이다.6A to 6C are diagrams showing the cervical root used in an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 경근 활성도 측정을 위한 시뮬레이션 모델 형성 방법에 대한 순서도이다.7 is a flowchart of a method of forming a simulation model for measuring carotid muscle activity according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 경근 활성도 측정 방법에 대한 순서도이다.8 is a flowchart of a method for measuring carotid muscle activity according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that this does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. In describing the present invention, in order to facilitate the overall understanding, the same reference numerals are used for the same components in the drawings, and duplicate descriptions of the same components are omitted.
본 발명은 뇌출혈, 교통사고 및 선천성 장애/기형 등에 의해 보행 시 비대칭성 보행이 발생하는 환자를 위한 발명이나, 이에 한정하지 않고 일반적인 사용자의 보행 상태의 점검에도 적용 가능함은 물론 더 나아가 보행을 실시하는 동물류에도 적용할 수 있다. 또한, 이하에서는 동물을 포함하고는 있으나, 일반적으로 사람에게 적용될 수 있는 발명이므로 통칭하여 '사용자'로 명명하여 설명하도록 한다.The present invention is an invention for a patient whose asymmetrical gait occurs when walking due to cerebral hemorrhage, traffic accident, and congenital disorder / deformity, etc. It can also be applied to animals. In addition, although animals are included below, since the invention is generally applicable to humans, it will be collectively referred to as 'users' to be described.
도 1은 본 발명의 일 실시예에 따른 경근 활성도 측정 장치에 대한 블록다이어그램이다.1 is a block diagram of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
경근 활성도 측정 장치는 측정부(110), 계산부(120), 평가부(130) 및 시뮬레이션 모델(140)을 포함할 수 있다. The apparatus for measuring carotid muscle activity may include a measurement unit 110 , a calculation unit 120 , an evaluation unit 130 , and a simulation model 140 .
측정부(110)는 사용자의 보행 정보를 측정하기 위한 것으로, IMU(Inertial Measurement Unit) 센서(111) 및 압력 센서(112)를 포함할 수 있다.The measurement unit 110 is for measuring the user's gait information, and may include an Inertial Measurement Unit (IMU) sensor 111 and a pressure sensor 112 .
IMU 센서(111)는 사용자가 보행을 수행하며 골반, 대퇴, 하퇴 및 발이 연결되는 발목, 무릎 및 고관절의 구성에 따라 생성되는 5자유도의 하지관절 움직임을 측정하기 위해 도 3의 (a)와 같이 골반, 대퇴, 하퇴 및 발에 IMU 센서(111)을 장착하고 있으나, 이에 한정되지 않으며, 각 관절에도 위치시키거나 각 위치에 복수의 센서를 위치시키는 등의 다양한 형태를 가질 수 있다.The IMU sensor 111 as shown in FIG. 3 (a) in order to measure the movement of the lower extremity joint of 5 degrees of freedom generated according to the configuration of the ankle, knee, and hip joint where the pelvis, thigh, lower leg and foot are connected while the user walks. The IMU sensor 111 is mounted on the pelvis, thigh, lower leg, and foot, but is not limited thereto, and may have various forms, such as locating each joint or locating a plurality of sensors at each position.
IMU 센서(111)를 이용하여 관절의 각도, 가속도 및 요 레이트(yaw rate)를 측정할 수 있다.The angle, acceleration, and yaw rate of the joint may be measured using the IMU sensor 111 .
압력 센서(112)는 사용자가 지면을 누르는 힘(지면반력, force plate)을 측정할 수 있다. 압력 센서(112)는 도 3의 (a)와 같이 사용자의 발바닥에 부착하여 지면반력을 측정하거나, 압력 센서를 포함하는 매트 형태를 보행자의 보행 경로에 위치시켜 일반적 보행, 재활운동을 통해 실시하는 보행 등에 의해 발생하는 지면반력을 측정할 수 있다.The pressure sensor 112 may measure the force that the user presses on the ground (ground reaction force, force plate). The pressure sensor 112 is attached to the user's sole to measure the ground reaction force as shown in FIG. 3 (a), or a mat type including the pressure sensor is placed in the pedestrian's walking path to perform general walking and rehabilitation exercise. The ground reaction force generated by walking, etc. can be measured.
계산부(120)는 측정부(110)에서 측정된 보행 데이터를 기반으로 하지 근육들로부터 발생되는 관절의 모멘트(moment)인 하지 관절 토크 값을 산출할 수 있다. 구체적으로, 5 자유도를 가지는 하지 관절움직임에 대해 측정된 보행 데이터를 2차원 시상면(sagittal plane) 형태로 변환하고, 변환된 2차원 시상면에서 바라보는 라그랑지 운동 방정식(Lagrange equation of motion)을 사용하여 하지 각 관절의 관절 모멘트인 토크 값을 산출할 수 있다.The calculator 120 may calculate a lower extremity joint torque value, which is a joint moment generated from lower extremity muscles, based on the gait data measured by the measurer 110 . Specifically, the gait data measured for joint motion of the lower extremity with 5 degrees of freedom is converted into a two-dimensional sagittal plane form, and the Lagrange equation of motion viewed from the converted two-dimensional sagittal plane is obtained. It can be used to calculate the torque value, which is the joint moment of each joint of the lower extremity.
도 3의 우측은 좌측의 구성을 간략화한 것으로, 고관절을 중심으로 무릎 및 발목의 관절의 움직임을 2차원 시상면으로 표현한 것이다.The right side of FIG. 3 is a simplified configuration of the left side, and the movement of the knee and ankle joints around the hip joint is expressed in a two-dimensional sagittal plane.
라그랑지 운동 방정식을 사용하여 고관절(MH), 무릎(MK) 및 발목(MA)에 대한 토크 값은 하기의 수학식 1 내지 3을 통해 계산될 수 있다.Torque values for the hip joint (M H ), knee ( M K ), and ankle (MA ) using the Lagrangian equation of motion may be calculated through Equations 1 to 3 below.
Figure PCTKR2022005484-appb-img-000001
Figure PCTKR2022005484-appb-img-000001
Figure PCTKR2022005484-appb-img-000002
Figure PCTKR2022005484-appb-img-000002
Figure PCTKR2022005484-appb-img-000003
Figure PCTKR2022005484-appb-img-000003
상기 수학식 1 내지 3에서 θ1은 대퇴 관절 각도, θ2는 하퇴 움직임 각도, θ3은 발의 절대각도이고, FGRF는 지면 반력(Ground Reaction Force)이고, d는 각 세그먼트(대퇴, 하퇴 및 발)의 근위(proximal) 관절의 무게중심위치이고, x, y는 각 세그먼트의 무게중심 위치이고, r은 발목에서 지면 반력의 적용 지점간의 거리이고, m은 무게이고, c는 무게중심 위치이고, I는 무게 관성 모멘트일 수 있다.In Equations 1 to 3, θ 1 is the femoral joint angle, θ 2 is the movement angle of the lower leg, θ 3 is the absolute angle of the foot, F GRF is the ground reaction force, d is each segment (thigh, lower leg and is the position of the center of gravity of the proximal joint of the foot), x and y are the position of the center of gravity of each segment, r is the distance between the points of application of the ground reaction force at the ankle, m is the weight, and c is the position of the center of gravity , I may be the weight moment of inertia.
