WO2022234688A1 - Flame-retardant resin composition and molded articles thereof - Google Patents

Flame-retardant resin composition and molded articles thereof Download PDF

Info

Publication number
WO2022234688A1
WO2022234688A1 PCT/JP2021/046208 JP2021046208W WO2022234688A1 WO 2022234688 A1 WO2022234688 A1 WO 2022234688A1 JP 2021046208 W JP2021046208 W JP 2021046208W WO 2022234688 A1 WO2022234688 A1 WO 2022234688A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
flame
resin composition
mass
retardant resin
Prior art date
Application number
PCT/JP2021/046208
Other languages
French (fr)
Japanese (ja)
Inventor
椿 崔
圭亮 阪野
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2021576214A priority Critical patent/JPWO2022234688A1/ja
Priority to JP2022133662A priority patent/JP2022173163A/en
Publication of WO2022234688A1 publication Critical patent/WO2022234688A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to a flame-retardant resin composition and its molded article, and more particularly to a new flame-retardant resin composition having excellent flame retardancy, mechanical properties and processability during molding and its molded article.
  • Patent Document 1 proposes a flame-retardant synthetic resin composition containing a specific phosphate compound, which is one of flame retardants of this type, and is capable of imparting high flame retardancy to synthetic resins. disclosed.
  • Patent Document 2 proposes a resin composition containing a polyamide resin, an acid-modified resin, a phosphorus-based flame retardant, and a glass filler as a resin composition having excellent flame retardancy and mechanical properties.
  • the object of the present invention is to solve the above problems and to provide a new flame-retardant resin composition having excellent flame retardancy, mechanical properties, and processability during molding, and a molded article thereof.
  • the present inventors have made intensive studies to solve the above problems, and found that in a polyolefin-based flame-retardant resin composition containing a phosphorus-based flame retardant, glass fibers, and an acid-modified resin, the acid value of the acid-modified resin has a specific value. It was found that flame retardancy and mechanical properties are improved by being within the range, and that flame retardancy and processability during molding are excellent when the weight average molecular weight of the acid-modified resin is within a specific range. , have completed the present invention.
  • the flame-retardant resin composition of the present invention is characterized by containing the following components (A) to (E).
  • component acid-unmodified polyolefin resin
  • component one or more melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate
  • C component: piperazine orthophosphate, pyroline
  • piperazine salts selected from the group consisting of piperazine acid and piperazine polyphosphate
  • D component: glass fiber
  • E component: acid value of 5 to 100 KOHmg/g and weight average molecular weight of 10,000 to 100,000 acid-modified resin
  • the total content of components (B) and (C) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of component (A).
  • the content of component (D) is preferably 5 to 200 parts by mass with respect to 100 parts by mass of component (A).
  • the content of component (E) is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of component (A).
  • the content ratio of component (B) and component (C) is preferably 20:80 to 60:40 in mass ratio.
  • component (C) preferably contains piperazine pyrophosphate.
  • the flame-retardant resin composition of the present invention further contains 0.01 to 10 parts by mass of component (F): zinc oxide with respect to a total of 100 parts by mass of component (B) and component (C). preferably.
  • component (A) is preferably a polypropylene-based resin.
  • the molded article of the present invention is characterized by being obtained from the flame-retardant resin composition.
  • the flame-retardant resin composition of the present invention contains the following components (A) to (E).
  • One or more piperazine salts selected from the group consisting of piperazine acid and piperazine polyphosphate D
  • component glass fiber
  • E component: acid value of 5 to 100 KOHmg/g and weight average molecular weight of 10,000 to 100,000 acid-modified resin
  • the acid-unmodified polyolefin resin is a polymer obtained by polymerizing or copolymerizing one or more olefin monomers.
  • Olefin monomers include, for example, ethylene, propylene, ⁇ -olefins or dienes.
  • ⁇ -olefins include 1-butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene, 1- and dodecene, and dienes include butadiene, isoprene, cyclopentadiene, 1,11-dodecadiene, and the like.
  • the (A) acid-unmodified polyolefin resin may contain other copolymerization components such as acrylic acid esters, methacrylic acid esters, and vinyl group-containing monomers.
  • Acid-unmodified polyolefin resins include, for example, low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), high density polyethylene (HDPE), isotactic polypropylene, syndiotactic polypropylene, ⁇ -olefin polymers such as hemiisotactic polypropylene, cycloolefin polymer, stereoblock polypropylene, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, poly-4-methyl-1-pentene , ethylene-propylene copolymer, ethylene-propylene-diene terpolymer, impact copolymer polypropylene, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl Examples include acrylate copolymers, ethylene-vinyl acetate copolymers, ⁇ -olefin copoly
  • the acid-unmodified polyolefin resin is preferably a polypropylene resin.
  • polypropylene-based resins include propylene homopolymer, ethylene-propylene copolymer (e.g., ethylene-propylene random copolymer, etc.), ethylene-propylene-1-butene terpolymer, propylene and other ⁇ -olefins (e.g., 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc.), ethylene-propylene block copolymers including ethylene-propylene copolymers (e.g., impact copolymer polypropylene, TPO, etc.), and chlorinated products thereof etc.
  • the polypropylene-based resin may be a blend of two or more of these, an alloyed resin, or a block copolymer.
  • the acid-unmodified polyolefin resin more preferably contains an ethylene-propylene copolymer.
  • ethylene-propylene copolymers eg, ethylene-propylene random copolymers, etc.
  • ethylene-propylene block copolymers eg, impact copolymer polypropylene, TPO, etc.
  • the (A) acid-unmodified polyolefin resin related to the flame-retardant resin composition of the present invention includes the type and presence of polymerization catalysts and co-catalysts, stereoregularity, average molecular weight, molecular weight distribution, presence and ratio of specific molecular weight components. , specific gravity, viscosity, solubility in various solvents, elongation, impact strength, crystallinity, X-ray diffraction, irradiation with organic peroxide or energy beams, and cross-linking treatment by combination of these treatments. can be done.
  • the melamine salt which is the (B) component of the flame-retardant resin composition of the present invention, is a salt of phosphoric acids and melamine.
  • phosphoric acids mean acids formed by hydration of diphosphorus pentoxide, and specific examples include orthophosphoric acid, pyrophosphoric acid and polyphosphoric acid. Each of these phosphoric acids can be used alone, or two or more of them can be used in combination.
  • the (B) component is selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate, and these may be used alone or in combination.
  • the molar ratio of melamine pyrophosphate to melamine pyrophosphate is preferably 1:2.
  • These salts of phosphoric acids and melamine can be obtained by reacting the corresponding phosphoric acid or phosphate with melamine or melamine hydrochloride.
  • phosphates include monobasic sodium phosphate, monopotassium phosphate, dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tribasic potassium phosphate, and sodium pyrophosphate. , potassium pyrophosphate, sodium polyphosphate, potassium polyphosphate and the like.
  • melamine pyrophosphate and melamine polyphosphate may be obtained by thermally condensing melamine orthophosphate.
  • Component (B) preferably contains one or more selected from melamine pyrophosphate obtained by thermally condensing melamine orthophosphate and melamine polyphosphate, and more preferably contains melamine pyrophosphate.
  • the piperazine salt which is the component (C) in the flame-retardant resin composition of the present invention, is a salt of phosphoric acids and piperazine.
  • Component (C) is selected from the group consisting of piperazine orthophosphate, piperazine pyrophosphate and piperazine polyphosphate, which may be used alone or in combination.
  • piperazine pyrophosphate is preferable from the viewpoint of flame retardancy, handleability, and storage stability, and when used in a mixture, the higher the content of piperazine pyrophosphate, the more preferable.
  • the molar ratio of piperazine pyrophosphate to piperazine pyrophosphate is preferably 1:1.
  • phosphates and piperazine salts can be obtained by reacting the corresponding phosphoric acid or phosphate with piperazine or piperazine hydrochloride.
  • phosphate those mentioned above can be used.
  • Piperazine pyrophosphate and piperazine polyphosphate may also be obtained by thermally condensing piperazine orthophosphate.
  • the piperazine salt used as component (C) preferably contains piperazine pyrophosphate or piperazine polyphosphate obtained by thermally condensing piperazine orthophosphate, and more preferably contains piperazine pyrophosphate.
  • the total content of components (B) and (C) in the flame-retardant resin composition of the present invention is 10 to 10 parts by mass based on 100 parts by mass of component (A) from the viewpoint of flame retardancy, mechanical properties and workability. It is preferably 200 parts by mass, more preferably 20 to 100 parts by mass, and even more preferably 40 to 80 parts by mass.
  • the content ratio of component (B) and component (C) in the flame-retardant resin composition of the present invention is 20:80 to 60 in mass ratio of component (B) to component (C). 40 is preferred, and 30:70 to 50:50 is more preferred.
  • the components (B) and (C) in the flame-retardant resin composition of the present invention preferably contain at least one selected from the group consisting of silicone oils, epoxy coupling agents and lubricants. As a result, aggregation of the components (B) and (C) is suppressed, and an improvement in storage stability, an improvement in dispersibility in the resin composition, and an improvement in flame retardancy can be expected.
  • silicone oils examples include dimethylsilicone oil in which all of the side chains and terminals of polysiloxane are methyl groups, methylphenyl in which the side chains and terminals of polysiloxane are methyl groups, and part of the side chains are phenyl groups.
  • silicone oils include dimethyl silicone oils such as KF-96 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-965 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-968 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • methyl hydrogen silicone oils examples include KF-99 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-9901 (manufactured by Shin-Etsu Chemical Co., Ltd.), HMS-151 (manufactured by Gelest), HMS-071 (manufactured by Gelest ), HMS-301 (manufactured by Gelest), DMS-H21 (manufactured by Gelest), etc.
  • methylphenyl silicone oils examples include KF-50 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-53 (manufactured by Shin-Etsu Kagaku Co., Ltd.), KF-54 (Shin-Etsu Chemical Co., Ltd.), KF-56 (Shin-Etsu Chemical Co., Ltd.), etc.
  • Examples of epoxy-modified products include X-22-343 (Shin-Etsu Chemical Co., Ltd.), X-22-2000 (Shin-Etsu Chemical Co., Ltd.), KF-101 (Shin-Etsu Chemical Co., Ltd.), KF-102 (Shin-Etsu Chemical Co., Ltd.), KF-1001 (Shin-Etsu Chemical Co., Ltd.) Chemical Co., Ltd.), carboxyl-modified products such as X-22-3701E (Shin-Etsu Chemical Co., Ltd.), carbinol-modified products such as X-22-4039 (Shin-Etsu Chemical Co., Ltd.) ), X-22-4015 (manufactured by Shin-Etsu Chemical Co., Ltd.), and amine-modified products include, for example, KF-393 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • methylhydrogensilicone oil is preferred from the viewpoints of preventing aggregation, improving storage stability, and improving dispersibility in the resin composition.
  • the content of the silicone oil in the case of containing the silicone oil in the components (B) and (C) in the flame-retardant resin composition of the present invention is, from the viewpoint of enhancing the above effects due to the inclusion of the silicone oil, (B ) and (C) in a total of 100 parts by mass, preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1 part by mass.
  • Epoxy coupling agents have the functions of suppressing aggregation, improving storage stability, and imparting water resistance and heat resistance.
  • Epoxy coupling agents include, for example, compounds represented by the general formula A—(CH 2 ) k —Si(OR) 3 and having an epoxy group.
  • A is a group having an epoxy ring, k represents a number from 1 to 3, and R represents a methyl group or an ethyl group.
  • the epoxy ring-containing group of A includes a glycidoxy group and a 3,4-epoxycyclohexyl group.
  • epoxy-based coupling agents include, for example, silane coupling agents having an epoxy group, such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, glycidoxyoctyltrimethoxysilane and the like.
  • silane coupling agents having an epoxy group such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, glycidoxyoctyltri
  • the content of the epoxy coupling agent is determined by containing the epoxy coupling agent. From the viewpoint of enhancing the above effects, it is preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1 part by mass, per 100 parts by mass of components (B) and (C).
  • Lubricants include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, microwax, synthetic paraffin, low molecular weight polyethylene and polyethylene wax; halogenated hydrocarbon lubricants; fatty acid lubricants such as higher fatty acids and oxy fatty acids; , fatty acid amide lubricants such as bis fatty acid amides; lower alcohol esters of fatty acids, polyhydric alcohol esters of fatty acids such as glycerides, polyglycol esters of fatty acids, ester lubricants such as fatty alcohol esters of fatty acids (ester wax); metal soaps , fatty alcohol, polyhydric alcohol, polyglycol, polyglycerol, partial ester of fatty acid and polyhydric alcohol, fatty acid and polyglycol, partial ester lubricant of polyglycerol, silicone oil, mineral oil, and the like. Lubricants can be used individually by 1 type, and can be used in combination of 2 or more types.
  • the content of the lubricant is determined from the viewpoint of enhancing the above-mentioned effects due to the inclusion of the lubricant. 0.01 to 3 parts by mass, more preferably 0.1 to 0.5 parts by mass, per 100 parts by mass of components (C) in total.
  • the glass fiber which is the component (D) in the flame-retardant resin composition of the present invention, may be treated with a surface treatment agent in order to improve the wettability and adhesiveness with the polyolefin resin.
  • a surface treatment agent include silane-based, titanate-based, aluminum-based, chromium-based, zirconium-based, and borane-based coupling agents.
  • a silane coupling agent is preferred, and a silane coupling agent is particularly preferred.
  • silane coupling agent examples include triethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxy cyclohexyl)ethyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N -phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane and the like.
  • the glass fibers may be used with a sizing agent to bundle the glass fibers.
  • sizing agents include polypropylene resins, polyurethane resins, polyester resins, acrylic resins, epoxy resins, starch, and vegetable oils.
  • the glass fiber as the component (D) is preferably a chopped strand obtained by converging single fibers from the viewpoint of workability, flame retardancy and anti-drip property.
  • the cut length of the chopped strands is preferably 1.0 mm to 5.0 mm, more preferably 2.0 mm to 4.0 mm, from the viewpoint of workability and flame retardancy.
  • the diameter of the single fiber is preferably 8 ⁇ m to 16 ⁇ m, more preferably 10 ⁇ m to 14 ⁇ m, from the standpoints of workability and flame retardancy.
  • the content of component (D) in the flame-retardant resin composition of the present invention is preferably 5 to 200 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of workability and mechanical properties. ⁇ 100 parts by mass is more preferable, and 20 to 80 parts by mass is even more preferable.
  • the acid-modified resin which is the component (E) in the flame-retardant resin composition of the present invention, is a resin in which an acidic group is introduced into the base resin.
  • Polyolefin-based resins are preferable as the base resin, and examples thereof include those exemplified as the polyolefin-based resins of component (A) described above.
  • ethylene, propylene, ⁇ -olefins having 4 to 12 carbon atoms, butadiene, and isoprene are preferably polymerized or copolymerized, and ethylene, propylene, ⁇ -olefins having 4 to 8 carbon atoms are preferable.
  • butadiene are more preferred
  • ethylene, propylene and butadiene are more preferred.
  • the acid-modified resin as the component (E) can be prepared by a method of grafting a monomer having an acidic group to a base resin, a method of copolymerizing a monomer having an acidic group and a monomer of the base resin, and the like. , obtained by a conventionally known method, and various commercial products may be used.
  • Examples of the acidic group to be introduced into the acid-modified resin as component (E) include a carboxylic acid group, a carboxylic anhydride group, a sulfonic acid group, and a phosphoric acid group. Carboxylic acid groups and carboxylic anhydride groups are preferred.
  • the monomer having an acidic group is preferably a carboxylic acid compound or a carboxylic anhydride compound, more preferably maleic acid, maleic anhydride, acrylic acid or methacrylic acid, maleic acid or maleic anhydride. Acids are particularly preferred.
  • Component (E) is preferably one or more selected from carboxylic acid-modified polyolefins and carboxylic anhydride-modified polyolefins from the viewpoint of water resistance, mechanical properties, and deterioration suppression in the resin composition. It is more preferably one or more selected from maleic acid-modified polyolefins, and even more preferably one or more selected from maleic acid-modified polyethylene, maleic anhydride-modified polyethylene, maleic acid-modified polypropylene and maleic anhydride-modified polypropylene. One or more selected from maleic acid-modified polypropylene and maleic anhydride-modified polypropylene is particularly preferred.
  • the lower limit of the acid value of component (E) is 5 mgKOH/g or more, preferably 7 mgKOH/g or more, more preferably 9 mgKOH/g or more. This makes it possible to sufficiently obtain the effects of improving flame retardancy and mechanical properties.
  • the upper limit of the acid value of component (E) is 100 mgKOH/g or less, preferably 80 mgKOH/g or less, more preferably 70 mgKOH/g or less. Thereby, deterioration of a flame-retardant resin composition can be suppressed.
  • This acid value is a value obtained by measuring according to the following procedures (i) to (iii) according to JIS K0070.
  • the lower limit of the weight average molecular weight (hereinafter also referred to as "Mw") of the component (E) is 10,000 or more, preferably 20,000 or more, and more preferably 25,000 or more in terms of polystyrene. . Thereby, the effect of improving the flame retardancy can be sufficiently obtained.
  • the upper limit of Mw of component (E) is 100,000 or less, preferably 90,000 or less, more preferably 85,000 or less in terms of polystyrene. As a result, it is possible to stably obtain a molded article having excellent flame retardancy and processability during molding and having a good appearance.
  • This Mw is a value shown in terms of polystyrene measured by gel permeation chromatography.
  • the content of component (E) in the flame-retardant resin composition of the present invention is 0.1 to 25 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of flame retardancy, workability and mechanical properties. preferably 0.5 to 20 parts by mass, and even more preferably 1 to 15 parts by mass.
  • the flame-retardant resin composition of the present invention may contain other optional components along with the essential components (A) to (E).
  • the timing of blending the components (A) to (E) and other optional components into the resin composition of the present invention is not particularly limited.
  • each component other than the (A) component may be sequentially blended with the (A) acid-unmodified polyolefin resin, and two components selected in advance from the (A) to (E) components and other optional components
  • the seeds or more may be packed into one pack and then blended with other ingredients.
  • the flame-retardant resin composition of the present invention may contain auxiliary agents.
  • auxiliary agents include flame retardant aids, anti-drip aids, processing aids, and the like.
  • Flame retardant aids can include metal oxides and polyhydric alcohol compounds. Thereby, the flame retardance of resin can be improved.
  • metal oxides include titanium oxide, zinc oxide, calcium oxide, magnesium oxide, zirconium oxide, barium oxide, tin dioxide, lead dioxide, antimony oxide, molybdenum oxide, and cadmium oxide. These may be used alone or in combination of two or more. Thereby, the flame retardance of resin can be improved. In addition, it is possible to suppress the occurrence of agglomeration in the powdery flame retardant composition. Among them, zinc oxide is preferable from the viewpoint of flame retardancy. In addition, in this specification, zinc oxide is also called the (F) component.
  • the (F) component, zinc oxide may or may not be surface-treated.
  • zinc oxide for example, zinc oxide type 1 (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), partially coated zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), Nanofine 50 (average particle size 0.02 ⁇ m ultrafine oxide Commercial products such as zinc: manufactured by Sakai Chemical Industry Co., Ltd.) and Nanofine K (superfine zinc oxide coated with zinc silicate having an average particle size of 0.02 ⁇ m: manufactured by Sakai Chemical Industry Co., Ltd.) may also be used.
  • a polyhydric alcohol compound is a compound to which a plurality of hydroxy groups are bonded.
  • 3,5-tris(2-hydroxyethyl)isocyanurate (THEIC) polyethylene glycol, glycerin, diglycerin, mannitol, maltitol, lactitol, sorbitol, erythritol, xylitol, xylose, sucrose (sucrose), trehalose, inositol, fructose, maltose, lactose and the like.
  • polyhydric alcohol compounds one or more selected from the group of condensates of pentaerythritol and pentaerythritol such as pentaerythritol, dipentaerythritol, tripentaerythritol, and polypentaerythritol are preferable, and dipentaerythritol and pentaerythritol Particular preference is given to condensates, most preferably dipentaerythritol.
  • THEIC and sorbitol can be suitably used. These may be used alone or in combination of two or more.
  • the content of the flame-retardant aid is 0 with respect to a total of 100 parts by mass of the components (B) and (C). 0.01 to 10 parts by weight is preferred, 0.1 to 10 parts by weight is more preferred, and 0.5 to 7 parts by weight is even more preferred.
  • the content of the flame retardant auxiliary is within the above range, the flame retardance is improved and the adverse effect on workability can be suppressed.
  • Anti-drip aids include layered silicates, fluorine-based anti-drip aids, and silicone rubbers. As a result, dripping during combustion of the resin can be suppressed.
  • a layered silicate is a layered silicate mineral, which may be either natural or synthetic, and is not particularly limited.
  • layered silicates include smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, stevensite and nontronite, vermiculite, halloysite, swelling mica and talc. These may be used alone or in combination of two or more.
  • saponite or talc is preferable among these, and talc is particularly preferable from the viewpoint of economic efficiency such as price.
  • the layered silicate may have cations between layers.
  • the cations may be metal ions, or part or all of them may be cations other than metal ions, such as organic cations, (quaternary) ammonium cations and phosphonium cations.
  • metal ions examples include sodium ions, potassium ions, calcium ions, magnesium ions, lithium ions, nickel ions, copper ions, and zinc ions.
  • organic cations or quaternary ammonium cations include lauryltrimethylammonium cation, stearyltrimethylammonium cation, trioctylmethylammonium cation, distearyldimethylammonium cation, di-cured beef tallow dimethylammonium cation, distearyldibenzylammonium cation, and the like. be done. These may be used alone or in combination of two or more.
  • fluorine-based anti-drip aids include fluorine-based resins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyhexafluoropropylene, sodium perfluoromethanesulfonate, and potassium perfluoro-n-butanesulfonate. salts, perfluoroalkanesulfonic acid alkali metal salt compounds such as perfluoro-t-butanesulfonic acid potassium salt, perfluorooctanesulfonic acid sodium salt, perfluoro-2-ethylhexanesulfonic acid calcium salt, or perfluoroalkanesulfonic acid alkali Earth metal salts and the like can be mentioned.
  • polytetrafluoroethylene is preferable from the viewpoint of anti-drip property. These may be used alone or in combination of two or more.
  • the processing aid can be appropriately selected from known processing aids, but may include an acrylic processing aid.
  • acrylic processing aids include homopolymers or copolymers of alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; Copolymers; copolymers of the aforementioned alkyl methacrylates with aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; copolymers of the aforementioned alkyl methacrylates with vinyl cyanide compounds such as acrylonitrile and methacrylonitrile A coalescence etc. can be mentioned. These may be used alone or in combination of two or more.
  • the flame-retardant resin composition of the present invention may further contain a phenol antioxidant, a phosphorus antioxidant, a thioether antioxidant, an ultraviolet absorber, a hindered amine light stabilizer, etc., if necessary. preferable.
  • Phenolic antioxidants include, for example, 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-tert-butyl- 4-hydroxybenzyl)phosphonate, 1,6-hexamethylenebis[(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], 4,4′-thiobis(6-tert-butyl-m -cresol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis(6-tert-butylphenol) tributyl-m-cresol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4-sec-buty
  • phosphorus antioxidants include trisnonylphenyl phosphite, tris[2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl]phosphite, Phyto, tridecylphosphite, octyldiphenylphosphite, didecylmonophenylphosphite, bis(tridecyl)pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di-tertiary butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pent
  • Thioether antioxidants include, for example, dilauryl thiodipropionate, dimyristyl thiodipropionate, dialkylthiodipropionates such as distearyl thiodipropionate, and pentaerythritol tetrakis ( ⁇ -alkylmercaptopropionates).
  • the amount of these thioether-based antioxidants used is preferably 0.001 to 10 parts by mass, preferably 0.05 to 5 parts by mass, relative to 100 parts by mass of the polyolefin resin that is component (A). Part is more preferred.
  • UV absorbers include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5′-methylenebis(2-hydroxy-4-methoxybenzophenone) 2-hydroxybenzophenones such as; 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chloro benzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert- octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-dicumylphenyl)benzotriazole, 2,2'-methylenebis(4-tert-octyl-6-(benzotriazolyl) phenol), 2-(2'-
  • hindered amine light stabilizers examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6 ,6-tetramethyl-4-piperidyl benzoate, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, Tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl) bis(tridecyl)-1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl)
  • the amount of these hindered amine light stabilizers to be used is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, with respect to 100 parts by mass of the polyolefin resin as component (A). is more preferable.
  • the flame-retardant resin composition of the present invention should contain a known neutralizing agent to neutralize the catalyst residue in the polyolefin resin, component (A), within a range that does not impair the effects of the present invention. is preferred.
  • neutralizing agents include fatty acid metal salts such as calcium stearate, lithium stearate, sodium stearate and magnesium stearate, ethylenebis(stearic acid amide), ethylenebis(12-hydroxystearic acid amide), and stearic acid amide. and inorganic compounds such as hydrotalcite, and these neutralizing agents may be mixed and used.
  • the amount of these neutralizing agents to be used is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 1 part by mass, with respect to 100 parts by mass of the polyolefin resin that is component (A). more preferred.
  • the flame-retardant resin composition of the present invention may contain, as an optional component, a filler other than glass fiber as the component (D) within a range that does not significantly impair the effects of the present invention.
  • fillers examples include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, clay, and dolomite. , silica, alumina, potassium titanate whiskers, wollastonite, fibrous magnesium oxysulfate, hydrotalcite, and the like. can be used. These may be used individually by 1 type, and may be used in combination of 2 or more types. In addition, the filler may be surface-treated as necessary.
  • the blending amount is preferably 1 to 100 parts by mass, more preferably 3 to 80 parts by mass, with respect to 100 parts by mass of the polyolefin resin that is component (A). Even more preferably, it is 5 to 50 parts by mass.
  • the flame-retardant resin composition of the present invention may further contain additives commonly used in synthetic resins, such as cross-linking agents, antistatic agents, antifogging agents, plate-out inhibitors, surface treatment agents, Plasticizers, lubricants, reinforcing materials, flame retardants other than the above, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, release agents, pigments, silicone oils, silane coupling agents, etc. It can be blended within a range that does not impair the effect of.
  • additives commonly used in synthetic resins such as cross-linking agents, antistatic agents, antifogging agents, plate-out inhibitors, surface treatment agents, Plasticizers, lubricants, reinforcing materials, flame retardants other than the above, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, release agents, pigments, silicone oils, silane coupling agents, etc. It can be blended within a range that does not impair the effect of.
  • the method for producing the flame-retardant resin composition of the present invention is not particularly limited, and known methods can be adopted. Specific production methods include a method of mixing with a usual blender, mixer, etc., a method of melt-kneading with an extruder, etc., a method of mixing with a solvent and solution casting, and the like.
  • the shape of the flame-retardant resin composition of the present invention is not particularly limited, and can be used in various forms.
  • shapes such as pellets, granules, powders, and lumps can be mentioned, and pellets are preferred from the viewpoint of handleability.
  • the molded article of the present invention is obtained by molding the flame-retardant resin composition of the present invention.
  • the molding method and molding conditions are not particularly limited, and known molding methods and molding conditions can be used. Specific molding methods include extrusion, calendering, injection molding, roll molding, compression molding, blow molding, and rotational molding. can be produced.
  • the flame-retardant resin composition of the present invention and its molded article are used in electrical/electronic/communication, agriculture, forestry and fisheries, mining, construction, food, textile, clothing, medical, coal, petroleum, rubber, leather, automobile, precision equipment, and wood. , building materials, civil engineering, furniture, printing, musical instruments, etc. More specifically, printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), calculators, electronic notebooks, cards, holders, stationery, etc.
  • the flame-retardant resin composition of the present invention and its molded product can be used for seats (filling, outer material, etc.), belts, ceiling coverings, convertible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers.
  • mattress covers airbags, insulating materials, straps, straps, electric wire coating materials, electrical insulating materials, paints, coating materials, facing materials, floor materials, corner walls, carpets, wallpaper, wall covering materials, exterior materials , interior materials, roofing materials, decking materials, wall materials, pillar materials, decking materials, fence materials, frames and moldings, window and door profiles, shingles, siding, terraces, balconies, soundproofing boards, insulating boards, windows Materials such as automobiles, hybrid cars, electric vehicles, vehicles, ships, aircraft, buildings, housing and construction materials, civil engineering materials, clothing, curtains, sheets, plywood, synthetic fiber boards, carpets, entrance mats, sheets, buckets, It is used for various purposes such as hoses, containers, eyeglasses, bags, cases, goggles, skis, rackets, tents, musical instruments and other daily necessities, and sporting goods.
  • This flame-retardant resin composition was granulated using a twin-screw extruder (TEX25 ⁇ III, manufactured by Japan Steel Works, Ltd.) to obtain a pellet-shaped flame-retardant resin composition.
  • the processing conditions for granulation were 220° C. and 10 kg/hour for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13, and 200° C. and 10 kg for the compositions of Example 21 and Comparative Example 14. / hours. Flame retardancy, mechanical properties, and workability were evaluated using these pellets.
  • ⁇ Flame retardant evaluation 1 UL-94V>
  • the resulting pellet-shaped flame-retardant resin composition is molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for UL-94V measurement (127 mm ⁇ 12.7 mm ⁇ 1.6 mm). did.
  • the processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13.
  • the conditions were a resin temperature of 200°C and a mold temperature of 50°C.
  • the obtained test piece was allowed to stand in a constant temperature and humidity chamber at 23° C.
  • V-0 is the highest flammability rank, and flame retardancy decreases as V-1 and V-2 are reached. However, those that did not correspond to any of the ranks of V-0 to V-2 were given NR (No Rating). The results are also shown in Tables 1-5.
  • the obtained pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for oxygen index measurement (80 mm ⁇ 10 mm ⁇ 4 mm).
  • the processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13.
  • the conditions were a resin temperature of 200°C and a mold temperature of 50°C.
  • the obtained test piece was allowed to stand in a thermo-hygrostat at 23° C.
  • the oxygen index of the test piece was measured according to JIS K7201-2.
  • the oxygen index is the minimum oxygen concentration at which a vertical small test piece can sustain combustion in a mixed gas of nitrogen and oxygen. The results are also shown in Tables 1-5.
  • ⁇ Mechanical property evaluation 1 bending elastic modulus>
  • the resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring deflection temperature under load (80 mm ⁇ 10 mm ⁇ 4 mm).
  • the processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13.
  • the conditions were a resin temperature of 200°C and a mold temperature of 50°C.
  • the flexural modulus (MPa) of the test piece was measured according to ISO178. The results are also shown in Tables 1-5.
  • Deflection temperature under load (HDT)> The resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring deflection temperature under load (80 mm ⁇ 10 mm ⁇ 4 mm).
  • the processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13.
  • the conditions were a resin temperature of 200°C and a mold temperature of 50°C.
  • the deflection temperature under load (° C.) was measured according to ISO75-2 (1.8 MPa load). .
  • the results are also shown in Tables 1-5.
  • ⁇ Mechanical property evaluation 3 Charpy impact strength>
  • the resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring Charpy impact strength (80 mm ⁇ 10 mm ⁇ 4 mm).
  • the processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13.
  • the conditions were a resin temperature of 200°C and a mold temperature of 50°C. After the obtained test piece was allowed to stand in a thermo-hygrostat at 23° C.
  • test piece was notched. After leaving the notched test piece in a constant temperature and humidity chamber at a temperature of 23 ° C. and a humidity of 60% RH for 5 days, remove the test piece from the constant temperature and humidity chamber and measure the Charpy impact strength ( kJ/m 2 ) were measured. The results are also shown in Tables 1-5.
  • Apparatus high-temperature gel permeation chromatograph (apparatus name: Viscotek HT-GPC, manufactured by Spectris Co., Ltd.)
  • Solvent ortho-dichlorobenzene
  • Reference material Polystyrene detector: Refractive index detector
  • Column Stationary phase TSKgel GMHHR-HHT, 2 in series, manufactured by Tosoh Corporation
  • Flow rate 1.0mL/min
  • Injection volume 100 ⁇ L
  • the flame-retardant resin composition of the present invention showed excellent evaluation results in all aspects of flame retardancy, mechanical properties, and workability.
  • compositions that do not contain component (E) (Comparative Examples 1 and 4) and compositions that use acid-modified resins whose acid value or weight average molecular weight is outside the range of the present invention (Comparative Examples 2, 3, 5, and 6)
  • the results were inferior to those of Examples 1 to 21 in any of flame retardancy, mechanical properties, and workability.

Abstract

Provided are: a new flame-retardant resin composition having exceptional flame retardancy, mechanical properties, and processability during molding processing; and molded articles of the flame-retardant resin composition. The flame-retardant composition contains components (A)-(E). Component (A): an acid-unmodified polyolefin resin. Component (B): one or more melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate. Component (C): one or more piperazine salts selected from the group consisting of piperazine orthophosphate, piperazine pyrophosphate, and piperazine polyphosphate. Component (D): glass fibers. Component (E): an acid-modified resin having an acid value of 5-100 KOH mg/g and a weight-average molecular weight of 10,000-100,000.

Description

難燃性樹脂組成物およびその成形品Flame-retardant resin composition and molded article thereof
 本発明は、難燃性樹脂組成物およびその成形品に関し、詳しくは、優れた難燃性、機械特性および成形加工時の加工性を有する新たな難燃性樹脂組成物およびその成形品に関する。 The present invention relates to a flame-retardant resin composition and its molded article, and more particularly to a new flame-retardant resin composition having excellent flame retardancy, mechanical properties and processability during molding and its molded article.
 従来、合成樹脂は優れた化学的、機械特性により、様々な用途に広く用いられている。しかしながら、多くの合成樹脂は可燃性物質であり、用途によっては難燃化が不可欠であった。難燃化方法としては、合成樹脂に難燃剤を配合する手法が広く知られており、ハロゲン系難燃剤、金属水酸化物、リン系難燃剤等を単独または組み合わせて合成樹脂に配合することが広く知られている。 Conventionally, synthetic resins have been widely used for various purposes due to their excellent chemical and mechanical properties. However, many synthetic resins are combustible substances, and flame retardancy has been indispensable depending on the application. As a flame retardant method, a method of blending a flame retardant into a synthetic resin is widely known. Widely known.
 しかしながら、ハロゲン系難燃剤は燃焼時のハロゲン化水素ガスの発生や発煙量の多さが問題視されており、金属水酸化物は多量の添加が必要なことから、配合した合成樹脂の比重の増加や機械特性の低下といった問題を有する。そこで、現在、これらの問題を生じないリン系難燃剤を用いる試みがなされている。例えば、特許文献1では、この種の難燃剤の一種である特定のリン酸塩化合物を含有する難燃性合成樹脂組成物が提案されており、合成樹脂に高い難燃性を付与することが開示されている。 However, halogen-based flame retardants generate hydrogen halide gas and a large amount of smoke during combustion, which is viewed as a problem. Metal hydroxides must be added in large amounts. It has problems such as increase and deterioration of mechanical properties. Therefore, attempts are currently being made to use phosphorus-based flame retardants that do not cause these problems. For example, Patent Document 1 proposes a flame-retardant synthetic resin composition containing a specific phosphate compound, which is one of flame retardants of this type, and is capable of imparting high flame retardancy to synthetic resins. disclosed.
 また、近年は、OA機器、家電製品等の用途を中心に、各種製品の小型化や軽量化に伴う樹脂部材の薄肉化が進み、従来よりも剛性や耐衝撃性などの機械特性に優れた樹脂製品が求められている。合成樹脂の機械特性を向上させる手段の一例としては、合成樹脂に繊維状フィラーと変性ポリマーを配合する技術が知られている。特許文献2には、優れた難燃性と機械特性を有する樹脂組成物として、ポリアミド樹脂、酸変性樹脂、リン系難燃剤およびガラスフィラーを含有する樹脂組成物が提案されている。 In addition, in recent years, mainly for applications such as OA equipment and home appliances, resin parts have become thinner as various products have become smaller and lighter. There is a demand for resin products. As an example of means for improving the mechanical properties of synthetic resins, a technique of blending fibrous fillers and modified polymers with synthetic resins is known. Patent Document 2 proposes a resin composition containing a polyamide resin, an acid-modified resin, a phosphorus-based flame retardant, and a glass filler as a resin composition having excellent flame retardancy and mechanical properties.
特開2003-026935号Japanese Patent Application Laid-Open No. 2003-026935 特開2019-065285号JP 2019-065285 A
 しかしながら、本発明者らが検討した結果、上記特許文献1、2に記載の技術を用いた難燃性樹脂組成物であっても、難燃性、機械特性および成形加工時の加工性の点で改善の余地があることが判明した。 However, as a result of studies by the present inventors, even flame-retardant resin compositions using the techniques described in Patent Documents 1 and 2 have flame retardancy, mechanical properties, and processability during molding. was found to have room for improvement.
 そこで、本発明の目的は、上記課題を解消し、優れた難燃性、機械特性および成形加工時の加工性を有する新たな難燃性樹脂組成物およびその成形品を提供することにある。 Therefore, the object of the present invention is to solve the above problems and to provide a new flame-retardant resin composition having excellent flame retardancy, mechanical properties, and processability during molding, and a molded article thereof.
 本発明者らは、上記課題を解消するために鋭意検討したところ、リン系難燃剤、ガラス繊維および酸変性樹脂を含むポリオレフィン系難燃性樹脂組成物において、酸変性樹脂の酸価が特定の範囲内にあることにより難燃性と機械特性が向上すること、さらには酸変性樹脂の重量平均分子量が特定の範囲内にあることにより難燃性と成形加工時の加工性に優れることを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to solve the above problems, and found that in a polyolefin-based flame-retardant resin composition containing a phosphorus-based flame retardant, glass fibers, and an acid-modified resin, the acid value of the acid-modified resin has a specific value. It was found that flame retardancy and mechanical properties are improved by being within the range, and that flame retardancy and processability during molding are excellent when the weight average molecular weight of the acid-modified resin is within a specific range. , have completed the present invention.
 すなわち、本発明の難燃性樹脂組成物は、下記(A)~(E)成分を含有することを特徴とするものである。
 (A)成分:酸未変性ポリオレフィン系樹脂
 (B)成分:オルトリン酸メラミン、ピロリン酸メラミンおよびポリリン酸メラミンからなる群から選択される1種以上のメラミン塩
 (C)成分:オルトリン酸ピペラジン、ピロリン酸ピペラジンおよびポリリン酸ピペラジンからなる群から選択される1種以上のピペラジン塩
 (D)成分:ガラス繊維
 (E)成分:酸価が5~100KOHmg/gであり、重量平均分子量が10,000~100,000である酸変性樹脂
That is, the flame-retardant resin composition of the present invention is characterized by containing the following components (A) to (E).
(A) component: acid-unmodified polyolefin resin (B) component: one or more melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate (C) component: piperazine orthophosphate, pyroline One or more piperazine salts selected from the group consisting of piperazine acid and piperazine polyphosphate (D) component: glass fiber (E) component: acid value of 5 to 100 KOHmg/g and weight average molecular weight of 10,000 to 100,000 acid-modified resin
 本発明の難燃性樹脂組成物においては、(A)成分100質量部に対して、(B)成分と(C)成分との合計含有量が10~200質量部であることが好ましい。 In the flame-retardant resin composition of the present invention, the total content of components (B) and (C) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of component (A).
 本発明の難燃性樹脂組成物においては、(A)成分100質量部に対して、(D)成分の含有量が5~200質量部であることが好ましい。 In the flame-retardant resin composition of the present invention, the content of component (D) is preferably 5 to 200 parts by mass with respect to 100 parts by mass of component (A).
 本発明の難燃性樹脂組成物においては、(A)成分100質量部に対して、(E)成分の含有量が0.1~25質量部であることが好ましい。 In the flame-retardant resin composition of the present invention, the content of component (E) is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of component (A).
 本発明の難燃性樹脂組成物においては、(B)成分と(C)成分の含有比率が、質量比で20:80~60:40であることが好ましい。 In the flame-retardant resin composition of the present invention, the content ratio of component (B) and component (C) is preferably 20:80 to 60:40 in mass ratio.
 本発明の難燃性樹脂組成物においては、(C)成分がピロリン酸ピペラジンを含有することが好ましい。 In the flame-retardant resin composition of the present invention, component (C) preferably contains piperazine pyrophosphate.
 本発明の難燃性樹脂組成物においては、さらに、(F)成分:酸化亜鉛を、(B)成分と(C)成分との合計100質量部に対して、0.01~10質量部含有することが好ましい。 The flame-retardant resin composition of the present invention further contains 0.01 to 10 parts by mass of component (F): zinc oxide with respect to a total of 100 parts by mass of component (B) and component (C). preferably.
 本発明の難燃性樹脂組成物においては、(A)成分がポリプロピレン系樹脂であることが好ましい。 In the flame-retardant resin composition of the present invention, component (A) is preferably a polypropylene-based resin.
 また、本発明の成形体は、上記難燃性樹脂組成物から得られることを特徴とするものである。 Further, the molded article of the present invention is characterized by being obtained from the flame-retardant resin composition.
 本発明によれば、優れた難燃性、機械特性および成形加工時の加工性を有する新たな難燃性樹脂組成物およびその成形品を提供することができる。 According to the present invention, it is possible to provide a new flame-retardant resin composition having excellent flame retardancy, mechanical properties, and processability during molding, and a molded article thereof.
 以下、本発明をその好ましい実施形態に基づき説明する。
<難燃剤組成物>
 本発明の難燃性樹脂組成物は、下記(A)~(E)成分を含有する。
 (A)成分:酸未変性ポリオレフィン系樹脂
 (B)成分:オルトリン酸メラミン、ピロリン酸メラミンおよびポリリン酸メラミンからなる群から選択される1種以上のメラミン塩
 (C)成分:オルトリン酸ピペラジン、ピロリン酸ピペラジンおよびポリリン酸ピペラジンからなる群から選択される1種以上のピペラジン塩
 (D)成分:ガラス繊維
 (E)成分:酸価が5~100KOHmg/gであり、重量平均分子量が10,000~100,000である酸変性樹脂
The present invention will be described below based on its preferred embodiments.
<Flame retardant composition>
The flame-retardant resin composition of the present invention contains the following components (A) to (E).
(A) component: acid-unmodified polyolefin resin (B) component: one or more melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate (C) component: piperazine orthophosphate, pyroline One or more piperazine salts selected from the group consisting of piperazine acid and piperazine polyphosphate (D) component: glass fiber (E) component: acid value of 5 to 100 KOHmg/g and weight average molecular weight of 10,000 to 100,000 acid-modified resin
 (A)酸未変性ポリオレフィン系樹脂は、1種以上のオレフィンモノマーが重合または共重合して得られる重合体である。オレフィンモノマーとしては、例えば、エチレン、プロピレン、α-オレフィンまたはジエンが挙げられる。α-オレフィンとしては、例えば、1-ブテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ペンテン、1-オクテン、1-デセン、1-ドデセン等が挙げられ、ジエンとしては、例えば、ブタジエン、イソプレン、シクロペンタジエン、1,11-ドデカジエン等が挙げられる。また、(A)酸未変性ポリオレフィン系樹脂には、これら以外にアクリル酸エステル、メタクリル酸エステル、ビニル基含有モノマー等の他の共重合成分が含まれていてもよい。 (A) The acid-unmodified polyolefin resin is a polymer obtained by polymerizing or copolymerizing one or more olefin monomers. Olefin monomers include, for example, ethylene, propylene, α-olefins or dienes. Examples of α-olefins include 1-butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene, 1- and dodecene, and dienes include butadiene, isoprene, cyclopentadiene, 1,11-dodecadiene, and the like. In addition, the (A) acid-unmodified polyolefin resin may contain other copolymerization components such as acrylic acid esters, methacrylic acid esters, and vinyl group-containing monomers.
 (A)酸未変性ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L-LDPE)、高密度ポリエチレン(HDPE)、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、シクロオレフィンポリマー、ステレオブロックポリプロピレン、ポリ-3-メチル-1-ブテン、ポリ-3-メチル-1-ペンテン、ポリ-4-メチル-1-ペンテン等のα-オレフィン重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン三元共重合体、インパクトコポリマーポリプロピレン、エチレン-メチルメタクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール樹脂(EVOH)等のα-オレフィン共重合体、およびこれらの塩素化物等が挙げられる。ポリオレフィン系樹脂は、これら2種以上がブレンドされたものまたはアロイ化されたものであってもよい。 (A) Acid-unmodified polyolefin resins include, for example, low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), high density polyethylene (HDPE), isotactic polypropylene, syndiotactic polypropylene, α-olefin polymers such as hemiisotactic polypropylene, cycloolefin polymer, stereoblock polypropylene, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, poly-4-methyl-1-pentene , ethylene-propylene copolymer, ethylene-propylene-diene terpolymer, impact copolymer polypropylene, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl Examples include acrylate copolymers, ethylene-vinyl acetate copolymers, α-olefin copolymers such as ethylene-vinyl alcohol resin (EVOH), and chlorinated products thereof. The polyolefin resin may be a blend or an alloy of two or more of these.
 本発明の難燃性樹脂組成物においては、(A)酸未変性ポリオレフィン系樹脂は、ポリプロピレン系樹脂であることが好ましい。ポリプロピレン系樹脂としては、プロピレンホモポリマー、エチレン-プロピレンコポリマー(例えば、エチレン-プロピレンランダムコポリマー等)等、エチレン-プロピレン-1-ブテンターポリマー、プロピレンと他のα-オレフィン(例えば、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等)との共重合体、エチレン-プロピレンコポリマーを含むエチレン-プロピレンブロックコポリマー(例えば、インパクトコポリマーポリプロピレン、TPO等)、およびこれらの塩素化物等が挙げられる。ポリプロピレン系樹脂は、これら2種以上をブレンドしたものであってもよく、樹脂がアロイ化されたものであってもよく、ブロックコポリマーであってもよい。 In the flame-retardant resin composition of the present invention, (A) the acid-unmodified polyolefin resin is preferably a polypropylene resin. Examples of polypropylene-based resins include propylene homopolymer, ethylene-propylene copolymer (e.g., ethylene-propylene random copolymer, etc.), ethylene-propylene-1-butene terpolymer, propylene and other α-olefins (e.g., 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc.), ethylene-propylene block copolymers including ethylene-propylene copolymers (e.g., impact copolymer polypropylene, TPO, etc.), and chlorinated products thereof etc. The polypropylene-based resin may be a blend of two or more of these, an alloyed resin, or a block copolymer.
 また、(A)酸未変性ポリオレフィン系樹脂は、エチレン-プロピレンコポリマーを含むことがさらに好ましい。この場合、成形品に特に優れた耐衝撃性を付与できる。このようなポリオレフィン系樹脂としては、例えば、上述したエチレン-プロピレンコポリマー(例えば、エチレン-プロピレンランダムコポリマー等)等、エチレン-プロピレンブロックコポリマー(例えば、インパクトコポリマーポリプロピレン、TPO等)等が挙げられる。 Further, (A) the acid-unmodified polyolefin resin more preferably contains an ethylene-propylene copolymer. In this case, particularly excellent impact resistance can be imparted to the molded article. Such polyolefin resins include, for example, the above-mentioned ethylene-propylene copolymers (eg, ethylene-propylene random copolymers, etc.), ethylene-propylene block copolymers (eg, impact copolymer polypropylene, TPO, etc.), and the like.
 本発明の難燃性樹脂組成物に係る(A)酸未変性ポリオレフィン系樹脂は、重合触媒・助触媒の種類や有無、立体規則性、平均分子量、分子量分布、特定の分子量成分の有無や比率、比重、粘度、各種溶媒への溶解度、伸び率、衝撃強度、結晶化度、X線回折、有機過酸化物またはエネルギー線の照射およびこれら処理の組合せによる架橋処理の有無等によらず用いることができる。 The (A) acid-unmodified polyolefin resin related to the flame-retardant resin composition of the present invention includes the type and presence of polymerization catalysts and co-catalysts, stereoregularity, average molecular weight, molecular weight distribution, presence and ratio of specific molecular weight components. , specific gravity, viscosity, solubility in various solvents, elongation, impact strength, crystallinity, X-ray diffraction, irradiation with organic peroxide or energy beams, and cross-linking treatment by combination of these treatments. can be done.
 本発明の難燃性樹脂組成物に係る(B)成分であるメラミン塩は、リン酸類とメラミンとの塩である。本発明の難燃性樹脂組成物において、リン酸類とは、五酸化二リンが水和してできる酸を意味し、具体的には、オルトリン酸、ピロリン酸およびポリリン酸が挙げられる。これらリン酸類はそれぞれ単独で用いることができ、あるいは2種以上を組み合わせて用いることができる。 The melamine salt, which is the (B) component of the flame-retardant resin composition of the present invention, is a salt of phosphoric acids and melamine. In the flame-retardant resin composition of the present invention, phosphoric acids mean acids formed by hydration of diphosphorus pentoxide, and specific examples include orthophosphoric acid, pyrophosphoric acid and polyphosphoric acid. Each of these phosphoric acids can be used alone, or two or more of them can be used in combination.
 (B)成分は、オルトリン酸メラミン、ピロリン酸メラミンおよびポリリン酸メラミンからなる群から選択され、これらは単独でも混合物で使用されてもよい。これらの中でも難燃性、ハンドリング性、保存安定性の点からピロリン酸メラミンおよびポリリン酸メラミンから選択される1種以上を含有することが好ましく、特にピロリン酸メラミンを含有することが好ましい。これらを混合物で使用する場合は、ピロリン酸メラミンの含有割合が高いほど好ましい。また、ピロリン酸メラミンの、ピロリン酸とメラミンの比は、モル比で1:2のものが好ましい。 The (B) component is selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate, and these may be used alone or in combination. Among these, it is preferable to contain one or more selected from melamine pyrophosphate and melamine polyphosphate from the viewpoint of flame retardancy, handleability and storage stability, and it is particularly preferable to contain melamine pyrophosphate. When these are used as a mixture, the higher the content of melamine pyrophosphate, the better. Further, the molar ratio of melamine pyrophosphate to melamine pyrophosphate is preferably 1:2.
 これらリン酸類とメラミンとの塩は、それぞれ対応するリン酸またはリン酸塩とメラミンまたはメラミン塩酸塩を反応させることによって得ることができる。このようなリン酸塩としては、例えば、第一リン酸ナトリウム、第一リン酸カリウム、第二リン酸ナトリウム、第二リン酸カリウム、第三リン酸ナトリウム、第三リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、ポリリン酸ナトリウム、ポリリン酸カリウム等が挙げられる。 These salts of phosphoric acids and melamine can be obtained by reacting the corresponding phosphoric acid or phosphate with melamine or melamine hydrochloride. Examples of such phosphates include monobasic sodium phosphate, monopotassium phosphate, dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tribasic potassium phosphate, and sodium pyrophosphate. , potassium pyrophosphate, sodium polyphosphate, potassium polyphosphate and the like.
 また、ピロリン酸メラミンおよびポリリン酸メラミンは、オルトリン酸メラミンを加熱縮合して得てもよい。(B)成分は、オルトリン酸メラミンを加熱縮合させて得られたピロリン酸メラミンおよびポリリン酸メラミンから選択される1種以上を含むことが好ましく、特にピロリン酸メラミンを含むことが好ましい。 In addition, melamine pyrophosphate and melamine polyphosphate may be obtained by thermally condensing melamine orthophosphate. Component (B) preferably contains one or more selected from melamine pyrophosphate obtained by thermally condensing melamine orthophosphate and melamine polyphosphate, and more preferably contains melamine pyrophosphate.
 本発明の難燃性樹脂組成物に係る(C)成分であるピペラジン塩は、リン酸類とピペラジンとの塩である。(C)成分は、オルトリン酸ピペラジン、ピロリン酸ピペラジンおよびポリリン酸ピペラジンからなる群から選択され、これらは単独でも混合物で使用されてもよい。これらの中でも難燃性、ハンドリング性、保存安定性の点から、ピロリン酸ピペラジンが好ましく、混合物で使用する場合は、ピロリン酸ピペラジンの含有割合が高いほど好ましい。また、ピロリン酸ピペラジンの、ピロリン酸とピペラジンの比は、モル比で1:1のものが好ましい。 The piperazine salt, which is the component (C) in the flame-retardant resin composition of the present invention, is a salt of phosphoric acids and piperazine. Component (C) is selected from the group consisting of piperazine orthophosphate, piperazine pyrophosphate and piperazine polyphosphate, which may be used alone or in combination. Among these, piperazine pyrophosphate is preferable from the viewpoint of flame retardancy, handleability, and storage stability, and when used in a mixture, the higher the content of piperazine pyrophosphate, the more preferable. Further, the molar ratio of piperazine pyrophosphate to piperazine pyrophosphate is preferably 1:1.
 これらリン酸類とピペラジンの塩は、それぞれ対応するリン酸またはリン酸塩とピペラジンまたはピペラジン塩酸塩を反応させることで得ることができる。リン酸塩としては、上述したものを用いることができる。また、ピロリン酸ピペラジンおよびポリリン酸ピペラジンは、オルトリン酸ピペラジンを加熱縮合して得てもよい。特に、(C)成分として使用されるピペラジン塩は、オルトリン酸ピペラジンを加熱縮合させて得られたピロリン酸ピペラジンまたはポリリン酸ピペラジンを含むことが好ましく、特にピロリン酸ピペラジンを含むことが好ましい。 These phosphates and piperazine salts can be obtained by reacting the corresponding phosphoric acid or phosphate with piperazine or piperazine hydrochloride. As the phosphate, those mentioned above can be used. Piperazine pyrophosphate and piperazine polyphosphate may also be obtained by thermally condensing piperazine orthophosphate. In particular, the piperazine salt used as component (C) preferably contains piperazine pyrophosphate or piperazine polyphosphate obtained by thermally condensing piperazine orthophosphate, and more preferably contains piperazine pyrophosphate.
 本発明の難燃性樹脂組成物における(B)成分および(C)成分の合計含有量は、難燃性、機械特性および加工性の点から、(A)成分100質量部に対して10~200質量部であることが好ましく、20~100質量部がより好ましく、40~80質量部がさらにより好ましい。 The total content of components (B) and (C) in the flame-retardant resin composition of the present invention is 10 to 10 parts by mass based on 100 parts by mass of component (A) from the viewpoint of flame retardancy, mechanical properties and workability. It is preferably 200 parts by mass, more preferably 20 to 100 parts by mass, and even more preferably 40 to 80 parts by mass.
 本発明の難燃性樹脂組成物における(B)成分と(C)成分の含有割合は、難燃性の点から、(B)成分と(C)成分の質量比で20:80~60:40が好ましく、30:70~50:50がより好ましい。 From the viewpoint of flame retardancy, the content ratio of component (B) and component (C) in the flame-retardant resin composition of the present invention is 20:80 to 60 in mass ratio of component (B) to component (C). 40 is preferred, and 30:70 to 50:50 is more preferred.
 本発明の難燃性樹脂組成物における(B)成分および(C)成分には、シリコーンオイル、エポキシ系カップリング剤および滑剤からなる群から選ばれる少なくとも1種を含有させることが好ましい。これにより、(B)成分および(C)成分が凝集することを抑制し、保存安定性の向上と、樹脂組成物中での分散性向上や難燃性向上が期待できる。 The components (B) and (C) in the flame-retardant resin composition of the present invention preferably contain at least one selected from the group consisting of silicone oils, epoxy coupling agents and lubricants. As a result, aggregation of the components (B) and (C) is suppressed, and an improvement in storage stability, an improvement in dispersibility in the resin composition, and an improvement in flame retardancy can be expected.
 シリコーンオイルの例としては、ポリシロキサンの側鎖、末端が全てメチル基であるジメチルシリコーンオイル、ポリシロキサンの側鎖、末端がメチル基であり、その側鎖の一部がフェニル基であるメチルフェニルシリコーンオイル、ポリシロキサンの側鎖、末端がメチル基であり、その側鎖の一部が水素であるメチルハイドロジェンシリコーンオイル等や、これらのコポリマーが挙げられ、またこれらの側鎖および/または末端の一部に有機基を導入した、アミン変性、エポキシ変性、脂環式エポキシ変性、カルボキシル変性、カルビノール変性、メルカプト変性、ポリエーテル変性、長鎖アルキル変性、フロロアルキル変性、高級脂肪酸エステル変性、高級脂肪酸アミド変性、シラノール変性、ジオール変性、フェノール変性および/またはアラルキル変性、させた変性シリコーンオイルを使用することができる。 Examples of silicone oils include dimethylsilicone oil in which all of the side chains and terminals of polysiloxane are methyl groups, methylphenyl in which the side chains and terminals of polysiloxane are methyl groups, and part of the side chains are phenyl groups. Silicone oils, side chains of polysiloxanes, methylhydrogensilicone oils in which a terminal is a methyl group and a part of the side chain is hydrogen, and copolymers thereof, and these side chains and/or terminal Amine-modified, epoxy-modified, alicyclic epoxy-modified, carboxyl-modified, carbinol-modified, mercapto-modified, polyether-modified, long-chain alkyl-modified, fluoroalkyl-modified, higher fatty acid ester-modified, Higher fatty acid amide-modified, silanol-modified, diol-modified, phenol-modified and/or aralkyl-modified modified silicone oil can be used.
 シリコーンオイルの具体例を挙げると、ジメチルシリコーンオイルとして、KF-96(信越化学(株)製)、KF-965(信越化学(株)製)、KF-968(信越化学(株)製)等が挙げられ、メチルハイドロジェンシリコーンオイルとして、KF-99(信越化学(株)製)、KF-9901(信越化学(株))、HMS-151(Gelest社製)、HMS-071(Gelest社製)、HMS-301(Gelest社製)、DMS-H21(Gelest社製)等が挙げられ、メチルフェニルシリコーンオイルの例としては、KF-50(信越化学(株)製)、KF-53(信越化学(株)製)、KF-54(信越化学(株)製)、KF-56(信越化学(株)製)等が挙げられ、エポキシ変性品としては、例えば、X-22-343(信越化学(株)製)、X-22-2000(信越化学(株)製)、KF-101(信越化学(株)製)、KF-102(信越化学(株)製)、KF-1001(信越化学(株)製)、カルボキシル変性品としては、例えば、X-22-3701E(信越化学(株)製)、カルビノール変性品としては、例えば、X-22-4039(信越化学(株)製)、X-22-4015(信越化学(株)製)、アミン変性品としては、例えば、KF-393(信越化学(株)製)等が挙げられる。 Specific examples of silicone oils include dimethyl silicone oils such as KF-96 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-965 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-968 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. Examples of methyl hydrogen silicone oils include KF-99 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-9901 (manufactured by Shin-Etsu Chemical Co., Ltd.), HMS-151 (manufactured by Gelest), HMS-071 (manufactured by Gelest ), HMS-301 (manufactured by Gelest), DMS-H21 (manufactured by Gelest), etc. Examples of methylphenyl silicone oils include KF-50 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-53 (manufactured by Shin-Etsu Kagaku Co., Ltd.), KF-54 (Shin-Etsu Chemical Co., Ltd.), KF-56 (Shin-Etsu Chemical Co., Ltd.), etc. Examples of epoxy-modified products include X-22-343 (Shin-Etsu Chemical Co., Ltd.), X-22-2000 (Shin-Etsu Chemical Co., Ltd.), KF-101 (Shin-Etsu Chemical Co., Ltd.), KF-102 (Shin-Etsu Chemical Co., Ltd.), KF-1001 (Shin-Etsu Chemical Co., Ltd.) Chemical Co., Ltd.), carboxyl-modified products such as X-22-3701E (Shin-Etsu Chemical Co., Ltd.), carbinol-modified products such as X-22-4039 (Shin-Etsu Chemical Co., Ltd.) ), X-22-4015 (manufactured by Shin-Etsu Chemical Co., Ltd.), and amine-modified products include, for example, KF-393 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 本発明の難燃性樹脂組成物において、シリコーンオイルの中でも、凝集防止、保存安定性の向上、樹脂組成物中での分散性向上の点から、メチルハイドロジェンシリコーンオイルが好ましい。 Among the silicone oils in the flame-retardant resin composition of the present invention, methylhydrogensilicone oil is preferred from the viewpoints of preventing aggregation, improving storage stability, and improving dispersibility in the resin composition.
 本発明の難燃性樹脂組成物における(B)成分および(C)成分にシリコーンオイルを含有させる場合のシリコーンオイルの含有量は、シリコーンオイルを含有することによる上記効果を高める点から、(B)成分および(C)成分の合計100質量部に対して、0.01~3質量部が好ましく、0.1~1質量部がより好ましい。 The content of the silicone oil in the case of containing the silicone oil in the components (B) and (C) in the flame-retardant resin composition of the present invention is, from the viewpoint of enhancing the above effects due to the inclusion of the silicone oil, (B ) and (C) in a total of 100 parts by mass, preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1 part by mass.
 エポキシ系カップリング剤は、凝集抑制、保存安定性の向上、耐水性、耐熱性の付与という機能を有する。エポキシ系カップリング剤としては、例えば、一般式A-(CH-Si(OR)で表される化合物であってエポキシ基を有する化合物が挙げられる。Aはエポキシ環を有する基であり、kは1~3の数を表し、Rはメチル基またはエチル基を表す。Aのエポキシ環を有する基としては、グリシドキシ基や3,4-エポキシシクロヘキシル基が挙げられる。 Epoxy coupling agents have the functions of suppressing aggregation, improving storage stability, and imparting water resistance and heat resistance. Epoxy coupling agents include, for example, compounds represented by the general formula A—(CH 2 ) k —Si(OR) 3 and having an epoxy group. A is a group having an epoxy ring, k represents a number from 1 to 3, and R represents a methyl group or an ethyl group. The epoxy ring-containing group of A includes a glycidoxy group and a 3,4-epoxycyclohexyl group.
 エポキシ系カップリング剤の具体例としては、例えば、エポキシ基を有するシランカップリング剤として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシオクチルトリメトキシシラン等が挙げられる。 Specific examples of epoxy-based coupling agents include, for example, silane coupling agents having an epoxy group, such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, glycidoxyoctyltrimethoxysilane and the like.
 本発明の難燃性樹脂組成物における(B)成分および(C)成分にエポキシ系カップリング剤を含有させる場合のエポキシ系カップリング剤の含有量は、エポキシ系カップリング剤を含有することによる上記の効果を高める点から、(B)成分および(C)成分の合計100質量部に対して、0.01~3質量部が好ましく、0.1~1質量部がより好ましい。 When the epoxy coupling agent is contained in the components (B) and (C) in the flame-retardant resin composition of the present invention, the content of the epoxy coupling agent is determined by containing the epoxy coupling agent. From the viewpoint of enhancing the above effects, it is preferably 0.01 to 3 parts by mass, more preferably 0.1 to 1 part by mass, per 100 parts by mass of components (B) and (C).
 滑剤としては、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、低分子量ポリエチレン、ポリエチレンワックス等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤;高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、ビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル、グリセリド等の脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステル、脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;金属石鹸、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール、ポリグリセロールの部分エステル系の滑剤や、シリコーンオイル、鉱油等が挙げられる。滑剤は1種を単独で用いることができ、2種以上を併用して用いることができる。 Lubricants include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, microwax, synthetic paraffin, low molecular weight polyethylene and polyethylene wax; halogenated hydrocarbon lubricants; fatty acid lubricants such as higher fatty acids and oxy fatty acids; , fatty acid amide lubricants such as bis fatty acid amides; lower alcohol esters of fatty acids, polyhydric alcohol esters of fatty acids such as glycerides, polyglycol esters of fatty acids, ester lubricants such as fatty alcohol esters of fatty acids (ester wax); metal soaps , fatty alcohol, polyhydric alcohol, polyglycol, polyglycerol, partial ester of fatty acid and polyhydric alcohol, fatty acid and polyglycol, partial ester lubricant of polyglycerol, silicone oil, mineral oil, and the like. Lubricants can be used individually by 1 type, and can be used in combination of 2 or more types.
 本発明の難燃性樹脂組成物における(B)成分および(C)成分に滑剤を含有させる場合の滑剤の含有量は、滑剤を含有することによる上記の効果を高める点から、(B)成分および(C)成分の合計100質量部に対して、0.01~3質量部が好ましく、0.1~0.5質量部がより好ましい。 When the components (B) and (C) in the flame-retardant resin composition of the present invention contain a lubricant, the content of the lubricant is determined from the viewpoint of enhancing the above-mentioned effects due to the inclusion of the lubricant. 0.01 to 3 parts by mass, more preferably 0.1 to 0.5 parts by mass, per 100 parts by mass of components (C) in total.
 本発明の難燃性樹脂組成物における(D)成分であるガラス繊維は、ポリオレフィン系樹脂との濡れ性や接着性等を良好なものとするために、表面処理剤で処理されていてもよい。この表面処理剤としては、例えばシラン系、チタネート系、アルミニウム系、クロム系、ジルコニウム系、ボラン系カップリング剤等が挙げられるが、これらの中でも、シラン系カップリング剤およびチタネート系カップリング剤が好ましく、特にシラン系カップリング剤が好適である。このシラン系カップリング剤としては、例えばトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が挙げられる。 The glass fiber, which is the component (D) in the flame-retardant resin composition of the present invention, may be treated with a surface treatment agent in order to improve the wettability and adhesiveness with the polyolefin resin. . Examples of the surface treatment agent include silane-based, titanate-based, aluminum-based, chromium-based, zirconium-based, and borane-based coupling agents. A silane coupling agent is preferred, and a silane coupling agent is particularly preferred. Examples of the silane coupling agent include triethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β-(3,4-epoxy cyclohexyl)ethyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N -phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane and the like.
 また、ガラス繊維は、ガラス繊維を収束するため収束剤を使用されていてもよい。収束剤としては、例えば、ポリプロピレン樹脂、ポリウレタン樹脂,ポリエステル樹脂、アクリル系樹脂、エポキシ系樹脂、澱粉、植物油等が挙げられる。 In addition, the glass fibers may be used with a sizing agent to bundle the glass fibers. Examples of sizing agents include polypropylene resins, polyurethane resins, polyester resins, acrylic resins, epoxy resins, starch, and vegetable oils.
 本発明の難燃性樹脂組成物における(D)成分であるガラス繊維は、市販のものが使用できる。また、(D)成分であるガラス繊維は、加工性、難燃性およびドリップ防止の点から、単繊維を収束したチョップドストランドが好ましい。チョップドストランドのカット長は、加工性と難燃性の点から、1.0mm~5.0mmが好ましく、2.0mm~4.0mmがより好ましい。また単繊維の径は、加工性と難燃性の点から、8μm~16μmが好ましく、10μm~14μmがより好ましい。 Commercially available glass fibers can be used as the (D) component in the flame-retardant resin composition of the present invention. Further, the glass fiber as the component (D) is preferably a chopped strand obtained by converging single fibers from the viewpoint of workability, flame retardancy and anti-drip property. The cut length of the chopped strands is preferably 1.0 mm to 5.0 mm, more preferably 2.0 mm to 4.0 mm, from the viewpoint of workability and flame retardancy. The diameter of the single fiber is preferably 8 μm to 16 μm, more preferably 10 μm to 14 μm, from the standpoints of workability and flame retardancy.
 本発明の難燃性樹脂組成物における(D)成分の含有量は、加工性および機械特性の点から、(A)成分100質量部に対して5~200質量部であることが好ましく、10~100質量部がより好ましく、20~80質量部がさらにより好ましい。 The content of component (D) in the flame-retardant resin composition of the present invention is preferably 5 to 200 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of workability and mechanical properties. ~100 parts by mass is more preferable, and 20 to 80 parts by mass is even more preferable.
