WO2022233219A1 - 一种ue传输参数调整方法及装置 - Google Patents

一种ue传输参数调整方法及装置 Download PDF

Info

Publication number
WO2022233219A1
WO2022233219A1 PCT/CN2022/086126 CN2022086126W WO2022233219A1 WO 2022233219 A1 WO2022233219 A1 WO 2022233219A1 CN 2022086126 W CN2022086126 W CN 2022086126W WO 2022233219 A1 WO2022233219 A1 WO 2022233219A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
configuration
mac pdu
harq process
entity
Prior art date
Application number
PCT/CN2022/086126
Other languages
English (en)
French (fr)
Inventor
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022233219A1 publication Critical patent/WO2022233219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for adjusting UE transmission parameters.
  • 3GPP sets the low-latency and high-reliability communication (Ultra-reliable and Low Latency Communication, URLLC) service air interface indicators to guarantee 1 millisecond (ms) delay on the user plane, and 99.999% of the air interface. reliability requirements.
  • URLLC Ultra-reliable and Low Latency Communication
  • the time-to-live is set in the application layer, that is, if the application layer does not receive a message within the expected time of arrival of a message, it will not immediately An exception occurs, but the time to live is entered. If the message is not received correctly within the time to live, the application layer is interrupted. Among them, after the application layer is interrupted, it will enter a predefined state, such as transmission service interruption and downtime, which will affect the application layer service.
  • the prior art lacks an effective mechanism to flexibly switch the transmission reliability of the air interface, so as to avoid the problem of overtime of service lifetime caused by packet loss and errors caused by channel fluctuation and other reasons during air interface transmission.
  • the embodiments of the present application provide a method and device for adjusting UE transmission parameters.
  • a first timer is started, and when the first timer is running, the transmission parameters of the UE are adjusted to improve the The transmission reliability of the UE solves the problem of the timeout of the lifetime of the uplink service.
  • an embodiment of the present application provides a method for adjusting transmission parameters of a UE.
  • the method includes: receiving timer configuration information; the timer configuration information is issued by a base station that communicates with the UE; the timer configuration information is used to configure a first timer; when the HARQ process fails to transmit the MAC PDU, it is judged that the MAC PDU contains a data packet associated with the first timer, and the first timer is started; when the first timer is running, the transmission parameters of the UE are adjusted.
  • the base station after receiving the timer information configured by the base station, it is judged whether the data associated with the first timer is successfully transmitted, and when it fails, the first timer configured by the timer information is started, and the timer runs on
  • the transmission parameters of the UE are adjusted, the transmission reliability of the UE can be improved, and the time-to-live of the service transmitted by the UE can be prevented from overtime, resulting in service interruption of the device.
  • the timer configuration information is also used to configure a second timer; when the HARQ process fails to transmit the MAC PDU, judging that the MAC PDU contains a data packet associated with the first timer includes: at the second timing When the device is running, it is judged that the HARQ process fails to transmit the MAC PDU; wherein, the second timer is started when the HARQ process transmits the MAC PDU; it is judged that the MAC PDU contains a data packet associated with the first timer.
  • the time-to-live is multiple transmission cycles
  • starting the first timer includes: using a counter to count the number of times that the HARQ process fails to transmit data packets associated with the first timer; when the number of times exceeds a count threshold of the counter, starting the first timer; the counter Configured by the base station.
  • the number of HARQ process transmission failures is counted, and when the number of times exceeds a set threshold, the first timer is started to improve transmission reliability, which can be applied to scenarios with low latency requirements.
  • the UE can fail to transmit data for many times in a row, and at the same time, it can avoid the time-to-live time-out of the service.
  • the timer configuration information is also used to configure a second timer; when the HARQ process fails to transmit the MAC PDU, judging that the MAC PDU contains a data packet associated with the first timer includes: at the second timing When the HARQ process is running, it is judged that the HARQ process fails to transmit the MAC PDU; wherein, the second timer is started when the HARQ process transmits the MAC PDU; starting the first timer includes: using a counter to count the number of times that the HARQ process fails to transmit the data packets associated with the first timer ; When the number of times exceeds the count threshold of the counter, start the first timer; the counter is configured by the base station.
  • the second timer and the counter are used for double judgment, and the first timer is started, which can be applied to the scenario where the delay requirement is not high and the survival time is multiple transmission cycles, so as to realize the effective use of resources and avoid The time-to-live of the service has timed out.
  • the timer configuration information includes: the timer configuration information in the logical channel configuration; the timer configuration information in the logical channel configuration is used to configure the first timer for the logical channel; it is determined that the MAC PDU contains The data packet associated with the first timer, starting the first timer includes: judging that the MAC PDU contains the data packet associated with the logical channel configured with the first timer, and starting the first timer corresponding to the logical channel; adjusting the transmission of the UE
  • the parameters include at least one of: adjusting the configuration parameters of the logical channel, adjusting the configuration parameters of the PDCP entity associated with the logical channel, and adjusting the configuration parameters of the RLC entity associated with the logical channel.
  • the timer configuration information when the timer configuration information is appended to the logical channel configuration and delivered to the UE, it indicates that the base station has configured the first timer for the logical channel, and then it is determined whether the transmitted data contains the data transmitted by the logical channel. data, if yes, start the first timer corresponding to the logical channel, so as to monitor whether the transmission of the data transmitted by the logical channel is successful or not.
  • the timer configuration information includes: the timer configuration information in the RLC entity configuration; the timer configuration information in the RLC entity configuration is used to configure the first timer for the RLC entity; it is determined that the MAC PDU contains The data packet associated with the first timer, and starting the first timer includes: judging that the MAC PDU contains the data packet associated with the RLC entity configured with the first timer, and starting the first timer corresponding to the RLC entity; adjusting the transmission parameters of the UE It includes at least one of: adjusting the configuration parameters of the RLC entity, adjusting the configuration parameters of the PDCP entity associated with the RLC entity, and adjusting the configuration parameters of the logical channel associated with the RLC entity.
  • the base station when the timer configuration information is added to the RLC entity configuration, that is, the base station configures the first timer for the RLC entity, it determines whether the transmitted data includes the data generated by the RLC entity, and if so, then The purpose of starting the first timer corresponding to the RLC entity can monitor whether the transmission of the data generated by the RLC entity is successful or not.
  • the timer configuration information includes: the timer configuration information in the PDCP entity configuration; the timer configuration information in the PDCP entity configuration is used to configure the first timer for the PDCP entity; it is determined that the MAC PDU contains The data packet associated with the first timer, and starting the first timer includes: judging that the MAC PDU contains the data packet associated with the PDCP entity configured with the first timer, and starting the first timer corresponding to the PDCP entity; adjusting the transmission parameters of the UE Including: adjusting the configuration parameters of the PDCP entity, activating multiple RLC entities associated with the PDCP entity, switching the RLC entities associated with the PDCP entity, adjusting the configuration parameters of the logical channel associated with the PDCP entity, and adjusting the configuration parameters of the RLC entity associated with the PDCP entity at least one of.
  • the base station when the timer configuration information is added to the configuration of the PDCP entity, that is, the base station configures the first timer for the PDCP entity, it determines whether the transmitted data includes the data generated by the PDCP entity, and if so, Then, the first timer corresponding to the PDCP entity is started, so as to monitor whether the transmission of the data generated by the PDCP entity is successful or not.
  • the timer configuration information includes: the timer configuration information in the configuration authorization; the timer configuration information in the configuration authorization is used to configure the first timer corresponding to the configuration authorization; it is determined that the MAC PDU contains the first timer.
  • a data packet associated with a timer, and starting the first timer includes: judging that the MAC PDU contains a data packet associated with the configuration authorization configured with the first timer, and starting the first timer corresponding to the configuration authorization; adjusting the transmission parameters of the UE includes: : Adjust the configuration parameters of the logical channel associated with the configuration authorization, adjust the configuration parameters of the RLC entity associated with the configuration authorization, adjust the configuration parameters of the PDCP entity associated with the configuration authorization, activate multiple RLC entities of the PDCP entity associated with the configuration authorization, and switch configuration At least one of the RLC entities authorizing the associated PDCP entity.
  • the data packet associated with the first timer corresponding to the configuration grant may be a data packet corresponding to a logical channel associated with the configuration grant, an RLC entity or
  • the base station configures the first timer for the configuration authorization
  • the method further includes: when the first timer times out or stops, adjusting the transmission parameters of the UE to the transmission parameters of the UE when the MAC PDU transmission fails; wherein, when the HARQ process retransmits the MAC PDU successfully , or when the HARQ process successfully transmits the next MAC PDU, the first timer stops.
  • the transmission parameters of the UE are restored to the parameters of transmission failure, which can improve the effective utilization of resources and avoid unnecessary waste of resources.
  • the conditions for judging the failure of MAC PDU transmission include at least one of the following conditions: the HARQ process is authorized by the base station to retransmit; the HARQ process is authorized by the DCI scheduling retransmission scrambled by CS-RNTI; the HARQ process The authorization to transmit the MAC PDU is reduced in priority; the authorization of the HARQ process to transmit the MAC PDU is within the measurement interval; the LBT corresponding to the HARQ process fails; the configuration authorization timer associated with the HARQ process times out; the configuration authorization timer associated with the HARQ process times out, And the ACK information corresponding to the HARQ process has not been received; the configuration authorization retransmission timer associated with the HARQ process has expired; the NACK information corresponding to the MAC PDU has been received.
  • an embodiment of the present application further provides an apparatus for adjusting UE transmission parameters.
  • the apparatus includes: a receiving module configured to receive timer configuration information; the timer configuration information is issued by a base station that communicates with the UE; the timer configuration information is used to configure the first timer; the judgment module is used for judging that the MAC PDU contains a data packet associated with the first timer when the HARQ process fails to transmit the MAC PDU, and starts the first timer; the adjustment module is used for the first timer.
  • the transmission parameters of the UE are adjusted.
  • the timer configuration information is also used to configure the second timer; the judging module is specifically used to: when the second timer is running, determine that the HARQ process fails to transmit the MAC PDU; wherein, the second timer In the HARQ process, the transmission of the MAC PDU is started; it is judged that the MAC PDU contains the data packet associated with the first timer.
  • the judging module is further specifically configured to: use a counter to count the number of times that the HARQ process fails to transmit the data packets associated with the first timer; when the number of times exceeds the count threshold of the counter, start the first timer; the counter Configured by the base station.
  • the timer configuration information further includes a second timer; when the HARQ process fails to transmit the MAC PDU, judging that the MAC PDU contains a data packet associated with the first timer includes: running the second timer When it is determined that the HARQ process fails to transmit the MAC PDU; wherein, the second timer is started when the HARQ process transmits the MAC PDU; starting the first timer includes: using a counter to count the number of times the HARQ process fails to transmit the data packets associated with the first timer; when When the number of times exceeds the count threshold of the counter, the first timer is started; the counter is configured by the base station.
  • the timer configuration information includes: timer configuration information in the logical channel configuration; the timer configuration information in the logical channel configuration is used to configure the first timer for the logical channel; the judgment module is specifically used for : judging that the MAC PDU contains the data packets associated with the logical channel configured with the first timer, and starts the first timer corresponding to the logical channel; the adjustment module is specifically used for: adjusting the configuration parameters of the logical channel, and adjusting the PDCP entity associated with the logical channel at least one of the configuration parameters of the RLC entity and the configuration parameters of the RLC entity associated with the adjustment logical channel.
  • the timer configuration information includes: timer configuration information in the RLC entity configuration; the timer configuration information in the RLC entity configuration is used to configure the first timer for the RLC entity; the judgment module is specifically used for : judging that the MAC PDU contains the data packet associated with the RLC entity configured with the first timer, and starts the first timer corresponding to the RLC entity; the adjustment module is specifically used for: adjusting the configuration parameters of the RLC entity, and adjusting the PDCP entity associated with the RLC entity At least one of the configuration parameters of the RLC entity and the configuration parameters of the logical channel associated with the adjustment RLC entity.
  • the timer configuration information includes: timer configuration information in the PDCP entity configuration; the timer configuration information in the PDCP entity configuration is used to configure the first timer for the PDCP entity; the judgment module is specifically used for : judging that the MAC PDU contains the data packets associated with the PDCP entity configured with the first timer, and starts the first timer corresponding to the PDCP entity; the adjustment module is specifically used for: adjusting the configuration parameters of the PDCP entity, activating multiple PDCP entities associated with the entity At least one of an RLC entity, switching an RLC entity associated with the PDCP entity, adjusting configuration parameters of a logical channel associated with the PDCP entity, and adjusting configuration parameters of the RLC entity associated with the PDCP entity.
  • the timer configuration information includes: the timer configuration information in the configuration authorization; the timer configuration information in the configuration authorization is used to configure the first timer corresponding to the configuration authorization; the judging module is specifically used for: It is judged that the MAC PDU contains the data packet associated with the configuration authorization that is configured with the first timer, and the first timer corresponding to the configuration authorization is started; the adjustment module is specifically used for: adjusting the configuration parameters of the logical channel associated with the configuration authorization, adjusting the configuration authorization association At least one of the configuration parameters of the RLC entity, the configuration parameters of the PDCP entity associated with the configuration grant, the multiple RLC entities that activate the PDCP entity associated with the configuration grant, and the RLC entity that switches the PDCP entity associated with the configuration grant.
