WO2022232965A1 - Magnetic lock-release mechanism - Google Patents

Magnetic lock-release mechanism Download PDF

Info

Publication number
WO2022232965A1
WO2022232965A1 PCT/CN2021/091810 CN2021091810W WO2022232965A1 WO 2022232965 A1 WO2022232965 A1 WO 2022232965A1 CN 2021091810 W CN2021091810 W CN 2021091810W WO 2022232965 A1 WO2022232965 A1 WO 2022232965A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet unit
movable
magnet
units
release mechanism
Prior art date
Application number
PCT/CN2021/091810
Other languages
French (fr)
Inventor
Yu YU
Haiji SUN
Xiaozhou Wang
Kelong Zhao
Masaaki Fukumoto
Paul KOS
Original Assignee
Microsoft Technology Licensing, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing, Llc filed Critical Microsoft Technology Licensing, Llc
Priority to PCT/CN2021/091810 priority Critical patent/WO2022232965A1/en
Priority to CN202180047564.9A priority patent/CN115917103A/en
Publication of WO2022232965A1 publication Critical patent/WO2022232965A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C19/00Other devices specially designed for securing wings, e.g. with suction cups
    • E05C19/16Devices holding the wing by magnetic or electromagnetic attraction
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C19/00Other devices specially designed for securing wings, e.g. with suction cups
    • E05C19/16Devices holding the wing by magnetic or electromagnetic attraction
    • E05C19/166Devices holding the wing by magnetic or electromagnetic attraction electromagnetic

Definitions

  • Device connection among various devices such as electronic devices, mechanical devices, or any other structural devices or modules is a common and frequent requirement for, e.g., device usage, device functionality extension, information exchanging, power supplying, device assembling, etc.
  • Lock mechanism is usually applied for device connection for the purpose of, e.g., ensuring stable connection, enhancing convenience of operations for device connection, etc.
  • Embodiments of the present disclosure propose a magnetic lock-release mechanism.
  • the magnetic lock-release mechanism may comprise: a first magnet unit member, installed in a first device and including a set of fixed magnet units; and a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position.
  • a first magnet unit member installed in a first device and including a set of fixed magnet units
  • a second magnet unit member installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position.
  • the embodiments of the present disclosure also propose a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of magnet units; and a second magnet unit member, installed in a second device and including a set of electronic magnets.
  • a first magnet unit member installed in a first device and including a set of magnet units
  • a second magnet unit member installed in a second device and including a set of electronic magnets.
  • FIG. 1 illustrates an exemplary existing magnetic lock mechanism.
  • FIG. 2 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • FIG. 3 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 4 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 5 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • FIG. 6 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • FIG. 7 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 8 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 9 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • FIG. 10 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • FIG. 11 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
  • FIG. 12 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
  • FIG. 13 illustrates an exemplary magnetic lock-release mechanism with two returning members according to an embodiment.
  • FIG. 14 illustrates an exemplary magnetic lock-release mechanism with a returning member according to an embodiment.
  • FIG. 15 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 16 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • An example of the existing lock mechanism is magnetic lock mechanism which adopts magnet units for facilitating device connection and is usually applied for, e.g., device connection of electronic devices.
  • the magnetic lock mechanism two sets of magnet units are installed in two devices respectively, and when these two devices are aligned and placed close enough with each other, an attractive force between the two sets of magnet units may assist to or lead to establishment of a connection between the two devices. After the two devices are connected, the attractive force is also helpful to maintain the connection between the two devices.
  • Embodiments of the present disclosure propose a magnetic lock-release mechanism which in substance is a polarity reversible magnetic lock-release mechanism.
  • the magnetic lock-release mechanism may enter into two operating states, i.e., a locking state and a releasing state, through switching polarity configurations between two devices.
  • a locking state In one polarity configuration, an attractive force exists between two devices, which causes the magnetic lock-release mechanism to enter into the locking state, thus achieving device connection.
  • the locking state may be also referred to as an attractive state.
  • a repulsive force exists between the two devices, which causes the magnetic lock-release mechanism to enter into the releasing state, thus achieving device disconnection.
  • the releasing state may be also referred to as a repulsive state.
  • the magnetic lock-release mechanism may produce an attractive force and a repulsive force between two devices respectively, and accordingly switch between the locking state and the releasing state.
  • the term “device connection” may broadly refer to, e.g., connection between two devices, connection between a device and a module of another device, connection between a module of a device and a module of another device, etc.
  • Device connection may direct to, e.g., establishing a contact or non-contact connection between connectors of two devices, or simply assembling two devices in structure.
  • device disconnection may broadly refer to, e.g., breaking of connection between two devices or modules. Device disconnection may direct to, e.g., removing a contact or non-contact connection between connectors of two devices, or simply disassembling two devices in structure.
  • different polarity configurations may be implemented through movement of positions of magnet units.
  • At least one movable magnet unit may be set in the magnetic lock-release mechanism, and different positions of the at least one movable magnet unit may cause different polarity configurations.
  • different types of force e.g., an attractive force and a repulsive force, may exist respectively between the movable magnet unit and different aligned magnet units.
  • different polarity configurations may be implemented through changing current directions of electronic magnets.
  • different current directions supplied to an electronic magnet may cause changing of polarity directions of the electronic magnet, and thus different types of force, e.g., an attractive force and a repulsive force, may exist respectively between the electronic magnet and an aligned magnet unit.
  • the magnetic lock-release mechanism may include at least one returning member for returning at least one movable magnet unit to its original position automatically.
  • the magnetic lock-release mechanism may adopt various approaches for moving at least one movable magnet unit, e.g., through sliding, rotating, etc.
  • the magnetic lock-release mechanism may provide a more-friendly user experience of device connection and device disconnection, especially, a better user experience of disconnecting or undocking devices.
  • a repulsive force produced between two devices by the magnetic lock-release mechanism would facilitate to conveniently and effectively disconnect or undock one device from another device, thus enhancing convenience of operations for device disconnection.
  • the magnetic lock-release mechanism may still conveniently switch from the locking state to the releasing state and utilize the repulsive force for disconnecting devices.
  • the repulsive force may also be acted as a protection measure for avoiding inadvertent actuation contacting of connectors of two devices. Furthermore, the repulsive force may also be used for avoiding an excessive force to be imposed, thus decreasing the risk of damaging the magnetic lock-release mechanism, devices, connectors in the devices, etc. during disconnecting or undocking the devices. Since the magnetic lock-release mechanism may not only produce the attractive force when connecting devices and but also produce the repulsive force when disconnecting devices, both operations for device connection and operations for device disconnection become easy, convenient and efficient.
  • the magnetic lock-release mechanism may be applied for various scenarios that require devices or modules to be connected and disconnected.
  • the devices or modules may be of various types, e.g., electronic devices or modules, mechanical devices or modules, etc.
  • the scenarios may cover any known or potential scenarios, e.g., docking and undocking between a detachable keyboard and a tablet computer, connecting and disconnecting between a laptop computer and a docking station, assembling and disassembling between a battery cover and a battery compartment of an electronic device, docking and undocking between a hand-held device and a charging dock, docking and undocking between a cordless telephone and a base, connecting and disconnecting between a plug and a socket, etc. It should be understood that the embodiments of the present disclosure are not limited to any specific types of devices, any specific application scenarios, etc.
  • FIG. 1 illustrates an exemplary existing magnetic lock mechanism.
  • the diagram 100 in FIG. 1 shows device connection between a device 110 and a device 120 with an existing magnetic lock mechanism.
  • the device 110 includes a set of connectors 112.
  • the device 120 includes a set of connectors 122 that are paired with the connectors 112.
  • the connectors 112 and 122 may represent any types connecting terminals, e.g., Pogo pins, etc. It is assumed that a user wants to connect the device 110 with the device 120 such that the connectors 112 and the connectors 122 can be contacted with each other.
  • the magnetic lock mechanism is applied for leading or facilitating the connecting between the device 110 and the device 120.
  • the magnetic lock mechanism comprises two magnet units 114 and 116 installed in the device 110 and another two magnet units 124 and 126 installed in the device 120.
  • the magnet unit 114 can be aligned with the magnet unit 124, and the magnet unit 116 can be aligned with the magnet unit 126.
  • the magnetic lock mechanism applies a predetermined polarity configuration for the magnet units 114, 116, 124 and 126, e.g., setting predetermined polarity directions for the magnet units 114, 116, 124 and 126 respectively.
  • polarity directions of the magnet unit 114 and the magnet unit 124 are set such that an end of the magnet unit 114 facing the magnet unit 124 and an end of the magnet unit 124 facing the magnet unit 114 have different polarities, e.g., the end of the magnet unit 114 facing the magnet unit 124 has “N” polarity and the end of the magnet unit 124 facing the magnet unit 114 has “S” polarity, and thus an attractive force may be produced between the magnet unit 114 and the magnet unit 124 when they are close enough to each other.
  • polarity directions of the magnet unit 116 and the magnet unit 126 are also set such that an attractive force may be produced between the magnet unit 116 and the magnet unit 126 when they are close enough to each other.
  • the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126 would lead or facilitate the connecting between the device 110 and the device 120 and further the contacting between the connectors 112 and the connectors 122.
  • the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126 would also help to maintain the device connection.
  • the user may have to pull each or both of the device 110 and the device 120 so as to separate them from each other.
  • the user needs to impose a force higher than the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126, so as to separate the device 110 from the device 120.
  • Such operation for device disconnection is inconvenient and may cause damages.
  • the magnetic lock-release mechanism may not only lead or facilitate device connection between two devices through attractive forces, but also lead or facilitate device disconnection between the two devices through repulsive forces.
  • the magnetic lock-release mechanism may be based on, e.g., permanent magnets, and may produce attractive forces and repulsive forces respectively through movement of positions of magnet units.
  • Magnet units in the magnetic lock-release mechanism may be permanent magnets.
  • the magnetic lock-release mechanism may comprise two magnet unit members installed on two devices respectively.
  • a magnet unit member may refer to a collection of one or more magnet units installed on a device.
  • the magnetic lock-release mechanism may comprise a first magnet unit member which is installed in a first device and includes a set of fixed magnet units.
  • the set of fixed magnet units may comprise one or more fixed magnet units.
  • a fixed magnet unit may refer to a magnet unit the position of which is fixed in a device installed with the magnet unit.
  • the magnetic lock-release mechanism may further comprise a second magnet unit member which is installed in a second device and includes at least a set of movable magnet units.
  • the set of movable magnet units may comprise one or more movable magnet units.
  • a movable magnet unit may refer to a magnet unit the position of which is movable in a device installed with the magnet unit. For example, the set of movable magnet units may be moved to a first position and a second position.
  • Different polarity configurations in the magnetic lock-release mechanism may be obtained through movement of positions of the set of movable magnet units. It is assumed that the magnetic lock-release mechanism may produce an attractive force in a first polarity configuration corresponding to the first position of the set of movable magnet units. For example, in the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units. The attractive force would cause the first magnet unit member and the second magnet unit member to enter into a locking state. It is assumed that the magnetic lock-release mechanism may produce a repulsive force in a second polarity configuration corresponding to the second position of the set of movable magnet units.
  • a repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
  • the repulsive force would cause the first magnet unit member and the second magnet unit member to enter into a releasing state.
  • the magnetic lock-release mechanism may comprise a movable member which is installed in the second device and carries the set of movable magnet units.
  • the set of movable magnet units may be mounted in the movable member.
  • the movable member may be moved to the first position and the second position, which causes the set of movable magnet units to be moved to the first position and the second position accordingly.
  • the movable member may adopt various movement approaches, e.g., sliding, rotating, etc. Accordingly, the movable member may be implemented as a sliding bar, a rotating plate, a rotating cylinder, etc.
  • the movable member may further include, e.g., a sliding knob, a clicking button, a rotating knob, etc.
  • FIG. 2 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • the diagram 200A in FIG. 2 shows device connection between a device 210 and a device 220 with an attractive force produced by the magnetic lock-lease mechanism.
  • the device 210 includes a set of connectors 212.
  • the device 220 includes a set of connectors 222 that are paired with the connectors 212.
  • the connectors 212 and 222 may represent any types connecting terminals. It is assumed that a user wants to connect the device 210 with the device 220 such that the connectors 212 and the connectors 222 can be contacted with each other. It should be understood that the embodiments of the present disclosure are not limited to any specific types of devices and connectors.
  • the embodiments of the present disclosure are not limited to achieve the purpose of contacting the connectors 212 with the connectors 222 through the device connection between the device 210 and the device 220, but may also direct to the simple purpose of assembling the device 210 and the device 220 even if no connector is included in the devices.
  • the magnetic lock-release mechanism may be applied for leading or facilitating the connecting between the device 210 and the device 220.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 210 and a second magnet unit member installed in the device 220.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 214 and 216
  • the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 234, 235, 236 and 237. It should be understood that all the magnet units in FIG. 2 are exemplary, and the first and second magnet unit members may include more or less magnet units.
  • the magnetic lock-release mechanism may comprise a movable member 230 which is installed in the device 220.
  • the movable member 230 may carry the set of movable magnet units, e.g., the movable magnet units 234, 235, 236 and 237.
  • the movable member 230 can be moved in a groove 240 formed in the device 220, e.g., moved between a first position and a second position in the groove 240.
  • the hole 232 is large enough so that the movement of the movable member 230 would not affect the exposure of the connectors 222 and thus not affect the contacting between the connectors 212 and the connectors 222.
  • the movable member 230 includes an exemplary sliding knob 238 which protrudes from the movable member 230 to a surface of the device 220.
  • the sliding knob 238 may have various shapes and structures that are easy for a user to move it.
  • the magnetic lock-release mechanism may have two polarity configurations corresponding to two positions of the movable magnet units respectively.
  • the movable member 230 is at the first position, and accordingly the set of movable magnet units is also at the first position, wherein the first position is an original position.
  • the fixed magnet unit 214 can be aligned with the movable magnet unit 234, and the fixed magnet unit 216 can be aligned with the movable magnet unit 236.
  • polarity directions of the fixed magnet unit 214 and the movable magnet unit 234 are set such that an end of the fixed magnet unit 214 facing the movable magnet unit 234 and an end of the movable magnet unit 234 facing the fixed magnet unit 214 have different polarities, e.g., the end of the fixed magnet unit 214 facing the movable magnet unit 234 has “N” polarity and the end of the movable magnet unit 234 facing the fixed magnet unit 214 has “S” polarity, and thus an attractive force may be produced between the fixed magnet unit 214 and the movable magnet unit 234 when they are close enough to each other.
  • polarity directions of the fixed magnet unit 216 and the movable magnet unit 236 are also set such that an attractive force may be produced between the fixed magnet unit 216 and the movable magnet unit 236 when they are close enough to each other.
  • the attractive force between the fixed magnet unit 214 and the movable magnet unit 234 and the attractive force between the fixed magnet unit 216 and the movable magnet unit 236 would lead or facilitate the connecting between the device 210 and the device 220 and further the contacting between the connectors 212 and the connectors 222.
  • the attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 210 and the device 220. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
  • the diagram 200B in FIG. 2 shows device disconnection between the device 210 and the device 220 with a repulsive force produced by the magnetic lock-lease mechanism.
  • the set of movable magnet units is also moved to the second position.
  • the fixed magnet unit 214 can be aligned with the movable magnet unit 235
  • the fixed magnet unit 216 can be aligned with the movable magnet unit 237.
  • polarity directions of the fixed magnet unit 214 and the movable magnet unit 235 are set such that an end of the movable magnet unit 235 facing the fixed magnet unit 214 has the same polarity as an end of the fixed magnet unit 214 facing the movable magnet unit 235, e.g., the end of the movable magnet unit 235 facing the fixed magnet unit 214 has the same “N” polarity as the end of the fixed magnet unit 214 facing the movable magnet unit 235, and thus a repulsive force may be produced between the fixed magnet unit 214 and the movable magnet unit 235 when they are close enough to each other.
  • polarity directions of the fixed magnet unit 216 and the movable magnet unit 237 are also set such that a repulsive force may be produced between the fixed magnet unit 216 and the movable magnet unit 237 when they are close enough to each other.
  • the repulsive force between the fixed magnet unit 214 and the movable magnet unit 235 and the repulsive force between the fixed magnet unit 216 and the movable magnet unit 237 would lead or facilitate the disconnecting between the device 210 and the device 220 and further the breaking of the contacting between the connectors 212 and the connectors 222.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 210 and the device 220.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent contacting between the connectors 212 and the connectors 222.
  • the repulsive forces would help to eject the device 210 from the device 220 automatically, without requiring the user to pull the devices so as to separate them from each other.
  • the set of movable magnet units has alternate polarity directions, e.g., the movable magnet units 234 and 235 have different polarity directions, and the movable magnet units 236 and 237 have different polarity directions. Accordingly, the movement of the set of movable magnet units may cause the magnetic lock-release mechanism to switch between the first polarity configuration and the second polarity configuration and further to produce the attractive forces and the repulsive forces respectively.
