WO2022234622A1 - 端末及び無線通信方法 - Google Patents
端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2022234622A1 WO2022234622A1 PCT/JP2021/017401 JP2021017401W WO2022234622A1 WO 2022234622 A1 WO2022234622 A1 WO 2022234622A1 JP 2021017401 W JP2021017401 W JP 2021017401W WO 2022234622 A1 WO2022234622 A1 WO 2022234622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- downlink
- pdsch
- harq feedback
- dci
- enable
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 36
- 238000012384 transportation and delivery Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 61
- 230000004913 activation Effects 0.000 description 36
- 230000011664 signaling Effects 0.000 description 20
- 238000012545 processing Methods 0.000 description 19
- 230000009849 deactivation Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 13
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- LELQZCNRZHLYFG-ZDVGBALWSA-N [(4e,7e)-trideca-4,7-dienyl] acetate Chemical compound CCCCC\C=C\C\C=C\CCCOC(C)=O LELQZCNRZHLYFG-ZDVGBALWSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1685—Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
Definitions
- the present disclosure relates to terminals and wireless communication methods compatible with multicast/broadcast services.
- the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
- Non-Patent Document 1 simultaneous data transmission (also called distribution) services (MBS: Multicast and Broadcast Services) (tentative name) to multiple specified or unspecified terminals (User Equipment, UE) in NR. is targeted (Non-Patent Document 1).
- MMS Multicast and Broadcast Services
- MBS for example, studies are underway on scheduling UE groups to be served and improving reliability (for example, HARQ (Hybrid Automatic repeat request) feedback to the radio base station (gNB)).
- HARQ Hybrid Automatic repeat request
- HARQ acknowledgments (ACK) and negative acknowledgments (NACK) can be fed back to the gNB.
- NACK negative acknowledgments
- An object of the present invention is to provide a terminal and a wireless communication method that can be reliably recognized.
- One aspect of the present disclosure is a receiving unit (control signal/reference signal processing unit 240) that receives downlink control information, and in data distribution for a plurality of terminals, the priority field included in the downlink control information
- a terminal comprising a control unit (control unit 270) that executes at least one of enabling or disabling automatic repeat request feedback in a downlink channel based on the above.
- One aspect of the present disclosure is, in data distribution for a plurality of terminals, a receiving unit (radio signal transmitting/receiving unit 210) that receives a downlink data channel, and when semi-fixed scheduling is applied to the downlink data channel, the terminal An instruction to enable or disable automatic repeat request feedback by downlink control information via a downlink control channel that is common to a group is received on the downlink data channel immediately after the downlink control information, and then on the downlink data channel.
- One aspect of the present disclosure is, in data distribution for a plurality of terminals, a receiving unit (radio signal transmitting/receiving unit 210) that receives a downlink data channel, and when semi-fixed scheduling is applied to the downlink data channel, the terminal
- the instruction to enable or disable automatic repeat request feedback by downlink control information via the downlink control channel common to the group is the following downlink except for the downlink data channel immediately after the downlink control information.
- One aspect of the present disclosure is, in data distribution for a plurality of terminals, a receiving unit (radio signal transmitting/receiving unit 210) that receives a downlink data channel, and a case where the downlink data channel to which semi-fixed scheduling is applied is released. and determining whether automatic repeat request feedback applied when releasing said downlink data channel is enabled or disabled based on enabling or disabling of automatic repeat request feedback applied when said downlink data channel is received.
- a terminal (UE 200) including a control unit (control unit 270).
- One aspect of the present disclosure is a step of receiving downlink control information, and in data distribution for a plurality of terminals, based on a priority field included in the downlink control information, feedback of an automatic repeat request in a downlink channel and/or enabling and/or disabling the wireless communication method.
- One aspect of the present disclosure is a step of receiving a downlink data channel in data distribution for a plurality of terminals; is applied to the reception of the downlink data channel immediately after the downlink control information and the subsequent reception of the downlink data channel.
- a wireless communication method comprising the steps of:
- FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
- FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
- FIG. 3 is a diagram showing a configuration example of PTM transmission scheme 1 and PTM transmission scheme 2.
- FIG. 4 is a functional block configuration diagram of gNB100 and UE200.
- FIG. 5 is a diagram showing a sequence example of PDCCH (including DCI), PDSCH and HARQ feedback in MBS.
- FIG. 6 is a diagram illustrating an example of correspondence between PRIs and PUCCH resource sets according to operation example 1-2.
- FIG. 7 is an explanatory diagram of a PUCCH resource set switching operation according to operation example 1-3.
- FIG. 8 is a diagram showing an example of correspondence between the Priority indicator and HARQ feedback according to Operation Example 3-1 and Operation Example 3-2.
- FIG. 9 is a diagram illustrating an example of a correspondence relationship between DCI and PDSCH according to Operation Example 4.
- FIG. 10 is a diagram illustrating an example of correspondence between DCI and PDSCH according to Operation Example 5.
- FIG. 11 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
- FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
- the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20, and a plurality of terminals 200 (User Equipment 200, hereinafter, UE 200). include.
- NR 5G New Radio
- NG-RAN 20 Next Generation-Radio Access Network 20
- UE 200 User Equipment 200
- the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
- NG-RAN 20 includes a radio base station 100 (hereinafter gNB 100).
- gNB 100 radio base station 100
- the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
- NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
- gNBs or ng-eNBs
- 5GC 5G-compliant core network
- the gNB100 is an NR-compliant radio base station and performs NR-compliant radio communication with the UE200.
- the gNB100 and UE200 use Massive MIMO, which generates beams with higher directivity by controlling radio signals transmitted from multiple antenna elements, and Carrier Aggregation (CA), which bundles multiple component carriers (CC). , and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of a plurality of NG-RAN Nodes.
- Massive MIMO which generates beams with higher directivity by controlling radio signals transmitted from multiple antenna elements
- CA Carrier Aggregation
- CC component carriers
- DC dual connectivity
- the wireless communication system 10 supports FR1 and FR2.
- the frequency bands of each FR are as follows.
- FR1 410MHz to 7.125GHz
- FR2 24.25 GHz to 52.6 GHz
- SCS Sub-Carrier Spacing
- BW bandwidth
- FR2 is a higher frequency than FR1, with an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz may be used.
- the wireless communication system 10 may also support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz. Also, the radio communication system 10 may support a frequency band between FR1 and FR2.
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
- DFT-S-OFDM Discrete Fourier Transform-Spread
- SCS Sub-Carrier Spacing
- DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
- FIG. 2 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
- one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). Note that the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS. Additionally, the SCS may be wider than 240kHz (eg, 480kHz, 960kHz, as shown in Figure 2).
- time direction (t) shown in FIG. 2 may be called the time domain, symbol period, symbol time, or the like.
- the frequency direction may also be referred to as frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and the like.
- the wireless communication system 10 may provide Multicast and Broadcast Services (MBS).
- MBS Multicast and Broadcast Services
- unicast may be interpreted as one-to-one communication with a network by specifying one specific UE 200 (identification information unique to the UE 200 may be specified).
- Multicast may be interpreted as communication performed one-to-many (specified many) with the network by designating a plurality of specific UEs 200 (identification information for multicast may be designated). Note that the number of UEs 200 that receive received multicast data may eventually be one.
- Broadcast may be interpreted as one-to-unspecified communication with the network for all UE 200.
- the data to be multicast/broadcast may have the same copied content, but may have different content such as a header.
- multicast/broadcast data may be sent (delivered) at the same time, but does not necessarily require strict concurrency and may include propagation delays and/or processing delays within the RAN nodes, and the like.
- the radio resource control layer (RRC) state of the target UE 200 is either an idle state (RRC idle), a connected state (RRC connected), or another state (eg, inactive state). good too.
- the inactive state may be interpreted as a state in which some RRC settings are maintained.
- MBS Physical Downlink Shared Channel
- RRC connected UE may be read as RRC idle UE and RRC inactive UE.
- ⁇ PTM transmission method 1 (PTM-1): - A group-common PDSCH is scheduled using a group-common PDCCH (Physical Downlink Control Channel) for the MBS group of the RRC connected UE.
- PTM-1 A group-common PDSCH is scheduled using a group-common PDCCH (Physical Downlink Control Channel) for the MBS group of the RRC connected UE.
- PDCCH Physical Downlink Control Channel
- group-common RNTI Radio Network Temporary Identifier, also called G-RNTI
- ⁇ PTM transmission method 2 (PTM-2): - A group-common PDSCH is scheduled using terminal specific (UE-specific) PDCCH with respect to the MBS group of RRC connected UE.
- ⁇ PDSCH is scrambled by group-common RNTI.
- ⁇ PTP transmission method - Schedule a UE-specific PDSCH using a UE-specific PDCCH for an RRC connected UE.
- - PDCCH CRC and PDSCH are scrambled by UE-specific RNTI. In other words, it may mean that MBS packets are transmitted by unicast.
- FIG. 3 shows a configuration example of PTM transmission method 1 and PTM transmission method 2.
- the UE-specific PDCCH/PDSCH can be identified by the target UE, but may not be identified by other UEs within the same MBS group.
- a group common PDCCH/PDSCH is transmitted on the same time/frequency resource and can be identified by all UEs within the same MBS group.
- the names of the PTM transmission methods 1 and 2 are tentative names, and may be called by other names as long as the above-described operations are performed.
- RAN nodes may deliver individual copies of MBS data packets to individual UEs over the air.
- PTM point-to-multipoint
- a RAN node may deliver a single copy of MBS data packets over the air to a set of UEs.
- HARQ Hybrid Automatic repeat request
- ACK/NACK feedback Both ACK/NACK feedback (ACK/NACK feedback) ⁇ UEs that successfully receive/decode PDSCH transmit ACK. ⁇ UEs that fail to receive/decode PDSCH transmit NACK.
- PUCCH-Config Physical Uplink Control Channel
- - PUCCH resource Shared/orthogonal between UEs depends on network settings - HARQ-ACK CB (codebook): type-1 and type-2 (CB decision algorithm (specified in 3GPP TS38.213)) ⁇ Multiplexing: Unicast or multicast can be applied ⁇ Option 2: NACK-only feedback ⁇ A UE that has successfully received and decoded PDSCH does not transmit an ACK (does not transmit a response). ⁇ A UE that fails to receive or decode PDSCH transmits NACK. ⁇ In a given UE, PUCCH resource settings can be set separately by unicast or groupcast (multicast). ACK is a positive acknowledgment. , NACK may be called a negative acknowledgment. HARQ may be referred to as automatic repeat request.
- ⁇ RRC and downlink control information (DCI: Downlink Control Information) • RRC only Also, the following content is assumed for SPS (Semi-persistent Scheduling) of multicast/broadcast PDSCH.
- DCI Downlink Control Information
- Activation/deactivation is possible It should be noted that deactivation may be replaced with other synonymous terms such as release. For example, activation may be read as activation, start, trigger, etc., and deactivation may be further read as end, stop, etc. FIG.
- SPS is a scheduling used in contrast to dynamic scheduling, and may be called semi-fixed, semi-persistent or semi-persistent scheduling, or interpreted as Configured Scheduling (CS) good.
- CS Configured Scheduling
- Scheduling may be interpreted as the process of allocating resources for transmitting data.
- Dynamic scheduling may be interpreted as a mechanism where all PDSCHs are scheduled by DCI (eg DCI 1_0, DCI 1_1 or DCI 1_2).
- SPS may be interpreted as a mechanism by which PDSCH transmissions are scheduled by higher layer signaling such as RRC messages.
- scheduling categories of time domain scheduling and frequency domain scheduling there may be scheduling categories of time domain scheduling and frequency domain scheduling.
- multicast, groupcast, broadcast, and MBS may be read interchangeably.
- Multicast PDSCH and PDSCH scrambled by group common RNTI may be read interchangeably.
- data and packet may be read interchangeably, and may be interpreted as being synonymous with terms such as signal and data unit.
- transmission, reception, transmission and distribution may be read interchangeably.
- FIG. 4 is a functional block configuration diagram of gNB100 and UE200.
- the UE 200 will be described below.
- the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
- FIG. 4 shows only main functional blocks related to the description of the embodiment, and that the UE 200 has other functional blocks (for example, power supply section, etc.). Also, FIG. 4 shows the functional block configuration of the UE 200 (gNB 100), and please refer to FIG. 8 for the hardware configuration.
- the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
- the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
- the radio signal transmitting/receiving unit 210 supports MBS, and can receive a downlink channel that is common to a terminal group (group common) in data distribution for a plurality of UEs 200 .
- the radio signal transmitting/receiving unit 210 may constitute a receiving unit.
- the radio signal transmitting/receiving unit 210 can receive a downlink data channel (PDSCH) in MBS, that is, data distribution for multiple terminals.
- PDSCH downlink data channel
- the radio signal transmitting/receiving unit 210 can receive a downlink data channel (PDSCH) common to the terminal group, specifically the group-common PDSCH (which may include the SPS group-common PDSCH). Also, the radio signal transmitting/receiving section 210 can receive a downlink control channel common to the terminal group, specifically, a group-common PDCCH.
- PDSCH downlink data channel
- group-common PDSCH which may include the SPS group-common PDSCH
- the radio signal transmitting/receiving section 210 can receive a downlink control channel common to the terminal group, specifically, a group-common PDCCH.
- the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
- PA Power Amplifier
- LNA Low Noise Amplifier
- the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.).
- the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
- the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
- control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals (messages). . Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
- RRC radio resource control layer
- the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
- RS reference signals
- DMRS Demodulation Reference Signal
- PTRS Phase Tracking Reference Signal
- a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
- PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
- reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), Positioning Reference Signal (PRS) for position information, and the like.
- CSI-RS Channel State Information-Reference Signal
- SRS Sounding Reference Signal
- PRS Positioning Reference Signal
- control channels include PDCCH, PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical Broadcast Channel (PBCH) may be included.
- PDCCH Physical Uplink Control Channel
- RACH Random Access Channel
- DCI Downlink Control Information
- RA-RNTI Random Access Radio Network Temporary Identifier
- PBCH Physical Broadcast Channel
- data channels include PDSCH and PUSCH (Physical Uplink Shared Channel).
- Data may refer to data transmitted over a data channel.
- control signal/reference signal processing unit 240 may configure a receiving unit that receives downlink control information (DCI).
- DCI downlink control information
- the control signal/reference signal processing unit 240 may receive, in RRC, a message indicating activation or deactivation of a function whose activation or deactivation of HARQ feedback is indicated by DCI.
- the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
- the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
- the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
- hybrid ARQ Hybrid automatic repeat request
- the control unit 270 controls each functional block that configures the UE200.
- the control unit 270 executes control for downlink channel scheduling for MBS and HARQ feedback for this channel.
- the control unit 270 performs control corresponding to scheduling of downlink data channels that are common to a terminal group (group common) in MBS, that is, data distribution for a plurality of UEs 200 .
- control section 270 can perform control corresponding to scheduling of group-common PDCCH and group-common PDSCH.
- the control unit 270 enables HARQ (automatic repeat request) feedback in the downlink channel based on a specific field included in DCI (downlink control information) in MBS, that is, data distribution for a plurality of UEs 200. or at least one of enable/disable.
- DCI downlink control information
- enable/disable of HARQ feedback may be specified using fields related to HARQ feedback among the fields defined in the DCI format (see 3GPP TS38.212, etc.).
- At least one of the following fields may be used.
- PRI PUCCH resource indicator
- Such fields may be defined in DCI formats 1_0, 1_1, 1_2, and so on.
- the control unit 270 executes either enable/disable of HARQ feedback based on a PUCCH (uplink control channel) resource indication field included in DCI, specifically, a PUCCH resource indicator (PRI) field.
- a PUCCH uplink control channel
- PRI PUCCH resource indicator
- a specific value of PRI (eg, 000) may be associated with no HARQ feedback.
- a PUCCH resource set that does not include PRI associated with no HARQ feedback and a PUCCH resource set that includes PRI associated with no HARQ feedback may be switched.
- the control unit 270 may recognize that enable/disable of HARQ feedback by DCI is designated by higher layer (eg, RRC) signaling. Upon receiving such signaling, the control unit 270 may switch to a PUCCH resource set containing PRIs associated with no HARQ feedback. In addition, when receiving signaling to cancel enable/disable of HARQ feedback by DCI, control unit 270 may switch (return) to a PUCCH resource set that does not include PRI associated with no HARQ feedback. .
- higher layer eg, RRC
- control unit 270 When the DCI indicates no HARQ feedback, the control unit 270 does not need to transmit PUCCH resources and perform HARQ feedback. A more specific operation regarding switching of the PUCCH resource set will be described later.
- Control section 270 determines whether enable/disable of HARQ feedback based on the above-described specific field included in the DCI is applied based on the RRC layer message (which may be read as signaling). good.
- control unit 270 may receive an instruction to activate or deactivate HARQ feedback in DCI. Also, if the message is disabling of a function indicated by DCI, the control unit 270 may disable feedback without receiving an instruction to enable or disable HARQ feedback in DCI.
- control unit 270 may apply any of the following operations according to the RRC signaling settings.
- HARQ feedback enable/disable It is assumed that enable/disable of HARQ feedback by DCI is always instructed.
- HARQ feedback enable/disable may be set for each RNTI (C (Cell)-RNTI/G (Group)-RNTI), and the method of instructing enable/disable of HARQ feedback by DCI is For example, a method of indicating by a specific field included in the above-mentioned DCI and a method of indicating by combining a plurality of such fields may be switched by signaling of RRC.
- control unit 270 may enable/disable HARQ feedback in the downlink channel based on at least one of DCI-related format, identification information, resources, and search space.
- DCI format (e.g., DCI format 1_0, 1_1, 1_2, etc., including the specific fields described above), RNTI (identification information) used for scrambling the DCI CRC, CORESET (control resource sets), search spaces, and HARQ feedback enable/disable may be performed based on at least one of PDSCH resources (time/frequency/code/space).
- the control unit 270 may at least either enable or disable HARQ feedback in the downlink channel based on the priority field included in the DCI.
- the downlink channel is assumed to be a downlink data channel (PDSCH), but may be a downlink control channel (PDCCH).
- the DCI may be a DCI (or a DCI format) for scaling PDSCH for MBS, and may be a field indicating the priority for HARQ among the fields included in the DCI.
- the field may be called a Priority indicator field, or may be another field for indicating Priority.
- the control unit 270 may enable HARQ feedback when the priority is high, and disable HARQ feedback when the priority is low. Alternatively, the control unit 270 may assume enabling or disabling HARQ feedback for each value of the Priority indicator field. Note that control section 270 may assume that HARQ feedback is enabled or disabled by RRC when DCI does not include a Priority indicator field.
- the control unit 270 performs HARQ by DCI via the downlink control channel (group-common PDCCH) common to the terminal group. It may be assumed that the indication to enable or disable feedback applies to the reception of the PDSCH immediately following that DCI and the reception of the subsequent PDSCH.
- SPS semi-static scheduling
- the control unit 270 determines that the HARQ feedback enable/disable instruction in the group-common PDCCH activation DCI is the PDSCH reception immediately after the group-common PDCCH activation DCI and the subsequent PDSCH reception. It may be assumed to apply to SPS PDSCH reception.
- Multicast SPS PDSCH reception may mean group-common SPS PDSCH reception, may be SPS PDSCH received by multiple terminals, may be G-RNTI or G-CS-RNTI (that is, multiple terminals RNTI) associated with the SPS PDSCH reception. Also, Multicast may be read as Broadcast.
- the control unit 270 feeds back HARQ by DCI through the downlink control channel (group-common PDCCH) common to the terminal group.
- group-common PDCCH downlink control channel
- control section 270 applies the HARQ feedback enable/disable instruction in activation DCI of group-common PDCCH only to subsequent SPS PDSCH reception, It may be assumed that a predetermined value (eg, enable) is applied to HARQ feedback for PDSCH reception immediately after.
- a predetermined value eg, enable
- control unit 270 when releasing a downlink data channel (PDSCH) to which semi-persistent scheduling (SPS) is applied, the control unit 270 is based on enabling or disabling feedback of HARQ applied when receiving the PDSCH. , may determine whether the HARQ feedback applied at release of the PDSCH is valid or invalid.
- PDSCH downlink data channel
- SPS semi-persistent scheduling
- PDSCH release (Release) may be read as deactivation. It may be assumed that the control unit 270 is set or instructed by any of the methods described above to enable or disable HARQ feedback for release (deactivation) of Multicast SPS PDSCH. Alternatively, the control unit 270 may assume that the release of the Multicast SPS PDSCH is the same as the HARQ feedback (enable or disable) applied at the time of receiving the corresponding SPS PDSCH or at the time of activation. It may be assumed to be a value (eg enable).
- the gNB 100 can execute the above-described downlink channel scheduling and HARQ control.
- Fig. 5 shows a sequence example of PDCCH (including DCI), PDSCH and HARQ feedback in MBS.
- HARQ feedback such as group-common PDSCH may be enabled/disabled. Note that enable/disable may be replaced with other terms such as on/off and start/end (stop).
- enable/disable of HARQ feedback can be realized by a combination of RRC signaling and DCI field instructions.
- RRC signaling for example, RRC signaling and DCI field instructions.
- DCI field instructions for example, RRC signaling and DCI field instructions.
- enable/disable of HARQ feedback may be specified using a field related to HARQ feedback among fields in the DCI format.
- Fields related to HARQ feedback may be interpreted as fields that have some influence on or are related to HARQ feedback.
- HARQ feedback enable/disable may be specified for the reception of a specific transport block (TB) (e.g., a DCI-allocated TB containing HARQ feedback enable/disable notifications) or a specific TB. It is not targeted and may be applied to TBs other than that specific TB (eg TBs over SPS group-common PDSCH). That is, after receiving the HARQ feedback enable/disable notification, it may operate according to the notified enable/disable until a predetermined condition is satisfied (for example, until the notification is received again).
- TB transport block
- a predetermined condition for example, until the notification is received again.
- the DCI format used may be 1_0, 1_1 or 1_2. Alternatively, it may be another DCI format (eg, 1_3) defined for group-common PDSCH scheduling.
- enable/disable of HARQ feedback may be specified based on any of the following fields. Note that the field name and the number of bits are not limited to these.
- TPC command for scheduled PUCCH 2 bits (3GPP TS38.213 Section 7.2.1)
- PUCCH resource indicator 3 bits (3GPP TS38.213 Section 9.2.3)
- PDSCH-to-HARQ_feedback timing indicator 3 bits (3GPP TS38.213 Section 9.2.3)
- UE 200 may operate as follows. The UE 200 may change the correspondence between the PRI and the PUCCH resource set when the HARQ feedback enable/disable is designated by the DCI and is set by higher layers (for example, RRC signaling).
- PRI PUCCH resource indicator
- FIG. 6 shows an example of correspondence between PRI and PUCCH resource sets according to operation example 1-2.
- the upper part of FIG. 6 shows an example of correspondence between PRIs and PUCCH resource sets conventionally, that is, when enable/disable of HARQ feedback is not applied.
- the lower part of FIG. 6 shows an example (working example) of correspondence between PRI and PUCCH resource sets when enable/disable of HARQ feedback is applied.
- the PUCCH resource#0 on the upper side of FIG. 6 and the PUCCH resource#0 on the lower side of FIG. 6 may be the same or different.
- the same PUCCH resource may be indicated in the upper and lower sides of FIG. 6, for example PUCCH resource #1 in the upper side of FIG. resource#0 may be the same.
- UE 200 may stop HARQ feedback (ACK/NACK) transmission transmitted by the PUCCH resource when PRI indicates no HARQ feedback. Alternatively, the operation related to HARQ feedback transmission may not be started. UE 200 may not transmit including HARQ-ACK of unicast PDSCH that should be put on the same PUCCH resource. Alternatively, UE 200 may not transmit HARQ-ACK of multicast PDSCH that should be placed on the same PUCCH resource. Alternatively, UE 200 may not transmit HARQ-ACK only for MBS PDSCHs (which may include group-common PDSCH and SPS group-common PDSCH) scheduled by DCI indicating no HARQ feedback.
- MBS PDSCHs which may include group-common PDSCH and SPS group-common PDSCH
- UE 200 compares the correspondence between the conventional PRI and the PUCCH resource set shown in the upper part of FIG. 6 and the correspondence example between the PRI and the PUCCH resource set when enable/disable of HARQ feedback shown in the lower part of FIG. 6 is not applied. , may be switched dynamically.
- FIG. 7 is an explanatory diagram of the PUCCH resource set switching operation according to operation example 1-3.
- PUCCH resource sets may be dynamically switched between HARQ feedback upon reception of MBS PDSCH and HARQ feedback upon reception of unicast PDSCH.
- UE 200 switches between a PUCCH resource set (embodiment) including no HARQ feedback (disabled) and a PUCCH resource set (conventional) including no HARQ feedback based on RNTI associated with PDSCH. you can
- UE 200 may operate as follows.
- ⁇ The example shown in the lower part of Fig. 6 is set for the PUCCH resource set for HARQ feedback for the MBS PDSCH.
- PUCCH resources may be determined according to the PUCCH resource set on the lower side of FIG.
- the PUCCH resource set for HARQ feedback for MBS PDSCH is conventional or an embodiment is determined based on whether the HARQ feedback enable/disable designation by DCI is set by higher layers. .
- the PUCCH resource set of the embodiment (lower side of FIG. 6) may be configured.
- PUCCH resources may be determined according to the PUCCH resource set on the lower side of FIG.
- a conventional PUCCH resource set (upper side of FIG. 6) may be configured.
- PUCCH resources may be determined according to the PUCCH resource set on the upper side of FIG.
- the PUCCH resource set for HARQ-ACK for unicast PDSCH is conventional, that is, the correspondence between PRI and PUCCH resource set that does not include no HARQ feedback (the upper part of FIG. may be a corresponding example).
- PUCCH resources may be determined according to the PUCCH resource set on the upper side of FIG.
- PUCCH-Config PUCCH resource/resource set, etc.
- UE 200 may operate as follows.
- ⁇ HARQ-ACK transmission for MBS PDSCH (HARQ-ACK transmission of PDSCH scheduled by DCI with CRC scrambled by G-RNTI) may be as follows.
- the configured PUCCH resource set is treated as an embodiment (lower side of FIG. 6), and the PUCCH resource set of the embodiment is used to determine PUCCH resources.
- the set PUCCH resource set is treated as conventional (the upper side of FIG. 6), and the PUCCH resource is set using the conventional PUCCH resource set. decide.
- HARQ feedback enable/disable may be designated by combining at least two of the following fields shown in operation example 1-1. Note that the field name and the number of bits are not limited to these.
- TPC command for scheduled PUCCH 2 bits (3GPP TS38.213 Section 7.2.1)
- PUCCH resource indicator 3 bits (3GPP TS38.213 Section 9.2.3)
- PDSCH-to-HARQ_feedback timing indicator 3 bits (3GPP TS38.213 Section 9.2.3)
- HARQ feedback disable is specified.
- UE 200 may stop HARQ feedback (ACK/NACK) transmission transmitted by the PUCCH resource when the PRI indicates no HARQ feedback. Alternatively, the operation related to HARQ feedback transmission may not be started. As in operation example 1-2, UE 200 may not transmit including HARQ-ACK of unicast PDSCH that should be put on the same PUCCH resource. Alternatively, UE 200 may not transmit HARQ-ACK of multicast PDSCH that should be placed on the same PUCCH resource. Alternatively, UE 200 may not transmit HARQ-ACK only for MBS PDSCHs (which may include group-common PDSCH and SPS group-common PDSCH) scheduled by DCI indicating no HARQ feedback.
- MBS PDSCHs which may include group-common PDSCH and SPS group-common PDSCH
- the UE 200 uses and (iii) the PDSCH-to-HARQ_feedback timing indicator field, it may dynamically switch between PUCCH resource sets with no HARQ feedback and PUCCH resource sets without no HARQ feedback.
- UE 200 may operate as follows.
- the PUCCH resource set for HARQ feedback for MBS PDSCH is conventional or an embodiment is determined based on whether the HARQ feedback enable/disable designation by DCI is set by higher layers. .
- HARQ feedback enable/disable is specified by DCI in DCI
- the PDSCH-to-HARQ_feedback timing indicator field is a predetermined value (for example, all 0 (zero))
- the embodiment A PUCCH resource set may be configured. Otherwise, a conventional PUCCH resource set may be configured.
- a conventional PUCCH resource set (upper side of FIG. 6) may be configured.
- PUCCH resources may be determined according to the conventional PUCCH resource set (upper side of FIG. 6).
- the PUCCH resource set for HARQ-ACK for unicast PDSCH may be configured according to the conventional PUCCH resource set (the upper side of FIG. 6 may be an example of correspondence between PRI and PUCCH resource set different from that for MBS).
- PUCCH resources may be determined according to the conventional PUCCH resource set.
- PUCCH-Config PUCCH resource/resource set, etc.
- UE 200 may operate as follows.
- ⁇ HARQ-ACK transmission for MBS PDSCH (HARQ-ACK transmission of PDSCH scheduled by DCI with CRC scrambled by G-RNTI) may be as follows.
- PDSCH-to-HARQ_feedback timing indicator field is set if it is a predetermined value (for example, all 0 (zero))
- This PUCCH resource set is treated as an example (lower side of FIG. 6), and PUCCH resources are determined using the PUCCH resource set of the example. Otherwise, treat the configured PUCCH resource set as conventional and use the conventional PUCCH resource set to determine PUCCH resources.
- the configured PUCCH resource set is treated as conventional, and the PUCCH resource is determined using the conventional PUCCH resource set.
- HARQ-ACK transmission for unicast PDSCH determines PUCCH resources using the configured conventional PUCCH resource set.
- UE 200 may assume that enable/disable of HARQ feedback by DCI is always instructed.
- the method of indicating enable/disable of HARQ feedback by DCI is not particularly limited. may be Also, the DCI format or field size in DCI may be the same or different between when HARQ feedback is disabled and when HARQ feedback is enabled.
- HARQ feedback enable/disable may be configured for each RNTI.
- multiple G-RNTIs can be configured, and enable/disable of HARQ feedback may be configured for each.
- HARQ feedback is configured as enable for G-RNTI-1 and G-RNTI-2 HARQ feedback may be set as disable for.
- UE 200 may determine whether to perform HARQ feedback based on whether the RNTI associated with the received PDSCH is G-RNTI-1 or G-RNTI-2.
- RNTI is not particularly limited, and may be C-RNTI or G-RNTI.
- the method of instructing enable/disable of HARQ feedback by DCI may be switched by RRC signaling.
- the instruction method between operation example 1-1 and operation example 1-4 may be switched by RRC signaling.
- enable/disable of HARQ feedback may be designated based on at least one of the following among signals and/or information related to reception of DCI. Such designation may be implicit rather than explicit.
- the UE 200 may assume enable/disable of HARQ feedback based on the DCI format.
- UE 200 may operate as follows.
- HARQ feedback is different and separate DCI format UE 200 executes HARQ feedback for MBS PDSCH scheduled by a predetermined DCI format, and MBS PDSCH scheduled by a DCI format other than the predetermined DCI format. HARQ feedback may not be performed for
- the HARQ feedback enable format may include at least one of the fields (i) to (iii) shown in Operation Example 1-1.
- the above DCI formats may be distinguished by payload size or format indicator.
- UE 200 may assume enable/disable of HARQ feedback based on RNTI that scrambles the CRC of DCI.
- UE 200 may operate as follows.
- G1-RNTI one of G-RNTI, tentative name
- group-common PDSCH group-common PDSCH with HARQ
- G2-RNTI one of G-RNTI, tentative name
- group-common PDSCH group-common PDSCH without HARQ scheduling where HARQ feedback is not performed.
- UE 200 may assume enable/disable of HARQ feedback based on CORESET and/or search space used for DCI transmission.
- the UE 200 may assume enable/disable of HARQ feedback based on PDSCH resources (time/frequency/code/space) notified by DCI.
- enablement or disablement of HARQ feedback in the downlink channel may be designated based on a priority field included in DCI.
- HARQ feedback ⁇ enable/disable ⁇ corresponding to MBS PDSCH reception is specified based on the priority field among the fields in DCI (or DCI format) that schedules MBS PDSCH. may be
- the field related to priority may be a Priority indicator field (may be a tentative name) or another field related to Priority indication.
- the priority indicator field can indicate the high priority of HARQ, the priority may be indicated using 1 bit, or the priority may be indicated in more detail using multiple bits.
- the priority regarding HARQ may indicate, for example, the priority of HARQ itself or the priority of HARQ feedback.
- the priority indicated by the Priority indicator field or another field related to the indication of Priority may be the priority of HARQ feedback or PDCCH corresponding to the scaled PDSCH (scheduled PDSCH).
- the instruction may be given according to either Operation Example 1 or Operation Example 2.
- HARQ feedback ⁇ enable/disable ⁇ corresponding to MBS PDSCH reception is specified by at least one of the methods in Operation Example 3-5 or 3-6.
- Enable/disable of HARQ feedback set by RRC parameter is applied. If enable/disable is not set by the RRC parameter, a predetermined value (eg, enable or disable) may be assumed.
- Enable/disable is applied based on the priority of HARQ feedback/PUCCH set by the RRC parameter. If the Priority is not set by the RRC parameter, a predetermined value (eg, enable or disable) may be assumed.
- the UE 200 can determine the presence or absence of appropriate HARQ feedback according to priority.
- enable/disable may be applied based on the HARQ feedback/PUCCH priority set by the RRC parameter, not only when the Priority indicator field is not included in the DCI/DCI format. Also in this case, if enable/disable is not set by the RRC parameter, a predetermined value (eg, enable or disable) may be assumed.
- a predetermined value eg, enable or disable
- FIG. 9 shows an example of the correspondence between DCI and PDSCH according to operation example 4.
- the HARQ feedback enable/disable indication in the group-common PDCCH activation DCI may be applied to the PDSCH reception immediately after the group-common PDCCH activation DCI and to the subsequent SPS PDSCH reception.
- the indication by the activation DCI of the group-common PDCCH may be performed according to any of operation examples 1-3.
- the indication by the activation DCI of the group-common PDCCH may be performed using DCI fields that are not used for special fields of activation.
- the instruction may be performed according to any of operation examples 1 to 3.
- the PDSCH reception immediately after the activation DCI of the UE-specific PDCCH may be HARQ feedback enable, or may follow the HARQ feedback enable/disable instruction for the SPS PDSCH reception.
- the HARQ enable/disable instruction for multicast SPS PDSCH may be performed only by the activation DCI of the group-common PDCCH, or may be performed by either the activation DCI of the group-common/UE-specific PDCCH.
- immediate SPS PDSCH reception may mean SPS PDSCH reception with corresponding PDCCH
- subsequent SPS PDSCH reception may mean SPS PDSCH reception without corresponding PDCCH
- FIG. 10 shows an example of the correspondence relationship between DCI and PDSCH according to Operation Example 5.
- the HARQ feedback enable/disable indication in the activation DCI of the group-common PDCCH applies only to the subsequent SPS PDSCH reception, and for the PDSCH reception immediately after the activation DCI of the group-common PDCCH, the HARQ feedback may be set to a predetermined value (eg, enable).
- the indication by the activation DCI of the group-common PDCCH may be performed according to any of operation examples 1-3.
- the indication by the activation DCI of the group-common PDCCH may be performed using DCI fields that are not used for special fields of activation.
- the instruction may be performed according to any of operation examples 1 to 3.
- the PDSCH reception immediately after the activation DCI of the UE-specific PDCCH may be HARQ feedback enable, or may follow the HARQ feedback enable/disable instruction for the SPS PDSCH reception.
- HARQ enable/disable of multicast SPS PDSCH may be indicated by activation DCI of group-common PDCCH only, or by activation DCI of group-common/UE-specific PDCCH. .
- immediate SPS PDSCH reception may mean SPS PDSCH reception with corresponding PDCCH
- subsequent SPS PDSCH reception may mean SPS PDSCH reception without corresponding PDCCH
- the gNB 100 can always grasp the success or failure of PDSCH activation, so communication quality can be improved.
- HARQ feedback for release (deactivation) of Multicast SPS PDSCH is enable/disable may be determined by any of the following operation examples.
- DCI may be Group-common release (deactivation) DCI or UE-specific release (deactivation) DCI.
- the gNB 100 can always grasp the success or failure of PDSCH activation, so that communication quality can be improved.
- enable/disable is conditionally determined, it is possible to realize appropriate feedback according to the situation.
- the designation may be performed according to any of operation examples 1 to 6.
- the operation examples described above relate to MBS targeted for simultaneous transmission (distribution) to multiple UEs
- the UEs targeted for MBS may not always be multiple, and the group-common PDSCH is used.
- a plurality of specific or unspecified UEs may include a case of being substantially one, and may not be plural.
- the UE 200 can quickly and reliably recognize the timing of enabling and/or disabling HARQ feedback.
- the UE 200 may at least either enable/disable HARQ feedback in the downlink channel based on a specific field included in the DCI, such as the PUCCH resource indicator (PRI) field. Therefore, it is possible to reliably enable/disable HARQ feedback while using the existing DCI.
- a specific field included in the DCI such as the PUCCH resource indicator (PRI) field. Therefore, it is possible to reliably enable/disable HARQ feedback while using the existing DCI.
- PRI PUCCH resource indicator
- the UE 200 may recognize that enable/disable of HARQ feedback by DCI is designated by higher layer (eg, RRC) signaling. Therefore, HARQ feedback can be enabled/disabled flexibly and reliably.
- higher layer eg, RRC
- the UE 200 may enable/disable HARQ feedback in the downlink channel based on at least one of DCI-related formats, identification information, resources, and search spaces. Therefore, HARQ feedback can be enabled/disabled more flexibly and reliably.
- enablement or disablement of HARQ feedback in the downlink channel may be designated based on a priority field included in DCI. Therefore, the UE 200 can determine the presence or absence of appropriate HARQ feedback according to priority.
- HARQ feedback by DCI via the downlink control channel (group-common PDCCH) common to the terminal group It may be assumed that the enable or disable indication applies to the reception of the PDSCH immediately following that DCI and the reception of the subsequent PDSCH. Therefore, it is possible to easily set a configuration that requests HARQ feedback for periodic transmission with high reliability and does not request HARQ feedback for transmission with low reliability.
- the gNB 100 can always grasp the success or failure of PDSCH activation, so that communication quality can be improved.
- the HARQ feedback operation for the release (deactivation) of Multicast SPS PDSCH can be clearly instructed to the UE 200.
- the names PDCCH and PDSCH are used as downlink channels, but other names may be used as long as they are downlink control channels or downlink data channels (or shared channels). .
- configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good.
- link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
- each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
- a functional block may be implemented by combining software in the one device or the plurality of devices.
- Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
- a functional block (component) that performs transmission is called a transmitting unit or transmitter.
- the implementation method is not particularly limited.
- FIG. 11 is a diagram showing an example of the hardware configuration of the device.
- the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the term "apparatus” can be read as a circuit, device, unit, or the like.
- the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
- Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
- each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
- a processor 1001 operates an operating system and controls the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
- CPU central processing unit
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
- programs program codes
- software modules software modules
- data etc.
- the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
- Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
- the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically Erasable Programmable ROM
- RAM Random Access Memory
- the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
- the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
- FDD frequency division duplex
- TDD time division duplex
- the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
- the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
- the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
- the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
- RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- Future Radio Access FAA
- New Radio NR
- W-CDMA registered trademark
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX®
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
- a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
- a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
- various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
- MME or S-GW network nodes
- the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
- Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
- Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
- the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
- notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
- Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
- wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
- wireless technology infrared, microwave, etc.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
- the channel and/or symbols may be signaling.
- a signal may also be a message.
- a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” used in this disclosure are used interchangeably.
- information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
- radio resources may be indexed.
- base station BS
- radio base station fixed station
- NodeB NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
- a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
- a base station subsystem e.g., a small indoor base station (Remote Radio)
- Head: RRH can also provide communication services.
- cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
- the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
- at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
- communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
- the mobile station may have the functions that the base station has.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
- uplink channels, downlink channels, etc. may be read as side channels (or sidelinks).
- a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
- a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
- SCS subcarrier spacing
- TTI transmission time interval
- number of symbols per TTI radio frame structure
- transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
- a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may be a unit of time based on numerology.
- a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
- TTI refers to, for example, the minimum scheduling time unit in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
- the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport block locks, codewords, etc. are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum scheduling time unit.
- the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
- long TTI for example, normal TTI, subframe, etc.
- short TTI for example, shortened TTI, etc.
- a TTI having a TTI length greater than or equal to this value may be read as a replacement.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
- the number of subcarriers included in an RB may be determined based on neumerology.
- the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
- One TTI, one subframe, etc. may each consist of one or more resource blocks.
- One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
- PRB Physical resource blocks
- SCG sub-carrier groups
- REG resource element groups
- PRB pairs RB pairs, etc.
- a resource block may be composed of one or more resource elements (Resource Element: RE).
- RE resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
- the common RB may be identified by an RB index based on the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
- BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
- One or more BWPs may be configured in one carrier for a UE.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots and symbols described above are only examples.
- the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
- CP cyclic prefix
- connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
- two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
- the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
- RS Reference Signal
- any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
- determining and “determining” used in this disclosure may encompass a wide variety of actions.
- “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
- "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
- judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
- judgment and “decision” can include considering that some action is “judgment” and “decision”.
- judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
- a and B are different may mean “A and B are different from each other.”
- the term may also mean that "A and B are different from C”.
- Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
- Radio communication system 20 NG-RAN 100 gNB 200UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
(1.1)システム構成例
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び複数の端末200(User Equipment 200、以下、UE200)を含む。
・FR2:24.25 GHz~52.6 GHz
FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
無線通信システム10では、マルチキャスト/ブロードキャスト・サービス(MBS:Multicast and Broadcast Services)が提供されてよい。
・RRC connected UEのMBS groupに対して、グループ共通(group-common)PDCCH(Physical Downlink Control Channel)を用いてgroup-common PDSCHをスケジューリングする。
・RRC connected UEのMBS groupに対して、端末固有(UE-specific)PDCCHを用いてgroup-common PDSCHをスケジューリングする。
・RRC connected UEに対して、UE-specific PDCCHを用いてUE-specific PDSCHをスケジューリングする。
・PDSCH受信・復号に成功したUEは、ACKを送信する
・PDSCH受信・復号に失敗したUEは、NACKを送信する
・PUCCH(Physical Uplink Control Channel)リソース設定:マルチキャスト向けにPUCCH-Configを設定できる
・PUCCHリソース:UE間の共有/直交(shared/orthogonal)は、ネットワークの設定による
・HARQ-ACK CB (codebook):type-1及びtype-2(CB決定アルゴリズム(3GPP TS38.213において規定))をサポート
・多重化:ユニキャストまたはマルチキャストを適用可
・オプション2:NACKのみをフィードバック(NACK-only feedback)
・PDSCH受信・復号に成功したUEは、ACKを送信しない(応答を送信しない)
・PDSCH受信・復号に失敗したUEは、NACKを送信する
・所定のUEにおいて、PUCCHリソース設定は、ユニキャストまたはグループキャスト(マルチキャスト)によって別々に設定できる
なお、ACKは、positive acknowledgement(肯定応答)、NACKは、negative acknowledgement(否定応答)と呼ばれてもよい。HARQは、自動再送要求と呼ばれてもよい。
・RRCのみ
また、マルチキャスト/ブロードキャストPDSCHのSPS(Semi-persistent Scheduling)について、次のような内容が想定されている。
・UE能力(capability)として、複数のSPS group-common PDSCHが設定できる
・SPS group-common PDSCHに対するHARQフィードバックが可能
・少なくともgroup-common PDCCH(下り制御チャネル)によるアクティブ化/非アクティブ化(activation/deactivation)が可能
なお、非アクティブ化(deactivation)は、解放(release)などの他の同義の用語に読み替えられてもよい。例えば、アクティブ化は、起動、開始、トリガーなど、非アクティブ化は、さらに、終了、停止などに読み替えられてもよい。
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。
・PUCCH resource indicator(PRI)
・PDSCH-to-HARQ_feedback timing indicator
当該フィールドは、DCI format 1_0, 1_1, 1_2などにおいて規定されてよい。
次に、無線通信システム10の動作について説明する。具体的には、MBSに関する下りチャネルのスケジューリング及び当該チャネルのHARQフィードバックに関する動作について説明する。
本動作例では、DCI formatにおけるフィールドのうち、HARQフィードバックに係るフィールドを使用して、HARQフィードバックのenable/disableが指定されてよい。HARQフィードバックに係るフィールドとは、HARQフィードバックに何らかの影響がある、または関連するフィールドと解釈されてよい。
具体的には、以下の何れかのフィールドに基づいてHARQフィードバックのenable/disableが指定されてもよい。なお、フィールド名及びビット数はこれに限られない。
(ii)PUCCH resource indicator:3ビット(3GPP TS38.213 9.2.3章)
(iii)PDSCH-to-HARQ_feedback timing indicator:3ビット(3GPP TS38.213 9.2.3章)
PUCCH resource indicator (PRI)を使用する場合、UE200は、次のように動作してよい。UE200は、HARQフィードバックのenable/disableがDCIによって指定されることが、上位レイヤ(例えば、RRCのシグナリング)によって設定されると、PRIとPUCCHリソースセットとの対応を変更してもよい。
UE200は、図6上側に示した従来のPRIとPUCCHリソースセットとの対応と、図6下側に示したHARQフィードバックのenable/disableが適用されない場合のPRIとPUCCHリソースセットとの対応例とを、動的に切り替えてもよい。
MBS PDSCHのHARQフィードバック用として、ユニキャストのHARQフィードバック用とは別でPUCCH-Config(PUCCHリソース/リソースセットなど)が設定される場合、UE200は、次のように動作してよい。
MBS PDSCHのHARQフィードバック用として、ユニキャストのHARQフィードバック用とは別でPUCCH-Config(PUCCHリソース/リソースセットなど)が設定されない場合、UE200は、次のように動作してよい。
動作例1-1において示した以下のフィールドのうち、少なくとも2つを組み合わせてHARQフィードバックのenable/disableが指定されてもよい。なお、フィールド名及びビット数はこれに限られない。
(ii)PUCCH resource indicator:3ビット(3GPP TS38.213 9.2.3章)
(iii)PDSCH-to-HARQ_feedback timing indicator:3ビット(3GPP TS38.213 9.2.3章)
例えば、(ii)と(iii)とが所定値(例えば、両方とも0(zero))である場合、或いは(i)と(ii)と(iii)とが所定値(例えば、全て0(zero))である場合、HARQフィードバックのdisableが指定されると解釈されてよい。
例えば、上述した(ii)と(iii)とが所定値(例えば、両方とも0(zero))である場合に、HARQフィードバックのdisableが指定されるケースでは、HARQフィードバックのenable/disableがDCIによって指定されることが、上位レイヤによって設定され、(iii)PDSCH-to-HARQ_feedback timing indicatorによって「0」が通知された場合、HARQフィードバックなし(disabled)を含むPUCCHリソースセット(実施例、図6下側)が適用されてよい。そして(ii)PUCCH resource indicatorによって「0」が通知された場合、UE200は、HARQフィードバックのdisableが指定されたと判断してもよい。
図7に示したHARQフィードバックなし(disabled)を含むPUCCHリソースセット(実施例)と、HARQフィードバックなしを含まないPUCCHリソースセット(従来)との切り替えが動的に実行される場合、UE200は、PDSCHに関連付けられるRNTIと、(iii) PDSCH-to-HARQ_feedback timing indicator fieldとに基づいて、HARQフィードバックなしを含むPUCCHリソースセットと、HARQフィードバックなしを含まないPUCCHリソースセットとを動的に切り替えてよい。
MBS PDSCHのHARQフィードバック用として、ユニキャストのHARQフィードバック用とは別でPUCCH-Config(PUCCHリソース/リソースセットなど)が設定される場合、UE200は、次のように動作してよい。
MBS PDSCHのHARQフィードバック用として、ユニキャストのHARQフィードバック用とは別でPUCCH-Config(PUCCHリソース/リソースセットなど)が設定されない場合、UE200は、次のように動作してよい。
RRCのシグナリングを用いて、次のような設定がなされてよい。例えば、RRCのシグナリングによって、HARQフィードバックの無効(disable)が設定された場合、UE200は、DCIによるHARQフィードバックのenable/disableは、常に指示されないと想定してよい。
HARQフィードバックのenable/disableは、RNTI毎に設定されてもよい。例えば、複数のG-RNTIが設定可能で、それぞれに対してHARQフィードバックのenable/disable が設定されてもよい。例えば、二つのG-RNTIが設定され、これらをそれぞれG-RNTI-1、G-RNTI-2とした場合、G-RNTI-1に対してHARQフィードバックがenableとして設定され、G-RNTI-2に対してHARQフィードバックがdisableとして設定されてもよい。UE200は、受信したPDSCHに関連付けられたRNTIがG-RNTI-1かG-RNTI-2かに基づいてHARQフィードバックを実行するか否かを判断してもよい。なお、RNTIは特に限定されず、C-RNTIまたはG-RNTIでもよい。
DCIによってHARQフィードバックのenable/disableを指示する方法は、RRCのシグナリングによって切り替えられてもよい。
本動作例では、DCIの受信に係る信号及び/または情報のうち、以下の少なくとも何れかに基づいて、HARQフィードバックのenable/disableが指定されてもよい。このような指定は、明示的ではなく、暗黙的な指示であってよい。
UE200は、DCI formatに基づいて、HARQフィードバックのenable/disableを想定してよい。例えば、UE200は、次のように動作してよい。
UE200は、所定のDCI formatによってスケジュールされたMBS PDSCHについてHARQフィードバックを実行し、当該所定DCI format以外のDCI formatによってスケジュールされたMBS PDSCHについてHARQフィードバックを実行しなくてもよい。
UE200は、DCIのCRCをスクランブルするRNTIに基づいて、HARQフィードバックのenable/disableを想定してよい。例えば、UE200は、次のように動作してよい。
UE200は、DCIの送信に用いられるCORESET及び/またはサーチスペースに基づいて、HARQフィードバックのenable/disableを想定してよい。
UE200は、DCIによって通知されるPDSCHリソース(時間/周波数/符号/空間)に基づいて、HARQフィードバックのenable/disableを想定してよい。
本動作例では、複数のUE200向けのデータ配信(MBS)において、DCIに含まれる優先度に関するフィールドに基づいて、下りチャネルにおけるHARQのフィードバックの有効化または無効化が指定されてよい。
優先度が高い場合(例えば、priority indicator = 1)、HARQ feedback enableとする。
優先度が低い場合(例えば、priority indicator = 0)、HARQ feedback disableとする。
Priority indicatorの値(3値以上でもよい)毎に、HARQ feedbackがenableまたはdisableであるかが設定される。
Priority indicatorの値毎に(少なくとも0, 1の何れかについて)、DCIによってHARQ feedback enable/disable指示が行われるか否かが設定される。
RRC parameterによって設定されたHARQ feedbackのenable/disableが適用される。RRC parameterによってもenable/disableが設定されない場合には、所定値(例えば、enableまたはdisable)を想定してもよい。
RRC parameterによって設定されたHARQ feedback/PUCCHの優先度に基づいてenable/disableが適用される。RRC parameterによっても当該Priorityが設定されない場合、所定値(例えば、enableまたはdisable)を想定してもよい。
本動作例では、下りデータチャネル(PDSCH)に半固定的なスケジューリング(SPS)が適用される場合、端末グループに共通である下り制御チャネル(group-common PDCCH)を介したDCIによるHARQのフィードバックの有効化または無効化の指示が、当該DCIの直後のPDSCHの受信と、後続のPDSCHとの受信に適用されると想定してよい。
group-common PDCCHのactivation DCIによる当該指示は、動作例1~3の何れに従って行われてもよい。
group-common PDCCHのactivation DCIによる当該指示は、activationの特別なフィールド(special fields)に使われないDCIのフィールドを用いて行われてもよい。
UE-specific PDCCHのDCIによってmulticast SPS PDSCHのactivationが行われる場合、後続のSPS PDSCH receptionに対するHARQ feedbackのenable/disableが、当該UE-specific PDCCHのactivation DCIにおいて指示されてもよい。
本動作例では、下りデータチャネル(PDSCH)に半固定的なスケジューリング(SPS)が適用される場合、端末グループに共通である下り制御チャネル(group-common PDCCH)介したDCIによるHARQのフィードバックの有効化または無効化の指示が、当該DCIの直後のPDSCHを除く、後続のPDSCHの受信に適用されると想定してよい。
group-common PDCCHのactivation DCIによる当該指示は、動作例1~3の何れに従って行われてもよい。
group-common PDCCHのactivation DCIによる当該指示は、activationの特別なフィールド(special fields)に使われないDCIのフィールドを用いて行われてもよい。
UE-specific PDCCHのDCIによってmulticast SPS PDSCHのactivationが行われる場合、後続のSPS PDSCH receptionに対するHARQ feedbackのenable/disableが,当該UE-specific PDCCHのactivation DCIにおいて指示されてもよい。
本動作例では、半固定的なスケジューリング(SPS)が適用された下りデータチャネル(PDSCH)を解放する場合、当該PDSCHの受信時に適用されたHARQのフィードバックの有効化または無効化に基づいて、当該PDSCHの解放時に適用されるHARQのフィードバックが有効または無効であるかを決定してよい。
deactivationに対するHARQ feedbackのenable/disableは、動作例1~5の何れに従って行われる。
Multicast SPS PDSCHのrelease (deactivation)と対応するSPS PDSCH receptionに係るHARQ feedbackのenable/disableと同じとする。
必ず所定値(例えば、enable)とする。
Multicast SPS PDSCHのrelease (deactivation)と対応するSPS PDSCH activationに係るHARQ feedbackのenable/disableと同じとする。
本動作例では、HARQ feedback enable/disableの指定に併せて、ACK/NACK feedbackまたはNACK-only feedbackが指定されてもよい。
上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。また、上述したように、スロットなどの時間領域を示す用語は、サブスロットなど、他の時間領域を示す用語に読み替えられてよい。
上述した実施形態によれば、以下の作用効果が得られる。具体的には、動作例1~動作例7に係るUE200によれば、MBSに係る下りチャネル、具体的には、group-common PDSCHなどに対するHARQフィードバックを効率的に有効化/無効化(enable/disable)できる。
以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
20 NG-RAN
100 gNB
200 UE
210 無線信号送受信部
220 アンプ部
230 変復調部
240 制御信号・参照信号処理部
250 符号化/復号部
260 データ送受信部
270 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
Claims (6)
- 下りリンク制御情報を受信する受信部と、
複数の端末向けのデータ配信において、前記下りリンク制御情報に含まれる優先度に関するフィールドに基づいて、下りチャネルにおける自動再送要求のフィードバックの有効化または無効化の少なくとも何れかを実行する制御部と
を備える端末。 - 複数の端末向けのデータ配信において、下りデータチャネルを受信する受信部と、
前記下りデータチャネルに半固定的なスケジューリングが適用される場合、端末グループに共通である下り制御チャネルを介した下りリンク制御情報による自動再送要求のフィードバックの有効化または無効化の指示が、前記下りリンク制御情報の直後の前記下りデータチャネルの受信と、後続の前記下りデータチャネルとの受信に適用されると想定する制御部と
を備える端末。 - 複数の端末向けのデータ配信において、下りデータチャネルを受信する受信部と、
前記下りデータチャネルに半固定的なスケジューリングが適用される場合、端末グループに共通である下り制御チャネルを介した下りリンク制御情報による自動再送要求のフィードバックの有効化または無効化の指示が、前記下りリンク制御情報の直後の前記下りデータチャネルを除く、後続の前記下りデータチャネルの受信に適用されると想定する制御部と
を備える端末。 - 複数の端末向けのデータ配信において、下りデータチャネルを受信する受信部と、
半固定的なスケジューリングが適用された前記下りデータチャネルを解放する場合、前記下りデータチャネルの受信時に適用された自動再送要求のフィードバックの有効化または無効化に基づいて、前記下りデータチャネルの解放時に適用される自動再送要求のフィードバックが有効または無効であるかを決定する制御部と
を備える端末。 - 下りリンク制御情報を受信するステップと、
複数の端末向けのデータ配信において、前記下りリンク制御情報に含まれる優先度に関するフィールドに基づいて、下りチャネルにおける自動再送要求のフィードバックの有効化または無効化の少なくとも何れかを実行するステップと
を含む無線通信方法。 - 複数の端末向けのデータ配信において、下りデータチャネルを受信するステップと、
前記下りデータチャネルに半固定的なスケジューリングが適用される場合、端末グループに共通である下り制御チャネルを介した下りリンク制御情報による自動再送要求のフィードバックの有効化または無効化の指示が、前記下りリンク制御情報の直後の前記下りデータチャネルの受信と、後続の前記下りデータチャネルとの受信に適用されると想定するステップと
を含む無線通信方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023518555A JPWO2022234622A1 (ja) | 2021-05-06 | 2021-05-06 | |
EP21939815.3A EP4336896A1 (en) | 2021-05-06 | 2021-05-06 | Terminal and wireless communication method |
CN202180097545.7A CN117204026A (zh) | 2021-05-06 | 2021-05-06 | 终端及无线通信方法 |
PCT/JP2021/017401 WO2022234622A1 (ja) | 2021-05-06 | 2021-05-06 | 端末及び無線通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/017401 WO2022234622A1 (ja) | 2021-05-06 | 2021-05-06 | 端末及び無線通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022234622A1 true WO2022234622A1 (ja) | 2022-11-10 |
Family
ID=83932651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/017401 WO2022234622A1 (ja) | 2021-05-06 | 2021-05-06 | 端末及び無線通信方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4336896A1 (ja) |
JP (1) | JPWO2022234622A1 (ja) |
CN (1) | CN117204026A (ja) |
WO (1) | WO2022234622A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023154001A1 (en) * | 2022-02-14 | 2023-08-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Configuration of hybrid automatic repeat request (harq) feedback for semi-persistent wireless transmission |
-
2021
- 2021-05-06 JP JP2023518555A patent/JPWO2022234622A1/ja active Pending
- 2021-05-06 WO PCT/JP2021/017401 patent/WO2022234622A1/ja active Application Filing
- 2021-05-06 CN CN202180097545.7A patent/CN117204026A/zh active Pending
- 2021-05-06 EP EP21939815.3A patent/EP4336896A1/en active Pending
Non-Patent Citations (6)
Title |
---|
"RP-193248, 3GPP TSG RAN Meeting #86, 3GPP", December 2019, article "New Work Item on NR support of Multicast and Broadcast Services" |
3GPP TS 38.213 |
3GPP TS38.212 |
ERICSSON: "Discussion on reliability mechanisms for NR MBS", 3GPP DRAFT; R1-2103739, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177311 * |
OPPO: "UL feedback for RRC-CONNECTED UEs in MBS", 3GPP DRAFT; R1-2102415, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177132 * |
ZTE: "Discussion on mechanisms to Improve Reliability for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2102502, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177208 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023154001A1 (en) * | 2022-02-14 | 2023-08-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Configuration of hybrid automatic repeat request (harq) feedback for semi-persistent wireless transmission |
Also Published As
Publication number | Publication date |
---|---|
CN117204026A (zh) | 2023-12-08 |
EP4336896A1 (en) | 2024-03-13 |
JPWO2022234622A1 (ja) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022234622A1 (ja) | 端末及び無線通信方法 | |
WO2022195713A1 (ja) | 端末及び無線通信方法 | |
WO2022239083A1 (ja) | 端末及び無線通信方法 | |
WO2022190389A1 (ja) | 端末及び無線通信方法 | |
WO2022195885A1 (ja) | 端末、無線通信システム及び無線通信方法 | |
WO2022239082A1 (ja) | 端末及び無線通信方法 | |
WO2022239086A1 (ja) | 端末及び無線通信方法 | |
WO2022239084A1 (ja) | 端末及び無線通信方法 | |
WO2022195711A1 (ja) | 端末及び無線通信方法 | |
WO2023012982A1 (ja) | 端末及び無線通信方法 | |
WO2022234670A1 (ja) | 端末及び無線通信方法 | |
WO2022195884A1 (ja) | 端末、無線通信システム及び無線通信方法 | |
WO2022195883A1 (ja) | 端末及び無線通信システム | |
WO2022239085A1 (ja) | 端末及び無線通信方法 | |
WO2022269933A1 (ja) | 端末及び無線通信方法 | |
WO2023021855A1 (ja) | 端末及び無線通信方法 | |
WO2023022135A1 (ja) | 端末及び無線通信方法 | |
WO2022269910A1 (ja) | 端末、無線通信システム及び無線通信方法 | |
WO2023152836A1 (ja) | 端末及び無線通信方法 | |
WO2023105806A1 (ja) | 端末、基地局、無線通信システム及び無線通信方法 | |
WO2023105805A1 (ja) | 端末、基地局、無線通信システム及び無線通信方法 | |
WO2022215272A1 (ja) | 端末、基地局、無線通信システム及び無線通信方法 | |
WO2023157903A1 (ja) | 端末及び無線通信方法 | |
WO2023135646A1 (ja) | 端末、基地局、無線通信システム及び無線通信方法 | |
WO2023135645A1 (ja) | 端末、基地局、無線通信システム及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939815 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180097545.7 Country of ref document: CN Ref document number: 2023518555 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021939815 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021939815 Country of ref document: EP Effective date: 20231206 |