  • the adjustment module is further configured to: when the first timer expires or stops, adjust the transmission parameters of the UE to the transmission parameters of the UE when the MAC PDU transmission fails; wherein, when the HARQ process retransmits the MAC The first timer stops when the PDU is successful, or when the HARQ process successfully transmits the next MAC PDU.
  • the conditions for judging the failure of MAC PDU transmission include at least one of the following conditions: the HARQ process is authorized by the base station to retransmit; the HARQ process is authorized by the DCI scheduling retransmission scrambled by CS-RNTI; the HARQ process The authorization to transmit the MAC PDU is reduced in priority; the authorization of the HARQ process to transmit the MAC PDU is within the measurement interval; the LBT corresponding to the HARQ process fails; the configuration authorization timer associated with the HARQ process times out; the configuration authorization timer associated with the HARQ process times out, And the ACK information corresponding to the HARQ process has not been received; the configuration authorization retransmission timer associated with the HARQ process has expired; the NACK information corresponding to the MAC PDU has been received.
  • an embodiment of the present application further provides a computing device, the computing device includes a memory and a processor, and the memory stores computer instructions; when the processor executes the computer instructions, the method for implementing any one of the above-mentioned first aspects is implemented .
  • embodiments of the present application further provide a computer-readable storage medium, where computer program codes are stored in the computer-readable storage medium, and when the computer program codes are executed by a computing device, the computing device executes any one of the first aspects above.
  • a method of implementing an item is described in detail below.
  • FIG. 1 is a schematic structural diagram of a 5G communication system supporting TSN provided by the present application.
  • Fig. 2 is a kind of survival time schematic diagram provided by the application.
  • FIG. 3 is a schematic diagram of a protocol stack architecture in a wireless communication system provided by the present application.
  • FIG. 4 is a flowchart of a method for adjusting UE transmission parameters provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a PDCP duplication scheme provided by the application.
  • FIG. 6 is a schematic structural diagram of another PDCP duplication scheme provided by the application.
  • FIG. 7 is a flowchart of another UE transmission parameter adjustment method provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another UE transmission parameter adjustment method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another UE transmission parameter adjustment method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for adjusting UE transmission parameters provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • words such as “exemplary”, “such as” or “for example” are used to mean serving as an example, illustration or illustration. Any embodiments or designs described in the embodiments of the present application as “exemplary,” “such as,” or “by way of example” should not be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “such as,” or “by way of example” is intended to present the related concepts in a specific manner.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate: A alone exists, A alone exists There is B, and there are three cases of A and B at the same time.
  • the term "plurality" means two or more.
  • multiple systems refer to two or more systems
  • multiple screen terminals refer to two or more screen terminals.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • TSN time sensitive network
  • IIoT Industrial Internet of Things
  • 3GPP 3rd generation partnership project
  • 5G systerm, 5GS Deployment scheme of TSN network.
  • FIG. 1 is a schematic structural diagram of a 5G communication system supporting a TSN network provided by the present application.
  • the system includes 5G system (5GS), IIoT devices (Devices), application network (Application Function, AF) and data network (Data Network), where 5GS is connected to Devices, Data Network and AF respectively.
  • Devices can be devices using 3GPP access network technologies, or devices using non-3GPP access network technologies (such as common WLAN technology and CDMA technology) (non-3GPP Devices).
  • the access network equipment [(Radio)access network, (R)AN], (R)AN can be the access network of 3GPP, if we take the most common mobile phone to access the Internet, the (R)AN node is the base station.
  • the Access and Mobility Management Function is the termination point of the RAN signaling interface (N2), the termination point of the NAS (N1) signaling, and is responsible for the encryption and integrity of NAS messages. It has functions such as registration, access, mobility, authentication, and transparent transmission of short messages. In addition, it is also responsible for the allocation of Eps Bearer Ids when interacting with the EPS network.
  • Session management function entity Session management function entity
  • SMF Session management function entity
  • the main functions of SMF are: the termination point of the SM message of the NAS message; the establishment, modification and release of the session; UE IP allocation management; DHCP function: ARP proxy or IPv6 neighbor request Proxy (in the case of Ethnet PDU); select and control UPF for a session; collect charging data and support charging interface; determine the SSC mode of a session; downlink data indication.
  • the SMF sends the lifetime of the service to the AMF through the N11 signaling interface, and the AMF sends it to the UE and the RAN through N1 and N2, respectively.
  • UPF User plane function
  • PCF Policy Control Function
  • UDR Unified Data Warehouse
  • NEF Network exposure function
  • 3GPP network elements all expose their capabilities to other network elements through NEF; NEF stores relevant information in NDR, and can also obtain relevant information from NDR, NEF only Can access the NDR of the same PLMN; NEF provides corresponding security guarantees to ensure the security of external applications to 3GPP networks; 3GPP internal and external related information conversion, such as AF-Service-Identifier and 5G core network internal DNN, S- Conversion of NSSAI, etc.; NEF can obtain relevant information of other network elements by accessing NDR.
  • Unified data management responsible for the main functions: generating 3GPP authentication certificates/authentication parameters; storing and managing the permanent user ID (SUPI) of the 5G system; subscription information management; MT-SMS submission ; SMS management; user's service network element registration management (such as AMF, SMF, etc. that currently provide services for the terminal).
  • SUPI permanent user ID
  • the TSN network can regard 5GS as a TSN bridging device, and data packets of various industrial applications can be sent upstream/downstream through 5GS.
  • industrial application data can be sent by the data network (Data Network) to the user port UPF, sent by the UPF to the user equipment (user equipment, UE) connected to the industrial equipment, and sent by the UE to the connected industrial equipment (Devices);
  • industrial data can also be sent by the industrial equipment to the data network through the UE.
  • FIG. 1 shows a schematic diagram of the survival time.
  • the data network controller controller periodically generates data packets (such as packets 1 to 5) and sends them to the IIoT device.
  • the survival time of the IIoT device is equal to the generation of data packets.
  • the IIoT device is not allowed to lose 2 data packets in a row; the packet 3 (packet3) is lost during the transmission process, and the IIoT device does not receive the data packet at the expected time point, then the application layer enters the time-to-live , if a new packet is received within the lifetime, the IIoT device continues to work normally, otherwise the lifetime times out and the IIoT device is interrupted.
  • the present application provides a UE transmission parameter adjustment method.
  • the transmission parameters currently configured by the UE are adjusted, so as to improve the transmission reliability of the UE and avoid the time-to-live time-out, which affects the Equipment works.
  • the processing flow of the data packet to be sent by the UE is introduced in conjunction with the protocol stack architecture in the wireless communication system shown in FIG. 3 .
  • the architecture sequentially includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, and a radio link control (radio link control, RLC) layer.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the data packets from the application layer are sequentially processed by the SDAP layer, the PDCP layer, the RLC layer and the MAC layer, and then the physical layer performs the next encapsulation to obtain a bit stream, and finally sends it to the corresponding layer of the receiving end device through air interface transmission.
  • the SDAP entity of the SDAP layer receives a data packet of a service from the application layer, the SDAP entity encapsulates the data packet, adds the SDAP header, and maps the data packet to the PDCP entity of the PDCP layer; the PDCP entity receives the data packet through the SDAP entity Encapsulated data packets, perform header compression and decompression, encryption and decryption, as well as data integrity protection and integrity verification, etc., to further complete the data transmission to the RLC entity of the RLC layer;
  • the SDAP entity of the SDAP layer receives the data packet from the application layer, wherein the data packet can be a data packet from a service, and on the wireless network side, a service has different manifestations, which can be streams (quality of service flow, QoS flow), it can also be in the form of a bearer formed by mapping to a PDCP entity, or it can be embodied in the form of a logical channel.
  • the right part in Figure 3 shows the situation where one service corresponds to one logical channel, and different services can correspond to different logical channels; the left part shows the situation where the service is embodied as a QoS flow, and multiple QoS flows are mapped to different QoS flows at the SDAP layer the PDCP entity.
  • the service may be the service of the aforementioned TSN network.
  • the specific processing of the data packet by the protocol stack architecture shown in FIG. 3 is as follows.
  • the SDAP entity encapsulates the data packet, adds the SDAP header, and maps the data packet to the PDCP entity of the PDCP layer.
  • the PDCP entity receives the data packet encapsulated by the SDAP entity, and performs header compression and decompression, encryption and decryption on the data, as well as data integrity protection, integrity check, and the underlying service data unit SDU (service data unit). data unit, SDU) repetition detection, etc., so as to further complete the data transmission to the RLC entity of the RLC layer.
  • the RLC entity receives the data packets from the PDCP entity and performs data transmission.
  • the RLC entity can complete the segmentation and reassembly of the service data unit RLC SDU, as well as the repetition detection and protocol error detection of the RLC SDU.
  • a protocol data unit PDU protocol data unit
  • PDU protocol data unit
  • an RLC PDU refers to the data unit that is exchanged between the RLC layer of the sender and the RLC layer of the receiver
  • SDU is a service data unit, also known as a service data unit. It is a data set of user services at a specified layer. The data does not change when it is transmitted to the same protocol layer of the receiver, and then sent to the lower layer.
  • the lower layer encapsulates the SDU in a PDU Sending out
  • SDU is the information unit from the high-level protocol is transmitted to the low-level protocol
  • the SDU of the Nth layer and the PDU of the upper layer are in one-to-one correspondence.
  • PCI protocol control information
  • the SDU submitted by the user is added with protocol control information (PCI), and encapsulated into a PDU; on the receiver side, the PCI is removed to complete the decapsulation of the PDU, and the SDU is restored to be sent to the receiver user.
  • PCI protocol control information
  • the channel between the RLC layer and the MAC layer is called a logical channel (logical channel, LCH).
  • LCH logical channel
  • the logical channel type set provides different types of data transmission services for the MAC entity, and the logical channel LCH can be distinguished in the PDCP layer, the RLC layer, and the MAC layer. come out.
  • the MAC entity provides data transmission services on the logical channel, receives the data packets transmitted from the RLC entity, and realizes the mapping from the logical channel to the transport channel.
  • the MAC entity receives the service data unit MAC SDUs from multiple logical channels, and completes the multiplexing and demultiplexing of the MAC SDUs.
  • the MAC PDU is the data unit transmitted within the MAC entity.
  • the MAC entity can also complete the priority management (logic channels priority, LCP) between different logical channels for the same receiver device, and the priority management between different receiver devices through dynamic scheduling, and Error correction function based on hybrid automatic repeat request (HARQ) mechanism, etc.
  • LCP is a process in which the MAC entity allocates resources to different logical channels according to the size of the transmission resources and the priority of each logical channel. After the LCP process ends, each logical channel will be allocated a resource greater than or equal to 0. In the existing protocol, after each logical channel is allocated resources, data packets will be placed on the allocated resources in sequence.
  • the physical layer provides data services to the upper layer in the form of a transmission channel.
  • Code verification, code block segmentation, channel coding, rate matching and code block connection are processed, and then scrambling, modulation, layer mapping, precoding and other operations are performed, and finally sent out through the air interface.
  • FIG. 4 is a flowchart of a method for adjusting transmission parameters of a UE provided by an embodiment of the present application.
  • the method is applied to a UE device.
  • the UE may be a device that provides voice and/or data connectivity to the user, such as a mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., or it may be capable of sidelinking Communication equipment, such as vehicle-mounted terminals, or handheld terminals capable of V2X communication.
  • the method includes the following steps S401 to S403.
  • step S401 the timer configuration information issued by the base station communicating with the UE is received.
  • the base station is configured to, when scheduling the UE to transmit data services, deliver the configuration information of the PDCP entity, the configuration information of the RLC entity, the configuration information of the logical channel to the UE, and also deliver the authorization configuration information to the UE , where the configuration information delivered by the base station includes timer configuration information, the timer configuration information is used to configure the first timer, and the timer configuration information specifically includes the timing length of the first timer. The information of the timing length is added to the information element of the configuration information.
  • the authorization configuration information may be grant configuration information or Configured Grant configuration information.
  • the first timer may include: a timer corresponding to a logical channel, a timer corresponding to an RLC entity, a timer corresponding to a PDCP entity, or a timer corresponding to a configuration grant.
  • the base station when configuring the logical channel, RLC entity, PDCP entity or configuration authorization for the UE, the base station adds timer configuration information to the configuration information of the corresponding logical channel, RLC entity, PDCP entity or configuration authorization.
  • the timing length of the first timer may be any time length.
  • the timing length of the first timer may be set to be less than or equal to the length of the lifetime.
  • the MAC entity When the first timer is the logical channel associated with the MAC PDU or the timer corresponding to the configuration grant, the MAC entity maintains the first timer; when the first timer is the timer corresponding to the RLC entity or the PDCP entity, the RLC entity or the PDCP entity The entity maintains the timer.
  • the MAC entity may also maintain the timer corresponding to the RLC entity or the PDCP entity.
  • the base station refers to the radio access network (radio access network, RAN) node (or equipment) that connects the terminal to the wireless network, such as NR gNB, LTE eNB and other various types of base stations.
  • radio access network radio access network, RAN
  • NR gNB radio access network
  • LTE eNB Long Term Evolution
  • other various types of base stations such as NR gNB, LTE eNB and other various types of base stations.
  • step S402 the MAC entity determines whether the HARQ process successfully transmits the MAC PDU, and when the MAC entity determines that the HARQ process fails to transmit the MAC PDU, the MAC entity determines whether the MAC PDU contains a data packet associated with the first timer.
  • the HARQ entity of the UE when the UE receives the authorization from the base station (such as grant and Configured Grant), the HARQ entity of the UE sends the MAC PDU from the MAC entity, and one HARQ entity may include multiple HARQ processes , the HARQ process encapsulates the MAC PDU and transmits it to the base station.
  • the MAC PDU is obtained by encapsulating the RLC PDU transmitted by the MAC entity according to the logical channel, wherein the RLC PDU is obtained by encapsulating the RLC entity according to the PDCP PDU transmitted by the PDCP entity.
  • the judgment condition may include one or more of the following:
  • the HARQ process is scheduled by the base station to grant grant to retransmit the MAC PDU, where the grant refers to the instruction issued by the base station to schedule the data transmission of the UE, that is, after the HARQ entity receives the grant, the HARQ process will transmit the MAC PDU according to the grant information. ;
  • DCI Downlink Control Information
  • CS-RNTI radio network temporary identity
  • the grant of the HARQ process is de-prioritized or encounters a measurement gap, wherein when the UE is scheduled by the base station to transmit a grant with a higher priority, or when a higher priority PUCCH needs to be transmitted , and when the higher-priority grant/physical uplink control channel (PUCCH) overlaps with the grant of the current HARQ process, the grant of the current HARQ process is given a low priority;
  • PUCCH physical uplink control channel
  • the transmission of the HARQ process on the authorized grant corresponds to a listen before talk (LBT) failure, where the HARQ process is transmitted on the unlicensed spectrum, and the UE needs to perform the LBT process first, and the transmission cannot be performed if the LBT fails;
  • LBT listen before talk
  • the configuration authorization CG timer associated with the HARQ process expires
  • the configuration authorization timer associated with the HARQ process has expired, and the ACK information corresponding to the HARQ process has not been received, where the ACK indication is an acknowledgment indication issued by the base station when receiving the data packet, and the MAC entity has not received the ACK indication corresponding to the HARQ process, That is, it is considered that the HARQ process failed to transmit the MAC PDU.
  • the configuration authorization timer has a different function from the first timer corresponding to the configuration authorization. That is, when the configuration authorization timer starts, the transmission parameters will not be adjusted.
  • the configuration authorization timing When the timer expires, the UE will no longer transmit the MAC PDU to the base station, but will use the subsequent configuration authorization resources to transmit a new MAC PDU;
  • the configuration authorization retransmission timer of the HARQ process times out, wherein the configuration authorization retransmission timer is a timer that controls the UE to retransmit the MAC PDU using the configuration authorization resource. Specifically, when the configuration authorization retransmission timer runs, the UE The retransmission of MAC PDUs cannot be performed using the configuration authorization resources;
  • NACK a NACK indication corresponding to the HARQ process
  • the base station will send a NACK indication to the UE when it does not receive a data packet or fails to parse the data packet, and the MAC entity does not receive the ACK indication corresponding to the HARQ process or receives the corresponding HARQ process.
  • NACK indicates, it can be determined that the HARQ process fails to transmit the MAC PDU.
  • the MAC entity judging whether the MAC PDU contains a data packet associated with the first timer may include: the MAC entity judging whether the MAC PDU contains a logical channel (which may also be a PDCP entity, RLC entity, RLC entity) configured with the first timer entity or configuration authorization) associated data package; may also include: the MAC entity starts the logical channel (which may also be the PDCP entity or the RLC entity) according to the logical channel (which may also be the PDCP entity or the RLC entity) information recorded in the HARQ process.
  • a logical channel which may also be a PDCP entity, RLC entity, RLC entity configured with the first timer entity or configuration authorization
  • a timer wherein, when the MAC entity obtains a data packet from the logical channel (which may also be an RLC entity or a PDCP entity) configured with the first timer when grouping MAC PDUs, the HARQ process records the corresponding logical channel (also Can be PDCP entity or RLC entity) information.
  • the logical channel which may also be an RLC entity or a PDCP entity
  • step S403 when the MAC PDU that fails to transmit includes a data packet associated with the first timer, the first timer is started.
  • the MAC entity determines that the MAC PDU contains a data packet associated with the first timer, it starts the first timer.
  • the base station configures the first timer for the logical channel. contains the data packet transmitted by the logical channel configured with the first timer, the first timer configured by the base station for the logical channel is started. Also for example, the base station configures the first timer for the RLC entity and the PDCP entity. If the MAC entity determines that the MAC PDU contains the data packet of the RLC entity or PDCP entity configured with the first timer, the MAC entity starts the RLC entity.
  • the first timer configured by the PDCP entity instructs the RLC entity or the PDCP entity to start the first timer in which the base station is the RLC entity or the PDCP entity.
  • the base station configures the first timer for the configuration authorization. If the MAC entity determines that the MAC PDU contains a data packet corresponding to the configuration authorization configured with the first timer, the MAC entity starts the first timer corresponding to the configuration authorization.
  • step S404 when the first timer is running, the transmission parameters of the UE are adjusted.
  • the transmission parameters of the UE may include: the PDCP entity corresponding to the data packet associated with the first timer included in the MAC PDU,
  • the configuration parameters of the RLC entity and the logical channel may further include the transmission path of the PDCP entity, wherein the transmission path of the PDCP entity is determined according to the RLC entity associated with the PDCP entity.
  • the configuration parameters of the logical channel can be adjusted and the PDCP entity associated with the logical channel can be adjusted. , or adjust the configuration parameters of the RLC entity associated with the logical channel to improve the transmission reliability of the UE.
  • the configuration parameters of the RLC entity, the configuration parameters of the PDCP entity associated with the RLC entity, or the RLC entity can be adjusted by adjusting the configuration parameters of the RLC entity.
  • the configuration parameters of the associated logical channel improve the transmission reliability of the UE.
  • the configuration parameters of the PDCP entity can be adjusted to activate the data packet associated with the PDCP entity.
  • Multiple RLC entities switch the RLC entity associated with the PDCP entity, adjust the configuration parameters of the logical channel associated with the PDCP entity, or adjust the configuration parameters of the RLC entity associated with the PDCP entity to improve the transmission reliability of the UE; wherein, activating PDCP Multiple RLC entities corresponding to the entity can obtain multiple transmission paths of the PDCP entity, each RLC entity in the multiple RLC entities corresponds to one transmission path, and the multiple RLC entities are configured by the base station using the PDCP duplication mechanism. Understandably, in the NR R15 and LTE R15 standards, in order to support the high reliability and low latency requirements of services, the PDCP duplication scheme is introduced.
  • the UE establishes a PDCP entity for a data radio bearer DRB, and the PDCP entity is connected with two RLC entities, which are respectively associated with the MAC entity through a logical channel (LCH).
  • LCH logical channel
  • the PDCP duplication mechanism can be divided into two architectures, CA duplication and DC duplication (CA means carrier aggregation, and DC means dual link).
  • the NR R16 standard supports the duplication mechanism with more legs.
  • one RB supports configuration at most 4 legs, as shown in Figure 6 below is a schematic diagram of duplication with 4 legs.
  • 5 and 6 is a transmission path of the PDCP entity. When the transmission path of the PDCP entity needs to be adjusted, multiple RLC entities preconfigured by the PDCP entity can be activated to obtain multiple transmission paths.
  • the configuration parameters of the logical channel associated with the configuration authorization can be adjusted, and the configuration of the RLC entity associated with the configuration authorization can be adjusted. parameters, adjusting the configuration parameters of the PDCP entity associated with the configuration grant, activating multiple RLC entities of the PDCP entity associated with the configuration grant, or switching the RLC entities of the PDCP entity associated with the configuration grant to improve transmission reliability.
  • the service data corresponding to the logical channel (which may also be an RLC entity, a PDCP entity or a configuration authorization) is transmitted in a highly reliable manner.
  • the MAC entity instructs the PDCP entity and/or the RLC entity corresponding to the logical channel to improve the transmission reliability;
  • the data of the logical channel returns to normal transmission reliability, for example, the MAC entity instructs the logical channel corresponding to The PDCP entity and/or the RLC entity restores normal transmission reliability.
  • the UE determines that the next data packet of the logical channel is successfully transmitted (for example, the transmission of the UE in the next transmission period of the service is confirmed by ACK, or If the retransmission schedule is not received, it can be confirmed that the next data packet is successfully transmitted), then stop the first timer and restore the normal transmission reliability, for example, the MAC entity instructs the PDCP entity and/or the RLC entity corresponding to the logical channel to return to normal Transmission reliability.
  • the transmission parameters of the UE are adjusted to the transmission parameters of the UE when the MAC PDU transmission fails; wherein, when the HARQ process retransmits the MAC PDU successfully, or the HARQ process transmits the next MAC PDU. On success, stop the first timer.
  • the transmission reliability of the UE when data transmission fails, by starting and maintaining the timer corresponding to the logical channel, RLC entity, PDCP entity or configuration authorization, and then adjusting the transmission parameters of the UE according to the state of the timer, the transmission reliability of the UE can be improved. It can avoid the time-to-live of the service from overtime, and use the high-reliability mode to transmit when the transmission fails, which can realize the effective use of resources.
  • the implementation of the PDCP duplication mechanism in the method embodiment shown in FIG. 4 needs to rely on the carrier aggregation technology or the dual-connection architecture, so that the copied PDCP PDUs are grouped into different MAC PDUs, and passed through different MAC PDUs. physical resources for transmission.
  • the PDCP duplication mechanism in order to implement the PDCP duplication mechanism on a single carrier, it is necessary to ensure that the duplicated PDCP PDUs are transmitted through different physical resources scheduled by the single carrier.
  • An implementation manner is to pre-configure the mapping relationship between the RLC entity or logical channel and the underlying physical transmission resources, and the data of one RLC entity or logical channel can only be transmitted on the physical resources with the associated relationship.
  • a logical channel is mapped to the CORESET (or search space) of a cell or downlink carrier, and the data of the logical channel can only be transmitted through the uplink physical resources allocated by the DCI transmitted on the CORESET corresponding to the cell or downlink carrier.
  • the BWP information is configured when the logical channel is configured, and the data of the logical channel can only be transmitted through the uplink physical resources on the associated BWP.
  • the above-mentioned method of implementing the PDCP duplication mechanism based on a single carrier may be applied to other scenarios than the method embodiment shown in FIG. 4 , and the present application does not limit the specific application scenarios of this method.
  • FIG. 7 is a flowchart of another UE transmission parameter adjustment method provided by the present application.
  • the method shown in FIG. 7 is suitable for the scenario that allows the UE to fail in continuous transmission. As shown in FIG. 7 , the method includes the following steps S701 to S704.
  • step S701 the timer configuration information issued by the base station communicating with the UE is received.
  • step S401 in the method embodiment shown in FIG. 4 , which is not repeated here.
  • step S702 the MAC entity determines whether the HARQ process successfully transmits the MAC PDU, and when the MAC entity determines that the HARQ process fails to transmit the MAC PDU, the MAC entity determines whether the MAC PDU contains a data packet associated with the first timer.
  • step S402 in the method embodiment shown in FIG. 4 , which will not be repeated here.
  • step S703 when the failed MAC PDU contains a data packet associated with the first timer, and a counter is used to count the number of times the HARQ process fails to transmit the data packet associated with the first timer, the MAC entity determines according to the counted times of the counter. Whether to start the first timer.
  • the counter is used to count the number of HARQ process transmission failures, and is configured by the base station communicating with the UE, and may include the counter configured by the base station in the logical channel, RLC entity, PDCP entity or configuration authorization configuration.
  • the start and maintenance of the counter are controlled by the MAC entity, so as to obtain the counted times of the counter.
  • step S704 when the first timer is running, the transmission parameters of the UE are adjusted.
  • step S404 of the method shown in FIG. 4 for the introduction of this step, refer to the introduction in step S404 of the method shown in FIG. 4 , and details are not repeated here.
  • the UE counts the number of data transmission failures through a counter, starts the first timer when the set threshold is reached, and then controls the transmission parameters of the UE according to the state of the timer, so that the specified number of occurrences of continuous data transmission can be realized. Only when the HARQ transmission fails, the high-reliability mode is used to transmit, so as to realize the effective utilization of resources and avoid the time-to-live of the service from overtime.
  • This embodiment is suitable for services whose time delay requirement is not extremely strict and several HARQ retransmissions are allowed.
  • FIG. 8 is a flowchart of another UE transmission parameter adjustment method provided by an embodiment of the present application.
  • the method shown in FIG. 8 is suitable for a scenario where the lifetime is multiple transmission periods.
  • the method includes the following steps S801 to S804.
  • step S801 the timer configuration information issued by the base station communicating with the UE is received.
  • step S401 in the method embodiment shown in FIG. 4 , which is not repeated here.
  • step S802 when the second timer is running, the MAC entity determines whether the HARQ process successfully transmits the MAC PDU, and when the MAC entity determines that the HARQ process fails to transmit the MAC PDU, the MAC entity determines whether the MAC PDU contains data associated with the first timer. Bag.
  • the start time of the second timer may be any time before the transmission of the MAC PDU or the time of transmission of the MAC PDU.
  • a second timer is started when the packet is received.
  • the start time may be configured by the base station for the UE, for example, the base station configures the start time t0 of the second timer, where t0 may be a specific UTC time, or GPS time, or a time specified by SFN/slot/subframe/symbol.
  • Time information represented by at least one item; for the UE, whether to start the second timer can be determined according to UTC time, GPS time, or time information represented by at least one item in SFN/slot/subframe/symbol.
  • the second timer may be configured by the base station in the configuration information of the logical channel, the RLC entity, the PDCP entity or the configuration grant. Wherein, after the second timer times out, the second timer is automatically restarted until the UE stops running the second timer.
  • the timing length of the second timer is greater than the length of one transmission period of the UE, and the timing length of the second timer is less than the survival time, and the specific value can be set according to the requirements of the actual scenario.
  • the MAC entity determines whether the MAC PDU is successfully transmitted and whether the Pandan MAC PDU includes a data packet associated with the first timer. Refer to the description in step S402, and details are not repeated here.
  • step S803 when the MAC PDU that fails to transmit includes a data packet associated with the first timer, the first timer is started.
  • the first timer is started.
  • step S804 when the first timer is running, the transmission parameters of the UE are adjusted.
  • step S404 the specific description of this step is the same as the description in step S404, and details are not repeated here.
  • dual timers of the second timer and the first timer are used.
  • the second timer is started first, and then the first timer is started according to the transmission condition of the MAC PDU, and the first timer runs when the data is transmitted.
  • the method can be applied to scenarios where the base station does not have high requirements on the delay of UE transmission services, allowing the UE to have a packet loss period. For example, when the lifetime is 3 transmission cycles, setting the timing length of the second timer to 2 transmission cycles can be applied to the scenario where the application allows the UE to lose at least two messages. Overprotection to improve transmission reliability.
  • FIG. 9 is a flowchart of another UE transmission parameter adjustment method provided by an embodiment of the present application. Similar to the method embodiment shown in FIG. 8 , the method embodiment shown in FIG. 9 is applicable to a scenario in which continuous transmission failures may occur in the UE. As shown in FIG. 9 , the method includes the following steps S901 to S904.
  • step S901 the timer configuration information issued by the base station communicating with the UE is received.
  • step S701 for the introduction of this step, refer to the description of step S701, and details are not repeated here.
  • step S902 when the second timer is running, the MAC entity determines whether the HARQ process successfully transmits the MAC PDU, and when the MAC entity determines that the HARQ process fails to transmit the MAC PDU, the MAC entity determines whether the MAC PDU contains data associated with the first timer. Bag.
  • the base station may configure or configure authorization to configure the timing duration value of the second timer for the logical channel, PDCP entity, and RLC entity of the UE.
  • step S702 for the process of the MAC entity judging transmission failure, which will not be repeated here.
  • step S903 when the failed MAC PDU contains a data packet associated with the first timer, and a counter is used to count the number of times the HARQ process fails to transmit the data packet associated with the first timer, the MAC entity determines according to the counted times of the counter. Whether to start the first timer.
  • the base station may configure or configure the threshold value (COUNT) of the counter count for the logical channel, PDCP entity, and RLC entity of the UE. is 0.
  • COUNT threshold value
  • the base station may configure or configure the threshold value (COUNT) of the counter count for the logical channel, PDCP entity, and RLC entity of the UE. is 0.
  • the count corresponding to the logical channel, PDCP entity, RLC entity or configuration authorization is incremented by 1.
  • step S904 when the first timer is running, the transmission parameters of the UE are adjusted.
  • step S404 for the specific introduction of this step, refer to the description of step S404, which is not repeated here.
  • FIGS. 7 to 9 of the present application have some steps similar to the exemplary steps of the method shown in FIG. 4 . Therefore, the steps shown in FIG. 7 to FIG. 9 can be described in detail by the steps shown in FIG. 4 . implementation in conjunction with the introduction. For example, in one embodiment, the steps shown in FIG. 4 may be combined with any of the method embodiments in FIGS. 7 to 9 to form a new embodiment.
  • the embodiments of the present application further provide an apparatus for adjusting UE transmission parameters.
  • the apparatus 100 is configured to perform the steps of the above-mentioned multiple method embodiments.
  • the apparatus 100 includes: a receiving module 101 , a judging module 102 and an adjusting module 103 .
  • the structural division shown in FIG. 10 is only an example of the apparatus 100 , and the present application does not limit the specific structural division of the apparatus 100 .
  • one of the modules may be split into multiple modules for implementation, or multiple modules may be combined into one module for implementation.
  • the receiving module 101 is configured to receive timer configuration information configured by the base station, where the timer configuration information is used to configure the first timer.
  • the judgment module 102 is used for judging the transmission situation of the HARQ process, and then when the transmission fails, judging that the PDU contains the data packets associated with the first timer, and then starts the first timer; when the first timer is started, the HARQ transmission can be accumulated
  • the number of failures is used to determine the startup, that is, when the accumulated number of counters reaches the set value, the first timer is started again; the second timer can also be started before transmission, and the counter is used to count the failures of HARQ process transmission during the operation of the second timer.
  • the adjustment module 103 is configured to adjust the transmission parameters of the UE when the first timer is running, so as to improve the transmission reliability.
  • the present application further provides a computing device 200 .
  • the computing device is used to implement the method steps of the above method embodiments.
  • the computing device 200 includes a memory 201 , a processor 202 , a communication interface 203 and a bus 204 .
  • the memory 201 , the processor 202 , and the communication interface 203 are connected to each other through the bus 204 for communication.
  • the memory 201 may be read only memory (ROM), random access memory (RAM), hard disk, flash memory or any combination thereof.
  • the memory 201 may store programs or computer instructions. When the programs stored in the memory 401 are executed by the processor 202, the processor 202 and the communication interface 203 are used to adjust the steps of adjusting the UE parameters.
  • the memory 203 may also store data, such as the threshold value of the counter configured for the UE, the historical count times, and the like.
  • the processor 202 may adopt a central processing unit (central processing unit, CPU), an application specific integrated circuit (application specific integrated circuit, ASIC), a GPU or any combination thereof.
  • Processor 202 may include one or more chips.
  • the processor 202 may include an AI accelerator, such as a neural processing unit (NPU).
  • NPU neural processing unit
  • Communication interface 203 uses a transceiver module, such as a transceiver, to enable communication between computing device 200 and other devices or a communication network. For example, data can be acquired through the communication interface 203 .
  • a transceiver module such as a transceiver
  • Bus 204 may include pathways for communicating information between various components of computing device 200 (eg, memory 201, processor 202, communication interface 203).
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more of the available mediums integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种UE传输参数调整方法及装置,该方案应用于通信技术领域。该方法包括接收与UE通信的基站下发定时器配置信息;定时器配置信息用于配置第一定时器;当UE的HARQ进程传输当前业务的MAC PDU失败时,判断MAC PDU中是否包含第一定时器关联的数据包,根据判断结果启动第一定时器,并在第一定时器运行时,调整UE的传输参数。该方法在第一定时器运行内调整传输参数,提高了UE的传输可靠性,以避免当前业务的生存时间超时,解决了设备因丢包而中断的问题。

Description

一种UE传输参数调整方法及装置
本申请要求于2021年05月07日提交中国国家知识产权局、申请号为202110496857.7、申请名称为“一种UE传输参数调整方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种UE传输参数调整方法及装置。
背景技术
在5GNR标准的R15版本中,3GPP将低时延高可靠通信(ultra-reliable and low latency communication,URLLC)业务空口的指标设定为用户面要保证1毫秒(ms)时延,以及99.999%的可靠性需求。对于工业控制应用,需要更高的延时保证和可靠性保障要求,例如,需要0.5ms的时延保证和99.9999%的可靠性需求。在通信系统中,为了避免网络层偶然性的通信错误对应用层产生较大影响,会在应用层设置生存时间,即当应用层如果在一个消息期望到达的时间内没有收到消息,不会立即出现异常,而是进入生存时间,如果在生存时间内还没有正确接收到消息,则应用层发生中断。其中,应用层中断后会进入一个预定义的状态,如传输业务中断和宕机等状态,对应用层业务产生影响。
现有技术缺乏一种有效的机制,灵活切换空口传输可靠性,避免在空口传输时,因为信道波动等原因导致的丢包和错误而造成的业务生存时间超时的问题。
发明内容
本申请实施例提供了一种UE传输参数调整方法及装置,在UE传输上行业务的数据失败时,启动第一定时器,并在该第一定时器运行时,调整UE的传输参数,以提高UE的传输可靠性,解决上行业务的生存时间超时的问题。
第一方面,本申请实施例提供了一种UE传输参数调整方法,该方法包括:接收定时器配置信息;定时器配置信息由与UE通信的基站下发;定时器配置信息用于配置第一定时器;当HARQ进程传输MAC PDU失败时,判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器;在第一定时器运行时,调整UE的传输参数。
本申请该实施例,在接收到基站配置的定时器信息后,判断第一定时器关联的数据是否传输成功,当失败时,启动定时器信息配置的第一定时器,并在该定时器运行时,调整UE的传输参数,可以提高UE的传输可靠性,避免UE传输的业务的生存时间超时,造成设备的业务中断,该实施例适用于生存时间为当前业务的一个传输周期的场景。
在一种可能的实施方式中,定时器配置信息还用于配置第二定时器;当HARQ进程传输MAC PDU失败时,判断MAC PDU中包含第一定时器关联的数据包包括:在第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,第二定时器在HARQ 进程传输MAC PDU时启动;判断MAC PDU中包含第一定时器关联的数据包。
本申请该实施例,在生存时间是多个传输周期的场景中,在设定的第二定时器运行内,判断第一定时器关联的数据是否传输成功,当失败时,才启动定时器信息配置的第一定时器,并调整传输参数,提高传输可靠性,可以避免生存时间为多个传输周期的业务中断。
在一种可能的实施方式中,启动第一定时器包括:采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数;当次数超过计数器的计数门限时,启动第一定时器;计数器由基站配置。
本申请该实施例,统计HARQ进程传输失败的次数,当次数超过设定的门限值时,才启动第一定时器提高传输可靠性,可以适用于时延要求不高的场景,该场景中,UE可以连续多次传输数据失败,同时可以避免业务的生存时间超时。
在一种可能的实施方式中,定时器配置信息还用于配置第二定时器;当HARQ进程传输MAC PDU失败时,判断MAC PDU中包含第一定时器关联的数据包包括:在第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,第二定时器在HARQ进程传输MAC PDU启动;启动第一定时器包括:采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数;当次数超过计数器的计数门限时,启动第一定时器;计数器由基站配置。
本申请该实施例,采用第二定时器和计数器双重判断,启动第一定时器,可以适用于时延要求不高且生存时间为多个传输周期的场景,从而实现资源的有效利用,同时避免业务的生存时间超时。
在一种可能的实施方式中,定时器配置信息包括:逻辑信道配置中的定时器配置信息;逻辑信道配置中的定时器配置信息用于为逻辑信道配置第一定时器;判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器包括:判断MAC PDU中包含配置了第一定时器的逻辑信道关联的数据包,启动该逻辑信道对应的第一定时器;调整UE的传输参数包括:调整逻辑信道的配置参数、调整逻辑信道关联的PDCP实体的配置参数、和调整逻辑信道关联的RLC实体的配置参数中的至少一种。
本申请该实施例,当定时器配置信息被附加在逻辑信道配置中下发给UE时,即表明基站为逻辑信道配置了第一定时器,则判断传输的数据中是否包含该逻辑信道传输的数据,是的话,则启动该逻辑信道对应的第一定时器,可以对逻辑信道传输的数据的传输成功与否的进行监控的目的。
在一种可能的实施方式中,定时器配置信息包括:RLC实体配置中的定时器配置信息;RLC实体配置中的定时器配置信息用于为RLC实体配置第一定时器;判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器包括:判断MAC PDU中包含配置了第一定时器的RLC实体关联的数据包,启动RLC实体对应的第一定时器;调整UE的传输参数包括:调整RLC实体的配置参数、调整RLC实体关联的PDCP实体的配置参数、和调整RLC实体关联的逻辑信道的配置参数中的至少一种。
本申请该实施例,当定时器配置信息被附加在RLC实体配置时,即基站为RLC实体配置了第一定时器,则判断传输的数据中是否包含该RLC实体生成的数据,如果包含,则启动该RLC实体对应的第一定时器,可以对RLC实体生成的数据的传输成 功与否的进行监控的目的。
在一种可能的实施方式中,定时器配置信息包括:PDCP实体配置中的定时器配置信息;PDCP实体配置中的定时器配置信息用于为PDCP实体配置第一定时器;判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器包括:判断MAC PDU中包含配置了第一定时器的PDCP实体关联的数据包,启动PDCP实体对应的第一定时器;调整UE的传输参数包括:调整PDCP实体的配置参数、激活PDCP实体关联的多个RLC实体、切换PDCP实体关联的RLC实体、调整PDCP实体关联的逻辑信道的配置参数、和调整PDCP实体关联的RLC实体的配置参数中的至少一种。
本申请该实施例,当定时器配置信息被附加在PDCP实体实体配置时,即基站为PDCP实体配置了第一定时器,则判断传输的数据中是否包含该PDCP实体生成的数据,如果包含,则启动该PDCP实体对应的第一定时器,可以对PDCP实体生成的数据的传输成功与否的进行监控的目的。
在一种可能的实施方式中,定时器配置信息包括:配置授权中的定时器配置信息;配置授权中的定时器配置信息用于配置配置授权对应的第一定时器;判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器包括:判断MAC PDU中包含配置了第一定时器的配置授权关联的数据包,启动配置授权对应的第一定时器;调整UE的传输参数包括:调整配置授权关联的逻辑信道的配置参数、调整配置授权关联的RLC实体的配置参数、调整配置授权关联的PDCP实体的配置参数、激活配置授权关联的PDCP实体的多个RLC实体、和切换配置授权关联的PDCP实体的RLC实体中的至少一种。其中,配置授权对应的第一定时器关联的数据包可以是配置授权关联的逻辑信道、RLC实体或PDCP实体对应的数据包。
本申请该实施例,当定时器配置信息被附加在配置授权配置时,即基站为配置授权配置了第一定时器,则判断传输的数据中是否包含该配置授权对应的数据,如果包含,则启动该配置授权对应的第一定时器,可以对配置授权对应的数据的传输成功与否的进行监控的目的。
在一种可能的实施方式中,方法还包括:当第一定时器超时或停止时,将UE的传输参数调整为MAC PDU传输失败时UE的传输参数;其中,当HARQ进程重新传输MAC PDU成功、或者HARQ进程传输下一个MAC PDU成功时,第一定时器停止。
本申请该实施例,在第一定时器超时或停止时,恢复UE的传输参数为传输失败的参数,可以提高资源的有效利用,避免造成不必要的资源浪费。
在一种可能的实施方式中,判断MAC PDU传输失败的条件包括如下条件中的至少一项:HARQ进程被基站授权重传;HARQ进程被CS-RNTI加扰的DCI调度授权重传;HARQ进程传输MAC PDU的授权被降低优先级;HARQ进程传输MAC PDU的授权介于测量间隔内;HARQ进程对应的LBT失败;HARQ进程关联的配置授权定时器超时;HARQ进程关联的配置授权定时器超时,且未收到HARQ进程对应的ACK信息;HARQ进程关联的配置授权重传定时器超时;收到MAC PDU对应的NACK信息。
本申请该实施例,可以通过上述多个条件及时的判断出HARQ进程是否成功传输MAC PDU,从而实现对业务数据的传输情况的及时监控。
第二方面,本申请实施例还提供一种UE传输参数调整装置,该装置包括:接收模块,用于接收定时器配置信息;定时器配置信息由与UE通信的基站下发;定时器配置信息用于配置第一定时器;判断模块,用于当HARQ进程传输MAC PDU失败时,判断MAC PDU中包含第一定时器关联的数据包,启动第一定时器;调整模块,用于在第一定时器运行时,调整UE的传输参数。
在一种可能的实施方式中,定时器配置信息还用于配置第二定时器;判断模块具体用于:在第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,第二定时器在HARQ进程传输MAC PDU启动;判断MAC PDU中包含第一定时器关联的数据包。
在一种可能的实施方式中,判断模块还具体用于:采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数;当次数超过计数器的计数门限时,启动第一定时器;计数器由基站配置。
在一种可能的实施方式中,定时器配置信息还包括第二定时器;当HARQ进程传输MAC PDU失败时,判断MAC PDU中包含第一定时器关联的数据包包括:在第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,第二定时器在HARQ进程传输MAC PDU启动;启动第一定时器包括:采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数;当次数超过计数器的计数门限时,启动第一定时器;计数器由基站配置。
在一种可能的实施方式中,定时器配置信息包括:逻辑信道配置中的定时器配置信息;逻辑信道配置中的定时器配置信息用于为逻辑信道配置第一定时器;判断模块具体用于:判断MAC PDU中包含配置了第一定时器的逻辑信道关联的数据包,启动逻辑信道对应的第一定时器;调整模块具体用于:调整逻辑信道的配置参数、调整逻辑信道关联的PDCP实体的配置参数、和调整逻辑信道关联的RLC实体的配置参数中的至少一种。
在一种可能的实施方式中,定时器配置信息包括:RLC实体配置中的定时器配置信息;RLC实体配置中的定时器配置信息用于为RLC实体配置第一定时器;判断模块具体用于:判断MAC PDU中包含配置了第一定时器的RLC实体关联的数据包,启动RLC实体对应的第一定时器;调整模块具体用于:调整RLC实体的配置参数、调整RLC实体关联的PDCP实体的配置参数、和调整RLC实体关联的逻辑信道的配置参数中的至少一种。
在一种可能的实施方式中,定时器配置信息包括:PDCP实体配置中的定时器配置信息;PDCP实体配置中的定时器配置信息用于为PDCP实体配置第一定时器;判断模块具体用于:判断MAC PDU中包含配置了第一定时器的PDCP实体关联的数据包,启动PDCP实体对应的第一定时器;调整模块具体用于:调整PDCP实体的配置参数、激活PDCP实体关联的多个RLC实体、切换PDCP实体关联的RLC实体、调整PDCP实体关联的逻辑信道的配置参数、和调整PDCP实体关联的RLC实体的配置参数中的至少一种。
在一种可能的实施方式中,定时器配置信息包括:配置授权中的定时器配置信息;配置授权中的定时器配置信息用于配置配置授权对应的第一定时器;判断模块具体用 于:判断MAC PDU中包含配置了第一定时器的配置授权关联的数据包,启动配置授权对应的第一定时器;调整模块具体用于:调整配置授权关联的逻辑信道的配置参数、调整配置授权关联的RLC实体的配置参数、调整配置授权关联的PDCP实体的配置参数、激活配置授权关联的PDCP实体的多个RLC实体、和切换配置授权关联的PDCP实体的RLC实体中的至少一种。
在一种可能的实施方式中,调整模块还用于:当第一定时器超时或停止时,将UE的传输参数调整为MAC PDU传输失败时UE的传输参数;其中,当HARQ进程重新传输MAC PDU成功、或者HARQ进程传输下一个MAC PDU成功时,第一定时器停止。
在一种可能的实施方式中,判断MAC PDU传输失败的条件包括如下条件中的至少一项:HARQ进程被基站授权重传;HARQ进程被CS-RNTI加扰的DCI调度授权重传;HARQ进程传输MAC PDU的授权被降低优先级;HARQ进程传输MAC PDU的授权介于测量间隔内;HARQ进程对应的LBT失败;HARQ进程关联的配置授权定时器超时;HARQ进程关联的配置授权定时器超时,且未收到HARQ进程对应的ACK信息;HARQ进程关联的配置授权重传定时器超时;收到MAC PDU对应的NACK信息。
第三方面,本申请实施例还提供一种计算设备,该计算设备包括存储器和处理器,存储器存储计算机指令;处理器执行计算机指令时,实现上述第一方面中任一项的实施方式的方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序代码,当计算机程序代码被计算设备执行时,计算设备执行上述第一方面中任一项的实施方式的方法。
附图说明
图1是本申请提供的一种支持TSN的5G通信系统结构示意图;
图2是本申请提供的一种生存时间示意图;
图3是本申请提供的一种无线通信系统中的协议栈架构示意图;
图4是本申请实施例提供的一种UE传输参数调整方法的流程图;
图5是本申请提供的一种PDCP duplication方案结构示意图;
图6是本申请提供的另一种PDCP duplication方案结构示意图;
图7是本申请实施例提供的另一种UE传输参数调整方法的流程图;
图8是本申请实施例提供的另一种UE传输参数调整方法的流程图;
图9是本申请实施例提供的另一种UE传输参数调整方法的流程图;
图10是本申请实施例提供的一种UE传输参数调整装置的结构示意图;
图11是本申请实施例提供的一种计算设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本申请实施例中的技术方案进行描述。
在本申请实施例的描述中,“示例性的”、“例如”或者“举例来说”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”、“例如”或者“举例来说”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“例如”或者“举例来说”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,同时存在A和B这三种情况。另外,除非另有说明,术语“多个”的含义是指两个或两个以上。例如,多个系统是指两个或两个以上的系统,多个屏幕终端是指两个或两个以上的屏幕终端。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例以时延敏感网络(time sensitive network,TSN)为例进行介绍。TSN在工业制造等场景中作为有线的工业物联网(industrial internet of things,IIoT)用于产线控制。由于采用有线方式存在一些固有的缺陷,如线缆部署成本较高、存在安全风险、灵活性较低等。因此,通常在TSN网络的最后一跳采用无线方式,解决有线方式的固有缺陷,例如,目前第三代合作伙伴计划(3rd generation partnership project,3GPP)已支持通过5G系统(5G systerm,5GS)支持TSN网络的部署方案。
图1是本申请提供的一种支持TSN网络的5G通信系统结构示意图。如图1所示,该系统包括5G系统(5GS)、IIoT设备(Devices)、应用网络(Application Function,AF)和数据网络(Data Network),其中,5GS分别连接Devices、Data Network和AF。Devices可以是采用3GPP的接入网技术的设备,也可以是非3GPP接入网技术(如常见的Wlan技术和CDMA技术)的设备(non-3GPP Devices)。
在5GS中,接入网设备[(Radio)access network,(R)AN],(R)AN可以是3GPP的接入网,如果以我们最常见的手机上网来说的话,(R)AN节点就是基站。
接入和移动性管理功能实体(Access and mobility management function,AMF),是RAN信令接口(N2)的终结点,NAS(N1)信令的终结点,负责NAS消息的加密和完保、负责注册、接入、移动性、鉴权、透传短信等功能,此外在和EPS网络交互时还负责Eps Bearer Id的分配。
会话管理功能实体(Session management function,SMF),SMF的主要功能有:NAS消息的SM消息的终结点;会话的建立、修改、释放;UE IP的分配管理;DHCP功能:ARP代理或IPv6邻居请求代理(Ethnet PDU场景下);为一个会话选择和控制UPF;计费数据的收集以及支持计费接口;决定一个会话的SSC模式;下行数据指示。其中,SMF通过N11信令接口将业务的生存时间发送给AMF,AMF通过N1和N2分别发送给UE和RAN。
用户面功能实体(User plane function,UPF),最主要的功能是负责数据包的路由转发、Qos流映射。
策略控制功能实体(policy control function,PCF);支持统一的策略框架去管理 网络行为,提供策略规则给网络实体去实施执行,访问统一数据仓库(UDR)的订阅信息,PCF只能访问和其相同PLMN的NDR。
网络暴露功能实体(Network exposure function,NEF),3GPP的网元都是通过NEF将其能力暴露给其它网元的;NEF将相关信息存储到NDR中、也可以从NDR获取相关的信息,NEF只能访问和其相同PLMN的NDR;NEF提供相应的安全保障来保证外部应用到3GPP网络的安全;3gpp内部和外部相关信息的转换,例如AF-Service-Identifier和5G核心网内部的DNN、S-NSSAI等的转换;NEF可以通过访问NDR获取到其它网元的相关信息。
统一数据管理器(Unified data management,UDM),负责的主要功能有:产生3GPP鉴权证书/鉴权参数;存储和管理5G系统的永久性用户ID(SUPI);订阅信息管理;MT-SMS递交;SMS管理;用户的服务网元注册管理(比如当前为终端提供业务的AMF、SMF等)。
TSN网络可以将5GS看成是一个TSN的桥接设备,各类工业应用的数据包可以通过5GS进行上行/下行发送。例如,工业应用数据可以由数据网络(Data Network)发送至用户端口UPF,由UPF发送到连接了工业设备的用户设备(user equipment,UE),并由UE给所连接的工业设备(Devices);同样的,工业数据也可以由工业设备通过UE发送至数据网络。
在5GS内,UE和RAN之间通过Uu接口进行数据传输,基站和核心网数据面节点UPF通过N3接口/N3隧道进行数据传输。可选地,工业设备可以是传感器、操作臂等。当空口(Uu接口)传输发生丢包时,当前传输的TSN业务则会进入生存时间。如图2所示的生存时间示意图,在下行传输时,数据网络控制器controller周期性产生数据包(如packet1~5)并发送给IIoT设备,IIoT设备的生存时间(survival time)等于数据包产生的周期,即IIoT设备不允许连续丢失2个数据包;数据包3(packet3)在传输过程中发生丢包情况,IIoT设备在期望的时间点没有收到该数据包,则应用层进入生存时间,如果在生存时间内收到新的数据包,则IIoT设备继续正常工作,否则生存时间超时,且IIoT设备出现中断。
基于上述存在的问题,本申请提供一种UE传输参数调整方法,在UE传输的数据包失败时,对当前UE配置的传输参数进行调整,以提高UE的传输可靠性,避免生存时间超时,影响设备工作。
在介绍本申请实施例提供的UE传输参数调整方法之前,结合图3示出的无线通信系统中的协议栈架构介绍UE对待发送的数据包的处理流程。如图3所示,该架构依次包括业务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层,无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层。其中,来自应用层的数据包依次经过SDAP层、PDCP层、RLC层和MAC层的处理,然后由物理层进行下一步封装获得比特流,最后通过空口传输发送到接收端设备的相应层。
具体地,SDAP层的SDAP实体接收来自应用层的一个业务的数据包,SDAP实体对该数据包进行封装,加入SDAP包头,并将数据包映射到PDCP层的PDCP实体;PDCP实体接收经过SDAP实体封装的数据包,对数据进行头压缩和解压缩,加密和 解密,以及对数据的完整性保护和完整性校验等,从而进一步完成数据传输到RLC层的RLC实体;
继续参阅图3,SDAP层的SDAP实体接收来自应用层的数据包,其中,数据包可以是来自一个业务的数据包,在无线网络侧,一个业务有不同的体现形式,可以是流(quality of service flow,QoS flow)的形式,还可以是映射到一个PDCP实体形成的承载的形式,也可以体现为逻辑信道的形式。图3中的右边部分示出了一个业务对应一个逻辑信道的情况,不同业务可以对应不同的逻辑信道;左边部分示出了业务体现为QoS flow的情况,多个QoS flow在SDAP层映射到不同的PDCP实体。可选地,该业务可以是前述TSN网络的业务。
图3所示协议栈架构对数据包的具体处理如下。
SDAP实体对数据包进行封装,加入SDAP包头,并将数据包映射到PDCP层的PDCP实体。如图3所示,PDCP实体接收经过SDAP实体封装的数据包,对数据进行头压缩和解压缩,加密和解密,以及对数据的完整性保护、完整性校验和对底层服务数据单元SDU(service data unit,SDU)重复性检测等,从而进一步完成数据传输到RLC层的RLC实体。RLC实体接收来自PDCP实体的数据包,并进行数据传输,RLC实体可以完成服务数据单元RLC SDU的分段、重组,以及RLC SDU的重复性检测和协议错误检测等。另外,需要说明的是,协议数据单元PDU(protocol data unit,PDU)是对等层之间传递的数据单元,例如RLC PDU就是指发送端的RLC层和接收端的RLC层之间交互的数据单元;SDU是服务数据单元,又叫业务数据单元,是指定层的用户服务的数据集,传送到接收方的同一协议层时数据没有发生变化,然后下发给下层之后,下层将SDU封装在PDU中发送出去,SDU是从高层协议来的信息单元传送到低层协议,第N层的SDU和上一层的PDU是一一对应的。一般而言,在发送方,将用户递交的SDU加上协议控制信息(protocol control information,PCI),封装成PDU;在接收方去掉PCI完成PDU的解封装,还原成SDU送交接收方用户。此外,如果下层通道的带宽不能满足传递SDU的需要,就需要将一个SDU分成多段,分别封装成PDU发送出去,即SDU的分段,在接收方再将这些PDU解封装后重新装配成SDU。
RLC层和MAC层之间的通道叫做逻辑信道(logical channel,LCH),逻辑信道类型集合为MAC实体提供不同类型的数据传输业务,且逻辑信道LCH在PDCP层,RLC层,MAC层可以被分辩出来。MAC实体在逻辑信道上提供数据传送业务,接收来自RLC实体传输的数据包,实现逻辑信道到传输信道的映射。MAC实体接收来自多个逻辑信道的服务数据单元MAC SDU,并完成MAC SDU的复用和解复用,MAC实体的协议数据单元MAC PDU是MAC实体内部传递的数据单元。除此之外,MAC实体还能完成针对同一个接收端设备不同逻辑信道之间的优先级管理(logic channels priority,LCP),和通过动态调度进行不同接收端设备之间的优先级管理,以及基于混合自动重传请求(hybrid automatic repeat request,HARQ)机制的错误纠正功能等。所谓LCP,就是MAC实体根据传输资源的大小和各逻辑信道的优先级,将资源分配给不同的逻辑信道的过程。LCP过程结束后,每个逻辑信道都会被分配到大于等于0的一块资源,在现有协议中,每个逻辑信道被分配了资源后,会按序将数据包放置到被分配的资源上。
MAC层和物理层之间有传输信道,物理层以传输信道的形式向高层提供数据服务,除此之外,物理层对来自上层传输信道的数据以及物理层的控制信息,按照循环冗余校验码校验、码块分割、信道编码、速率匹配和码块连接等流程处理,然后在进行加扰、调制、层映射、预编码等操作,最后通过空口发送出去。
图4是本申请实施例提供的一种UE传输参数调整方法的流程图。该方法应用于UE设备中,UE可以是指向用户提供语音和/或数据连通性的设备,如移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,也可以是能够进行sidelink通信的设备,如车载终端,或者能进行V2X通信的手持终端等。如图1所示,该方法包括如下的步骤S401~步骤S403.
在步骤S401中,接收与UE通信的基站下发的定时器配置信息。
本实施例中,基站被配置为,在调度UE传输数据业务时,会向UE下发PDCP实体的配置信息、RLC实体的配置信息、逻辑信道的配置信息,还会向UE下发授权配置信息,其中,基站下发的配置信息中包括定时器配置信息,定时器配置信息用于配置第一定时器,定时器配置信息中具体包括了第一定时器的定时长度,具体地,基站可以在配置信息的信元中加入定时长度的信息。
可选地,授权配置信息可以是grant配置信息,还可以是Configured Grant配置信息。
可选地,第一定时器可以包括:逻辑信道对应的定时器、RLC实体对应的定时器、PDCP实体对应的定时器或配置授权对应的定时器。其中,基站在为UE配置逻辑信道、RLC实体、PDCP实体或配置授权时,在相应的逻辑信道、RLC实体、PDCP实体或配置授权的配置信息中增加定时器配置信息。第一定时器的定时长度可以是任意的时间长度,例如,在本申请实施例中,可以将第一定时器的定时长度设置为小于或等于生存时间的长度。当第一定时器为MAC PDU关联的逻辑信道或配置授权对应的定时器时,MAC实体维护第一定时器;当第一定时器为RLC实体或PDCP实体对应的定时器时,RLC实体或PDCP实体维护该定时器,可选的,也可以由MAC实体维护RLC实体或PDCP实体对应的定时器。
其中,基站(或者接入网设备)是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),例如可以是NR gNB,也可以是LTE eNB等各种类型的基站。
在步骤S402中,MAC实体判断HARQ进程是否成功传输MAC PDU,MAC实体确定HARQ进程传输MAC PDU失败时,MAC实体判断MAC PDU中是否包含第一定时器关联的数据包。
本实施例中,以UE传输上行业务为例,UE在接收到基站的授权(例如grant和Configured Grant)时,UE的HARQ实体发送来自MAC实体的MAC PDU,一个HARQ实体可以包括多个HARQ进程,HARQ进程将MAC PDU封装后向基站传输。在一个实施例中,MAC PDU由MAC实体根据逻辑信道传输过来的RLC PDU封装获得,其中,RLC PDU由RLC实体根据PDCP实体传输过来的PDCP PDU封装获得。
具体地,在MAC实体通过HARQ进程传输MAC PDU之后,判断该MAC PDU是否传输成功。其中,可以通过设置的判断条件判断MAC PDU是否被HARQ进程成 功传输。可选地,判断条件可以包括如下的一项或多项:
HARQ进程被基站调度授权grant进行MAC PDU重传,其中,授权指的是基站为调度UE的数据传输而下发的指示,即HARQ实体在接收到授权后,HARQ进程会根据授权信息传输MAC PDU;
HARQ进程被无线网络临时标识(radio network tempory identity,CS-RNTI)加扰的下行控制信息(Downlink Control Information,DCI)调度授权重传,其中,该HARQ进程是可用于在配置授权(configured grant,CG)上传输的HARQ进程,CS-RNTI是UE唯一标识,用于下行链路的半持久调度或上行授权配置,DCI是由下行物理控制信道PDCCH承载的信息,;
HARQ进程的授权被低优先级(de-prioritized)或者遇到测量间隔(measurement gap),其中,在UE被基站调度了更高优先级的grant传输、或有更高优先级的PUCCH需要传输时,且更高优先级的grant/物理上行链路控制信道(physical uplink control channel,PUCCH)与当前HARQ进程的grant交叠时,当前HARQ进程的grant被低优先级;
HARQ进程在授权grant上的传输对应的先听后发过程(listen before talk,LBT)失败,其中,HARQ进程在非授权频谱上传输,UE需要先执行LBT过程,LBT失败则不能进行传输;
HARQ进程关联的配置授权CG定时器超时;
HARQ进程关联的配置授权定时器超时,且未收到HARQ进程对应的ACK信息,其中,ACK指示是基站在收到数据包时下发的确认指示,MAC实体没有接收到HARQ进程对应的ACK指示,即认为该HARQ进程传输MAC PDU失败,可以理解的,配置授权定时器与配置授权对应的第一定时器作用不同,即配置授权定时器启动时,并不会调整传输参数,此外,配置授权定时器超时的时候,UE不再向基站传输该MAC PDU,而是会用后续配置授权资源传输新的MAC PDU;
HARQ进程的配置授权重传定时器超时,其中,配置授权重传定时器是控制UE利用配置授权资源对MAC PDU进行重传的定时器,具体的,在配置授权重传定时器运行时,UE不能利用配置授权资源进行MAC PDU的重传;
收到HARQ进程对应的NACK指示,其中,基站在没有收到数据包或解析数据包失败时,会向UE下发NACK指示,MAC实体没有接收HARQ进程对应的ACK指示或接收到HARQ进程对应的NACK指示时,即可确定HARQ进程传输MAC PDU失败。
在一个实施例中,MAC实体判断MAC PDU中是否包含第一定时器关联的数据包可以包括:MAC实体通过判断MAC PDU是否包含配置了第一定时器的逻辑信道(还可以是PDCP实体、RLC实体或者配置授权)的关联数据包;还可以包括:MAC实体根据HARQ进程记录的逻辑信道(还可以是PDCP实体或RLC实体)信息启动逻辑信道(还可以是PDCP实体或RLC实体)关联的第一定时器,其中,MAC实体在组MAC PDU时,如果从配置了第一定时器的逻辑信道(还可以是RLC实体或PDCP实体)获取到了数据包,则HARQ进程记录相应的逻辑信道(还可以是PDCP实体或RLC实体)信息。
在步骤S403中,当传输失败的MAC PDU中包含第一定时器关联的数据包时,启动第一定时器。
具体地,在传输失败时,MAC实体判断出MAC PDU中包含了第一定时器关联的数据包时,则启动第一定时器,例如,基站为逻辑信道配置了第一定时器,如果MAC PDU中包含有配置了第一定时器的逻辑信道传输的数据包,则启动基站为逻辑信道配置的第一定时器。还例如,基站为RLC实体和PDCP实体配置了第一定时器的示例,如果MAC实体确定MAC PDU中包含有配置了第一定时器的RLC实体或PDCP实体的数据包,则MAC实体启动RLC实体或PDCP实体配置的第一定时器,或者MAC实体指示RLC实体或PDCP实体启动基站为RLC实体或PDCP实体的第一定时器。还例如,基站为配置授权配置了第一定时器,如果MAC实体确定MAC PDU中包含有配置了第一定时器的配置授权对应的数据包,MAC实体则启动配置授权对应的第一定时器。
在步骤S404中,在所述第一定时器运行时,调整UE的传输参数。
可选地,当基站为逻辑信道、RLC实体、PDCP实体或配置授权配置了第一定时器时,UE的传输参数可以包括:MAC PDU包含的第一定时器关联的数据包对应的PDCP实体、RLC实体、逻辑信道的配置参数,还可以包括PDCP实体的传输路径,其中,PDCP实体的传输路径根据PDCP实体关联的RLC实体确定。
在一个实施例中,当MAC PDU中包含配置了第一定时器的逻辑信道关联的数据包时,在第一定时器运行时,可通过调整逻辑信道的配置参数、调整逻辑信道关联的PDCP实体的配置参数、或者调整逻辑信道关联的RLC实体的配置参数,提高UE的传输可靠性。
在一个实施例中,当MAC PDU中包含配置了第一定时器的RLC实体关联的数据包时,可通过调整RLC实体的配置参数、调整RLC实体关联的PDCP实体的配置参数、或者调整RLC实体关联的逻辑信道的配置参数,提高UE的传输可靠性。
在一个实施例中,当MAC PDU中包含配置了第一定时器的PDCP实体关联的数据包时,在第一定时器运行时,可通过调整该PDCP实体的配置参数、激活该PDCP实体关联的多个RLC实体、切换该PDCP实体关联的RLC实体、调整该PDCP实体关联的逻辑信道的配置参数、或者调整该PDCP实体关联的RLC实体的配置参数来提高UE的传输可靠性;其中,激活PDCP实体对应的多个RLC实体即可获得该PDCP实体的多个传输路径,多个RLC实体中每个RLC实体对应一个传输路径,多个RLC实体由基站采用PDCP duplication重复机制配置。可以理解的,在NR R15和LTE R15标准中,为了支持业务的高可靠低时延需求,引入了PDCP duplication方案。在PDCP duplication方案中,UE针对于一个数据无线承载DRB会建立一个PDCP实体,该PDCP实体与两个RLC实体相连接,这两个RLC实体分别通过逻辑信道(LCH)关联到MAC实体。如图5所示,在NR R15标准中,与PDCP实体相关联的“一个RLC实体+一个LCH”被称之为“一条腿”,一个DRB在配置duplication功能时,只能配置两条腿。此外,在R15中,PDCP duplication机制在CA和DC的基础上,可以分为CA duplication和DC duplication两种架构(CA表示载波聚合,DC表示双链接)。为支持IIoT场景下工业自动化等业务的超高可靠(10-9误包率)和超低时延(0.5ms)的 要求,NR R16标准支持更多腿的duplication机制,目前一个RB最多支持配置4条腿,如下图6所示为配置4条腿的duplication示意图。其中,图5图6中的“一条腿”即为PDCP实体的一条传输路径,当需要调整PDCP实体的传输路径时,可以激活PDCP实体预先配置的多个RLC实体,从而获得多个传输路径。
在一个实施例中,当MAC PDU中包含配置了第一定时器的配置授权关联的数据包时,可通过调整该配置授权关联的逻辑信道的配置参数、调整该配置授权关联的RLC实体的配置参数、调整该配置授权关联的PDCP实体的配置参数、激活该配置授权关联的PDCP实体的多个RLC实体、或者切换该配置授权关联的PDCP实体的RLC实体来提高传输可靠性。
可以理解的,第一定时器运行时,该逻辑信道(还可以是RLC实体、PDCP实体或配置授权)对应的业务数据以高可靠性方式进行传输,例如,当UE该逻辑信道对应的第一定时器时,MAC实体指示该逻辑信道对应的PDCP实体和/或RLC实体提高传输可靠性;当第一定时器超时,该逻辑信道的数据恢复正常传输可靠性,例如MAC实体指示该逻辑信道对应的PDCP实体和/或RLC实体恢复正常传输可靠性。可选的,当该逻辑信道对应的第一定时器运行时,如果UE确定该逻辑信道的下一个数据包被成功传输(例如UE在该业务的下一个传输周期内的传输被ACK确认,或未收到重传调度,即可确认下一个数据包被成功传输),则停止第一定时器并恢复正常传输可靠性,例如MAC实体指示该逻辑信道对应的PDCP实体和/或RLC实体恢复正常传输可靠性。
可选地,当第一定时器超时或停止时,将UE的传输参数调整为MAC PDU传输失败时UE的传输参数;其中,当HARQ进程重新传输MAC PDU成功、或者HARQ进程传输下一个MAC PDU成功时,停止第一定时器。
本申请的实施例,在数据传输失败时,通过启动和维护逻辑信道、RLC实体、PDCP实体或配置授权对应的定时器,然后根据定时器的状态调整UE的传输参数,可以提高UE的传输可靠性,避免业务的生存时间超时,在发生传输失败时才利用高可靠方式传输,可以实现资源的有效利用。
可以理解的,上述图4所示的方法实施例中的PDCP duplication机制的实施需要依赖于载波聚合技术或者双连接架构,使得被复制的PDCP PDU被组到不同的MAC PDU中,并通过不同的物理资源进行传输。而实际部署中存在只有单载波可用、或者用户设备无法支持双连接架构的场景。此时,为了在单载波上实现PDCP duplication机制,则需要保障复制后的PDCP PDU通过单载波调度的不同物理资源进行传输。一种实现方式是预先配置RLC实体或者逻辑信道与底层的物理传输资源之间的映射关系,一个RLC实体或者逻辑信道的数据只能在有关联关系的物理资源上传输。例如,一个逻辑信道映射到一个小区或者下行载波的CORESET(还可以是search space),该逻辑信道的数据只能通过该小区或下行载波对应的CORESET上传输的DCI所分配的上行物理资源进行传输。又例如,在逻辑信道配置时配置BWP信息,该逻辑信道的数据只能通过关联的BWP上的上行物理资源进行传输。在其他实施例中,可以将上述基于单载波实现PDCP duplication机制的方式应用于图4所示方法实施例之外的其他场景中,本申请不限定此方式的具体应用场景。
图7是本申请提供的另一种UE传输参数调整方法的流程图。图7所示方法适用于允许UE可以出现连续传输失败的场景,如图7所示,该方法包括如下的步骤S701~步骤S704。
在步骤S701中,接收与UE通信的基站下发的定时器配置信息。
本实施例中,该步骤的具体介绍参见图4所示方法实施例中的步骤S401的描述,此处不再赘述。
在步骤S702中,MAC实体判断HARQ进程是否成功传输MAC PDU,MAC实体确定HARQ进程传输MAC PDU失败时,MAC实体判断MAC PDU中是否包含第一定时器关联的数据包。
本实施例中,该步骤的具体介绍参见图4所示方法实施例中的步骤S402中的描述,此处不再赘述。
在步骤S703中,当传输失败的MAC PDU中包含第一定时器关联的数据包,且采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数,MAC实体根据计数器的计数次数,确定是否启动第一定时器。
本实施例中,计数器用于对HARQ进程传输失败的次数进行统计,由与UE通信的基站配置,可以包括基站在逻辑信道、RLC实体、PDCP实体或配置授权配置中配置的计数器。由MAC实体控制计数器的启动和维护,从而获得计数器的计数次数。
具体地,在HARQ进程在针对一个用于新传的授权资源或配置授权资源组MAC PDU时,或者HARQ进程在用于新传的授权资源或配置授权资源上传输所组MAC PDU时,UE将计数器的计数次数count初始化为0。当HARQ进程传输失败时,计数器的计数次数count加1,其中,基站在配置计数器时会设置计数门限值COUNT。当计数器获得的次数count=COUNT时,MAC实体启动第一定时器,或者MAC实体指示RLC实体或PDCP实体启动第一定时器。
关于第一定时器的介绍参照图4所示的介绍,此处不再赘述。
在步骤S704中,在第一定时器运行时,调整UE的传输参数。
本实施例中,该步骤的介绍参见图4所示方法的步骤S404中的介绍,此处不再赘述。
本申请该实施例,UE通过计数器统计数据传输失败的次数,当达到设定的门限值时启动第一定时器,然后根据定时器的状态控制UE的传输参数,可以实现在发生指定次数连续HARQ传输失败时才利用高可靠方式传输,从而实现资源的有效利用,同时避免业务的生存时间超时。该实施例适用于时延要求不是极度苛刻、允许数次HARQ重传的业务。
图8是本申请实施例提供的另一种UE传输参数调整方法的流程图。图8所示方法适用于生存时间为多个传输周期的场景,如图8所示,该方法包括如下的步骤S801~步骤S804。
在步骤S801中,接收与UE通信的基站下发的定时器配置信息。
本实施例中,该步骤的具体介绍参见图4所示方法实施例中的步骤S401的描述,此处不再赘述。
在步骤S802中,在第二定时器运行时,MAC实体判断HARQ进程是否成功传输 MAC PDU,MAC实体确定HARQ进程传输MAC PDU失败时,MAC实体判断MAC PDU中是否包含第一定时器关联的数据包。
本实施例中,MAC实体判断HARQ是否成功传输MAC PDU的具体介绍参见图4所示方法实施例中的步骤S402中的描述,此处不再赘述。本实施例中,第二定时器的启动时刻可以是传输MAC PDU之前的任意时刻或传输MAC PDU的时刻,例如可以是HARQ实体针对于用于新传的授权资源或配置授权资源进行MAC PDU组包时启动第二定时器。可选的,启动时刻可以由基站为UE配置,例如基站配置第二定时器的启动时刻t0,其中t0可以是具体的一个UTC时间,或GPS时间,或由SFN/slot/subframe/symbol中的至少一项表示的时刻信息;对于UE来讲,可以根据UTC时间,或GPS时间,或由SFN/slot/subframe/symbol中的至少一项表示的时刻信息判断是否要启动第二定时器。同样地,第二定时器可以由基站在逻辑信道、RLC实体、PDCP实体或配置授权的配置信息中进行配置。其中,当第二定时器超时之后,第二定时器则自动重启,直至UE停止运行第二定时器。
可选地,第二定时器的定时长度大于UE一个传输周期的长度,第二定时器的定时长度小于生存时间,具体取值可根据实际场景的需求设定。
本实施例中,MAC实体判断MAC PDU是否成功传输和潘丹MACPDU是否包含第一定时器关联的数据包的介绍参见步骤S402中的描述,此处不再赘述。
在步骤S803中,当传输失败的MAC PDU中包含第一定时器关联的数据包时,启动第一定时器。
本实施例中,在第二定时器运行且当MAC PDU传输失败时,启动第一定时器。
在步骤S804中,在所述第一定时器运行时,调整UE的传输参数。
本实施例中,本步骤的具体描述同步骤S404中的描述,此处不再赘述。
本申请上述实施例,采用第二定时器和第一定时器双定时器,传输数据时,先启动第二定时器,然后根据MAC PDU的传输情况启动第一定时器,在第一定时器运行时,才调整UE的传输参数,提高传输可靠性,该方法可以适用于基站对UE传输业务的时延要求不高的场景中,允许UE存在丢包时段。例如生存时间为3个传输周期时,将第二定时器的定时长度设置为2个传输周期,可以适用于应用允许UE丢失至少两个消息的场景,无需每次在空口传输发生丢包即立即提高传输可靠性而进行过度保护。
图9是本申请实施例提供的另一种UE传输参数调整方法的流程图。同图8所示的方法实施例,图9所示的方法实施例适用于允许UE可以出现连续传输失败的场景。如图9所示,该方法包括如下的步骤S901~步骤S904。
在步骤S901中,接收与UE通信的基站下发的定时器配置信息。
本实施例中,本步骤的介绍参见步骤S701的描述,此处不再赘述。
在步骤S902中,在第二定时器运行时,MAC实体判断HARQ进程是否成功传输MAC PDU,MAC实体确定HARQ进程传输MAC PDU失败时,MAC实体判断MAC PDU中是否包含第一定时器关联的数据包。
本实施例中,基站可以为UE的逻辑信道、PDCP实体、RLC实体配置或配置授权配置第二定时器的定时时长值。MAC实体判断传输失败的过程参见步骤S702的描 述,此处不再赘述。
在步骤S903中,当传输失败的MAC PDU中包含第一定时器关联的数据包,且采用计数器统计HARQ进程传输第一定时器关联的数据包失败的次数,MAC实体根据计数器的计数次数,确定是否启动第一定时器。
本实施例中,基站可以为UE的逻辑信道、PDCP实体、RLC实体配置或配置授权配置计数器count的门限值(COUNT),其中,逻辑信道、PDCP实体、RLC实体或配置授权关联的count初始化为0。在第二定时器运行过程中,如果判断出逻辑信道、PDCP实体、RLC实体或配置授权关联的数据包传输失败时,则逻辑信道、PDCP实体、RLC实体或配置授权对应的count加1,当count=COUNT时,UE启动/重启第一定时器;可选的,如果第二定时器运行过程中,收到MAC PDU对应的ACK信息,可以将相应的count重置为0。
在步骤S904中,在第一定时器运行时,调整UE的传输参数。
本实施例中,本步骤的具体介绍参见步骤S404的描述,此处不再赘述。
本申请该实施例,通过第二定时器、计数器和第一定时器的多重控制,可以适配生存时间为多个传输周期的场景。在该场景中,当UE在第二定时器内发生设定次数的传输失败时,才启动第一定时器,并在第一定时器运行时,调整传输参数,例如生存时间=3个周期,即允许最多连续丢失两个消息,则无需每次在空口发生丢包即立即提高传输可靠性而进行过度保护,可以有效利用空口资源,同时避免业务的生存时间超时。
本申请图7~图9所示的方法实施例,与图4所示方法示例性的步骤存在部分相似的步骤,因此,图7~图9所示的步骤的具体介绍可以图4所示步骤的介绍相结合来实施。例如,在一个实施例中,可以依据图4所示步骤的介绍与图7~图9中任一方法实施例相结合为一个新的实施例。
基于上述方法实施例,本申请实施例还提供一种UE传输参数调整装置。该装置100用于执行上述多个方法实施例的步骤,如图10所示,该装置100包括:接收模块101、判断模块102和调整模块103。可以理解的,图10所示的结构划分仅仅是该装置100的一种示例,本申请不限定装置100的具体结构划分。在一种实施例中,还可以将其中一个模块拆分为多个模块来实施,也可以将多个模块合并为一个模块来实施。
其中,接收模块101,用于接收基站配置的定时器配置信息,定时器配置信息用于配置第一定时器。判断模块102用于判断HARQ进程传输情况,然后在传输失败时,判断PDU中包含了第一定时器关联的数据包,然后启动第一定时器;在启动第一定时器时,可以累计HARQ传输失败的次数来确定启动,即当计数器累计的次数达到设定值,再启动第一定时器;还可以在传输之前启动第二定时器,用计数器统计第二定时器运行内HARQ进程传输失败的次数,同样当统计的次数达到设定值,启动第一定时器,其中,当第二定时器超时时,第二定时器重新启动,同时计数器统计的次数也归零,重新统计次数。调整模块103用于在第一定时器运行时,调整UE的传输参数,以提高其传输可靠性。
基于上述方法实施例,本申请还提供一种计算设备200。该计算设备用于实现上述方法实施例的方法步骤。如图11所示,该计算设备200包括存储器201、处理器202、 通信接口203以及总线204。其中,存储器201、处理器202、通信接口203通过总线204实现彼此之间的通信连接。
存储器201可以是只读存储器(read only memory,ROM),随机存取存储器(random access memory,RAM),硬盘,快闪存储器或其任意组合。存储器201可以存储程序或计算机指令,当存储器401中存储的程序被处理器202执行时,处理器202和通信接口203用于调整UE参数调整的步骤。存储器203还可以存储数据,例如为UE配置的计数器的门限值、历史的计数次数等。
处理器202可以采用中央处理器(central processing unit,CPU),应用专用集成电路(application specific integrated circuit,ASIC),GPU或其任意组合。处理器202可以包括一个或多个芯片。处理器202可以包括AI加速器,例如神经网络处理器(neural processing unit,NPU)。
通信接口203使用例如收发器一类的收发模块,来实现计算设备200与其他设备或通信网络之间的通信。例如,可以通过通信接口203获取数据。
总线204可包括在计算设备200各个部件(例如,存储器201、处理器202、通信接口203)之间传送信息的通路。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能 够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (22)

  1. 一种UE传输参数调整方法,其特征在于,所述方法包括:
    接收定时器配置信息;所述定时器配置信息由与UE通信的基站下发;所述定时器配置信息用于配置第一定时器;
    当HARQ进程传输MAC PDU失败时,判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器;
    在所述第一定时器运行时,调整所述UE的传输参数。
  2. 根据权利要求1所述的方法,其特征在于,所述定时器配置信息还用于配置第二定时器;
    所述当HARQ进程传输MAC PDU失败时,判断所述MAC PDU中包含所述第一定时器关联的数据包包括:
    在所述第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,所述第二定时器在所述HARQ进程传输所述MAC PDU启动;
    判断所述MAC PDU中包含所述第一定时器关联的数据包。
  3. 根据权利要求1所述的方法,其特征在于,所述启动所述第一定时器包括:
    采用计数器统计所述HARQ进程传输所述第一定时器关联的数据包失败的次数;
    当所述次数超过所述计数器的计数门限时,启动所述第一定时器;所述计数器由所述基站配置。
  4. 根据权利要求1所述的方法,其特征在于,所述定时器配置信息还用于配置第二定时器;
    所述当HARQ进程传输MAC PDU失败时,判断所述MAC PDU中包含所述第一定时器关联的数据包包括:
    在所述第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,所述第二定时器在所述HARQ进程传输所述MAC PDU启动;
    所述启动所述第一定时器包括:
    采用计数器统计所述HARQ进程传输所述第一定时器关联的数据包失败的次数;
    当所述次数超过所述计数器的计数门限时,启动所述第一定时器;所述计数器由所述基站配置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述定时器配置信息包括:逻辑信道配置中的定时器配置信息;所述逻辑信道配置中的定时器配置信息用于为所述逻辑信道配置第一定时器;
    所述判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器包括:判断所述MAC PDU中包含配置了所述第一定时器的逻辑信道关联的数据包,启动所述逻辑信道对应的第一定时器;
    所述调整所述UE的传输参数包括:调整所述逻辑信道的配置参数、调整所述逻辑信道关联的PDCP实体的配置参数、和调整所述逻辑信道关联的RLC实体的配置参数中的至少一种。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述定时器配置信息包括: RLC实体配置中的定时器配置信息;所述RLC实体配置中的定时器配置信息用于为所述RLC实体配置第一定时器;
    所述判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器包括:判断所述MAC PDU中包含配置了所述第一定时器的RLC实体关联的数据包,启动所述RLC实体对应的第一定时器;
    所述调整所述UE的传输参数包括:调整所述RLC实体的配置参数、调整所述RLC实体关联的PDCP实体的配置参数、和调整所述RLC实体关联的逻辑信道的配置参数中的至少一种。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述定时器配置信息包括:PDCP实体配置中的定时器配置信息;所述PDCP实体配置中的定时器配置信息用于为所述PDCP实体配置第一定时器;
    所述判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器包括:判断所述MAC PDU中包含配置了所述第一定时器的PDCP实体关联的数据包,启动所述PDCP实体对应的第一定时器;
    所述调整所述UE的传输参数包括:调整所述PDCP实体的配置参数、激活所述PDCP实体关联的多个RLC实体、切换所述PDCP实体关联的RLC实体、调整所述PDCP实体关联的逻辑信道的配置参数、和调整所述PDCP实体关联的RLC实体的配置参数中的至少一种。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,所述定时器配置信息包括:配置授权中的定时器配置信息;所述配置授权中的定时器配置信息用于配置所述配置授权对应的第一定时器;
    所述判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器包括:判断所述MAC PDU中包含配置了所述第一定时器的配置授权关联的数据包,启动所述配置授权对应的第一定时器;
    所述调整所述UE的传输参数包括:调整所述配置授权关联的逻辑信道的配置参数、调整所述配置授权关联的RLC实体的配置参数、调整所述配置授权关联的PDCP实体的配置参数、激活所述配置授权关联的PDCP实体的多个RLC实体、和切换所述配置授权关联的PDCP实体的RLC实体中的至少一种。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一定时器超时或停止时,将所述UE的传输参数调整为所述MAC PDU传输失败时所述UE的传输参数;其中,当所述HARQ进程重新传输所述MAC PDU成功、或者所述HARQ进程传输下一个MAC PDU成功时,所述第一定时器停止。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,判断所述MAC PDU传输失败的条件包括如下条件中的至少一项:
    所述HARQ进程被所述基站授权重传;
    所述HARQ进程被CS-RNTI加扰的DCI调度授权重传;
    所述HARQ进程传输所述MAC PDU的授权被低优先级;
    所述HARQ进程传输所述MAC PDU的授权介于测量间隔内;
    所述HARQ进程对应的LBT失败;
    所述HARQ进程关联的配置授权定时器超时;
    所述HARQ进程关联的配置授权定时器超时,且未收到所述HARQ进程对应的ACK信息;
    所述HARQ进程关联的配置授权重传定时器超时;
    收到所述MAC PDU对应的NACK信息。
  11. 一种UE传输参数调整装置,其特征在于,所述装置包括:
    接收模块,用于接收定时器配置信息;所述定时器配置信息由与UE通信的基站下发;所述定时器配置信息用于配置第一定时器;
    判断模块,用于当HARQ进程传输MAC PDU失败时,判断所述MAC PDU中包含所述第一定时器关联的数据包,启动所述第一定时器;
    调整模块,用于在所述第一定时器运行时,调整所述UE的传输参数。
  12. 根据权利要求11所述的装置,其特征在于,所述定时器配置信息还用于配置第二定时器;
    所述判断模块具体用于:
    在所述第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,所述第二定时器在所述HARQ进程传输所述MAC PDU启动;
    判断所述MAC PDU中包含所述第一定时器关联的数据包。
  13. 根据权利要求11所述的装置,其特征在于,所述判断模块还具体用于:
    采用计数器统计所述HARQ进程传输所述第一定时器关联的数据包失败的次数;
    当所述次数超过所述计数器的计数门限时,启动所述第一定时器;所述计数器由所述基站配置。
  14. 根据权利要求11所述的装置,其特征在于,所述定时器配置信息还包括第二定时器;
    所述当HARQ进程传输MAC PDU失败时,判断所述MAC PDU中包含所述第一定时器关联的数据包包括:
    在所述第二定时器运行时,判断HARQ进程传输MAC PDU失败;其中,所述第二定时器在所述HARQ进程传输所述MAC PDU启动;
    所述启动所述第一定时器包括:
    采用计数器统计所述HARQ进程传输所述第一定时器关联的数据包失败的次数;
    当所述次数超过所述计数器的计数门限时,启动所述第一定时器;所述计数器由所述基站配置。
  15. 根据权利要求1-14任一项所述的装置,其特征在于,所述定时器配置信息包括:逻辑信道配置中的定时器配置信息;所述逻辑信道配置中的定时器配置信息用于为所述逻辑信道配置第一定时器;
    所述判断模块具体用于:判断所述MAC PDU中包含配置了所述第一定时器的逻辑信道关联的数据包,启动所述逻辑信道对应的第一定时器;
    所述调整模块具体用于:调整所述逻辑信道的配置参数、调整所述逻辑信道关联的PDCP实体的配置参数、和调整所述逻辑信道关联的RLC实体的配置参数中的至少一种。
  16. 根据权利要求1-14任一项所述的装置,其特征在于,所述定时器配置信息包括:RLC实体配置中的定时器配置信息;所述RLC实体配置中的定时器配置信息用于为所述RLC实体配置第一定时器;
    所述判断模块具体用于:判断所述MAC PDU中包含配置了所述第一定时器的RLC实体关联的数据包,启动所述RLC实体对应的第一定时器;
    所述调整模块具体用于:调整所述RLC实体的配置参数、调整所述RLC实体关联的PDCP实体的配置参数、和调整所述RLC实体关联的逻辑信道的配置参数中的至少一种。
  17. 根据权利要求1-14任一项所述的装置,其特征在于,所述定时器配置信息包括:PDCP实体配置中的定时器配置信息;所述PDCP实体配置中的定时器配置信息用于为所述PDCP实体配置第一定时器;
    所述判断模块具体用于:判断所述MAC PDU中包含配置了所述第一定时器的PDCP实体关联的数据包,启动所述PDCP实体对应的第一定时器;
    所述调整模块具体用于:调整所述PDCP实体的配置参数、激活所述PDCP实体关联的多个RLC实体、切换所述PDCP实体关联的RLC实体、调整所述PDCP实体关联的逻辑信道的配置参数、和调整所述PDCP实体关联的RLC实体的配置参数中的至少一种。
  18. 根据权利要求1-14任一项所述的装置,其特征在于,所述定时器配置信息包括:配置授权中的定时器配置信息;所述配置授权中的定时器配置信息用于配置所述配置授权对应的第一定时器;
    所述判断模块具体用于:判断所述MAC PDU中包含配置了所述第一定时器的配置授权关联的数据包,启动所述配置授权对应的第一定时器;
    所述调整模块具体用于:调整所述配置授权关联的逻辑信道的配置参数、调整所述配置授权关联的RLC实体的配置参数、调整所述配置授权关联的PDCP实体的配置参数、激活所述配置授权关联的PDCP实体的多个RLC实体、和切换所述配置授权关联的PDCP实体的RLC实体中的至少一种。
  19. 根据权利要求1-18任一项所述的装置,其特征在于,所述调整模块还用于:
    当所述第一定时器超时或停止时,将所述UE的传输参数调整为所述MAC PDU传输失败时所述UE的传输参数;其中,当所述HARQ进程重新传输所述MAC PDU成功、或者所述HARQ进程传输下一个MAC PDU成功时,所述第一定时器停止。
  20. 根据权利要求1-19任一项所述的装置,其特征在于,判断所述MAC PDU传输失败的条件包括如下条件中的至少一项:
    所述HARQ进程被所述基站授权重传;
    所述HARQ进程被CS-RNTI加扰的DCI调度授权重传;
    所述HARQ进程传输所述MAC PDU的授权被低优先级;
    所述HARQ进程传输所述MAC PDU的授权介于测量间隔内;
    所述HARQ进程对应的LBT失败;
    所述HARQ进程关联的配置授权定时器超时;
    所述HARQ进程关联的配置授权定时器超时,且未收到所述HARQ进程对应的 ACK信息;
    所述HARQ进程关联的配置授权重传定时器超时;
    收到所述MAC PDU对应的NACK信息。
  21. 一种计算设备,其特征在于,所述计算设备包括存储器和处理器,所述存储器存储计算机指令;
    所述处理器执行所述计算机指令时,实现上述权利要求1~10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序代码,当所述计算机程序代码被计算设备执行时,所述计算设备执行上述权利要求1-10中任一项所述的方法。
PCT/CN2022/086126 2021-05-07 2022-04-11 一种ue传输参数调整方法及装置 WO2022233219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110496857.7A CN115314167A (zh) 2021-05-07 2021-05-07 一种ue传输参数调整方法及装置
CN202110496857.7 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022233219A1 true WO2022233219A1 (zh) 2022-11-10

Family

ID=83853864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086126 WO2022233219A1 (zh) 2021-05-07 2022-04-11 一种ue传输参数调整方法及装置

Country Status (2)

Country Link
CN (1) CN115314167A (zh)
WO (1) WO2022233219A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132260A (zh) * 2006-08-22 2008-02-27 中兴通讯股份有限公司 增强上行链路异步混合自动重传请求的重传控制方法
CN111262648A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 通信方法和装置
CN111385070A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种harq进程冲突的处理方法和终端
WO2021022485A1 (en) * 2019-08-06 2021-02-11 Nokia Shanghai Bell Co., Ltd. Retransmission mechanism for configured grant uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132260A (zh) * 2006-08-22 2008-02-27 中兴通讯股份有限公司 增强上行链路异步混合自动重传请求的重传控制方法
CN111262648A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 通信方法和装置
CN111385070A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种harq进程冲突的处理方法和终端
WO2021022485A1 (en) * 2019-08-06 2021-02-11 Nokia Shanghai Bell Co., Ltd. Retransmission mechanism for configured grant uplink transmission

Also Published As

Publication number Publication date
CN115314167A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US12010592B2 (en) Sidelink communications method and apparatus
CN102685913B (zh) 无线通讯系统中改善上行链路传输的方法
US12058648B2 (en) Communication method and device
KR20110081027A (ko) 무선 통신 시스템에서 mac 프로토콜 데이터 유닛 처리 방법
US20210306913A1 (en) Sidelink communications method and apparatus
CN115516880A (zh) 动态改变多播/广播业务递送
JP7367065B2 (ja) アップリンク送信のための方法、端末デバイス、およびネットワークノード
US20240064493A1 (en) Packet data convergence protocol (pdcp) enhancement for multicast and broadcast services
US20230403537A1 (en) Hybrid Automatic Repeat Request Procedures for Multimedia Broadcast and Multicast Services
WO2021160101A1 (zh) 一种数据传输方法、装置和系统
US20220330049A1 (en) Survival time for quality of service requirement relaxation
US20240064831A1 (en) Radio link control (rlc) enhancements for multicast and broadcast services
WO2022233219A1 (zh) 一种ue传输参数调整方法及装置
WO2022131342A1 (ja) 端末装置、基地局装置、および、方法
WO2023003720A1 (en) Quality of experience reconfiguration
WO2023133691A1 (zh) Drx配置方法、装置、设备及介质
EP4351176A1 (en) Terminal device, base station device, and method
US20240022358A1 (en) Managing harq transmissions in multicast communication
WO2022204999A1 (zh) 存活时间的处理方法和终端设备
WO2023028950A1 (en) Radio link control cumulative mode for new radio
US20240014939A1 (en) Radio Link Control Cumulative Mode for New Radio
EP4351175A1 (en) Terminal device, base station device, and method
WO2021161627A1 (ja) 端末及び通信方法
US20240260119A1 (en) Terminal apparatus, base station apparatus, and method
US20240267991A1 (en) Terminal apparatus, base station apparatus, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798560

Country of ref document: EP

Kind code of ref document: A1