WO2022233016A1 - Configuration schemes for integrated access and backhaul - Google Patents

Configuration schemes for integrated access and backhaul Download PDF

Info

Publication number
WO2022233016A1
WO2022233016A1 PCT/CN2021/092027 CN2021092027W WO2022233016A1 WO 2022233016 A1 WO2022233016 A1 WO 2022233016A1 CN 2021092027 W CN2021092027 W CN 2021092027W WO 2022233016 A1 WO2022233016 A1 WO 2022233016A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
iab
configuration
bap
message
Prior art date
Application number
PCT/CN2021/092027
Other languages
French (fr)
Inventor
Xueying DIAO
Lin Chen
Ying Huang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN202180097967.4A priority Critical patent/CN117378246A/en
Priority to PCT/CN2021/092027 priority patent/WO2022233016A1/en
Publication of WO2022233016A1 publication Critical patent/WO2022233016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This patent document generally relates to systems, devices, and techniques for wireless communications.
  • Wireless communication technologies are moving the world toward an increasingly connected and networked society.
  • the rapid growth of wireless communications and advances in technology has led to greater demand for capacity and connectivity.
  • Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios.
  • next generation systems and wireless communication techniques need to provide support for an increased number of users and devices.
  • This document relates to methods, systems, and devices for traffic transmission schemes in wireless communications.
  • a wireless communication method includes receiving, at an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information; and transmitting a second message from the IAB node based on the configuration information.
  • IAB integrated access and backhaul
  • a wireless communication method includes transmitting, to an IAB node from a network node, a first message including a configuration information.
  • a wireless communication method includes transmitting, from a first network node configured to communicate with an integrated access and backhaul (IAB) node to a second network node, a message including configuration information associated with the IAB node.
  • IAB integrated access and backhaul
  • a wireless communication method includes receiving, from a first network node configured to communicate with an integrated access and backhaul (IAB) node at a second network node, a message including configuration information associated with the IAB node.
  • IAB integrated access and backhaul
  • a wireless communication apparatus comprising a processor configured to perform the disclosed methods is disclosed.
  • a computer readable medium having code stored thereon is disclosed.
  • the code when implemented by a processor, causes the processor to implement a method described in the present document.
  • FIG. 1 shows an example of a network deployed with integrated access and backhaul links.
  • FIG. 2 shows an example method
  • FIG. 3 shows an example method
  • FIG. 4 shows an example of an inter-donor topology redundancy.
  • FIG. 5 shows an example method
  • FIG. 6 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
  • BS base station
  • UE user equipment
  • FIG. 7 shows an example of a block diagram of a portion of an apparatus based on some implementations of the disclosed technology.
  • the disclosed technology provides implementations and examples of signaling exchange schemes in wireless communications. Some implementations of the disclosed technology provide signaling interaction between donors and integrated access and backhaul (IAB) nodes when IAB nodes perform dual connections.
  • IAB integrated access and backhaul
  • New Radio Compared with Long Term Evolution (LTE) , New Radio (NR) has a larger available bandwidth, and the use of massive multiple-input and multiple-output (MIMO) and multi-beam makes it possible to research and apply integrated access and backhaul links (IAB) .
  • MIMO massive multiple-input and multiple-output
  • IAB integrated access and backhaul links
  • FIG. 1 An example of a network deployed with integrated access and backhaul links is shown in FIG 1.
  • A, B, and C are all access nodes, and user equipment can access the access nodes A, B, C through the access link.
  • the access node that supports the wireless access of the UE and transmits data wirelessly is called an IAB node (also referred to as an “IAB-node” ) .
  • the access node that provides the wireless backhaul function for the IAB node so that the UE connects to the core network is called an IAB donor (also referred to as an “IAB-donor” ) .
  • the data of the UE can be transmitted between the access nodes through the wireless backhaul link.
  • the access node B may send the data received from the UE to the access node A through a wireless backhaul link, and then the access node A sends the UE data to the core network element.
  • the core network element can send the UE data packet to the access node A, and then the access node A sends the UE data to the access node B through the wireless backhaul link, and the access node B sends the UE data to the UE through the access link.
  • Access link and backhaul link can use the same or different carrier frequencies.
  • the data of the UE may need to be transmitted through the multi-hop relay backhaul link between the access node and the core network.
  • supporting the separate deployment of central unit (CU) /distributed unit (DU) is an important technical feature in NR, and thus it is necessary to support the IAB function in the separate CU/DU deployment scenario.
  • an intermediate IAB-node's link capacity to a child IAB-node or a UE may be smaller than the link capacity of a backhaul link from its parent IAB-node.
  • the DU side of the parent IAB-node may not know the downlink buffer status of the intermediate IAB-node.
  • the ingress data rate scheduled by the parent IAB-node's DU may be larger than the egress data rate the intermediate IAB-node's DU can schedule to its child IAB-nodes and UEs.
  • the basic mobility scheme is enhanced by proposing a conditional handover (CHO) scheme.
  • Release 17 supports the introduction of CHO into IAB. If at least one CHO candidate cell satisfies a corresponding CHO execution condition, the IAB mobile terminal (IAB-MT) detaches from the source parent node, applies the stored corresponding configuration for that selected candidate cell, and synchronizes to that candidate cell. For a child node of the IAB-node, since it has received the CHO configuration in case of the migration of its parent node, it would apply the corresponding configuration.
  • IAB-MT IAB mobile terminal
  • the parent node needs to inform the child node of its migration for the child node to execute the CHO. Similarly, the child node needs to inform its own child nodes to apply the CHO configuration. Therefore, the information exchanged between parent and child IAB-nodes should be considered.