 本発明の難燃性樹脂組成物における(E)成分である酸変性樹脂は、基材となる樹脂に酸性基が導入された樹脂である。基材となる樹脂としては、ポリオレフィン系樹脂が好ましく、例えば、前述の(A)成分であるポリオレフィン系樹脂として例示したものが挙げられる。中でも、力学特性の点から、エチレン、プロピレン、炭素原子数4~12のα-オレフィン、ブタジエン、イソプレンが重合または共重合したものが好ましく、エチレン、プロピレン、炭素原子数4~8のα-オレフィン、ブタジエンが重合または共重合したものがより好ましく、エチレン、プロピレン、ブタジエンが重合または共重合したものがさらにより好ましい。 The acid-modified resin, which is the component (E) in the flame-retardant resin composition of the present invention, is a resin in which an acidic group is introduced into the base resin. Polyolefin-based resins are preferable as the base resin, and examples thereof include those exemplified as the polyolefin-based resins of component (A) described above. Among them, from the viewpoint of mechanical properties, ethylene, propylene, α-olefins having 4 to 12 carbon atoms, butadiene, and isoprene are preferably polymerized or copolymerized, and ethylene, propylene, α-olefins having 4 to 8 carbon atoms are preferable. , butadiene are more preferred, and ethylene, propylene and butadiene are more preferred.
 (E)成分である酸変性樹脂は、酸性基を有するモノマーを基材となる樹脂にグラフト化反応させる方法、酸性基を有するモノマーと基材となる樹脂のモノマーとを共重合する方法等の、従来公知の方法により得られ、種々の市販品を使用してもよい。 The acid-modified resin as the component (E) can be prepared by a method of grafting a monomer having an acidic group to a base resin, a method of copolymerizing a monomer having an acidic group and a monomer of the base resin, and the like. , obtained by a conventionally known method, and various commercial products may be used.
 (E)成分である酸変性樹脂に導入される酸性基としては、カルボン酸基、カルボン酸無水物基、スルホン酸基、リン酸基などが挙げられ、樹脂組成物の劣化抑制の点から、カルボン酸基、カルボン酸無水物基が好ましい。 Examples of the acidic group to be introduced into the acid-modified resin as component (E) include a carboxylic acid group, a carboxylic anhydride group, a sulfonic acid group, and a phosphoric acid group. Carboxylic acid groups and carboxylic anhydride groups are preferred.
 酸性基を有するモノマーとしては、樹脂組成物の劣化抑制の点から、カルボン酸化合物、無水カルボン酸化合物が好ましく、マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸がより好ましく、マレイン酸、無水マレイン酸が特に好ましい。 From the viewpoint of suppressing deterioration of the resin composition, the monomer having an acidic group is preferably a carboxylic acid compound or a carboxylic anhydride compound, more preferably maleic acid, maleic anhydride, acrylic acid or methacrylic acid, maleic acid or maleic anhydride. Acids are particularly preferred.
 (E)成分は、樹脂組成物における耐水性、力学特性、劣化抑制の点から、カルボン酸変性ポリオレフィンおよび無水カルボン酸変性ポリオレフィンから選ばれる1種以上であることが好ましく、マレイン酸変性ポリオレフィンおよび無水マレイン酸変性ポリオレフィンから選ばれる1種以上であることがより好ましく、マレイン酸変性ポリエチレン、無水マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレンおよび無水マレイン酸変性ポリプロピレンから選ばれる1種以上であることがさらにより好ましく、マレイン酸変性ポリプロピレンおよび無水マレイン酸変性ポリプロピレンから選ばれる1種以上であることが特に好ましい。 Component (E) is preferably one or more selected from carboxylic acid-modified polyolefins and carboxylic anhydride-modified polyolefins from the viewpoint of water resistance, mechanical properties, and deterioration suppression in the resin composition. It is more preferably one or more selected from maleic acid-modified polyolefins, and even more preferably one or more selected from maleic acid-modified polyethylene, maleic anhydride-modified polyethylene, maleic acid-modified polypropylene and maleic anhydride-modified polypropylene. One or more selected from maleic acid-modified polypropylene and maleic anhydride-modified polypropylene is particularly preferred.
 (E)成分の酸価の下限は、5mgKOH/g以上であり、好ましくは7mgKOH/g以上であり、より好ましくは9mgKOH/g以上である。これにより、難燃性と機械特性の向上効果を十分に得ることができる。 The lower limit of the acid value of component (E) is 5 mgKOH/g or more, preferably 7 mgKOH/g or more, more preferably 9 mgKOH/g or more. This makes it possible to sufficiently obtain the effects of improving flame retardancy and mechanical properties.
 (E)成分の酸価の上限は、100mgKOH/g以下であり、好ましくは80mgKOH/g以下であり、より好ましくは70mgKOH/g以下である。これにより、難燃性樹脂組成物の劣化を抑制することができる。 The upper limit of the acid value of component (E) is 100 mgKOH/g or less, preferably 80 mgKOH/g or less, more preferably 70 mgKOH/g or less. Thereby, deterioration of a flame-retardant resin composition can be suppressed.
 この酸価は、JIS K0070に準じて、以下の(i)~(iii)の手順で測定して得られる値である。 This acid value is a value obtained by measuring according to the following procedures (i) to (iii) according to JIS K0070.
<酸変性樹脂の酸価測定方法>
(i)140℃に加熱したキシレン70mLに酸変性樹脂1gを溶解させる。
(ii)同温度でフェノールフタレインを指示薬として、0.1mol/L水酸化カリウムエタノール溶液(商品名「0.1mol/Lエタノール性水酸化カリウム溶液」、和光純薬(株)製)で滴定を行う。
(iii)滴定に要した水酸化カリウム量をmgに換算して酸価(単位:mgKOH/g)を算出する。
<Method for measuring acid value of acid-modified resin>
(i) 1 g of acid-modified resin is dissolved in 70 mL of xylene heated to 140°C.
(ii) Titration with 0.1 mol/L potassium hydroxide ethanol solution (trade name “0.1 mol/L ethanolic potassium hydroxide solution”, manufactured by Wako Pure Chemical Industries, Ltd.) using phenolphthalein as an indicator at the same temperature I do.
(iii) Calculate the acid value (unit: mgKOH/g) by converting the amount of potassium hydroxide required for titration into mg.
 (E)成分の重量平均分子量(以下、「Mw」とも称する)の下限は、ポリスチレン換算で、10,000以上であり、好ましくは20,000以上であり、より好ましくは25,000以上である。これにより、難燃性の向上効果を十分に得ることができる。 The lower limit of the weight average molecular weight (hereinafter also referred to as "Mw") of the component (E) is 10,000 or more, preferably 20,000 or more, and more preferably 25,000 or more in terms of polystyrene. . Thereby, the effect of improving the flame retardancy can be sufficiently obtained.
 (E)成分のMwの上限は、ポリスチレン換算で、100,000以下であり、好ましくは90,000以下であり、より好ましくは85,000以下である。これにより、難燃性と成形加工時の加工性に優れ、良好な外観の成形体を安定して得ることができる。 The upper limit of Mw of component (E) is 100,000 or less, preferably 90,000 or less, more preferably 85,000 or less in terms of polystyrene. As a result, it is possible to stably obtain a molded article having excellent flame retardancy and processability during molding and having a good appearance.
 このMwは、ゲル浸透クロマトグラフィーによって測定されるポリスチレン換算で示される値である。 This Mw is a value shown in terms of polystyrene measured by gel permeation chromatography.
 本発明の難燃性樹脂組成物における(E)成分の含有量は、難燃性、加工性および機械特性の点から、(A)成分100質量部に対して0.1~25質量部であることが好ましく、0.5~20質量部がより好ましく、1~15質量部がさらにより好ましい。 The content of component (E) in the flame-retardant resin composition of the present invention is 0.1 to 25 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of flame retardancy, workability and mechanical properties. preferably 0.5 to 20 parts by mass, and even more preferably 1 to 15 parts by mass.
 本発明の難燃性樹脂組成物には、必須成分である(A)~(E)成分と共に、他の任意成分を配合してもよい。(A)~(E)成分および他の任意成分を本発明の樹脂組成物に配合するタイミングは特に制限されない。例えば、(A)成分以外の各成分を(A)酸未変性ポリオレフィン樹脂に対して順次配合してもよく、予め(A)~(E)成分および他の任意成分の中から選択された2種以上をワンパック化してから他の成分に配合してもよい。 The flame-retardant resin composition of the present invention may contain other optional components along with the essential components (A) to (E). The timing of blending the components (A) to (E) and other optional components into the resin composition of the present invention is not particularly limited. For example, each component other than the (A) component may be sequentially blended with the (A) acid-unmodified polyolefin resin, and two components selected in advance from the (A) to (E) components and other optional components The seeds or more may be packed into one pack and then blended with other ingredients.
 以下、本発明の難燃性樹脂組成物に配合できる他の任意成分について説明する。
 本発明の難燃性樹脂組成物は、助剤を含有してもよい。助剤としては、難燃助剤、ドリップ防止助剤、加工助剤等が挙げられる。難燃助剤は、金属酸化物や多価アルコール化合物を含むことができる。これにより、樹脂の難燃性を向上できる。
Other optional components that can be blended in the flame-retardant resin composition of the present invention are described below.
The flame-retardant resin composition of the present invention may contain auxiliary agents. Auxiliaries include flame retardant aids, anti-drip aids, processing aids, and the like. Flame retardant aids can include metal oxides and polyhydric alcohol compounds. Thereby, the flame retardance of resin can be improved.
 金属酸化物としては、酸化チタン、酸化亜鉛、酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、酸化バリウム、二酸化錫、二酸化鉛、酸化アンチモン、酸化モリブデン、酸化カドミウム等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。これにより、樹脂の難燃性を向上できる。また、粉粒状の難燃剤組成物中において凝集が発生することを抑制できる。中でも、難燃性の観点から、酸化亜鉛が好ましい。なお、本明細書において、酸化亜鉛を(F)成分とも称する。 Examples of metal oxides include titanium oxide, zinc oxide, calcium oxide, magnesium oxide, zirconium oxide, barium oxide, tin dioxide, lead dioxide, antimony oxide, molybdenum oxide, and cadmium oxide. These may be used alone or in combination of two or more. Thereby, the flame retardance of resin can be improved. In addition, it is possible to suppress the occurrence of agglomeration in the powdery flame retardant composition. Among them, zinc oxide is preferable from the viewpoint of flame retardancy. In addition, in this specification, zinc oxide is also called the (F) component.
 (F)成分である酸化亜鉛は、表面処理されていてもよく、表面処理されてなくてもよい。酸化亜鉛としては、例えば、酸化亜鉛1種(三井金属工業(株)製)、部分被膜型酸化亜鉛(三井金属工業(株)製)、ナノファイン50(平均粒径0.02μmの超微粒子酸化亜鉛:堺化学工業(株)製)、ナノファインK(平均粒径0.02μmの珪酸亜鉛被膜した超微粒子酸化亜鉛:堺化学工業(株)製)等の市販品を使用してもよい。 The (F) component, zinc oxide, may or may not be surface-treated. As zinc oxide, for example, zinc oxide type 1 (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), partially coated zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), Nanofine 50 (average particle size 0.02 μm ultrafine oxide Commercial products such as zinc: manufactured by Sakai Chemical Industry Co., Ltd.) and Nanofine K (superfine zinc oxide coated with zinc silicate having an average particle size of 0.02 μm: manufactured by Sakai Chemical Industry Co., Ltd.) may also be used.
 多価アルコール化合物は、複数のヒドロキシ基が結合している化合物であり、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール、ネオペンチルグリコール、トリメチロールプロパン、ジトリメチロールプロパン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート(THEIC)、ポリエチレングリコール、グリセリン、ジグリセリン、マンニトール、マルチトール、ラクチトール、ソルビトール、エリスリトール、キシリトール、キシロース、スクロース(シュクロース)、トレハロース、イノシトール、フルクトース、マルトース、ラクトース等が挙げられる。これら多価アルコール化合物のうち、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール等の、ペンタエリスリトール、ペンタエリスリトールの縮合物の群から選ばれる一種以上が好ましく、ジペンタエリスリトール、ペンタエリスリトールの縮合物が特に好ましく、ジペンタエリスリトールが最も好ましい。また、THEICおよびソルビトールも好適に使用できる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 A polyhydric alcohol compound is a compound to which a plurality of hydroxy groups are bonded. 3,5-tris(2-hydroxyethyl)isocyanurate (THEIC), polyethylene glycol, glycerin, diglycerin, mannitol, maltitol, lactitol, sorbitol, erythritol, xylitol, xylose, sucrose (sucrose), trehalose, inositol, fructose, maltose, lactose and the like. Among these polyhydric alcohol compounds, one or more selected from the group of condensates of pentaerythritol and pentaerythritol such as pentaerythritol, dipentaerythritol, tripentaerythritol, and polypentaerythritol are preferable, and dipentaerythritol and pentaerythritol Particular preference is given to condensates, most preferably dipentaerythritol. Also, THEIC and sorbitol can be suitably used. These may be used alone or in combination of two or more.
 本発明の難燃性樹脂組成物が、これら難燃助剤を含有する場合の難燃助剤の含有量は、(B)成分と(C)成分との合計100質量部に対して、0.01~10質量部が好ましく、0.1~10質量部がより好ましく、0.5~7質量部がさらに好ましい。難燃助剤の含有量が上記範囲内にあることにより、難燃性が向上し、加工性への悪影響を抑制することができる。 When the flame-retardant resin composition of the present invention contains these flame-retardant aids, the content of the flame-retardant aid is 0 with respect to a total of 100 parts by mass of the components (B) and (C). 0.01 to 10 parts by weight is preferred, 0.1 to 10 parts by weight is more preferred, and 0.5 to 7 parts by weight is even more preferred. When the content of the flame retardant auxiliary is within the above range, the flame retardance is improved and the adverse effect on workability can be suppressed.
 ドリップ防止助剤としては、層状ケイ酸塩、フッ素系ドリップ防止助剤、およびシリコーンゴム類が挙げられる。これにより、樹脂の燃焼時におけるドリップを抑制できる。 Anti-drip aids include layered silicates, fluorine-based anti-drip aids, and silicone rubbers. As a result, dripping during combustion of the resin can be suppressed.
 層状ケイ酸塩は、層状のケイ酸塩鉱物であり、天然または合成のいずれでもよく、特に限定されるものではない。層状ケイ酸塩として、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト等のスメクタイト系粘土鉱物や、バーミキュライト、ハロイサイト、膨潤性マイカ、タルク等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 A layered silicate is a layered silicate mineral, which may be either natural or synthetic, and is not particularly limited. Examples of layered silicates include smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, stevensite and nontronite, vermiculite, halloysite, swelling mica and talc. These may be used alone or in combination of two or more.
 ドリップ防止の観点から、これらの中でもサポナイトまたはタルクが好ましく、価格等の経済性の観点から、特にタルクが好ましい。 From the viewpoint of preventing dripping, saponite or talc is preferable among these, and talc is particularly preferable from the viewpoint of economic efficiency such as price.
 層状のケイ酸塩は、層間にカチオンを有していてもよい。このカチオンは、金属イオンであってもよいし、その一部または全部が、有機カチオン、(第4級)アンモニウムカチオン、ホスホニウムカチオン等の、金属イオン以外のカチオンであってもよい。 The layered silicate may have cations between layers. The cations may be metal ions, or part or all of them may be cations other than metal ions, such as organic cations, (quaternary) ammonium cations and phosphonium cations.
 金属イオンとして、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、リチウムイオン、ニッケルイオン、銅イオン、亜鉛イオン等が挙げられる。 Examples of metal ions include sodium ions, potassium ions, calcium ions, magnesium ions, lithium ions, nickel ions, copper ions, and zinc ions.
 有機カチオンまたは第4級アンモニウムカチオンとして、例えば、ラウリルトリメチルアンモニウムカチオン、ステアリルトリメチルアンモニウムカチオン、トリオクチルメチルアンモニウムカチオン、ジステアリルジメチルアンモニウムカチオン、ジ硬化牛脂ジメチルアンモニウムカチオン、ジステアリルジベンジルアンモニウムカチオン等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Examples of organic cations or quaternary ammonium cations include lauryltrimethylammonium cation, stearyltrimethylammonium cation, trioctylmethylammonium cation, distearyldimethylammonium cation, di-cured beef tallow dimethylammonium cation, distearyldibenzylammonium cation, and the like. be done. These may be used alone or in combination of two or more.
 フッ素系ドリップ防止助剤の具体例としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のフッ素系樹脂やパーフルオロメタンスルホン酸ナトリウム塩、パーフルオロ-n-ブタンスルホン酸カリウム塩、パーフルオロ-t-ブタンスルホン酸カリウム塩、パーフルオロオクタンスルホン酸ナトリウム塩、パーフルオロ-2-エチルヘキサンスルホン酸カルシウム塩等のパーフルオロアルカンスルホン酸アルカリ金属塩化合物またはパーフルオロアルカンスルホン酸アルカリ土類金属塩等が挙げられる。中でも、ドリップ防止性の点から、ポリテトラフルオロエチレンが好ましい。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of fluorine-based anti-drip aids include fluorine-based resins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyhexafluoropropylene, sodium perfluoromethanesulfonate, and potassium perfluoro-n-butanesulfonate. salts, perfluoroalkanesulfonic acid alkali metal salt compounds such as perfluoro-t-butanesulfonic acid potassium salt, perfluorooctanesulfonic acid sodium salt, perfluoro-2-ethylhexanesulfonic acid calcium salt, or perfluoroalkanesulfonic acid alkali Earth metal salts and the like can be mentioned. Among them, polytetrafluoroethylene is preferable from the viewpoint of anti-drip property. These may be used alone or in combination of two or more.
 加工助剤としては、公知の加工助剤の中から適宜選択することができるが、アクリル酸系加工助剤を含んでもよい。 The processing aid can be appropriately selected from known processing aids, but may include an acrylic processing aid.
 アクリル酸系加工助剤としては、例えばメチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレートの単独重合体または共重合体;前記アルキルメタクリレートと、メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアルキルアクリレートとの共重合体;前記アルキルメタクリレートと、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物との共重合体;前記アルキルメタクリレートと、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物等との共重合体等を挙げることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Examples of acrylic processing aids include homopolymers or copolymers of alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; Copolymers; copolymers of the aforementioned alkyl methacrylates with aromatic vinyl compounds such as styrene, α-methylstyrene and vinyltoluene; copolymers of the aforementioned alkyl methacrylates with vinyl cyanide compounds such as acrylonitrile and methacrylonitrile A coalescence etc. can be mentioned. These may be used alone or in combination of two or more.
 本発明の難燃性樹脂組成物は、必要に応じて更に、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等を含有することが好ましい。 The flame-retardant resin composition of the present invention may further contain a phenol antioxidant, a phosphorus antioxidant, a thioether antioxidant, an ultraviolet absorber, a hindered amine light stabilizer, etc., if necessary. preferable.
 フェノール系酸化防止剤としては、例えば、2,6-ジ-第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ-第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトールテトラキス〔3-(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、チオジエチレングリコールビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Phenolic antioxidants include, for example, 2,6-di-tert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-tert-butyl- 4-hydroxybenzyl)phosphonate, 1,6-hexamethylenebis[(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], 4,4′-thiobis(6-tert-butyl-m -cresol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis(6-tert-butylphenol) tributyl-m-cresol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4-sec-butyl-6-tert-butylphenol), 1, 1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl)isocyanurate , 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl) -2,4,6-trimethylbenzene, 2-tert-butyl-4-methyl-6-(2-acryloyloxy-3-tert-butyl-5-methylbenzyl)phenol, stearyl (3,5-di- tributyl-4-hydroxyphenyl)propionate, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], thiodiethylene glycol bis [(3,5-di-tert-butyl- 4-hydroxyphenyl)propionate], 1,6-hexamethylenebis[(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], bis[3,3-bis(4-hydroxy-3- 3-butylphenyl)butyric acid]glycol ester, bis[2-tert-butyl-4-methyl-6-(2-hydroxy-3-tert-butyl-5-methylbenzyl)phenyl]terephthalate, 1,3,5 -tris[(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, 3,9-bis[1,1-dimethyl-2-{(3-tert-butyl-4- hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10- tetraoxaspiro[5,5]undecane, triethylene glycol bis[(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate] and the like. The amount of these phenolic antioxidants to be used is preferably 0.001 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, relative to 100 parts by mass of the polyolefin resin as component (A). is more preferred.
 リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジデシルモノフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラキス(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサキス(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ-第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス-第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ-第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Examples of phosphorus antioxidants include trisnonylphenyl phosphite, tris[2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl]phosphite, Phyto, tridecylphosphite, octyldiphenylphosphite, didecylmonophenylphosphite, bis(tridecyl)pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di-tertiary butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tert-butylphenyl)pentaerythritol diphosphite Phosphite, bis(2,4-dicumylphenyl) pentaerythritol diphosphite, tetrakis(tridecyl)isopropylidene diphenol diphosphite, tetrakis(tridecyl)-4,4'-n-butylidenebis(2-tert-butyl -5-methylphenol) diphosphite, hexakis(tridecyl)-1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane triphosphite, tetrakis(2,4-di-tertiary Butylphenyl)biphenylenediphosphonite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2′-methylenebis(4,6-tert-butylphenyl)-2-ethylhexyl Phosphite, 2,2′-methylenebis(4,6-tert-butylphenyl)-octadecylphosphite, 2,2′-ethylidenebis(4,6-di-tert-butylphenyl)fluorophosphite, tris(2 -[(2,4,8,10-tetrakis-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)oxy]ethyl)amine, 2-ethyl-2 phosphites of -butylpropylene glycol and 2,4,6-tri-tert-butylphenol. The amount of these phosphorus-based antioxidants to be used is preferably 0.001 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, with respect to 100 parts by mass of the polyolefin resin that is component (A). is more preferable.
 チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、およびペンタエリスリトールテトラキス(β-アルキルメルカプトプロピオネート類が挙げられる。これらのチオエーテル系酸化防止剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。 Thioether antioxidants include, for example, dilauryl thiodipropionate, dimyristyl thiodipropionate, dialkylthiodipropionates such as distearyl thiodipropionate, and pentaerythritol tetrakis (β-alkylmercaptopropionates The amount of these thioether-based antioxidants used is preferably 0.001 to 10 parts by mass, preferably 0.05 to 5 parts by mass, relative to 100 parts by mass of the polyolefin resin that is component (A). Part is more preferred.
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ-第三ブチルフェニル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ-第三アミルフェニル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ-第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ-第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 UV absorbers include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5′-methylenebis(2-hydroxy-4-methoxybenzophenone) 2-hydroxybenzophenones such as; 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chloro benzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-5'-tert- octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-dicumylphenyl)benzotriazole, 2,2'-methylenebis(4-tert-octyl-6-(benzotriazolyl) phenol), 2-(2'-hydroxyphenyl)benzotriazoles such as 2-(2'-hydroxy-3'-tert-butyl-5'-carboxyphenyl)benzotriazole; phenyl salicylate, resorcinol monobenzoate, 2, 4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2,4-di-tert-amylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, benzoates such as hexadecyl-3,5-di-tert-butyl-4-hydroxybenzoate; substituted oxanilides such as 2-ethyl-2'-ethoxyoxaanilide and 2-ethoxy-4'-dodecyloxaxilide; Cyanoacrylates such as ethyl-α-cyano-β, β-diphenyl acrylate, methyl-2-cyano-3-methyl-3-(p-methoxyphenyl)acrylate; 2-(2-hydroxy-4-octoxyphenyl) )-4,6-bis(2,4-di-tert-butylphenyl)-s-triazine, 2-(2-hydroxy-4-methoxyphenyl)-4,6-diphenyl-s-triazine, 2-( triaryltriazines such as 2-hydroxy-4-propoxy-5-methylphenyl)-4,6-bis(2,4-di-tert-butylphenyl)-s-triazine; The amount of these ultraviolet absorbers used is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the polyolefin resin that is component (A). preferable.
 ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス(2,2,6,6-テトラメチル-1-オクチルオキシ-4-ピペリジル)デカンジオアート、ビス(2,2,6,6-テトラメチル-1-ウンデシルオキシピペリジン-4-イル)カーボネート、BASF社製TINUVIN NOR 371等が挙げられる。これらのヒンダードアミン系光安定剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。 Examples of hindered amine light stabilizers include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6 ,6-tetramethyl-4-piperidyl benzoate, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, Tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl) bis(tridecyl)-1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) bis(tridecyl)-1,2,3,4-butanetetracarboxylate, bis(1,2,2,6,6-pentamethyl- 4-piperidyl)-2-butyl-2-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4 -piperidinol/diethyl succinate polycondensate, 1,6-bis(2,2,6,6-tetramethyl-4-piperidylamino)hexane/2,4-dichloro-6-morpholino-s-triazine polycondensate Condensate, 1,6-bis(2,2,6,6-tetramethyl-4-piperidylamino)hexane/2,4-dichloro-6-tert-octylamino-s-triazine polycondensate, 1,5 ,8,12-tetrakis[2,4-bis(N-butyl-N-(2,2,6,6-tetramethyl-4-piperidyl)amino)-s-triazin-6-yl]-1,5 ,8,12-tetraazadodecane, 1,5,8,12-tetrakis[2,4-bis(N-butyl-N-(1,2,2,6,6-pentamethyl-4-piperidyl)amino) -s-triazin-6-yl]-1,5,8-12-tetraazadodecane, 1,6,11-tris[2,4-bis(N-butyl-N-(2,2,6,6 -tetramethyl-4-piperidyl)amino)-s-triazin-6-yl]aminoundecane, 1,6,11-tris[2,4-bis(N-butyl-N-(1,2,2,6 ,6-pentamethyl-4-piperidyl)amino)-s-triazin-6-yl] Aminoundecane, bis(2,2,6,6-tetramethyl-1-octyloxy-4-piperidyl)decanedioate, bis(2,2,6,6-tetramethyl-1-undecyloxypiperidine-4 -yl) carbonate, TINUVIN NOR 371 manufactured by BASF, and the like. The amount of these hindered amine light stabilizers to be used is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, with respect to 100 parts by mass of the polyolefin resin as component (A). is more preferable.
 本発明の難燃性樹脂組成物は、(A)成分であるポリオレフィン系樹脂中の触媒残渣を中和するために、本発明の効果を損なわない範囲で、公知の中和剤を含有することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸マグネシウム等の脂肪酸金属塩、エチレンビス(ステアリン酸アミド)、エチレンビス(12-ヒドロキシステアリン酸アミド)、ステアリン酸アミド等の脂肪酸アミド化合物、または、ハイドロタルサイト等の無機化合物が挙げられ、これら中和剤は混合して用いてもよい。これらの中和剤の使用量は、(A)成分であるポリオレフィン系樹脂100質量部に対して、0.001~3質量部であることが好ましく、0.01~1質量部であることがより好ましい。 The flame-retardant resin composition of the present invention should contain a known neutralizing agent to neutralize the catalyst residue in the polyolefin resin, component (A), within a range that does not impair the effects of the present invention. is preferred. Examples of neutralizing agents include fatty acid metal salts such as calcium stearate, lithium stearate, sodium stearate and magnesium stearate, ethylenebis(stearic acid amide), ethylenebis(12-hydroxystearic acid amide), and stearic acid amide. and inorganic compounds such as hydrotalcite, and these neutralizing agents may be mixed and used. The amount of these neutralizing agents to be used is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 1 part by mass, with respect to 100 parts by mass of the polyolefin resin that is component (A). more preferred.
 本発明の難燃性樹脂組成物は、本発明の効果を著しく損なわない範囲で、任意成分として、(D)成分であるガラス繊維以外の充填剤を含有してもよい。 The flame-retardant resin composition of the present invention may contain, as an optional component, a filler other than glass fiber as the component (D) within a range that does not significantly impair the effects of the present invention.
 このような充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、クレー、ドロマイト、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェートおよびハイドロタルサイト等を挙げることができ、粒子径(繊維状においては繊維径や繊維長およびアスペクト比)を適宜選択して用いることができる。これらは1種を単独で用いてもよく、2種以上を併用して用いてもよい。また、充填剤は、必要に応じて表面処理したものを用いることができる。 Examples of such fillers include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, clay, and dolomite. , silica, alumina, potassium titanate whiskers, wollastonite, fibrous magnesium oxysulfate, hydrotalcite, and the like. can be used. These may be used individually by 1 type, and may be used in combination of 2 or more types. In addition, the filler may be surface-treated as necessary.
 充填剤を配合する場合の配合量は、(A)成分であるポリオレフィン系樹脂100質量部に対して、1~100質量部であることが好ましく、3~80質量部であることがより好ましく、5~50質量部であることがさらにより好ましい。 When the filler is blended, the blending amount is preferably 1 to 100 parts by mass, more preferably 3 to 80 parts by mass, with respect to 100 parts by mass of the polyolefin resin that is component (A). Even more preferably, it is 5 to 50 parts by mass.
 本発明の難燃性樹脂組成物には、必要に応じて更に、通常合成樹脂に使用される添加剤、例えば、架橋剤、帯電防止剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、強化材、上記以外の難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、シリコーンオイル、シランカップリング剤等を、本発明の効果を損なわない範囲で、配合することができる。 If necessary, the flame-retardant resin composition of the present invention may further contain additives commonly used in synthetic resins, such as cross-linking agents, antistatic agents, antifogging agents, plate-out inhibitors, surface treatment agents, Plasticizers, lubricants, reinforcing materials, flame retardants other than the above, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, release agents, pigments, silicone oils, silane coupling agents, etc. It can be blended within a range that does not impair the effect of.
 本発明の難燃性樹脂組成物の製造方法は特に限定されず、公知の方法を採用することができる。具体的な製造方法としては、通常のブレンダー、ミキサー等で混合する方法、押出し機等で溶融混練する方法、溶媒と共に混合し溶液流延する方法等が挙げられる。 The method for producing the flame-retardant resin composition of the present invention is not particularly limited, and known methods can be adopted. Specific production methods include a method of mixing with a usual blender, mixer, etc., a method of melt-kneading with an extruder, etc., a method of mixing with a solvent and solution casting, and the like.
 本発明の難燃性樹脂組成物の形状は特に制限されず、各種形態で使用することができる。例えば、ペレット状、顆粒状、粉末状、塊状等の形状が挙げられ、取り扱い性の観点から、ペレット状が好ましい。 The shape of the flame-retardant resin composition of the present invention is not particularly limited, and can be used in various forms. For example, shapes such as pellets, granules, powders, and lumps can be mentioned, and pellets are preferred from the viewpoint of handleability.
<成形体>
 本発明の成形体は、本発明の難燃性樹脂組成物を成形することにより得られる。成形方法および成形条件については特に制限はなく、公知の成形方法および成形条件を用いることができる。具体的な成形方法としては、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形体を製造することができる。
<Molded body>
The molded article of the present invention is obtained by molding the flame-retardant resin composition of the present invention. The molding method and molding conditions are not particularly limited, and known molding methods and molding conditions can be used. Specific molding methods include extrusion, calendering, injection molding, roll molding, compression molding, blow molding, and rotational molding. can be produced.
 本発明の難燃性樹脂組成物およびその成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用することができる。より具体的には、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品および通信機器、OA機器等のハウジング(枠、筐体、カバー、外装)や部品、自動車内外装材の用途に用いられる。 The flame-retardant resin composition of the present invention and its molded article are used in electrical/electronic/communication, agriculture, forestry and fisheries, mining, construction, food, textile, clothing, medical, coal, petroleum, rubber, leather, automobile, precision equipment, and wood. , building materials, civil engineering, furniture, printing, musical instruments, etc. More specifically, printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), calculators, electronic notebooks, cards, holders, stationery, etc. Office equipment, OA equipment, washing machines, refrigerators, vacuum cleaners, microwave ovens, lighting equipment, game machines, irons, household appliances such as kotatsu, TVs, VTRs, video cameras, radio cassette players, tape recorders, mini discs, CD players, speakers, AV equipment such as liquid crystal displays, connectors, relays, capacitors, switches, printed circuit boards, coil bobbins, semiconductor encapsulation materials, LED encapsulation materials, electric wires, cables, transformers, deflection yokes, distribution boards, electrical and electronic parts such as clocks It is also used for housings (frames, cases, covers, exteriors) and parts of communication equipment, OA equipment, etc., and interior and exterior materials for automobiles.
 さらに、本発明の難燃性樹脂組成物およびその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組および繰形、窓およびドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の、自動車、ハイブリッドカー、電気自動車、車両、船舶、航空機、建物、住宅および建築用材料や、土木材料、衣料、カーテン、シーツ、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品、等の各種用途に使用される。 Furthermore, the flame-retardant resin composition of the present invention and its molded product can be used for seats (filling, outer material, etc.), belts, ceiling coverings, convertible tops, armrests, door trims, rear package trays, carpets, mats, sun visors, foil covers. , mattress covers, airbags, insulating materials, straps, straps, electric wire coating materials, electrical insulating materials, paints, coating materials, facing materials, floor materials, corner walls, carpets, wallpaper, wall covering materials, exterior materials , interior materials, roofing materials, decking materials, wall materials, pillar materials, decking materials, fence materials, frames and moldings, window and door profiles, shingles, siding, terraces, balconies, soundproofing boards, insulating boards, windows Materials such as automobiles, hybrid cars, electric vehicles, vehicles, ships, aircraft, buildings, housing and construction materials, civil engineering materials, clothing, curtains, sheets, plywood, synthetic fiber boards, carpets, entrance mats, sheets, buckets, It is used for various purposes such as hoses, containers, eyeglasses, bags, cases, goggles, skis, rackets, tents, musical instruments and other daily necessities, and sporting goods.
 以下、本発明を実施例および比較例により具体的に示す。以下の実施例に示す材料、物質、配合量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例により何ら制限されるものではない。なお、以下の実施例において、特に記載のない限り、成分の配合量は質量基準である。 Hereinafter, the present invention will be concretely illustrated by examples and comparative examples. Materials, substances, compounding amounts and ratios, operations, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the present invention is by no means limited by the following examples. In the following examples, unless otherwise specified, the amounts of ingredients are based on mass.
<リン酸塩系難燃剤の製造>
 (B)成分と(C)成分を、以下の製造例の方法で製造した。
<Production of phosphate-based flame retardant>
Components (B) and (C) were produced by the methods of the following production examples.
〔製造例1〕
(B)成分:メラミン塩
 オルトリン酸メラミンを220℃で6時間、固相状態で加熱縮合反応させて、ピロリン酸メラミンを主成分とするメラミン塩を製造した。メラミン塩は精製せずにそのまま用いた。メラミン塩中のピロリン酸メラミンの純度は、98.5%だった。なお、純度は、イオンクロマトグラフ測定装置ICS-2100(サーモフィッシャーサイエンティフィック株式会社)、Dionex IonPac AS-19カラム(サーモフィッシャーサイエンティフィック株式会社)、電気伝導度検出器を用いて測定した。
[Production Example 1]
(B) Component: Melamine Salt Melamine orthophosphate was heated and condensed at 220° C. for 6 hours in a solid state to produce a melamine salt containing melamine pyrophosphate as a main component. The melamine salt was used as is without purification. The purity of melamine pyrophosphate in the melamine salt was 98.5%. The purity was measured using an ion chromatograph ICS-2100 (Thermo Fisher Scientific Co., Ltd.), a Dionex IonPac AS-19 column (Thermo Fisher Scientific Co., Ltd.), and an electrical conductivity detector.
〔製造例2〕
(C)成分:ピペラジン塩
 二リン酸ピペラジンを250℃で1時間、固相状態で加熱縮合反応させて、ピロリン酸ピペラジンを主成分とするピペラジン塩を製造した。ピペラジン塩は精製せずにそのまま用いた。ピペラジン塩中のピロリン酸ピペラジンの純度は、99.0%だった。なお、純度は、イオンクロマトグラフ測定装置ICS-2100(サーモフィッシャーサイエンティフィック株式会社)、Dionex IonPac AS-19カラム(サーモフィッシャーサイエンティフィック株式会社)、電気伝導度検出器を用いて測定した。
[Production Example 2]
(C) Component: Piperazine Salt Piperazine diphosphate was heated and condensed in a solid state at 250° C. for 1 hour to produce a piperazine salt containing piperazine pyrophosphate as a main component. The piperazine salt was used as is without purification. The purity of piperazine pyrophosphate in the piperazine salt was 99.0%. The purity was measured using an ion chromatograph ICS-2100 (Thermo Fisher Scientific Co., Ltd.), a Dionex IonPac AS-19 column (Thermo Fisher Scientific Co., Ltd.), and an electrical conductivity detector.
<難燃性樹脂組成物の製造>
・実施例1~21、比較例1~14
 表1~5に示す成分を同表に示す割合で配合し、さらに(A)成分である樹脂100質量部当たり、中和剤(ステアリン酸カルシウム)0.05質量部、フェノール系酸化防止剤(アデカスタブAO-60、ADEKA製)0.1質量部、リン系酸化防止剤(アデカスタブ2112、ADEKA製)0.1質量部を配合し、ヘンシェルミキサーで混合して難燃性樹脂組成物を得た。なお、表中の各成分の単位は質量部である。
<Production of flame-retardant resin composition>
・Examples 1 to 21, Comparative Examples 1 to 14
The components shown in Tables 1 to 5 are blended in the proportions shown in the same table, and further, 0.05 parts by mass of a neutralizing agent (calcium stearate) and a phenolic antioxidant (adekastab AO-60, manufactured by ADEKA) and 0.1 part by weight of a phosphorus-based antioxidant (ADEKA STAB 2112, manufactured by ADEKA) were blended and mixed in a Henschel mixer to obtain a flame-retardant resin composition. In addition, the unit of each component in the table is parts by mass.
 この難燃性樹脂組成物を、二軸押出機(TEX25αIII、日本製鋼所製)を用いて、造粒し、ペレット状の難燃性樹脂組成物を得た。造粒の加工条件は、実施例1~20および比較例1~13の組成物では、220℃、10kg/時間の条件で行い、実施例21および比較例14の組成物では、200℃、10kg/時間の条件で行った。このペレットを用いて、難燃性、機械特性、加工性の評価を行った。 This flame-retardant resin composition was granulated using a twin-screw extruder (TEX25αIII, manufactured by Japan Steel Works, Ltd.) to obtain a pellet-shaped flame-retardant resin composition. The processing conditions for granulation were 220° C. and 10 kg/hour for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13, and 200° C. and 10 kg for the compositions of Example 21 and Comparative Example 14. / hours. Flame retardancy, mechanical properties, and workability were evaluated using these pellets.
<難燃性評価1:UL-94V>
 得られたペレット状の難燃性樹脂組成物を射出成形機(NEX80、日精樹脂工業社製)にて成形し、UL-94V測定用試験片(127mm×12.7mm×1.6mm)を作製した。射出成形の加工条件は、実施例1~20および比較例1~13の組成物では、樹脂温度230℃、金型温度50℃の条件で行い、実施例21および比較例14の組成物では、樹脂温度200℃、金型温度50℃の条件で行った。得られた試験片を23℃、湿度60%RHの恒温恒湿槽内に7日間静置した後、UL-94V規格に準拠して燃焼ランクをつけた。燃焼ランクはV-0が最高のものであり、V-1、V-2となるにしたがって難燃性は低下する。ただし、V-0~V-2のランクの何れにも該当しないものはNR(No Rating)とした。結果を表1~5に併記する。
<Flame retardant evaluation 1: UL-94V>
The resulting pellet-shaped flame-retardant resin composition is molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for UL-94V measurement (127 mm × 12.7 mm × 1.6 mm). did. The processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13. For the compositions of Example 21 and Comparative Example 14, The conditions were a resin temperature of 200°C and a mold temperature of 50°C. The obtained test piece was allowed to stand in a constant temperature and humidity chamber at 23° C. and a humidity of 60% RH for 7 days, and then rated for combustion according to the UL-94V standard. V-0 is the highest flammability rank, and flame retardancy decreases as V-1 and V-2 are reached. However, those that did not correspond to any of the ranks of V-0 to V-2 were given NR (No Rating). The results are also shown in Tables 1-5.
<難燃性評価2:酸素指数>
 得られたペレット状の難燃性樹脂組成物を射出成形機(NEX80、日精樹脂工業社製)にて成形し、酸素指数測定用試験片(80mm×10mm×4mm)を作製した。射出成形の加工条件は、実施例1~20および比較例1~13の組成物では、樹脂温度230℃、金型温度50℃の条件で行い、実施例21および比較例14の組成物では、樹脂温度200℃、金型温度50℃の条件で行った。得られた試験片を23℃、湿度60%RHの恒温恒湿槽内に7日間静置した後、JIS K7201-2に準拠して試験片の酸素指数を測定した。酸素指数は、窒素と酸素の混合ガス中で、垂直の小型試験片が燃焼を維持する最少酸素濃度であり、この値が高いほど燃えにくいと言える。結果を表1~5に併記する。
<Flame Retardancy Evaluation 2: Oxygen Index>
The obtained pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for oxygen index measurement (80 mm×10 mm×4 mm). The processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13. For the compositions of Example 21 and Comparative Example 14, The conditions were a resin temperature of 200°C and a mold temperature of 50°C. The obtained test piece was allowed to stand in a thermo-hygrostat at 23° C. and a humidity of 60% RH for 7 days, and then the oxygen index of the test piece was measured according to JIS K7201-2. The oxygen index is the minimum oxygen concentration at which a vertical small test piece can sustain combustion in a mixed gas of nitrogen and oxygen. The results are also shown in Tables 1-5.
<機械特性評価1:曲げ弾性率>
 得られたペレット状の難燃性樹脂組成物を射出成形機(NEX80、日精樹脂工業社製)にて成形し、荷重たわみ温度測定用試験片(80mm×10mm×4mm)を作製した。射出成形の加工条件は、実施例1~20および比較例1~13の組成物では、樹脂温度230℃、金型温度50℃の条件で行い、実施例21および比較例14の組成物では、樹脂温度200℃、金型温度50℃の条件で行った。得られた試験片を23℃、湿度60%RHの恒温恒湿槽内に7日間静置した後、ISO178に準拠して試験片の曲げ弾性率(MPa)を測定した。結果を表1~5に併記する。
<Mechanical property evaluation 1: bending elastic modulus>
The resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring deflection temperature under load (80 mm×10 mm×4 mm). The processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13. For the compositions of Example 21 and Comparative Example 14, The conditions were a resin temperature of 200°C and a mold temperature of 50°C. After the obtained test piece was allowed to stand in a thermo-hygrostat at 23° C. and a humidity of 60% RH for 7 days, the flexural modulus (MPa) of the test piece was measured according to ISO178. The results are also shown in Tables 1-5.
<機械特性評価2:荷重たわみ温度(HDT)>
 得られたペレット状の難燃性樹脂組成物を射出成形機(NEX80、日精樹脂工業社製)にて成形し、荷重たわみ温度測定用試験片(80mm×10mm×4mm)を作製した。射出成形の加工条件は、実施例1~20および比較例1~13の組成物では、樹脂温度230℃、金型温度50℃の条件で行い、実施例21および比較例14の組成物では、樹脂温度200℃、金型温度50℃の条件で行った。得られた試験片を23℃、湿度60%RHの恒温恒湿槽内に7日間静置した後、ISO75-2(荷重1.8MPa)に準拠して、荷重たわみ温度(℃)を測定した。結果を表1~5に併記する。
<Mechanical property evaluation 2: Deflection temperature under load (HDT)>
The resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring deflection temperature under load (80 mm×10 mm×4 mm). The processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13. For the compositions of Example 21 and Comparative Example 14, The conditions were a resin temperature of 200°C and a mold temperature of 50°C. After the obtained test piece was allowed to stand in a constant temperature and humidity chamber at 23° C. and a humidity of 60% RH for 7 days, the deflection temperature under load (° C.) was measured according to ISO75-2 (1.8 MPa load). . The results are also shown in Tables 1-5.
<機械特性評価3:シャルピー衝撃強度>
 得られたペレット状の難燃性樹脂組成物を射出成形機(NEX80、日精樹脂工業社製)にて成形し、シャルピー衝撃強さ測定用試験片(80mm×10mm×4mm)を作製した。射出成形の加工条件は、実施例1~20および比較例1~13の組成物では、樹脂温度230℃、金型温度50℃の条件で行い、実施例21および比較例14の組成物では、樹脂温度200℃、金型温度50℃の条件で行った。得られた試験片を23℃、湿度60%RHの恒温恒湿槽内に7日間静置した後、試験片にノッチを付与した。ノッチを付与した試験片を温度23℃、湿度60%RHの恒温恒湿槽内に5日間静置した後、恒温恒湿槽から試験片を取り出し、ISO179-1に準拠してシャルピー衝撃強度(kJ/m)を測定した。結果を表1~5に併記する。
<Mechanical property evaluation 3: Charpy impact strength>
The resulting pellet-shaped flame-retardant resin composition was molded with an injection molding machine (NEX80, manufactured by Nissei Plastic Industry Co., Ltd.) to prepare a test piece for measuring Charpy impact strength (80 mm×10 mm×4 mm). The processing conditions for injection molding were a resin temperature of 230° C. and a mold temperature of 50° C. for the compositions of Examples 1 to 20 and Comparative Examples 1 to 13. For the compositions of Example 21 and Comparative Example 14, The conditions were a resin temperature of 200°C and a mold temperature of 50°C. After the obtained test piece was allowed to stand in a thermo-hygrostat at 23° C. and a humidity of 60% RH for 7 days, the test piece was notched. After leaving the notched test piece in a constant temperature and humidity chamber at a temperature of 23 ° C. and a humidity of 60% RH for 5 days, remove the test piece from the constant temperature and humidity chamber and measure the Charpy impact strength ( kJ/m 2 ) were measured. The results are also shown in Tables 1-5.
<加工性評価>
 上記で得られたペレットの表面粗さの状態、切断面の気泡状態を目視により評価し加工性ランクを付けた。加工性ランクは以下の指標によって判定した。
A:表面荒れおよび切断面の気泡が目視で確認できず、実用上満足できる。
B:表面荒れまたは切断面の気泡が目視で確認でき、実用上不満足である。
<Processability evaluation>
The state of surface roughness of the pellets obtained above and the state of air bubbles on the cut surface were visually evaluated, and the workability was ranked. The workability rank was determined by the following indices.
A: Surface roughness and air bubbles on the cut surface cannot be visually confirmed, and are practically satisfactory.
B: Unsatisfactory for practical use because surface roughness or air bubbles on the cut surface can be visually observed.
<重量平均分子量(Mw)測定方法>
 表1~5中の無水マレイン酸変性ポリプロピレン、(E)-1~(E)-5および(E)’-1、(E)’-2の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーを用いて測定した。測定条件は以下のとおりである。
<Method for measuring weight average molecular weight (Mw)>
The weight average molecular weights (Mw) of maleic anhydride-modified polypropylene, (E)-1 to (E)-5 and (E)'-1, (E)'-2 in Tables 1 to 5 are determined by gel permeation chromatography. was measured using The measurement conditions are as follows.
装置    :高温ゲルパーミエイションクロマトグラフ
       (装置名:Viscotek HT-GPC、スペクトリス(株)製)
溶媒    :オルトジクロロベンゼン
基準物質  :ポリスチレン
検出器   :屈折率検出器
カラム固定相:TSKgel GMHHR-HHT、2本直列、東ソー株式会社製
カラム温度 :140℃
サンプル濃度:3mg/1mL
流量    :1.0mL/min
注入量   :100μL  
Apparatus: high-temperature gel permeation chromatograph (apparatus name: Viscotek HT-GPC, manufactured by Spectris Co., Ltd.)
Solvent: ortho-dichlorobenzene Reference material: Polystyrene detector: Refractive index detector Column Stationary phase: TSKgel GMHHR-HHT, 2 in series, manufactured by Tosoh Corporation Column temperature: 140°C
Sample concentration: 3 mg/1 mL
Flow rate: 1.0mL/min
Injection volume: 100 μL
Figure JPOXMLDOC01-appb-T000001
*1:中和剤、フェノール系酸化防止剤、リン系酸化防止剤を含む
Figure JPOXMLDOC01-appb-T000001
*1: Includes neutralizer, phenolic antioxidant, and phosphorus antioxidant
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5中の各成分の詳細は次の通りである。
(A)-1:インパクトコポリマーポリプロピレン(メルトフローレート(JIS K7210に準拠、荷重2.16kg、温度230℃)=30g/10min)
(A)-2:ホモポリプロピレン(メルトフローレート(JIS K7210に準拠、荷重2.16kg、温度230℃)=30g/10min)
(A)-3:高密度ポリエチレン(メルトフローレート(JIS K7210に準拠、荷重2.16kg、温度190℃)=40g/10min
(B):メラミン塩(上述の製造例1で製造したもの)
(C):ピペラジン塩(上述の製造例2で製造したもの)
(D):ガラス繊維(チョップドストランドCS3PE-455S(日東紡績製、カット長3.0mm、単繊維径13μm))
(E)-1:無水マレイン酸変性ポリプロピレン1(酸価=9.5mgKOH/g、Mw=75,000)
(E)-2:無水マレイン酸変性ポリプロピレン2(酸価=47mgKOH/g、Mw=80,000)
(E)-3:無水マレイン酸変性ポリプロピレン3(酸価=66mgKOH/g、Mw=45,000)
(E)-4:無水マレイン酸変性ポリプロピレン4(酸価=52mgKOH/g、Mw=30,000)
(E)-5:無水マレイン酸変性ポリエチレン(酸価=19mgKOH/g、Mw=40,000)
(E)’-1:無水マレイン酸変性ポリプロピレン5(酸価=3.5mgKOH/g、Mw=9,000)
(E)’-2:無水マレイン酸変性ポリプロピレン6(酸価=21.4mgKOH/g、Mw=160,000)
(F):酸化亜鉛
Details of each component in Tables 1 to 5 are as follows.
(A)-1: Impact copolymer polypropylene (melt flow rate (according to JIS K7210, load 2.16 kg, temperature 230° C.)=30 g/10 min)
(A)-2: homopolypropylene (melt flow rate (according to JIS K7210, load 2.16 kg, temperature 230° C.)=30 g/10 min)
(A)-3: High density polyethylene (melt flow rate (according to JIS K7210, load 2.16 kg, temperature 190 ° C.) = 40 g / 10 min
(B): Melamine salt (produced in Production Example 1 above)
(C): Piperazine salt (produced in Production Example 2 above)
(D): Glass fiber (chopped strand CS3PE-455S (manufactured by Nitto Boseki, cut length 3.0 mm, single fiber diameter 13 μm))
(E)-1: Maleic anhydride-modified polypropylene 1 (acid value = 9.5 mgKOH/g, Mw = 75,000)
(E)-2: Maleic anhydride-modified polypropylene 2 (acid value = 47 mgKOH/g, Mw = 80,000)
(E)-3: Maleic anhydride-modified polypropylene 3 (acid value = 66 mgKOH/g, Mw = 45,000)
(E)-4: Maleic anhydride-modified polypropylene 4 (acid value = 52 mgKOH/g, Mw = 30,000)
(E)-5: maleic anhydride-modified polyethylene (acid value = 19 mgKOH/g, Mw = 40,000)
(E)'-1: maleic anhydride-modified polypropylene 5 (acid value = 3.5 mgKOH/g, Mw = 9,000)
(E)'-2: Maleic anhydride-modified polypropylene 6 (acid value = 21.4 mgKOH/g, Mw = 160,000)
(F): zinc oxide
 実施例1~21と比較例1~14との比較から、本発明の難燃性樹脂組成物は、難燃性、機械特性、加工性のすべてにおいて優れた評価結果を示した。 From the comparison between Examples 1-21 and Comparative Examples 1-14, the flame-retardant resin composition of the present invention showed excellent evaluation results in all aspects of flame retardancy, mechanical properties, and workability.
 一方、(E)成分を配合しない組成(比較例1、4)や、酸価または重量平均分子量が本発明の範囲外の酸変性樹脂を使用した組成(比較例2、3、5、6)の場合、難燃性、機械特性、加工性のいずれかにおいて、実施例1~21よりも劣る結果だった。 On the other hand, compositions that do not contain component (E) (Comparative Examples 1 and 4) and compositions that use acid-modified resins whose acid value or weight average molecular weight is outside the range of the present invention (Comparative Examples 2, 3, 5, and 6) In the case of , the results were inferior to those of Examples 1 to 21 in any of flame retardancy, mechanical properties, and workability.

Claims (9)

  1.  下記(A)~(E)成分を含有することを特徴とする難燃性樹脂組成物。
     (A)成分:酸未変性ポリオレフィン系樹脂
     (B)成分:オルトリン酸メラミン、ピロリン酸メラミンおよびポリリン酸メラミンからなる群から選択される1種以上のメラミン塩
     (C)成分:オルトリン酸ピペラジン、ピロリン酸ピペラジンおよびポリリン酸ピペラジンからなる群から選択される1種以上のピペラジン塩
     (D)成分:ガラス繊維
     (E)成分:酸価が5~100KOHmg/gであり、重量平均分子量が10,000~100,000である酸変性樹脂
    A flame-retardant resin composition characterized by containing the following components (A) to (E).
    (A) component: acid-unmodified polyolefin resin (B) component: one or more melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate (C) component: piperazine orthophosphate, pyroline One or more piperazine salts selected from the group consisting of piperazine acid and piperazine polyphosphate (D) component: glass fiber (E) component: acid value of 5 to 100 KOHmg/g and weight average molecular weight of 10,000 to 100,000 acid-modified resin
  2.  (A)成分100質量部に対して、(B)成分と(C)成分との合計含有量が10~200質量部である請求項1記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 1, wherein the total content of components (B) and (C) is 10 to 200 parts by mass with respect to 100 parts by mass of component (A).
  3.  (A)成分100質量部に対して、(D)成分の含有量が5~200質量部である請求項1または2記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 1 or 2, wherein the content of component (D) is 5 to 200 parts by mass per 100 parts by mass of component (A).
  4.  (A)成分100質量部に対して、(E)成分の含有量が0.1~25質量部である請求項1~3のうちいずれか一項記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 3, wherein the content of component (E) is 0.1 to 25 parts by mass per 100 parts by mass of component (A).
  5.  (B)成分と(C)成分の含有比率が、質量比で20:80~60:40である請求項1~4のうちいずれか一項記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 4, wherein the content ratio of component (B) and component (C) is 20:80 to 60:40 in mass ratio.
  6.  (C)成分がピロリン酸ピペラジンを含有する請求項1~5のうちいずれか一項記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 5, wherein component (C) contains piperazine pyrophosphate.
  7.  さらに、(F)成分:酸化亜鉛を、(B)成分と(C)成分との合計100質量部に対して、0.01~10質量部含有する請求項1~6のうちいずれか一項記載の難燃性樹脂組成物。 Any one of claims 1 to 6, further comprising 0.01 to 10 parts by mass of component (F): zinc oxide with respect to a total of 100 parts by mass of components (B) and (C). A flame retardant resin composition as described.
  8.  (A)成分がポリプロピレン系樹脂である請求項1~7のうちいずれか一項記載の難燃性樹脂組成物。 The flame-retardant resin composition according to any one of claims 1 to 7, wherein component (A) is a polypropylene resin.
  9.  請求項1~8のうちいずれか一項記載の難燃性樹脂組成物から得られることを特徴とする成形体。 A molded article characterized by being obtained from the flame-retardant resin composition according to any one of claims 1 to 8.
PCT/JP2021/046208 2021-05-06 2021-12-15 Flame-retardant resin composition and molded articles thereof WO2022234688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021576214A JPWO2022234688A1 (en) 2021-05-06 2021-12-15
JP2022133662A JP2022173163A (en) 2021-05-06 2022-08-24 Flame-retardant resin composition and molded articles thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078767 2021-05-06
JP2021-078767 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234688A1 true WO2022234688A1 (en) 2022-11-10

Family

ID=83932072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046208 WO2022234688A1 (en) 2021-05-06 2021-12-15 Flame-retardant resin composition and molded articles thereof

Country Status (2)

Country Link
JP (2) JPWO2022234688A1 (en)
WO (1) WO2022234688A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248069A (en) * 2004-03-05 2005-09-15 Nippon Zeon Co Ltd Curable resin composition and molding of the same
JP2011233335A (en) * 2010-04-27 2011-11-17 Yazaki Corp Electric wire for automobile
JP2017095648A (en) * 2015-11-27 2017-06-01 株式会社Adeka Flame retardant resin composition
JP2020139142A (en) * 2019-02-27 2020-09-03 Mcppイノベーション合同会社 Resin composition, crosslinked resin composition, molding, wire coating material and wire
JP2021014528A (en) * 2019-07-12 2021-02-12 株式会社リコー Resin composition, molded body, electronic part, and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793068B2 (en) * 2011-12-06 2015-10-14 株式会社Adeka Flame retardant polyolefin resin composition
EP3633011B1 (en) * 2017-05-25 2021-12-15 Adeka Corporation Flame retardant composition and flame retardant resin composition containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248069A (en) * 2004-03-05 2005-09-15 Nippon Zeon Co Ltd Curable resin composition and molding of the same
JP2011233335A (en) * 2010-04-27 2011-11-17 Yazaki Corp Electric wire for automobile
JP2017095648A (en) * 2015-11-27 2017-06-01 株式会社Adeka Flame retardant resin composition
JP2020139142A (en) * 2019-02-27 2020-09-03 Mcppイノベーション合同会社 Resin composition, crosslinked resin composition, molding, wire coating material and wire
JP2021014528A (en) * 2019-07-12 2021-02-12 株式会社リコー Resin composition, molded body, electronic part, and electronic device

Also Published As

Publication number Publication date
JPWO2022234688A1 (en) 2022-11-10
JP2022173163A (en) 2022-11-17

Similar Documents

Publication Publication Date Title
EP2933311B1 (en) Flame retardant composition and flame-retardant synthetic resin composition
US10508194B2 (en) Flame-retardant polyolefin resin composition
US10513598B2 (en) Flame retardant composition and flame-retardant synthetic resin composition
CN107207806B (en) Flame retardant polypropylene composition
EP3255121B1 (en) Flame-retardant composition and flame-retardant synthetic resin composition
WO2015025658A1 (en) Flame-retardant composition and flame-retardant synthetic resin composition
US20140288217A1 (en) Flame retardant polyolefin resin composition
JP7158384B2 (en) Composition and flame-retardant resin composition
JP6662646B2 (en) Antistatic thermoplastic resin composition and molded article obtained by molding the same
EP3444300B1 (en) Flame-retardant polyolefin-based resin composition
JP7158389B2 (en) Composition and flame-retardant resin composition
JP7345463B2 (en) Polyphosphoric acid amine salt composition, polyphosphoric acid amine salt flame retardant composition, flame retardant synthetic resin composition containing the same, and molded product thereof
JP6363881B2 (en) Flame retardant composition and flame retardant synthetic resin composition
WO2020203374A1 (en) Flame-retardant composition and flame-retardant synthetic resin composition
WO2019240181A1 (en) Phosphate amine salt composition, phosphate amine salt flame retardant composition, flame retardant synthetic resin composition containing same, and molded article of flame retardant synthetic resin composition
WO2022234688A1 (en) Flame-retardant resin composition and molded articles thereof
US20220064409A1 (en) Additive composition, flame-retardant synthetic resin composition containing same, and molded article thereof
JP2019183085A (en) Antistatic thermoplastic resin composition and molded body thereof
WO2021187493A1 (en) Flame retardant composition, flame-retardant resin composition, molded article, and method for producing molded article
WO2022224809A1 (en) Flame retardant agent composition, flame retardant resin composition, and molded article thereof
WO2021193883A1 (en) Flame retardant composition, flame-retardant synthetic-resin composition, and molded object
JPH11315174A (en) Flame-retardant polyolefin-based resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021576214

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE