WO2022231411A1 - Nanopartículas radioluminiscentes de sesquióxido de lutecio-177 funcionalizadas con péptidos para imagen óptica - Google Patents

Nanopartículas radioluminiscentes de sesquióxido de lutecio-177 funcionalizadas con péptidos para imagen óptica Download PDF

Info

Publication number
WO2022231411A1
WO2022231411A1 PCT/MX2021/050056 MX2021050056W WO2022231411A1 WO 2022231411 A1 WO2022231411 A1 WO 2022231411A1 MX 2021050056 W MX2021050056 W MX 2021050056W WO 2022231411 A1 WO2022231411 A1 WO 2022231411A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
lutetium
sesquioxide
peptide
radioluminescent
Prior art date
Application number
PCT/MX2021/050056
Other languages
English (en)
French (fr)
Inventor
Guillermina FERRO FLORES
Blanca Elí Ocampo García
Original Assignee
Instituto Nacional De Investigaciones Nucleares
ANCIRA CORTEZ, Alejandra
JIMÉNEZ MANCILLA, Nallely Patricia
SANTOS CUEVAS, Clara Leticia
LUNA GUTIERREZ, Myrna Alejandra
TRUJILLO BENÍTEZ, Diana Sarahí
MORALES AVILA, Enrique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Nacional De Investigaciones Nucleares, ANCIRA CORTEZ, Alejandra, JIMÉNEZ MANCILLA, Nallely Patricia, SANTOS CUEVAS, Clara Leticia, LUNA GUTIERREZ, Myrna Alejandra, TRUJILLO BENÍTEZ, Diana Sarahí, MORALES AVILA, Enrique filed Critical Instituto Nacional De Investigaciones Nucleares
Publication of WO2022231411A1 publication Critical patent/WO2022231411A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation

Definitions

  • This invention refers to a new system based on lutetium sesquioxide nanoparticles with high purity and crystallinity, with quasispheric morphology and sizes between 20-45 nm, which after being activated by neutron irradiation ( 177 Lu 2 O 3 ) are radioluminescent. , presenting luminescence emission spectra in the near infrared region, with an emission maximum at ⁇ 615 nm, which allows in vivo optical imaging of its biodistribution.
  • the lutetium sesquioxide nanoparticles After their functionalization with an inhibitory peptide of the prostate specific membrane antigen (PSMA), the lutetium sesquioxide nanoparticles increase in size to a range of 30-50 nm, maintaining the absolute values of zeta potential above 25 mV, which implies high stability of the colloidal system.
  • PSMA prostate specific membrane antigen
  • a vast group of nanometric-scale materials includes metal oxide nanoparticles, within this group those of transition metals (Fe 2 O 3 , CuO, ZnO, NiO 3 , etc.) are common due to their large surface areas, its rich valence states, its chemical and thermal stability, its suitable conductivity properties and its electronic configurations; all these characteristics lead to its good optical, magnetic, coordination and electrical properties.
  • the group of lanthanides (also considered transition metals) is of particular interest, since in addition to the characteristics described above, they present luminescence properties mainly in the UV-Vis range. However, unlike other metals, lanthanides are commonly found as dopant ions (Ln 3+ ) in core@shell type structures and in applications in fields far from nanomedicine [1-7].
  • Lutetium the last member of this family of lanthanides, has the only oxidation state +3 according to its electronic configuration ([Xe]4f 14 5d 1 6s 2 ). Its electronic configuration is important for different aspects: a) The spin-orbital interaction of the f electrons results in a large group of energy levels. b) The electrons of the 5s, 5p and 6s orbitals have a protective effect on the other levels, causing them to be completely unaffected by external factors.
  • intraconfigurations There are ff intraconfigurations that are also possible due to the shielding effect of the upper levels, these intraconfigurations result in optical properties with unique characteristics (large Stokes shifts, long half-lives, narrow and linear emission bands, high resistance to optical flickering, as well as high resistance to photobleaching and photochemical degradation) and do not generate modifications in the chemical bonds that the compound can form with the 5s and 5p electrons.
  • These intraconfigurations are associated with the 7 wave functions of the f orbitals (considering the spin values +12/-12/), which allow obtaining both the ground states and the changes allowed by resonance, described in the Dieke diagrams [8-10],
  • nanoparticle synthesis methods are based on two main methodologies, bottom-up and top-down, which are governed by chemical and physical phenomena, respectively [11-13].
  • precipitation-calcination is useful for the synthesis of metal nanoparticles and metal oxides; for this purpose they use the corresponding metal salts and acid or basic solutions as precipitating agents and where calcination provides enough energy for the final conformation of the material on a nanometric scale with the desired physicochemical characteristics
  • laser ablation in liquids considered a top-down method, has as main advantages the easy and rapid formation of nanoparticles with the minimum generation of waste, it is also attractive because it allows functionalization "in situ" during the nanoparticle synthesis process, the liquid being the containment medium for the chemical substance to be conjugated to the nanoparticle surface [19-21]
  • the chemical functionalization of nanoparticles with biomolecules and biologically active molecules It has been studied and exploited for the advantages offered by targeted nanosystems for the treatment and
  • the lutetium sesquioxide nanoparticles After their functionalization with an inhibitory peptide of the prostate specific membrane antigen (PSMA), the lutetium sesquioxide nanoparticles increase in size to a range of 30-50 nm, maintaining the absolute values of zeta potential above 25 mV, which implies high stability of the colloidal system.
  • PSMA prostate specific membrane antigen
  • lutetium sesquioxide nanoparticles activated by neutron irradiation could be functionalized with specific molecular recognition peptides, to function as targeted radiotherapy systems (beta particle emission of the radioisotope generated by neutron activation) and as a system for dual molecular imaging. in vivo, through the optical image generated by radioluminescence and the nuclear image generated by gamma rays of the radioisotope of lutetium.
  • lutetium sesquioxide nanoparticles were carried out by a precipitation-calcination (PC) method at room temperature and with constant stirring.
  • PC precipitation-calcination
  • a solution of LuCl 3 (10 mM) was prepared, which was stirred for 0.5h, then a 1:1 solution of ammonium hydroxide/ammonium carbonate 2M was added dropwise until reaching a pH ⁇ 9 or until observing the appearance of a white and spongy precipitate, maintaining a constant for another 1h.
  • the formed precipitate was washed with type I water up to pH ⁇ 7 by means of centrifugation (2500g/0.5h).
  • the product was dried (110°C/24h) and calcined (1000°C/8h). The powder obtained was stored for later use and/or analysis.
  • Lu sesquioxide nanoparticles synthesized by PC were functionalized with the peptide 1,4,7,10-tetraazocyclodecane-N,N',N",N"'-tetraacetic acid-hydrazinonicotinyl-Lys(b-naphthylalanine)-NH-CO -NH-Glu (DOTA-HYNIC-iPSMA) (iPSMA); using 15 mg of LU 2 O 3 nanoparticles homogenized with a 5 mM sodium citrate solution in an ultrasound bath for 0.5 h, subsequently 150 ⁇ L of peptide solution (1mg/mL) were added and stirring was continued by a sodium bath. ultrasound 1 hour more.
  • the system was purified by ultracentrifugation (2500g/0.5h, filter units MWCO 100 and 30 kDa; Merck-Millipore). The samples were kept until use for characterization by FT-IR and UV-Vis spectroscopy, SEM, TEM, DLS, HRTEM, SAED, DSC-TGA and X-ray diffraction.
  • the radioluminescence properties were obtained in a Bruker Preclinical Optical equipment, without the use of emission filters to verify the radioluminescence and using filters of 535, 600, 700, 750, 790 and 800 nm in order to obtain the intensity spectrum of luminescence emission (photons/second/mm 2 vs wavelength).
  • LU2O3 nanoparticle powders were photographed before and after neutron irradiation in the dark.
  • Thermogravimetric analyzes aimed to establish the reactions involved in the formation of the Lu sesquioxide nanoparticles obtained by P-C.
  • the precursor Lu(OH)C0 3 . xH 2 0/Lu 2 (C0 3 ) 3 . xH 2 0 had a total mass loss of ⁇ 28.9%, consistent with that reported for the decomposition of lutetium carbonates into their corresponding oxide. There were three decomposition phases: the first occurred around 100°C (9.8%) and was assigned to an exothermic process of release of the water of hydration contained in the molecule. The second decomposition occurred in the range of 284 -543 °C, where the loss of molecular water originating mainly from the intermediate Lu(OH)C0 3 was assigned .
  • Equations (3) and (4) can be summarized in Eq. (5) as they are a phenomenon that occurs relatively at the same time, however, for stoichiometric and decomposition aspects, they must be viewed individually.
  • TEM studies revealed the presence of particles with a structure close to a spherical shape and with a homogeneous and uniform distribution.
  • the SEM images exhibited homogeneity in the morphology of the material.
  • the mean diameter obtained for the Lu 2 O 3 nanoparticles and determined by TEM was 26.75 nm ⁇ 6.72 nm, with a monomodal and monodisperse distribution, as shown in figure 2: (a) SEM micrographs of Lu 2 O 3 , b) size distribution of Lu 2 O 3 by TEM, and c) TEM micrographs of Lu 2 O 3 .
  • the functionalized Lu 2 O 3 - ⁇ PSMA system showed an increase of ⁇ 3 nm, with a mean diameter of 29.98 nm ⁇ 9.07 nm and maintaining a homogeneous size distribution, which is observed in the monomodal and monodisperse histogram.
  • the theoretical particle size of Lu 2 O 3 nanoparticles was ⁇ 31.42 nm, which was in agreement with the value obtained experimentally in TEM analysis.
  • Figure 5 shows the infrared spectrum of the middle zone of the lutetium oxide nanoparticles, in which a band at 575 cm 1 corresponding to the stretching vibration between oxygen and lanthanide was obtained. Its presence was also proof of the nanometric size and the correct crystallization of the carbonate precursor.
  • Figure 5 shows the IR spectrum of the iPSMA functionalization peptide, which presented its different bands due to its functional groups, among which are: at 3281 cm -1 the band of Us(-NH) and Us(-OH) , at 2939 cm -1 and 2863 cm -1 the bands Uas(-CH 2 ) and Us(-CH 2 ), respectively.
  • the band was assigned to u(-OH) of the -COOH groups mainly present in the DOTA structure.
  • the band at 1657 cm -1 is from both the T(-NH) of Amide I and u(-COOH).
  • the band at 1551 cm -1 was assigned to u(-CN) of the urea present in the structure, as well as by u(-NH) of Amide II.
  • the UV-Vis absorption spectrum of Lu 2 O 3 nanoparticles presented an absorption band centered at 214 nm, which was indicative of the nanometric size of the material and is also related to its chemical structure (responsible for the presence of the band), described with the general formula Ln 2 O 3 , where Ln 3+ represents the lanthanide ion and O represents the O 2- ion (figure 6).
  • Ln 3+ represents the lanthanide ion
  • O represents the O 2- ion
  • the first band was associated with that coming from the nanoparticles alone, while the overlap was attributed to the band that the free peptide presents at 223 nm, which is the result of the presence of the carboxylic acids of the DOTA group.
  • Figure 6 shows the spectrum of the iPSMA peptide, where a band centered at 265 nm is observed that was not visible in the final system, due to its lower intensity compared to that at 223 nm.
  • Lu 2 O 3 nanoparticles synthesized by PC after neutron activation showed luminescent properties, presenting luminescence emission spectra in the near-infrared region, with an emission maximum at ⁇ 615 nm (Fig. 7); as well as the obtaining of optical images of the in vivo biodistribution in healthy Balb-C mice of the 177 Lu 2 O 3 , due to its radioluminescent properties shown, observing a greater accumulation of the nanoparticles in the liver.
  • Figure 7 shows: A) 177 Lu 2 O 3 -iPSMA nanoparticles (powder) before (A1) and after (A2) neutron irradiation, and their radioluminescence (A3) in a dark room.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Esta invención se refiere un nuevo sistema basado en nanopartículas de sesquióxido de lutecio con alta pureza y cristalinidad de acuerdo con sus planos cristalográficos obtenidos por XDR e indexados acorde a las cartas cristalográficas JCPSD No. 12-0728 (Lu2O3); de morfología cuasiesférica de 20-45 nm, las cuales después de ser activadas por irradiación neutrónica (177Lu2O3) son radioluminiscentes, presentando espectros de emisión de luminiscencia en el infrarrojo cercano, con un máximo de emisión a ~615 nm, lo cual permite la obtención de imágenes ópticas in vivo. Después de su funcionalización con un péptido inhibidor del antígeno prostático específico de membrana (PSMA), las nanopartículas aumentan a 30-50 nm, presentando bandas de vibración correspondientes a sus grupos funcionales por espectroscopia FT-IR, mismas que se replicaron en las bandas de absorción de los espectros UV-Vis. Además, el potencial zeta es mayor a 25 mV, lo que implica alta estabilidad del sistema coloidal. Esta invención es proporcionar un nuevo nanosistema específico (radiofármaco de blancos moleculares) con potencial aplicación en nanomedicina como un agente de imagen dual (óptica y nuclear) in vivo y en la radioterapia de blancos moleculares específicos.

Description

Nanopartículas radioluminiscentes de sesquióxido de Lutecio-177 funcionalizadas con péptidos para imagen óptica
DESCRIPCIÓN
CAMPO TÉCNICO DE LA INVENCIÓN
Esta invención se refiere un nuevo sistema basado en nanopartículas de sesquióxido de lutecio con alta pureza y cristalinidad, con morfología cuasiesférica y tamaños de entre 20-45 nm, las cuales después de ser activadas por irradiación neutrónica (177Lu2O3) son radioluminiscentes, presentando espectros de emisión de luminiscencia en la región del infrarrojo cercano, con un máximo de emisión a ~615 nm, lo cual permite la obtención de imágenes ópticas in vivo de su biodistribución. Después de su funcionalización con un péptido inhibidor del antígeno prostático específico de membrana (PSMA), las nanopartículas de sesquióxido de lutecio aumentan sus tamaños a un intervalo de 30-50 nm, manteniendo los valores absolutos de potencial zeta por arriba de los 25 mV, lo que implica alta estabilidad del sistema coloidal.
ANTECEDENTES
Un vasto grupo de materiales a escala nanométrica incluye a las nanopartículas de óxidos metálicos, dentro de este grupo son comunes aquellas de metales de transición (Fe2O3, CuO, ZnO, NiO3, etc.) debido a sus áreas superficiales grandes, sus ricos estados de valencia, su estabilidad química y térmica, sus propiedades adecuadas de conductividad y sus configuraciones electrónicas; todas estas características conllevan a sus buenas propiedades ópticas, magnéticas, de coordinación y eléctricas. Además de los elementos anteriormente mencionados, el grupo de los lantánidos (igualmente considerados metales de transición) es de particular interés, ya que además de las características antes descritas, presentan propiedades de luminiscencia principalmente en el rango del UV-Vis. Sin embargo, a diferencia de los demás metales, los lantánidos son comúnmente encontrados como iones dopantes (Ln3+) en estructuras tipo núcleo@coraza y en aplicaciones en campos que distan de la nanomedicina [1-7].
El Lutecio, último miembro de esta familia de lantánidos, tiene como único estado de oxidación +3 de acuerdo con su configuración electrónica ([Xe]4f14 5d1 6s2). Su configuración electrónica resulta importante por distintos aspectos: a) La interacción spin-orbital de los electrones f resulta en un grupo grande de niveles de energía. b) Los electrones de los orbitales 5s, 5p y 6s tienen un efecto protector sobre los otros niveles, ocasionando que se vean nulamente afectados por factores externos. c) Existen intraconfiguraciones f-f de igual manera posibles por el efecto de blindaje de los niveles superiores, estas intraconfiguraciones resultan en propiedades ópticas con características únicas (cambios de Stokes grandes, tiempos de vida media prolongados, bandas de emisión estrechas y lineales, alta resistencia al parpadeo óptico, así como alta resistencia al fotoblanqueamiento y degradación fotoquímica) y no generan modificaciones en los enlaces químicos que el compuesto pueda formar con los electrones 5s y 5p. Estas intraconfiguraciones están asociadas a las 7 funciones de onda de los orbitales f (considerando los valores de spin +12/-12/), que permiten la obtención tanto de los estados básales como los cambios permitidos por resonancia, descritos en los diagramas de Dieke [8-10],
Por otro lado, los métodos de síntesis de nanopartículas reportados se basan en dos metodologías principales, bottom-up y top-down, los cuales se rigen por fenómenos químicos y físicos, respectivamente [11-13], Dentro de los primeros, el método de precipitación-calcinación es útil para la síntesis de nanopartículas metálicas y de óxidos metálicos; para tal fin emplean emplea las sales metálicas correspondientes y soluciones ácidas o básicas como agentes precipitantes y donde la calcinación proporciona la energía suficiente para la conformación final del material en escala nanométrica con las características fisicoquímicas deseadas, además de eliminar subproductos no deseados [14-18], La ablación láser en líquidos, considerado un método top-down, tiene como principales ventajas la fácil y rápida formación de nanopartículas con la generación mínima de residuos, también resulta atractiva pues permite una funcionalización “in situ” durante el proceso de síntesis de las nanopartículas, siendo el líquido, el medio de contención de la sustancia química a ser conjugada a la superficie de la nanopartícula [19-21] La funcionalización química de nanopartículas con biomoléculas y moléculas biológicamente activas ha sido estudiada y explotada por las ventajas que ofrecen los nanosistemas dirigidos para el tratamiento y diagnóstico de múltiples patologías, como el cáncer; donde se aprovecha la presencia de receptores moleculares que generalmente son proteínas o glicoproteínas de membrana y que además están sobreexpresados de acuerdo con el nivel de la enfermedad, convirtiéndose en blancos moleculares ideales [22-26],
Sin embargo, aún con sus buenas características y propiedades, los sistemas basados en nanopartículas de óxido de lantánidos no se han utilizado como sistemas para imagen molecular in vivo (óptica y nuclear) y radioterapia de blancos moleculares.
Referencias
[1] Achilefu, S., et al., Lanthanide-doped nanoparticles for hybrid x-ray/optical imaging, in Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications V. 2013.
[2] Ahmad, T. and I.H. Lone, Deveiopment of multifunctional lutetium ferrite nanoparticles: Structural characterization and properties. Materials Chemistry and Physics, 2017. 202: p. 50-55.
[3] Aryanrad, P., et al., Europium oxide nanorod-reduced graphene oxide nanocomposites towards supercapacitors. RSC Advances, 2020. 10(30): p. 17543-17551.
[4] Bagheri, A., et al., Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv Sci (Weinh), 2016. 3(7): p. 1500437.
[5] Barrera, E.W., et al., Hydrothermal trivalent lanthanide doped Lu203 nanorods: Evaluation of the influence of the surface in optical emission properties. Optical Materials, 2011. 34(2): p. 399-403.
[6] Dong, H., et al., Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev, 2015. 115(19): p. 10725-815. [7] Huang, K , N.M. Idris, and Y. Zhang, Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding. Small, 2016. 12(7): p. 836-52.
[8] Zhang, K.Y., et al. , Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev, 2018. 118(4): p. 1770-1839.
[9] Locardi, F., et al. , Facile synthesis of NIR and Visible luminescent Sm 3+ doped lutetium oxide nanoparticles. Materials Research Bulletin, 2017. 86: p. 220-227.
[10] Klein, J.S., C. Sun, and G. Pratx, Radioluminescence in biomedicine: physics, applications, and modeis. Phys Med Biol, 2019. 64(4): p. 04TR01.
[11] Jeyaraj, M., et al., A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials, 2019. 9(12). https://doi.org/10.3390/nano9121719
[12] Bayda, S., et al., The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules, 2019. 25(1). https://doi.Org/10.3390/molecules25010112
[13] Saleh, T.A., Nanomaterials: Classif ¡catión, properties, and environmental toxicities. Environmental Technology & Innovation, 2020. 20. https://doi.Org/10.1016/j.eti.2020.101067
[14] Ancira-Cortez, A., et al., Synthesis, Chemical and biochemical characterization of LU2O3-ÍPSMA nanoparticles activated by neutrón irradiation. Mater Sci Eng C Mater Biol Appl, 2020. 117: p. 111335. https://doi.Org/10.1016/j.msec.2020.111335
[15] Liu, Q., et al., Fabrication, microstructure and spectroscopic properties of
Yb±U203 transparent ceramics from co-precipitated nanopowders. Ceramics International, 2018. 44(10): p. 11635-11643. https://doi.Org/10.1016/j.ceramint.2018.03.238
[16] Liu, Z., et al., Fabrication, microstructures, and optical properties of
Yb:Lu203 láser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020. 9(6): p. 674-682. https://doi.Org/10.1007/S40145-020-0403-8
[17] Tian, F., et al., Optimizing co-precipitated Nd. YAG nanopowders for transparent ceramics. Optical Materials, 2020. 108. https://doi.Org/10.1016/j.optmat.2020.110427
[18] Xie, W., et al., EU.LU2O3 transparent ceramics fabricated by vacuum sintering of co-precipitated nanopowders. Optical Materials, 2018. 86: p. 550-561. https://doi.Org/10.1016/j.optmat.2018.10.055
[19] Singh, A., et al., Pulsed Láser Ablation-lnduced Green Synthesis of T1O2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis. Nanoscale Res Lett, 2016. 11(1): p. 447. https://doi.org/10.1186/s11671-016-1608-1
[20] Johny, J., et al., Facile and fast synthesis of SnS2 nanoparticles by pulsed láser ablation in liquid. Applied Surface Science, 2018. 435: p. 1285-1295. https://doi.Org/10.1016/j.apsusuc.2017.11.243 [21] Mostafa, A.M., E.A. Mwafy, and M.S. Hasanin, One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed láser ablation in liquid environment and their antimicrobial activity. Optics & Láser Technology, 2020. 121. https://doi.Org/10.1016/j.optlastec.2019.105824 [22] Zhou, Q., L. Zhang, and H. Wu, Nanomaterials for cáncer therapies.
Nanotechnology Reviews, 2017. 6(5): p. 473-496. https://doi.Org/10.1515/ntrev-2016-0102
[23] Itani, R. and A. Al Faraj, siRNA Conjugated Nanoparticles-A Next
Generation Strategy to Treat Lung Cáncer. Int J Mol Sci, 2019. 20(23). https://doi.org/10.3390/ijms20236088
[24] Silva, S., A.J. Almeida, and N. Vale, Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules, 2019. 9(1). https://doi.org/10.3390/biom9010022
[25] Abdelmoez, A., et al. , Screening and Identification of molecular targets for cáncer therapy. Cáncer Lett, 2017. 387: p. 3-9. https://doi.Org/10.1016/j.canlet.2016.03.002
[26] Saliev, T., A. Akhmetova, and G. Kulsharova, Multifunctional hybrid nanoparticles for theranostics in Core-Shell Nanostructures for Drug Delivery and Theranostics. 2018. p. 177-244. https://doi.org/10.1016/B978- 0-08-102198-9.00007-7
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se presenta con fines de invención, nuevo sistema basado en nanopartículas de sesquióxido de lutecio con alta pureza y cristalinidad, con morfología cuasiesférica y tamaños de entre 20-45 nm, las cuales después de ser activadas por irradiación neutrónica (177Lu2O3) son radioluminiscentes, presentando espectros de emisión de luminiscencia en la región del infrarrojo cercano, con un máximo de emisión a ~615 nm, lo cual permite la obtención de imágenes ópticas in vivo de su biodistribución. Después de su funcionalización con un péptido inhibidor del antígeno prostático específico de membrana (PSMA), las nanopartículas de sesquióxido de lutecio aumentan sus tamaños a un intervalo de 30-50 nm, manteniendo los valores absolutos de potencial zeta por arriba de los 25 mV, lo que implica alta estabilidad del sistema coloidal.
Basados en las propiedades de los lantánidos descritas en los antecedentes, se planteó como hipótesis, que las nanopartículas de sesquióxido de Lutecio altamente cristalinas podrían emitir radioluminiscencia en el rango del infrarrojo cercano al ser activadas por irradiación neutrónica debido a la interacción del material con la radiación ionizante. Esta propiedad radioluminiscente recaería en la configuración electrónica Lu: [Xe] 4f14 5d1 6s2, la cual permitiría la formación de los sesquióxidos correspondientes con los iones trivalentes y haría posible la existencia de transiciones f-f (intraconfiguraciones) en los electrones del orbital 4f; estas transiciones tienen un blindaje al estar protegidas por los electrones 5s y 5p (niveles energéticos superiores), lo que resultaría en una emisión fotónica en forma de radioluminiscencia con tiempos de vida media más largos y una alta resistencia al foto-blanqueamiento, fenómeno que además sería beneficiado por el tamaño nanométrico en las nanopartículas de sesquióxido de lutecio, ya que sus coeficientes de absorción y área superficial son más grandes como peculiaridad adquirida en escalas nanométricas, y terminaría influyendo en sus espectros de emisión. Adicionalmente las nanopartículas de sesquióxido de lutecio activadas por irradiación neutrónica, podrían ser funcionalizadas con péptidos de reconocimiento molecular específico, para funcionar como sistemas de radioterapia dirigida (emisión de partículas beta del radioisótopo generado por la activación neutrónica) y como un sistema para imagen molecular dual in vivo, a través de la imagen óptica generada por la radioluminiscencia y la imagen nuclear generada por los rayos gamma del radioisótopo de lutecio.
La síntesis para la formación de las nanopartículas del sesquióxido de lutecio se realizó por un método de precipitación-calcinación (P-C) a temperatura ambiente y con agitación constante. Primero se preparó una solución de LuCl3 (10 mM) que estuvo en agitación por 0.5h, posteriormente se le agregó por goteo una solución 1 :1 de hidróxido de amonio/carbonato de amonio 2M hasta alcanzar un pH~ 9 o hasta observar la aparición de un precipitado blanco y esponjoso, manteniendo una constante por 1h más. El precipitado formado se lavó con agua tipo I hasta un pH~7 mediante centrifugación (2500g/0.5h). Finalmente, el producto fue secado (110°C/24h) y calcinado (1000°C/8h). El polvo obtenido se almacenó para su posterior uso y/o análisis.
Las nanopartículas de sesquióxidos de Lu sintetizadas por P-C se funcionalizaron con el péptido1 ,4,7,10-tetraazociclodecano-N,N',N",N"'-ácido tetraacético- hidrazinonicotinil-Lys (b-naftilalanina) -NH-CO-NH-Glu (DOTA-HYNIC-iPSMA) (iPSMA); utilizando 15 mg de nanopartículas de LU2O3 homogeneizadas con una solución de citrato de sodio 5 mM en un baño de ultrasonido por 0.5 h, posteriormente se adicionaron 150 μL de solución peptídica (1mg/mL) y se continuo la agitación por baño de ultrasonido 1 hora más. Finalmente, el sistema se purificó por ultracentrifugación (2500g/0.5h, filter units MWCO 100 y 30 kDa; Merck- Millipore). Las muestras se resguardaron hasta su uso para su caracterización por espectroscopias FT-IR y UV-Vis, SEM, TEM, DLS, HRTEM, SAED, DSC-TGA y difracción de rayos X.
Para la activación neutrónica se utilizaron 15 mg de nanopartículas de LU2O3 (natural), las cuales fueron irradiadas en la posición SIFCA del reactor nuclear Triga MARK III durante 20 horas a un flujo de neutrones de 1x1013 n/s.cm2
Las propiedades de radioluminiscencia se obtuvieron en un equipo Bruker Preclinical Optical, sin la utilización de filtros de emisión para verificar la radioluminiscencia y empleando filtros de 535, 600, 700, 750, 790 y 800 nm con la finalidad de obtener el espectro de intensidad de emisión de luminiscencia (fotones/segundo/mm2 vs longitud de onda). Los polvos de las nanopartículas de LU2O3 fueron fotografiados antes y después de su irradiación neutrónica en la oscuridad.
Los análisis termogravimétricos tuvieron como finalidad establecer las reacciones involucradas en la formación de las nanopartículas de sesquióxidos de Lu obtenidas mediante P-C.
El precursor Lu(OH)C03 . xH20/Lu2(C03)3 . xH20 tuvo una pérdida total de masa de ~28.9%, acorde a lo reportado para la descomposición de carbonatos de lutecio en su óxido correspondiente. Las fases de descomposición fueron tres: la primera se presentó alrededor de los 100°C (9.8%) y se asignó a un proceso exotérmico de liberación del agua de hidratación contenida en la molécula. La segunda descomposición ocurrió en el rango de 284 -543 °C, donde se asignó la pérdida de agua molecular proveniente principalmente del intermediario Lu(OH)C03 . xH20 a 284°C (8.7%) y la descomposición de la materia orgánica del compuesto (descarbonatación parcial) a 543°C (0.5%). La tercera etapa de descomposición ocurrió a ~670°C (2.6%) y se asignó a la descarbonatación completa y formación del enlace Metal-Oxígeno para la cristalización del material en forma de LU2O3 nanopartículas. Finalmente, la pérdida de -0.31% por encima de los 670°C se atribuyó a la descomposición de los carbonatos (figura 1). Las reacciones que describen el proceso de formación de las nanopartículas del sesquióxido de lutecio se listan en las Ec. (1 )-(4), las cuales contemplan la formación de los dos carbonatos (Ec. (3.1) y (4.1)) formados como producto en la precipitación y que ayudan a explicar las diferentes fases del termograma.
Ec. (1) Ec. (2) Ec. (3)
Ec (3.1)
Ec. (3.2.)
Ec (3.3)
Ec. (4) Ec. (4.1)
Ec. (4.2)
Ec. (4.3)
Figure imgf000011_0001
Las ecuaciones (3) y (4) se pueden resumir en la Ec. (5) al ser un fenómeno que ocurre relativamente al mismo tiempo, sin embargo, para aspectos estequiométricos y de descomposición, se deben visualizar individualmente.
Ec. (5)
Figure imgf000011_0002
Los estudios TEM revelaron la presencia de partículas con una estructura cercana a una forma esférica y con una distribución homogénea y uniforme. Las imágenes SEM exhibieron homogeneidad en la morfología del material. El diámetro medio obtenido para las nanopartículas de Lu2O3 y determinado por TEM fue de 26.75 nm ± 6.72 nm, con una distribución monomodal y monodispersa, como se muestra en la figura 2: (a) micrografías de SEM de Lu2O3, b) distribución de tamaño de Lu2O3 por TEM, y c) micrografías de TEM de de Lu2O3. El sistema funcionalizado Lu2O3-ÍPSMA mostró un aumento de ~ 3 nm, con un diámetro medio de 29.98 nm ± 9.07 nm y manteniendo una distribución de tamaño homogénea, que se observa en el histograma monomodal y monodisperso. Además, en las micrografías TEM, fue posible observar que el precursor aún conservaba la morfología y que el péptido estaba presente en la superficie de las nanopartículas, con un ancho de ~ 2.7 nm, como se muestra en la figura 3: a) imagen aumentada del péptido iPSMA unido a la superficie de la nanopartícula de Lu2O3, b) micrografía TEM de las nanopartículas Lu2O3-ÍPSMA y c) distribución del tamaño de las nanopartículas Lu2O3-ÍPSMA. Los diámetros hidrodinámicos fueron de 84.38 ± 22.85 nm para Lu2O3 nanopartículas y 132.32 ± 27.09 nm para el sistema Lu2O3-ÍPSMA. Los valores de potencial zeta fueron de -27.40 mV para Lu2O3-nanopartículas y -45.55 mV para Lu2O3-ÍPSMA- nanopartículas.
Los análisis de Microscopía electrónica de transmisión de alta resolución, Difracción de electrones de área selecta y Difracción de Rayos X, permitieron corroborar el estado cristalino de las nanopartículas obtenidas por ambos métodos.
En el análisis HRTEM de Lu2O3 nanopartículas sintetizadas se observaron patrones altamente cristalinos, con las franjas reticulares, correspondientes al plano (2 2 2) del cristal de lantánido, con un espaciado reticular de 0.299 nm (figura 4: 4a). Además, la evidencia de la identidad, pureza y estructura cristalina fue verificada por el patrón de Difracción de Electrones de Área Seleccionada (figura 4: 4b), donde se identificó que el Lu2O3 tiene una fase cúbica de tipo fluorita, perteneciente al grupo espacial Ia3, como se identificó por las cartas cristalográficas JCPDS No. 12- 0728 (a = 10.3900), que también coincidió con los resultados de Difracción de Polvo de Rayos X (Fig 4c), con los picos característicos principales para el óxido de lantánido, a valores 2θ de 20.749 (211) , 29.629 (222), 34.365 (400), 35.565 (411 ), 40.568 (332), 44.233 (431 ), 49.464 (440), 54.236 (611 ), 57.375 (541 ), 58.761 (622), 60.278 (631 ), 61.278 (444), 65.931 (217), 71.286 (651 ), 72.591 (800), 74.002 (741), 79.187 (831), 80.411 ( 662) y 82,939 (840). Además, los espectros XRD mostraron picos estrechos y bien definidos, indicativos de la cristalinidad y pureza del material. Asimismo, el pico principal (222) se utilizó como referencia para determinar teóricamente el tamaño de partícula de acuerdo con la ecuación de Scherrer (Ec. (16)). Ec. (16)
Donde:
Figure imgf000013_0001
D= tamaño de partícula
K= factor de forma de la celda unitaria λ= longitud de onda de la fuente CuKa de rayos X (0.15406 nm) β= FWHM del pico principal θ= ángulo de Bragg del pico principal.
El tamaño teórico de partícula de Lu2O3 nanopartículas fue de ~ 31.42 nm, que coincidió con el valor obtenido experimentalmente en el análisis de TEM.
La figura 5 muestra es espectro infrarrojo de la zona media de las nanopartículas de óxido de lutecio, en este se obtuvo una banda a 575 cm1 correspondiente a la vibración de estiramiento entre el oxígeno y el lantánido. Su presencia también fue prueba del tamaño nanométrico y de la correcta cristalización del precursor carbonato. La figura 5 con muestra el espectro IR del péptido de funcionalización iPSMA, que presentó sus diferentes bandas debidas a sus grupos funcionales, entre las que se encuentran: a 3281 cm-1 la banda de Us(-NH) y Us(-OH), a 2939 cm-1 y 2863 cm-1 las bandas Uas(-CH2)y Us(-CH2), respectivamente. En 2537 cm-1 la banda se asignó a u(-OH) de los grupos -COOH presentes en la estructura del DOTA principalmente. En 1710 cm-1 se observa una banda solapada por u( C=0), la banda en 1657 cm-1 es proveniente tanto de la T(-NH) de la Amida I como de u(-COOH). La banda en 1551 cm-1 se asignó a u(-CN) de la urea presente en la estructura, así como por u(-NH) de la Amida II. Una vez que se funcionalizaron las nanopartículas, el espectro IR de este sistema permitió observar las bandas provenientes de los grupos funcionales del iPSMA, la primera a 3380 cm-1fue tanto de u(-NH) de las aminas secundarias, como de u(-OH). En 2964 cm-1 y 2881 cm-1 se presentaron las bandas Uas(-CH2) y Us(-CH2) de la cadena alifática. A 2343 cm-1 se observó la banda u(-OH) de los ácidos carboxílicos, una banda intensa y ligeramente ancha se encontró en 1588 cm-1 y se atribuyó a las vibraciones uas(-C=0), Τ(-NH) de la Amida I y de Us(-COOH), mismas que en el péptido libre se presentan como bandas de vibración independientes. La vibración u(-NH) de la Amida II proveniente de la fracción de la urea, así como las vibraciones u(-CN) y u(C=C) se asignaron en 1420 cm-1. A menores números de onda se observaron las bandas de vibración de deformación y plegamiento de los grupos anteriores. Un cambio notable en este espectro fue la presencia de las vibraciones provenientes del enlace Lu-O a 571 cm 1 y en 490 cm-1 esta última también debida a la interacción de los iones lantánido con los oxígenos del agente quelante DOTA por la formación del compuesto de coordinación; otro cambio por esta interacción fue el cambio de la banda de u(- COOH) hacia números de onda más bajos, pasando de 1657 cm-1 a 1588 cm-1. De la misma forma, el desplazamiento hacia números de onda más bajos de la vibración en 1284 cm-1 a 1164 cm-1 de las aminas terciaras fue atribuido a la interacción del N de este grupo con los iones superficiales de lutecio en la nanopartícula. Finalmente, pero no menos importante, fue el desplazamiento de todas las bandas hacia el azul en un rango desde los 20 cm-1 hasta ~100 cm-1 (figura 5). Todos estos cambios, sugieren una variación en las estructuras de las moléculas de origen, mismas que repercuten en la forma de vibrar de los dipolos involucrados y analizados.
El espectro de absorción UV-Vis de Lu2O3 nanopartículas presentó una banda de absorción centrada a 214 nm, que fue indicativa del tamaño nanométrico del material y además está relacionada con su estructura química (responsable de la presencia de la banda), descrita con la fórmula general Ln2O3 , donde Ln3+ representa al ión lantánido y O representa al ión O2- (figura 6). Al conjugar Lu2O3 nanopartículas con el péptido, el espectro mostró cambios perceptibles, observando principalmente una banda centrada a 216 nm con un solapamiento en 226 nm (figura 6). La primera banda se asoció a aquella proveniente de las nanopartículas solas, mientras que el solapamiento se atribuyó a la banda que el péptido libre presenta en 223 nm y, que es resultado de la presencia de los ácidos carboxílicos del grupo DOTA. La figura 6 muestra el espectro del péptido iPSMA, donde se observa una banda centrada en 265 nm que no fue visible en el sistema final, por la menor intensidad que tiene comparada con aquella en 223 nm Entre los cambios presentados en el espectro de Lu2O3-ÍPSMA está el desplazamiento de ~2 nm de la banda procedente del ión metálico, que es relativamente poco por el bajo efecto que los ligandos pueden tener en los iones metálicos, pues las transiciones responsables de las bandas de absorción en los lantánidos involucran los electrones 4f del metal, mismos que se encuentran protegidos de las influencias externas por los orbitales ocupados por electrones con mayores números cuánticos principales, como consecuencia, las bandas continúan siendo estrechas y sin gran afección por solventes y/o especies unidas en sus electrones externos. Sin embargo, aún con esta premisa, dicho desplazamiento representa un cambio en el entorno químico del sistema final.
Las nanopartículas de Lu2O3 sintetizadas por P-C después de su activación neutrónica (177 Lu2O3) mostraron propiedades luminiscentes, presentando espectros de emisión de luminiscencia en la región del infrarrojo cercano, con un máximo de emisión a ~615 nm (figura 7); así como la obtención de imágenes ópticas de la biodistribución in vivo en ratones sanos Balb-C de las 177 Lu2O3, por sus propiedades radioluminiscentes mostradas, observándose una mayor acumulación de las nanopartículas en el hígado. En la figura 7 se muestra: A) las nanopartículas de 177 Lu2O3-iPSMA (polvo) antes (A1) y después (A2) de la irradiación de neutrones, y su radioluminiscencia (A3) en una habitación oscura. B) Nanopartículas 177 Lu2O3- iPSMA (polvo): imagen de rayos X (B1), imagen luminiscente (B2) e imágenes fusionadas (B3). C) Espectro de emisión de nanopartículas (polvo) de 177 Lu2O3- iPSMA. D) Biodistribución de nanopartículas de 177 Lu2O3-iPSMA (74 MBq, 1.0 mg) en un ratón en posición supina a las 24 h después de la administración: imágenes de rayos X (D1), imagen luminiscente (D2) e imágenes fusionadas (D3).

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes claúsulas:
1.- Un sistema basado en nanopartículas de sesquióxido de lutecio con alta pureza y cristalinidad, con morfología cuasiesférica y tamaños de entre 20-45 nm, que al ser activado por irradiación neutrónica (177Lu2O3) presenta radioluminiscencia en la región espectral del infrarrojo cercano.
2.- Un radionanocompuesto, caracterizado porque comprende un sistema como el que se reclama en la reivindicación 1 funcionalizado con un péptido inhibidor del antígeno prostático específico de membrana (PSMA), denominado iPSMA ó péptido1 ,4,7,10-tetraazociclodecano-N,N',N",N"'-ácido tetraacético- hidrazinonicotinil-Lys-(β-naftilalanina)-NH-CO-NH-Glu (DOTA-HYNIC-iPSMA).
3.- Un sistema como el que se reclama en la reivindicación 1 para usarse como agente para imagen óptica in vivo.
PCT/MX2021/050056 2021-04-30 2021-10-15 Nanopartículas radioluminiscentes de sesquióxido de lutecio-177 funcionalizadas con péptidos para imagen óptica WO2022231411A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2021005088A MX2021005088A (es) 2021-04-30 2021-04-30 Nanoparticulas radioluminiscentes de sesquioxido de lutecio-177 funcionalizadas con peptidos para imagen optica.
MXMX/A/2021/005088 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022231411A1 true WO2022231411A1 (es) 2022-11-03

Family

ID=83847160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2021/050056 WO2022231411A1 (es) 2021-04-30 2021-10-15 Nanopartículas radioluminiscentes de sesquióxido de lutecio-177 funcionalizadas con péptidos para imagen óptica

Country Status (2)

Country Link
MX (1) MX2021005088A (es)
WO (1) WO2022231411A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059153A1 (en) * 2011-09-02 2013-03-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy FLAME SPRAY SYNTHESIS OF Lu2O3 NANOPARTICLES
WO2014040222A1 (zh) * 2012-09-11 2014-03-20 海洋王照明科技股份有限公司 氧化镥发光材料及其制备方法
WO2019177449A1 (es) * 2018-03-14 2019-09-19 Instituto Nacional De Investigaciones Nucleares 177lu-dota-hynic-ipsma como un radiofármaco terapéutico dirigido al antígeno prostático específico de membrana

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059153A1 (en) * 2011-09-02 2013-03-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy FLAME SPRAY SYNTHESIS OF Lu2O3 NANOPARTICLES
WO2014040222A1 (zh) * 2012-09-11 2014-03-20 海洋王照明科技股份有限公司 氧化镥发光材料及其制备方法
WO2019177449A1 (es) * 2018-03-14 2019-09-19 Instituto Nacional De Investigaciones Nucleares 177lu-dota-hynic-ipsma como un radiofármaco terapéutico dirigido al antígeno prostático específico de membrana

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANCIRA-CORTEZ A., ANCIRA CORTEZ, FERRO FLORES, JIMÉNEZ MANCILLA, MORALES AVILA, TRUJILLO BENÍTEZ, OCAMPO GARCÍA, SANTOS CUEVAS, ES: "Synthesis, chemical and biochemical characterization of Lu2O3-iPSMA nanoparticles activated by neutron irradiation", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A., CH, vol. 117, 1 December 2020 (2020-12-01), CH , pages 111335, XP093002470, ISSN: 0928-4931, DOI: 10.1016/j.msec.2020.111335 *
CLARA SANTOS-CUEVAS, GUILLERMINA FERRO-FLORES, FRANCISCO O. GARCíA-PéREZ, NALLELY JIMéNEZ-MANCILLA, GERARDO RAM&#23: "177 Lu-DOTA-HYNIC-Lys(Nal)-Urea-Glu: Biokinetics, Dosimetry, and Evaluation in Patients with Advanced Prostate Cancer", CONTRAST MEDIA & MOLECULAR IMAGING, JOHN WILEY & SONS,, GB, vol. 2018, 11 November 2018 (2018-11-11), GB , pages 1 - 10, XP055685809, ISSN: 1555-4309, DOI: 10.1155/2018/5247153 *

Also Published As

Publication number Publication date
MX2021005088A (es) 2022-11-01

Similar Documents

Publication Publication Date Title
Darr et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions
Rajakumar et al. Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications
Wang et al. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies
Lin et al. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy
Hong et al. Intense red-emitting upconversion nanophosphors (800 nm-driven) with a core/double-shell structure for dual-modal upconversion luminescence and magnetic resonance in vivo imaging applications
Li et al. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure
Li et al. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application
US20190099505A1 (en) Coated up-conversion nanoparticles
Ramasamy et al. Enhanced upconversion luminescence in NaGdF 4: Yb, Er nanocrystals by Fe 3+ doping and their application in bioimaging
Szczeszak et al. Structural, spectroscopic, and magnetic properties of Eu3+-doped GdVO4 nanocrystals synthesized by a hydrothermal method
Chen et al. Preparation and photodynamic therapy application of NaYF4: Yb, Tm–NaYF4: Yb, Er multifunctional upconverting nanoparticles
Chang et al. Self-assembled CeVO 4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance
Zhu et al. Zn3Ga2Ge2O10: Cr3+ uniform microspheres: template-free synthesis, tunable bandgap/trap depth, and in vivo rechargeable near-infrared-persistent luminescence
Zhang et al. Facile synthesis of functional gadolinium-doped CdTe quantum dots for tumor-targeted fluorescence and magnetic resonance dual-modality imaging
Yi et al. Urchin-like Ce/Tb co-doped GdPO 4 hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery
CN103624266B (zh) 一种改变金纳米棒长径比并且降低其细胞毒性的制备方法
Li et al. Morphology tailoring of ZnWO4 crystallites/architectures and photoluminescence of the doped RE3+ ions (RE= Sm, Eu, Tb, and Dy)
Peng et al. Synthesis strategies and biomedical applications for doped inorganic semiconductor nanocrystals
Wang et al. Synthesis of Bi 2 WO 6− x nanodots with oxygen vacancies as an all-in-one nanoagent for simultaneous CT/IR imaging and photothermal/photodynamic therapy of tumors
Wang et al. Multimodal imaging and photothermal therapy were simultaneously achieved in the core–shell UCNR structure by using single near-infrared light
Chen et al. Multifunctional PVP-Ba2GdF7: Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy
Yang et al. Short-wave near-infrared emissive GdPO 4: Nd 3+ theranostic probe for in vivo bioimaging beyond 1300 nm
Li et al. Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning
Sengar et al. Morphological optimization and (3-aminopropyl) trimethoxy silane surface modification of Y3Al5O12: Pr nanoscintillator for biomedical applications
Pu et al. Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939474

Country of ref document: EP

Kind code of ref document: A1