상기 수학식 1 내지 3에서 무게(m), 무게중심 위치(c) 및 무게 관성 모멘트(I)는 측정부(110)의 IMU 센서(111) 및 압력 센서(112)를 통해서는 측정할 수 없으며, 이러한 무게(m), 무게중심 위치(c) 및 무게 관성 모멘트(I)를 측정하기 위해서는 추가적으로 각 세그먼트의 길이 및 사용자의 체중이 추가적으로 필요할 수 있다.In Equations 1 to 3, the weight (m), the center of gravity position (c), and the weight moment of inertia (I) cannot be measured through the IMU sensor 111 and the pressure sensor 112 of the measuring unit 110 . , in order to measure the weight (m), the center of gravity position (c), and the weight moment of inertia (I), the length of each segment and the user's weight may be additionally required.
사용자의 각 세그먼트의 길이 및 체중의 정보가 획득되면, 무게(m), 무게중심 위치(c) 및 무게 관성 모멘트(I)는 하기의 수학식 4를 이용하여 계산할 수 있다.When information on the length and weight of each segment of the user is obtained, the weight (m), the position of the center of gravity (c), and the weight moment of inertia (I) can be calculated using Equation 4 below.
Figure PCTKR2022005484-appb-img-000004
Figure PCTKR2022005484-appb-img-000004
상기 수학식 4에서 P, R, K는 각각 무게 계수, 무게중심 계수, 무게 관성 모멘트 계수로서 이러한 계수의 값은 실험값으로 결정되며, 하기의 표 1과 같이 예시하여 정리될 수 있다.In Equation 4, P, R, and K are a weight coefficient, a center of gravity coefficient, and a weight moment of inertia coefficient, respectively, and the values of these coefficients are determined as experimental values, and may be exemplified as shown in Table 1 below.
Figure PCTKR2022005484-appb-img-000005
Figure PCTKR2022005484-appb-img-000005
상기 표 1의 아래첨자에서 d는 대퇴, p는 하퇴, CG는 무게중심을 의미할 수 있다.In the subscripts of Table 1, d may mean the thigh, p the lower leg, and CG may mean the center of gravity.
계산부(120)는 하지 관절 토크 값이 계산되면 사람의 일반적인 보행 이벤트에 대해 각 시점 별로 관절 모멘트를 구분할 수 있다. When the lower extremity joint torque value is calculated, the calculator 120 may classify the joint moment for each time point for a general gait event of a person.
계산부(120)는 각 시점 별로 관절 모멘트가 산출되면, 벡터 연산을 사용하여 해부학적 위치에 따른 각 근육들의 활성도를 계산할 수 있다.When the joint moment is calculated for each time point, the calculator 120 may calculate the activity of each muscle according to an anatomical position by using a vector operation.
각 근육들의 활성도는 벡터 연산을 이용한 근육의 모멘트 암(moment arm)을 구하는 방법을 이용하여 근육의 이는 곳(origin)과 닿는곳(insertion)을 기준으로 벡터값을 산출하여 구할 수 있다.The activity of each muscle can be obtained by calculating a vector value based on the origin and insertion of the muscle by using the method of obtaining the moment arm of the muscle using vector operation.
도 4는 본 발명의 일 실시예에 따른 경근 활성도 측정 장치에서의 근육활성도 산출 방법에 관한 것으로, 햄스트링 근육에 대한 근육 활성도를 예시하고 있다.4 is a method for calculating muscle activity in the apparatus for measuring cervical muscle activity according to an embodiment of the present invention, illustrating muscle activity for hamstring muscles.
햄스트링 근육에 대한 활성도는 하기의 수학식 5를 이용하여 계산할 수 있다.The activity for the hamstring muscles can be calculated using Equation 5 below.
Figure PCTKR2022005484-appb-img-000006
Figure PCTKR2022005484-appb-img-000006
상기 수학식 5에서
Figure PCTKR2022005484-appb-img-000007
는 햄스트링 근육에 대한 벡터 값으로서 햄스트링 근육에 대한 근육활성도를 의미하고, θ는 회전각도, l 분절의 길이를 의미하며, T는회전각도(θ)와 분절의 길이(l)에 대한 동차변환행렬 (homogeneous transformation matrix)을 의미할 수 있다.
In Equation 5 above
Figure PCTKR2022005484-appb-img-000007
is a vector value for the hamstring muscle, meaning the muscle activity for the hamstring muscle, θ is the rotation angle, l means the length of the segment, T is the homogeneous transformation matrix for the rotation angle (θ) and the length of the segment (l) (homogeneous transformation matrix).
다시 말하면, 본 발명의 일 실시예에서는 각 근육에 대한 근육활성도를 IMU센서(111) 및 압력 센서(112)를 통해 측정한 데이터를 기반으로 벡터 연산을 수행하여 구할 수 있으며, 햄스트링 근육 이외에도 다른 위치에서의 각각의 근육들에 대하여 부착 위치(origin, insertion)를 고려하여 상기 수학식 5와 같은 형태로 벡터 값을 연산하는 벡터 연산법을 활용하여 산출할 수 있다.In other words, in one embodiment of the present invention, the muscle activity for each muscle can be obtained by performing a vector operation based on data measured through the IMU sensor 111 and the pressure sensor 112, and other locations other than the hamstring muscle. It can be calculated by using a vector arithmetic method of calculating a vector value in the form of Equation 5 above in consideration of attachment positions (origin, insertion) for each muscle in .
평가부(130)는 시뮬레이션 모델(140) 및 계산부(120)에서 계산한 하지 관절 토크 값을 이용하여 사용자의 경근 별 활성도를 평가할 수 있다.The evaluation unit 130 may evaluate the user's activity for each cervical muscle by using the lower extremity joint torque value calculated by the simulation model 140 and the calculation unit 120 .
활성도란 비대칭 보행에 의해 발생되는 보행 비율로서, 건측(건강한 쪽 다리)의 보행에 대비하여 환측(마비된 쪽 다리)의 보행 비율이다.Activity refers to the gait ratio generated by asymmetric gait, and is the gait ratio of the affected side (paralyzed leg) compared to the gait on the unaffected side (healthy leg).
한의학에서의 경근은 오장육부와 연결되지 않고 운동기관과 연결되어 있다고 하고 있으며, 날실이 여러 개 엮여서 뼈를 묶는다는 동향적 해부생리학 이론이며, 경근은 경맥이나 경별 등 경락의 큰 흐름 속에 위치하고 있다고 설명한다.In oriental medicine, it is said that the gyeonggeun is not connected to the five internal organs but is connected to the motor organ, and it is a trending anatomical physiology theory that several warp threads are woven to bind the bones. do.
인체는 총 12개의 경근으로 구성되어 있고 근육으로 이루어져 있으며 골격을 이어 맞춰 여러 가지 움직임을 가능하게 하며 관절의 굴신이나 지체의 운동을 하게하여 신체의 이동을 가능하게 할 수 있다.The human body is composed of a total of 12 hard muscles, which are made up of muscles and connect the skeleton to enable various movements.
경근 이론에 따르면 인체는 보행을 위하여 족태양경근(足太陽經筋), 족양명경근(足陽明經筋) 및 족소양경근(足少陽經筋)을 이용하고 있으며, 본 발명에서는 하지의 근육들을 족태양경근, 족양명경근 및 족소양경근의 세 그룹으로 묶어 각각의 경근 별 활성도를 평가함으로써 침, 뜸, 경락, 추나 등 한의학적 치료를 위한 가이드로 활용될 수 있다.According to the light muscle theory, the human body uses the foot yang jyeonggeun (足太阳筋), the foot yangmyunggyeong muscle (足阳明经筋), and the foot yangjingyeong muscle (足少阳經筋) for walking, and in the present invention, the muscles of the lower extremities are used. It can be used as a guide for oriental medicine treatment such as acupuncture, moxibustion, meridian, chuna, etc. by evaluating the activity of each root by grouping them into three groups: the foot sphenoid muscle, the pediculus pedis, and the foot sphenoid muscle.
도 6a 내지 6c는 본 발명의 일 실시예에서 이용되는 경근을 나타내는 도면이다.6A to 6C are diagrams showing the cervical root used in an embodiment of the present invention.
도 6a는 족태양경근을 도시한 것으로, 족태양경근은 족태양지근(足太陽之筋)으로도 불리며, 새끼발가락에서 시작하여 바깥쪽 복사뼈로 이어지고, 비스듬히 올라가 무릎으로 이어진 뒤에 다리 바깥쪽을 따라 뒤꿈치로 이어지고 다시 뒤꿈치에서 올라가 오금(무릎이 구부려지는 다리 뒤쪽의 부분)으로 이어진다. 이러한 족태양경근은 양의학의 근육 분류에 따르면 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함할 수 있다.Fig. 6a shows the calcaneus of the foot, which is also called the calcaneus of the foot, which starts at the little toe and leads to the outer malleolus, goes up obliquely to the knee, and then to the heel along the outside of the leg. It rises again at the heel and leads to the popliteal (the part of the back of the leg where the knee bends). According to the muscle classification of veterinary medicine, these plantar tibialis muscles may include gluteus maximus, hamstring, and gastrocnemius.
도 6b는 족소양경근을 도시한 것으로, 족소양경근은 족소양지근(足少陽之筋)으로도 불리며, 넷째 발가락 끝에서 시작하여 바깥쪽 복사뼈로 이어지고, 경골(脛骨, tibia) 바깥쪽을 따라 올라가 무릎 바깥쪽으로 이어지며, 다시 허벅지 바깥쪽을 지나간다. 이러한 족소양경근은 양의학의 근육 분류에 따르면 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함할 수 있다.Figure 6b shows the quadriceps leg muscle, which is also called the quadriceps leg muscle, starts at the tip of the fourth toe and leads to the outer malleolus, along the outside of the tibia. It goes up to the outside of the knee and then passes through the outside of the thigh. According to the muscle classification of veterinary medicine, the sphincter of the foot may include the rectus femoris and the tibialis anterior.
도 6c는 족양명경근을 도시한 것으로, 족양명지근(足陽明之筋)으로도 불리며, 셋째발가락에서 시작하여 발등으로 이어지고, 비스듬히 바깥쪽으로 올라가 비골(
Figure PCTKR2022005484-appb-img-000008
)에 이어지며, 다시 무릎 바깥쪽으로 올라간 뒤에 앞쪽 허벅지와 바깥쪽 허벅지로 갈라져 올라가 비추(
Figure PCTKR2022005484-appb-img-000009
)로 이어지며 협부(脇部)룰 따라 올라가 척추로 이어진다. 이러한 족양명경근은 양의학의 근육 분류에 따르면 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함할 수 있다.
Figure 6c shows the jogyang myeonggyeonggeun, also called jogyangmyungjigeun (足阳明之筋), starts at the third toe and leads to the dorsum of the foot, and ascends obliquely outward to the fibula (
Figure PCTKR2022005484-appb-img-000008
), and after going up to the outside of the knee again, it splits into the front thigh and the outer thigh
Figure PCTKR2022005484-appb-img-000009
) and goes up along the isthmus and leads to the spine. According to the muscle classification of western medicine, the jojoyangmyeonggyeong muscle may include the gluteus minimus, the vastus lateralis (Vastus lateralis), and the tibialis anterior.
더하여 이외에도 족태음경근(足太陰經筋), 족소음경근(足少陰經筋), 족궐음경근(足厥陰經筋)에 대해서도 상기 토크 값을 기반으로 분류 및 활성도를 평가할 수 있다.In addition, classification and activity can also be evaluated based on the torque value for the foot piriformis muscle (足太陰筋筋), the foot piriformis muscle (足少陰經筋), and the foot piriformis muscle (足厥陰經筋).
도면 상에서 도시하지는 않았으나 경근 별 활성도를 스코어 형태, 그래프 형태, 백분율, 절댓값 등 다양한 형태로 사용자에게 디스플레이(미도시)를 통해 제공될 수 있으며, 내/외부 저장장치(미도시)에 저장되어 지속적 관찰에 이용될 수 있다.Although not shown in the drawing, the activity of each ligament may be provided to the user in various forms such as score form, graph form, percentage, absolute value, etc. can be used for
예를 들어, 평가부(130)에서 각 경근에 대한 활성도 평가가 완료되면 사용자에게 디스플레이(미도시)를 통해 각 관절에 대한 토크 값, 관절 각도 등에 대한 측정 및 계산된 정보를 제공하는 한편, 인체 모형에 각 경근에 대한 정보가 나타난 뒤에 각 경근 별 활성도를 도시하는 한편, 자세히 보기 기능을 추가하여 보행의 흐름에 따라 경근의 보행 시간대 별 건측과 환측의 보행 정보 및 활성화 비율을 그래프로 도시하여 구체적인 정보를 제공할 수 있다. For example, when the evaluation unit 130 completes the evaluation of the activity for each cervical muscle, the user is provided with measured and calculated information on the torque value and the joint angle for each joint through a display (not shown), while the human body After the information on each spongy muscle appears in the model, the activity of each spongy muscle is shown, while the detail view function is added to graph the gait information and activation ratio of the healthy side and the affected side according to the gait time of the hard muscle according to the gait flow. information can be provided.
도 2는 본 발명의 일 실시예에 따른 경근 활성도 측정 장치의 시뮬레이션 모델 형성에 대한 블록다이어그램이다.2 is a block diagram for forming a simulation model of an apparatus for measuring carotid muscle activity according to an embodiment of the present invention.
시뮬레이션 모델(140)은 모델 측정부(210), 모델 계산부(220) 및 모델 형성부(230)을 포함할 수 있다. The simulation model 140 may include a model measuring unit 210 , a model calculating unit 220 , and a model forming unit 230 .
여기에서 모델 측정부(210) 및 모델 계산부(220)는 도 1의 경근 활성도 측정 장치에서 도시하고 있는 측정부(110) 및 계산부(120)와 동일한 장비를 이용할 수 있어 본 발명의 일 실시예에서는 동일한 이름을 사용하였으나, 서로 다른 장비를 이용하여 생성할 수도 있다.Here, the model measurement unit 210 and the model calculation unit 220 can use the same equipment as the measurement unit 110 and the calculation unit 120 shown in the apparatus for measuring carotid muscle activity of FIG. 1 , so an embodiment of the present invention In the example, the same name is used, but it can be created using different equipment.
모델 측정부(210)는 IMU 센서(211), 압력 센서(212) 및 근전도 센서(213)를 포함할 수 있다.The model measurement unit 210 may include an IMU sensor 211 , a pressure sensor 212 , and an EMG sensor 213 .
IMU 센서(211)는 사용자가 보행을 수행하며 골반, 대퇴, 하퇴 및 발이 연결되는 발목, 무릎 및 고관절의 구성에 따라 생성되는 5자유도의 하지관절 움직임을 측정하기 위해 도 3과 같이 골반, 대퇴, 하퇴 및 발에 IMU 센서(211)을 장착하고 있으나, 이에 한정되지 않으며, 각 관절에도 위치시키거나 각 위치에 복수의 센서를 위치시키는 등의 다양한 형태를 가질 수 있다.The IMU sensor 211 measures the movement of the lower extremity joint of 5 degrees of freedom generated according to the configuration of the ankle, knee, and hip joint where the pelvis, thigh, lower leg, and foot are connected while the user walks, as shown in FIG. 3 . Although the IMU sensor 211 is mounted on the lower leg and the foot, it is not limited thereto, and may have various forms, such as locating each joint or locating a plurality of sensors at each position.
IMU 센서(211)를 이용하여 관절의 각도, 가속도 및 요 레이트(yaw rate)를 측정할 수 있다.The angle, acceleration, and yaw rate of the joint may be measured using the IMU sensor 211 .
압력 센서(212)는 사용자가 지면을 누르는 힘(지면반력, force plate)을 측정할 수 있다. 압력 센서(212)는 도 3과 같이 사용자의 발바닥에 부착하여 지면반력을 측정하거나, 압력 센서를 포함하는 매트 형태를 보행자의 보행경로에 위치시켜 일반적 보행, 재활운동을 통해 실시하는 보행 등에 의해 발생하는 지면반력을 측정할 수 있다.The pressure sensor 212 may measure the force that the user presses on the ground (ground reaction force, force plate). The pressure sensor 212 is attached to the user's sole of the foot as shown in FIG. 3 to measure the ground reaction force, or a mat including the pressure sensor is placed on the pedestrian's walking path and is caused by general walking or walking performed through rehabilitation exercise. The ground reaction force can be measured.
근전도 센서(213)는 사용자의 하지 근전도를 측정할 수 있다. 근전도는 전극을 이용하여 특정 근육 내부의 전기적 활동 및 전기 자극에 의한 신경 전도 속도를 측정하여 근육의 병리를 진단할 수 있으므로 실제 사용자 하지 근육의 움직임을 실측할 수 있다.The EMG sensor 213 may measure the user's lower extremity EMG. Electromyography can diagnose the pathology of a muscle by measuring the electrical activity inside a specific muscle and the nerve conduction speed due to electrical stimulation using electrodes, so that the movement of the muscles of the lower extremities of the actual user can be measured.
근전도 센서(213)는 상기 설명한 각 경근의 실제 움직임을 측정할 수 있는 위치에 하나 이상 장착하여 측정할 수 있다.One or more EMG sensors 213 may be mounted and measured at positions capable of measuring the actual movement of each of the above-described cervical muscles.
또한, 근전도 센서(213)는 건측과 환측 모두 착용하여 건측의 보행 정보 및 환측의 보행 정보를 측정할 수 있으며, 또 다른 방법으로는 유사 나이대의 보행 능력을 건측 보행 정보를 활용하고, 환측의 근전도만을 측정하여 실측치로 활용할 수 있다.In addition, the EMG sensor 213 can be worn on both the unaffected side and the unaffected side to measure gait information on the unaffected side and gait information on the affected side. It can only be measured and used as an actual measured value.
모델 계산부(220)는 근전도 센서(213)의 측정 결과를 기반으로 각 경근의 활성도를 실측한 실측치를 생성할 수 있다.The model calculator 220 may generate an actual measured value of the activity of each cervical muscle based on the measurement result of the EMG sensor 213 .
또한, 모델 계산부(220)는 상기 도 1의 계산부(120)과 동일하게 모델 측정부(210)의 측정 결과를 이용하여 사용자의 하지 관절에 대한 하지 관절 토크 값을 산출할 수 있다. 모델 계산부(220)는 하지 관절 토크 값을 기반으로 각 경근에 대한 경근 활성도 추정치를 계산할 수 있다.Also, the model calculation unit 220 may calculate a lower extremity joint torque value for the user's lower extremity joint by using the measurement result of the model measuring unit 210 in the same manner as the calculation unit 120 of FIG. 1 . The model calculation unit 220 may calculate an estimate of the activity of each cartilage muscle based on the joint torque value of the lower extremity.
모델 형성부(230)는 모델 계산부(220)로부터 추정치와 실측치를 받아 시뮬레이션 모델(140)을 형성할 수 있다.The model forming unit 230 may receive the estimated value and the actual measured value from the model calculating unit 220 to form the simulation model 140 .
도 5a 내지 5d는 근전도 데이터 실측치와 측정부의 데이터로 계산한 추정치 간의 비교 그래프이다.5A to 5D are comparison graphs between actual EMG data and estimated values calculated using data from a measurement unit.
도 5a, 도 5b는 20대와 70대의 허벅지 바깥쪽 근육인 외측광근(Vastus lateralis)의 근전도(EMG) 및 추정치에 대한 것이며, 도 5c, 도 5d는 20대와 70대의 하퇴 앞쪽 근육인 전경골근(Tibialis anterior)의 근전도(EMG) 및 측정치에 대한 것이다.Figures 5a and 5b are about the electromyography (EMG) and estimates of the outer thigh muscle (Vastus lateralis) in the 20s and 70s, and Figures 5c and 5d are the anterior thigh muscles in the 20s and 70s. It is about electromyography (EMG) and measurements of the tibialis anterior.
도 5a 내지 5d에서 확인할 수 있듯이 근육이 전진(Forward) 동작을 수행할 때와 지지(Inverse)동작을 수행할 때의 추정치가 상이하나, 근전도(실측치)는 일정한 것을 확인할 수 있다. 또한, 추정치와 실측치 간에 유사한 패턴을 가지고 있으나 정확하게 겹쳐지지 않아 보정이 필요함을 확인할 수 있다.As can be seen from FIGS. 5A to 5D , it can be confirmed that the EMG (actual value) is constant, although the estimated values when the muscle performs a forward motion and when the muscle performs an inverse motion are different. In addition, it can be confirmed that although there is a similar pattern between the estimated value and the measured value, it does not overlap precisely, so correction is required.
추정치의 보정을 통해 실측치와 유사하도록 가중치를 부여하기 위하여 다양한 방법을 이용할 수 있다. 구체적으로, LUT(look up table), 특정 파라미터 등을 이용한 수학적 모델을 이용하거나 딥러닝, 신경망, 기계학습, 결정 트리, SVM(Support Vector Machine) 등의 학습 모델을 이용하여 학습을 통해 시뮬레이션 모델을 형성할 수 있으며, 추정치와 실측치 간에 비례 관계를 설명하여 경근 별 활성도를 제시할 수 있다면 모든 방법을 활용할 수 있다.Various methods can be used to assign weights to be similar to the actual values through correction of the estimated values. Specifically, a simulation model is developed through learning using a mathematical model using a look up table (LUT), specific parameters, etc., or learning models such as deep learning, neural network, machine learning, decision tree, and SVM (Support Vector Machine). All methods can be used as long as the activity of each muscle can be presented by explaining the proportional relationship between the estimated value and the actual value.
시뮬레이션 모델(140)은 각 사용자 별로 최초 1회의 근전도의 측정 후 사용자 별 맞춤 경근 활성도 모델을 형성할 수 있다.The simulation model 140 may form a customized muscle activity model for each user after the first EMG measurement for each user.
도 7은 본 발명의 일 실시예에 따른 경근 활성도 측정을 위한 시뮬레이션 모델 형성 방법에 대한 순서도이다.7 is a flowchart of a method of forming a simulation model for measuring carotid muscle activity according to an embodiment of the present invention.
IMU 센서, 압력 센서 및 근전도 센서를 이용하여 하지의 움직임 데이터를 수집할 수 있다(S110).Motion data of the lower extremities may be collected by using the IMU sensor, the pressure sensor, and the EMG sensor (S110).
하지의 움직임 데이터는 IMU 센서는 하지의 분절(골반, 대퇴, 하퇴 및 발)에 하나 이상 위치시켜 관절 각도, 가속도 및 요 레이트(yaw rate)를 측정하고, 압력 센서를 이용하여 지면 반력을 측정하며, 근전도 센서를 이용하여 각 근육의 근전도를 측정할 수 있다.For movement data of the lower extremities, the IMU sensor places one or more of the lower extremity segments (pelvis, thigh, lower leg, and foot) to measure joint angle, acceleration, and yaw rate, and uses a pressure sensor to measure ground reaction force. , an EMG sensor can be used to measure the EMG of each muscle.
움직임 데이터 중 관절 각도, 가속도, 요 레이트, 지면 반력 데이터를 이용하여 하지의 움직임에 대해 경근 별 활성도 추정치를 계산할 수 있다(S120).It is possible to calculate an activity estimate for each cartilage with respect to the movement of the lower extremity using joint angle, acceleration, yaw rate, and ground reaction force data among the motion data (S120).
경근 별 활성도를 추정하기 위해서는 라그랑지 운동 방정식을 이용하며, 관절 각도, 가속도, 요 레이트, 지면 반력 데이터를 라그랑지 운동 방정식에 대입하여 하지 관절에 대한 토크 값을 계산하고, 토크 값을 기반으로 각 경근에 대한 활성도 추정치를 계산할 수 있다.To estimate the activity of each cartilage muscle, the Lagrangian motion equation is used, and the joint angle, acceleration, yaw rate, and ground reaction force data are substituted into the Lagrangian motion equation to calculate the torque value for the lower extremity joint, and each An estimate of activity for the ligaments can be calculated.
경근은 인체의 근육을 그룹(group)화한 것으로서 인체에는 총 12개의 12경근이 있으며, 이 중 하체의 움직임을 형성하는 족태양경근, 족소양경근 및 족양명경근에 대해 추정치를 계산할 수 있다.The kyphoid muscle is a grouping of the muscles of the human body, and there are a total of 12 pedicles in the human body. Among them, estimates can be calculated for the calcaneus foot, calcaneus foot, and calcaneus foot muscle, which form the movement of the lower body.
족태양경근은 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고, 족소양경근은 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며, 족양명경근은 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함할 수 있다.The sphincter of the foot includes the gluteus maximus, hamstring, and gastrocnemius, the sphincter of the foot includes the rectus femoris and and the tibialis anterior, and the tibialis anterior The gluteus minimus (Gluteus minimus), the vastus lateralis (Vastus lateralis) and the tibialis anterior (Tibialis anterior) may be included.
움직임 데이터 중 근전도 센서를 통해 측정한 근육 별 근전도 데이터를 기반으로 경근 별 실측치를 계산할 수 있다(S130).Based on the EMG data for each muscle measured through the EMG sensor among the movement data, an actual value for each hard muscle may be calculated (S130).
근전도 센서는 각 근육의 근전도를 바탕으로 근육의 움직임을 실측할 수 있으므로 상기와 같은 족태양경근, 족소양경근 및 족양명경근에 부속되어 있는 근육들의 움직임을 바탕으로 족태양경근, 족소양경근 및 족양명경근의 활성도를 실측한 실측치를 계산할 수 있다.Since the EMG sensor can measure the movement of muscles based on the EMG of each muscle, based on the movements of the muscles attached to the sphincter of the foot, the sphincter of the foot, and the sphincter of the foot It is possible to calculate the actual measured value of the activity of the cervical muscle.
추정치와 실측치 계산이 완료되면 추정치와 실측치 데이터를 이용하여 시뮬레이션 모델을 생성할 수 있다(S140).When the calculation of the estimated value and the actual value is completed, a simulation model may be generated using the estimated value and the actual value data ( S140 ).
시뮬레이션 모델은 추정치가 실측치와 최대한 유사한 결과를 제공할 수 있도록 추정치에 가중치를 부여하는 방법을 이용할 수 있으며, 이를 위해 수학적 모델, 딥러닝, 신경망, 결정 트리, SVM(Support Vector Machine) 등의 다양한 방법을 활용할 수 있다.The simulation model can use a method of weighting the estimate so that the estimate can provide a result that is as similar to the actual value as possible. can utilize
도 7과 같이 시뮬레이션 모델을 생성하면 이를 이용하여 도 8과 같이 사용자의 하지 경근 별 활성도를 측정할 수 있다.When a simulation model is generated as shown in FIG. 7 , the activity of each user's lower extremity tendons can be measured using the simulation model as shown in FIG. 8 .
IMU 센서 및 압력 센서를 이용하여 하지의 움직임 데이터를 수집할 수 있다(S210).Movement data of the lower extremities may be collected using the IMU sensor and the pressure sensor (S210).
하지의 움직임 데이터는 IMU 센서는 하지의 분절(골반, 대퇴, 하퇴 및 발)에 하나 이상 위치시켜 관절 각도, 가속도 및 요 레이트(yaw rate)를 측정하고, 압력 센서를 이용하여 지면 반력을 측정할 수 있다.For movement data of the lower extremities, the IMU sensor is positioned on one or more segments of the lower extremities (pelvis, thigh, lower leg and foot) to measure joint angle, acceleration and yaw rate, and the pressure sensor is used to measure ground reaction force. can
하지의 움직임 데이터 측정이 완료되면 하지 움직임 데이터를 이용하여 하지 관절 토크 값을 계산할 수 있다(S220).When the measurement of the motion data of the lower extremities is completed, the joint torque value of the lower extremities may be calculated using the motion data of the lower extremities (S220).
하지 관절 토크 값은 라그랑그 운동 방정식을 이용하여 계산될 수 있으며, 이에 대해 자세한 내용은 상기 계산부(120)에서 자세하게 설명하였으므로 여기에서는 설명을 생략하도록 한다.The joint torque value of the lower extremity may be calculated using the Lagrangian motion equation, and the detailed information thereof has been described in detail in the calculation unit 120 , so a description thereof will be omitted.
하지 관절 토크 값의 계산이 완료되면 시뮬레이션 모델을 이용하여 하지 경근 별 활성도를 계산할 수 있다(S230).When the calculation of the joint torque value of the lower extremity is completed, the activity of each cartilage muscle of the lower extremity can be calculated using the simulation model (S230).
활성도는 건측에 대비한 환측의 보행 능력으로서, 백분위 또는 스코어로 표현될 수 있다.Activity is the walking ability of the affected side compared to the unaffected side, and may be expressed as a percentile or a score.
또한, 도면 상에서는 개시하고 있지 않으나, 계산된 경근 별 활성도는 디스플레이(미도시)를 통해 정보를 제공할 수 있다. 제공되는 정보는 상기 S210 단계에서 측정한 하지 움직임 데이터, 상기 S220 단계에서 계산된 하지 관절 토크 값 및 상기 S230 단계에서 계산된 경근 별 활성도 데이터를 모두 포함할 수 있으며, 필요에 따라 인체 모형, 그래프, 도표, 영상 등 다양한 방법을 이용하여 제공될 수 있으며, 또한, 제공되는 데이터는 모두 저장장치(미도시)에 저장되어 향후 지속적으로 기록, 관찰을 통한 빅데이터 수집에 이용될 수 있다.In addition, although not disclosed in the drawings, the calculated activity for each hard muscle may provide information through a display (not shown). The information provided may include all of the lower extremity movement data measured in step S210, the joint torque value of the lower extremities calculated in step S220, and activity data for each cartilage calculated in step S230, and if necessary, a human body model, graph, It can be provided using various methods such as diagrams and images, and all of the provided data is stored in a storage device (not shown) and can be used for collecting big data through continuous recording and observation in the future.
이상에서 본 발명에 따른 바람직한 실시예의 경근 환성도 평가 장치 및 방법을 이용하면 종래 근전도 센서 및 카메라를 이용하지 않는 간단한 구조 및 장치만으로 사용자의 비대칭 보행을 감지할 수 있다.As described above, by using the apparatus and method for evaluating cervical muscle relief according to a preferred embodiment of the present invention, the user's asymmetrical gait can be detected only with a simple structure and device that does not use the conventional EMG sensor and camera.
또한, 경근 별 활성도를 평가하여 치료를 위한 구체적인 가이드를 제공할 수 있다.In addition, it is possible to provide a specific guide for treatment by evaluating the activity of each cervical muscle.
또한, 경근 별 활성도를 이용하여 침 또는 뜸 등의 한의학적 치료를 수행할 수 있다.In addition, oriental medicine treatment such as acupuncture or moxibustion can be performed using the activity of each light root.
또한, 경근 별 활성도를 이용하여 외과적 수술결과 예측 및 가상의 환경에서 수술을 진행에 도움이 될 수 있다.In addition, it can be helpful in predicting surgical results and performing surgery in a virtual environment by using the activity of each cervical muscle.
상술한 실시 예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다.Features, structures, effects, etc. described in the above-described embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to one embodiment. Furthermore, features, structures, effects, etc. illustrated in each embodiment can be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong.
따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. 또한, 이상에서 실시 예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention. In addition, although the embodiments have been described above, these are merely examples and do not limit the present invention, and those of ordinary skill in the art to which the present invention pertains are exemplified above in a range that does not depart from the essential characteristics of the present embodiment. It can be seen that various modifications and applications that have not been made are possible. For example, each component specifically shown in the embodiments may be implemented by modification. And differences related to these modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.
110: 측정부110: measurement unit
120: 계산부120: calculator
130: 평가부130: evaluation unit
140: 시뮬레이션 모델140: simulation model
210: 모델 측정부210: model measurement unit
220: 모델 계산부220: model calculation unit
230: 모델 형성부230: model forming unit

Claims (13)

  1. 사용자의 보행을 측정하는 측정부;a measurement unit for measuring the user's gait;
    상기 측정부의 측정 결과를 이용하여 상기 사용자의 하지관절 토크 값을 산출하는 계산부; 및a calculation unit for calculating the user's lower extremity joint torque value by using the measurement result of the measuring unit; and
    상기 하지관절 토크 값을 기반으로 상기 사용자 하지의 경근(經筋) 별 활성도를 평가하는 평가부; an evaluation unit that evaluates the activity of each of the user's lower extremities based on the torque value of the lower extremity joint;
    를 포함하는 경근 활성도 평가 장치.A device for evaluating cervical muscle activity comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 측정부는,The measurement unit,
    상기 사용자 하지의 분절(골반, 대퇴, 하퇴 및 발)에 장착하여 관절 각도, 가속도 및 요 레이트(yaw rate)를 측정하는 관성 센서; 및an inertial sensor for measuring joint angle, acceleration, and yaw rate by being mounted on the user's lower limb segments (pelvis, thigh, lower leg and foot); and
    상기 사용자의 보행에 의한 지면 반력을 측정할 수 있는 압력 센서;a pressure sensor capable of measuring a ground reaction force caused by the walking of the user;
    를 포함하는 경근 활성도 평가 장치.A device for evaluating cervical muscle activity comprising a.
  3. 제1항에 있어서,According to claim 1,
    상기 계산부는 라그랑지 운동 방정식(Lagrange equation of motion)을 기반으로 상기 하지관절 토크 값을 계산하는 것을 특징으로 하는 경근 활성도 평가 장치.wherein the calculator calculates the torque value of the lower extremity joint based on the Lagrange equation of motion.
  4. 제1항에 있어서,According to claim 1,
    상기 평가부는 역동역학 기반의 시뮬레이션 모델을 기반으로 활성도를 평가하며,The evaluation unit evaluates the activity based on a dynamic dynamics-based simulation model,
    상기 시뮬레이션 모델은 하지 관절 각도, 지면 반력 및 근전도를 측정하여 역동역학 해석 및 근육 활성도 추정치를 생성하고, The simulation model measures the joint angle of the lower extremities, the ground reaction force, and the electromyography to generate dynamic dynamics analysis and muscle activity estimates,
    상기 추정치와 실측치 간의 비교를 통해 모델을 생성하는 것을 특징으로 하는 경근 활성도 평가 장치.An apparatus for evaluating cervical muscle activity, characterized in that the model is generated by comparing the estimated value and the measured value.
  5. 제1항에 있어서,According to claim 1,
    상기 경근 별 활성도는, The activity of each root muscle is,
    족태양경근, 족양명경근, 족소양경근 각각의 활성도를 건측과 환측의 활성화 비율을 평가하는 것을 특징으로 하는 경근 활성도 평가 장치.An apparatus for evaluating shin muscle activity, characterized in that the activation ratio of the unaffected side and the affected side is evaluated for each activity of the pediculus serratus muscle, the pediculus pedis, and the pediculus pedis.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 족태양경근은 새끼발가락에서 시작하여 바깥쪽 복사뼈, 무릎으로 올라가 다리의 바깥쪽으로 뒤꿈치로 이어지며 다시 뒤꿈치에서 올라가 오금으로 연결되는 경근으로 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고,The tibialis plantar muscle starts from the little toe, goes up to the outer ankle bone, goes up to the knee, and continues to the outside of the leg, and then goes up from the heel and connects to the popliteal muscle. ), including
    상기 족양명경근은 셋째발가락에서부터 발등, 비골, 무릎바깥쪽으로올라가 앞쪽허벅지와 바깥쪽허벅지로 갈라져 올라가는 경근으로 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며,The pediculus femoris is a cervical muscle that rises from the third toe to the outside of the instep, fibula, and knee and splits up into the front thigh and the outer thigh, and includes the rectus femoris and Tibialis anterior,
    상기 족소양경근은 넷째발가락에서부터 복사뼈, 경골(tibia)을 지나 무릎 바깥쪽으로 올라가며, 허벅지 바깥쪽을 지나가는 경근으로 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함하는 것을 특징으로 하는 경근 활성도 평가 장치.The quadriceps muscle rises from the fourth toe to the outside of the knee through the malleolus and tibia, and is a gluteus minimus, Vastus lateralis, and Tibialis anterior as a ligament that passes outside the thigh. Gyeong muscle activity evaluation device, characterized in that it comprises.
  7. 복수의 센서를 이용하여 사용자의 하지 관절 각도, 지면 반력 및 하지 근전도를 측정하는 모델 측정부;a model measurement unit for measuring a user's lower extremity joint angle, ground reaction force, and lower extremity EMG using a plurality of sensors;
    상기 측정부의 하지 관절 각도 및 지면 반력 측정값을 이용으로 경근 활성도 추정치를 계산하고, 상기 하지 근전도를 기반으로 경근 활성도 실측치를 계산하는 모델 계산부; 및a model calculation unit that calculates an estimate of cervical muscle activity by using the measured value of the joint angle and ground reaction force of the measurement unit, and calculates an actual measured value of cervical muscle activity based on the electromyogram of the lower extremity; and
    상기 추정치와 상기 실측치를 비교하여 시뮬레이션 모델을 개발하는 모델 형성부;a model forming unit for developing a simulation model by comparing the estimated value with the measured value;
    를 포함하는 경근 활성도 평가 모델.A cartilaginous muscle activity evaluation model comprising a.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 계산부는 하지 관절 각도 및 지면 반력 데이터를 기반으로 하지 관절 토크 값을 계산하여 상기 경근 활성도 추정치를 계산하는 것을 특징으로 하는 경근 활성도 평가 모델.Wherein the calculator calculates the lower extremity joint torque value based on the lower extremity joint angle and ground reaction force data to calculate the estimate of the kinematic activity.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 계산부 및 상기 모델 형성부는The calculation unit and the model forming unit
    족태양경근, 족양명경근, 족소양경근의 세 개의 그룹으로 구성되는 근육 그룹에 대하여 계산 및 비교를 수행하며,Calculations and comparisons are performed on the muscle groups consisting of three groups: the tibialis foot, sphincter of the foot, and sphincter of the foot.
    상기 족태양경근은 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고,The plantar clavicle muscle includes a gluteus maximus (Gluteus maximus), a hamstring (Hamstring) and a calf muscle (Gastrocnemius),
    상기 족양명경근은 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며,The foot yangmyeonggyeong muscle includes the rectus femoris (Rectus femoris) and the tibialis anterior (Tibialis anterior),
    상기 족소양경근은 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함하는 것을 특징으로 하는 경근 활성도 평가 모델.The sphincter of the foot is a gluteus minimus (Gluteus minimus), a large lateral muscle (Vastus lateralis) and a tibialis anterior muscle activity evaluation model, characterized in that it includes.
  10. 제7항에 있어서,8. The method of claim 7,
    상기 시뮬레이션 모델은 개인 맞춤형, 연령 별, 성별, 증상 별 통계를 기반으로 구성될 수 있으며, 파라미터 기반의 수학모델, 딥러닝, 신경망, 결정 트리, SVM(Support Vector Machine) 중 어느 하나를 이용하여 학습 및 동작을 수행하는 것을 특징으로 하는 경근 활성도 평가 모델.The simulation model can be configured based on statistics for each individual, age, gender, and symptom, and is learned using any one of a parameter-based mathematical model, deep learning, neural network, decision tree, and SVM (Support Vector Machine). And carotid activity evaluation model, characterized in that performing the action.
  11. 관성 센서 및 압력 센서를 이용하여 사용자의 하지 움직임 데이터를 측정하는 단계;measuring the user's lower extremity movement data using an inertial sensor and a pressure sensor;
    상기 하지 움직임 데이터를 기반으로 하지의 경근 별 활성도 추정치를 계산하는 단계;calculating an activity estimate for each cartilage muscle of the lower extremity based on the lower extremity movement data;
    상기 사용자의 근전도를 측정하여 경근 별 실측값을 계산하는 단계; 및measuring the user's EMG and calculating an actual measured value for each hard muscle; and
    상기 추정치 및 실측값을 기반으로 시뮬레이션 모델을 생성하는 단계; generating a simulation model based on the estimated value and the measured value;
    를 포함하며, includes,
    상기 사용자의 하지 움직임 데이터 및 상기 시뮬레이션 모델을 이용하여 상기 사용자의 경근 별 활성도를 평가하는 단계;evaluating the activity of each of the user's cervical muscles using the user's lower extremity movement data and the simulation model;
    를 더 포함하는 경근 활성도 평가 방법.A method for evaluating cervical muscle activity further comprising a.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 하지 움직임 데이터는The lower extremity movement data is
    허벅지, 정강이 및 발목에 각각 상기 관성 센서 장착하여 측정 데이터를 기반으로 관절 각도 및 가속도 값을 계산하고, 상기 압력 센서를 이용하여 지면 반력을 측정하는 것을 특징으로 하는 경근 활성도 평가 방법.A method for evaluating carob muscle activity, characterized in that by mounting the inertia sensor on the thigh, shin and ankle, respectively, calculating the joint angle and acceleration value based on the measured data, and measuring the ground reaction force using the pressure sensor.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 경근은 족태양경근, 족양명경근, 족소양경근을 포함하며, The light root includes a foot yanggyeonggeun, a foot yangmyeonggyeonggeun, and a foot yanggyeonggeun,
    상기 족태양경근은 큰볼기근(Gluteus maximus), 햄스트링(Hamstring) 및 장딴지근(Gastrocnemius)을 포함하고,The plantar clavicle muscle includes a gluteus maximus (Gluteus maximus), a hamstring (Hamstring) and a calf muscle (Gastrocnemius),
    상기 족양명경근은 대퇴직근(Rectus femoris) 및 및 전경골근(Tibialis anterior)을 포함하며,The foot yangmyeonggyeong muscle includes the rectus femoris (Rectus femoris) and the tibialis anterior (Tibialis anterior),
    상기 족소양경근은 소둔근(Gluteus minimus), 외측광근(Vastus lateralis) 및 전경골근(Tibialis anterior)을 포함하는 것을 특징으로 하는 경근 활성도 평가 방법.The sphincter of the foot is gluteus minimus (Gluteus minimus), the vastus lateralis (Vastus lateralis) and the tibialis anterior (Tibialis anterior).
PCT/KR2022/005484 2021-05-03 2022-04-15 Apparatus and method for evaluating meridian muscle activity WO2022234974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0057221 2021-05-03
KR1020210057221A KR102584715B1 (en) 2021-05-03 2021-05-03 Apparatus and method for meridian muscle activity

Publications (1)

Publication Number Publication Date
WO2022234974A1 true WO2022234974A1 (en) 2022-11-10

Family

ID=83932359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005484 WO2022234974A1 (en) 2021-05-03 2022-04-15 Apparatus and method for evaluating meridian muscle activity

Country Status (2)

Country Link
KR (1) KR102584715B1 (en)
WO (1) WO2022234974A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144237A (en) * 2016-02-19 2017-08-24 財団法人 資訊工業策進会Institute For Information Industry Walking analysis system and method
WO2018101071A1 (en) * 2016-11-29 2018-06-07 日本電気株式会社 Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program
KR20190085672A (en) * 2018-01-11 2019-07-19 삼성전자주식회사 Method and apparatus for assisting walking
KR20210000567A (en) * 2019-06-25 2021-01-05 가톨릭관동대학교산학협력단 Apparatus for estimation of gait stability based on inertial information and method thereof
KR20210024876A (en) * 2019-08-26 2021-03-08 한국전자통신연구원 Method and apparatus for inducing posture imbalance using FES

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125254B1 (en) 2018-05-15 2020-06-22 (주)블루클라우드 User-recognized walking motion measurement system and method for measuring walking motion using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144237A (en) * 2016-02-19 2017-08-24 財団法人 資訊工業策進会Institute For Information Industry Walking analysis system and method
WO2018101071A1 (en) * 2016-11-29 2018-06-07 日本電気株式会社 Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program
KR20190085672A (en) * 2018-01-11 2019-07-19 삼성전자주식회사 Method and apparatus for assisting walking
KR20210000567A (en) * 2019-06-25 2021-01-05 가톨릭관동대학교산학협력단 Apparatus for estimation of gait stability based on inertial information and method thereof
KR20210024876A (en) * 2019-08-26 2021-03-08 한국전자통신연구원 Method and apparatus for inducing posture imbalance using FES

Also Published As

Publication number Publication date
KR20220150032A (en) 2022-11-10
KR102584715B1 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
Andriacchi et al. Studies of human locomotion: past, present and future
Abu-Faraj et al. Human gait and clinical movement analysis
Moissenet et al. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait
Arnold et al. Muscular coordination of knee motion during the terminal-swing phase of normal gait
Triloka et al. Neural computing for walking gait pattern identification based on multi-sensor data fusion of lower limb muscles
KR101081643B1 (en) A diagnostic system for joint and muscle disorders and a diagnostic method thereof
JP2004329280A (en) Floor reaction force estimation device using sole pressure, and estimation system of leg joint moment and leg muscle tension using the device
Weinhandl et al. Effects of gait speed of femoroacetabular joint forces
Llurda-Almuzara et al. Relationship between lower limb EMG activity and knee frontal plane projection angle during a single-legged drop jump
Oh et al. Estimation of ground reaction forces during stair climbing in patients with ACL reconstruction using a depth sensor-driven musculoskeletal model
Eddo et al. Unintended changes in contralateral limb as a result of acute gait modification
WO2022234974A1 (en) Apparatus and method for evaluating meridian muscle activity
Araújo et al. The effects of small and large varus alignment of the foot-ankle complex on lower limb kinematics and kinetics during walking: A cross-sectional study
Shrader et al. Instrumented Gait analysis in the care of children with cerebral palsy
Savage et al. Neuromusculoskeletal model calibration accounts for differences in electromechanical delay and maximum isometric muscle force
Tang et al. Differences between lower extremity joint running kinetics captured by marker-based and markerless systems were speed dependent
CN117137443A (en) Sports rehabilitation equipment for anterior cruciate ligament injury
Stetter Wearable Sensors and Machine Learning based Human Movement Analysis–Applications in Sports and Medicine
Fox Knee and ankle biomechanics during squatting with heels on and off of the ground, with and without weight shifting
Bernardes The influence of the knee alignment on the joint loading and on the performance of rehabilitation exercises
Jayashree et al. A Real-time Gait Monitoring System based on Edge Computing using Motion Capture Techniques for Knee Injury Analysis
Foley et al. Applying elastic resistance bands for gait training: A simulation-based study to determine how band configuration affects gait biomechanics and muscle activation
Ma Movement Analysis and Biomechanical Simulation for Children with Cerebral Palsy and Equinus gait
WO2023158438A1 (en) Means and method for reducing lower body extremity injuries
Haghighatnejad Effect of torso posture on knee joint biomechanics during walking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22799019

Country of ref document: EP

Kind code of ref document: A1