  • FIG. 3 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • the diagrams in FIG. 3 are used for further explaining the magnetic lock-release mechanism in FIG. 2, and the structure of the magnetic lock-release mechanism in FIG. 3 is a simplified version of the magnetic lock-release mechanism in FIG. 2. Possible connectors in devices are omitted in FIG. 3 and the subsequent figures.
  • FIG. 3 show device connection and device disconnection between a device 310 and a device 320 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 310 and a second magnet unit member installed in the device 320.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 312 and 314, and the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 332, 333, 334 and 335.
  • the magnetic lock-release mechanism may further comprise a movable member 330 which is installed in the device 320 and carries the set of movable magnet units, e.g., the movable magnet units 332, 333, 334 and 335. The movable member 330 can be moved between a first position and a second position.
  • the movable member 330 may further include a sliding knob 336.
  • the movable member 330 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet units 312 and 314 can be aligned with the movable magnet units 332 and 334 respectively.
  • polarity directions of the fixed magnet unit 312 and the movable magnet unit 332 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 314 and the movable magnet unit 334 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the fixed magnet units 312 and 314 may have the same polarity direction
  • the movable magnet units 332 and 334 may have the same polarity direction.
  • the attractive force between the fixed magnet unit 312 and the movable magnet unit 332 and the attractive force between the fixed magnet unit 314 and the movable magnet unit 334 would lead or facilitate the connecting between the device 310 and the device 320.
  • the attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 310 and the device 320.
  • device connection is achieved between the device 310 and the device 320, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
  • the sliding knob 336 is slid so as to move the movable member 330 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position.
  • the fixed magnet units 312 and 314 can be aligned with the movable magnet units 333 and 335 respectively.
  • polarity directions of the fixed magnet unit 312 and the movable magnet unit 333 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 314 and the movable magnet unit 335 are set such that a repulsive force may be produced between them.
  • the repulsive force between the fixed magnet unit 312 and the movable magnet unit 333 and the repulsive force between the fixed magnet unit 314 and the movable magnet unit 335 would lead or facilitate the disconnecting between the device 310 and the device 320.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 310 and the device 320.
  • device disconnection is achieved between the device 310 and the device 320, and the first magnet unit member and the second magnet unit member are in the releasing state.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 310 and the device 320.
  • FIG. 4 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • the diagrams in FIG. 4 show device connection and device disconnection between a device 410 and a device 420 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 410 and a second magnet unit member installed in the device 420.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 412, 413, 414 and 415
  • the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 432 and 434.
  • the magnetic lock-release mechanism may further comprise a movable member 430 which is installed in the device 420 and carries the set of movable magnet units, e.g., the movable magnet units 432 and 434.
  • the movable member 430 can be moved between a first position and a second position.
  • the movable member 430 may further include a sliding knob 436.
  • the movable member 430 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet units 412 and 414 can be aligned with the movable magnet units 432 and 434 respectively.
  • polarity directions of the fixed magnet unit 412 and the movable magnet unit 432 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 414 and the movable magnet unit 434 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the fixed magnet units 412 and 414 may have the same polarity direction
  • the movable magnet units 432 and 434 may have the same polarity direction.
  • the attractive force between the fixed magnet unit 412 and the movable magnet unit 432 and the attractive force between the fixed magnet unit 414 and the movable magnet unit 434 would lead or facilitate the connecting between the device 410 and the device 420.
  • the attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 410 and the device 420.
  • device connection is achieved between the device 410 and the device 420, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
  • the sliding knob 436 is slid so as to move the movable member 430 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position.
  • the fixed magnet units 413 and 415 can be aligned with the movable magnet units 432 and 434 respectively.
  • polarity directions of the fixed magnet unit 413 and the movable magnet unit 432 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 415 and the movable magnet unit 434 are set such that a repulsive force may be produced between them.
  • the repulsive force between the fixed magnet unit 413 and the movable magnet unit 432 and the repulsive force between the fixed magnet unit 415 and the movable magnet unit 434 would lead or facilitate the disconnecting between the device 410 and the device 420.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 410 and the device 420.
  • device disconnection is achieved between the device 410 and the device 420, and the first magnet unit member and the second magnet unit member are in the releasing state.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 410 and the device 420.
  • the set of fixed magnet units has alternate polarity directions, e.g., the fixed magnet units 412 and 413 have different polarity directions, and the fixed magnet units 414 and 415 have different polarity directions. Accordingly, the movement of the set of movable magnet units may cause the magnetic lock-release mechanism to switch between the first polarity configuration and the second polarity configuration and further to produce the attractive forces and the repulsive forces respectively.
  • FIG. 5 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in a device 510 and a second magnet unit member installed in a device 520.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 512 and 514
  • the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 531, 532, 533, 534, 535 and 536.
  • the magnetic lock-release mechanism may further comprise a movable member 530 which is installed in the device 520 and carries the set of movable magnet units, e.g., the movable magnet units 531, 532, 533, 534, 535 and 536.
  • the movable member 530 can be moved to a first position, a second position and a third position.
  • the movable member 530 may further include a sliding knob 538.
  • the set of movable magnet units is also at the first position.
  • the fixed magnet units 512 and 514 can be aligned with the movable magnet units 532 and 534 respectively.
  • polarity directions of the fixed magnet unit 512 and the movable magnet unit 532 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 514 and the movable magnet unit 534 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the fixed magnet units 512 and 514 may have the same polarity direction
  • the movable magnet units 532 and 534 may have the same polarity direction.
  • the attractive force between the fixed magnet unit 512 and the movable magnet unit 532 and the attractive force between the fixed magnet unit 514 and the movable magnet unit 534 would lead or facilitate the connecting between the device 510 and the device 520.
  • the attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 510 and the device 520.
  • the movable member 530 When the movable member 530 is currently at the first position and the sliding knob 538 is slid to the left, the movable member 530 is moved from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position.
  • the fixed magnet units 512 and 514 can be aligned with the movable magnet units 533 and 536 respectively.
  • polarity directions of the fixed magnet unit 512 and the movable magnet unit 533 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 514 and the movable magnet unit 536 are set such that a repulsive force may be produced between them.
  • the repulsive force between the fixed magnet unit 512 and the movable magnet unit 533 and the repulsive force between the fixed magnet unit 514 and the movable magnet unit 536 would lead or facilitate the disconnecting between the device 510 and the device 520.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 510 and the device 520.
  • the movable member 530 When the movable member 530 is currently at the first position and the sliding knob 538 is slid to the right, the movable member 530 is moved from the first position to the third position. Accordingly, the set of movable magnet units is also moved to the third position.
  • the fixed magnet units 512 and 514 can be aligned with the movable magnet units 531 and 535 respectively.
  • polarity directions of the fixed magnet unit 512 and the movable magnet unit 531 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 514 and the movable magnet unit 535 are set such that a repulsive force may be produced between them.
  • the repulsive force between the fixed magnet unit 512 and the movable magnet unit 531 and the repulsive force between the fixed magnet unit 514 and the movable magnet unit 535 would lead or facilitate the disconnecting between the device 510 and the device 520.
  • the repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 510 and the device 520.
  • any sliding direction of the sliding knob 538 e.g., either to the left or to the right, could cause the magnetic lock-release mechanism to produce repulsive forces and thus disconnect the device 510 and the device 520.
  • FIG. 6 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • the magnetic lock-release mechanism in FIG. 6 is a variation of the magnetic lock-release mechanism in FIG. 3, wherein magnets units in one magnet unit member may have different polarity directions.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in a device 610 and a second magnet unit member installed in a device 620.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 612 and 614, and the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 632, 633, 634 and 635.
  • the magnetic lock-release mechanism may further comprise a movable member 630 which is installed in the device 620 and carries the set of movable magnet units. The movable member 630 can be moved between a first position and a second position.
  • the movable member 630 may further include a sliding knob 636.
  • the fixed magnet units 612 and 614 can be aligned with the movable magnet units 632 and 634 respectively.
  • polarity directions of the fixed magnet unit 612 and the movable magnet unit 632 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 614 and the movable magnet unit 634 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the fixed magnet units 612 and 614 may have different polarity directions
  • the movable magnet units 632 and 634 may have different polarity directions.
  • the fixed magnet units 612 and 614 can be aligned with the movable magnet units 633 and 635 respectively.
  • polarity directions of the fixed magnet unit 612 and the movable magnet unit 633 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 614 and the movable magnet unit 635 are set such that a repulsive force may be produced between them.
  • the movable magnet units 633 and 635 may have different polarity directions.
  • incorrect connection between the device 610 and the device 620 may be avoided in the case that there is a predetermined connecting direction for a correct connection between the device 610 and the device 620.
  • a correct connection between the device 610 and the device 620 requires the fixed magnet unit 612 to be aligned with the movable magnet unit 632 and the fixed magnet unit 614 to be aligned with the movable magnet unit 634.
  • the repulsive force between the fixed magnet unit 612 and the movable magnet unit 634 and the repulsive force between the fixed magnet unit 614 and the movable magnet unit 632 would prevent the device 610 and the device 620 from being wrongly connected.
  • FIG. 7 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 7 show device connection and device disconnection between a device 710 and a device 720 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 710 and a second magnet unit member installed in the device 720.
  • the first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 712
  • the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 732 and 733.
  • the magnetic lock-release mechanism may further comprise a movable member 730 which is installed in the device 720 and carries the set of movable magnet units. The movable member 730 can be moved between a first position and a second position.
  • the movable member 730 may further include a sliding knob 736.
  • the movable member 730 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet unit 712 can be aligned with the movable magnet unit 732.
  • polarity directions of the fixed magnet unit 712 and the movable magnet unit 732 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the attractive force would lead or facilitate the connecting between the device 710 and the device 720.
  • the attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 710 and the device 720.
  • the movable member 730 is at the second position, and accordingly the set of movable magnet units is also at the second position.
  • the fixed magnet unit 712 can be aligned with the movable magnet unit 733.
  • polarity directions of the fixed magnet unit 712 and the movable magnet unit 733 are set such that a repulsive force may be produced between them.
  • the repulsive force would lead or facilitate the disconnecting between the device 710 and the device 720.
  • the repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 710 and the device 720.
  • FIG. 8 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • FIG. 8 show device connection and device disconnection between a device 810 and a device 820 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 810 and a second magnet unit member installed in the device 820.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 812 and 814.
  • the second magnet unit member may include a set of movable magnet units, e.g., movable magnet units 832 and 833, and a fixed magnet unit 834.
  • the magnetic lock-release mechanism may further comprise a movable member 830 which is installed in the device 820 and carries the set of movable magnet units, e.g., the movable magnet units 832 and 833.
  • the movable member 830 can be moved between a first position and a second position.
  • the movable member 830 may further include a sliding knob 836.
  • the movable member 830 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet units 812 and 814 can be aligned with the movable magnet unit 832 and the fixed magnet unit 834 respectively.
  • polarity directions of the fixed magnet unit 812 and the movable magnet unit 832 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 814 and the fixed magnet unit 834 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the attractive force between the fixed magnet unit 812 and the movable magnet unit 832 and the attractive force between the fixed magnet unit 814 and the fixed magnet unit 834 would lead or facilitate the connecting between the device 810 and the device 820.
  • These attractive forces would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 810 and the device 820.
  • device connection is achieved between the device 810 and the device 820, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, these attractive forces would further help to maintain the device connection.
  • the sliding knob 836 is slid so as to move the movable member 830 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position.
  • the fixed magnet units 812 and 814 can be aligned with the movable magnet unit 833 and the fixed magnet unit 834 respectively.
  • polarity directions of the fixed magnet unit 812 and the movable magnet unit 833 are set such that a repulsive force may be produced between them.
  • the repulsive force between the fixed magnet unit 812 and the movable magnet unit 833 would lead or facilitate the disconnecting between the device 810 and the device 820.
  • the repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 810 and the device 820.
  • device disconnection is achieved between the device 810 and the device 820, and the first magnet unit member and the second magnet unit member are in the releasing state.
  • the repulsive force between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 810 and the device 820.
  • the magnetic lock-release mechanism discussed above in connection with FIG. 2 to FIG. 8 adopts a sliding bar for implementing the movable member and moves the movable member through sliding
  • the embodiments of the present disclosure may also implement the movable member in any other approaches, e.g., adopting a rotating plate or a rotating cylinder for implementing the movable member and moving the movable member through rotating.
  • FIG. 9 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • the magnetic lock-release mechanism adopts a rotating plate for implementing a movable member.
  • FIG. 9 show device connection and device disconnection between a device 910 and a device 920 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 910 and a second magnet unit member installed in the device 920.
  • the first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 912, and the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 932 and 933.
  • the magnetic lock-release mechanism may further comprise a movable member 930 which is installed in the device 920 and carries the set of movable magnet units.
  • the movable member 930 is a rotating plate, and can be rotated between a first position and a second position.
  • the movable member 930 may further include a rotating knob 934 which protrudes from the movable member 930 to a surface of the device 920 and can be rotated by a user.
  • the rotating knob 934 may have various shapes or structures that are easy for a user to rotate it and accordingly rotate the movable member 930. As compared to the sliding knob discussed above, the rotating knob 934 occupies smaller area in the device 920 and is easier for a user to operate it.
  • the movable member 930 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet unit 912 can be aligned with the movable magnet unit 932.
  • polarity directions of the fixed magnet unit 912 and the movable magnet unit 932 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the attractive force would lead or facilitate the connecting between the device 910 and the device 920.
  • the attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 910 and the device 920.
  • the movable member 930 is rotated to the second position, and accordingly the set of movable magnet units is also at the second position.
  • the fixed magnet unit 912 can be aligned with the movable magnet unit 933.
  • polarity directions of the fixed magnet unit 912 and the movable magnet unit 933 are set such that a repulsive force may be produced between them.
  • the repulsive force would lead or facilitate the disconnecting between the device 910 and the device 920.
  • the repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 910 and the device 920.
  • FIG. 10 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
  • the magnetic lock-release mechanism adopts a rotating cylinder for implementing a movable member.
  • FIG. 10 show device connection and device disconnection between a device 1010 and a device 1020 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1010 and a second magnet unit member installed in the device 1020.
  • the first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 1012, and the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 1032 and 1033.
  • the magnetic lock-release mechanism may further comprise a movable member 1030 which is installed in the device 1020 and carries the set of movable magnet units.
  • the movable member 1030 is a rotating cylinder, and can be rotated between a first position and a second position.
  • the movable member 1030 may further include a rotating knob 1034 which protrudes from the movable member 1030 to a surface of the device 1020 and can be rotated by a user.
  • the movable member 1030 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet unit 1012 can be aligned with the movable magnet unit 1032.
  • polarity directions of the fixed magnet unit 1012 and the movable magnet unit 1032 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the attractive force would lead or facilitate the connecting between the device 1010 and the device 1020.
  • the attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 1010 and the device 1020.
  • the movable member 1030 is rotated to the second position, and accordingly the set of movable magnet units is also at the second position.
  • the fixed magnet unit 1012 can be aligned with the movable magnet unit 1033.
  • polarity directions of the fixed magnet unit 1012 and the movable magnet unit 1033 are set such that a repulsive force may be produced between them.
  • the repulsive force would lead or facilitate the disconnecting between the device 1010 and the device 1020.
  • the repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 1010 and the device 1020.
  • the magnetic lock-release mechanism may include at least one returning member for returning at least one movable magnet unit to its original position automatically.
  • the returning member may be installed in the same device as a movable member, and connected to the movable member. Assuming that a first position of the movable member is an original position, the returning member may return the movable member from other positions, e.g., a second position, to the first position automatically. For example, the returning member may produce a pushing force and/or a pulling force for causing the movable member to return to the first position.
  • the returning member may be made of any types of elastic material, e.g., spring, etc.
  • FIG. 11 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
  • the magnetic lock-release mechanism in FIG. 11 is an improvement to the magnetic lock-release mechanism in FIG. 3, which further comprises a returning member.
  • the same reference numerals in FIG. 11 and FIG. 3 refer to the same devices, members, units, etc.
  • the magnetic lock-release mechanism comprises a returning member 1102 which is installed in the device 320 and connected to the movable member 330.
  • the returning member 1102 is shown as a spring, it may adopt any other elastic materials.
  • One end of the returning member 1102 is connected to the device 320, and another end of the returning member 1102 is connected to the movable member 330.
  • the movable member 330 is at the first position.
  • the returning member 1102 is in an original state, and does not produce any force.
  • the movable member 330 is moved to the second position.
  • the returning member 1102 is in a contracting state, and produces a pushing force in a direction from the second position to the first position.
  • the pushing force produced by the returning member 1102 returns the movable member 330 from the second position to the original first position automatically.
  • the movable member can be returned to the original position automatically and accordingly the magnetic lock-release mechanism gets ready for next device connection, without the need of manual operation of returning the movable member to the original position. This would bring out a better user experience.
  • FIG. 12 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
  • the magnetic lock-release mechanism in FIG. 12 is an improvement to the magnetic lock-release mechanism in FIG. 3, which further comprises a returning member.
  • the magnetic lock-release mechanism in FIG. 12 is also a variation of the magnetic lock-release mechanism in FIG. 11.
  • the same reference numerals in FIG. 12 and FIG. 3 refer to the same devices, members, units, etc.
  • the magnetic lock-release mechanism comprises a returning member 1202 which is installed in the device 320 and connected to the movable member 330.
  • the returning member 1202 is shown as a spring, it may adopt any other elastic materials.
  • One end of the returning member 1202 is connected to the device 320, and another end of the returning member 1202 is connected to the movable member 330.
  • the movable member 330 is at the first position.
  • the returning member 1202 is in an original state, and does not produce any force.
  • the movable member 330 is moved to the second position.
  • the returning member 1202 is in a stretching state, and produces a pulling force in a direction from the second position to the first position.
  • the pulling force produced by the returning member 1202 returns the movable member 330 from the second position to the original first position automatically.
  • FIG. 13 illustrates an exemplary magnetic lock-release mechanism with two returning members according to an embodiment.
  • the magnetic lock-release mechanism in FIG. 13 adopts a combination of the returning members in FIG. 11 and FIG. 12.
  • the magnetic lock-release mechanism comprises a returning member 1302 and a returning member 1303 which are installed in the device 320 and connected to the movable member 330.
  • One end of the returning member 1302 is connected to the device 320, and another end of the returning member 1302 is connected to the movable member 330.
  • one end of the returning member 1304 is connected to the device 320, and another end of the returning member 1304 is connected to the movable member 330.
  • the movable member 330 is at the first position.
  • the returning member 1302 and the returning member 1304 are both in an original state, and do not produce any force.
  • the movable member 330 is moved to the second position.
  • the returning member 1302 is in a contracting state, and produces a pushing force in a direction from the second position to the first position.
  • the returning member 1304 is in a stretching state, and produces a pulling force in a direction from the second position to the first position.
  • the pushing force produced by the returning member 1302 and the pulling force produced by the returning member 1304 may return the movable member 330 from the second position to the original first position more quickly than only applying one returning member in the magnetic lock-release mechanism as shown in FIG. 11 and FIG. 12.
  • FIG. 14 illustrates an exemplary magnetic lock-release mechanism with a returning member according to an embodiment.
  • the magnetic lock-release mechanism in FIG. 14 is an improvement to the magnetic lock-release mechanism in FIG. 9, which further comprises a returning member.
  • the same reference numerals in FIG. 14 and FIG. 9 refer to the same devices, members, units, etc.
  • the magnetic lock-release mechanism comprises a returning member 1402 which is installed in the device 920 and connected to the movable member 930. One end of the returning member 1402 is connected to the device 420, and another end of the returning member 1402 is connected to the movable member 430.
  • the returning member 1402 When the movable member 930 is at the first position, the returning member 1402 is in an original state, and does not produce any force. When the movable member 930 is rotated from the first position to the second position, the returning member 1402 is in a contracting or stretching state, and produces a pushing or pulling force which causes the movable member to return from the second position to the first position.
  • the movable members which are implemented by sliding bars, in the magnetic lock-release mechanism discussed above in connection with FIG. 2 to FIG. 8 adopts a sliding knob for sliding the movable members
  • the embodiments of the present invention may also adopt a clicking button to slide the movable members.
  • FIG. 15 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • a clicking button is included in a movable member for sliding the movable member.
  • FIG. 15 show device connection and device disconnection between a device 1510 and a device 1520 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1510 and a second magnet unit member installed in the device 1520.
  • the first magnet unit member may include a set of fixed magnet units, e.g., fixed magnet units 1512 and 1514, and the second magnet unit member may include at least a set of movable magnet units, e.g., movable magnet units 1532, 1533, 1534 and 1535.
  • the magnetic lock-release mechanism may further comprise a movable member 1530 which is installed in the device 1520 and carries the set of movable magnet units. The movable member 1530 can be moved between a first position and a second position.
  • the movable member 1530 may further include a clicking button 1536 which protrudes from the movable member 1530 to outside of the device 1520.
  • the magnetic lock-release mechanism comprises a returning member 1502 which is installed in the device 1520 and connected to the movable member 1530. One end of the returning member 1502 is connected to the device 1520, and another end of the returning member 1502 is connected to the movable member 1530.
  • the movable member 1530 is at the first position, and accordingly the set of movable magnet units is also at the first position.
  • the fixed magnet units 1512 and 1514 can be aligned with the movable magnet units 1532 and 1534 respectively.
  • polarity directions of the fixed magnet unit 1512 and the movable magnet unit 1532 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the fixed magnet unit 1514 and the movable magnet unit 1534 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the returning member 1502 is in an original state, and does not produce any force.
  • the attractive force between the fixed magnet unit 1512 and the movable magnet unit 1532 and the attractive force between the fixed magnet unit 1514 and the movable magnet unit 1534 would lead or facilitate the connecting between the device 1510 and the device 1520.
  • device connection is achieved between the device 1510 and the device 1520, and the first magnet unit member and the second magnet unit member are in a locking state.
  • the returning member 1502 keeps in the original state, and does not produce any force.
  • the clicking button 1536 is pushed or clicked so as to move the movable member 1530 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position.
  • the fixed magnet units 1512 and 1514 can be aligned with the movable magnet units 1533 and 1535 respectively.
  • polarity directions of the fixed magnet unit 1512 and the movable magnet unit 1533 are set such that a repulsive force may be produced between them
  • polarity directions of the fixed magnet unit 1514 and the movable magnet unit 1535 are set such that a repulsive force may be produced between them.
  • the returning member 1502 is in a contracting state, and produces a pushing force in a direction from the second position to the first position.
  • the repulsive force between the fixed magnet unit 1512 and the movable magnet unit 1533 and the repulsive force between the fixed magnet unit 1514 and the movable magnet unit 1535 would lead or facilitate the disconnecting between the device 1510 and the device 1520.
  • device disconnection is achieved between the device 1510 and the device 1520, and the first magnet unit member and the second magnet unit member are in a releasing state.
  • the returning member 1502 keeps in the contracting state, and produces the pushing force in a direction from the second position to the first position.
  • the pushing force produced by the returning member 1502 returns the movable member 1530 from the second position to the original first position automatically.
  • the magnetic lock-release mechanism may be based in part on, e.g., electronic magnets, and may produce attractive forces and repulsive forces respectively through changing current directions of electronic magnets.
  • the magnetic lock-release mechanism may comprise two magnet unit members installed on two devices respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member which is installed in a first device and includes a set of magnet units.
  • the set of magnet units in the first magnet unit member may be, e.g., permanent magnets, electronic magnets, etc.
  • the magnetic lock-release mechanism may further comprise a second magnet unit member which is installed in a second device and includes a set of electronic magnets. Different polarity configurations in the magnetic lock-release mechanism may be obtained through changing current directions of electronic magnets. It is assumed that the magnetic lock-release mechanism may produce an attractive force in a first polarity configuration corresponding to the first current direction.
  • the magnetic lock-release mechanism may produce a repulsive force in a second polarity configuration corresponding to a second current direction.
  • a repulsive force exists between the set of magnet units in the first magnet unit member and the set of electronic magnets in the second magnet unit member. The repulsive force would cause the first magnet unit member and the second magnet unit member to enter into a releasing state.
  • FIG. 16 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
  • the magnetic lock-release mechanism may be based in part on electronic magnets.
  • FIG. 16 show device connection and device disconnection between a device 1610 and a device 1620 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
  • the magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1610 and a second magnet unit member installed in the device 1620.
  • the first magnet unit member may include a set of magnet units, e.g., magnet units 1612 and 1614.
  • the second magnet unit member may include a set of electronic magnets, e.g., electronic magnets 1632 and 1634.
  • Each of the electronic magnets is coupled with a coil through which the electronic magnet may be powered on by current, and the supplied current may cause a magnetic field in the electronic magnet that corresponds to the direction of the current.
  • the electronic magnet 1632 is coupled with a coil 1633
  • the electronic magnet 1634 is coupled with a coil 1635.
  • the magnet units 1612 and 1614 can be aligned with the electronic magnets 1632 and 1634 respectively.
  • the electronic magnets 1632 and 1634 are powered on in a first current direction.
  • polarity directions of the magnet unit 1612 and the electronic magnet 1632 are set such that an attractive force may be produced between them when they are close enough to each other
  • polarity directions of the magnet unit 1614 and the electronic magnet 1634 are set such that an attractive force may be produced between them when they are close enough to each other.
  • the magnet units 1612 and 1614 may have the same polarity direction.
  • the attractive force between the magnet unit 1612 and the electronic magnet unit 1632 and the attractive force between the magnet unit 1614 and the electronic magnet unit 1634 would lead or facilitate the connecting between the device 1610 and the device 1620.
  • These attractive forces would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 1610 and the device 1620.
  • device connection is achieved between the device 1610 and the device 1620, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces would further help to maintain the device connection.
  • the electronic magnets 1632 and 1634 are powered on in a second current direction which is different from the first current direction.
  • polarity directions of the magnet unit 1612 and the electronic magnet 1632 are set such that a repulsive force may be produced between them
  • polarity directions of the magnet unit 1614 and the electronic magnet 1634 are set such that a repulsive force may be produced between them.
  • the repulsive force between the magnet unit 1612 and the electronic magnet 1632 and the repulsive force between the magnet unit 1614 and the electronic magnet 1634 would lead or facilitate the disconnecting between the device 1610 and the device 1620.
  • These repulsive forces would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 1610 and the device 1620.
  • device disconnection is achieved between the device 1610 and the device 1620, and the first magnet unit member and the second magnet unit member are in the releasing state. In the releasing state, the repulsive forces would further help to, e.g., avoid inadvertent connection between the device 1610 and the device 1620.
  • first magnet unit member may comprise more or less magnet units
  • second magnet unit member may comprise more or less electronic units.
  • magnet units 1612 and 1614 may have the same polarity direction, they may have different polarity directions, and accordingly the electronic magnets 1632 and 1634 may be powered on in different current directions respectively.
  • the embodiments of the present disclosure provide a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of fixed magnet units; and a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position.
  • a first magnet unit member installed in a first device and including a set of fixed magnet units
  • a second magnet unit member installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position.
  • the attractive force causes the first magnet unit member and the second magnet unit member to enter into a locking state.
  • the repulsive force causes the first magnet unit member and the second magnet unit member to enter into a releasing state.
  • the magnetic lock-release mechanism may further comprise: a movable member, installed in the second device and carrying the set of movable magnet units, wherein the movable member is movable to the first position and the second position.
  • the movable member may be movable through sliding or rotating.
  • the movable member may be one of a sliding bar, a rotating plate, or a rotating cylinder.
  • the movable member may include one of a sliding knob, a clicking button and a rotating knob.
  • the magnetic lock-release mechanism may further comprise: at least one returning member, installed in the second device and connected to the movable member, wherein the returning member is for returning the movable member from the second position to the first position automatically.
  • the returning member produces a pushing force and/or a pulling force for causing the movable member to return to the first position.
  • the returning member may be made of elastic material.
  • the returning member may be a spring.
  • the set of fixed magnet units may include at least a first magnet unit
  • the set of movable magnet units may include at least a second magnet unit and a third magnet unit with alternate polarity directions.
  • the second magnet unit aligns with the first magnet unit, and the attractive force exists between the second magnet unit and the first magnet unit.
  • the third magnet unit aligns with the first magnet unit, and the repulsive force exists between the third magnet unit and the first magnet unit.
  • the set of fixed magnet units may include at least a first magnet unit and a second magnetic unit with alternate polarity directions
  • the set of movable magnet units may include at least a third magnet unit.
  • the third magnet unit aligns with the first magnet unit, and the attractive force exists between the third magnet unit and the first magnet unit.
  • the set of movable magnet units is at the second position, the third magnet unit aligns with the second magnet unit, and the repulsive force exists between the third magnet unit and the second magnet unit.
  • the set of movable magnet units may be movable to a third position. In the case that the set of movable magnet units is at the third position, a second repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
  • the second magnet unit member may include at least one fixed magnet unit, and a second attractive force exists between the at least one fixed magnet unit in the second magnet unit member and an aligned magnet unit in the first magnet unit member.
  • the embodiments of the present disclosure provide a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of magnet units; and a second magnet unit member, installed in a second device and including a set of electronic magnets.
  • a first current direction an attractive force exists between the set of magnet units and the set of electronic magnets.
  • a repulsive force exists between the set of magnet units and the set of electronic magnets.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

The present disclosure provides a magnetic lock-release mechanism. The magnetic lock-release mechanism may comprise: a first magnet unit member, installed in a first device and including a set of fixed magnet units; and a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position. In the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units. In the case that the set of movable magnet units is at the second position, a repulsive force exists between the set of fixed magnet units and the set of movable magnet units.

Description

MAGNETIC LOCK-RELEASE MECHANISM BACKGROUND
Device connection among various devices such as electronic devices, mechanical devices, or any other structural devices or modules is a common and frequent requirement for, e.g., device usage, device functionality extension, information exchanging, power supplying, device assembling, etc. Lock mechanism is usually applied for device connection for the purpose of, e.g., ensuring stable connection, enhancing convenience of operations for device connection, etc.
SUMMARY
This Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. It is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Embodiments of the present disclosure propose a magnetic lock-release mechanism. The magnetic lock-release mechanism may comprise: a first magnet unit member, installed in a first device and including a set of fixed magnet units; and a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position. In the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units. In the case that the set of movable magnet units is at the second position, a repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
The embodiments of the present disclosure also propose a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of magnet units; and a second magnet unit member, installed in a second device and including a set of electronic magnets. In the case that the set of electronic magnets is powered on in a first current direction, an attractive force exists between the set of magnet units and the set of electronic magnets. In the case that the set of electronic magnets is powered on in a second current direction, a repulsive force exists between the set of magnet units and the set of electronic magnets.
It should be noted that the above one or more aspects comprise the features  hereinafter fully described and particularly pointed out in the claims. The following description and the drawings set forth in detail certain illustrative features of the one or more aspects. These features are only indicative of the various ways in which the principles of various aspects may be employed, and this disclosure is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in connection with the appended drawings that are provided to illustrate and not to limit the disclosed aspects.
FIG. 1 illustrates an exemplary existing magnetic lock mechanism.
FIG. 2 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
FIG. 3 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
FIG. 4 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
FIG. 5 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
FIG. 6 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
FIG. 7 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
FIG. 8 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
FIG. 9 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
FIG. 10 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
FIG. 11 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
FIG. 12 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment.
FIG. 13 illustrates an exemplary magnetic lock-release mechanism with  two returning members according to an embodiment.
FIG. 14 illustrates an exemplary magnetic lock-release mechanism with a returning member according to an embodiment.
FIG. 15 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
FIG. 16 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example implementations. It is to be understood that these implementations are discussed only for enabling those skilled in the art to better understand and thus implement the embodiments of the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
An example of the existing lock mechanism is magnetic lock mechanism which adopts magnet units for facilitating device connection and is usually applied for, e.g., device connection of electronic devices. In the magnetic lock mechanism, two sets of magnet units are installed in two devices respectively, and when these two devices are aligned and placed close enough with each other, an attractive force between the two sets of magnet units may assist to or lead to establishment of a connection between the two devices. After the two devices are connected, the attractive force is also helpful to maintain the connection between the two devices.
However, in actual application scenarios, not only device connection is often required, device disconnection is also frequently required. For example, users may need docking a target device to a base device and undocking the target device from the base device frequently. Although the existing magnetic lock mechanism is beneficial for device connection, it hinders or causes inconvenience to a user’s operation of disconnecting two devices, because the user have to pull the devices with a force higher than an attractive force existing between two sets of magnet units in the two devices. Moreover, frequent disconnecting or undocking of devices with an excessive force may increase the risk of damaging the lock mechanism, the devices, connectors in the devices, etc. Furthermore, sizes or shapes of some devices may cause the devices not easy to be grasped, which increases difficulty of imposing an  enough force to disconnect two devices.
Embodiments of the present disclosure propose a magnetic lock-release mechanism which in substance is a polarity reversible magnetic lock-release mechanism. The magnetic lock-release mechanism may enter into two operating states, i.e., a locking state and a releasing state, through switching polarity configurations between two devices. In one polarity configuration, an attractive force exists between two devices, which causes the magnetic lock-release mechanism to enter into the locking state, thus achieving device connection. The locking state may be also referred to as an attractive state. In another polarity configuration, a repulsive force exists between the two devices, which causes the magnetic lock-release mechanism to enter into the releasing state, thus achieving device disconnection. The releasing state may be also referred to as a repulsive state. The magnetic lock-release mechanism may produce an attractive force and a repulsive force between two devices respectively, and accordingly switch between the locking state and the releasing state.
Herein, the term “device connection” may broadly refer to, e.g., connection between two devices, connection between a device and a module of another device, connection between a module of a device and a module of another device, etc. Moreover, the terms “device” , “module” , etc. are exchangeable in this disclosure. Device connection may direct to, e.g., establishing a contact or non-contact connection between connectors of two devices, or simply assembling two devices in structure. The term “device disconnection” may broadly refer to, e.g., breaking of connection between two devices or modules. Device disconnection may direct to, e.g., removing a contact or non-contact connection between connectors of two devices, or simply disassembling two devices in structure.
In an aspect, different polarity configurations may be implemented through movement of positions of magnet units. At least one movable magnet unit may be set in the magnetic lock-release mechanism, and different positions of the at least one movable magnet unit may cause different polarity configurations. For example, when the movable magnet unit is at different positions, different types of force, e.g., an attractive force and a repulsive force, may exist respectively between the movable magnet unit and different aligned magnet units.
In an aspect, different polarity configurations may be implemented through  changing current directions of electronic magnets. For example, different current directions supplied to an electronic magnet may cause changing of polarity directions of the electronic magnet, and thus different types of force, e.g., an attractive force and a repulsive force, may exist respectively between the electronic magnet and an aligned magnet unit.
In an aspect, in the case of implementing different polarity configurations through movement of positions of magnet units, the magnetic lock-release mechanism may include at least one returning member for returning at least one movable magnet unit to its original position automatically.
In an aspect, in the case of implementing different polarity configurations through movement of positions of magnet units, the magnetic lock-release mechanism may adopt various approaches for moving at least one movable magnet unit, e.g., through sliding, rotating, etc.
According to the embodiments of the present disclosure, the magnetic lock-release mechanism may provide a more-friendly user experience of device connection and device disconnection, especially, a better user experience of disconnecting or undocking devices. For example, when it is desired to release devices, a repulsive force produced between two devices by the magnetic lock-release mechanism would facilitate to conveniently and effectively disconnect or undock one device from another device, thus enhancing convenience of operations for device disconnection. Even there exists a high attractive force between two devices for maintaining the locking state, or sizes or shapes of some devices cause the devices not easy to be grasped, the magnetic lock-release mechanism may still conveniently switch from the locking state to the releasing state and utilize the repulsive force for disconnecting devices. Moreover, the repulsive force may also be acted as a protection measure for avoiding inadvertent actuation contacting of connectors of two devices. Furthermore, the repulsive force may also be used for avoiding an excessive force to be imposed, thus decreasing the risk of damaging the magnetic lock-release mechanism, devices, connectors in the devices, etc. during disconnecting or undocking the devices. Since the magnetic lock-release mechanism may not only produce the attractive force when connecting devices and but also produce the repulsive force when disconnecting devices, both operations for device connection and operations for device disconnection become easy, convenient and efficient.
The magnetic lock-release mechanism according to the embodiments of the present disclosure may be applied for various scenarios that require devices or modules to be connected and disconnected. The devices or modules may be of various types, e.g., electronic devices or modules, mechanical devices or modules, etc. The scenarios may cover any known or potential scenarios, e.g., docking and undocking between a detachable keyboard and a tablet computer, connecting and disconnecting between a laptop computer and a docking station, assembling and disassembling between a battery cover and a battery compartment of an electronic device, docking and undocking between a hand-held device and a charging dock, docking and undocking between a cordless telephone and a base, connecting and disconnecting between a plug and a socket, etc. It should be understood that the embodiments of the present disclosure are not limited to any specific types of devices, any specific application scenarios, etc.
FIG. 1 illustrates an exemplary existing magnetic lock mechanism. The diagram 100 in FIG. 1 shows device connection between a device 110 and a device 120 with an existing magnetic lock mechanism.
The device 110 includes a set of connectors 112. The device 120 includes a set of connectors 122 that are paired with the connectors 112. The  connectors  112 and 122 may represent any types connecting terminals, e.g., Pogo pins, etc. It is assumed that a user wants to connect the device 110 with the device 120 such that the connectors 112 and the connectors 122 can be contacted with each other.
The magnetic lock mechanism is applied for leading or facilitating the connecting between the device 110 and the device 120. The magnetic lock mechanism comprises two  magnet units  114 and 116 installed in the device 110 and another two  magnet units  124 and 126 installed in the device 120. The magnet unit 114 can be aligned with the magnet unit 124, and the magnet unit 116 can be aligned with the magnet unit 126.
The magnetic lock mechanism applies a predetermined polarity configuration for the  magnet units  114, 116, 124 and 126, e.g., setting predetermined polarity directions for the  magnet units  114, 116, 124 and 126 respectively. According to the predetermined polarity configuration, polarity directions of the magnet unit 114 and the magnet unit 124 are set such that an end of the magnet unit 114 facing the magnet unit 124 and an end of the magnet unit 124 facing the magnet unit 114 have  different polarities, e.g., the end of the magnet unit 114 facing the magnet unit 124 has “N” polarity and the end of the magnet unit 124 facing the magnet unit 114 has “S” polarity, and thus an attractive force may be produced between the magnet unit 114 and the magnet unit 124 when they are close enough to each other. Similarly, polarity directions of the magnet unit 116 and the magnet unit 126 are also set such that an attractive force may be produced between the magnet unit 116 and the magnet unit 126 when they are close enough to each other.
When the device 110 and the device 120 are aligned with each other and placed close enough, the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126 would lead or facilitate the connecting between the device 110 and the device 120 and further the contacting between the connectors 112 and the connectors 122. After the device 110 and the device 120 are connected, the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126 would also help to maintain the device connection.
If the user wants to disconnect the device 110 and the device 120, the user may have to pull each or both of the device 110 and the device 120 so as to separate them from each other. For example, the user needs to impose a force higher than the attractive force between the magnet unit 114 and the magnet unit 124 and the attractive force between the magnet unit 116 and the magnet unit 126, so as to separate the device 110 from the device 120. Such operation for device disconnection is inconvenient and may cause damages.
As discussed above, the magnetic lock-release mechanism according to the embodiments of the present disclosure may not only lead or facilitate device connection between two devices through attractive forces, but also lead or facilitate device disconnection between the two devices through repulsive forces.
In an implementation, the magnetic lock-release mechanism may be based on, e.g., permanent magnets, and may produce attractive forces and repulsive forces respectively through movement of positions of magnet units. Magnet units in the magnetic lock-release mechanism may be permanent magnets.
The magnetic lock-release mechanism may comprise two magnet unit members installed on two devices respectively. Herein, a magnet unit member may refer to a collection of one or more magnet units installed on a device.
The magnetic lock-release mechanism may comprise a first magnet unit member which is installed in a first device and includes a set of fixed magnet units. The set of fixed magnet units may comprise one or more fixed magnet units. Herein, a fixed magnet unit may refer to a magnet unit the position of which is fixed in a device installed with the magnet unit. The magnetic lock-release mechanism may further comprise a second magnet unit member which is installed in a second device and includes at least a set of movable magnet units. The set of movable magnet units may comprise one or more movable magnet units. Herein, a movable magnet unit may refer to a magnet unit the position of which is movable in a device installed with the magnet unit. For example, the set of movable magnet units may be moved to a first position and a second position.
Different polarity configurations in the magnetic lock-release mechanism may be obtained through movement of positions of the set of movable magnet units. It is assumed that the magnetic lock-release mechanism may produce an attractive force in a first polarity configuration corresponding to the first position of the set of movable magnet units. For example, in the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units. The attractive force would cause the first magnet unit member and the second magnet unit member to enter into a locking state. It is assumed that the magnetic lock-release mechanism may produce a repulsive force in a second polarity configuration corresponding to the second position of the set of movable magnet units. For example, in the case that the set of movable magnet units is at the second position, a repulsive force exists between the set of fixed magnet units and the set of movable magnet units. The repulsive force would cause the first magnet unit member and the second magnet unit member to enter into a releasing state.
In order to move the positions of the set of movable magnet units, the magnetic lock-release mechanism may comprise a movable member which is installed in the second device and carries the set of movable magnet units. For example, the set of movable magnet units may be mounted in the movable member. The movable member may be moved to the first position and the second position, which causes the set of movable magnet units to be moved to the first position and the second position accordingly. The movable member may adopt various movement approaches, e.g., sliding, rotating, etc. Accordingly, the movable member may be implemented as a  sliding bar, a rotating plate, a rotating cylinder, etc. Moreover, for the sake of operating the movable member by a user, the movable member may further include, e.g., a sliding knob, a clicking button, a rotating knob, etc.
FIG. 2 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
The diagram 200A in FIG. 2 shows device connection between a device 210 and a device 220 with an attractive force produced by the magnetic lock-lease mechanism.
The device 210 includes a set of connectors 212. The device 220 includes a set of connectors 222 that are paired with the connectors 212. The  connectors  212 and 222 may represent any types connecting terminals. It is assumed that a user wants to connect the device 210 with the device 220 such that the connectors 212 and the connectors 222 can be contacted with each other. It should be understood that the embodiments of the present disclosure are not limited to any specific types of devices and connectors. Moreover, the embodiments of the present disclosure are not limited to achieve the purpose of contacting the connectors 212 with the connectors 222 through the device connection between the device 210 and the device 220, but may also direct to the simple purpose of assembling the device 210 and the device 220 even if no connector is included in the devices.
The magnetic lock-release mechanism may be applied for leading or facilitating the connecting between the device 210 and the device 220. The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 210 and a second magnet unit member installed in the device 220. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  214 and 216, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  234, 235, 236 and 237. It should be understood that all the magnet units in FIG. 2 are exemplary, and the first and second magnet unit members may include more or less magnet units.
The magnetic lock-release mechanism may comprise a movable member 230 which is installed in the device 220. The movable member 230 may carry the set of movable magnet units, e.g., the  movable magnet units  234, 235, 236 and 237. The movable member 230 can be moved in a groove 240 formed in the device 220, e.g., moved between a first position and a second position in the groove 240. There is a  hole 232 formed in the movable member 230, and the connectors 222 may be exposed through the hole 232 so as to be contactable with the connectors 212. The hole 232 is large enough so that the movement of the movable member 230 would not affect the exposure of the connectors 222 and thus not affect the contacting between the connectors 212 and the connectors 222. The movable member 230 includes an exemplary sliding knob 238 which protrudes from the movable member 230 to a surface of the device 220. The sliding knob 238 may have various shapes and structures that are easy for a user to move it.
The magnetic lock-release mechanism may have two polarity configurations corresponding to two positions of the movable magnet units respectively. In the diagram 200A, the movable member 230 is at the first position, and accordingly the set of movable magnet units is also at the first position, wherein the first position is an original position. In this case, the fixed magnet unit 214 can be aligned with the movable magnet unit 234, and the fixed magnet unit 216 can be aligned with the movable magnet unit 236. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 214 and the movable magnet unit 234 are set such that an end of the fixed magnet unit 214 facing the movable magnet unit 234 and an end of the movable magnet unit 234 facing the fixed magnet unit 214 have different polarities, e.g., the end of the fixed magnet unit 214 facing the movable magnet unit 234 has “N” polarity and the end of the movable magnet unit 234 facing the fixed magnet unit 214 has “S” polarity, and thus an attractive force may be produced between the fixed magnet unit 214 and the movable magnet unit 234 when they are close enough to each other. Similarly, polarity directions of the fixed magnet unit 216 and the movable magnet unit 236 are also set such that an attractive force may be produced between the fixed magnet unit 216 and the movable magnet unit 236 when they are close enough to each other.
When the device 210 and the device 220 are aligned with each other and placed close enough, the attractive force between the fixed magnet unit 214 and the movable magnet unit 234 and the attractive force between the fixed magnet unit 216 and the movable magnet unit 236 would lead or facilitate the connecting between the device 210 and the device 220 and further the contacting between the connectors 212 and the connectors 222. The attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and  the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 210 and the device 220. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
The diagram 200B in FIG. 2 shows device disconnection between the device 210 and the device 220 with a repulsive force produced by the magnetic lock-lease mechanism.
It is assumed that the user slides the sliding knob 238 to move the movable member 230 from the first position shown in the diagram 200A to the second position shown in the diagram 200B. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed magnet unit 214 can be aligned with the movable magnet unit 235, and the fixed magnet unit 216 can be aligned with the movable magnet unit 237. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 214 and the movable magnet unit 235 are set such that an end of the movable magnet unit 235 facing the fixed magnet unit 214 has the same polarity as an end of the fixed magnet unit 214 facing the movable magnet unit 235, e.g., the end of the movable magnet unit 235 facing the fixed magnet unit 214 has the same “N” polarity as the end of the fixed magnet unit 214 facing the movable magnet unit 235, and thus a repulsive force may be produced between the fixed magnet unit 214 and the movable magnet unit 235 when they are close enough to each other. Similarly, polarity directions of the fixed magnet unit 216 and the movable magnet unit 237 are also set such that a repulsive force may be produced between the fixed magnet unit 216 and the movable magnet unit 237 when they are close enough to each other.
The repulsive force between the fixed magnet unit 214 and the movable magnet unit 235 and the repulsive force between the fixed magnet unit 216 and the movable magnet unit 237 would lead or facilitate the disconnecting between the device 210 and the device 220 and further the breaking of the contacting between the connectors 212 and the connectors 222. The repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 210 and the device 220. In the releasing state, the repulsive forces between the set of fixed magnet units and the set of  movable magnet units would further help to, e.g., avoid inadvertent contacting between the connectors 212 and the connectors 222.
According to the diagram 200B, the repulsive forces would help to eject the device 210 from the device 220 automatically, without requiring the user to pull the devices so as to separate them from each other.
As shown in FIG. 2, the set of movable magnet units has alternate polarity directions, e.g., the  movable magnet units  234 and 235 have different polarity directions, and the  movable magnet units  236 and 237 have different polarity directions. Accordingly, the movement of the set of movable magnet units may cause the magnetic lock-release mechanism to switch between the first polarity configuration and the second polarity configuration and further to produce the attractive forces and the repulsive forces respectively.
FIG. 3 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment. The diagrams in FIG. 3 are used for further explaining the magnetic lock-release mechanism in FIG. 2, and the structure of the magnetic lock-release mechanism in FIG. 3 is a simplified version of the magnetic lock-release mechanism in FIG. 2. Possible connectors in devices are omitted in FIG. 3 and the subsequent figures.
The diagrams in FIG. 3 show device connection and device disconnection between a device 310 and a device 320 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 310 and a second magnet unit member installed in the device 320. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  312 and 314, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  332, 333, 334 and 335. The magnetic lock-release mechanism may further comprise a movable member 330 which is installed in the device 320 and carries the set of movable magnet units, e.g., the  movable magnet units  332, 333, 334 and 335. The movable member 330 can be moved between a first position and a second position. The movable member 330 may further include a sliding knob 336.
In the diagram 300A, the movable member 330 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case,  the fixed  magnet units  312 and 314 can be aligned with the  movable magnet units  332 and 334 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 312 and the movable magnet unit 332 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 314 and the movable magnet unit 334 are set such that an attractive force may be produced between them when they are close enough to each other. As an example, the fixed  magnet units  312 and 314 may have the same polarity direction, and the  movable magnet units  332 and 334 may have the same polarity direction.
When the device 310 and the device 320 are aligned with each other and placed close enough, the attractive force between the fixed magnet unit 312 and the movable magnet unit 332 and the attractive force between the fixed magnet unit 314 and the movable magnet unit 334 would lead or facilitate the connecting between the device 310 and the device 320. The attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 310 and the device 320. As shown in the diagram 300B, device connection is achieved between the device 310 and the device 320, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
In the diagram 300C, the sliding knob 336 is slid so as to move the movable member 330 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed  magnet units  312 and 314 can be aligned with the  movable magnet units  333 and 335 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 312 and the movable magnet unit 333 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 314 and the movable magnet unit 335 are set such that a repulsive force may be produced between them.
The repulsive force between the fixed magnet unit 312 and the movable magnet unit 333 and the repulsive force between the fixed magnet unit 314 and the movable magnet unit 335 would lead or facilitate the disconnecting between the  device 310 and the device 320. The repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 310 and the device 320. As shown in the diagram 300D, device disconnection is achieved between the device 310 and the device 320, and the first magnet unit member and the second magnet unit member are in the releasing state. In the releasing state, the repulsive forces between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 310 and the device 320.
FIG. 4 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment. The diagrams in FIG. 4 show device connection and device disconnection between a device 410 and a device 420 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 410 and a second magnet unit member installed in the device 420. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  412, 413, 414 and 415, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  432 and 434. The magnetic lock-release mechanism may further comprise a movable member 430 which is installed in the device 420 and carries the set of movable magnet units, e.g., the  movable magnet units  432 and 434. The movable member 430 can be moved between a first position and a second position. The movable member 430 may further include a sliding knob 436.
In the diagram 400A, the movable member 430 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed  magnet units  412 and 414 can be aligned with the  movable magnet units  432 and 434 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 412 and the movable magnet unit 432 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 414 and the movable magnet unit 434 are set such that an attractive force may be produced between them when they are close enough to each other. As an example, the fixed  magnet units  412 and 414 may have the same polarity direction, and the  movable magnet units  432 and 434 may have the same polarity direction.
When the device 410 and the device 420 are aligned with each other and placed close enough, the attractive force between the fixed magnet unit 412 and the movable magnet unit 432 and the attractive force between the fixed magnet unit 414 and the movable magnet unit 434 would lead or facilitate the connecting between the device 410 and the device 420. The attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 410 and the device 420. As shown in the diagram 400B, device connection is achieved between the device 410 and the device 420, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces between the set of fixed magnet units and the set of movable magnet units would further help to maintain the device connection.
In the diagram 400C, the sliding knob 436 is slid so as to move the movable member 430 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed  magnet units  413 and 415 can be aligned with the  movable magnet units  432 and 434 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 413 and the movable magnet unit 432 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 415 and the movable magnet unit 434 are set such that a repulsive force may be produced between them.
The repulsive force between the fixed magnet unit 413 and the movable magnet unit 432 and the repulsive force between the fixed magnet unit 415 and the movable magnet unit 434 would lead or facilitate the disconnecting between the device 410 and the device 420. The repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 410 and the device 420. As shown in the diagram 400D, device disconnection is achieved between the device 410 and the device 420, and the first magnet unit member and the second magnet unit member are in the releasing state. In the releasing state, the repulsive forces between the set of  fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 410 and the device 420.
As shown in FIG. 4, the set of fixed magnet units has alternate polarity directions, e.g., the fixed  magnet units  412 and 413 have different polarity directions, and the fixed  magnet units  414 and 415 have different polarity directions. Accordingly, the movement of the set of movable magnet units may cause the magnetic lock-release mechanism to switch between the first polarity configuration and the second polarity configuration and further to produce the attractive forces and the repulsive forces respectively.
FIG. 5 illustrates an exemplary magnetic lock-release mechanism according to an embodiment.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in a device 510 and a second magnet unit member installed in a device 520. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  512 and 514, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  531, 532, 533, 534, 535 and 536. The magnetic lock-release mechanism may further comprise a movable member 530 which is installed in the device 520 and carries the set of movable magnet units, e.g., the  movable magnet units  531, 532, 533, 534, 535 and 536. The movable member 530 can be moved to a first position, a second position and a third position. The movable member 530 may further include a sliding knob 538.
When the movable member 530 is at the first position, the set of movable magnet units is also at the first position. In this case, the fixed  magnet units  512 and 514 can be aligned with the  movable magnet units  532 and 534 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 512 and the movable magnet unit 532 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 514 and the movable magnet unit 534 are set such that an attractive force may be produced between them when they are close enough to each other. As an example, the fixed  magnet units  512 and 514 may have the same polarity direction, and the  movable magnet units  532 and 534 may have the same polarity direction. The attractive force between the fixed magnet unit 512 and the movable magnet unit 532 and the attractive force between the fixed magnet unit  514 and the movable magnet unit 534 would lead or facilitate the connecting between the device 510 and the device 520. The attractive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 510 and the device 520.
When the movable member 530 is currently at the first position and the sliding knob 538 is slid to the left, the movable member 530 is moved from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed  magnet units  512 and 514 can be aligned with the  movable magnet units  533 and 536 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 512 and the movable magnet unit 533 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 514 and the movable magnet unit 536 are set such that a repulsive force may be produced between them. The repulsive force between the fixed magnet unit 512 and the movable magnet unit 533 and the repulsive force between the fixed magnet unit 514 and the movable magnet unit 536 would lead or facilitate the disconnecting between the device 510 and the device 520. The repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 510 and the device 520.
When the movable member 530 is currently at the first position and the sliding knob 538 is slid to the right, the movable member 530 is moved from the first position to the third position. Accordingly, the set of movable magnet units is also moved to the third position. In this case, the fixed  magnet units  512 and 514 can be aligned with the  movable magnet units  531 and 535 respectively. In a third polarity configuration corresponding to the third position, polarity directions of the fixed magnet unit 512 and the movable magnet unit 531 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 514 and the movable magnet unit 535 are set such that a repulsive force may be produced between them. The repulsive force between the fixed magnet unit 512 and the movable magnet unit 531 and the repulsive force between the fixed magnet unit 514 and the movable magnet unit 535 would lead or facilitate the disconnecting between  the device 510 and the device 520. The repulsive forces between the set of fixed magnet units and the set of movable magnet units would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 510 and the device 520.
According to the magnetic lock-release mechanism in FIG. 5, when the movable member and the set of movable magnet units are at the original first position, any sliding direction of the sliding knob 538, e.g., either to the left or to the right, could cause the magnetic lock-release mechanism to produce repulsive forces and thus disconnect the device 510 and the device 520.
FIG. 6 illustrates an exemplary magnetic lock-release mechanism according to an embodiment. The magnetic lock-release mechanism in FIG. 6 is a variation of the magnetic lock-release mechanism in FIG. 3, wherein magnets units in one magnet unit member may have different polarity directions.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in a device 610 and a second magnet unit member installed in a device 620. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  612 and 614, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  632, 633, 634 and 635. The magnetic lock-release mechanism may further comprise a movable member 630 which is installed in the device 620 and carries the set of movable magnet units. The movable member 630 can be moved between a first position and a second position. The movable member 630 may further include a sliding knob 636.
In the case that the movable member 636 and the set of movable magnet units are at the first position, the fixed  magnet units  612 and 614 can be aligned with the  movable magnet units  632 and 634 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 612 and the movable magnet unit 632 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 614 and the movable magnet unit 634 are set such that an attractive force may be produced between them when they are close enough to each other. The fixed  magnet units  612 and 614 may have different polarity directions, and the  movable magnet units  632 and 634 may have different polarity directions.
In the case that the movable member 636 and the set of movable magnet  units are at the second position, the fixed  magnet units  612 and 614 can be aligned with the  movable magnet units  633 and 635 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 612 and the movable magnet unit 633 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 614 and the movable magnet unit 635 are set such that a repulsive force may be produced between them. The  movable magnet units  633 and 635 may have different polarity directions.
Through setting magnets units in one magnet unit member in different polarity directions as shown in FIG. 6, incorrect connection between the device 610 and the device 620 may be avoided in the case that there is a predetermined connecting direction for a correct connection between the device 610 and the device 620. For example, it is assumed that a correct connection between the device 610 and the device 620 requires the fixed magnet unit 612 to be aligned with the movable magnet unit 632 and the fixed magnet unit 614 to be aligned with the movable magnet unit 634. When the device 610 is placed near to the device 620 in a wrong connecting direction, e.g., aligning the fixed magnet unit 612 with the movable magnet unit 634 and aligning the fixed magnet unit 614 with the movable magnet unit 632, the repulsive force between the fixed magnet unit 612 and the movable magnet unit 634 and the repulsive force between the fixed magnet unit 614 and the movable magnet unit 632 would prevent the device 610 and the device 620 from being wrongly connected.
FIG. 7 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
The diagrams in FIG. 7 show device connection and device disconnection between a device 710 and a device 720 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 710 and a second magnet unit member installed in the device 720. The first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 712, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  732 and 733. The magnetic lock-release mechanism may further comprise a movable member  730 which is installed in the device 720 and carries the set of movable magnet units. The movable member 730 can be moved between a first position and a second position. The movable member 730 may further include a sliding knob 736.
In the diagram 700A, the movable member 730 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed magnet unit 712 can be aligned with the movable magnet unit 732. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 712 and the movable magnet unit 732 are set such that an attractive force may be produced between them when they are close enough to each other. The attractive force would lead or facilitate the connecting between the device 710 and the device 720. The attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 710 and the device 720.
In the diagram 700B, the movable member 730 is at the second position, and accordingly the set of movable magnet units is also at the second position. In this case, the fixed magnet unit 712 can be aligned with the movable magnet unit 733. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 712 and the movable magnet unit 733 are set such that a repulsive force may be produced between them. The repulsive force would lead or facilitate the disconnecting between the device 710 and the device 720. The repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 710 and the device 720.
FIG. 8 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment.
The diagrams in FIG. 8 show device connection and device disconnection between a device 810 and a device 820 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 810 and a second magnet unit member installed in the device 820. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  812 and 814. The second magnet unit member may include a set of movable magnet units, e.g.,  movable magnet units  832 and 833, and a fixed  magnet unit 834. The magnetic lock-release mechanism may further comprise a movable member 830 which is installed in the device 820 and carries the set of movable magnet units, e.g., the  movable magnet units  832 and 833. The movable member 830 can be moved between a first position and a second position. The movable member 830 may further include a sliding knob 836.
In the diagram 800A, the movable member 830 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed  magnet units  812 and 814 can be aligned with the movable magnet unit 832 and the fixed magnet unit 834 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 812 and the movable magnet unit 832 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 814 and the fixed magnet unit 834 are set such that an attractive force may be produced between them when they are close enough to each other.
When the device 810 and the device 820 are aligned with each other and placed close enough, the attractive force between the fixed magnet unit 812 and the movable magnet unit 832 and the attractive force between the fixed magnet unit 814 and the fixed magnet unit 834 would lead or facilitate the connecting between the device 810 and the device 820. These attractive forces would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 810 and the device 820. As shown in the diagram 800B, device connection is achieved between the device 810 and the device 820, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, these attractive forces would further help to maintain the device connection.
In the diagram 800C, the sliding knob 836 is slid so as to move the movable member 830 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed  magnet units  812 and 814 can be aligned with the movable magnet unit 833 and the fixed magnet unit 834 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 812 and the movable magnet unit 833 are set such that a repulsive force may be produced  between them.
The repulsive force between the fixed magnet unit 812 and the movable magnet unit 833 would lead or facilitate the disconnecting between the device 810 and the device 820. The repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 810 and the device 820. As shown in the diagram 800D, device disconnection is achieved between the device 810 and the device 820, and the first magnet unit member and the second magnet unit member are in the releasing state. In the releasing state, the repulsive force between the set of fixed magnet units and the set of movable magnet units would further help to, e.g., avoid inadvertent connection between the device 810 and the device 820.
It should be understood that although the attractive force between the fixed magnet unit 814 and the fixed magnet unit 834 exists in the diagrams 800C and 800D, the repulsive force produced between the fixed magnet unit 812 and the movable magnet unit 833 would still help to achieve device disconnection because at least the part of the device 810 that is close to the fixed magnet unit 812 can be ejected under the repulsive force.
Although the magnetic lock-release mechanism discussed above in connection with FIG. 2 to FIG. 8 adopts a sliding bar for implementing the movable member and moves the movable member through sliding, the embodiments of the present disclosure may also implement the movable member in any other approaches, e.g., adopting a rotating plate or a rotating cylinder for implementing the movable member and moving the movable member through rotating.
FIG. 9 illustrates an exemplary magnetic lock-release mechanism according to an embodiment. The magnetic lock-release mechanism adopts a rotating plate for implementing a movable member.
The diagrams in FIG. 9 show device connection and device disconnection between a device 910 and a device 920 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 910 and a second magnet unit member installed in the device 920. The first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 912, and the second magnet unit member may  include at least a set of movable magnet units, e.g.,  movable magnet units  932 and 933. The magnetic lock-release mechanism may further comprise a movable member 930 which is installed in the device 920 and carries the set of movable magnet units. The movable member 930 is a rotating plate, and can be rotated between a first position and a second position. The movable member 930 may further include a rotating knob 934 which protrudes from the movable member 930 to a surface of the device 920 and can be rotated by a user. The rotating knob 934 may have various shapes or structures that are easy for a user to rotate it and accordingly rotate the movable member 930. As compared to the sliding knob discussed above, the rotating knob 934 occupies smaller area in the device 920 and is easier for a user to operate it.
In the diagram 900A, the movable member 930 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed magnet unit 912 can be aligned with the movable magnet unit 932. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 912 and the movable magnet unit 932 are set such that an attractive force may be produced between them when they are close enough to each other. The attractive force would lead or facilitate the connecting between the device 910 and the device 920. The attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 910 and the device 920.
In the diagram 900B, the movable member 930 is rotated to the second position, and accordingly the set of movable magnet units is also at the second position. In this case, the fixed magnet unit 912 can be aligned with the movable magnet unit 933. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 912 and the movable magnet unit 933 are set such that a repulsive force may be produced between them. The repulsive force would lead or facilitate the disconnecting between the device 910 and the device 920. The repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 910 and the device 920.
FIG. 10 illustrates an exemplary magnetic lock-release mechanism according to an embodiment. The magnetic lock-release mechanism adopts a rotating cylinder for implementing a movable member.
The diagrams in FIG. 10 show device connection and device disconnection between a device 1010 and a device 1020 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1010 and a second magnet unit member installed in the device 1020. The first magnet unit member may include a set of fixed magnet units, e.g., the only one fixed magnet unit 1012, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  1032 and 1033. The magnetic lock-release mechanism may further comprise a movable member 1030 which is installed in the device 1020 and carries the set of movable magnet units. The movable member 1030 is a rotating cylinder, and can be rotated between a first position and a second position. The movable member 1030 may further include a rotating knob 1034 which protrudes from the movable member 1030 to a surface of the device 1020 and can be rotated by a user.
In the diagram 1000A, the movable member 1030 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed magnet unit 1012 can be aligned with the movable magnet unit 1032. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 1012 and the movable magnet unit 1032 are set such that an attractive force may be produced between them when they are close enough to each other. The attractive force would lead or facilitate the connecting between the device 1010 and the device 1020. The attractive force would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 1010 and the device 1020.
In the diagram 1000B, the movable member 1030 is rotated to the second position, and accordingly the set of movable magnet units is also at the second position. In this case, the fixed magnet unit 1012 can be aligned with the movable magnet unit 1033. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 1012 and the movable magnet unit 1033 are set such that a repulsive force may be produced between them. The repulsive force would lead or facilitate the disconnecting between the device 1010 and the device 1020. The repulsive force would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is  achieved between the device 1010 and the device 1020.
According to the embodiments of the present disclosure, the magnetic lock-release mechanism may include at least one returning member for returning at least one movable magnet unit to its original position automatically. The returning member may be installed in the same device as a movable member, and connected to the movable member. Assuming that a first position of the movable member is an original position, the returning member may return the movable member from other positions, e.g., a second position, to the first position automatically. For example, the returning member may produce a pushing force and/or a pulling force for causing the movable member to return to the first position. The returning member may be made of any types of elastic material, e.g., spring, etc.
FIG. 11 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment. The magnetic lock-release mechanism in FIG. 11 is an improvement to the magnetic lock-release mechanism in FIG. 3, which further comprises a returning member. The same reference numerals in FIG. 11 and FIG. 3 refer to the same devices, members, units, etc.
The magnetic lock-release mechanism comprises a returning member 1102 which is installed in the device 320 and connected to the movable member 330. Although the returning member 1102 is shown as a spring, it may adopt any other elastic materials. One end of the returning member 1102 is connected to the device 320, and another end of the returning member 1102 is connected to the movable member 330.
In the diagrams 1100A and 1100B, the movable member 330 is at the first position. The returning member 1102 is in an original state, and does not produce any force.
In the diagrams 1100C and 1100D, the movable member 330 is moved to the second position. The returning member 1102 is in a contracting state, and produces a pushing force in a direction from the second position to the first position.
As shown in the diagram 1100E, after the device 310 and the device 320 are disconnected, the pushing force produced by the returning member 1102 returns the movable member 330 from the second position to the original first position automatically.
Through applying the returning member in the magnetic lock-release mechanism, after device disconnection is achieved, the movable member can be returned to the original position automatically and accordingly the magnetic lock-release mechanism gets ready for next device connection, without the need of manual operation of returning the movable member to the original position. This would bring out a better user experience.
FIG. 12 illustrates an exemplary magnetic lock-release mechanism with a returning member and its exemplary operation process according to an embodiment. The magnetic lock-release mechanism in FIG. 12 is an improvement to the magnetic lock-release mechanism in FIG. 3, which further comprises a returning member. The magnetic lock-release mechanism in FIG. 12 is also a variation of the magnetic lock-release mechanism in FIG. 11. The same reference numerals in FIG. 12 and FIG. 3 refer to the same devices, members, units, etc.
The magnetic lock-release mechanism comprises a returning member 1202 which is installed in the device 320 and connected to the movable member 330. Although the returning member 1202 is shown as a spring, it may adopt any other elastic materials. One end of the returning member 1202 is connected to the device 320, and another end of the returning member 1202 is connected to the movable member 330.
In the diagrams 1200A and 1200B, the movable member 330 is at the first position. The returning member 1202 is in an original state, and does not produce any force.
In the diagrams 1200C and 1200D, the movable member 330 is moved to the second position. The returning member 1202 is in a stretching state, and produces a pulling force in a direction from the second position to the first position.
As shown in the diagram 1200E, after the device 310 and the device 320 are disconnected, the pulling force produced by the returning member 1202 returns the movable member 330 from the second position to the original first position automatically.
FIG. 13 illustrates an exemplary magnetic lock-release mechanism with two returning members according to an embodiment. The magnetic lock-release mechanism in FIG. 13 adopts a combination of the returning members in FIG. 11 and FIG. 12.
The magnetic lock-release mechanism comprises a returning member 1302 and a returning member 1303 which are installed in the device 320 and connected to the movable member 330. One end of the returning member 1302 is connected to the device 320, and another end of the returning member 1302 is connected to the movable member 330. Similarly, one end of the returning member 1304 is connected to the device 320, and another end of the returning member 1304 is connected to the movable member 330.
In the diagram 1300A, the movable member 330 is at the first position. The returning member 1302 and the returning member 1304 are both in an original state, and do not produce any force.
In the diagram 1300B, the movable member 330 is moved to the second position. The returning member 1302 is in a contracting state, and produces a pushing force in a direction from the second position to the first position. Meanwhile, the returning member 1304 is in a stretching state, and produces a pulling force in a direction from the second position to the first position.
The pushing force produced by the returning member 1302 and the pulling force produced by the returning member 1304 may return the movable member 330 from the second position to the original first position more quickly than only applying one returning member in the magnetic lock-release mechanism as shown in FIG. 11 and FIG. 12.
FIG. 14 illustrates an exemplary magnetic lock-release mechanism with a returning member according to an embodiment. The magnetic lock-release mechanism in FIG. 14 is an improvement to the magnetic lock-release mechanism in FIG. 9, which further comprises a returning member. The same reference numerals in FIG. 14 and FIG. 9 refer to the same devices, members, units, etc.
The magnetic lock-release mechanism comprises a returning member 1402 which is installed in the device 920 and connected to the movable member 930. One end of the returning member 1402 is connected to the device 420, and another end of the returning member 1402 is connected to the movable member 430.
When the movable member 930 is at the first position, the returning member 1402 is in an original state, and does not produce any force. When the movable member 930 is rotated from the first position to the second position, the returning member 1402 is in a contracting or stretching state, and produces a pushing  or pulling force which causes the movable member to return from the second position to the first position.
It should be appreciated that all the shapes, materials, installation positions, directions, connections, numbers, etc. of the returning members in FIG. 11 to FIG. 14 are exemplary, and the embodiments of the present disclosure may cover any other approaches of applying at least one returning member in the magnetic lock-release mechanism. Moreover, in similar approaches, at least one returning member may also be applied to a magnetic lock-release mechanism in which the movable member is a rotating cylinder.
Although the movable members, which are implemented by sliding bars, in the magnetic lock-release mechanism discussed above in connection with FIG. 2 to FIG. 8 adopts a sliding knob for sliding the movable members, the embodiments of the present invention may also adopt a clicking button to slide the movable members.
FIG. 15 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment. In FIG. 15, a clicking button is included in a movable member for sliding the movable member.
The diagrams in FIG. 15 show device connection and device disconnection between a device 1510 and a device 1520 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1510 and a second magnet unit member installed in the device 1520. The first magnet unit member may include a set of fixed magnet units, e.g., fixed  magnet units  1512 and 1514, and the second magnet unit member may include at least a set of movable magnet units, e.g.,  movable magnet units  1532, 1533, 1534 and 1535. The magnetic lock-release mechanism may further comprise a movable member 1530 which is installed in the device 1520 and carries the set of movable magnet units. The movable member 1530 can be moved between a first position and a second position. The movable member 1530 may further include a clicking button 1536 which protrudes from the movable member 1530 to outside of the device 1520. Moreover, the magnetic lock-release mechanism comprises a returning member 1502 which is installed in the device 1520 and connected to the movable member 1530. One end of the returning member 1502 is connected to the device 1520, and another end of the returning member 1502 is connected to the  movable member 1530.
In the diagram 1500A, the movable member 1530 is at the first position, and accordingly the set of movable magnet units is also at the first position. In this case, the fixed  magnet units  1512 and 1514 can be aligned with the  movable magnet units  1532 and 1534 respectively. In a first polarity configuration corresponding to the first position, polarity directions of the fixed magnet unit 1512 and the movable magnet unit 1532 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the fixed magnet unit 1514 and the movable magnet unit 1534 are set such that an attractive force may be produced between them when they are close enough to each other. The returning member 1502 is in an original state, and does not produce any force.
When the device 1510 and the device 1520 are aligned with each other and placed close enough, the attractive force between the fixed magnet unit 1512 and the movable magnet unit 1532 and the attractive force between the fixed magnet unit 1514 and the movable magnet unit 1534 would lead or facilitate the connecting between the device 1510 and the device 1520. As shown in the diagram 1500B, device connection is achieved between the device 1510 and the device 1520, and the first magnet unit member and the second magnet unit member are in a locking state. The returning member 1502 keeps in the original state, and does not produce any force.
In the diagram 1500C, the clicking button 1536 is pushed or clicked so as to move the movable member 1530 from the first position to the second position. Accordingly, the set of movable magnet units is also moved to the second position. In this case, the fixed  magnet units  1512 and 1514 can be aligned with the  movable magnet units  1533 and 1535 respectively. In a second polarity configuration corresponding to the second position, polarity directions of the fixed magnet unit 1512 and the movable magnet unit 1533 are set such that a repulsive force may be produced between them, and polarity directions of the fixed magnet unit 1514 and the movable magnet unit 1535 are set such that a repulsive force may be produced between them. The returning member 1502 is in a contracting state, and produces a pushing force in a direction from the second position to the first position.
The repulsive force between the fixed magnet unit 1512 and the movable magnet unit 1533 and the repulsive force between the fixed magnet unit 1514 and the  movable magnet unit 1535 would lead or facilitate the disconnecting between the device 1510 and the device 1520. As shown in the diagram 1500D, device disconnection is achieved between the device 1510 and the device 1520, and the first magnet unit member and the second magnet unit member are in a releasing state. The returning member 1502 keeps in the contracting state, and produces the pushing force in a direction from the second position to the first position.
After the clicking button 1536 is released, as shown in the diagram 1500E, the pushing force produced by the returning member 1502 returns the movable member 1530 from the second position to the original first position automatically.
It should be appreciated that all the elements and details in the magnetic lock-release mechanism in FIG. 2 to FIG. 15 can be combined in various approaches. The embodiments of the present disclosure would cover all these combinations and their equivalents.
As discussed above, in an implementation, the magnetic lock-release mechanism may be based in part on, e.g., electronic magnets, and may produce attractive forces and repulsive forces respectively through changing current directions of electronic magnets.
The magnetic lock-release mechanism may comprise two magnet unit members installed on two devices respectively. The magnetic lock-release mechanism may comprise a first magnet unit member which is installed in a first device and includes a set of magnet units. The set of magnet units in the first magnet unit member may be, e.g., permanent magnets, electronic magnets, etc. The magnetic lock-release mechanism may further comprise a second magnet unit member which is installed in a second device and includes a set of electronic magnets. Different polarity configurations in the magnetic lock-release mechanism may be obtained through changing current directions of electronic magnets. It is assumed that the magnetic lock-release mechanism may produce an attractive force in a first polarity configuration corresponding to the first current direction. For example, in the case that the set of electronic magnets in the second magnet unit member is powered on in the first current direction, an attractive force exists between the set of magnet units in the first magnet unit member and the set of electronic magnets in the second magnet unit member. The attractive force would cause the first magnet unit member and the second magnet unit member to enter into a locking state. It is assumed that the  magnetic lock-release mechanism may produce a repulsive force in a second polarity configuration corresponding to a second current direction. For example, in the case that the set of electronic magnets in the second magnet unit member is powered on in the second current direction, a repulsive force exists between the set of magnet units in the first magnet unit member and the set of electronic magnets in the second magnet unit member. The repulsive force would cause the first magnet unit member and the second magnet unit member to enter into a releasing state.
FIG. 16 illustrates an exemplary magnetic lock-release mechanism and its exemplary operation process according to an embodiment. The magnetic lock-release mechanism may be based in part on electronic magnets.
The diagrams in FIG. 16 show device connection and device disconnection between a device 1610 and a device 1620 with an attractive force and a repulsive force produced by the magnetic lock-lease mechanism respectively.
The magnetic lock-release mechanism may comprise a first magnet unit member installed in the device 1610 and a second magnet unit member installed in the device 1620. The first magnet unit member may include a set of magnet units, e.g.,  magnet units  1612 and 1614. The second magnet unit member may include a set of electronic magnets, e.g.,  electronic magnets  1632 and 1634. Each of the electronic magnets is coupled with a coil through which the electronic magnet may be powered on by current, and the supplied current may cause a magnetic field in the electronic magnet that corresponds to the direction of the current. For example, the electronic magnet 1632 is coupled with a coil 1633, and the electronic magnet 1634 is coupled with a coil 1635. The  magnet units  1612 and 1614 can be aligned with the  electronic magnets  1632 and 1634 respectively.
In the diagram 1600A, the  electronic magnets  1632 and 1634 are powered on in a first current direction. In a first polarity configuration corresponding to the first current direction, polarity directions of the magnet unit 1612 and the electronic magnet 1632 are set such that an attractive force may be produced between them when they are close enough to each other, and polarity directions of the magnet unit 1614 and the electronic magnet 1634 are set such that an attractive force may be produced between them when they are close enough to each other. As an example, the  magnet units  1612 and 1614 may have the same polarity direction.
When the device 1610 and the device 1620 are aligned with each other and  placed close enough, the attractive force between the magnet unit 1612 and the electronic magnet unit 1632 and the attractive force between the magnet unit 1614 and the electronic magnet unit 1634 would lead or facilitate the connecting between the device 1610 and the device 1620. These attractive forces would cause the first magnet unit member and the second magnet unit to enter into a locking state, and thus device connection is achieved between the device 1610 and the device 1620. As shown in the diagram 1600B, device connection is achieved between the device 1610 and the device 1620, and the first magnet unit member and the second magnet unit member are in the locking state. In the locking state, the attractive forces would further help to maintain the device connection.
In the diagram 1600C, the  electronic magnets  1632 and 1634 are powered on in a second current direction which is different from the first current direction. In a second polarity configuration corresponding to the second current direction, polarity directions of the magnet unit 1612 and the electronic magnet 1632 are set such that a repulsive force may be produced between them, and polarity directions of the magnet unit 1614 and the electronic magnet 1634 are set such that a repulsive force may be produced between them.
The repulsive force between the magnet unit 1612 and the electronic magnet 1632 and the repulsive force between the magnet unit 1614 and the electronic magnet 1634 would lead or facilitate the disconnecting between the device 1610 and the device 1620. These repulsive forces would cause the first magnet unit member and the second magnet unit to enter into a releasing state, and thus device disconnection is achieved between the device 1610 and the device 1620. As shown in the diagram 1600D, device disconnection is achieved between the device 1610 and the device 1620, and the first magnet unit member and the second magnet unit member are in the releasing state. In the releasing state, the repulsive forces would further help to, e.g., avoid inadvertent connection between the device 1610 and the device 1620.
It should be appreciated that the first magnet unit member may comprise more or less magnet units, and the second magnet unit member may comprise more or less electronic units. Moreover, although it is shown that the  magnet units  1612 and 1614 have the same polarity direction, they may have different polarity directions, and accordingly the  electronic magnets  1632 and 1634 may be powered on in different current directions respectively.
The embodiments of the present disclosure provide a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of fixed magnet units; and a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position. In the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units. In the case that the set of movable magnet units is at the second position, a repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
In an implementation, in the case that the set of movable magnet units is at the first position, the attractive force causes the first magnet unit member and the second magnet unit member to enter into a locking state. In the case that the set of movable magnet units is at the second position, the repulsive force causes the first magnet unit member and the second magnet unit member to enter into a releasing state.
In an implementation, the magnetic lock-release mechanism may further comprise: a movable member, installed in the second device and carrying the set of movable magnet units, wherein the movable member is movable to the first position and the second position.
The movable member may be movable through sliding or rotating. The movable member may be one of a sliding bar, a rotating plate, or a rotating cylinder. The movable member may include one of a sliding knob, a clicking button and a rotating knob.
In an implementation, the magnetic lock-release mechanism may further comprise: at least one returning member, installed in the second device and connected to the movable member, wherein the returning member is for returning the movable member from the second position to the first position automatically.
In the case that the movable member is at the second position, the returning member produces a pushing force and/or a pulling force for causing the movable member to return to the first position.
The returning member may be made of elastic material. The returning member may be a spring.
In an implementation, the set of fixed magnet units may include at least a  first magnet unit, and the set of movable magnet units may include at least a second magnet unit and a third magnet unit with alternate polarity directions.
In the case that the set of movable magnet units is at the first position, the second magnet unit aligns with the first magnet unit, and the attractive force exists between the second magnet unit and the first magnet unit. In the case that the set of movable magnet units is at the second position, the third magnet unit aligns with the first magnet unit, and the repulsive force exists between the third magnet unit and the first magnet unit.
In an implementation, the set of fixed magnet units may include at least a first magnet unit and a second magnetic unit with alternate polarity directions, and the set of movable magnet units may include at least a third magnet unit.
In the case that the set of movable magnet units is at the first position, the third magnet unit aligns with the first magnet unit, and the attractive force exists between the third magnet unit and the first magnet unit. In the case that the set of movable magnet units is at the second position, the third magnet unit aligns with the second magnet unit, and the repulsive force exists between the third magnet unit and the second magnet unit.
In an implementation, the set of movable magnet units may be movable to a third position. In the case that the set of movable magnet units is at the third position, a second repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
In an implementation, the second magnet unit member may include at least one fixed magnet unit, and a second attractive force exists between the at least one fixed magnet unit in the second magnet unit member and an aligned magnet unit in the first magnet unit member.
The embodiments of the present disclosure provide a magnetic lock-release mechanism, comprising: a first magnet unit member, installed in a first device and including a set of magnet units; and a second magnet unit member, installed in a second device and including a set of electronic magnets. In the case that the set of electronic magnets is powered on in a first current direction, an attractive force exists between the set of magnet units and the set of electronic magnets. In the case that the set of electronic magnets is powered on in a second current direction, a repulsive force exists between the set of magnet units and the set of electronic magnets.
It should be appreciated that all the technical details described above are merely exemplary, and the present disclosure is not limited to any of the technical details, and should cover all other equivalents under the same or similar concepts.
Moreover, the articles “a” and “an” as used in this specification and the appended claims should generally be construed to mean “one” or “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein. All structural and functional equivalents to the elements of the various aspects described throughout the present disclosure that are known or later come to be known to those of ordinary skilled in the art are intended to be encompassed by the claims.

Claims (17)

  1. A magnetic lock-release mechanism, comprising:
    a first magnet unit member, installed in a first device and including a set of fixed magnet units; and
    a second magnet unit member, installed in a second device and including at least a set of movable magnet units that is movable to a first position and a second position,
    wherein in the case that the set of movable magnet units is at the first position, an attractive force exists between the set of fixed magnet units and the set of movable magnet units, and
    in the case that the set of movable magnet units is at the second position, a repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
  2. The magnetic lock-release mechanism of claim 1, wherein
    in the case that the set of movable magnet units is at the first position, the attractive force causes the first magnet unit member and the second magnet unit member to enter into a locking state, and
    in the case that the set of movable magnet units is at the second position, the repulsive force causes the first magnet unit member and the second magnet unit member to enter into a releasing state.
  3. The magnetic lock-release mechanism of claim 1, further comprising:
    a movable member, installed in the second device and carrying the set of movable magnet units, wherein the movable member is movable to the first position and the second position.
  4. The magnetic lock-release mechanism of claim 3, wherein
    the movable member is movable through sliding or rotating.
  5. The magnetic lock-release mechanism of claim 3, wherein
    the movable member is one of a sliding bar, a rotating plate, or a rotating  cylinder.
  6. The magnetic lock-release mechanism of claim 3, wherein
    the movable member includes one of a sliding knob, a clicking button and a rotating knob.
  7. The magnetic lock-release mechanism of claim 3, further comprising:
    at least one returning member, installed in the second device and connected to the movable member, wherein the returning member is for returning the movable member from the second position to the first position automatically.
  8. The magnetic lock-release mechanism of claim 7, wherein
    in the case that the movable member is at the second position, the returning member produces a pushing force and/or a pulling force for causing the movable member to return to the first position.
  9. The magnetic lock-release mechanism of claim 7, wherein
    the returning member is made of elastic material.
  10. The magnetic lock-release mechanism of claim 9, wherein
    the returning member is a spring.
  11. The magnetic lock-release mechanism of claim 1, wherein
    the set of fixed magnet units includes at least a first magnet unit, and
    the set of movable magnet units includes at least a second magnet unit and a third magnet unit with alternate polarity directions.
  12. The magnetic lock-release mechanism of claim 11, wherein
    in the case that the set of movable magnet units is at the first position, the second magnet unit aligns with the first magnet unit, and the attractive force exists between the second magnet unit and the first magnet unit, and
    in the case that the set of movable magnet units is at the second position, the third magnet unit aligns with the first magnet unit, and the repulsive force exists  between the third magnet unit and the first magnet unit.
  13. The magnetic lock-release mechanism of claim 1, wherein
    the set of fixed magnet units includes at least a first magnet unit and a second magnetic unit with alternate polarity directions, and
    the set of movable magnet units includes at least a third magnet unit.
  14. The magnetic lock-release mechanism of claim 13, wherein
    in the case that the set of movable magnet units is at the first position, the third magnet unit aligns with the first magnet unit, and the attractive force exists between the third magnet unit and the first magnet unit, and
    in the case that the set of movable magnet units is at the second position, the third magnet unit aligns with the second magnet unit, and the repulsive force exists between the third magnet unit and the second magnet unit.
  15. The magnetic lock-release mechanism of claim 1, wherein
    the set of movable magnet units is movable to a third position, and
    in the case that the set of movable magnet units is at the third position, a second repulsive force exists between the set of fixed magnet units and the set of movable magnet units.
  16. The magnetic lock-release mechanism of claim 1, wherein
    the second magnet unit member includes at least one fixed magnet unit, and
    a second attractive force exists between the at least one fixed magnet unit in the second magnet unit member and an aligned magnet unit in the first magnet unit member.
  17. A magnetic lock-release mechanism, comprising:
    a first magnet unit member, installed in a first device and including a set of magnet units; and
    a second magnet unit member, installed in a second device and including a set of electronic magnets,
    wherein in the case that the set of electronic magnets is powered on in a first  current direction, an attractive force exists between the set of magnet units and the set of electronic magnets, and
    in the case that the set of electronic magnets is powered on in a second current direction, a repulsive force exists between the set of magnet units and the set of electronic magnets.
PCT/CN2021/091810 2021-05-04 2021-05-04 Magnetic lock-release mechanism WO2022232965A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/091810 WO2022232965A1 (en) 2021-05-04 2021-05-04 Magnetic lock-release mechanism
CN202180047564.9A CN115917103A (en) 2021-05-04 2021-05-04 Magnetic locking-releasing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091810 WO2022232965A1 (en) 2021-05-04 2021-05-04 Magnetic lock-release mechanism

Publications (1)

Publication Number Publication Date
WO2022232965A1 true WO2022232965A1 (en) 2022-11-10

Family

ID=76159221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091810 WO2022232965A1 (en) 2021-05-04 2021-05-04 Magnetic lock-release mechanism

Country Status (2)

Country Link
CN (1) CN115917103A (en)
WO (1) WO2022232965A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138806A1 (en) * 2005-12-13 2007-06-21 Apple Computer, Inc. Magnetic latching mechanism
US20090296328A1 (en) * 2008-05-29 2009-12-03 Cheng-Hung Lin Computer with a rotary module driven by magnetic forces
EP2692973A1 (en) * 2012-07-31 2014-02-05 Airbus Operations GmbH Door alignment and locking system
US20140306463A1 (en) * 2013-04-10 2014-10-16 Li-Yin Ho Device having opening structure and opening structure thereof
WO2016140484A1 (en) * 2015-03-02 2016-09-09 Lg Electronics Inc. Laundry treatment apparatus
US20190164675A1 (en) * 2017-11-28 2019-05-30 Microsoft Technology Licensing, Llc Magnetic fastener and hinged device using same
WO2021015781A1 (en) * 2019-07-25 2021-01-28 Hewlett-Packard Development Company, L. P. Foldable computing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138806A1 (en) * 2005-12-13 2007-06-21 Apple Computer, Inc. Magnetic latching mechanism
US20090296328A1 (en) * 2008-05-29 2009-12-03 Cheng-Hung Lin Computer with a rotary module driven by magnetic forces
EP2692973A1 (en) * 2012-07-31 2014-02-05 Airbus Operations GmbH Door alignment and locking system
US20140306463A1 (en) * 2013-04-10 2014-10-16 Li-Yin Ho Device having opening structure and opening structure thereof
WO2016140484A1 (en) * 2015-03-02 2016-09-09 Lg Electronics Inc. Laundry treatment apparatus
US20190164675A1 (en) * 2017-11-28 2019-05-30 Microsoft Technology Licensing, Llc Magnetic fastener and hinged device using same
WO2021015781A1 (en) * 2019-07-25 2021-01-28 Hewlett-Packard Development Company, L. P. Foldable computing device

Also Published As

Publication number Publication date
CN115917103A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US9088096B2 (en) Power feed connector
JP3383514B2 (en) Electronic processing system
US5751546A (en) Cradle assembly for portable computing devices and method
US20160020557A1 (en) Quick connect interface
US20150295352A1 (en) Connector for vehicle
EP2341590B1 (en) Plug interlock device for circuit breaker and circuit breaker having the same
JP2004272597A (en) Docking station
TW201502750A (en) Electronic device having a detachable tablet
TWI390803B (en) Connector
WO2022232965A1 (en) Magnetic lock-release mechanism
KR20140071760A (en) Docking station for electronic device
CN211173483U (en) Electronic padlock
CN102629673B (en) Battery pack, battery charger and electronic equipment
CN109994954B (en) Low-voltage drawer cabinet switch linkage mechanism
US9660380B1 (en) Alignment tolerant electronic connector
WO2020145950A1 (en) Electromagnetic connectors
EP4016579A1 (en) Electric switching apparatus
KR20170040909A (en) Portable battery and charging device
JP7263631B1 (en) Connectors and electronic devices
CN211556909U (en) Charging device for handheld equipment
CN214227253U (en) Connector and ultrasonic device
JP2717350B2 (en) Connector with lock
CN216698240U (en) Emergency device capable of being rapidly inserted and detached
CN220628308U (en) Combined charging base
CN114207957B (en) Pluggable module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21728165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21728165

Country of ref document: EP

Kind code of ref document: A1