WO2022234788A1 - Method for culturing algae - Google Patents

Method for culturing algae Download PDF

Info

Publication number
WO2022234788A1
WO2022234788A1 PCT/JP2022/018908 JP2022018908W WO2022234788A1 WO 2022234788 A1 WO2022234788 A1 WO 2022234788A1 JP 2022018908 W JP2022018908 W JP 2022018908W WO 2022234788 A1 WO2022234788 A1 WO 2022234788A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
culture
medium
conditions
culturing
Prior art date
Application number
PCT/JP2022/018908
Other languages
French (fr)
Japanese (ja)
Inventor
進也 宮城島
俊亮 廣岡
崇之 藤原
諒 杉本
Original Assignee
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人情報・システム研究機構 filed Critical 大学共同利用機関法人情報・システム研究機構
Publication of WO2022234788A1 publication Critical patent/WO2022234788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a method for culturing algae.
  • This application claims priority based on Japanese Patent Application No. 2021-079124 filed in Japan on May 7, 2021, the content of which is incorporated herein.
  • algae have a high carbon dioxide fixing capacity compared to land plants, and because they do not compete with agricultural products for habitat, some algae species are cultivated in large quantities and used in feeds, functional foods, and cosmetics. It is used industrially as a material.
  • Non-Patent Document 1 and Non-Patent Document 2 show that Cyanidioschyzon merolae can be heterotrophically cultured.
  • Takashi Moriyama, Natsumi Mori, and Naoki Sato Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. SpringerPlus(2015) 4:559.
  • Takashi Moriyama, Natsumi Moril, Noriko Nagata, and Naoki Sato Selective loss of photosystem I and formation of tubular thylakoids in heterotrophka11y grown red alga cyanidioschyzon merolae.
  • the present invention has been made to solve the above problems, and adds an organic carbon source of at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria. It is an object of the present invention to provide a culture method that improves the growth of algae in culture in a medium that has undergone a process of culturing.
  • the present invention includes the following aspects. (1) culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the intracellular NADH/NAD + ratio of said algae; A method for culturing algae, wherein the algae is at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria. (2) The method for culturing algae according to (1) above, wherein the culture under the conditions is aerobic culture. (3) The method for culturing algae according to (2) above, wherein in the aerobic culture, the oxygen concentration of the gas blown into the medium in which the algae are cultured exceeds the oxygen concentration of normal air.
  • the culture medium under the conditions contains, as a nitrogen source, at least one selected from the group consisting of nitrates, nitrites, nitrates (NO 3 ⁇ ), and nitrite ions (NO 2 ⁇ ).
  • At least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms, and cyanobacteria is cultivated in a medium supplemented with an organic carbon source, and the cultivation improves the growth of the algae.
  • a method can provide a method.
  • FIG. 2 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellolae between the swirling culture and the aerobic culture (1).
  • 4 is a graph showing the growth of Cyanidioschizon mellolae in aerobic culture (2).
  • 1 is a graph showing the state of growth of Cyanidioschizon mellolae after passage in rotary culture.
  • Fig. 1 is a graph showing the state of growth of Cyanidioschizon mellolae after passage in aerobic culture.
  • Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellorae between aerobic culture in a normal atmosphere and aerobic culture in an oxygenated atmosphere.
  • Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellorae between aerobic culture in a normal atmosphere and aerobic culture in an oxygenated atmosphere.
  • Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizone mellorae in orbital cultures in which the nitrogen source contained in the medium was changed from NH4 + to NO3- .
  • Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizone mellorae in aerobic cultures in which the nitrogen source contained in the medium was changed from NH4 + to NO3- .
  • a culture method of an embodiment comprises culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the intracellular NADH/NAD + ratio of said algae, wherein said algae are unicellular red
  • “Culturing in a medium containing an organic carbon source” means culturing so that algae grow by assimilating the organic carbon source. Growing by assimilating the above organic carbon sources means that at least a part of the organic carbon sources utilized by the algae to be cultured is supplied from the outside to the medium, other than the organic carbon sources biosynthesized by the algae themselves through photosynthesis. It means that it is supplied to and assimilated.
  • “Culturing in a medium supplemented with an organic carbon source” is a concept that includes culturing under “heterotrophic conditions” and “mixed trophic conditions.””Heterotrophicconditions” refer to conditions in which there is no light irradiation and an organic carbon source is present.
  • “Mixotrophic conditions” refer to conditions in which there is light irradiation and an organic carbon source is present.
  • autotrophic conditions refer to conditions in which there is light irradiation and no organic carbon source is present.
  • the organic carbon source referred to here is an organic carbon source newly added to the culture system, which does not correspond to the organic carbon source biosynthesized by photosynthesis by the cultured algae themselves or the organic carbon source derived therefrom.
  • the algae may be cultured under heterotrophic conditions or mixed trophic conditions.
  • Cyanidioschizon mellolae (hereinafter also simply referred to as "schizon”) stops growing after 6 to 7 cell divisions in the dark (under heterotrophic conditions). There is an upper limit to the algae density that can be reached. Since the growth also stopped even after passage, it is considered that the growth stop is not caused by an increase in algae density or depletion of nutrient sources. In other words, in the conventional culture method, when cultured under heterotrophic conditions, there is a problem that long-term culture cannot be maintained by subculturing.
  • the value of the NADH/NAD + ratio in the cells of schizon cultured under "heterotrophic conditions” and “mixed nutrition conditions” was "independent It was found that the ratio of NADH/NAD + in the cells of schizomon cultured under "nutrient conditions” was higher than that in the cells. Based on this finding, it is possible to improve the growth of algae by culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the NADH/NAD + ratio in algae cells. I found a headline.
  • the improved growth of the algae is under "heterotrophic conditions” or “mixotrophic conditions” compared to conventional culture methods that do not apply conditions that reduce the NADH/NAD + ratio in algae cells.
  • heterotrophic conditions or “mixotrophic conditions” compared to conventional culture methods that do not apply conditions that reduce the NADH/NAD + ratio in algae cells.
  • the growth rate of the algae is improved, the maximum attainable algae density is improved, and passage is included. It can be confirmed by achieving any one or more of the following:
  • FIG. 1 is a schematic diagram illustrating an example of the process of intracellular NADH production and oxidation.
  • NADH for example, in the process of utilizing organic carbon sources such as glucose and glycerol in glycolysis and TCA cycle, NAD + is reduced to produce NADH.
  • NAD + for example, NADH is consumed by respiration or anaerobic fermentation (not shown) to produce NAD + . Therefore, in culture under "heterotrophic conditions" or “mixotrophic conditions” with the addition of organic carbon sources, organic carbon source consumption (NADH production) and/or respiration restriction (NADH consumption suppression) is likely to occur. It is considered that the amount of intracellular NADH increases and an imbalance of NADH/NAD + occurs.
  • the method for culturing algae of the embodiment is a culture in a medium supplemented with an organic carbon source, which helps consumption of intracellular NADH and reduces the value of the intracellular NADH/NAD + ratio, thereby inhibiting the growth of algae. It is an improvement.
  • the mechanism by which algae growth is improved by reducing the amount of intracellular NADH is not necessarily clear. However, for example, it is known that when the amount of NADH increases, glycolysis and the TCA cycle, which are involved in the production of NADH, are suppressed. It is inferred to be improved.
  • Conditions for reducing the intracellular NADH/NAD + ratio are not particularly limited, but from the viewpoint of being easy to implement and having excellent effects of improving growth, the following two conditions are used. can be exemplified. 1) increasing the oxygen supply to the medium; 2) using a medium containing electron acceptors;
  • Oxygen supply It is believed that increasing the oxygen supply promotes, for example, the following reactions, thereby promoting the consumption of NADH within algae cells. 2H + + 1/2O 2 + 2NADH ⁇ H 2 O + 2NAD +
  • the method for culturing algae of the embodiment is an example of the method of increasing oxygen supply to the medium in 1) above, which is exemplified as "conditions for reducing the intracellular NADH/NAD + ratio", wherein the culture is aerobic culture. Illustrate a method.
  • the method for culturing algae of the embodiment is preferably a method including aerobic culture of the algae in a medium supplemented with an organic carbon source.
  • the method for culturing algae of the embodiment includes aerobic culture of the algae in a medium supplemented with an organic carbon source, and the algae is selected from the group consisting of unicellular red algae, green algae, diatoms, and cyanobacteria. is preferably at least one type of algae.
  • aeration culture is a method of blowing gas (also called aeration or bubbling) into the medium for culturing algae to increase the amount of oxygen supplied to the medium.
  • gas also called aeration or bubbling
  • an air bubble generator may be used to refine the air bubbles of the gas to be aerated.
  • the medium to be aerated is a liquid medium.
  • the gas to be ventilated may be a gas containing oxygen, and from the viewpoint of ease of implementation, it may be normal air.
  • the normal atmospheric oxygen concentration is about 21% by volume.
  • the gas to be ventilated includes, for example, a gas having an oxygen concentration of 21% by volume or more.
  • the flow rate of aerated gas may be, for example, 50 to 20000 mL/min, 50 to 10000 mL/min, 100 to 1000 mL/min, 200 to 900 mL with respect to 50 mL of liquid medium. /min, 300-800 mL/min, 400-700 mL/min.
  • the aeration amount per 1 mL of the liquid medium may be, for example, 1 to 400 mL/min-mL, 1 to 200 mL/min-mL, 2 to 20 mL/min-mL, 4 to It may be 18 mL/min ⁇ mL, 6 to 16 mL/min ⁇ mL, or 8 to 14 mL/min ⁇ mL.
  • the oxygen concentration of the gas to be ventilated is not particularly limited, but it is preferable to ventilate a gas having an oxygen concentration higher than that of the normal atmosphere because the oxygen supply efficiency can be easily improved.
  • the oxygen concentration of the gas that is passed through the medium in which the algae are cultured is higher than the oxygen concentration of the normal atmosphere.
  • the oxygen concentration of the gas to be vented it may be a gas containing 25 to 100% by volume of oxygen, or a gas containing 30 to 90% by volume of oxygen, relative to the total volume of the gas. , a gas containing 40 to 80% by volume of oxygen.
  • the gas a mixed gas of air and oxygen obtained by adding oxygen to the air can be exemplified.
  • An example of the gas to be vented may be atmospheric oxygenated gas containing 25 to 100 vol. It may be a gas in which oxygen is added to the atmosphere, or a gas in which oxygen is added to the atmosphere so as to contain 40 to 80% by volume of oxygen.
  • a method for culturing algae of an embodiment includes aeration culturing the algae in a medium supplemented with an organic carbon source, and the aeration culture is carried out, for example, by adding 25 to 100% by volume of oxygen to the total volume of gas to be aerated.
  • a gas containing is aerated at a flow rate of 50 to 20000 mL / min for 50 mL of liquid medium (1 to 400 mL / min ⁇ mL as an aeration rate per 1 mL of liquid medium).
  • a gas containing 30 to 90% by volume of oxygen with respect to the total volume of gas to be aerated is 100 to 1000 mL / min for 50 mL of liquid medium (2 to 20 mL / min ⁇ mL as aeration rate per 1 mL of liquid medium)
  • the culture may be aerated at a flow rate of
  • a gas containing 40 to 80% by volume of oxygen with respect to the total volume of gas to be aerated is 300 to 800 mL / min for 50 mL of liquid medium (6 to 16 mL / min ⁇ mL as aeration rate per 1 mL of liquid medium)
  • the culture may be aerated at a flow rate of
  • An example of the amount of dissolved oxygen (DO, Dissolved Oxygen) of the medium at 40° C. may be 0.5 mg/L or more, or 6.3 mg/L or more.
  • the upper limit of the dissolved oxygen content of the medium at 40° C. is not particularly limited, it may preferably be 6.3 to 30 mg/L, more preferably 13 to 27 mg/L, More preferably, it may be 19-24 mg/L.
  • a medium containing a dissolved oxygen content within the above numerical range can effectively improve the growth of the algae.
  • aerobic culture was mainly exemplified as an example of efficient oxygen supply to the medium.
  • Cultivation or the like may be performed to increase oxygen supply to the medium.
  • the medium used in the algae culture method of the embodiment is preferably a liquid medium as described above, but may be a solid medium and preferably a liquid medium.
  • the composition of the medium is not particularly limited, and an appropriate one may be selected according to the type of algae to be cultured.
  • the medium include inorganic salt media containing nitrogen sources, phosphorus sources, iron sources, trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, etc.) and the like.
  • nitrogen sources include ammonium salts, nitrates, nitrites, urea, amines, and the like
  • phosphorus sources include phosphates, phosphites, and the like
  • iron sources include iron chloride, iron sulfate, iron citrate, and the like.
  • Specific examples of the medium include, for example, 2 ⁇ Allen medium (Allen MB. Arch. Microbiol.
  • M-Allen medium Minoda A et al. Plant Cell Physiol. 2004 45: 667-71
  • MA2 medium Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.
  • MA medium the M-Allen medium is sometimes referred to as "MA medium”.
  • organic carbon sources in media containing organic carbon sources include sugar alcohols, sugars, and amino acids.
  • Sugar alcohols include, for example, glycerol.
  • Sugars include, for example, glucose, mannose, fructose, sucrose, maltose, lactose sugars.
  • examples of the organic carbon source include glucose and glycerol, with glycerol being preferred.
  • a method for culturing algae of an embodiment includes culturing the algae in a medium to which an organic carbon source is added, and the medium preferably contains an electron acceptor.
  • the method for culturing algae of the embodiment is preferably a method including culturing the algae in a medium supplemented with an organic carbon source and an electron acceptor. Examples of the electron acceptor include pyruvic acid and malic acid.
  • a specific nitrogen source can be exemplified, and the specific nitrogen source includes nitrate, nitrite, nitrate ion (NO 3 ⁇ ), and nitrite ion ( NO 2 ⁇ ) is preferably used for the culture.
  • Nitrates contained in the medium are usually ionized to produce nitrate ions.
  • Nitrous acid formulated in the medium usually ionizes to produce nitrite ions.
  • a method for culturing algae of an embodiment includes culturing the algae in a medium to which an organic carbon source is added, and the medium contains nitrates, nitrites, nitrates (NO 3 ⁇ ), and nitrite ions as nitrogen sources. (NO 2 ⁇ ), and the algae is preferably at least one algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
  • a method for culturing algae includes aerobic culture of the algae in a medium supplemented with an organic carbon source, wherein the medium contains nitrate, nitrite, nitrate ion (NO 3 ⁇ ), and nitrite as nitrogen sources. It is preferable that the algae include at least one selected from the group consisting of ions (NO 2 - ), and the algae be at least one algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
  • the nitrogen source contained in the medium substantially contains only at least one selected from the group consisting of nitrates, nitrites, nitrate ions (NO 3 ⁇ ), and nitrite ions (NO 2 ⁇ ). is preferred.
  • NADH is a medium containing the above specific nitrogen sources promotes the consumption of NADH in cultured algae. This is because, in order to utilize the above nitrate ions, it is necessary to convert nitrate ions (NO 3 ⁇ ) ⁇ nitrite ions (NO 2 ⁇ ) ⁇ ammonium ions (NH 4 + ), and in this process NADH is This is thought to be due to consumption.
  • the culture it is more preferable to perform the culture using a medium containing at least one selected from the group consisting of nitrate and nitrate ion (NO 3 ⁇ ) as a nitrogen source, since more NADH consumption can be expected. That is, it is preferable that the nitrogen source contained in the medium substantially contains only nitrate and/or nitrate ion.
  • the medium is preferably free of ammonium salts and ammonium ions ( NH4 + ).
  • Nitrate ions ( NO 3 - ) and The total amount of nitrite ions (NO 2 ⁇ ) is preferably 50% or more, more preferably 80% or more, on a molar basis, and is substantially nitrate ions (NO 3 ⁇ ) or nitrite ions ( NO 2 ⁇ ) only is more preferred.
  • the culture method when adopting "conditions that reduce the intracellular NADH/NAD + ratio" other than aerobic culture is not limited to aerobic culture, and a method generally used as a culture method for algae can be used as appropriate. can be used. Specific examples include static culture, rotary culture (100 to 200 rpm, etc.), and the like.
  • aerobic culture examples include the methods exemplified above.
  • the method for culturing algae of the embodiment includes culturing algae in a medium to which an organic carbon source is added, and the air flow rate is 50 to 10,000 mL/min for 50 mL of liquid medium (1 to 200 mL/min as an aeration rate per 1 mL of liquid medium).
  • the method is a method of performing an aeration culture in which aeration is performed at a flow rate of 1 mL), and the culture is performed using nitrate, nitrite, nitrate ion (NO 3 ⁇ ), and nitrite ion (NO 2 ⁇ ) as a nitrogen source.
  • a method using a medium containing at least one selected from the group consisting of is preferred.
  • a method for cultivating algae of an embodiment comprises culturing algae in a medium supplemented with an organic carbon source, wherein the culture aerates a gas containing 25 to 100% by volume of oxygen with respect to the total volume of gas, It is preferable to perform aerobic culture in which 50 mL of liquid medium is aerated at a flow rate of 50 to 10000 mL / min (1 to 200 mL / min ⁇ mL as an aeration rate per 1 mL of liquid medium), and the culture is performed by It is preferable to use a medium containing at least one selected from the group consisting of nitrates, nitrites, nitrates (NO 3 ⁇ ) and nitrite ions (NO 2 ⁇ ) as a nitrogen source.
  • the pH of the medium can be determined appropriately according to the algae to be cultured. For example, in the case of algae belonging to the class Idycogome, pH 1 to 6 is preferable, pH 1 to 5 is more preferable, and pH 1 to 3 is even more preferable, since they can grow better under acidic conditions.
  • the temperature conditions for the culture may be appropriately selected according to the type of algae.
  • the culture temperature can be 15 to 60°C, preferably 15 to 50°C, more preferably 30 to 50°C.
  • the culture temperature is preferably 30 to 50°C.
  • the CO2 conditions in culture may be appropriately selected according to the type of algae. Generally, 0.04-5 vol% CO 2 conditions can be exemplified. 0.04-3 vol% CO 2 conditions are preferred when the algae belong to the class Idycogome.
  • Light conditions in the pre-culture may be appropriately selected according to the type of algae. Generally, 5 to 2000 ⁇ mol/m 2 s can be exemplified. When the algae belong to the class Idycogome, it is preferably 5 to 1500 ⁇ mol/m 2 s, more preferably 5 to 100 ⁇ mol/m 2 s.
  • the light condition may be continuous light, or a light-dark cycle (10L:14D, etc.) may be provided. Culturing may be performed under natural light.
  • the light conditions in the culture are preferably below the light compensation point. It may be ⁇ 10 ⁇ mol/m 2 s, and may be 0-5 ⁇ mol/m 2 s.
  • the culture is preferably performed in a dark place.
  • dark place means less than 5 ⁇ mol/m 2 s, preferably 0 ⁇ mol/m 2 s.
  • the algae may be subcultured as appropriate.
  • passage intervals include, for example, 10 to 50 days, or 15 to 30 days.
  • the culture period is not particularly limited, but the culture period including passage is preferably 30 days or longer, more preferably 40 days or longer, and even more preferably 80 days or longer.
  • the culture period in the dark, including passage is preferably 30 days or more, more preferably 40 days or more, and even more preferably 80 days or more in a continuous dark period.
  • Algae to be cultured in the culture method of the embodiment is at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria, and unicellular red algae are preferred.
  • Unicellular green algae include algae belonging to the genus Chlamydomonas. Unicellular diatoms include algae belonging to the genus Phaeodactylum. Unicellular blue-green algae include algae belonging to the phylum Cyanobacteria, preferably algae belonging to the genus Synechocystis, Synechocystis sp. PCC 6803 is more preferred.
  • Unicellular red algae include, for example, algae belonging to the class Cyanidiophyceae.
  • the class Cyanidiphyta is taxonomically classified into the phylum Rhodophyta and the class Cyanidiophyceae.
  • Three genera, Cyanidioschyzon, Cyanidium, and Galdieria, are currently classified in the class Idycogome.
  • the algae are preferably algae belonging to the genus Cyanidioschyzon, more preferably Cyanidioschyzon mellolae.
  • the culture method of the present embodiment is preferably applied to algae whose growth is more suppressed when cultured under heterotrophic conditions or mixed nutrition conditions than when cultured under autotrophic conditions.
  • growth is suppressed when cultured under heterotrophic conditions or mixed nutrition conditions means that growth is suppressed (including inability to grow) compared to the case of culture under autotrophic conditions. , the growth rate is reduced, the maximum algae density is improved, and the growth period including passage is shortened.
  • the culturing method of the present embodiment has a higher intracellular NADH/NAD + value when cultured under heterotrophic conditions or mixed trophic conditions than when cultured under autotrophic conditions among the algae. It is preferable to apply to algae that increases.
  • the intracellular NADH/NAD + value when cultured under heterotrophic conditions or mixed nutrition conditions is greater than the intracellular NADH/NAD + value when cultured under autotrophic conditions, and is heterotrophic
  • the intracellular NADH/NAD + value when cultured under conditions or mixed nutrition conditions is 1.3 times or more the intracellular NADH/NAD + value when cultured under autotrophic conditions Preferably, it is 1.5 times or more.
  • the intracellular NADH/NAD + value when cultured under heterotrophic or mixotrophic conditions is greater than the intracellular NADH/NAD + value when cultured under autotrophic conditions, and NADH/NAD Algae with a + value of 0.05 or more are preferred, algae with a + value of 0.05 to 0.5 are more preferred, and algae with a + value of 0.1 to 0.4 are even more preferred.
  • the intracellular NADH/NAD + value can be obtained by the method described in Examples below.
  • algae to which the culture method of the present embodiment is applied may be isolated from the environment or obtained from culture collections and the like.
  • Cyanidioschizone mellorae has been collected from the National Institute for Environmental Studies Microbiology Collection Facility (16-2 Onogawa, Tsukuba City, Ibaraki Prefecture, Japan), American Type Culture Collection (ATCC; 10801 University Boulevard Manassas, VA 20110 USA). ), etc.
  • algae to which the culture method of the present embodiment is applied are not limited to those isolated from nature, and may be natural algae mutated. Mutations may be naturally occurring or artificially occurring.
  • Cyanidioschizon mellorae has a small genome size (about 16 Mbp), and the genome sequence has been completed (Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7 ), and are susceptible to genetic modification. Therefore, for example, the culture method of the present embodiment may be applied to a transformant of Cyanidioschizon mellolae produced by genetic modification (for example, a transformant with enhanced nutritional components).
  • the culture method of the present embodiment may be applied to transformants of other algae as long as they can be genetically modified.
  • the growth of the algae can be improved in the culture in the medium to which the organic carbon source is added. According to the method for culturing algae of the embodiment, it is possible to improve the growth rate of algae whose growth rate is lower under heterotrophic conditions than under autotrophic conditions. According to the method for culturing algae of the embodiment, it is possible to improve the maximum algal density of algae whose maximum algae density is lower under heterotrophic conditions than under autotrophic conditions.
  • the method for culturing algae of the embodiment enables subculture of algae, which has been difficult to maintain for a long period of time under heterotrophic conditions, and is an epoch-making method that makes a great contribution to the cultivation of a wide range of algae. culture method.
  • NADH/NAD + ratio was determined under each culture condition.
  • Cyanidioschizon mellolae strain 10D (NIES-3377, maintained at the National Institute of Genetics, hereinafter referred to as "schizon") was grown using MA2 medium supplemented with 350 mM glycerol under the following autotrophic conditions. They were cultured under mixotrophic conditions or heterotrophic conditions, respectively.
  • Autotrophic condition light intensity (25 ⁇ mol/m 2 s), no addition of organic carbon source to MA2 medium
  • Mixotrophic condition light intensity (25 ⁇ mol/m 2 s), addition of organic carbon source (glycerol) to MA2 medium
  • Heterotrophic conditions Dark place (light intensity 0 ⁇ mol/m 2 s), addition of organic carbon source (glycerol) to MA2 medium
  • Each culture here was carried out in an incubator (IS 600, Yamato Scientific) maintained at 40°C. Using a bioshaker (NR-3, TAITEC), rotation culture (130 rpm rotary) was carried out under normal atmosphere.
  • the medium used is MA2 medium under autotrophic conditions, and MA2 + glycerol 350 mM medium under mixed and heterotrophic conditions (MA2 medium supplemented with glycerol so that the final concentration of glycerol is 350 mM.
  • the following medium notation is the same.
  • culturing was performed for 5 days under autotrophic conditions and mixed nutrition conditions, and schisons were collected. Since the growth of schizons was poor under heterotrophic conditions, culturing was carried out under heterotrophic conditions for 2 days after culturing under mixed nutrition conditions for 5 days, and then schizons were collected.
  • the intracellular NADH/NAD + ratio of the harvested schizons was measured.
  • NAD + /NADH Assay Kit, EnzyChrom (BioAssay Systems) was used for extraction and measurement, and absorbance at 565 nm was measured with a microplate reader (SYNERGY H1, BioTek).
  • Table 1 shows the composition of the MA2 medium.
  • Experiment 2-1 Aeration culture Schizon was cultured under the following culture conditions for rotary culture or aeration culture, and the growth conditions were compared using the algae density as an index.
  • Air pump Water center SSPP-2S manufactured by Mizusaku Co., Ltd. Air was passed from an air pump, through a silicon tube, through a flow meter, and through a 0.22 ⁇ m filter in that order, and was blown into the culture solution in the test tube used for culturing through the test tube containing pure water. A silicone stopper (No. 9) was used to connect the silicone tube and the test tube.
  • Air pump Non-noise W-1000 manufactured by Nippon Animal Yakuhin Co., Ltd.
  • Air passed through a flow meter from an air pump through a silicon tube was blown through a bottle containing pure water and through a 0.22 ⁇ m filter into the culture solution in the vessel used for culture.
  • a silicone stopper No. 11 was used to connect the silicone tube and the test tube.
  • the culture solution was sampled and turbidity (OD 750 ) was measured with a spectrophotometer.
  • Fig. 3A shows the results of comparing the growth conditions of Cyanidioschizon mellolae between the rotary culture and the aerobic culture (1).
  • the growth stopped about 20 days after the start of the culture, and the algal density reached a plateau.
  • aerobic culture (1) when the aeration rate was increased, the period during which schizons could grow was longer than in the vortex culture, and the algal density achieved was approximately 4.6 times that in the vortex culture.
  • FIG. 3B shows the results showing the growth of Cyanidioschizon mellolae in the aerobic culture (2).
  • the aerobic culture compared to the aerobic culture (1), even if a larger culture vessel is used and the amount of aeration is reduced, the period during which schisons can grow is longer than in the rotary culture, and the algae density reached is also higher in the rotary culture. Approximately 7.5 times higher than
  • Experiment 2-2 Growth after passage in aerobic culture Schizon was subcultured under the same culture conditions as those for the spin culture or aerobic culture in Experiment 2-1 above.
  • the inoculum amount for subculturing was set so that OD 750 was about 0.4. Air was constantly blown into the liquid medium (forced aeration) during the aeration culture period.
  • Fig. 4 shows the results of culturing in a normal swirling culture. A part of the culture solution cultured for 20 days was suspended (diluted) in a new culture solution and the culture was continued (arrows in FIG. 4 indicate passages). In the rotary culture, the growth after subculturing was not good, and growth stopped about 15 days after subculturing.
  • FIG. 5 shows the results of aeration culture.
  • a portion of the culture solution cultured for 21 days, 30 days, or 44 days was suspended (diluted) in a new culture solution to continue culturing (the arrows in FIG. 5 indicate passages).
  • the arrows in FIG. 5 indicate passages.
  • good growth was confirmed even after multiple passages, and it was confirmed that the culture can be cultured for a total of 95 days.
  • the conventional methods for culturing Schizon there was a problem that it was difficult to subculture in a dark place, but it was confirmed that good subculture can be carried out by performing aerobic culture.
  • ⁇ Aerobic culture oxygenated atmosphere (40°C, dark place, MA2 + glycerol 400mM, 50mL culture, 400mL/min, using an oxygen generator and a gas mixer, aeration of oxygenated gas against normal atmosphere)
  • ⁇ Aeration culture normal atmosphere (40°C, dark place, MA2 + glycerol 400 mM, 50 mL culture, 400 mL air/min, normal atmosphere)
  • ⁇ Aerobic culture oxygenated atmosphere (40°C, dark place, MA2 + glycerol 400mM, 50mL culture, 400mL/min, using an oxygen generator and a gas mixer, aeration of oxygenated gas against normal atmosphere)
  • ⁇ Aeration culture normal atmosphere (40°C, dark place, MA2 + glycerol 400 mM, 50 mL culture, 400 mL air/min, normal atmosphere)
  • Table 2 shows the composition of the MA2 nitrate medium.
  • Experiment 3-2 Change of nitrogen source (aerobic culture)
  • schizon culture was performed under the same conditions as in Experiment 3-1, except that the rotation culture was used instead of the aeration culture.
  • the results are shown in FIG.
  • the aerobic culture in a medium containing nitrate ions (NO 3 ⁇ ) as a nitrogen source has a higher growth rate than the aerobic culture in a medium containing ammonium ions (NH 4 + ) as a nitrogen source, and the maximum algae density has been reached. was improving.
  • the growth rate of schizon in a dark place can be improved by supplying nitrate ions (NO 3 - ) as a nitrogen source.
  • the addition of nitrate ions (NO 3 ⁇ ) as the nitrogen source in the aerobic culture improved the algae density more than the addition of nitrate ions (NO 3 ⁇ ) as the nitrogen source in the rotary culture. From this, it was suggested that the increase in oxygen supply and the use of nitrate ions (NO 3 ⁇ ) each contributed to the improvement of the growth ability of schizon in the dark.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for culturing algae, the method comprising culturing algae in a culture medium containing an organic carbon source under conditions that reduce the NADH/NAD+ ratio in the cells of the algae, wherein the algae are at least one kind selected from the group consisting of unicellular red algae, green algae, diatoms, and blue-green algae.

Description

藻類の培養方法Algae culture method
 本発明は、藻類の培養方法に関する。
 本願は、2021年5月7日に、日本に出願された特願2021-079124号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for culturing algae.
This application claims priority based on Japanese Patent Application No. 2021-079124 filed in Japan on May 7, 2021, the content of which is incorporated herein.
 藻類は、陸上植物と比較して、高い二酸化炭素固定能力を有すること、及び農産物と生育場所が競合しないことから、いくつかの藻類の種は、大量培養されて、飼料、機能性食品、化粧品材料等として産業的に利用されている。 Because algae have a high carbon dioxide fixing capacity compared to land plants, and because they do not compete with agricultural products for habitat, some algae species are cultivated in large quantities and used in feeds, functional foods, and cosmetics. It is used industrially as a material.
 藻類を産業利用する場合には、コスト面や培養管理が容易であること等から、容易に効率よく培養できる培養条件を採用することが好ましい。  When using algae for industrial purposes, it is preferable to adopt culture conditions that allow easy and efficient cultivation due to factors such as cost and ease of culture management.
 例えば、非特許文献1及び非特許文献2では、シアニディオシゾン・メロラエ(Cyanidioschyzon merolae)を従属栄養培養することが可能であることが示されている。 For example, Non-Patent Document 1 and Non-Patent Document 2 show that Cyanidioschyzon merolae can be heterotrophically cultured.
 従属栄養培養では、有機炭素源を供給することで、高効率に藻類を培養可能とも考えられる。しかし、非特許文献1及び非特許文献2で報告されるシアニディオシゾン・メロラエなど、従属栄養条件下で独立栄養条件下よりも生育が抑制される場合がある。 In heterotrophic culture, it is thought that algae can be cultivated with high efficiency by supplying an organic carbon source. However, in some cases, such as Cyanidioschizon mellolae reported in Non-Patent Document 1 and Non-Patent Document 2, the growth is suppressed under heterotrophic conditions more than under autotrophic conditions.
 本発明は、上記のような問題点を解消するためになされたものであり、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類の、有機炭素源を添加した培地での培養において、前記藻類の生育を向上させる培養方法を提供することを目的とする。 The present invention has been made to solve the above problems, and adds an organic carbon source of at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria. It is an object of the present invention to provide a culture method that improves the growth of algae in culture in a medium that has undergone a process of culturing.
 本発明は以下の態様を含む。
(1) 藻類を、前記藻類の細胞内のNADH/NAD比を減少させる条件下で、有機炭素源を添加した培地で培養することを含み、
 前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類である、藻類の培養方法。
(2) 前記条件下での前記培養が、通気培養である、前記(1)に記載の藻類の培養方法。
(3) 前記通気培養において、前記藻類が培養される前記培地に吹き込まれる気体の酸素濃度が、通常大気の酸素濃度を超える酸素濃度である、前記(2)に記載の藻類の培養方法。
(4) 前記培地が液体培地であり、前記液体培地に吹き込まれる気体の前記液体培地1mL当たりの通気量が、1~400mL/min・mLである、前記(2)又は(3)に記載の藻類の培養方法。
(5) 前記条件下での前記培養が、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含む前記培地を用いて行うものである、前記(1)~(4)のいずれか一つに記載の藻類の培養方法。
(6) 前記培養を暗所で行う、前記(1)~(5)のいずれか一つに記載の藻類の培養方法。
(7) 前記藻類が、シアニディオシゾン(Cyanidioschyzon)属に属する、前記(1)~(6)のいずれか一つに記載の藻類の培養方法。
The present invention includes the following aspects.
(1) culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the intracellular NADH/NAD + ratio of said algae;
A method for culturing algae, wherein the algae is at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
(2) The method for culturing algae according to (1) above, wherein the culture under the conditions is aerobic culture.
(3) The method for culturing algae according to (2) above, wherein in the aerobic culture, the oxygen concentration of the gas blown into the medium in which the algae are cultured exceeds the oxygen concentration of normal air.
(4) The above (2) or (3), wherein the medium is a liquid medium, and the amount of gas blown into the liquid medium per 1 mL of the liquid medium is 1 to 400 mL/min·mL. A method for cultivating algae.
(5) The culture medium under the conditions contains, as a nitrogen source, at least one selected from the group consisting of nitrates, nitrites, nitrates (NO 3 ), and nitrite ions (NO 2 ). The method for culturing algae according to any one of (1) to (4) above, which is carried out using
(6) The method for culturing algae according to any one of (1) to (5) above, wherein the culturing is performed in the dark.
(7) The method for culturing algae according to any one of (1) to (6) above, wherein the algae belong to the genus Cyanidioschyzon.
 本発明によれば、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類の、有機炭素源を添加した培地での培養において、前記藻類の生育を向上させる培養方法を提供できる。 According to the present invention, at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms, and cyanobacteria is cultivated in a medium supplemented with an organic carbon source, and the cultivation improves the growth of the algae. can provide a method.
細胞内でのNADHの生成と酸化の過程の一例を説明する模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining an example of the process of NADH production|generation and oxidation in a cell. 各培養条件で培養したシアニディオシゾン・メロラエの細胞内のNADH/NAD比を測定した結果である。It is the result of measuring the intracellular NADH/NAD + ratio of Cyanidioschizon mellorae cultured under each culture condition. 旋回培養と通気培養(1)とで、シアニディオシゾン・メロラエの生育状況を比較した結果を示すグラフである。Fig. 2 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellolae between the swirling culture and the aerobic culture (1). 通気培養(2)での、シアニディオシゾン・メロラエの生育状況を示すグラフである。4 is a graph showing the growth of Cyanidioschizon mellolae in aerobic culture (2). 旋回培養での、シアニディオシゾン・メロラエの継代後の生育状況を示すグラフである。1 is a graph showing the state of growth of Cyanidioschizon mellolae after passage in rotary culture. 通気培養での、シアニディオシゾン・メロラエの継代後の生育状況を示すグラフである。1 is a graph showing the state of growth of Cyanidioschizon mellolae after passage in aerobic culture. 通常大気での通気培養と、酸素添加大気での通気培養とで、シアニディオシゾン・メロラエの生育状況を比較した結果を示すグラフである。Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellorae between aerobic culture in a normal atmosphere and aerobic culture in an oxygenated atmosphere. 通常大気での通気培養と、酸素添加大気での通気培養とで、シアニディオシゾン・メロラエの生育状況を比較した結果を示すグラフである。Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizon mellorae between aerobic culture in a normal atmosphere and aerobic culture in an oxygenated atmosphere. 培地に含まれる窒素源をNH からNO -に変更した旋回培養での、シアニディオシゾン・メロラエの生育状況を比較した結果を示すグラフである。Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizone mellorae in orbital cultures in which the nitrogen source contained in the medium was changed from NH4 + to NO3- . 培地に含まれる窒素源をNH からNO -に変更した通気培養での、シアニディオシゾン・メロラエの生育状況を比較した結果を示すグラフである。Fig. 3 is a graph showing the results of comparing the growth conditions of Cyanidioschizone mellorae in aerobic cultures in which the nitrogen source contained in the medium was changed from NH4 + to NO3- .
 以下、本発明の藻類の培養方法の実施形態を説明する。 An embodiment of the method for culturing algae of the present invention will be described below.
≪藻類の培養方法≫
 実施形態の培養方法は、藻類を、前記藻類の細胞内のNADH/NAD比を減少させる条件下で、有機炭素源を添加した培地で培養することを含み、前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類である方法である。
≪Method of cultivating algae≫
A culture method of an embodiment comprises culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the intracellular NADH/NAD + ratio of said algae, wherein said algae are unicellular red This is the method using at least one type of algae selected from the group consisting of algae, green algae, diatoms and cyanobacteria.
 「有機炭素源を添加した培地で培養」するとは、藻類が有機炭素源を資化して生育するように培養することをいう。上記の有機炭素源を資化して生育することは、培養される藻類が利用する有機炭素源の少なくとも一部について、藻類自身が光合成により生合成した有機炭素源以外の有機炭素源が外部から培地に供給されて資化されることを意味する。「有機炭素源を添加した培地で培養すること」としては、「従属栄養条件」及び「混合栄養条件」での培養を含む概念である。「従属栄養条件」とは、光照射がなく、且つ有機炭素源が存在する条件をいう。「混合栄養条件」とは、光照射があり、且つ有機炭素源が存在する条件をいう。なお、「独立栄養条件」とは、光照射があり、且つ有機炭素源が存在しない条件をいう。ここでいう有機炭素源とは、培養される藻類自身が光合成により生合成した有機炭素源又はそれに由来する有機炭素源に該当しない、新たに培養系に添加された有機炭素源である。
 実施形態の培養方法において、前記藻類は、従属栄養条件下で培養してもよく、混合栄養条件下で培養してもよい。
“Culturing in a medium containing an organic carbon source” means culturing so that algae grow by assimilating the organic carbon source. Growing by assimilating the above organic carbon sources means that at least a part of the organic carbon sources utilized by the algae to be cultured is supplied from the outside to the medium, other than the organic carbon sources biosynthesized by the algae themselves through photosynthesis. It means that it is supplied to and assimilated. "Culturing in a medium supplemented with an organic carbon source" is a concept that includes culturing under "heterotrophic conditions" and "mixed trophic conditions.""Heterotrophicconditions" refer to conditions in which there is no light irradiation and an organic carbon source is present. "Mixotrophic conditions" refer to conditions in which there is light irradiation and an organic carbon source is present. In addition, "autotrophic conditions" refer to conditions in which there is light irradiation and no organic carbon source is present. The organic carbon source referred to here is an organic carbon source newly added to the culture system, which does not correspond to the organic carbon source biosynthesized by photosynthesis by the cultured algae themselves or the organic carbon source derived therefrom.
In the culture method of the embodiment, the algae may be cultured under heterotrophic conditions or mixed trophic conditions.
 従来の培養方法では、例えば、シアニディオシゾン・メロラエ(以下単に「シゾン」ともいう)は、暗所(従属栄養条件下)では、6~7回細胞分裂すると生育が停止してしまい、最大到達藻密度に上限が生じる。継代を行っても同様に生育が停止してしまうことから、生育の停止は藻密度の上昇や栄養源の枯渇に起因するものではないと考えられる。また即ち、従来の培養方法では、従属栄養条件下で培養した場合、継代による長期間の培養維持ができないという問題があった。 In conventional culture methods, for example, Cyanidioschizon mellolae (hereinafter also simply referred to as "schizon") stops growing after 6 to 7 cell divisions in the dark (under heterotrophic conditions). There is an upper limit to the algae density that can be reached. Since the growth also stopped even after passage, it is considered that the growth stop is not caused by an increase in algae density or depletion of nutrient sources. In other words, in the conventional culture method, when cultured under heterotrophic conditions, there is a problem that long-term culture cannot be maintained by subculturing.
 本発明者らの検討により、後述の実施例にて示されるとおり、「従属栄養条件」及び「混合栄養条件」下で培養されたシゾンの細胞内のNADH/NAD比の値が、「独立栄養条件」下で培養されたシゾンの細胞内のNADH/NAD比の値よりも、上昇しているとの知見を得た。
 この知見に基づき、有機炭素源を添加した培地での藻類の培養において、藻類の細胞内のNADH/NAD比を減少させる条件下で培養を行うことで、藻類の生育を向上可能であることを見出だした。
According to the studies of the present inventors, as shown in the examples below, the value of the NADH/NAD + ratio in the cells of schizon cultured under "heterotrophic conditions" and "mixed nutrition conditions" was "independent It was found that the ratio of NADH/NAD + in the cells of schizomon cultured under "nutrient conditions" was higher than that in the cells.
Based on this finding, it is possible to improve the growth of algae by culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the NADH/NAD + ratio in algae cells. I found a headline.
 前記藻類の生育が向上したことは、「従属栄養条件」又は「混合栄養条件」下で、藻類の細胞内のNADH/NAD比を減少させる条件を適用していない従来の培養方法よりも、藻類の細胞内のNADH/NAD比を減少させる条件を適用した培養方法で培養した場合に、前記藻類の増殖速度が向上されること、最大到達藻密度が向上すること、及び継代も含めた増殖期間が増加すること、のいずれか一つ以上が達成されることで確認できる。 The improved growth of the algae is under "heterotrophic conditions" or "mixotrophic conditions" compared to conventional culture methods that do not apply conditions that reduce the NADH/NAD + ratio in algae cells. When cultured by a culture method applying conditions that reduce the NADH/NAD + ratio in algae cells, the growth rate of the algae is improved, the maximum attainable algae density is improved, and passage is included. It can be confirmed by achieving any one or more of the following:
 図1は、細胞内でのNADHの生成と酸化の過程の一例を説明する模式図である。NADHの生成については、例えば、解糖系やTCAサイクルでグルコースやグリセロール等の有機炭素源が利用される過程において、NADが還元されNADHが生成される。
 NADの生成については、例えば、呼吸や嫌気発酵(不図示)によりNADHが消費されNADが生成される。
 したがって、有機炭素源を添加した「従属栄養条件」又は「混合栄養条件」下での培養では、有機炭素源の消費(NADH生産)及び/又は呼吸の制限(NADH消費の抑制)が生じ易く、細胞内のNADH量が多くなり、NADH/NADのアンバランスが生じていると考えられる。
FIG. 1 is a schematic diagram illustrating an example of the process of intracellular NADH production and oxidation. Regarding the production of NADH, for example, in the process of utilizing organic carbon sources such as glucose and glycerol in glycolysis and TCA cycle, NAD + is reduced to produce NADH.
Regarding the production of NAD + , for example, NADH is consumed by respiration or anaerobic fermentation (not shown) to produce NAD + .
Therefore, in culture under "heterotrophic conditions" or "mixotrophic conditions" with the addition of organic carbon sources, organic carbon source consumption (NADH production) and/or respiration restriction (NADH consumption suppression) is likely to occur. It is considered that the amount of intracellular NADH increases and an imbalance of NADH/NAD + occurs.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地での培養で、細胞内のNADHの消費を助け、細胞内のNADH/NAD比の値を減少させることで、藻類の生育を改善するものである。細胞内のNADH量を減少させることで藻類の生育を改善する仕組みについては、必ずしも明らかではない。しかし例えば、NADH量が高まるとNADHの生成に関わる解糖系やTCAサイクルが抑制されることが知られており、細胞内のNADH量を減少させることで、抑制されていた代謝経路の進行が改善されることが推察される。 The method for culturing algae of the embodiment is a culture in a medium supplemented with an organic carbon source, which helps consumption of intracellular NADH and reduces the value of the intracellular NADH/NAD + ratio, thereby inhibiting the growth of algae. It is an improvement. The mechanism by which algae growth is improved by reducing the amount of intracellular NADH is not necessarily clear. However, for example, it is known that when the amount of NADH increases, glycolysis and the TCA cycle, which are involved in the production of NADH, are suppressed. It is inferred to be improved.
 “細胞内のNADH/NAD比を減少させる条件”としては、特に制限されるものではないが、実施容易であり、且つ優れた生育改善の効果が得られるとの観点から、以下の2つを例示できる。
1)培地への酸素供給を増加させること
2)電子受容体を含む培地を用いること
"Conditions for reducing the intracellular NADH/NAD + ratio" are not particularly limited, but from the viewpoint of being easy to implement and having excellent effects of improving growth, the following two conditions are used. can be exemplified.
1) increasing the oxygen supply to the medium; 2) using a medium containing electron acceptors;
 上記の2)としては、以下が好ましい。
2-1)特定の窒素源を含む培地を用いること
As the above 2), the following is preferable.
2-1) Using a medium containing a specific nitrogen source
 後述の実施例に示されるとおり、1)培地への酸素供給を増加させることのみでも優れた生育改善の効果が得られる。また2-1)特定の窒素源を含む培地を用いることのみでも優れた生育改善の効果が得られる。更に1)培地への酸素供給を増加させ、且つ2-1)特定の窒素源を含む培地を用いることの両方を行うことにより、より一層優れた生育改善の効果が得られる。
 上記1)及び2)の詳細について以下に説明する。
As shown in the examples below, 1) only by increasing oxygen supply to the medium, an excellent effect of improving growth can be obtained. Also, 2-1) an excellent effect of improving growth can be obtained only by using a medium containing a specific nitrogen source. Furthermore, by performing both of 1) increasing the supply of oxygen to the medium and 2-1) using a medium containing a specific nitrogen source, a more excellent growth improvement effect can be obtained.
The details of 1) and 2) above will be described below.
1)酸素供給
 酸素供給を増加させることにより、例えば、下記反応が促進されて、藻類の細胞内でのNADHの消費が促進されると考えられる。
 2H+ + 1/2O2 + 2NADH → H2O +2NAD+
1) Oxygen supply It is believed that increasing the oxygen supply promotes, for example, the following reactions, thereby promoting the consumption of NADH within algae cells.
2H + + 1/2O 2 + 2NADH → H 2 O + 2NAD +
 実施形態の藻類の培養方法は、“細胞内のNADH/NAD比を減少させる条件”として例示した、上記1)の培地への酸素供給を増加させる方法の一例として、前記培養が通気培養である方法を例示する。 The method for culturing algae of the embodiment is an example of the method of increasing oxygen supply to the medium in 1) above, which is exemplified as "conditions for reducing the intracellular NADH/NAD + ratio", wherein the culture is aerobic culture. Illustrate a method.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を通気培養することを含む方法であることが好ましい。 The method for culturing algae of the embodiment is preferably a method including aerobic culture of the algae in a medium supplemented with an organic carbon source.
 即ち、実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を通気培養することを含み、前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類であることが好ましい。 That is, the method for culturing algae of the embodiment includes aerobic culture of the algae in a medium supplemented with an organic carbon source, and the algae is selected from the group consisting of unicellular red algae, green algae, diatoms, and cyanobacteria. is preferably at least one type of algae.
 ここで通気培養とは、藻類を培養する培地中に気体を吹込む(通気又はバブリングともいう)ことで、培地への酸素供給量を増加させる方法である。効率的な酸素供給の観点から、気泡発生装置を用いて、通気される気体の気泡を微細化して通気してもよい。通気対象の培地は液体培地であることが好ましい。 Here, aeration culture is a method of blowing gas (also called aeration or bubbling) into the medium for culturing algae to increase the amount of oxygen supplied to the medium. From the viewpoint of efficient oxygen supply, an air bubble generator may be used to refine the air bubbles of the gas to be aerated. Preferably, the medium to be aerated is a liquid medium.
 通気される気体は酸素を含有する気体であればよく、実施容易の観点から、通常大気であってもよい。通常大気の酸素濃度は約21体積%である。通気される気体としては、例えば、酸素濃度21体積%以上の気体が挙げられる。 The gas to be ventilated may be a gas containing oxygen, and from the viewpoint of ease of implementation, it may be normal air. The normal atmospheric oxygen concentration is about 21% by volume. The gas to be ventilated includes, for example, a gas having an oxygen concentration of 21% by volume or more.
 通気される気体の流量は、液体培地50mLに対して、例えば、50~20000mL/minであってよく、50~10000mL/minであってよく、100~1000mL/minであってよく、200~900mL/minであってよく、300~800mL/minであってよく、400~700mL/minであってよい。液体培地1mL当たりの通気量としては、例えば、1~400mL/min・mLであってよく、1~200mL/min・mLであってよく、2~20mL/min・mLであってよく、4~18mL/min・mLであってよく、6~16mL/min・mLであってよく、8~14mL/min・mLであってよい。 The flow rate of aerated gas may be, for example, 50 to 20000 mL/min, 50 to 10000 mL/min, 100 to 1000 mL/min, 200 to 900 mL with respect to 50 mL of liquid medium. /min, 300-800 mL/min, 400-700 mL/min. The aeration amount per 1 mL of the liquid medium may be, for example, 1 to 400 mL/min-mL, 1 to 200 mL/min-mL, 2 to 20 mL/min-mL, 4 to It may be 18 mL/min·mL, 6 to 16 mL/min·mL, or 8 to 14 mL/min·mL.
 通気される気体の酸素濃度は特に制限されるものではないが、通常大気よりも酸素濃度の高い気体を通気することが、酸素供給効率を容易に向上可能であるため好ましい。
 実施形態の藻類の培養方法は、前記藻類が培養される培地に通気される気体の酸素濃度が、通常大気の酸素濃度を超える酸素濃度であることが好ましい。
The oxygen concentration of the gas to be ventilated is not particularly limited, but it is preferable to ventilate a gas having an oxygen concentration higher than that of the normal atmosphere because the oxygen supply efficiency can be easily improved.
In the method for cultivating algae of the embodiment, it is preferable that the oxygen concentration of the gas that is passed through the medium in which the algae are cultured is higher than the oxygen concentration of the normal atmosphere.
 通気される気体の酸素濃度の一例として、気体の総体積に対して、25~100体積%の酸素を含有する気体であってよく、30~90体積%の酸素を含有する気体であってよく、40~80体積%の酸素を含有する気体であってよい。 As an example of the oxygen concentration of the gas to be vented, it may be a gas containing 25 to 100% by volume of oxygen, or a gas containing 30 to 90% by volume of oxygen, relative to the total volume of the gas. , a gas containing 40 to 80% by volume of oxygen.
 当該気体としては、大気に酸素を添加して得られる大気及び酸素の混合気体を例示できる。
 通気される気体の一例として、気体の総体積に対して、25~100体積%の酸素を含有するよう大気に酸素が添加された気体であってよく、30~90体積%の酸素を含有するよう大気に酸素が添加された気体であってよく、40~80体積%の酸素を含有するよう大気に酸素が添加された気体であってよい。
As the gas, a mixed gas of air and oxygen obtained by adding oxygen to the air can be exemplified.
An example of the gas to be vented may be atmospheric oxygenated gas containing 25 to 100 vol. It may be a gas in which oxygen is added to the atmosphere, or a gas in which oxygen is added to the atmosphere so as to contain 40 to 80% by volume of oxygen.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を通気培養することを含み、前記通気培養は、例えば、通気させる気体の総体積に対して25~100体積%の酸素を含有する気体を、液体培地50mLに対して50~20000mL/min(液体培地1mL当たりの通気量として1~400mL/min・mL)の流量で通気させる培養であってよく、
 通気させる気体の総体積に対して30~90体積%の酸素を含有する気体を、液体培地50mLに対して100~1000mL/min(液体培地1mL当たりの通気量として2~20mL/min・mL)の流量で通気させる培養であってよく、
 通気させる気体の総体積に対して40~80体積%の酸素を含有する気体を、液体培地50mLに対して300~800mL/min(液体培地1mL当たりの通気量として6~16mL/min・mL)の流量で通気させる培養であってよい。
A method for culturing algae of an embodiment includes aeration culturing the algae in a medium supplemented with an organic carbon source, and the aeration culture is carried out, for example, by adding 25 to 100% by volume of oxygen to the total volume of gas to be aerated. A gas containing is aerated at a flow rate of 50 to 20000 mL / min for 50 mL of liquid medium (1 to 400 mL / min · mL as an aeration rate per 1 mL of liquid medium).
A gas containing 30 to 90% by volume of oxygen with respect to the total volume of gas to be aerated is 100 to 1000 mL / min for 50 mL of liquid medium (2 to 20 mL / min · mL as aeration rate per 1 mL of liquid medium) The culture may be aerated at a flow rate of
A gas containing 40 to 80% by volume of oxygen with respect to the total volume of gas to be aerated is 300 to 800 mL / min for 50 mL of liquid medium (6 to 16 mL / min · mL as aeration rate per 1 mL of liquid medium) The culture may be aerated at a flow rate of
 前記培地の40℃での溶存酸素量(DO,Dissolved Oxygen)の一例としては、0.5mg/L以上であってもよく、6.3mg/L以上であってよい。前記培地の40℃での溶存酸素量の上限値は特に制限されるものではないが、好ましくは6.3~30mg/Lであってよく、より好ましくは13~27mg/Lであってよく、さらに好ましくは19~24mg/Lであってよい。
 上記の数値範囲内で溶存酸素量を含む培地は、前記藻類の生育を効果的に向上させることができる。
An example of the amount of dissolved oxygen (DO, Dissolved Oxygen) of the medium at 40° C. may be 0.5 mg/L or more, or 6.3 mg/L or more. Although the upper limit of the dissolved oxygen content of the medium at 40° C. is not particularly limited, it may preferably be 6.3 to 30 mg/L, more preferably 13 to 27 mg/L, More preferably, it may be 19-24 mg/L.
A medium containing a dissolved oxygen content within the above numerical range can effectively improve the growth of the algae.
 なお、ここでは、培地への効率的な酸素供給の例として通気培養を主に例示したが、例えば、通常大気の酸素濃度を超える酸素濃度下での旋回培養や、撹拌翼による混合、静置培養等を行い、培地への酸素供給を増加させることを行ってもよい。 Here, aerobic culture was mainly exemplified as an example of efficient oxygen supply to the medium. Cultivation or the like may be performed to increase oxygen supply to the medium.
<培地>
 実施形態の藻類の培養方法に用いる培地は、上述のとおり液体培地が好ましいが、固体培地であってもよく、液体培地を用いることが好ましい。
<Culture medium>
The medium used in the algae culture method of the embodiment is preferably a liquid medium as described above, but may be a solid medium and preferably a liquid medium.
 培地の組成は、特に限定されず、培養する藻類の種類に応じて適宜適切なものを選択すればよい。培地としては、例えば、窒素源、リン源、鉄源、微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデンなど)等を含む無機塩培地が例示される。例えば、窒素源としては、アンモニウム塩、硝酸塩、亜硝酸塩、尿素、アミン類等が挙げられ、リン源としては、リン酸塩、亜リン酸塩等が挙げられ、鉄源としては、塩化鉄、硫酸鉄、クエン酸鉄等が挙げられる。培地の具体例としては、例えば、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32:270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)等が挙げられる。なお、本明細書においては、M-Allen培地を「MA培地」と記載することがある。 The composition of the medium is not particularly limited, and an appropriate one may be selected according to the type of algae to be cultured. Examples of the medium include inorganic salt media containing nitrogen sources, phosphorus sources, iron sources, trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, etc.) and the like. For example, nitrogen sources include ammonium salts, nitrates, nitrites, urea, amines, and the like; phosphorus sources include phosphates, phosphites, and the like; iron sources include iron chloride, iron sulfate, iron citrate, and the like. Specific examples of the medium include, for example, 2 × Allen medium (Allen MB. Arch. Microbiol. 1959 32:270-277.), M-Allen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71 ), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.). In this specification, the M-Allen medium is sometimes referred to as "MA medium".
 有機炭素源を添加した培地における有機炭素源としては、例えば、糖アルコール、糖、アミノ酸等が挙げられる。糖アルコールとしては、例えば、グリセロールが挙げられる。糖としては、例えば、グルコース、マンノース、フルクトース、スクロース、マルトース、ラクトース糖が挙げられる。藻類がイデユコゴメ綱に属する藻類である場合、有機炭素源としては、グルコース、グリセロールが挙げられ、グリセロールが好ましい。 Examples of organic carbon sources in media containing organic carbon sources include sugar alcohols, sugars, and amino acids. Sugar alcohols include, for example, glycerol. Sugars include, for example, glucose, mannose, fructose, sucrose, maltose, lactose sugars. When the algae belong to the class Idycogome, examples of the organic carbon source include glucose and glycerol, with glycerol being preferred.
2)電子受容体
 実施形態の藻類の培養方法は、上記の“細胞内のNADH/NAD比を減少させる条件“として2)電子受容体を含む培地を用いることができる。
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を培養することを含み、前記培地が電子受容体を含む方法であることが好ましい。
 別の側面として、実施形態の藻類の培養方法は、有機炭素源及び電子受容体を添加した培地で前記藻類を培養することを含む方法であることが好ましい。
 前記電子受容体としては、ピルビン酸、リンゴ酸等を例示できる。
2) Electron acceptor In the method for culturing algae of the embodiment, a medium containing an electron acceptor can be used as 2) the above-mentioned “condition for reducing the intracellular NADH/NAD + ratio”.
A method for culturing algae of an embodiment includes culturing the algae in a medium to which an organic carbon source is added, and the medium preferably contains an electron acceptor.
As another aspect, the method for culturing algae of the embodiment is preferably a method including culturing the algae in a medium supplemented with an organic carbon source and an electron acceptor.
Examples of the electron acceptor include pyruvic acid and malic acid.
2-1)窒素源
 また、上記2)における電子受容体として、特定の窒素源を例示でき、前記特定の窒素源として、硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含む培地を用いて前記培養を行うことが好ましい。
 なお、培地中に配合された硝酸塩は、通常、電離して硝酸イオンを生じる。培地中に配合された亜硝酸は、通常、電離して亜硝酸イオンを生じる。
2-1) Nitrogen source Further, as the electron acceptor in 2) above, a specific nitrogen source can be exemplified, and the specific nitrogen source includes nitrate, nitrite, nitrate ion (NO 3 ), and nitrite ion ( NO 2 ) is preferably used for the culture.
Nitrates contained in the medium are usually ionized to produce nitrate ions. Nitrous acid formulated in the medium usually ionizes to produce nitrite ions.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を培養することを含み、前記培地が、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含み、前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類であることが好ましい。 A method for culturing algae of an embodiment includes culturing the algae in a medium to which an organic carbon source is added, and the medium contains nitrates, nitrites, nitrates (NO 3 ), and nitrite ions as nitrogen sources. (NO 2 ), and the algae is preferably at least one algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で前記藻類を通気培養することを含み、前記培地が、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含み、前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類であることが好ましい。 A method for culturing algae according to an embodiment includes aerobic culture of the algae in a medium supplemented with an organic carbon source, wherein the medium contains nitrate, nitrite, nitrate ion (NO 3 ), and nitrite as nitrogen sources. It is preferable that the algae include at least one selected from the group consisting of ions (NO 2 - ), and the algae be at least one algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
 前記培地に配合される窒素源としては、実質的に硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種のみが含有されることが好ましい。 The nitrogen source contained in the medium substantially contains only at least one selected from the group consisting of nitrates, nitrites, nitrate ions (NO 3 ), and nitrite ions (NO 2 ). is preferred.
 上記の特定の窒素源を含む培地を用いることにより、培養される藻類におけるNADHの消費が促進される。これは、上記の硝酸イオン等を利用するには、硝酸イオン(NO )→亜硝酸イオン(NO )→アンモニウムイオン(NH )への変換が必要となり、この過程でNADHが消費されるためと考えられる。 Using a medium containing the above specific nitrogen sources promotes the consumption of NADH in cultured algae. This is because, in order to utilize the above nitrate ions, it is necessary to convert nitrate ions (NO 3 )→nitrite ions (NO 2 )→ammonium ions (NH 4 + ), and in this process NADH is This is thought to be due to consumption.
 より多くのNADHの消費が期待できることから、窒素源として硝酸塩及び硝酸イオン(NO )、からなる群より選択される少なくとも一種を含む培地を用いて前記培養を行うことがより好ましい。即ち、前記培地に配合される窒素源としては、実質的に硝酸塩及び/又は硝酸イオンのみが含有されることが好ましい。例えば、培地は、アンモニウム塩及びアンモニウムイオン(NH )を含まないことが好ましい。 It is more preferable to perform the culture using a medium containing at least one selected from the group consisting of nitrate and nitrate ion (NO 3 ) as a nitrogen source, since more NADH consumption can be expected. That is, it is preferable that the nitrogen source contained in the medium substantially contains only nitrate and/or nitrate ion. For example, the medium is preferably free of ammonium salts and ammonium ions ( NH4 + ).
 従来、明所でシアニディオシゾン・メロラエを培養する場合に、硝酸イオンを窒素源とするほうが、アンモニウムイオンを窒素源とするよりも生育が低下することが知られていた(S. Imamura et al., Plant Cell Physiol. 51(5): 707-717 (2010)。
 このような知見を踏まえると、従属栄養条件下で上記の特定の窒素源を含む培地を用いることで、藻類の生育が向上されることは予想外の結果である。
Conventionally, when cultivating Cyanidioschizon mellorae in a bright place, it was known that the growth rate was lower when nitrate ions were used as the nitrogen source than when ammonium ions were used as the nitrogen source (S. Imamura et al. al., Plant Cell Physiol. 51(5): 707-717 (2010).
Based on such findings, it is an unexpected result that the growth of algae is improved by using the medium containing the above-described specific nitrogen source under heterotrophic conditions.
 前記培地に配合される窒素源から生じることのできるアンモニウムイオン(NH )、硝酸イオン(NO )、及び亜硝酸イオン(NO )の総量に対する、硝酸イオン(NO )及び亜硝酸イオン(NO )の総量は、モル基準で、50%以上であることが好ましく、80%以上であることがより好ましく、実質的に硝酸イオン(NO )又は亜硝酸イオン(NO )のみであることがさらに好ましい。 Nitrate ions ( NO 3 - ) and The total amount of nitrite ions (NO 2 ) is preferably 50% or more, more preferably 80% or more, on a molar basis, and is substantially nitrate ions (NO 3 ) or nitrite ions ( NO 2 ) only is more preferred.
 なお、上述のとおり1)培地への酸素供給を増加させることの一例として、通気培養を例示したが、後述の実施例に示されるとおり、例えば2)特定の窒素源を含む培地を用いることのみであっても、優れた生育向上の効果が得られる。そのため、通気培養以外の“細胞内のNADH/NAD比を減少させる条件”を採用した場合の培養方法は、通気培養には限定されず、藻類の培養方法として一般的に用いられる方法を適宜用いることができる。具体例としては、静置培養、旋回培養(100~200rpmなど)等が挙げられる。 As described above, 1) aerobic culture was exemplified as an example of increasing oxygen supply to the medium, but as shown in the examples below, for example, 2) using a medium containing a specific nitrogen source only Even if it is, the effect of the outstanding growth improvement is acquired. Therefore, the culture method when adopting "conditions that reduce the intracellular NADH/NAD + ratio" other than aerobic culture is not limited to aerobic culture, and a method generally used as a culture method for algae can be used as appropriate. can be used. Specific examples include static culture, rotary culture (100 to 200 rpm, etc.), and the like.
 また、通気培養との組み合わせを行ってもよく、通気培養としては、上記に例示した方法が挙げられる。 In addition, a combination with aerobic culture may be performed, and examples of aerobic culture include the methods exemplified above.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で藻類を培養することを含み、液体培地50mLに対して50~10000mL/min(液体培地1mL当たりの通気量として1~200mL/min・mL)の流量で通気させる通気培養を行う方法であることが好ましく、且つ、前記培養を、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含む培地を用いて行う方法であることが好ましい。 The method for culturing algae of the embodiment includes culturing algae in a medium to which an organic carbon source is added, and the air flow rate is 50 to 10,000 mL/min for 50 mL of liquid medium (1 to 200 mL/min as an aeration rate per 1 mL of liquid medium).・It is preferable that the method is a method of performing an aeration culture in which aeration is performed at a flow rate of 1 mL), and the culture is performed using nitrate, nitrite, nitrate ion (NO 3 ), and nitrite ion (NO 2 ) as a nitrogen source. A method using a medium containing at least one selected from the group consisting of is preferred.
 実施形態の藻類の培養方法は、有機炭素源を添加した培地で藻類を培養することを含み、前記培養が通気させる気体の総体積に対して25~100体積%の酸素を含有する気体を、液体培地50mLに対して50~10000mL/min(液体培地1mL当たりの通気量として1~200mL/min・mL)の流量で通気させる通気培養を行う方法であることが好ましく、且つ、前記培養を、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含む培地を用いて行う方法であることが好ましい。 A method for cultivating algae of an embodiment comprises culturing algae in a medium supplemented with an organic carbon source, wherein the culture aerates a gas containing 25 to 100% by volume of oxygen with respect to the total volume of gas, It is preferable to perform aerobic culture in which 50 mL of liquid medium is aerated at a flow rate of 50 to 10000 mL / min (1 to 200 mL / min · mL as an aeration rate per 1 mL of liquid medium), and the culture is performed by It is preferable to use a medium containing at least one selected from the group consisting of nitrates, nitrites, nitrates (NO 3 ) and nitrite ions (NO 2 ) as a nitrogen source.
 培地のpHとしては、培養する対象の藻類に応じて適宜定めることができる。例えば、イデユコゴメ綱に属する藻類の場合は、酸性条件でより良好に増殖することができるため、pH1~6が好ましく、pH1~5がより好ましく、pH1~3がさらに好ましい。 The pH of the medium can be determined appropriately according to the algae to be cultured. For example, in the case of algae belonging to the class Idycogome, pH 1 to 6 is preferable, pH 1 to 5 is more preferable, and pH 1 to 3 is even more preferable, since they can grow better under acidic conditions.
<その他の培養条件>
 前記培養における温度条件は、藻類の種類に応じて適宜選択すればよい。一般的には、培養温度は、15~60℃を例示することができ、好ましくは15~50℃、さらに好ましくは30~50℃である。藻類が、イデユコゴメ綱に属する藻類である場合、培養温度は30~50℃が好ましい。
<Other culture conditions>
The temperature conditions for the culture may be appropriately selected according to the type of algae. Generally, the culture temperature can be 15 to 60°C, preferably 15 to 50°C, more preferably 30 to 50°C. When the algae belong to the class Idycogome, the culture temperature is preferably 30 to 50°C.
 培養におけるCO条件は、藻類の種類に応じて適宜選択すればよい。一般的には、0.04~5体積%CO条件を例示することができる。藻類がイデユコゴメ綱に属する藻類である場合、0.04~3体積%CO条件が好ましい。 The CO2 conditions in culture may be appropriately selected according to the type of algae. Generally, 0.04-5 vol% CO 2 conditions can be exemplified. 0.04-3 vol% CO 2 conditions are preferred when the algae belong to the class Idycogome.
 前培養における光条件は、藻類の種類に応じて適宜選択すればよい。一般的には、5~2000μmol/msを例示することができる。藻類が、イデユコゴメ綱に属する藻類である場合、5~1500μmol/msが好ましく、5~100μmol/msがより好ましい。光条件は、連続光であってもよく、明暗周期(10L:14Dなど)を設けてもよい。培養は、自然光下で行ってもよい。 Light conditions in the pre-culture may be appropriately selected according to the type of algae. Generally, 5 to 2000 μmol/m 2 s can be exemplified. When the algae belong to the class Idycogome, it is preferably 5 to 1500 μmol/m 2 s, more preferably 5 to 100 μmol/m 2 s. The light condition may be continuous light, or a light-dark cycle (10L:14D, etc.) may be provided. Culturing may be performed under natural light.
 従属栄養条件又は混合栄養条件下を与えやすいとの観点からは、前記培養における光条件は、光補償点未満であることが好ましく、一例として、0~20μmol/msであってよく、0~10μmol/msであってよく、0~5μmol/msであってよい。 From the viewpoint of facilitating the provision of heterotrophic conditions or mixed nutrition conditions, the light conditions in the culture are preferably below the light compensation point. It may be ˜10 μmol/m 2 s, and may be 0-5 μmol/m 2 s.
 実施形態の藻類の培養方法は、前記培養を暗所で行うことが好ましい。ここで「暗所」とは5μmol/ms未満を意味し、0μmol/msが好ましい。 In the algae culture method of the embodiment, the culture is preferably performed in a dark place. Here, "dark place" means less than 5 μmol/m 2 s, preferably 0 μmol/m 2 s.
 暗所では、藻類は従属栄養条件で培養されて有機炭素源が消費(NADH生産)され、光合成も制限されるため呼吸の制限(NADH消費の抑制)が生じ易い。そのため、細胞内のNADH/NAD比を減少させることによる、藻類の生育向上の効果が、より効果的に発揮される。 In a dark place, algae are cultivated under heterotrophic conditions, consume organic carbon sources (NADH production), and photosynthesis is also restricted, so respiration restriction (suppression of NADH consumption) is likely to occur. Therefore, the effect of improving the growth of algae by reducing the intracellular NADH/NAD + ratio is exhibited more effectively.
 培養期間中、藻類は、適宜継代して培養してもよい。液体培地で増殖させる場合、継代の間隔としては、例えば、10日~50日、又は15~30日が挙げられる。 During the culture period, the algae may be subcultured as appropriate. When grown in liquid medium, passage intervals include, for example, 10 to 50 days, or 15 to 30 days.
 培養期間は特に制限されないが、継代も含めた培養期間が連続で30日以上であることが好ましく、40日以上であることがより好ましく、80日以上であることがさらに好ましい。継代も含めた暗所での培養期間が、連続暗期で30日以上であることが好ましく、40日以上であることがより好ましく、80日以上であることがさらに好ましい。 The culture period is not particularly limited, but the culture period including passage is preferably 30 days or longer, more preferably 40 days or longer, and even more preferably 80 days or longer. The culture period in the dark, including passage, is preferably 30 days or more, more preferably 40 days or more, and even more preferably 80 days or more in a continuous dark period.
<藻類>
 実施形態の培養方法の培養対象の藻類は、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類であり、単細胞性の紅藻が好ましい。
<Algae>
Algae to be cultured in the culture method of the embodiment is at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria, and unicellular red algae are preferred.
 単細胞性の緑藻としては、クラミドモナス属(Chlamydomonas)に属する藻類が挙げられる。単細胞性の珪藻としては、フェオダクチラム属(Phaeodactylum)に属する藻類が挙げられる。単細胞性の藍藻としては、シアノバクテリア門(Cyanobacteria)に属する藻類が挙げられ、シネコシスティス属(Synechocystis)に属する藻類であることが好ましく、Synechocystis sp.PCC 6803がより好ましい。 Unicellular green algae include algae belonging to the genus Chlamydomonas. Unicellular diatoms include algae belonging to the genus Phaeodactylum. Unicellular blue-green algae include algae belonging to the phylum Cyanobacteria, preferably algae belonging to the genus Synechocystis, Synechocystis sp. PCC 6803 is more preferred.
 単細胞性の紅藻としては、例えば、イデユコゴメ綱(Cyanidiophyceae)に属する藻類が挙げられる。イデユコゴメ綱は、分類学上、紅色植物門(Rhodophyta)、イデユコゴメ綱(Cyanidiophyceae)に分類される。イデユコゴメ綱には、現在、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属の3属が分類されている。 Unicellular red algae include, for example, algae belonging to the class Cyanidiophyceae. The class Cyanidiphyta is taxonomically classified into the phylum Rhodophyta and the class Cyanidiophyceae. Three genera, Cyanidioschyzon, Cyanidium, and Galdieria, are currently classified in the class Idycogome.
 前記藻類としては、シアニディオシゾン(Cyanidioschyzon)属に属する藻類であることが好ましく、シアニディオシゾン・メロラエがより好ましい。 The algae are preferably algae belonging to the genus Cyanidioschyzon, more preferably Cyanidioschyzon mellolae.
 本実施形態の培養方法は、前記藻類の中でも、従属栄養条件又は混合栄養条件下で培養した場合に独立栄養条件下で培養した場合よりも生育が抑制される藻類に適用することが好ましい。ここで前記「従属栄養条件又は混合栄養条件下で培養した場合に生育が抑制される」とは、独立栄養条件下で培養した場合と比べ、増殖が抑制されること(増殖できないことを含む)、増殖速度が低下すること、最大到達藻密度が向上すること、及び継代も含めた増殖期間が短縮されることを含む概念である。 Among the algae, the culture method of the present embodiment is preferably applied to algae whose growth is more suppressed when cultured under heterotrophic conditions or mixed nutrition conditions than when cultured under autotrophic conditions. Here, the above-mentioned "growth is suppressed when cultured under heterotrophic conditions or mixed nutrition conditions" means that growth is suppressed (including inability to grow) compared to the case of culture under autotrophic conditions. , the growth rate is reduced, the maximum algae density is improved, and the growth period including passage is shortened.
 別の側面において、本実施形態の培養方法は、前記藻類の中でも、従属栄養条件又は混合栄養条件下で培養した場合に独立栄養条件下で培養した場合よりも細胞内のNADH/NADの値が増加する藻類に適用することが好ましい。従属栄養条件又は混合栄養条件下で培養した場合の細胞内のNADH/NADの値が、独立栄養条件下で培養した場合の細胞内のNADH/NADの値よりも大きく、且つ、従属栄養条件又は混合栄養条件下で培養した場合の細胞内のNADH/NADの値が、独立栄養条件下で培養した場合の細胞内のNADH/NADの値の1.3倍以上であることが好ましく、1.5倍以上であることが好ましい。従属栄養条件又は混合栄養条件下で培養した場合の細胞内のNADH/NADの値が、独立栄養条件下で培養した場合の細胞内のNADH/NADの値よりも大きく、且つNADH/NADの値が0.05以上である藻類が好ましく、0.05~0.5である藻類がより好ましく、0.1~0.4である藻類がさらに好ましい。細胞内のNADH/NADの値は、後述の実施例に記載の方法にて取得できる。 In another aspect, the culturing method of the present embodiment has a higher intracellular NADH/NAD + value when cultured under heterotrophic conditions or mixed trophic conditions than when cultured under autotrophic conditions among the algae. It is preferable to apply to algae that increases. The intracellular NADH/NAD + value when cultured under heterotrophic conditions or mixed nutrition conditions is greater than the intracellular NADH/NAD + value when cultured under autotrophic conditions, and is heterotrophic The intracellular NADH/NAD + value when cultured under conditions or mixed nutrition conditions is 1.3 times or more the intracellular NADH/NAD + value when cultured under autotrophic conditions Preferably, it is 1.5 times or more. The intracellular NADH/NAD + value when cultured under heterotrophic or mixotrophic conditions is greater than the intracellular NADH/NAD + value when cultured under autotrophic conditions, and NADH/NAD Algae with a + value of 0.05 or more are preferred, algae with a + value of 0.05 to 0.5 are more preferred, and algae with a + value of 0.1 to 0.4 are even more preferred. The intracellular NADH/NAD + value can be obtained by the method described in Examples below.
 また、本実施形態の培養方法を適用する藻類は、環境中から単離してもよく、カルチャー・コレクション等から入手してもよい。例えば、シアニディオシゾン・メロラエは、国立研究開発法人国立環境研究所微生物系統保存施設(日本国茨城県つくば市小野川16-2)、American Type Culture Collection(ATCC;10801 University Boulevard Manassas, VA 20110 USA)等から入手することができる。 In addition, algae to which the culture method of the present embodiment is applied may be isolated from the environment or obtained from culture collections and the like. For example, Cyanidioschizone mellorae has been collected from the National Institute for Environmental Studies Microbiology Collection Facility (16-2 Onogawa, Tsukuba City, Ibaraki Prefecture, Japan), American Type Culture Collection (ATCC; 10801 University Boulevard Manassas, VA 20110 USA). ), etc.
 また、本実施形態の培養方法を適用する藻類は、自然界から単離されたものに限定されず、天然の藻類に変異が生じたものであってもよい。変異は、自然発生的に生じたものであってもよく、人為的に生じたものであってもよい。例えば、シアニディオシゾン・メロラエは、ゲノムサイズが小さく(約16Mbp)、ゲノム配列の解読が完了しているため(Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7.)、遺伝子改変を行いやすい。したがって、例えば、遺伝子改変により作製されたシアニディオシゾン・メロラエの形質転換体(例えば、栄養成分が強化された形質転換体)に、本実施形態の培養方法を適用してもよい。また、遺伝子改変可能であれば、他の藻類の形質転換体に、本実施形態の培養方法を適用してもよい。 In addition, algae to which the culture method of the present embodiment is applied are not limited to those isolated from nature, and may be natural algae mutated. Mutations may be naturally occurring or artificially occurring. For example, Cyanidioschizon mellorae has a small genome size (about 16 Mbp), and the genome sequence has been completed (Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7 ), and are susceptible to genetic modification. Therefore, for example, the culture method of the present embodiment may be applied to a transformant of Cyanidioschizon mellolae produced by genetic modification (for example, a transformant with enhanced nutritional components). In addition, the culture method of the present embodiment may be applied to transformants of other algae as long as they can be genetically modified.
 実施形態の藻類の培養方法によれば、有機炭素源を添加した培地での培養において、前記藻類の生育を向上させることができる。
 実施形態の藻類の培養方法によれば、独立栄養条件下よりも従属栄養条件下で増殖速度が低下する藻類の前記増殖速度を向上可能である。
 実施形態の藻類の培養方法によれば、独立栄養条件下よりも従属栄養条件下で最大到達藻密度が低下する藻類の前記最大到達藻密度を向上可能である。
According to the method for culturing algae of the embodiment, the growth of the algae can be improved in the culture in the medium to which the organic carbon source is added.
According to the method for culturing algae of the embodiment, it is possible to improve the growth rate of algae whose growth rate is lower under heterotrophic conditions than under autotrophic conditions.
According to the method for culturing algae of the embodiment, it is possible to improve the maximum algal density of algae whose maximum algae density is lower under heterotrophic conditions than under autotrophic conditions.
 実施形態の藻類の培養方法は、従来、従属栄養条件下で長期間の培養維持が困難であった藻類の継代培養を可能とし、広範囲の藻類の培養に関して多大な貢献をもたらす画期的な培養方法である。 The method for culturing algae of the embodiment enables subculture of algae, which has been difficult to maintain for a long period of time under heterotrophic conditions, and is an epoch-making method that makes a great contribution to the cultivation of a wide range of algae. culture method.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実験1 NADH/NAD比の確認
 発明者らは、シアニディオシゾン・メロラエが、暗所で生育能力が低いことの要因として、細胞内の酸化還元バランス(NADH/NAD比)に着目した。そこで、各培養条件での細胞内のNADH/NAD比を求めた。
Experiment 1 Confirmation of NADH/NAD + ratio The inventors focused on the intracellular redox balance (NADH/NAD + ratio) as a factor in the low growth ability of Cyanidioschizone mellorae in the dark. . Therefore, the intracellular NADH/NAD + ratio was determined under each culture condition.
 MA2培地にグリセロールを350mM添加した培地を用いて、シアニディオシゾン・メロラエ 10D株(NIES-3377,国立遺伝学研究所にて維持、以下「シゾン」という)を、下記の独立栄養条件下、混合栄養条件下、又は従属栄養条件下でそれぞれ培養した。
 独立栄養条件:光強度(25μmol/ms)、MA2培地への有機炭素源の添加無し
 混合栄養条件:光強度(25μmol/ms)、MA2培地への有機炭素源(グリセロール)の添加有り
 従属栄養条件:暗所(光強度0μmol/ms)、MA2培地への有機炭素源(グリセロール)の添加有り
 ここでの各培養は、40℃に維持したインキュベーター(IS 600、ヤマト科学)で、バイオシェーカー(NR-3, TAITEC)を用いて、通常大気下で旋回培養(130rpm rotary)した。
 培地は、独立栄養条件ではMA2培地を用い、混合栄養条件及び従属栄養条件ではMA2+glycerol 350mM培地(MA2培地に、グリセロールの終濃度が350mMとなるようグリセロールを添加した培地。以降の培地の表記も同様。)を用いた。
 初期植菌量はOD750=0.2となるように植菌した。その後、独立栄養条件及び混合栄養条件では5日間の培養を行い、シゾンを回収した。従属栄養条件ではシゾンの生育が悪かったため、5日間の混合栄養条件での培養後、従属栄養条件で2日間培養し、シゾンを回収した。
 回収したシゾンの細胞内のNADH/NAD比を測定した。抽出・測定にはNAD/NADH Assay Kit,EnzyChrom(BioAssay Systems社)を使用し、マイクロプレートリーダー(SYNERGY H1、BioTek社)により565nmの吸光度を測定した。
Cyanidioschizon mellolae strain 10D (NIES-3377, maintained at the National Institute of Genetics, hereinafter referred to as "schizon") was grown using MA2 medium supplemented with 350 mM glycerol under the following autotrophic conditions. They were cultured under mixotrophic conditions or heterotrophic conditions, respectively.
Autotrophic condition: light intensity (25 μmol/m 2 s), no addition of organic carbon source to MA2 medium Mixotrophic condition: light intensity (25 μmol/m 2 s), addition of organic carbon source (glycerol) to MA2 medium Yes Heterotrophic conditions: Dark place (light intensity 0 μmol/m 2 s), addition of organic carbon source (glycerol) to MA2 medium Each culture here was carried out in an incubator (IS 600, Yamato Scientific) maintained at 40°C. Using a bioshaker (NR-3, TAITEC), rotation culture (130 rpm rotary) was carried out under normal atmosphere.
The medium used is MA2 medium under autotrophic conditions, and MA2 + glycerol 350 mM medium under mixed and heterotrophic conditions (MA2 medium supplemented with glycerol so that the final concentration of glycerol is 350 mM. The following medium notation is the same. ) was used.
The initial inoculation amount was inoculated so that OD 750 =0.2. Thereafter, culturing was performed for 5 days under autotrophic conditions and mixed nutrition conditions, and schisons were collected. Since the growth of schizons was poor under heterotrophic conditions, culturing was carried out under heterotrophic conditions for 2 days after culturing under mixed nutrition conditions for 5 days, and then schizons were collected.
The intracellular NADH/NAD + ratio of the harvested schizons was measured. NAD + /NADH Assay Kit, EnzyChrom (BioAssay Systems) was used for extraction and measurement, and absorbance at 565 nm was measured with a microplate reader (SYNERGY H1, BioTek).
 MA2培地の組成を表1に示す。 Table 1 shows the composition of the MA2 medium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結果を図2に示す。混合栄養条件及び従属栄養条件下で培養されたシアニディオシゾン・メロラエの細胞では、独立栄養条件での細胞よりも、細胞内のNADH/NAD比の値が増加していることが明らかとなった。 The results are shown in FIG. Cyanidioschizon mellolae cells cultured under mixed and heterotrophic conditions showed an increased intracellular NADH/NAD + ratio value compared to cells under autotrophic conditions. became.
 上記の知見を得て、NADHの消費を高める条件のもとに培養を行うことで、シゾンの暗所(従属栄養条件下)で生育能力を向上させることができるかについて、以下の検証を行った。 Based on the above findings, the following verification was performed to determine whether the growth ability of Schizon in the dark (heterotrophic conditions) can be improved by culturing under conditions that increase NADH consumption. rice field.
実験2-1 通気培養
 以下の旋回培養又は通気培養の培養条件にて、シゾンの培養を行い、藻密度を指標に生育状況を比較した。
Experiment 2-1 Aeration culture Schizon was cultured under the following culture conditions for rotary culture or aeration culture, and the growth conditions were compared using the algae density as an index.
 ・旋回培養(40℃,暗所,MA2+glycerol 350mM,20mL culture, 125rpm,通常大気下)
 ・通気培養(1)(40℃,暗所、MA2+glycerol 350mM,50mL culture,600mL air/min,通常大気を通気)
・通気培養(2)(40℃,暗所、MA2+glycerol 350mM,150mL culture,500mL air/min,通常大気を通気)
・ Spinning culture (40°C, dark, MA2 + glycerol 350 mM, 20 mL culture, 125 rpm, normal atmosphere)
- Aeration culture (1) (40°C, dark, MA2 + glycerol 350 mM, 50 mL culture, 600 mL air/min, normal air aeration)
- Aeration culture (2) (40°C, dark, MA2 + glycerol 350 mM, 150 mL culture, 500 mL air/min, normal air aeration)
(通気培養(1)条件)
 ・容器:試験管 直径30mm 長さ200mm
 ・エアポンプ:水作社製,水心 SSPP-2S
 エアポンプから、シリコンチューブを経由して、流量計、0.22μmフィルターの順に通過させた空気を、純水を入れた試験管内を通じて、培養に用いた試験管内の培養液に吹き込んだ。シリコンチューブと試験管の接続にはシリコン栓(9号)を用いた。
(通気培養(2)条件)
 ・容器:アイボーイ広口びん(容量 250mL)
 ・エアポンプ:日本動物薬品社製,ノンノイズ W-1000
 エアポンプから、シリコンチューブを経由して、流量計を通過させた空気を、純水を入れたボトル内を通じて、0.22μmフィルターを通じて培養に用いた容器内の培養液に吹き込んだ。シリコンチューブと試験管の接続にはシリコン栓(11号)を用いた。
(Aerobic culture (1) conditions)
・Container: test tube diameter 30mm length 200mm
・ Air pump: Water center SSPP-2S manufactured by Mizusaku Co., Ltd.
Air was passed from an air pump, through a silicon tube, through a flow meter, and through a 0.22 μm filter in that order, and was blown into the culture solution in the test tube used for culturing through the test tube containing pure water. A silicone stopper (No. 9) was used to connect the silicone tube and the test tube.
(Aerobic culture (2) conditions)
・Container: iboy wide mouth bottle (capacity 250mL)
・ Air pump: Non-noise W-1000 manufactured by Nippon Animal Yakuhin Co., Ltd.
Air passed through a flow meter from an air pump through a silicon tube was blown through a bottle containing pure water and through a 0.22 μm filter into the culture solution in the vessel used for culture. A silicone stopper (No. 11) was used to connect the silicone tube and the test tube.
(藻密度の測定)
 培養液をサンプリングし、分光光度計により、濁度(OD750)を測定した。
(Measurement of algae density)
The culture solution was sampled and turbidity (OD 750 ) was measured with a spectrophotometer.
 旋回培養と通気培養(1)とで、シアニディオシゾン・メロラエの生育状況を比較した結果を図3Aに示す。通常の旋回培養で培養を行った場合では、培養開始から20日程度で増殖が停止し、到達藻密度は頭打ちとなった。
 対して、通気培養(1)にて、通気量を増やした場合では、旋回培養と比べてシゾンが増殖できる期間が長く、到達藻密度も旋回培養に比べて約4.6倍となった。
Fig. 3A shows the results of comparing the growth conditions of Cyanidioschizon mellolae between the rotary culture and the aerobic culture (1). In the case of culturing in the usual rotary culture, the growth stopped about 20 days after the start of the culture, and the algal density reached a plateau.
On the other hand, in aerobic culture (1), when the aeration rate was increased, the period during which schizons could grow was longer than in the vortex culture, and the algal density achieved was approximately 4.6 times that in the vortex culture.
 通気培養(2)での、シアニディオシゾン・メロラエの生育状況を示す結果を図3Bに示す。
 通気培養にて、通気培養(1)に比べて、より大きな培養容器を使用し、通気量を減らした場合でも、旋回培養と比べてシゾンが増殖できる期間が長く、到達藻密度も旋回培養に比べて約7.5倍となった。
FIG. 3B shows the results showing the growth of Cyanidioschizon mellolae in the aerobic culture (2).
In the aerobic culture, compared to the aerobic culture (1), even if a larger culture vessel is used and the amount of aeration is reduced, the period during which schisons can grow is longer than in the rotary culture, and the algae density reached is also higher in the rotary culture. Approximately 7.5 times higher than
実験2-2 通気培養での継代後の生育
 上記実験2-1の旋回培養又は通気培養と同様の培養条件にて、シゾンの継代培養を実施した。継代の植菌量はOD750=0.4程度となるように設定した。通気培養期間中、液体培地中への大気の吹込み(強制通気)を常時実施した。
Experiment 2-2 Growth after passage in aerobic culture Schizon was subcultured under the same culture conditions as those for the spin culture or aerobic culture in Experiment 2-1 above. The inoculum amount for subculturing was set so that OD 750 was about 0.4. Air was constantly blown into the liquid medium (forced aeration) during the aeration culture period.
・旋回培養(40℃,暗所、MA2+glycerol 350mM,50mL culture,125rpm,通常大気下)
・通気培養(40℃,暗所、MA2+glycerol 400mM,50mL culture,600mL air/min,通常大気を通気)
 複数回および複数時点での継代を実施。
・Swirl culture (40°C, dark, MA2 + glycerol 350 mM, 50 mL culture, 125 rpm, normal atmosphere)
・Aeration culture (40°C, dark, MA2 + glycerol 400 mM, 50 mL culture, 600 mL air/min, normal air aeration)
Multiple passages and multiple time points were performed.
 通常の旋回培養で培養を行った結果を図4に示す。20日間培養した培養液の一部を、新たな培養液に懸濁(希釈)して培養を継続した(図4中の矢印は、継代を示す。)。旋回培養では、継代後の生育が良好ではなく、継代後15日程度で増殖が停止した。 Fig. 4 shows the results of culturing in a normal swirling culture. A part of the culture solution cultured for 20 days was suspended (diluted) in a new culture solution and the culture was continued (arrows in FIG. 4 indicate passages). In the rotary culture, the growth after subculturing was not good, and growth stopped about 15 days after subculturing.
 図5は、通気培養で培養を行った結果である。21日、30日、又は44日間培養した培養液の一部を、新たな培養液に懸濁(希釈)して培養を継続した(図5中の矢印は、継代を示す。)。図5に示されるとおり、通気培養にて通気量を増やした培養では、複数回の継代後にも良好な増殖が確認され、合計で95日間の培養が可能であることが確認された。
 これまでのシゾンの培養方法では、暗所の生育では継代培養が難しいという問題があったが、通気培養を行うことにより、良好に継代培養が実施可能であることが確認された。
FIG. 5 shows the results of aeration culture. A portion of the culture solution cultured for 21 days, 30 days, or 44 days was suspended (diluted) in a new culture solution to continue culturing (the arrows in FIG. 5 indicate passages). As shown in FIG. 5, in the aeration culture with increased aeration volume, good growth was confirmed even after multiple passages, and it was confirmed that the culture can be cultured for a total of 95 days.
In the conventional methods for culturing Schizon, there was a problem that it was difficult to subculture in a dark place, but it was confirmed that good subculture can be carried out by performing aerobic culture.
実験2-3 高酸素濃度での通気培養(1)
 以下の培養条件にて、シゾンの培養を行った。
 培養中は、液体培地内への気体の吹込み(強制通気)を常時実施した。通気培養(酸素添加大気)の培養系では、培養開始時点では通常大気(O濃度21体積%)にて通気を行い、その後増殖の停滞がみられてから、通常大気に酸素を添加し、段階的に酸素濃度を上げた気体を通気する通気培養を行った(O濃度21体積%→42体積%→63体積%→80体積%)。酸素濃度の変更時期は、図6に示す培養後の日数の時点である。
 また、酸素濃度の変更を行わない、通常大気(O濃度21体積%)での通気培養(通常大気)も実施し、藻密度を指標に生育状況を比較した。
Experiment 2-3 Aeration culture at high oxygen concentration (1)
Schizon was cultured under the following culture conditions.
During the culture, gas was constantly blown into the liquid medium (forced aeration). In the aeration culture (oxygenated atmosphere) culture system, at the start of the culture, aeration was performed in normal atmosphere (O 2 concentration 21% by volume), and after growth stagnation was observed, oxygen was added to the normal atmosphere, Aeration culture was performed by aerating a gas with a stepwise increase in oxygen concentration (O 2 concentration 21% by volume→42% by volume→63% by volume→80% by volume). The time to change the oxygen concentration is the number of days after culturing shown in FIG.
In addition, aerobic culture (normal atmosphere) was also performed in normal atmosphere (O 2 concentration 21% by volume) without changing the oxygen concentration, and the growth conditions were compared using the algae density as an indicator.
 ・通気培養(酸素添加大気)(40℃,暗所、MA2+glycerol 400mM,50mL culture,400mL/min,酸素発生機及びガス混合器を使用し、通常大気に対して酸素を添加した気体を通気)
 ・通気培養(通常大気)(40℃,暗所、MA2+glycerol 400mM,50mL culture,400mL air/min,通常大気を通気)
・Aerobic culture (oxygenated atmosphere) (40°C, dark place, MA2 + glycerol 400mM, 50mL culture, 400mL/min, using an oxygen generator and a gas mixer, aeration of oxygenated gas against normal atmosphere)
・Aeration culture (normal atmosphere) (40°C, dark place, MA2 + glycerol 400 mM, 50 mL culture, 400 mL air/min, normal atmosphere)
 結果を図6に示す。酸素添加大気で通気培養を実施した場合のほうが、最大到達藻密度の向上が確認された。 The results are shown in Figure 6. It was confirmed that the maximum algae density was improved when the aeration culture was performed in an oxygenated atmosphere.
実験2-4 高酸素濃度での通気培養(2)
 上記の通気培養では、培養開始時点では通常大気(O濃度21体積%)にて通気を行っていたが、本実験では培養開始時点から通常大気よりも酸素濃度を上げた気体を通気する通気培養(酸素添加大気)を行った(O濃度42体積%→63体積%→80体積%)。酸素濃度の変更時期は、図7に示す培養後の日数の時点である。
 また、酸素濃度の変更を行わない、通常大気(O濃度21体積%)での通気培養(通常大気)も実施し、藻密度を指標に生育状況を比較した。
Experiment 2-4 Aeration culture at high oxygen concentration (2)
In the aeration culture described above, at the start of culture, aeration was performed with normal air ( O2 concentration of 21% by volume). Cultivation (oxygenated atmosphere) was performed ( O2 concentration 42% by volume → 63% by volume → 80% by volume). The time to change the oxygen concentration is the number of days after culture shown in FIG.
In addition, aerobic culture (normal atmosphere) was also performed in normal atmosphere (O 2 concentration 21% by volume) without changing the oxygen concentration, and the growth conditions were compared using the algae density as an index.
 ・通気培養(酸素添加大気)(40℃,暗所、MA2+glycerol 400mM,50mL culture,400mL/min,酸素発生機及びガス混合器を使用し、通常大気に対して酸素を添加した気体を通気)
 ・通気培養(通常大気)(40℃,暗所、MA2+glycerol 400mM,50mL culture,400mL air/min,通常大気を通気)
・Aerobic culture (oxygenated atmosphere) (40°C, dark place, MA2 + glycerol 400mM, 50mL culture, 400mL/min, using an oxygen generator and a gas mixer, aeration of oxygenated gas against normal atmosphere)
・Aeration culture (normal atmosphere) (40°C, dark place, MA2 + glycerol 400 mM, 50 mL culture, 400 mL air/min, normal atmosphere)
 結果を図7に示す。培養初期には増殖速度に差は見られなかったが、培養日数が経過するにつれて、酸素添加大気で通気培養を実施した場合のほうが、最大到達藻密度の向上が確認された。 The results are shown in Figure 7. No difference was observed in the growth rate at the initial stage of the culture, but as the number of days of culture passed, it was confirmed that the maximum algae density was improved when the aerobic culture was carried out in an oxygenated atmosphere.
 以上の結果により、酸素供給量を増加させることにより、暗所においてのシゾンの最大生育量を向上可能であることが示された。 The above results indicated that it was possible to improve the maximum amount of schizon growth in the dark by increasing the amount of oxygen supplied.
実験3-1 窒素源の変更(旋回培養)
 上記の各培養で用いたMA2+glycerol培地では、窒素源としてアンモニウムイオン(NH )を含んでいたが、窒素源を硝酸イオン(NO )に変更した培地(硝酸MA2培地)にグリセロールを添加した培地を使用して、旋回培養にて、シゾンの培養を行い、藻密度を指標に生育状況を確認した。
Experiment 3-1 Change of nitrogen source (swirling culture)
The MA2+glycerol medium used in each of the above cultures contained ammonium ions (NH 4 + ) as a nitrogen source, but glycerol was added to a medium (MA2 nitrate medium) in which the nitrogen source was changed to nitrate ions (NO 3 ). Schizon culture was carried out by swirl culture using the prepared medium, and the growth status was confirmed using the algae density as an index.
 ・NO (40℃,暗所、硝酸MA2+glycerol 400mM,20mL culture,130rpm,通常大気下)
 ・NH (40℃,暗所、MA2+glycerol 400mM,20 mL culture,130rpm,通常大気下)
・NO 3 (40° C., dark place, MA2+glycerol nitrate 400 mM, 20 mL culture, 130 rpm, under normal atmosphere)
・NH 4 + (40° C., dark, MA2+glycerol 400 mM, 20 mL culture, 130 rpm, under normal atmosphere)
 硝酸MA2培地の組成を表2に示す。 Table 2 shows the composition of the MA2 nitrate medium.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 結果を図8に示す。窒素源として硝酸イオン(NO -)を含む培地での旋回培養のほうが、窒素源としてアンモニウムイオン(NH )含む培地で旋回培養した場合よりも、生育速度が向上していた。 The results are shown in FIG. Spinning culture in a medium containing nitrate ions (NO 3 ) as a nitrogen source showed a higher growth rate than spin culture in a medium containing ammonium ions (NH 4 + ) as a nitrogen source.
実験3-2 窒素源の変更(通気培養)
 上記の実験3-1では、旋回培養により培養を実施したが、それを通気培養に代えたこと以外は、同様の条件にてシゾンの培養を行った。
Experiment 3-2 Change of nitrogen source (aerobic culture)
In Experiment 3-1 described above, schizon culture was performed under the same conditions as in Experiment 3-1, except that the rotation culture was used instead of the aeration culture.
 ・NO (40℃,暗所、硝酸MA2+glycerol 400mM,50mL culture,400~500mL/min,通常大気を通気)
 ・NH (40℃,暗所、MA2+glycerol 400mM,50mL culture,400~500mL air/min,通常大気を通気)
・NO 3 - (40°C, dark place, MA2 nitrate + glycerol 400 mM, 50 mL culture, 400 to 500 mL/min, normal air ventilation)
・NH 4 + (40° C., dark place, MA2+glycerol 400 mM, 50 mL culture, 400-500 mL air/min, normal air ventilation)
 結果を図9に示す。窒素源として硝酸イオン(NO -)を含む培地での通気培養のほうが、窒素源としてアンモニウムイオン(NH )含む培地で通気培養した場合よりも、生育速度が向上し、最大到達藻密度が向上していた。 The results are shown in FIG. The aerobic culture in a medium containing nitrate ions (NO 3 ) as a nitrogen source has a higher growth rate than the aerobic culture in a medium containing ammonium ions (NH 4 + ) as a nitrogen source, and the maximum algae density has been reached. was improving.
 以上の結果により、窒素源として硝酸イオン(NO -)を与えることにより、暗所においてのシゾンの生育速度を向上可能であることが示された。
 また、通気培養にて窒素源として硝酸イオン(NO -)を与えたほうが、旋回培養にて窒素源として硝酸イオン(NO -)を与えた場合よりも、藻密度が向上していた。
 このことから、酸素供給量の増加、及び硝酸イオン(NO -)利用のそれぞれが、暗所でのシゾンの生育能力の向上に寄与していることが示唆された。
From the above results, it was shown that the growth rate of schizon in a dark place can be improved by supplying nitrate ions (NO 3 - ) as a nitrogen source.
In addition, the addition of nitrate ions (NO 3 ) as the nitrogen source in the aerobic culture improved the algae density more than the addition of nitrate ions (NO 3 ) as the nitrogen source in the rotary culture.
From this, it was suggested that the increase in oxygen supply and the use of nitrate ions (NO 3 ) each contributed to the improvement of the growth ability of schizon in the dark.
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 Each configuration and combination thereof in each embodiment is an example, and addition, omission, replacement, and other modifications of the configuration are possible without departing from the scope of the present invention. Moreover, the present invention is not limited by each embodiment, but is limited only by the scope of the claims.

Claims (7)

  1.  藻類を、前記藻類の細胞内のNADH/NAD比を減少させる条件下で、有機炭素源を添加した培地で培養することを含み、
     前記藻類が、単細胞性の紅藻、緑藻、珪藻及び藍藻からなる群より選択される少なくとも一種の藻類である、藻類の培養方法。
    culturing algae in a medium supplemented with an organic carbon source under conditions that reduce the intracellular NADH/NAD + ratio of said algae;
    A method for culturing algae, wherein the algae is at least one type of algae selected from the group consisting of unicellular red algae, green algae, diatoms and cyanobacteria.
  2.  前記条件下での前記培養が、通気培養である、請求項1に記載の藻類の培養方法。 The method for culturing algae according to claim 1, wherein said culture under said conditions is aerobic culture.
  3.  前記通気培養において、前記藻類が培養される前記培地に吹き込まれる気体の酸素濃度が、通常大気の酸素濃度を超える酸素濃度である、請求項2に記載の藻類の培養方法。 The method for culturing algae according to claim 2, wherein in the aeration culture, the oxygen concentration of the gas blown into the medium in which the algae are cultured is an oxygen concentration that exceeds the oxygen concentration of normal air.
  4.  前記培地が液体培地であり、前記液体培地に吹き込まれる気体の前記液体培地1mL当たりの通気量が、1~400mL/min・mLである、請求項2又は3に記載の藻類の培養方法。 The method for culturing algae according to claim 2 or 3, wherein the medium is a liquid medium, and the amount of gas blown into the liquid medium per 1 mL of the liquid medium is 1 to 400 mL/min·mL.
  5.  前記条件下での前記培養が、窒素源として硝酸塩、亜硝酸塩、硝酸イオン(NO )、及び亜硝酸イオン(NO )からなる群より選択される少なくとも一種を含む前記培地を用いて行うものである、請求項1~4のいずれか一項に記載の藻類の培養方法。 The culture under the conditions uses the medium containing at least one selected from the group consisting of nitrate, nitrite, nitrate ion (NO 3 ), and nitrite ion (NO 2 ) as a nitrogen source. The method for culturing algae according to any one of claims 1 to 4, which is carried out.
  6.  前記培養を暗所で行う、請求項1~5のいずれか一項に記載の藻類の培養方法。 The method for culturing algae according to any one of claims 1 to 5, wherein the culturing is performed in the dark.
  7.  前記藻類が、シアニディオシゾン(Cyanidioschyzon)属に属する、請求項1~6のいずれか一項に記載の藻類の培養方法。 The method for culturing algae according to any one of claims 1 to 6, wherein the algae belong to the genus Cyanidioschyzon.
PCT/JP2022/018908 2021-05-07 2022-04-26 Method for culturing algae WO2022234788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079124 2021-05-07
JP2021079124 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234788A1 true WO2022234788A1 (en) 2022-11-10

Family

ID=83932178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018908 WO2022234788A1 (en) 2021-05-07 2022-04-26 Method for culturing algae

Country Status (1)

Country Link
WO (1) WO2022234788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214867A (en) * 1995-02-17 1996-08-27 Kawasaki Steel Corp Deep tank aeration and stirring culture of marine fine algae
WO2013035797A1 (en) * 2011-09-09 2013-03-14 株式会社カネカ Method for cultivating seaweed and method for producing alginic acid-containing composition
JP2016510215A (en) * 2013-01-28 2016-04-07 ソラザイム ロケット ニュートリショナルズ, エルエルシー Improved microalgae powder
WO2019208803A1 (en) * 2018-04-26 2019-10-31 日本水産株式会社 Microbial oil and method for producing microbial oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214867A (en) * 1995-02-17 1996-08-27 Kawasaki Steel Corp Deep tank aeration and stirring culture of marine fine algae
WO2013035797A1 (en) * 2011-09-09 2013-03-14 株式会社カネカ Method for cultivating seaweed and method for producing alginic acid-containing composition
JP2016510215A (en) * 2013-01-28 2016-04-07 ソラザイム ロケット ニュートリショナルズ, エルエルシー Improved microalgae powder
WO2019208803A1 (en) * 2018-04-26 2019-10-31 日本水産株式会社 Microbial oil and method for producing microbial oil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORIYAMA TAKASHI, MORI NATSUMI, SATO NAOKI: "Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth", SPRINGERPLUS, vol. 4, no. 1, 1 December 2015 (2015-12-01), XP093001283, DOI: 10.1186/s40064-015-1365-0 *
NOBUKO SUMIYA, TAKAYUKI FUJIWARA, YUSUKE KOBAYASHI, OSAMI MISUMI, SHIN-YA MIYAGISHIMA: "Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae", PLOS ONE, vol. 9, no. 10, pages e111261, XP055457557, DOI: 10.1371/journal.pone.0111261 *

Similar Documents

Publication Publication Date Title
EP2917333B1 (en) Methods of culturing microorganisms in non-axenic mixotrophic conditions and controlling bacterial contamination in the cultures using acetate and / or oxidizing agents
US8173391B2 (en) Golden yellow algae and method of producing the same
CN101633894B (en) Culture medium of euglena gracilis and open type high-density culture method
CN102649936A (en) Compound microorganism fungicide for improving water quality of culturing water body and preparation method
CN110627213B (en) Method for efficiently treating high-ammonia-nitrogen wastewater by microalgae photo-fermentation method
CN110540948B (en) Compound strain based on hydroxide bacteria and culture method thereof
Goto et al. High ammonia tolerance on growth rate of marine microalga Chlorella vulgaris
CN117229982B (en) Application of N- (1, 3-dimethylbutyl) -N&#39; -phenyl p-phenylenediamine-quinone in culture of synechocystis
WO2022234788A1 (en) Method for culturing algae
CN116790415A (en) Delford bacteria and application thereof
CN103184157A (en) Algal culture process for treating protozoa and realizing stable high yield
CN115612647A (en) Preparation method of selenium-rich biological floccules
CN106754385B (en) Method for cultivating chlorella phytoplankton by using cyanobacterial bloom as raw material
CN105296399B (en) One plant of geneva pair coccus and its application in Synechococcus growth is promoted
KR20180110781A (en) Method of culturing photosynthetic microorganism using bicarbonate buffer produced by using carbon dioxide in flue gas and inorganic phosphate buffer
CN114164128A (en) Algae symbiotic bacteria composition, algae bacteria co-culture system and microalgae culture method
CN113136339A (en) Method for mixotrophic-autotrophic continuous culture of photosynthetic microorganisms, culture system and application thereof
CN113136321A (en) Method and system for heterotrophic-autotrophic co-culture of photosynthetic microorganisms and method for production of biomass and bioenergy
CN104388360A (en) Screening method of photosynthetic bacteria with capacity of reducing ammonia nitrogen
CN108484279A (en) Nutrient solution and preparation method suitable for wheatgrass water planting
CN113136345B (en) Method for heterotrophic-autotrophic continuous cultivation of photosynthetic microorganisms, cultivation system and application thereof
CN107118994B (en) Method for regulating and controlling fermentation efficiency of butyric acid bacteria
KR20080012083A (en) Culture method for high concentration of thiocapsa reseopersicina
CN113136344A (en) Method and system for mixotrophic-autotrophic co-cultivation of photosynthetic microorganisms and method for production of biomass and bioenergy
CN110250185A (en) A kind of promotor and preparation method thereof adjusting algae photosynthesis rate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798894

Country of ref document: EP

Kind code of ref document: A1