  • Topological redundancy has the goal to enable robust operation, e.g., in case of backhaul link blockage, and to balance load across backhaul links.
  • Establishment and management of topological redundancy needs to be considered for the IAB.
  • MN master node
  • SN secondary node
  • Implementations of the disclosed technology are related to establishment and management of inter-NG-RAN node topological redundancy.
  • a donor-CU can configure an IAB-node to report congestion via a Radio Resource Control (RRC) message or an F1 Application Protocol (F1AP) message.
  • RRC Radio Resource Control
  • F1AP F1 Application Protocol
  • the IAB-node can report congestion to the donor-CU so the donor-CU can accordingly adjust topology to mitigate congestion.
  • the donor-CU can configure the IAB-node to report at least one of the following:
  • a backhaul radio link control (BH-RLC) channel identification of the congested link such as an egress BH RLC CH ID or an ingress BH RLC CH ID.
  • BH-RLC backhaul radio link control
  • a identification of the congested link such as a routing ID
  • a child node identification of the congested link such as a backhaul access protocol (BAP) address or IP address;
  • BAP backhaul access protocol
  • a downlink data transmission rate of the congested link such as an available or desired downlink buffer, a DL egress BH RLC channel data rate, or a DL ingress BH RLC channel data rate.
  • FIG. 2 shows an example method 200.
  • a first message including configuration information is received at an IAB node.
  • the first message can be received from a network node, such as an IAB donor.
  • the configuration information can include congestion report information.
  • the configuration information can cause the IAB node to report information related to congestion to the network node.
  • a second message is transmitted based on the configuration information.
  • the second message can be transmitted to the network node of step 202.
  • the second message can include information related to reporting congestion.
  • the second message can include a BH RLC CH ID, a routing ID, an identification of a child node of the IAB node, or a DL transmission rate of the IAB node.
  • Two types of CHO configuration can be configured for an IAB node.
  • the first type of CHO configuration is used when migration is initially triggered at a node to be migrated.
  • the second type of CHO configuration is used when CHO is triggered due to migration of an upstream node.
  • an IAB-node may start evaluating CHO execution conditions, e.g., CHO events A3 or A5, for the candidate cells to be migrated to. If at least one CHO candidate cell satisfies the corresponding CHO execution condition, the IAB-MT can detach from the source parent node, apply the stored corresponding configuration for that selected candidate cell, and synchronize to that candidate cell.
  • the IAB-node For a child node of the migrating IAB-node, since it has received the CHO configuration in case its parent node migrates, it can apply the corresponding configuration. Because the channel condition between a child IAB node and its parent node has not deteriorated, the parent IAB-node needs to inform the child node of its migration in order for the child node to execute CHO. In some embodiments, the IAB-node can send at least one of the following information to its child nodes:
  • a donor-CU can first transmit one or more child node’s CHO configurations to the parent IAB-node.
  • These CHO configuration (s) can include at least one of:
  • FIG. 3 shows an example method 300.
  • a first message including configuration information is received at an IAB node.
  • the first message can be received from a network node, such as an IAB donor.
  • the configuration information can be associated with a child node of the IAB node and include at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration.
  • the configuration information can cause the IAB node to transmit information related to a handover to its child nodes.
  • the first message can cause include a request to release an old/previous BAP mapping configuration, such as in the event of a handover.
  • a second message is transmitted based on the configuration information.
  • the second message can be transmitted to a child node of the IAB node and includes at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration.
  • the second message can be transmitted to a child node when the IAB node migrates.
  • F1 user plane interface (F1-U) traffic uses a backhaul link via the M-NG-RAN node (donor node)
  • F1 control plane interface (F1-C) traffic uses an NR access link via the S-NG-RAN node (non-donor node)
  • the MN may send an indication about the split Signaling Radio Bearer (SRB) to be established at the SN used for F1-C traffic transfer.
  • SRB Signaling Radio Bearer
  • FIG. 4 shows an example of an inter-donor topology redundancy.
  • the IAB node 3 referred to as a dual-connecting IAB node or boundary IAB node, starts with a Master Cell Group (MCG) link to the DU part of the IAB node 1 and adds a Secondary Cell Group (SCG) link to the DU part of the IAB node 2.
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the DU part of the IAB node 3 only establishes F1-C (control plane) with donor CU 1.
  • the IAB node 4, the IAB node 5, the IAB node 6, the IAB node 7, and the IAB node 8 are descendant nodes of IAB node 3.
  • UE 1, UE 2, UE 3, and UE 4 are downstream UEs.
  • the first path is established between the IAB node 3 and the donor CU 1, labeled Leg 1 in FIG. 4.
  • An additional path, labeled Leg 2 in FIG. 4, is established between the IAB node 3 and donor CU 1.
  • Donor CU 1 can then migrate traffic for UE 5 and the downstream UEs to Leg 2, balancing the load over both Leg 1 and Leg 2.
  • Donor CU 1 and donor DU 1 comprise a first donor node.
  • Donor CU1 and donor DU 2 comprise a second donor node.
  • This embodiment describes information transmitted during a secondary node (SN) addition procedure in an inter-donor redundancy scenario.
  • the procedure can be implemented on a system as shown in FIG. 4.
  • Donor CU 1 can sends the backhaul (BH) configuration to IAB-node 3 and descendant nodes before or after the IAB-node 3 connects to the second parent node, such as the second donor node in FIG. 4.
  • BH backhaul
  • donor CU 1 can send a first Xn Application Protocol (XnAP) message to donor CU 2.
  • XnAP Xn Application Protocol
  • the first XnAP message can include at least one of:
  • an identity of the UE.
  • an identity of the F1-U tunnel e.g., an M-NG-RAN node UE XnAP ID and data radio bearer (DRB) ID, an index, or a routing ID.
  • DRB data radio bearer
  • the left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the secondary donor-DU. In some embodiments, the left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the first donor-CU-UP. In some embodiments, the left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the N6 termination point at the UPF.
  • PDB Packet Delay Budget
  • the dual-connecting IAB-node and descendant node may be configured with a new BAP mapping configuration.
  • the IAB-node can release the old BAP mapping configuration by itself, or the donor-CU can configure the IAB-node to release the old BAP mapping configuration.
  • FIG. 5 shows an example method 500.
  • a message including configuration information associated with an IAB node is transmitted from a network node configured to communicate with the IAB node to a second network node.
  • the first network node is a first IAB-donor and the second network node is a second IAB-donor.
  • the first and second IAB donor can each comprise an IAB-donor CU and one or more IAB-donor-DUs.
  • the message can include an identification of an F1-U tunnel or an identification of a TNL association.
  • the message can include the identification of the F1-U tunnel and at least one of: a downlink (DL) destination backhaul adaptation protocol (BAP) address associated with the F1-U tunnel; or a remaining PDB associated with the F1-U tunnel.
  • the message can include the identification of the TNL association, and a DL destination BAP address associated with the TNL association.
  • FIG. 6 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a BS 620 and one or more user equipment (UE) 611, 612 and 613.
  • the UEs access the BS (e.g., the network) using implementations of the disclosed technology 631, 632, 633) , which then enables subsequent communication (641, 642, 643) from the BS to the UEs.
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • FIG. 7 shows an example of a block diagram representation of a portion of an apparatus.
  • An apparatus 710 such as a base station or a user device which may be any wireless device (or UE) can include processor electronics 720 such as a microprocessor that implements one or more of the techniques presented in this document.
  • the apparatus 710 can include transceiver electronics 730 to send and/or receive wireless signals over one or more communication interfaces such as antenna 740.
  • the apparatus 710 can include other communication interfaces for transmitting and receiving data.
  • the apparatus 710 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 720 can include at least a portion of transceiver electronics 730. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 710.
  • Some embodiments may preferably incorporate the following solutions as described herein.
  • a network device as described herein (e.g., as described in Embodiments 1 and 2 and FIGS. 2 and 3) :
  • a method of wireless communication comprising: receiving, at an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information (202 or 302) ; and transmitting a second message from the IAB node based on the configuration information (204 or 304) .
  • IAB integrated access and backhaul
  • the congestion report configuration includes at least one of: a backhaul radio link control (BH RLC) -channel identification; routing ID; an identification of a child node of the IAB node; or a downlink (DL) transmission rate of the IAB node (e.g., as described in Embodiment 1) .
  • BH RLC backhaul radio link control
  • the configuration information is associated with a child node of the IAB node and includes at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration (e.g., as described in Embodiment 2) .
  • CHO conditional handover
  • UL-BAP uplink backhaul adaptation protocol
  • UL BH-RLC UL backhaul radio link control
  • the second message is transmitted to a child node of the IAB node and includes at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration (e.g., as described in Embodiment 2) .
  • a method of wireless communication comprising: transmitting, to an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information.
  • IAB integrated access and backhaul
  • the congestion report configuration includes at least one of: abackhaul radio link control (BH RLC) -channel identification; a routing ID; an identification of a child node of the IAB node; or a downlink (DL) transmission rate of the IAB node.
  • BH RLC backhaul radio link control
  • the configuration information is associated with a child node of the IAB node and includes at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration.
  • CHO conditional handover
  • UL-BAP uplink backhaul adaptation protocol
  • UL BH-RLC UL backhaul radio link control
  • configuration information enables the IAB node to transmit a second message to a child node of the IAB node, the second message including at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration
  • a network device e.g., Donor CU 1 as described in FIG. 4
  • a network device e.g., Donor CU 1 as described in FIG. 4
  • described herein e.g., as described in Embodiment 3 and FIGS 4 and 5.
  • a method of wireless communication comprising: transmitting, from a first network node configured to communicate with an integrated access and backhaul (IAB) node to a second network node, a message including configuration information associated with the IAB node.
  • IAB integrated access and backhaul
  • the message includes the identification of the F1-U tunnel and further includes at least one of: a downlink (DL) destination backhaul adaptation protocol (BAP) address associated with the F1-U tunnel; or a remaining packet delay budget (PDB) associated with the F1-U tunnel.
  • DL downlink
  • BAP backhaul adaptation protocol
  • PDB packet delay budget
  • a network device e.g., Donor CU 2 as described in FIG. 4
  • a network device e.g., Donor CU 2 as described in FIG. 4
  • described herein e.g., as described in Embodiment 3 and FIGS 4 and 5.
  • a method of wireless communication comprising: receiving, from a first network node configured to communicate with an IAB node at a second network node, a message including configuration information associated with the IAB node.
  • the message includes the identification of the F1-U tunnel and further includes at least one of: a downlink (DL) destination BAP address associated with the F1-U tunnel; or a remaining packet delay budget (PDB) associated with the F1-U tunnel.
  • DL downlink
  • PDB packet delay budget
  • solutions listed below may be an apparatus or computer readable medium for implementing UE configuration as described herein.
  • a wireless apparatus comprising a processor configured to implement the method of any of solutions 1 to 24.
  • a computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of solutions 1 to 24.
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Systems, apparatus, and methods of wireless communication are described, and more specifically, to techniques related to congestion, handovers, and inter-NG-RAN node redundancy for integrated access and backhaul (IAB). One example method includes receiving, at an IAB node from a network node, a first message including a configuration information and transmitting a second message from the IAB node based on the configuration information. Another example method includes transmitting, from a first network node configured to communicate with an IAB node to a second network node, a message including configuration information associated with the IAB node.

Description

CONFIGURATION SCHEMES FOR INTEGRATED ACCESS AND BACKHAUL TECHNICAL FIELD
This patent document generally relates to systems, devices, and techniques for wireless communications.
BACKGROUND
Wireless communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of wireless communications and advances in technology has led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. In comparison with the existing wireless networks, next generation systems and wireless communication techniques need to provide support for an increased number of users and devices.
SUMMARY
This document relates to methods, systems, and devices for traffic transmission schemes in wireless communications.
In one exemplary aspect, a wireless communication method is disclosed. The includes receiving, at an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information; and transmitting a second message from the IAB node based on the configuration information.
In another exemplary aspect, a wireless communication method is disclosed. The method includes transmitting, to an IAB node from a network node, a first message including a configuration information.
In another exemplary aspect, a wireless communication method is disclosed. The method includes transmitting, from a first network node configured to communicate with an integrated access and backhaul (IAB) node to a second network node, a message including configuration information associated with the IAB node.
In another exemplary aspect, a wireless communication method is disclosed. The method includes receiving, from a first network node configured to communicate with an  integrated access and backhaul (IAB) node at a second network node, a message including configuration information associated with the IAB node.
In another exemplary aspect, a wireless communication apparatus comprising a processor configured to perform the disclosed methods is disclosed.
In another exemplary aspect, a computer readable medium having code stored thereon is disclosed. The code, when implemented by a processor, causes the processor to implement a method described in the present document.
These, and other features, are described in the present document.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an example of a network deployed with integrated access and backhaul links.
FIG. 2 shows an example method.
FIG. 3 shows an example method
FIG. 4 shows an example of an inter-donor topology redundancy.
FIG. 5 shows an example method.
FIG. 6 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
FIG. 7 shows an example of a block diagram of a portion of an apparatus based on some implementations of the disclosed technology.
DETAILED DESCRIPTION
The disclosed technology provides implementations and examples of signaling exchange schemes in wireless communications. Some implementations of the disclosed technology provide signaling interaction between donors and integrated access and backhaul (IAB) nodes when IAB nodes perform dual connections.
Compared with Long Term Evolution (LTE) , New Radio (NR) has a larger available bandwidth, and the use of massive multiple-input and multiple-output (MIMO) and multi-beam makes it possible to research and apply integrated access and backhaul links (IAB) . Through wireless backhaul links and relay links, dense NR cell networks can be deployed more flexibly without correspondingly increasing the dense deployment of transmission networks.
An example of a network deployed with integrated access and backhaul links is shown in FIG 1. In FIG. 1, A, B, and C are all access nodes, and user equipment can access the access nodes A, B, C through the access link. There is only a wired connection between the access node A and the core network, and the access nodes B and C have no wired connection with the core network element. The access node that supports the wireless access of the UE and transmits data wirelessly is called an IAB node (also referred to as an “IAB-node” ) .
The access node that provides the wireless backhaul function for the IAB node so that the UE connects to the core network is called an IAB donor (also referred to as an “IAB-donor” ) . The data of the UE can be transmitted between the access nodes through the wireless backhaul link. For example, the access node B may send the data received from the UE to the access node A through a wireless backhaul link, and then the access node A sends the UE data to the core network element. For the downlink, the core network element can send the UE data packet to the access node A, and then the access node A sends the UE data to the access node B through the wireless backhaul link, and the access node B sends the UE data to the UE through the access link. Access link and backhaul link can use the same or different carrier frequencies. In addition, the data of the UE may need to be transmitted through the multi-hop relay backhaul link between the access node and the core network. In addition, supporting the separate deployment of central unit (CU) /distributed unit (DU) is an important technical feature in NR, and thus it is necessary to support the IAB function in the separate CU/DU deployment scenario.
In multi-hop backhaul, such as in IAB, congestion may occur on intermediate IAB-nodes. For downlink (DL) transmissions, an intermediate IAB-node's link capacity to a child IAB-node or a UE may be smaller than the link capacity of a backhaul link from its parent IAB-node. The DU side of the parent IAB-node may not know the downlink buffer status of the intermediate IAB-node. As a result, the ingress data rate scheduled by the parent IAB-node's DU may be larger than the egress data rate the intermediate IAB-node's DU can schedule to its child IAB-nodes and UEs. This may result in downlink data congestion and packet discards at the intermediate IAB-node. Discarding packets at intermediate IAB-nodes may have negative consequences, e.g., TCP slow start for impacted UE flows. Therefore, it would be advantageous for an intermediate IAB-node to report congestion to a donor CU so the donor CU can adjust the topology to mitigate the congestion. However, what is reported to the donor CU needs to be considered.
In NR-Release 16, in order to improve mobility robustness of UEs, the basic mobility scheme is enhanced by proposing a conditional handover (CHO) scheme. Release 17 supports the introduction of CHO into IAB. If at least one CHO candidate cell satisfies a corresponding CHO execution condition, the IAB mobile terminal (IAB-MT) detaches from the source parent node, applies the stored corresponding configuration for that selected candidate cell, and synchronizes to that candidate cell. For a child node of the IAB-node, since it has received the CHO configuration in case of the migration of its parent node, it would apply the corresponding configuration. Because the channel condition between the child IAB node and its parent IAB-node has not deteriorated, the parent node needs to inform the child node of its migration for the child node to execute the CHO. Similarly, the child node needs to inform its own child nodes to apply the CHO configuration. Therefore, the information exchanged between parent and child IAB-nodes should be considered.
Topological redundancy has the goal to enable robust operation, e.g., in case of backhaul link blockage, and to balance load across backhaul links. Establishment and management of topological redundancy needs to be considered for the IAB. Currently, only intra-donor topology redundancy is considered, while it is unclear how to support redundancy in other cases, such as what information is exchanged between a master node (MN) and secondary node (SN) . Implementations of the disclosed technology are related to establishment and management of inter-NG-RAN node topological redundancy.
Embodiment 1
In multi-hop IAB scenarios, congestion may occur on intermediate IAB-nodes. To help deal with congestion issues, a donor-CU can configure an IAB-node to report congestion via a Radio Resource Control (RRC) message or an F1 Application Protocol (F1AP) message. The IAB-node can report congestion to the donor-CU so the donor-CU can accordingly adjust topology to mitigate congestion. In some embodiments, the donor-CU can configure the IAB-node to report at least one of the following:
1) A backhaul radio link control (BH-RLC) channel identification of the congested link, such as an egress BH RLC CH ID or an ingress BH RLC CH ID.
2) A identification of the congested link, such as a routing ID;
3) A child node identification of the congested link, such as a backhaul access protocol (BAP) address or IP address;
4) A downlink data transmission rate of the congested link, such as an available or desired downlink buffer, a DL egress BH RLC channel data rate, or a DL ingress BH RLC channel data rate.
FIG. 2 shows an example method 200. At 202, a first message including configuration information is received at an IAB node. The first message can be received from a network node, such as an IAB donor. The configuration information can include congestion report information. The configuration information can cause the IAB node to report information related to congestion to the network node. At 204, a second message is transmitted based on the configuration information. For example, the second message can be transmitted to the network node of step 202. In some embodiments, the second message can include information related to reporting congestion. For example, the second message can include a BH RLC CH ID, a routing ID, an identification of a child node of the IAB node, or a DL transmission rate of the IAB node.
Embodiment 2
Two types of CHO configuration can be configured for an IAB node. The first type of CHO configuration is used when migration is initially triggered at a node to be migrated. The second type of CHO configuration is used when CHO is triggered due to migration of an upstream node. After receiving the first type of CHO configuration, an IAB-node may start evaluating CHO execution conditions, e.g., CHO events A3 or A5, for the candidate cells to be migrated to. If at least one CHO candidate cell satisfies the corresponding CHO execution condition, the IAB-MT can detach from the source parent node, apply the stored corresponding configuration for that selected candidate cell, and synchronize to that candidate cell. For a child node of the migrating IAB-node, since it has received the CHO configuration in case its parent node migrates, it can apply the corresponding configuration. Because the channel condition between a child IAB node and its parent node has not deteriorated, the parent IAB-node needs to inform the child node of its migration in order for the child node to execute CHO. In some embodiments, the IAB-node can send at least one of the following information to its child nodes:
1) A BAP address of the migrating IAB-node.
2) A BAP address of a donor-DU on the target path to be migrated to.
3) A UL-BAP-Routing ID.
4) A UL-BH-RLC-channel configuration.
In some embodiments, a donor-CU can first transmit one or more child node’s CHO configurations to the parent IAB-node. These CHO configuration (s) can include at least one of:
1) An identity of the child node (s)
2) An identity of the CHO configuration (s)
3) A UL-BAP-Routing ID included in each CHO configuration.
4) A UL-BH-RLC-channel configuration included in each CHO configuration.
FIG. 3 shows an example method 300. At 302, a first message including configuration information is received at an IAB node. The first message can be received from a network node, such as an IAB donor. The configuration information can be associated with a child node of the IAB node and include at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration. For example, the configuration information can cause the IAB node to transmit information related to a handover to its child nodes. In some embodiments, the first message can cause include a request to release an old/previous BAP mapping configuration, such as in the event of a handover. At 304, a second message is transmitted based on the configuration information. The second message can be transmitted to a child node of the IAB node and includes at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration. In some embodiments, the second message can be transmitted to a child node when the IAB node migrates.
Embodiment 3
For a dual-connecting IAB node, if F1 user plane interface (F1-U) traffic uses a backhaul link via the M-NG-RAN node (donor node) , and F1 control plane interface (F1-C) traffic uses an NR access link via the S-NG-RAN node (non-donor node) , then the MN may send an indication about the split Signaling Radio Bearer (SRB) to be established at the SN used for F1-C traffic transfer.
FIG. 4 shows an example of an inter-donor topology redundancy. The IAB node 3, referred to as a dual-connecting IAB node or boundary IAB node, starts with a Master Cell Group (MCG) link to the DU part of the IAB node 1 and adds a Secondary Cell Group (SCG) link to the DU part of the IAB node 2. In this example, the DU part of the IAB node 3 only establishes F1-C (control plane) with donor CU 1. The IAB node 4, the IAB node 5, the IAB node 6, the IAB node 7, and the IAB node 8 are descendant nodes of IAB node 3. UE 1, UE 2, UE 3, and UE 4 are downstream UEs. The first path is established between the IAB node 3 and the donor CU 1, labeled Leg 1 in FIG. 4. An additional path, labeled Leg 2 in FIG. 4, is established between the IAB node 3 and donor CU 1. Donor CU 1 can then migrate traffic for UE 5 and the downstream UEs to Leg 2, balancing the load over both Leg 1 and Leg 2. Donor CU 1 and donor DU 1 comprise a first donor node. Donor CU1 and donor DU 2 comprise a second donor node.
This embodiment describes information transmitted during a secondary node (SN) addition procedure in an inter-donor redundancy scenario. The procedure can be implemented on a system as shown in FIG. 4. Donor CU 1 can sends the backhaul (BH) configuration to IAB-node 3 and descendant nodes before or after the IAB-node 3 connects to the second parent node, such as the second donor node in FIG. 4.
To set up a second path for the dual-connecting IAB node, such as IAB-node 3 in FIG. 4, donor CU 1 can send a first Xn Application Protocol (XnAP) message to donor CU 2. The first XnAP message can include at least one of:
● an identity of the boundary IAB-node.
● an identity of the descendant IAB-node.
● an identity of the UE.
● an identity of the F1-U tunnel, e.g., an M-NG-RAN node UE XnAP ID and data radio bearer (DRB) ID, an index, or a routing ID.
● an identity of a TNL association.
● a downlink (DL) destination backhaul adaptation protocol (BAP) address of each F1-U tunnel.
● a DL destination BAP address of each TNL association.
● F1-U tunnel related information including a left Packet Delay Budget (PDB) (also referred to as a “remaining Packet Delay Budget” ) . The left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the secondary donor-DU. In some embodiments, the left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the first donor-CU-UP. In some embodiments, the left Packet Delay Budget can define the upper bound for the time that a packet may be delayed between the boundary node’MT and the N6 termination point at the UPF.
The dual-connecting IAB-node and descendant node may be configured with a new BAP mapping configuration. The IAB-node can release the old BAP mapping configuration by itself, or the donor-CU can configure the IAB-node to release the old BAP mapping configuration.
FIG. 5 shows an example method 500. At 502 a message including configuration information associated with an IAB node is transmitted from a network node configured to communicate with the IAB node to a second network node. In some embodiments, the first network node is a first IAB-donor and the second network node is a second IAB-donor. The first and second IAB donor can each comprise an IAB-donor CU and one or more IAB-donor-DUs. The message can include an identification of an F1-U tunnel or an identification of a TNL association. In some embodiments, the message can include the identification of the F1-U tunnel and at least one of: a downlink (DL) destination backhaul adaptation protocol (BAP) address associated with the F1-U tunnel; or a remaining PDB associated with the F1-U tunnel. In some embodiments, the message can include the identification of the TNL association, and a DL destination BAP address associated with the TNL association.
The implementations as discussed above will apply to a wireless communication. FIG. 6 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a BS 620 and one or more user equipment (UE) 611, 612 and 613. In some embodiments, the UEs access the BS (e.g., the network) using implementations of the disclosed  technology  631, 632, 633) , which then enables subsequent communication (641, 642, 643) from the BS to the UEs. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
FIG. 7 shows an example of a block diagram representation of a portion of an apparatus. An apparatus 710 such as a base station or a user device which may be any wireless device (or UE) can include processor electronics 720 such as a microprocessor that implements one or more of the techniques presented in this document. The apparatus 710 can include transceiver electronics 730 to send and/or receive wireless signals over one or more communication interfaces such as antenna 740. The apparatus 710 can include other communication interfaces for transmitting and receiving data. The apparatus 710 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 720 can include at least a portion of transceiver electronics 730. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 710.
Some embodiments may preferably incorporate the following solutions as described herein.
For example, the solutions listed below may be used by a network device as described herein (e.g., as described in  Embodiments  1 and 2 and FIGS. 2 and 3) :
1. A method of wireless communication (e.g., method 200 described in FIG. 2 or method 300 described FIG. 3) comprising: receiving, at an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information (202 or 302) ; and transmitting a second message from the IAB node based on the configuration information (204 or 304) .
2. The method of solution 1, wherein the network node is an IAB donor.
3. The method of solution 1, wherein the configuration information includes a congestion report configuration (e.g., as described in Embodiment 1) .
4. The method of solution 3, wherein the congestion report configuration includes at least one of: a backhaul radio link control (BH RLC) -channel identification; routing ID; an identification of a child node of the IAB node; or a downlink (DL) transmission rate of the IAB node (e.g., as described in Embodiment 1) .
5. The method of solution 1, wherein the configuration information is associated with a child node of the IAB node and includes at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol  (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration (e.g., as described in Embodiment 2) .
6. The method of solution 1, wherein the second message is transmitted to a child node of the IAB node and includes at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration (e.g., as described in Embodiment 2) .
7. The method of solution 1, wherein the first message comprises a request to release, at the IAB-node, a previous BAP mapping configuration (e.g., as described in Embodiment 2) .
For example, the solutions listed below may be used by a network device as described herein:
8. A method of wireless communication comprising: transmitting, to an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information.
9. The method of solution 8, wherein the network node is an IAB donor.
10. The method of solution 8, wherein the configuration information includes a congestion report configuration.
11. The method of solution 10, wherein the congestion report configuration includes at least one of: abackhaul radio link control (BH RLC) -channel identification; a routing ID; an identification of a child node of the IAB node; or a downlink (DL) transmission rate of the IAB node.
12. The method of solution 8, wherein the configuration information is associated with a child node of the IAB node and includes at least one of: an identity of the child node; an identity of a conditional handover (CHO) configuration; an uplink backhaul adaptation protocol (UL-BAP) routing ID; or a UL backhaul radio link control (UL BH-RLC) -channel configuration.
13. The method of solution 8, wherein configuration information enables the IAB node to transmit a second message to a child node of the IAB node, the second message including at least one of: a BAP address of a migrating IAB node; a BAP address of a donor-DU at a target path; a UL-BAP routing ID; or a UL BH-RLC-channel configuration
14. The method of solution 8, wherein the first message comprises a request to release, at the IAB-node, a previous BAP mapping configuration.
For example, the solutions listed below may be used by a network device (e.g., Donor CU 1 as described in FIG. 4) as described herein (e.g., as described in Embodiment 3 and FIGS 4 and 5. )
15. A method of wireless communication (e.g., method 500 described in FIG. 5) comprising: transmitting, from a first network node configured to communicate with an integrated access and backhaul (IAB) node to a second network node, a message including configuration information associated with the IAB node.
16. The method of solution 15, wherein the first network node is a first IAB-donor and the second network node is a second IAB-donor.
17. The method of solution 1, wherein the message includes at least one of: an identification of an F1-U tunnel; or an identification of a transport network layer (TNL) association.
18. The method of solution 17, wherein the message includes the identification of the F1-U tunnel and further includes at least one of: a downlink (DL) destination backhaul adaptation protocol (BAP) address associated with the F1-U tunnel; or a remaining packet delay budget (PDB) associated with the F1-U tunnel.
19. The method of solution 17 wherein the message includes the identification of the TNL association and further includes: a DL destination BAP address associated with the TNL association.
For example, the solutions listed below may be used by a network device (e.g., Donor CU 2 as described in FIG. 4) as described herein (e.g., as described in Embodiment 3 and FIGS 4 and 5. )
20. A method of wireless communication comprising: receiving, from a first network node configured to communicate with an IAB node at a second network node, a message including configuration information associated with the IAB node.
21. The method of solution 20, wherein the first network node is a first IAB-donor and the second network node is a second IAB-donor.
22. The method of solution 20, wherein the message includes at least one of: an identification of an F1-U tunnel; or an identification of a transport network layer TNL association.
23. The method of solution 22, wherein the message includes the identification of the F1-U tunnel and further includes at least one of: a downlink (DL) destination BAP address associated with the F1-U tunnel; or a remaining packet delay budget (PDB) associated with the F1-U tunnel.
24. The method of solution 22 wherein the message includes the identification of the TNL association and further includes: a DL destination BAP address associated with the TNL association.
For example, the solutions listed below may be an apparatus or computer readable medium for implementing UE configuration as described herein.
25. A wireless apparatus comprising a processor configured to implement the method of any of solutions 1 to 24.
26. A computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of solutions 1 to 24.
It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example and, unless otherwise stated, does not imply an ideal or a preferred embodiment. As used herein, the use of “or” is intended to include “and/or” , unless the context clearly indicates otherwise.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in  such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (26)

  1. A method of wireless communication comprising:
    receiving, at an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information; and
    transmitting a second message from the IAB node based on the configuration information.
  2. The method of claim 1, wherein the network node is an IAB donor.
  3. The method of claim 1, wherein
    the configuration information includes a congestion report configuration.
  4. The method of claim 3, wherein the congestion report configuration includes at least one of:
    a backhaul radio link control (BH RLC) -channel identification;
    a routing ID;
    an identification of a child node of the IAB node; or
    a downlink (DL) transmission rate of the IAB node.
  5. The method of claim 1, wherein the configuration information is associated with a child node of the IAB node and includes at least one of:
    an identity of the child node;
    an identity of a conditional handover (CHO) configuration;
    an uplink backhaul adaptation protocol (UL-BAP) routing ID; or
    a UL backhaul radio link control (UL BH-RLC) -channel configuration.
  6. The method of claim 1, wherein the second message is transmitted to a child node of the IAB node and includes at least one of:
    a BAP address of a migrating IAB node;
    a BAP address of a donor-DU at a target path;
    a UL-BAP routing ID; or
    a UL BH-RLC-channel configuration.
  7. The method of claim 1, wherein the first message comprises a request to release, at the IAB-node, a previous BAP mapping configuration.
  8. A method of wireless communication comprising:
    transmitting, to an integrated access and backhaul (IAB) node from a network node, a first message including a configuration information.
  9. The method of claim 8, wherein the network node is an IAB donor.
  10. The method of claim 8, wherein
    the configuration information includes a congestion report configuration.
  11. The method of claim 10, wherein the congestion report configuration includes at least one of:
    a backhaul radio link control (BH RLC) -channel identification;
    a routing ID;
    an identification of a child node of the IAB node; or
    a downlink (DL) transmission rate of the IAB node.
  12. The method of claim 8, wherein the configuration information is associated with a child node of the IAB node and includes at least one of:
    an identity of the child node;
    an identity of a conditional handover (CHO) configuration;
    an uplink backhaul adaptation protocol (UL-BAP) routing ID; or
    a UL backhaul radio link control (UL BH-RLC) -channel configuration.
  13. The method of claim 8, wherein configuration information enables the IAB node to transmit a second message to a child node of the IAB node, the second message including at least one of:
    a BAP address of a migrating IAB node; .
    a BAP address of a donor-DU at a target path;
    a UL-BAP routing ID; or
    a UL BH-RLC-channel configuration.
  14. The method of claim 8, wherein the first message comprises a request to release, at the IAB-node, a previous BAP mapping configuration.
  15. A method of wireless communication comprising:
    transmitting, from a first network node configured to communicate with an integrated access and backhaul (IAB) node to a second network node, a message including configuration information associated with the IAB node.
  16. The method of claim 15, wherein the first network node is a first IAB-donor and the second network node is a second IAB-donor.
  17. The method of claim 1, wherein the message includes at least one of:
    an identification of an F1-U tunnel; or
    an identification of a transport network layer (TNL) association.
  18. The method of claim 17, wherein the message includes the identification of the F1-U tunnel and further includes at least one of:
    a downlink (DL) destination backhaul adaptation protocol (BAP) address associated with the F1-U tunnel; or
    a remaining packet delay budget (PDB) associated with the F1-U tunnel.
  19. The method of claim 17 wherein the message includes the identification of the TNL association and further includes:
    a DL destination BAP address associated with the TNL association.
  20. A method of wireless communication comprising:
    receiving, from a first network node configured to communicate with an IAB node at a second network node, a message including configuration information associated with the IAB node.
  21. The method of claim 20, wherein the first network node is a first IAB-donor and the second network node is a second IAB-donor.
  22. The method of claim 20, wherein the message includes at least one of:
    an identification of an F1-U tunnel; or
    an identification of a transport network layer TNL association.
  23. The method of claim 22, wherein the message includes the identification of the F1-U tunnel and further includes at least one of:
    a downlink (DL) destination BAP address associated with the F1-U tunnel; or
    a remaining packet delay budget (PDB) associated with the F1-U tunnel.
  24. The method of claim 22 wherein the message includes the identification of the TNL association and further includes:
    a DL destination BAP address associated with the TNL association.
  25. A wireless apparatus comprising a processor configured to implement the method of any of claims 1 to 24.
  26. A computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 24.
PCT/CN2021/092027 2021-05-07 2021-05-07 Configuration schemes for integrated access and backhaul WO2022233016A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097967.4A CN117378246A (en) 2021-05-07 2021-05-07 Configuration scheme of self-access backhaul link
PCT/CN2021/092027 WO2022233016A1 (en) 2021-05-07 2021-05-07 Configuration schemes for integrated access and backhaul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092027 WO2022233016A1 (en) 2021-05-07 2021-05-07 Configuration schemes for integrated access and backhaul

Publications (1)

Publication Number Publication Date
WO2022233016A1 true WO2022233016A1 (en) 2022-11-10

Family

ID=83932533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092027 WO2022233016A1 (en) 2021-05-07 2021-05-07 Configuration schemes for integrated access and backhaul

Country Status (2)

Country Link
CN (1) CN117378246A (en)
WO (1) WO2022233016A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175817A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Advanced radio resource management in next-gen multi-hop relaying cellular network
CN110536351A (en) * 2019-02-15 2019-12-03 中兴通讯股份有限公司 Information processing method, IAB and computer storage medium in IAB network
WO2020057732A1 (en) * 2018-09-18 2020-03-26 Nokia Technologies Oy Communication connection control using conditional handover
WO2020222308A1 (en) * 2019-05-02 2020-11-05 Sharp Kabushiki Kaisha Conditional handovers for wireless relay networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175817A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Advanced radio resource management in next-gen multi-hop relaying cellular network
WO2020057732A1 (en) * 2018-09-18 2020-03-26 Nokia Technologies Oy Communication connection control using conditional handover
CN110536351A (en) * 2019-02-15 2019-12-03 中兴通讯股份有限公司 Information processing method, IAB and computer storage medium in IAB network
WO2020222308A1 (en) * 2019-05-02 2020-11-05 Sharp Kabushiki Kaisha Conditional handovers for wireless relay networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Discussion on supporting R16 CHO and DAPS in IAB", 3GPP DRAFT; R3-206560, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20201102 - 20201112, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945944 *
ZTE, SANECHIPS: "Further considerations on inter-donor IAB Node Migration procedure", 3GPP DRAFT; R3-210207, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210125 - 20210204, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974940 *

Also Published As

Publication number Publication date
CN117378246A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7440562B2 (en) Information transmission method and device
EP3610673B1 (en) Access node and methods for handovers in a dual connectivity communications system
KR101998016B1 (en) Method for controlling transmission of data
CN110622548A (en) Method and system for reporting slave node failure in dual connectivity network
EP2744260B1 (en) Data transmission method and device
US8885545B2 (en) Radio communication system, communication apparatus, method for controlling simultaneous transmission from multiple base stations, and non-transitory computer readable medium
US20220263743A1 (en) Selective packet duplication or alternative packet transmission based on survival time
EP3915213B1 (en) Network nodes and methods supporting multiple connectivity
BR112015019401B1 (en) LONG-TERM EVOLUTION RADIO ACCESS NETWORK
WO2020165280A1 (en) Alternate path information exchange for better scheduling and backhaul failure recovery in integrated access backhaul networks
US20220240103A1 (en) Radio link failure handling in an integrated access backhaul network
EP2757853B1 (en) Methods for handling device to device communication and related communication device
KR20230091856A (en) Methods and devices for inter-donor mobility
US11329771B2 (en) DL HARQ timing with short TTI operations in TDD
CN105432115A (en) Method and apparatus for dual connectivity
CN111713057B (en) Transmission device for handling communications and method performed therein
US20230354114A1 (en) Systems and methods for iab migration
US20220095156A1 (en) Detecting Congestion at an Intermediate IAB Node
CN114650551A (en) Method and apparatus for reducing packet delay in multi-branch transmission
EP3245816B1 (en) Improving communication efficiency
WO2022233016A1 (en) Configuration schemes for integrated access and backhaul
WO2022082690A1 (en) Group switching method, apparatus and system
KR20230070483A (en) IAB-node migration method and device
JP2023546399A (en) Routing selection methods, devices and systems
JP2023510974A (en) Second network device, terminal device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097967.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE