WO2022231286A1 - Cord comprising bio-based component and method for preparing same - Google Patents

Cord comprising bio-based component and method for preparing same Download PDF

Info

Publication number
WO2022231286A1
WO2022231286A1 PCT/KR2022/005981 KR2022005981W WO2022231286A1 WO 2022231286 A1 WO2022231286 A1 WO 2022231286A1 KR 2022005981 W KR2022005981 W KR 2022005981W WO 2022231286 A1 WO2022231286 A1 WO 2022231286A1
Authority
WO
WIPO (PCT)
Prior art keywords
twisted yarn
cord
tpm
denier
nylon
Prior art date
Application number
PCT/KR2022/005981
Other languages
French (fr)
Korean (ko)
Inventor
이민호
정일
전옥화
임종하
이성규
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220051246A external-priority patent/KR20220149436A/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN202280022952.6A priority Critical patent/CN117043402A/en
Priority to JP2023559720A priority patent/JP2024511515A/en
Priority to EP22796119.0A priority patent/EP4276229A1/en
Priority to US18/262,551 priority patent/US20240076810A1/en
Publication of WO2022231286A1 publication Critical patent/WO2022231286A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • D10B2505/022Reinforcing materials; Prepregs for tyres

Definitions

  • the present application relates to a code containing a bio-derived component and a method for manufacturing the same. Specifically, the present application relates to a first lower twisted yarn formed by giving a twist to a bio-nylon fiber; And it relates to a hybrid cord comprising a second lower twisted yarn formed by imparting twist to a different type of resin fiber different from the bio-nylon, and a method for manufacturing the same.
  • a cord used as a rubber reinforcing material for an automobile tire must satisfy physical properties capable of maintaining the stability and durability of the tire in consideration of the specific driving conditions of the tire.
  • a tire cord must have excellent balance between physical properties such as strength, medium elongation, cut elongation, and dry heat shrinkage, and in addition, it must be able to provide excellent fatigue resistance.
  • high modulus (ie, relatively low elongation) cords are used in such a fatigue environment as above. retention will decrease.
  • having a modulus value as low as possible helps to improve the fatigue resistance performance of the cord, and consequently improves the durability of the tire can be found to help.
  • a cord for a tire reinforcement material may be made by twisting a component called a lower-twisted yarn, and the filament or fiber component included in the lower-twisted yarn may be selected in consideration of performance required for the use of the tire reinforcement material.
  • aramid fiber has a high modulus, and since the amount of change in modulus at room temperature and high temperature is small, it has an advantage in suppressing the flat spot phenomenon in which the tire is deformed when parked for a long time, so it was mainly used for high-quality tires.
  • aramid fibers are expensive and have poor fatigue resistance due to their high modulus properties. That is, in the case of a tire cord containing aramid lower-twisted yarn, while the reinforcing properties are excellent, fatigue resistance performance or durability is not good.
  • An object of the present application is to provide an eco-friendly cord (cord) including a bio-based nylon fiber and a method for manufacturing the same.
  • Another object of the present application is to provide a cord and a manufacturing method thereof that are not significantly affected by the problem of supply and demand of synthetic raw materials, since they contain bio-derived fibers.
  • Another object of the present application is to provide a cord capable of providing physical properties equivalent to or higher than that of a conventional cord including only chemically synthesized fibers and a method for manufacturing the same.
  • a cord comprising a lower twisted yarn that is a different heterogeneous fiber component, one of the heterogeneous fiber components is bio-derived nylon (or bio-based nylon), and a manufacturing method thereof are provided.
  • the hybrid cord of the present application uses bio-derived nylon, in properties such as strength, medium elongation, elongation at cut, dry heat shrinkage, adhesion, and/or fatigue resistance, physical properties at a commercially required level (that is, conventional chemical The level of physical properties of cords including synthetic nylon lower-twisted yarns) can be provided.
  • bio-nylon fibers when bio-nylon fibers are replaced with chemical synthetic nylon fibers used in the production of hybrid tire cords, bio-nylon fibers have high modulus properties (that is, low and medium elongation) was confirmed.
  • the initial modulus on the stress-strain curve pattern is high, the force received during tension and compression is increased, and the fatigue resistance property is deteriorated.
  • Chemically synthesized nylon fibers have a lower modulus than other materials, so they have an advantageous function in securing the fatigue resistance of cords and tires in a situation where tension and compression are repeated.
  • nylon is substituted, it is disadvantageous for the hybrid cord to secure the fatigue resistance property due to the increase in the modulus of the nylon lower-twisted yarn.
  • the inventor of the present application solves the problem of supply and demand of synthetic materials and the resulting price fluctuation, is eco-friendly, and hybrid cord that can provide physical properties equivalent to or higher than that of the conventional hybrid cord (including chemically synthesized nylon lower-twisted yarn)
  • the invention of the present application was completed.
  • bio-derived nylon or bio-nylon may mean that a component used to manufacture nylon is derived from natural resources, for example, vegetable resources.
  • the bio-based nylon may be or include PA56 or nylon 56.
  • the bio-derived nylon is, for example, 'pentamethylenediamine ( pentamethylenediamine)' may be formed by reacting with dicarboxylic acid.
  • cord may refer to a hybrid cord including at least two different heterogeneous fibers.
  • the cord may refer to a hybrid cord including at least two or more lower twisted yarns including different types of fibers.
  • the hybrid cord may mean that a coating agent such as an adhesive is coated on a fiber component (ply-twisted yarn), that is, a dip cord.
  • a cord including at least two heterogeneous fibers in a state in which the coating agent is not coated on the fiber component may be referred to as a raw cord.
  • the cord or the raw cord has a ply-twisted yarn structure in which at least a first lower twisted yarn and a second twisted yarn are twisted together (that is, the lower twisted yarns are twisted).
  • lower twist means twisting a thread or a filament in one direction
  • lower twisting yarn means a single ply yarn made by twisting a thread or filament in one direction, that is, a single yarn.
  • the lower edge may mean, for example, a clockwise or counterclockwise twist.
  • "plied yarn” may mean a yarn made by twisting two or more lower twisted yarns together in one direction.
  • the upper edge may mean a twist in the opposite direction to the twist in which the lower edge is formed.
  • the sangyeon may mean twisting in a counterclockwise or clockwise direction.
  • the lower-twisted yarn or the ply-twisted yarn produced by applying twist in any direction may have a predetermined number of twists.
  • the number of twists means the number of twists per 1 m, and the unit may be TPM (Twist Per Meter).
  • the present application relates to an eco-friendly cord comprising a bio-based fiber.
  • the bio-derived fiber included in the cord may be referred to as a bio-based nylon fiber or a bio nylon fiber, and is included in the lower twisted yarn constituting the cord.
  • Bio-nylon has different properties from chemically synthesized nylon. For example, as confirmed in an experiment to be described later (see Table 1), bio-nylon has a higher modulus than chemically synthesized nylon. Specifically, referring to Table 1, when chemically synthesized PA66 and bio-nylon PA56 have a fineness in the range of 700 to 1500 denier in common (Table 1, about 845 denier), the intermediate elongation of the bio-nylon yarn is low.
  • the bio-nylon yarn has a median elongation (4.7 constant load elongation of cN/dtex) measured according to ASTM D885 of 15% or less, 14% or less, or 13% or less, 12% or less, 11 % or less, 10% or less, or 9% or less.
  • the lower limit of the intermediate elongation may be 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, or 10% or more.
  • the cord is a hybrid raw cord (hybrid raw cord); and a coating layer formed on the hybrid raw cord.
  • the hybrid raw cord includes: a first lower twisted yarn formed by twisting bio-nylon fibers having a fineness of 600 to 2000 denier; and a second lower twisted yarn formed by applying twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 800 to 2200 denier, wherein the number of twists of the first lower twisted yarn is in the range of 250 to 600 TPM, and the entire hybrid raw cord It includes 20 to 50% by weight of the first lower twisted yarn relative to 100% by weight.
  • the hybrid cord provided according to the present application satisfies a strong retention rate of 90% or more after an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  • the cord that reinforces the performance of the tire shows different characteristics (physical properties) according to the thickness. If the thickness of the cord is thick, the performance of the tire is improved in terms of strength and modulus, but the weight increases because the thickness of the rubber covered above and below the fabric becomes thicker and the size of the tire increases. Therefore, it is unsuitable for a tire where fuel efficiency and weight reduction are important. In addition, when the thickness of the cord is thin, it is advantageous for reducing the weight of the tire, but since the strength and modulus are low, the performance as a reinforcing material cannot be sufficiently exhibited. In the present application, in consideration of this point, the fineness of the fibers forming the cord (each fiber forming the lower twisted yarn) is appropriately adjusted.
  • the bio-derived nylon lower-twist yarn may include bio-derived nylon fibers (filaments) having a fineness of 600 to 2000 denier (de).
  • the lower limit of the fineness of the bio-derived nylon fiber is 650 denier or more, 700 denier or more, 750 denier or more, 800 denier or more, 850 denier or more, 900 denier or more, 950 denier or more, 1000 denier or more, 1050 denier or more, 1100 or more. denier or more, 1150 denier or more, 1200 denier or more, 1250 denier or more, 1300 denier or more, 1350 denier or more, or 1400 denier or more.
  • the upper limit is, for example, 1950 denier or less, 1900 denier or less, 1850 denier or less, 1800 denier or less, 1750 denier or less, 1700 denier or less, 1650 denier or less, 1600 denier or less, 1550 denier or less, 1500 denier or less, 1450 denier or less.
  • the second lower twisted yarn may include fibers (filaments) having a fineness of 800 to 2200 denier.
  • the lower fineness limit of the fiber used to form the second lower twisted yarn is 850 denier or more, 900 denier or more, 950 denier or more, 1000 denier or more, 1050 denier or more, 1100 denier or more, 1150 denier or more, 1200 denier or more.
  • the upper limit is, for example, 2150 denier or less, 2100 denier or less, 2050 denier or less, 2000 denier or less, 1950 denier or less, 1900 denier or less, 1850 denier or less, 1800 denier or less, 1750 denier or less, 1700 denier or less, 1650 denier or less. Denier or less, 1600 denier or less, 1550 denier or less, 1500 denier or less, 1450 denier or less, 1400 denier or less, 1350 denier or less, 1300 denier or less, 1250 denier or less, 1200 denier or less, 1150 denier or less, 1100 denier or less, 1050 denier or less , 1000 denier or less, 950 denier or less, or 900 denier or less.
  • the hybrid raw cord includes: a first lower twisted yarn formed by applying twist to a bio-nylon fiber having a fineness of 700 to 1500 denier; and a second lower twisted yarn formed by imparting twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 900 to 1800 denier.
  • the degree of twist between the lower twist yarns and/or the twist between the lower twist yarns affects the physical properties of the cord. Specifically, when the twist number of the lower twisted yarn is too low, the strength may be increased, but the strength retention of the cord is decreased due to the characteristics of the tire in which tension and compression are repeated. That is, the lower the number of twists, the lower the strength retention rate after fatigue. On the other hand, when the twist number of the lower twisted yarn is high, the modulus of the cord is lowered and the elongation is higher, so that the strength retention rate after fatigue due to tension/compression may be increased. However, when the number of twists is too high, the external force applied to the nylon cord by twisting increases, and the strength decreases compared to the low number of twists. In the present application, in consideration of the above points, the number of twists of each lower twisted yarn and the number of twists between the lower twisted yarns may be adjusted.
  • the number of twists (the number of first twists) of the first lower twisted yarn including the bio-nylon may be 250 to 600 TPM. More specifically, the number of twists of the bio-derived nylon lower twist yarn is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or more, 320 TPM or more, 330 TPM or more, 340 TPM or more, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher, 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher , 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher, 530 TPM or higher, 540 TPM or higher,
  • the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less.
  • the number of twists of the second lower twisted yarn may be appropriately adjusted in consideration of the physical properties of the cord generated through the ply twisting of the first lower twisted yarn (formed from bio-derived nylon fibers and having the same number of twists as described above).
  • the number of twists of the second lower twisted yarn may be in the range of 250 to 600 TPM.
  • the number of twists (second twist count) given to the heterogeneous resin fiber different from bio-nylon for forming the second lower twist yarn is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or higher, 320 TPM or higher, 330 TPM or higher, 340 TPM or higher, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher , 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher, 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher, 530 TPM or
  • the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less.
  • the number of twists (first twist number) of the bio-nylon lower twisted yarn and the second twist count (second twist count) of the lower twisted yarn may be the same or different.
  • a CC twisting machine Cable cord twist machine
  • a ring twisting machine Ring-Twister
  • the number settings are the same.
  • a difference in the number of twists may occur within about 15%, within 10%, or within 5% of the set value.
  • the hybrid raw cord may be formed by twisting the first lower twisted yarn and the second lower twisted yarn within a range of 250 to 600 TPM.
  • the number of twists is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or higher, 320 TPM or higher, 330 TPM or higher, 340 TPM or higher, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher , 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher, 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher,
  • the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less.
  • the number of twists of the first and second lower twisted yarns ie, the number of twists at the lower twist
  • the number of twists at the upper twist may be the same or different.
  • the number of twists at the time of the lower twist and the number of twists at the time of the upper twist may be set to be the same.
  • the number of twists at the time of lower twisting and the number of twists at the time of upper twisting may be slightly different in the final product. Specifically, in the case of a CC twisting machine (Cable Cord Twist machine) used in cord manufacturing, it is driven by one motor.
  • CC twisting machine Cable Cord Twist machine
  • the yarn in the creel passes through the disk connected to the motor and is connected to the regulator (the section where the lower and lower yarns meet and form the upper line), and the yarn in the port passes through the tension control guide roll. is connected to the regulator.
  • the regulator to which the yarn from the disk is connected is also rotated.
  • the lower twist is applied to the creel part yarn and the port part yarn connected by the rotation of the motor, and the lower twist yarn is twisted in the regulator to form the upper twist.
  • the raw cord is manufactured while twisting occurs due to the rotational motion of the motor. Even when the same number of twists is given (set) between the lower and upper edges, the number of twists between the upper and lower edges is may be different.
  • the level commercially required with respect to properties such as strength, medium elongation, cut elongation, dry heat shrinkage, adhesion, and/or fatigue resistance may be advantageous in securing the physical properties of (that is, the level of physical properties of a cord including a conventional chemically synthesized nylon lower-twisted yarn).
  • the cord includes a first lower twisted yarn and a second lower twisted yarn having a predetermined number of twists, and is formed by twisting the first lower twisted yarn and the second lower twisted yarn together.
  • the filament for forming the first lower twisted yarn and the filament for forming the second lower twisted yarn are simultaneously lowered by a CC twisting machine (eg, cable corder twist machine) or a ring twisting machine, respectively, while the first lower twisting yarn is twisted. Since the yarn and the second lower twisted yarn are formed, the twist direction (first twist direction) of the first lower twist yarn and the twist direction (second twist direction) of the second lower twist yarn may be the same.
  • the upper twisting when using a CC twisting machine (eg, cable corder twist machine) or a ring twisting machine (ring-twister), the upper twisting may be performed continuously following the lower twisting and simultaneously with the lower twisting, in the twist direction of the upper twist (ie, the third twisting direction) may be opposite to the first twisting direction (or second twisting direction).
  • a CC twisting machine eg, cable corder twist machine
  • ring-twister ring-twister
  • the content of the lower twisted yarn in the cord affects the characteristics of the cord. For example, when the content of aramid is high, the high-speed running performance of the tire can be improved by the high modulus, but the fatigue performance is lowered because it receives a lot of load for the same deformation. In addition, when the content of nylon is high, the modulus of the initial part of the stress-strain curve pattern, which indicates the physical properties of the cord, is low, so that the load for the same deformation is reduced and the fatigue resistance performance is increased. The effect on driving performance is low. In the present application, in consideration of the above points, the content of the lower twisted yarn may be adjusted.
  • the hybrid raw cord may include 20 to 50 wt% of the first lower twisted yarn based on 100 wt% of the total weight of the raw cord.
  • the lower limit of the content of the first lower twisted yarn may be, for example, more than 20 wt%, specifically 25 wt% or more, or 30 wt% or more, and more specifically 31 wt% or more, 32 wt% or more, 33 % or more, 34% or more, 35% or more, 36% or more, 37% or more, 38% or more, 39% or more, 40% or more, 41% or more, 42% or more, 43 weight % or greater, 44 weight % or greater, or 45 weight % or greater.
  • the upper limit is, for example, less than 50% by weight, specifically 49% by weight or less, 48% by weight or less, 47% by weight or less, 46% by weight or less, 45% by weight or less, 44% by weight or less, 43% by weight or less or less, 42 wt% or less, 41 wt% or less, or 40 wt% or less.
  • the content of the remaining lower-twisted yarns (such as second lower-twisted yarns) staged together with the first lower-twisted yarn may be appropriately adjusted at a level that does not impair the above-described objectives of the present application.
  • the content of the second lower-twisted yarn in the raw cord is an amount excluding the above-described first lower-twisted yarn content, that is, 50 to 80 weight. % can be More specifically, the content of the second lower-twisted yarn may be determined according to the above-described content of the first lower-twisted yarn.
  • the content of the lower-twisted yarn in the cord is controlled within the above-mentioned range, the commercially required level of physical properties (that is, the level of physical properties of the cord including the conventional chemically synthesized nylon lower-twisted yarn) is secured, and driving performance and fatigue resistance characteristics are ensured. It is beneficial to ensure a balance between
  • the type of the heterogeneous resin fiber used to form the second lower twisted yarn may be selected at a level that does not impair the purpose of the present application.
  • the second lower twisted yarn may include at least one of polyester fibers, aromatic polyamide fibers, and polyketone fibers.
  • the second lower twisted yarn may include aramid fibers. That is, the second lower twisted yarn may be formed by imparting twist to the aramid fiber, and the hybrid cord of the present application may include a nylon lower twisted yarn (first lower twisted yarn) and an aramid lower twisted yarn (second lower twisted yarn).
  • Aramid which shows high modulus, has a small amount of change in modulus at room temperature and high temperature, so it is excellent in suppressing flat spots, which are deformed when a tire is parked for a long time, and is an advantageous material for providing high-quality tires.
  • the cord may be a two-ply or three-ply cord.
  • the cord may have a two-ply structure in which one first lower twisted yarn having the above-mentioned fineness and one second lower twisted yarn having the above-mentioned fineness are staged together.
  • the cord may have a three-ply structure in which one first lower-twisted yarn having the above-mentioned fineness and two second lower-twisted yarns having the above-mentioned fineness are staged together.
  • the code may be one in which the fineness and/or the number of twists of each of the lower twisted yarns are specified.
  • the first lower twisted yarn is formed by applying twist to a bio-nylon fiber having a fineness of 750 to 1100 denier
  • the second lower twisted yarn is a different type of bio-nylon and a different resin fiber having a fineness of 900 to 1200 denier. It may be formed by giving twist.
  • the number of twists of the first lower twisted yarn may be, for example, 300 TPM or more, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
  • the first lower-twisted yarn is formed by giving twist to bio-nylon fibers having a fineness of 1100 to 1500 denier
  • the second lower-twisted yarn is a heterogeneous resin fiber different from bio-nylon having a fineness of 1200 to 1800 denier. It may be formed by imparting twist to the .
  • the number of twists of the first lower twisted yarn may be, for example, 400 TPM or less, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
  • the second lower-twisted yarn used together with the bio-nylon lower-twisted yarn that is the first lower-twisted yarn includes aramid fibers
  • the ratio of the length of the second lower twisted yarn to the first lower twisted yarn (the length of the second lower twisted yarn (L 2 )/the length of the first lower twisted yarn (L 1 )) may be in the range of 1.0 to 1.10 times. This is to improve the fatigue performance of the cord by lowering the initial modulus of the cord by making the second lower-twisted yarn (aramid lower-twisted yarn) having a higher modulus longer.
  • the ratio of the length of the second lower twisted yarn to the first lower twisted yarn (the length of the second lower twisted yarn (L2) / the length of the first lower twisted yarn (L1)) is less than 1.0, the aramid with high modulus becomes shorter, indicating the tensile properties of the cord.
  • the modulus of the initial part is increased, which means that the code receives more load in the same deformation, and ultimately, the fatigue resistance performance is lowered.
  • the ratio of the length of the second lower twisted yarn to the first lower twisted yarn exceeds 1.10, the aramid and the nylon are separated by force during the cord tension. may reduce the strength of the final code.
  • the lower limit of the ratio may be, for example, 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, or 1.05 or more, and the upper limit thereof is, for example, 1.09 or less, 1.08 or less, 1.07 or less, 1.06 or less, or 1.05 or less.
  • the length ratio control as described above is the amount of tension applied to each of the filaments forming the first lower twisted yarn and the filaments forming the second lower twisted yarn during the lower twisting and/or upper twisting process for manufacturing the cord. This can be done through control. More specifically, by making the magnitude of the tension applied to the aramid fiber (forming the second lower twisted yarn) smaller than the tension applied to the bionylon fiber forming the first lower twisted yarn, when the lower twist and upper twist are made, the second The length of the lower twisted yarn may be made longer than the length of the first lower twisted yarn.
  • the coating layer formed on the raw code means a layer formed from a coating solution capable of exhibiting a predetermined function. Such a coating layer may be formed on at least a portion of the aforementioned lower twisted yarn.
  • the method of forming the coating layer is not particularly limited, and for example, the coating layer may be formed through a known dipping or spraying method.
  • the coating layer may be configured to impart predetermined characteristics to the cord or to reinforce the characteristics of the cord.
  • the coating layer may be a layer capable of imparting an adhesive function to the cord, but the properties imparted or reinforced by the coating layer are not limited only to the adhesive function.
  • the coating layer may be formed from an adhesive (composition).
  • the coating layer may include or be formed from a resorcinol-formaldehyde-latex (RFL) adhesive (composition), an epoxy adhesive (composition), or a urethane adhesive (composition).
  • RTL resorcinol-formaldehyde-latex
  • composition an epoxy adhesive
  • urethane adhesive composition
  • the adhesive component forming the coating layer is not limited to those described above.
  • the adhesive composition may include an aqueous or non-aqueous solvent. These adhesives allow the fiber cord to exhibit improved adhesion to other adjacent constructions in tire reinforcement applications.
  • the hybrid cord having the above configuration may provide commercially required level of physical properties (ie, the level of physical properties of a cord including a conventional chemically synthesized nylon lower-twisted yarn).
  • Such physical properties include, for example, strength, medium elongation, elongation at cut, dry heat shrinkage, adhesion, and fatigue resistance.
  • the hybrid cord of the present application is constructed and manufactured to supplement the high modulus properties of the bio-nylon lower-twisted yarn, it is possible to prevent deterioration of the expected elongation and fatigue resistance of the cord according to the use of the bio-nylon lower-twisted yarn having a high modulus. can
  • the strength of the hybrid cord may be greater than or equal to 20 kgf. Specifically, the strength may be, for example, 21 kgf or more, 22 kgf or more, 23 kgf or more, 24 kgf or more, or 25 kgf or more.
  • the strength is similar to that of a cord including a conventional chemically synthesized nylon lower-twist yarn. The strength may be measured according to a method to be described later.
  • the median elongation (%, @4.5 kg) of the hybrid cord may be 2.8% or more.
  • the median elongation is 2.9% or more, 3.0% or more, 3.1% or more, 3.2% or more, 3.3% or more, 3.4% or more, 3.5% or more, 3.6% or more, 3.7% or more, 3.8% or more, 3.9% or more. or more, 4.0% or more, 4.1% or more, 4.2% or more, 4.3% or more, 4.4% or more, 4.5% or more, 4.6% or more, 4.7% or more, 4.8% or more, 4.9% or more, or 5.0% or more.
  • the corresponding intermediate elongation is equivalent to or higher than the intermediate elongation of a cord including a conventional chemically synthesized nylon lower-twisted yarn.
  • the median elongation may be measured according to a method to be described later.
  • the intermediate elongation can be adjusted or changed according to the number of twists. For example, when the number of twists in the cord is low, the modulus is high during the tensile test, and accordingly, the median elongation is lowered. When the number of twists is low, the modulus is higher due to the structural characteristics of the cord. The lower the number of twists in the cord length direction, the more oblique lines caused by the twist are erected in the cord length direction and the maximum force is received earlier, so the overall modulus is lowered. because it rises
  • the cut elongation (%) of the hybrid cord may be 7.0% or more.
  • the elongation at cut is 7.1% or more, 7.2% or more, 7.3% or more, 7.4% or more, 7.5% or more, 7.6% or more, 7.7% or more, 7.8% or more, 7.9% or more, 8.0% or more, 8.1% or more. or more, 8.2% or more, 8.3% or more, 8.4% or more, 8.5% or more, 8.6% or more, 8.7% or more, 8.8% or more, 8.9% or more, 9.0% or more, 9.1% or more, 9.2% or more, 9.3% or more, 9.4% or more, 9.5% or more, 9.6% or more, 9.7% or more, 9.8% or more, 9.9% or more, or 10% or more.
  • the cut elongation is equivalent to or higher than the intermediate elongation of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The cut elongation may be measured according to a method to be described later.
  • the breaking elongation may be adjusted or changed according to the number of twists. For example, the higher the twist, the lower the modulus, the more inclined the S-S curve pattern (stress-strain curve pattern), and as a result, the cutting elongation may be increased.
  • the dry heat shrinkage rate of the hybrid cord may be 1.2% or more.
  • the dry heat shrinkage rate may be 1.3% or more, 1.4% or more, 1.5% or more, 1.6% or more, 1.7% or more, 1.8% or more, 1.9% or more, or 2.0% or more.
  • the dry heat shrinkage rate is similar to the dry heat shrinkage rate of a cord including a conventional chemically synthesized nylon lower-twisted yarn.
  • the dry heat shrinkage rate may be measured according to a method to be described later.
  • the adhesive force of the hybrid cord may be 12.5 kgf or more.
  • the adhesive strength is 12.6 kgf or more, 12.7 kgf or more, 12.8 kgf or more, 12.9 kgf or more, 13.0 kgf or more, 13.1 kgf or more, 13.2 kgf or more, 13.3 kgf or more, 13.4 kgf or more, 13.5 kgf or more, 13.6 kgf or more. , 13.7 kgf or more, 13.8 kgf or more, 13.9 kgf or more, or 14.0 kgf or more.
  • the adhesive strength is at a similar level compared to the adhesive strength of a cord including a conventional chemically synthesized nylon lower-twisted yarn.
  • the adhesive force may be measured according to a method to be described later.
  • the strength retention rate after 8 hours fatigue of the hybrid cord may be 90% or more.
  • the strength retention rate after 8 hours fatigue may be 90.5% or more, 91.0% or more, 91.5% or more, 92.0% or more, 92.5% or more, or 93.0% or more.
  • the strength retention after 8 hours fatigue as described above is equivalent to or higher than the strength retention ratio after 8 hours fatigue of a cord including a conventional chemically synthesized nylon lower-twisted yarn.
  • the strength retention rate after 8 hours fatigue may be measured according to a method to be described later.
  • the strength retention rate after 16 hours fatigue of the hybrid cord may be 70% or more.
  • the strength retention rate after 16 hours fatigue is 70.5% or more, 71.0% or more, 71.5% or more, 72.0% or more, 72.5% or more, 73.0% or more, 73.5% or more, 74.0% or more, 74.5% or more, 75.0% or more. or more, 75.5% or more, 76.0% or more, 76.5% or more, 77.0% or more, 77.5% or more, 78.0% or more, 78.5% or more, 79.0% or more, 79.5% or more, or 80.0% or more.
  • the strength retention after 16 hours of fatigue as described above is equivalent to or greater than the retention of strength after 16 hours of fatigue of a cord including a conventional chemically synthesized nylon lower-twisted yarn.
  • the strength retention rate after 16 hours of fatigue may be measured according to a method to be described later.
  • the characteristics of the hybrid cord may be different depending on the configuration of the cord.
  • the first lower twisted yarn is formed by giving a twist to a bio-nylon fiber having a fineness of 750 to 1100 denier, and the second lower twisted yarn has a fineness of 900 to 1200 denier. It is formed by imparting twist to a different type of resin fiber different from bio nylon having In this case, the median elongation of the cord is, for example, 3.8% or more, 3.9% or more, 4.0% or more, 4.1% or more, 4.2% or more, 4.3% or more, 4.4% or more, 4.5% or more, 4.6% or more, 4.7% or more. or more, 4.8% or more, 4.9% or more, or 5.0% or more.
  • the cut elongation of the cord is, for example, 8.5% or more, 8.6% or more, 8.7% or more, 8.8% or more, 8.9% or more, 9.0% or more, 9.1% or more, 9.2% or more, 9.3% or more, 9.4% or more. , 9.5% or more, 9.6% or more, 9.7% or more, 9.8% or more, 9.9% or more, or 10% or more.
  • the strength retention after 8 hours fatigue may be 91.0% or more, 91.5% or more, 92.0% or more, 92.5% or more, or 93.0% or more, and the strength retention rate after 16 hours fatigue is 75.0% or more, 75.5 % or more, 76.0% or more, 76.5% or more, 77.0% or more, 77.5% or more, 78.0% or more, 78.5% or more, 79.0% or more, 79.5% or more, or 80.0% or more.
  • the first lower twisted yarn is formed by giving a twist to a bio nylon fiber having a fineness of 750 to 1100 denier
  • the second lower twisted yarn is a bio nylon having a fineness of 900 to 1200 denier. It is formed by imparting twist to a different type of resin fiber, and a ply-twisted yarn having a twist number of the first lower twisted yarn, for example, 300 or more and less than 350 TPM may be used.
  • the median elongation of the cord is, for example, 2.8% or more, 2.9% or more, 3.0% or more, 3.1% or more, 3.2% or more, 3.3% or more, 3.4% or more, 3.5% or more, 3.6% or more, 3.7% or more. or more, 3.8% or more, 3.9% or more, or 4.0% or more.
  • the cut elongation of the cord is, for example, 7.0% or more, 7.1% or more, 7.2% or more, 7.3% or more, 7.4% or more, 7.5% or more, 7.6% or more, 7.7% or more, 7.8% or more, 7.9% or more.
  • the strength retention after 8 hours fatigue may be 90% or more, 90.5% or more, or 91.0% or more, and the strength retention after 16 hours fatigue is 70% or more, 70.5% or more, 71.0% or more, 71.5% or more, 72.0% or more, 72.5% or more, 73.0% or more, 73.5% or more, 74.0% or more, 74.5% or more, or 75.0% or more.
  • the present application relates to a method of manufacturing an eco-friendly cord including a bio-based fiber.
  • the method may be a method of manufacturing the above-described code.
  • heat setting may be performed so that molecular chains are well oriented in the fiber length direction in order to express strength and modulus properties suitable for the use.
  • the heat-setting fiber when it is subjected to a temperature higher than the glass transition temperature, it returns to its original curly shape. In this case, the modulus is lowered.
  • the molecular chain when a low tension is applied during heat treatment for producing a dip cord, the molecular chain returns to its original shape and the modulus is lowered, and when a high tension is applied, the molecular chain is maintained in an oriented state or The more oriented, the higher the modulus.
  • the inventor of the present application controls the tension applied to the ply-twisted yarn having the above-described configuration in a predetermined range when forming the coating layer in consideration of the above-described thermal characteristics of the fiber and the dip code manufacturing process.
  • the method includes a first lower twisted yarn formed by applying twist to a bio-nylon fiber having a fineness of 600 to 2000 denier, and a first formed by applying twist to a heterogeneous resin fiber different from nylon having a fineness of 800 to 2200 denier. 2 preparing a ply-twisted yarn staged together with a lower twisted yarn; and forming a coating layer on the ply-twisted yarn while applying tension to the ply-twisted yarn. At this time, the tension applied to the ply-twisted yarn is 1.0 kg/cord or less .
  • the number of twists applied to the first lower twisted yarn is in the range of 250 to 600 TPM, and the hybrid raw cord includes 20 to 50 wt% of the first lower twisted yarn based on 100 wt% of the total weight.
  • the hybrid cord manufactured according to the above method satisfies a strong retention rate of 90% or more after an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  • the tension applied to the ply-twisted yarn is 0.1 kg/cord or more, 0.2 kg/cord or more, 0.3 kg/cord or more, 0.4 kg/cord or more, 0.5 kg/cord or more, 0.6 kg/cord or more, 0.7 kg/cord or more, 0.8 kg/cord or more, or 0.9 kg/cord or more.
  • the upper limit is, for example, less than 0.9 kg / cord, less than 0.8 kg / cord, less than 0.7 kg / cord, less than 0.6 kg / cord, less than 0.5 kg / cord, less than 0.4 kg / cord, less than 0.3 kg / cord or 0.2 kg/cord or less.
  • the method includes forming a coating layer on the ply-twisted yarn while applying tension to the ply-twisted yarn (low cord) including the bio-derived nylon lower-twisted yarn.
  • 'coating layer formation' may mean that the coating composition (coating solution) is applied on the raw code.
  • the applied coating composition may be subjected to heat treatment such as drying or curing, which will be described later.
  • the coating layer may mean a layer obtained through heat treatment.
  • a method of applying the coating composition (coating solution) on the rocode is not particularly limited, and, for example, immersion or spraying may be used.
  • the method may include spraying a coating layer forming composition (coating solution) on the ply-twisted yarn (low code). That is, in the method, the coating layer may be formed by spraying the coating layer forming composition (coating solution) on the ply-twisted yarn.
  • the method may include immersing the ply-twisted yarn (low code) in the coating layer forming composition (coating solution). That is, in the method, the coating layer may be formed by immersing the ply-twisted yarn in the coating layer forming composition (coating solution).
  • a specific method of dipping the ply-twisted yarn into the coating composition is not particularly limited.
  • a method of immersing the ply-twisted yarn in a coating bath filled with the coating composition while transferring the ply-twisted yarn or a fiber base including the same using a roll may be used.
  • the cord coated with the coating composition after immersion may be referred to as a dip cord.
  • the coating layer may be formed while passing through the process of transferring the cord, applying a coating composition to the cord (spraying or immersing), and/or a subsequent heat treatment process.
  • the coating layer forming step (process) made while applying tension may include one or more processes of transferring the cord, immersion (or spraying), and heat treatment.
  • the coating layer forming step (process) made while applying a tension, heat treatment while applying a tension of the above-described size to the ply-twisted yarn to which the coating composition is already applied; Applying the coating composition to the ply-twisted yarn and performing heat treatment while applying the tension of the size described above; Alternatively, it may include transferring the ply-twisted yarn, applying the coating composition, and performing heat treatment while applying the above-mentioned magnitude of tension.
  • the heat treatment may be performed at a temperature within a predetermined range.
  • the heat treatment may be performed at a temperature of 50 °C or higher, specifically, at a temperature in the range of 60 to 350 °C.
  • the heat treatment may be performed for 10 to 300 seconds.
  • the method may include two or more heat treatment steps. Specifically, the method includes a first heat treatment step made at a temperature of 60 to 220 °C; And it may include a second heat treatment step made at a temperature of 200 to 350 °C.
  • the time period during which the heat treatment is performed is not particularly limited, but, for example, each of these heat treatments may be performed for about 10 to 300 seconds.
  • the temperature at which the first heat treatment is performed may be lower than the temperature at which the second heat treatment is performed.
  • the first heat treatment temperature may be in the range of 70 to 180 °C
  • the second heat treatment temperature may be in the range of 200 to 300 °C.
  • the first heat treatment performed at a relatively low temperature may be referred to as a drying process
  • the second heat treatment performed at a relatively high temperature may be referred to as a curing process.
  • the coating layer forming step (process) performed while applying the tension may be used in the sense of including heat treatment while applying a tension of the above-described size to the ply-twisted yarn to which the coating composition has been applied. More specifically, the coating layer forming step (process) performed while applying the tension includes performing a second heat treatment while applying a tension of the above-described size to the ply-twisted yarn performed up to the first heat treatment after the coating composition is applied can be used for meaning. Since high temperature heat treatment, particularly the second heat treatment, greatly affects the final physical properties of the cord, it is important to satisfy the above-described tension range.
  • the tension in the above-mentioned range can be maintained at least during the heat treatment, more specifically, the second heat treatment, and in addition to the transfer and immersion (spray) for forming the coating layer, and the first heat treatment process, the same or different (slightly different) can be changed.
  • the immersion or spraying may be performed one or more times.
  • the components of the coating composition used for each immersion or spraying may be the same or different.
  • the first immersion, the second immersion, and the heat treatment may be sequentially performed.
  • the heat treatment may sequentially include a first heat treatment (eg, drying) and/or a second heat treatment (eg, curing).
  • first immersion, heat treatment, second immersion and heat treatment may be sequentially performed.
  • the heat treatment performed between the first immersion and the second immersion may be a drying process made at a relatively low temperature
  • the heat treatment performed after the second immersion may be a hardening process made at a relatively high temperature.
  • a bio-derived nylon fiber (filament) is lower-twisted in a first twist direction to produce a first lower twisted yarn, and at the same time, a second lower twisted yarn is lowered by lowering a heterogeneous fiber (filament) in a second twist direction.
  • a bio-derived nylon fiber (filament) is lower-twisted in a first twist direction to produce a first lower twisted yarn, and at the same time, a second lower twisted yarn is lowered by lowering a heterogeneous fiber (filament) in a second twist direction.
  • the method may be a method of manufacturing a ply-twisted yarn by twisting the first and second lower-twisted yarns in a third twist direction after or simultaneously with the production of the lower-twisted yarn as described above.
  • the first twisting direction and the second twisting direction may be the same, and the first twisting direction and the third twisting direction may be different from each other.
  • a twisting machine that simultaneously performs lower twisting and upper twisting such as a cable coder, may be used to manufacture a ply-twisted yarn.
  • the first lower twisted yarn forming filament bio-derived nylon filament yarn
  • the second lower twisted yarn forming filament e.g., aramid, etc.
  • one twisting machine e.g., cable corder
  • the twisting direction (first twisting direction) of the first lower twisted yarn and the second twisting direction (second twisting direction) of the lower twisted yarn may be the same.
  • the lowering and lowering twisting may be performed continuously and simultaneously, such a stage
  • the twist direction ie, the third twist direction
  • the twist direction may be opposite to the first twist direction (or the second twist direction).
  • the method may be a method of forming the second lower twisted yarn by imparting a twist number within the range of 250 to 600 TPM to the fibers (filaments) forming the second lower twisted yarn. That is, the number of twists imparted to the second lower twisted yarn is in the range of 250 to 600 TPM.
  • the method may form a ply-twisted yarn by twisting the first lower-twisted yarn and the second lower-twisted yarn with a twist number within a range of 250 to 600 TPM.
  • the method provides twist to a bio-nylon fiber having a fineness of 750 to 1100 denier to form the first lower twisted yarn, and twisting to a heterogeneous resin fiber different from the bio-nylon having a fineness of 900 to 1200 denier. to form the second lower twisted yarn.
  • the number of twists applied to the first lower twisted yarn may be 300 TPM or more, and the upper limit thereof may be adjusted within the above-described range. Specific fineness can also be adjusted within the above-mentioned range.
  • the method imparts twist to a bio-nylon fiber having a fineness of 1100 to 1500 denier to form the first lower twisted yarn, and twisting to a heterogeneous resin fiber different from the bio-nylon having a fineness of 1200 to 1800 denier to form the second lower twisted yarn.
  • the number of twists of the first lower twisted yarn may be, for example, 400 TPM or less, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
  • the second lower twisted yarn used together with the first lower twisted bio-nylon lower twisted yarn may include aramid fibers.
  • the method determines the magnitude of the tension applied to the aramid fiber (forming the second lower twisted yarn) when the lower twisting and/or upper twisting is made, rather than the tension applied to the bionylon fiber (forming the first lower twisted yarn). It may be a way to control smaller.
  • the ratio of the length of the second lower-twisted yarn to the first lower-twisted yarn (length of the second lower-twisted yarn (L 2 )/length of the first lower-twisted yarn) measured after untwisting the upper yarn with respect to the ply-twisted yarn (low code or deep code). (L 1 )) can be adjusted in this 1.0 to 1.10 times range.
  • the ply-twisted yarn (low code) formed including the bio-derived nylon lower-twisted yarn has poor physical property balance due to the characteristics of the bio-derived nylon yarn with a low intermediate elongation (ie, high modulus) (for example, , poor strength properties after fatigue).
  • the method of the present application for controlling the properties of the fibers eg, the type of fibers, the number of twists, the fineness, the content, etc.
  • the tension at the time of forming the coating layer within a predetermined range is a bio-derived nylon lower-twisted yarn with high modulus. While using, it is possible to provide the same or higher level of elongation characteristics and strength retention after fatigue compared to conventional cords including chemically synthesized nylon lower-twisted yarns.
  • the present application relates to a rubber composite or rubber reinforcement including the cord.
  • the rubber composite or rubber reinforcing material may further include a rubber substrate such as a rubber sheet in addition to the above-described code.
  • the present application relates to a tire including the cord.
  • the tire may have a generally known configuration such as a tread, shoulder, sidewall, cap ply, belt, carcass (or body ply), inner liner, bead, and the like.
  • a hybrid cord that includes a bio-derived nylon lower-twist yarn and meets the commercially required level of physical properties in relation to strength, medium elongation, cut elongation, dry heat shrinkage, adhesion, and/or fatigue resistance, etc.
  • the present application includes a bio-derived nylon lower-twisted yarn having a higher modulus compared to chemically synthesized nylon, while elongation and fatigue resistance properties are commercially required (that is, a cord including a conventional chemically synthesized nylon lower-twisted yarn has level) has the effect of the invention to provide a hybrid code that is equal to or greater than the level.
  • the comparative evaluation of the physical properties of Chemicla Nylon and Bio-based Nylon yarn measured according to ASTM D885 is as follows.
  • An Instron tester Instron Engineering Corp., Canton, Mass
  • a Testrite was used to measure the hot air shrinkage
  • an oven and Instron were used to measure the heat resistance strength retention rate.
  • a tester was used.
  • Bio-based Nylon has a lower intermediate elongation (ie, higher modulus) and a lower elongation at break (elongation at break) than Chemical Nylon, assuming that it has a similar fineness. It is confirmed that the dry heat shrinkage rate of Bio-based Nylon is generally higher than that of Chemical Nylon due to the characteristics of other yarns.
  • TPM twist per meter
  • the length ratio of aramid single yarn and Bio-Based Nylon single yarn apply a 0.05 g/d load to a 1 m long ply-twisted yarn (low code) sample and untwist the upper strand to separate the aramid single yarn and Bio-Based Nylon single yarn from each other.
  • the length of the aramid single yarn and the length of the Bio-Based Nylon single yarn were measured under a load of 0.05 g/d, respectively.
  • the raw cord prepared as described above contains about 45.7 wt% of the first lower-twisted yarn (including bio-nylon fibers) and about 54.3 wt% of the second lower-twisted yarn (including aramid fibers).
  • the ply-twisted yarn (low code) was prepared with 2.0 wt% resorcinol, 3.2 wt% formalin (37%), 1.1 wt% sodium hydroxide (10%), 43.9 wt% styrene/butadiene/vinylpyridine ( 15/70/15) was dipped in a resorcinol-formaldehyde-latex (RFL) adhesive solution containing rubber (41%) and water.
  • RFL resorcinol-formaldehyde-latex
  • a hybrid tire cord was completed by drying the ply-twisted yarn (raw cord) containing the RFL solution by immersion at 150° C. for 100 seconds and heat treatment (curing) at 240° C. for 100 seconds.
  • the tension applied to the ply-twisted yarn during the immersion, drying, and heat treatment processes was 0.6 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 0.3 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 1, except that 840 denier Chemical Nylon (PA 66) was used instead of 840 denier Bio-Based Nylon, and the tension applied to the ply-twisted yarn during coating was 0.8 kg. did.
  • PA 66 840 denier Chemical Nylon
  • a hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 1.5 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 1.1 kg/cord.
  • Dry heat shrinkage (%) According to the dry heat shrinkage measurement method stipulated in ASTM D885, the shrinkage was measured after standing at a temperature of 177° C. for 2 minutes using a Testright instrument.
  • Adhesion (kgf) The adhesion of the hybrid cord to the rubber was measured using the H-Test method specified in ASTM D885. This is a measure of the force applied when a single cord is pulled out of the rubber.
  • Fatigue resistance (Fatigue 8H, ⁇ 5% (%)): After preparing a sample by vulcanizing a hybrid tire cord with measured strength (strength before fatigue) to rubber, Fatigue was applied to the sample by repeating tension and contraction within ⁇ 5% for 8 hours while rotating at a speed of 2500 rpm at 80° C. using a Disk Fatigue Tester according to the JIS-L 1017 method. . Then, after removing the rubber from the sample, the strength after fatigue of the hybrid tire cord was measured. The strength retention rate defined by Equation 1 below was calculated based on the strength before fatigue and strength after fatigue.
  • the strength (kgf) before and after fatigue is, according to ASTM D-885 test method, 300 m/min tensile speed for a sample of 250 mm using an Instron tester (Instron Engineering Corp., Canton, Mass). It was obtained by measuring the strength at break of the hybrid tire cord while applying .
  • Fatigue resistance properties (Fatigue 16H, ⁇ 5% (%)) : Measurements were made in the same manner as the aforementioned fatigue resistance properties (Fatigue 8H, ⁇ 5% (%)), except that tension and contraction were performed for 16 hours.
  • Example 1 Example 2 Reference Example 1 Comparative Example 1 Comparative Example 2 Types of Nylon Bottom Twist Yarns PA 56 PA 56 PA 66 PA 56 PA 56 Twists (TPM)* 360 360 360 360 360 360 360 360 360 Tension at coating (kgf/cord)** 0.6 0.3 0.8 1.5 1.1 Strong (kgf) 25.1 25.2 25.3 25.3 25.4 Medium elongation@4.5kgf(%) 4.0 4.5 4.1 3.0 3.5 Elongation at cut (%) 9.3 9.9 9.6 7.5 8.2 Dry heat shrinkage (%) 1.6 1.4 1.6 2.1 1.8 Adhesion (kgf) 13.3 13.8 13.7 13.7 13.0 Fatigue 8H, ⁇ 5% (%) 91.5 92.8 92.7 82.3 84.7 Fatigue 16H, ⁇ 5% (%) 76.8 80.1 77.2 68.4 70.3 *Number of twists: When manufacturing the cords of Examples and Comparative Examples, the number of twists set for each lower twisted yarn and the set number of twists when twisting the lower twisted yarn
  • the code of the comparative example had a low intermediate elongation (high initial modulus on the s-s curve pattern) and deteriorated fatigue resistance.
  • the code of the example shows characteristics equal to or higher than that of Reference Example 1 using PA66.
  • a hybrid cord was manufactured in the same manner as in Example 1, except that the number of twists was set to 335 TPM during the manufacture of the ply-twisted yarn, and the tension applied to the ply-twisted yarn during coating was set to 1.0 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 0.8 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 3, except that 840 denier Chemical Nylon (PA 66) was used instead of 840 denier Bio-Based Nylon, and the tension applied to the ply-twisted yarn during coating was 1.2 kg. did.
  • PA 66 840 denier Chemical Nylon
  • a hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 2.0 kg/cord.
  • a hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 1.5 kg/cord.
  • Example 3 Example 4 Reference Example 1 Comparative Example 1 Comparative Example 2 Types of Nylon Bottom Twist Yarns PA 56 PA 56 PA 66 PA 56 PA 56 Twists (TPM)* 335 335 335 335 335 335 335
  • TPM Twists
  • Tension at coating (kgf/cord)** 1.0 0.8 1.2 2.0 1.5 Strong (kgf) 25.4 24.8 25.6 25.1 25.5 Medium elongation@4.5kgf(%) 3.1 3.3 3.1 2.3 2.6 Elongation at cut (%) 7.5 7.7 7.7 6.3 6.9 Dry heat shrinkage (%) 1.8 1.6 1.8 2.4 2.0
  • the code of the comparative example had a low intermediate elongation (high initial modulus on the s-s curve pattern) and deteriorated fatigue resistance.
  • the code of the example shows characteristics equal to or higher than that of Reference Example 1 using PA66.

Abstract

The present application relates to a hybrid cord comprising a bio-based nylon primarily-twisted yarn. According to the present application, provided is a hybrid cord which comprises a bio-based nylon primarily-twisted yarn having a higher modulus than chemically synthesized nylon, while also having elongation and fatigue resistance properties equivalent to or higher than a commercially required standard (that is, the standard of a cord comprising conventional chemically synthesized nylon primarily-twisted yarn).

Description

바이오 유래 성분을 포함하는 코드 및 그 제조방법Code containing bio-derived ingredients and manufacturing method thereof
관련기술(들)과의 상호인용Cross-Citation with Related Technology(s)
본 출원은 2021년 04월 30일 자 한국특허출원 제10-2021-0056810호 및 2022년 04월 26일 자 한국특허출원 제10-2022-0051246호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0056810 dated April 30, 2021 and Korean Patent Application No. 10-2022-0051246 dated April 26, 2022, All content disclosed in the literature of the application is incorporated as a part of this specification.
기술분야technical field
본 출원은 바이오 유래 성분을 포함하는 코드 및 그 제조방법에 관한 것이다. 구체적으로, 본 출원은 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사; 및 상기 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사를 포함하는 하이브리드 코드 및 그 제조방법에 관한 것이다.The present application relates to a code containing a bio-derived component and a method for manufacturing the same. Specifically, the present application relates to a first lower twisted yarn formed by giving a twist to a bio-nylon fiber; And it relates to a hybrid cord comprising a second lower twisted yarn formed by imparting twist to a different type of resin fiber different from the bio-nylon, and a method for manufacturing the same.
자동차 타이어용 고무 보강재로 사용되는 코드(cord)는 타이어 특유의 구동 조건을 고려하여 타이어의 안정성 및 내구성을 유지할 수 있는 물성을 만족해야 한다. 예를 들어, 타이어 코드는 강력, 중간신도, 절단신도, 건열 수축율 등과 같은 물성 간 밸런스가 우수해야하고, 그 외에 우수한 내피로특성을 제공할 수 있어야 한다. 특히, 타이어 보강소재는 반복적인 인장과 압축이 주어지는 환경에서 상대적으로 높은 하중을 받기 때문에, 모듈러스(Modulus)가 높은(즉, 신율이 상대적으로 낮은) 코드가 상기와 같은 피로한 환경에서 사용되는 경우 강력 유지율이 저하하게 된다. 이와 같은 내피로 특성을 고려할 때, 타이어 적용시 요구되는 기본 물성이 충족된 것을 전제로, 가능한 낮은 모듈러스(modulus) 값을 갖는 것이 코드의 내피로 성능 향상에 도움이 되고, 결과적으로 타이어의 내구성 향상에 도움이 된다는 것을 알 수 있다.A cord used as a rubber reinforcing material for an automobile tire must satisfy physical properties capable of maintaining the stability and durability of the tire in consideration of the specific driving conditions of the tire. For example, a tire cord must have excellent balance between physical properties such as strength, medium elongation, cut elongation, and dry heat shrinkage, and in addition, it must be able to provide excellent fatigue resistance. In particular, since tire reinforcement materials are subjected to relatively high loads in an environment where repeated tension and compression are given, high modulus (ie, relatively low elongation) cords are used in such a fatigue environment as above. retention will decrease. Considering such fatigue resistance characteristics, on the premise that the basic physical properties required for tire application are satisfied, having a modulus value as low as possible helps to improve the fatigue resistance performance of the cord, and consequently improves the durability of the tire can be found to help.
타이어 보강재용 코드는 하연사라고 불리는 성분을 꼬아서 만들 수 있는데, 하연사에 포함되는 필라멘트 또는 섬유 성분은 타이어 보강재 용도에서 요구되는 성능을 고려하여 선택될 수 있다. 예를 들어, 아라미드 섬유는 높은 모듈러스를 갖고, 상온 및 고온에서의 모듈러스의 변화량이 작기 때문에 장시간 주차한 경우 타이어가 변형되는 플랫 스팟 현상 억제에 유리한 면이 있어서 고품질 타이어에 주로 사용되었다. 그러나, 아라미드 섬유는 그 가격이 비싸고, 높은 모듈러스 특성으로 인해 내피로 특성이 좋지 못하다. 즉, 아라미드 하연사가 포함된 타이어 코드의 경우, 보강 특성은 우수한 반면, 내피로성능이나 내구성은 좋지 못한 단점이 있다. 이에, 아라미드 대비 상대적으로 낮은 모듈러스를 갖고, 내피로 성능 확보에 유리한 나일론이나 폴리에스테르(예: PET) 등을 포함하는 하연사가, 아라미드 하연사와 함께 사용되고 있다.A cord for a tire reinforcement material may be made by twisting a component called a lower-twisted yarn, and the filament or fiber component included in the lower-twisted yarn may be selected in consideration of performance required for the use of the tire reinforcement material. For example, aramid fiber has a high modulus, and since the amount of change in modulus at room temperature and high temperature is small, it has an advantage in suppressing the flat spot phenomenon in which the tire is deformed when parked for a long time, so it was mainly used for high-quality tires. However, aramid fibers are expensive and have poor fatigue resistance due to their high modulus properties. That is, in the case of a tire cord containing aramid lower-twisted yarn, while the reinforcing properties are excellent, fatigue resistance performance or durability is not good. Accordingly, a lower-twisted yarn containing nylon or polyester (eg, PET), which has a relatively low modulus compared to aramid and is advantageous for securing fatigue resistance performance, is used together with the aramid lower-twisted yarn.
한편, 코드 제조에 사용되는 하연사 또는 필라멘트의 경우, 화학적으로 또는 인공적으로 합성된 것(chemical-based or artificial product)이 사용되는 것이 일반적이다. 그러나, 화학적으로 인공 합성된 재료(chemical-based or artificial material)는 원료 수급이 불안정한 경우 그 공급에 차질이 생길 수 있다. 그리고, 화학적으로 인공 합성된 재료의 사용에 대해서는, 원료 수득 과정뿐 아니라 제품(또는 재료) 제조 과정에서 환경 오염이 크게 유발된다는 문제가 지적되어 왔다.On the other hand, in the case of the lower-twisted yarn or filament used for manufacturing the cord, it is common that chemically or artificially synthesized (chemical-based or artificial product) is used. However, for chemical-based or artificial materials, supply may be disrupted if the supply of raw materials is unstable. And, with respect to the use of chemically artificially synthesized materials, it has been pointed out that environmental pollution is greatly induced not only in the process of obtaining raw materials but also in the process of manufacturing products (or materials).
따라서, 합성 원료 수급 문제에 크게 영향을 받지 않고, 친환경적일뿐 아니라, 화학적 합성 섬유로부터 제조된 종래 코드 대비 동등 또는 그 이상 수준의 물성을 제공할 수 있는 코드를 개발하는 것이 필요하다. Therefore, it is necessary to develop a code that is not significantly affected by the problem of supply and demand of synthetic raw materials, is environmentally friendly, and can provide physical properties equivalent to or higher than that of a conventional cord manufactured from chemical synthetic fibers.
본 출원의 일 목적은, 바이오 유래(bio based) 나일론 섬유를 포함하는 친환경적인 코드(cord) 및 그 제조방법을 제공하는 것이다.An object of the present application is to provide an eco-friendly cord (cord) including a bio-based nylon fiber and a method for manufacturing the same.
본 출원의 다른 목적은 바이오 유래 섬유를 포함하므로, 합성 원료 수급 문제에 크게 영향을 받지 않는 코드(cord) 및 그 제조방법을 제공하는 것이다.Another object of the present application is to provide a cord and a manufacturing method thereof that are not significantly affected by the problem of supply and demand of synthetic raw materials, since they contain bio-derived fibers.
본 출원의 또 다른 목적은 화학적 합성 섬유만을 포함하는 종래 코드 대비 동등 또는 그 이상 수준의 물성을 제공할 수 있는 코드(cord) 및 그 제조방법을 제공하는 것이다.Another object of the present application is to provide a cord capable of providing physical properties equivalent to or higher than that of a conventional cord including only chemically synthesized fibers and a method for manufacturing the same.
본 출원의 상기 목적 및 기타 목적은 아래 상세히 설명되는 본 출원 발명에 의해 모두 해결될 수 있다.The above and other objects of the present application can all be solved by the present invention described in detail below.
본 출원의 구체예에 따르면, 서로 상이한 이종 섬유 성분인 하연사를 포함하고, 상기 이종 섬유 성분 중 하나가 바이오 유래 나일론(또는 바이오 나일론)(bio based nylon)인 코드 및 그 제조방법이 제공된다.According to an embodiment of the present application, a cord comprising a lower twisted yarn that is a different heterogeneous fiber component, one of the heterogeneous fiber components is bio-derived nylon (or bio-based nylon), and a manufacturing method thereof are provided.
본 출원의 하이브리드 코드는 바이오 유래 나일론을 사용하면서도, 강력, 중간신도, 절단신도, 건열 수축율, 접착력, 및/또는 내피로성능 등과 같은 특성에 있어서, 상업적으로 요구되는 수준의 물성(즉, 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 수준의 물성)을 제공할 수 있다.Although the hybrid cord of the present application uses bio-derived nylon, in properties such as strength, medium elongation, elongation at cut, dry heat shrinkage, adhesion, and/or fatigue resistance, physical properties at a commercially required level (that is, conventional chemical The level of physical properties of cords including synthetic nylon lower-twisted yarns) can be provided.
구체적으로, 본 출원의 발명자는, 하이브리드 타이어 코드 제조시 기존에 사용되던 화학적 합성 나일론 섬유를 바이오 나일론 섬유로 대체하는 경우, 화학적 합성 나일론 섬유와 비교할 때 바이오 나일론 섬유가 높은 모듈러스 특성(즉, 낮은 중간신율)을 보인다는 것을 확인하였다. s-s 커브 패턴(stress-strain curve pattern) 상의 초기 모듈러스가 높은 경우, 인장과 압축시 받는 힘이 커지고, 내 피로 특성이 열화한다. 화학적으로 합성된 나일론 섬유는 타 소재 대비 낮은 모듈러스를 갖기 때문에 인장과 압축이 반복되는 상황에서 코드와 타이어의 내피로 특성을 확보하는데 유리한 기능을 하였으나, 화학적 합성 나일론을 그 보다 모듈러스가 상대적으로 높은 바이오 나일론이 대체하는 경우에는 나일론 하연사의 모듈러스 상승으로 하이브리드 코드가 내피로 특성을 확보하는데 불리하다. 이에, 본 출원의 발명자는 합성 원료 수급 문제와 그에 따른 가격 변동 문제를 해소하고, 친환경적이며, (화학적 합성 나일론 하연사를 포함하는) 종래 하이브리드 코드 대비 동등 이상 수준의 물성을 제공할 수 있는 하이브리드 코드에 관한 본 출원 발명을 완성하였다.Specifically, the inventors of the present application have found that when bio-nylon fibers are replaced with chemical synthetic nylon fibers used in the production of hybrid tire cords, bio-nylon fibers have high modulus properties (that is, low and medium elongation) was confirmed. When the initial modulus on the stress-strain curve pattern is high, the force received during tension and compression is increased, and the fatigue resistance property is deteriorated. Chemically synthesized nylon fibers have a lower modulus than other materials, so they have an advantageous function in securing the fatigue resistance of cords and tires in a situation where tension and compression are repeated. When nylon is substituted, it is disadvantageous for the hybrid cord to secure the fatigue resistance property due to the increase in the modulus of the nylon lower-twisted yarn. Accordingly, the inventor of the present application solves the problem of supply and demand of synthetic materials and the resulting price fluctuation, is eco-friendly, and hybrid cord that can provide physical properties equivalent to or higher than that of the conventional hybrid cord (including chemically synthesized nylon lower-twisted yarn) The invention of the present application was completed.
본 명세서에서 「바이오 유래 나일론 또는 바이오 나일론」은, 나일론을 제조하는데 사용되는 성분이 천연 자원, 예를 들어, 식물성 자원으로부터 유래된 것을 의미할 수 있다. 예를 들어, 상기 바이오 유래(bio based) 나일론은 PA56 또는 나일론 56 이거나 이를 포함할 수 있다. 특별히 제한되지 않으나, 상기 상기 바이오 유래 나일론은, 예를 들어, ‘글루코오스나 라이신과 같은 바이오-매스(bio-mass) 유래의 화합물로부터 효소 반응, 효모 반응 또는 발효 반응 등에 의해 합성된 펜타메틸렌디아민(pentamethylenediamine)’이 디카르복실산과 반응하여 형성된 것일 수 있다.As used herein, "bio-derived nylon or bio-nylon" may mean that a component used to manufacture nylon is derived from natural resources, for example, vegetable resources. For example, the bio-based nylon may be or include PA56 or nylon 56. Although not particularly limited, the bio-derived nylon is, for example, 'pentamethylenediamine ( pentamethylenediamine)' may be formed by reacting with dicarboxylic acid.
특별히 제한되지는 않으나, 바이오 유래 나일론 하연사인지를 확인하는 것은, (방사성) 탄소 연대 측정에 의해 이루어질 수 있다. 글루코오스나 라이신과 같은 바이오-매스(bio-mass)로부터 유래한 바이오 나일론의 경우 동위원소의 반감기가 화학적으로 합성된 나일론의 그것과 상이하다. 이러한 측정 방법은, 세계 각국 또는 기관(예: ASTM(미국 재료 시험 협회), CEN(유럽 표준화 위원회)) 등에 의해 규격화되어 있는데, 본 출원과 관련하여 바이오 유래(bio-based) 나일론 하연사임을 확인하는 데에는, 예를 들어, ASTM-D6866 방법이 고려될 수 있다.Although not particularly limited, to determine whether it is a bio-derived nylon lower-twisted yarn, (radioactive) carbon dating can be made. In the case of bio-nylon derived from bio-mass such as glucose or lysine, the half-life of the isotope is different from that of chemically synthesized nylon. This measurement method is standardized by countries or organizations around the world (eg, ASTM (American Society for Testing and Materials), CEN (European Standards Commission), etc. For example, ASTM-D6866 method may be considered.
본 명세서에서 「코드(cord)」는 서로 상이한 이종 섬유를 적어도 2 이상 포함하는 하이브리드 코드(hybrid cord)를 의미할 수 있다. 예를 들어, 상기 코드는 서로 상이한 이종 섬유를 포함하는 적어도 2 이상의 하연사를 포함하는 하이브리드 코드를 의미할 수 있다. 보다 구체적으로, 상기 하이브리드 코드는 접착제 등과 같은 코팅제가 섬유 성분(합연사) 상에 코팅된 것, 즉 딥 코드(dipped-cord)를 의미할 수 있다. 이와 달리, 섬유 성분 상에 코팅제가 코팅되지 않은 상태로서, 이종 섬유를 적어도 2 이상 포함하는 코드는 로 코드(raw cord)로 호칭될 수 있다. 상기 코드 또는 로 코드는 적어도 제 1 하연사와 제 2 사연사가 함께 상연된(즉, 하연사들이 꼬여져 만들어진) 합연사 구조를 갖는다.In the present specification, "cord" may refer to a hybrid cord including at least two different heterogeneous fibers. For example, the cord may refer to a hybrid cord including at least two or more lower twisted yarns including different types of fibers. More specifically, the hybrid cord may mean that a coating agent such as an adhesive is coated on a fiber component (ply-twisted yarn), that is, a dip cord. Alternatively, a cord including at least two heterogeneous fibers in a state in which the coating agent is not coated on the fiber component may be referred to as a raw cord. The cord or the raw cord has a ply-twisted yarn structure in which at least a first lower twisted yarn and a second twisted yarn are twisted together (that is, the lower twisted yarns are twisted).
본 명세서에서, 「하연」은 실 또는 필라멘트를 어느 한 방향으로 꼬는 것을 의미하고, 「하연사」는 실 또는 필라멘트가 어느 한 방향으로 꼬여져 만들어진 한 가닥(ply)의 실, 즉 단사(single yarn)를 의미할 수 있다. 특별히 제한되지는 않으나, 상기 하연은 예를 들어, 시계 또는 반시계 반향의 꼬임을 의미할 수 있다.As used herein, "lower twist" means twisting a thread or a filament in one direction, and "lower twisting yarn" means a single ply yarn made by twisting a thread or filament in one direction, that is, a single yarn. ) can mean Although not particularly limited, the lower edge may mean, for example, a clockwise or counterclockwise twist.
또한, 본 명세서에서 「합연사(plied yarn)」는 2 가닥 이상의 하연사들을 어느 한 방향으로 함께 꼬아서 만든 실을 의미할 수 있다. 상기 상연은 하연이 이루어지는 꼬임에 대한 반대 방향의 꼬임을 의미할 수 있다. 예를 들어, 상기 상연은 반시계 또는 시계 방향의 꼬임을 의미할 수 있다.Also, in the present specification, "plied yarn" may mean a yarn made by twisting two or more lower twisted yarns together in one direction. The upper edge may mean a twist in the opposite direction to the twist in which the lower edge is formed. For example, the sangyeon may mean twisting in a counterclockwise or clockwise direction.
어느 방향에서 꼬임이 부여되어 제조된 하연사 또는 합연사는, 소정의 꼬임수를 가질 수 있다. 이때, 「꼬임수」는 1 m 당 꼬임의 횟수를 의미하고, 그 단위는 TPM(Twist Per Meter)일 수 있다.The lower-twisted yarn or the ply-twisted yarn produced by applying twist in any direction may have a predetermined number of twists. In this case, "the number of twists" means the number of twists per 1 m, and the unit may be TPM (Twist Per Meter).
이하에서, 본 출원의 하이브리드 코드와 그 제조방법을 보다 상세히 설명한다.Hereinafter, the hybrid code of the present application and a manufacturing method thereof will be described in more detail.
본 출원에 관한 일례에서, 본 출원은 바이오 유래(bio-based) 섬유를 포함하는 친환경 코드(cord)에 관한 것이다. 상기 코드가 포함하는 바이오 유래 섬유는 바이오 유래 나일론(bio based nylon) 섬유 또는 바이오 나일론(bio nylon) 섬유로 호칭될 수 있고, 상기 코드를 이루는 하연사에 포함된다.In an example related to the present application, the present application relates to an eco-friendly cord comprising a bio-based fiber. The bio-derived fiber included in the cord may be referred to as a bio-based nylon fiber or a bio nylon fiber, and is included in the lower twisted yarn constituting the cord.
바이오 나일론은 화학적 합성 나일론과 상이한 특성을 갖는다. 예를 들어, 후술하는 실험에서 확인되는 것처럼(표 1 참조), 바이오 나일론의 경우 화학적으로 합성된 나일론 보다 모듈러스가 높다. 구체적으로, 표 1을 보면, 화학적으로 합성된 PA66 과 바이오 나일론인 PA56이 공통적으로 700 내지 1500 데니어 범위의 섬도(표 1에서, 약 845 데니어)를 갖는 경우, 바이오 나일론 원사의 중간신율이 낮다는 것이 확인된다. 예를 들어, 후술하는 섬도 범위 내에서 바이오 나일론 원사는 ASTM D885에 따라 측정된 중간신율(4.7 Constant load elongation of cN/dtex)이 15 % 이하, 14 % 이하 또는 13 % 이하, 12 % 이하, 11 % 이하, 10 % 이하 또는 9 % 이하일 수 있다. 상기 중간신율의 하한은 5 % 이상, 6 % 이상, 7 % 이상, 8 % 이상, 9 % 이상 또는 10 % 이상일 수 있다.Bio-nylon has different properties from chemically synthesized nylon. For example, as confirmed in an experiment to be described later (see Table 1), bio-nylon has a higher modulus than chemically synthesized nylon. Specifically, referring to Table 1, when chemically synthesized PA66 and bio-nylon PA56 have a fineness in the range of 700 to 1500 denier in common (Table 1, about 845 denier), the intermediate elongation of the bio-nylon yarn is low. that is confirmed For example, within the fineness range described below, the bio-nylon yarn has a median elongation (4.7 constant load elongation of cN/dtex) measured according to ASTM D885 of 15% or less, 14% or less, or 13% or less, 12% or less, 11 % or less, 10% or less, or 9% or less. The lower limit of the intermediate elongation may be 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, or 10% or more.
이처럼, 화학적으로 합성된 나일론 하연사를 사용하는 것과 비교할 때, 모듈러스가 상대적으로 높은(중간신율이 낮은) 바이오 나일론 하연사를 사용하는 것은 타이어 내피로 특성 확보에 불리하다. 바이오 나일론 하연사를 사용하면서도, 상대적으로 모듈러스가 낮은 화학적 합성 나일론 하연사를 사용하던 종래 기술과 동등 이상 수준의 내피로 특성을 확보하려면 아래와 같은 코드 구성을 갖는 것이 요구된다.As such, when compared to using a chemically synthesized lower-twisted nylon yarn, using a bio-nylon lower-twisted yarn having a relatively high modulus (low intermediate elongation) is disadvantageous in securing tire fatigue resistance. While using bio-nylon lower-twisted yarn, it is required to have the following code configuration in order to secure a level of fatigue resistance equivalent to or higher than that of the prior art using a chemically synthetic lower-twisted yarn having a relatively low modulus.
구체적으로, 상기 코드는 하이브리드 로 코드(hybrid raw cord); 및 상기 하이브리드 로 코드 상에 형성된 코팅층(coating layer)을 포함한다. 그리고, 상기 하이브리드 로 코드는 600 내지 2000 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사; 및 800 내지 2200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사를 포함하며, 상기 제 1 하연사의 꼬임수는 250 내지 600 TPM 범위이고, 상기 하이브리드 로 코드 전체 100 중량% 대비 상기 제 1 하연사를 20 내지 50 중량% 포함한다. 본 출원에 따라 제공되는 상기 하이브리드 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 8 시간 디스크 피로 테스트 후 강력 유지율이 90 % 이상을 만족한다.Specifically, the cord is a hybrid raw cord (hybrid raw cord); and a coating layer formed on the hybrid raw cord. In addition, the hybrid raw cord includes: a first lower twisted yarn formed by twisting bio-nylon fibers having a fineness of 600 to 2000 denier; and a second lower twisted yarn formed by applying twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 800 to 2200 denier, wherein the number of twists of the first lower twisted yarn is in the range of 250 to 600 TPM, and the entire hybrid raw cord It includes 20 to 50% by weight of the first lower twisted yarn relative to 100% by weight. The hybrid cord provided according to the present application satisfies a strong retention rate of 90% or more after an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
타이어의 성능을 보강하는 코드(cord)는 굵기에 따라 상이한 특성(물성)을 보인다. 코드의 굵기가 굵으면 강력과 모듈러스 측면에서 타이어의 성능을 향상시키지만, 코드지(Fabric) 위/아래로 덮히는 고무의 두께가 두꺼워지고 타이어의 크기가 커지기 때문에 무게가 증가하게 된다. 따라서 연비 및 경량화가 중시되는 타이어에 부적절하다. 또한, 코드의 굵기가 가는 경우에는 타이어 경량화에 유리하지만, 강력 및 모듈러스가 낮아지기 때문에 보강재로서의 성능을 충분히 발휘할 수 없다. 본 출원에서는 이러한 점을 고려하여, 코드를 형성하는 섬유(하연사를 형성하는 각 섬유)의 섬도가 적절히 조절된다.The cord that reinforces the performance of the tire shows different characteristics (physical properties) according to the thickness. If the thickness of the cord is thick, the performance of the tire is improved in terms of strength and modulus, but the weight increases because the thickness of the rubber covered above and below the fabric becomes thicker and the size of the tire increases. Therefore, it is unsuitable for a tire where fuel efficiency and weight reduction are important. In addition, when the thickness of the cord is thin, it is advantageous for reducing the weight of the tire, but since the strength and modulus are low, the performance as a reinforcing material cannot be sufficiently exhibited. In the present application, in consideration of this point, the fineness of the fibers forming the cord (each fiber forming the lower twisted yarn) is appropriately adjusted.
예를 들어, 상기 바이오 유래 나일론 하연사는 600 내지 2000 데니어(de)의 섬도를 갖는 바이오 유래 나일론 섬유(필라멘트)를 포함할 수 있다. 예를 들어, 상기 바이오 유래 나일론 섬유의 섬도 하한은 650 데니어 이상, 700 데니어 이상, 750 데니어 이상, 800 데니어 이상, 850 데니어 이상, 900 데니어 이상, 950 데니어 이상, 1000 데니어 이상, 1050 데니어 이상, 1100 데니어 이상, 1150 데니어 이상, 1200 데니어 이상, 1250 데니어 이상, 1300 데니어 이상, 1350 데니어 이상 또는 1400 데니어 이상일 수 있다. 그리고, 그 상한은 예를 들어, 1950 데니어 이하, 1900 데니어 이하, 1850 데니어 이하, 1800 데니어 이하, 1750 데니어 이하, 1700 데니어 이하, 1650 데니어 이하, 1600 데니어 이하, 1550 데니어 이하, 1500 데니어 이하, 1450 데니어 이하, 1400 데니어 이하, 1350 데니어 이하, 1300 데니어 이하, 1250 데니어 이하, 1200 데니어 이하, 1150 데니어 이하, 1100 데니어 이하, 1050 데니어 이하, 1000 데니어 이하, 950 데니어 이하, 900 데니어 이하, 850 데니어 이하, 800 데니어 이하, 750 데니어 이하 또는 700 데니어 이하일 수 있다.For example, the bio-derived nylon lower-twist yarn may include bio-derived nylon fibers (filaments) having a fineness of 600 to 2000 denier (de). For example, the lower limit of the fineness of the bio-derived nylon fiber is 650 denier or more, 700 denier or more, 750 denier or more, 800 denier or more, 850 denier or more, 900 denier or more, 950 denier or more, 1000 denier or more, 1050 denier or more, 1100 or more. denier or more, 1150 denier or more, 1200 denier or more, 1250 denier or more, 1300 denier or more, 1350 denier or more, or 1400 denier or more. And, the upper limit is, for example, 1950 denier or less, 1900 denier or less, 1850 denier or less, 1800 denier or less, 1750 denier or less, 1700 denier or less, 1650 denier or less, 1600 denier or less, 1550 denier or less, 1500 denier or less, 1450 denier or less. Denier or less, 1400 denier or less, 1350 denier or less, 1300 denier or less, 1250 denier or less, 1200 denier or less, 1150 denier or less, 1100 denier or less, 1050 denier or less, 1000 denier or less, 950 denier or less, 900 denier or less, 850 denier or less , 800 denier or less, 750 denier or less, or 700 denier or less.
하나의 예시에서, 상기 제 2 하연사는 800 내지 2200 데니어의 섬도를 갖는 섬유(필라멘트)를 포함할 수 있다. 예를 들어, 상기 제 2 하연사를 형성하는데 사용되는 섬유의 섬도 하한은 850 데니어 이상, 900 데니어 이상, 950 데니어 이상, 1000 데니어 이상, 1050 데니어 이상, 1100 데니어 이상, 1150 데니어 이상, 1200 데니어 이상, 1250 데니어 이상, 1300 데니어 이상, 1350 데니어 이상, 1400 데니어 이상, 1450 데니어 이상, 1500 데니어 이상, 1550 데니어 이상, 1600 데니어 이상, 1650 데니어 이상, 1700 데니어 이상, 1750 데니어 이상, 1800 데니어 이상, 1850 데니어 이상, 1900 데니어 이상, 1950 데니어 이상, 2000 데니어 이상, 2050 데니어 이상 또는 2100 데니어 이상일 수 있다. 그리고, 그 상한은 예를 들어, 2150 데니어 이하, 2100 데니어 이하, 2050 데니어 이하, 2000 데니어 이하, 1950 데니어 이하, 1900 데니어 이하, 1850 데니어 이하, 1800 데니어 이하, 1750 데니어 이하, 1700 데니어 이하, 1650 데니어 이하, 1600 데니어 이하, 1550 데니어 이하, 1500 데니어 이하, 1450 데니어 이하, 1400 데니어 이하, 1350 데니어 이하, 1300 데니어 이하, 1250 데니어 이하, 1200 데니어 이하, 1150 데니어 이하, 1100 데니어 이하, 1050 데니어 이하, 1000 데니어 이하, 950 데니어 이하 또는 900 데니어 이하일 수 있다. In one example, the second lower twisted yarn may include fibers (filaments) having a fineness of 800 to 2200 denier. For example, the lower fineness limit of the fiber used to form the second lower twisted yarn is 850 denier or more, 900 denier or more, 950 denier or more, 1000 denier or more, 1050 denier or more, 1100 denier or more, 1150 denier or more, 1200 denier or more. , over 1250 denier, over 1300 denier, over 1350 denier, over 1400 denier, over 1450 denier, over 1500 denier, over 1550 denier, over 1600 denier, over 1650 denier, over 1700 denier, over 1750 denier, over 1800 denier, 1850 denier or greater, 1900 denier or greater, 1950 denier or greater, 2000 denier or greater, 2050 denier or greater, or 2100 denier or greater. And, the upper limit is, for example, 2150 denier or less, 2100 denier or less, 2050 denier or less, 2000 denier or less, 1950 denier or less, 1900 denier or less, 1850 denier or less, 1800 denier or less, 1750 denier or less, 1700 denier or less, 1650 denier or less. Denier or less, 1600 denier or less, 1550 denier or less, 1500 denier or less, 1450 denier or less, 1400 denier or less, 1350 denier or less, 1300 denier or less, 1250 denier or less, 1200 denier or less, 1150 denier or less, 1100 denier or less, 1050 denier or less , 1000 denier or less, 950 denier or less, or 900 denier or less.
본 출원의 구체예에서, 상기 상기 하이브리드 로 코드는 700 내지 1500 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사; 및 900 내지 1800 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사를 포함할 수 있다.In an embodiment of the present application, the hybrid raw cord includes: a first lower twisted yarn formed by applying twist to a bio-nylon fiber having a fineness of 700 to 1500 denier; and a second lower twisted yarn formed by imparting twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 900 to 1800 denier.
하연사를 형성하는 각 섬유의 꼬임수가 상기 범위 내로 제어되는 경우, 타이어의 경량화 외에도, 상업적으로 요구되는 보강재로서의 성능(강력 및 모듈러스 확보) 확보에 유리하다.When the number of twists of each fiber forming the lower twisted yarn is controlled within the above range, it is advantageous in securing performance (strength and modulus) as a commercially required reinforcing material in addition to reducing the weight of the tire.
하연사의 꼬임 및/또는 하연사 간 꼬임의 정도는 상기 코드의 물성에 영향을 미친다. 구체적으로, 상기 하연사의 꼬임수가 지나치게 낮은 경우, 강력이 높아질 수 있으나 인장과 압축이 반복되는 타이어 특성상 코드의 강력 유지율은 저하된다. 즉, 꼬임수가 낮을수록 피로후 강력 유지율이 낮아지게 된다. 반면에, 하연사의 꼬임수가 높은 경우, 코드의 모듈러스가 낮아지고 신율이 높아지기 때문에 인장/압축에 대한 피로 후 강력 유지율이 높아질 수 있다. 그러나, 꼬임수가 지나치게 높아지면 꼬임에 의해 나일론 코드에 가해지는 외력이 높아지면서, 낮은 꼬임수 대비 강력이 저하된다. 본 출원에서는 상기와 같은 점을 고려하여, 각 하연사의 꼬임수와 하연사 간 꼬임수가 조절될 수 있다.The degree of twist between the lower twist yarns and/or the twist between the lower twist yarns affects the physical properties of the cord. Specifically, when the twist number of the lower twisted yarn is too low, the strength may be increased, but the strength retention of the cord is decreased due to the characteristics of the tire in which tension and compression are repeated. That is, the lower the number of twists, the lower the strength retention rate after fatigue. On the other hand, when the twist number of the lower twisted yarn is high, the modulus of the cord is lowered and the elongation is higher, so that the strength retention rate after fatigue due to tension/compression may be increased. However, when the number of twists is too high, the external force applied to the nylon cord by twisting increases, and the strength decreases compared to the low number of twists. In the present application, in consideration of the above points, the number of twists of each lower twisted yarn and the number of twists between the lower twisted yarns may be adjusted.
구체적으로, 상기 바이오 나일론을 포함하는 제 1 하연사의 꼬임수(제 1 꼬임수)는 250 내지 600 TPM일 수 있다. 보다 구체적으로, 상기 바이오 유래 나일론 하연사의 꼬임수는 260 TPM 이상, 270 TPM 이상, 280 TPM 이상, 290 TPM 이상, 300 TPM 이상, 310 TPM 이상, 320 TPM 이상, 330 TPM 이상, 340 TPM 이상, 350 TPM 이상, 360 TPM 이상, 370 TPM 이상, 380 TPM 이상, 390 TPM 이상, 400 TPM 이상, 410 TPM 이상, 420 TPM 이상, 430 TPM 이상, 440 TPM 이상, 450 TPM 이상, 460 TPM 이상, 470 TPM 이상, 480 TPM 이상, 490 TPM 이상, 500 TPM 이상, 510 TPM 이상, 520 TPM 이상, 530 TPM 이상, 540 TPM 이상, 550 TPM 이상, 560 TPM 이상, 570 TPM 이상, 580 TPM 이상 또는 590 TPM 이상일 수 있다. 그리고, 그 꼬임수의 상한은 예를 들어, 590 TPM 이하, 580 TPM 이하, 570 TPM 이하, 560 TPM 이하, 550 TPM 이하, 540 TPM 이하, 530 TPM 이하, 520 TPM 이하, 510 TPM 이하, 500 TPM 이하, 490 TPM 이하, 480 TPM 이하, 470 TPM 이하, 460 TPM 이하, 450 TPM 이하, 440 TPM 이하, 430 TPM 이하, 420 TPM 이하, 410 TPM 이하, 400 TPM 이하, 390 TPM 이하, 380 TPM 이하, 370 TPM 이하, 360 TPM 이하, 350 TPM 이하, 340 TPM 이하, 330 TPM 이하, 320 TPM 이하, 310 TPM 이하, 300 TPM 이하, 290 TPM 이하, 280 TPM 이하, 270 TPM 이하 또는 260 TPM 이하일 수 있다.Specifically, the number of twists (the number of first twists) of the first lower twisted yarn including the bio-nylon may be 250 to 600 TPM. More specifically, the number of twists of the bio-derived nylon lower twist yarn is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or more, 320 TPM or more, 330 TPM or more, 340 TPM or more, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher, 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher , 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher, 530 TPM or higher, 540 TPM or higher, 550 TPM or higher, 560 TPM or higher, 570 TPM or higher, 580 TPM or higher, or 590 TPM or higher . And, the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less. or less, 490 TPM or less, 480 TPM or less, 470 TPM or less, 460 TPM or less, 450 TPM or less, 440 TPM or less, 430 TPM or less, 420 TPM or less, 410 TPM or less, 400 TPM or less, 390 TPM or less, 380 TPM or less, 370 TPM or lower, 360 TPM or lower, 350 TPM or lower, 340 TPM or lower, 330 TPM or lower, 320 TPM or lower, 310 TPM or lower, 300 TPM or lower, 290 TPM or lower, 280 TPM or lower, 270 TPM or lower, or 260 TPM or lower.
제 2 하연사의 꼬임수는 (바이오 유래 나일론 섬유로부터 형성되고, 상기와 같은 꼬임수를 갖는) 제 1 하연사와 합연을 통해 생성되는 코드의 물성을 고려하여 적절히 조절될 수 있다.The number of twists of the second lower twisted yarn may be appropriately adjusted in consideration of the physical properties of the cord generated through the ply twisting of the first lower twisted yarn (formed from bio-derived nylon fibers and having the same number of twists as described above).
하나의 예시에서, 상기 제 2 하연사의 꼬임수는 250 내지 600 TPM 범위일 수 있다. 구체적으로, 제 2 하연사 형성을 위해 바이오 나일론과 상이한 이종 수지 섬유에 부여되는 꼬임수(제 2 꼬임수)는 260 TPM 이상, 270 TPM 이상, 280 TPM 이상, 290 TPM 이상, 300 TPM 이상, 310 TPM 이상, 320 TPM 이상, 330 TPM 이상, 340 TPM 이상, 350 TPM 이상, 360 TPM 이상, 370 TPM 이상, 380 TPM 이상, 390 TPM 이상, 400 TPM 이상, 410 TPM 이상, 420 TPM 이상, 430 TPM 이상, 440 TPM 이상, 450 TPM 이상, 460 TPM 이상, 470 TPM 이상, 480 TPM 이상, 490 TPM 이상, 500 TPM 이상, 510 TPM 이상, 520 TPM 이상, 530 TPM 이상, 540 TPM 이상, 550 TPM 이상, 560 TPM 이상, 570 TPM 이상, 580 TPM 이상 또는 590 TPM 이상일 수 있다. 그리고, 그 꼬임수의 상한은 예를 들어, 590 TPM 이하, 580 TPM 이하, 570 TPM 이하, 560 TPM 이하, 550 TPM 이하, 540 TPM 이하, 530 TPM 이하, 520 TPM 이하, 510 TPM 이하, 500 TPM 이하, 490 TPM 이하, 480 TPM 이하, 470 TPM 이하, 460 TPM 이하, 450 TPM 이하, 440 TPM 이하, 430 TPM 이하, 420 TPM 이하, 410 TPM 이하, 400 TPM 이하, 390 TPM 이하, 380 TPM 이하, 370 TPM 이하, 360 TPM 이하, 350 TPM 이하, 340 TPM 이하, 330 TPM 이하, 320 TPM 이하, 310 TPM 이하, 300 TPM 이하, 290 TPM 이하, 280 TPM 이하, 270 TPM 이하 또는 260 TPM 이하일 수 있다.In one example, the number of twists of the second lower twisted yarn may be in the range of 250 to 600 TPM. Specifically, the number of twists (second twist count) given to the heterogeneous resin fiber different from bio-nylon for forming the second lower twist yarn is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or higher, 320 TPM or higher, 330 TPM or higher, 340 TPM or higher, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher , 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher, 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher, 530 TPM or higher, 540 TPM or higher, 550 TPM or higher, 560 TPM or higher, 570 TPM or higher, 580 TPM or higher, or 590 TPM or higher. And, the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less. or less, 490 TPM or less, 480 TPM or less, 470 TPM or less, 460 TPM or less, 450 TPM or less, 440 TPM or less, 430 TPM or less, 420 TPM or less, 410 TPM or less, 400 TPM or less, 390 TPM or less, 380 TPM or less, 370 TPM or lower, 360 TPM or lower, 350 TPM or lower, 340 TPM or lower, 330 TPM or lower, 320 TPM or lower, 310 TPM or lower, 300 TPM or lower, 290 TPM or lower, 280 TPM or lower, 270 TPM or lower, or 260 TPM or lower.
하나의 예시에서, 상기 바이오 나일론 하연사의 꼬임수(제 1 꼬임수) 및 상기 제 2 하연사의 꼬임수(제 2 꼬임수)는 동일 또는 상이할 수 있다. 상기와 같은 꼬임수 부여에는, 예를 들어, CC연사기(Cable Corder Twist machine) 또는 링연사기(Ring-Twister)가 사용될 수 있는데, 각 하연사의 꼬임수가 동일하다는 것은 상기 기기 사용시 각 하연사에 대한 꼬임수 설정을 동일하게 한다는 의미이다. 다만, 설비 또는 공정 조건(예: 접착제 용액에 침지 후 건조 단계에서의 풀림)에 따라서, 설정한 것과 약 15% 이내, 10% 이내 또는 5% 이내에서 꼬임수 차이가 발생할 수도 있다.In one example, the number of twists (first twist number) of the bio-nylon lower twisted yarn and the second twist count (second twist count) of the lower twisted yarn may be the same or different. For the provision of the number of twists as described above, for example, a CC twisting machine (Cable cord twist machine) or a ring twisting machine (Ring-Twister) may be used. This means that the number settings are the same. However, depending on the equipment or process conditions (eg, annealing in the drying stage after immersion in an adhesive solution), a difference in the number of twists may occur within about 15%, within 10%, or within 5% of the set value.
하나의 예시에서, 상기 하이브리드 로 코드는 상기 제 1 하연사와 상기 제 2 하연사가 250 내지 600 TPM 범위 내로 상연되어 형성된 것일 수 있다. 예를 들어, 상술한 제 1 및 제 2 하연사가 함께 상연되는 경우에, 그 꼬임수(제 3 꼬임수)는 260 TPM 이상, 270 TPM 이상, 280 TPM 이상, 290 TPM 이상, 300 TPM 이상, 310 TPM 이상, 320 TPM 이상, 330 TPM 이상, 340 TPM 이상, 350 TPM 이상, 360 TPM 이상, 370 TPM 이상, 380 TPM 이상, 390 TPM 이상, 400 TPM 이상, 410 TPM 이상, 420 TPM 이상, 430 TPM 이상, 440 TPM 이상, 450 TPM 이상, 460 TPM 이상, 470 TPM 이상, 480 TPM 이상, 490 TPM 이상, 500 TPM 이상, 510 TPM 이상, 520 TPM 이상, 530 TPM 이상, 540 TPM 이상, 550 TPM 이상, 560 TPM 이상, 570 TPM 이상, 580 TPM 이상 또는 590 TPM 이상일 수 있다. 그리고, 그 꼬임수의 상한은 예를 들어, 590 TPM 이하, 580 TPM 이하, 570 TPM 이하, 560 TPM 이하, 550 TPM 이하, 540 TPM 이하, 530 TPM 이하, 520 TPM 이하, 510 TPM 이하, 500 TPM 이하, 490 TPM 이하, 480 TPM 이하, 470 TPM 이하, 460 TPM 이하, 450 TPM 이하, 440 TPM 이하, 430 TPM 이하, 420 TPM 이하, 410 TPM 이하, 400 TPM 이하, 390 TPM 이하, 380 TPM 이하, 370 TPM 이하, 360 TPM 이하, 350 TPM 이하, 340 TPM 이하, 330 TPM 이하, 320 TPM 이하, 310 TPM 이하, 300 TPM 이하, 290 TPM 이하, 280 TPM 이하, 270 TPM 이하 또는 260 TPM 이하일 수 있다.In one example, the hybrid raw cord may be formed by twisting the first lower twisted yarn and the second lower twisted yarn within a range of 250 to 600 TPM. For example, when the aforementioned first and second lower twist yarns are staged together, the number of twists (third twist count) is 260 TPM or more, 270 TPM or more, 280 TPM or more, 290 TPM or more, 300 TPM or more, 310 TPM or higher, 320 TPM or higher, 330 TPM or higher, 340 TPM or higher, 350 TPM or higher, 360 TPM or higher, 370 TPM or higher, 380 TPM or higher, 390 TPM or higher, 400 TPM or higher, 410 TPM or higher, 420 TPM or higher, 430 TPM or higher , 440 TPM or higher, 450 TPM or higher, 460 TPM or higher, 470 TPM or higher, 480 TPM or higher, 490 TPM or higher, 500 TPM or higher, 510 TPM or higher, 520 TPM or higher, 530 TPM or higher, 540 TPM or higher, 550 TPM or higher, 560 TPM or higher, 570 TPM or higher, 580 TPM or higher, or 590 TPM or higher. And, the upper limit of the number of twists is, for example, 590 TPM or less, 580 TPM or less, 570 TPM or less, 560 TPM or less, 550 TPM or less, 540 TPM or less, 530 TPM or less, 520 TPM or less, 510 TPM or less, 500 TPM or less. or less, 490 TPM or less, 480 TPM or less, 470 TPM or less, 460 TPM or less, 450 TPM or less, 440 TPM or less, 430 TPM or less, 420 TPM or less, 410 TPM or less, 400 TPM or less, 390 TPM or less, 380 TPM or less, 370 TPM or lower, 360 TPM or lower, 350 TPM or lower, 340 TPM or lower, 330 TPM or lower, 320 TPM or lower, 310 TPM or lower, 300 TPM or lower, 290 TPM or lower, 280 TPM or lower, 270 TPM or lower, or 260 TPM or lower.
하나의 예시에서, 상기 제 1 및 제 2 하연사의 꼬임수(즉, 하연시 꼬임수)와 상연시의 꼬임수는 동일 또는 상이할 수 있다. 본 출원의 구체예에서, 하연시의 꼬임수와 상연시의 꼬임수는 동일하게 설정될 수 있다. 그러나 경우에 따라서, 최종 제품 내에서는 하연시의 꼬임수와 상연시의 꼬임수가 다소 상이할 수 있다. 구체적으로, 코드 제조시 사용되는 CC연사기(Cable Corder Twist machine)의 경우, 하나의 모터로 구동된다. 크릴(creel)에 있는 원사가 모터와 연결되어 있는 디스크(disk)를 통과하여 레귤레이터(하연사와 하연사가 만나 상연이 이루어지는 구간)로 연결되며, 포트(port)에 있는 원사는 장력 조절 가이드 롤을 통과하여 레귤레이터로 연결된다. 이때, 모터 회전에 의해, 디스크(disk)에서 나온 원사가 연결되어 있는 레귤레이터가 같이 회전된다. 이와 같은 기계적 운동의 결과로, 모터 회전으로 연결된 크릴(creel)부 원사와 포트(port)부 원사에 하연이 가해지고, 레귤레이터에서 하연사끼리 꼬아지며 상연이 이루어진다. 이처럼, 로 코드는 모터의 회전 운동에 의해 꼬임이 발생하면서 제조되는데, 하연과 상연의 꼬임수가 동일하게 부여(설정)되는 경우에도 권취 장력이나 가이드 롤러 등에서 발생하는 마찰에 의해 상연과 하연의 꼬임수가 상이해질 수 있다.In one example, the number of twists of the first and second lower twisted yarns (ie, the number of twists at the lower twist) and the number of twists at the upper twist may be the same or different. In an embodiment of the present application, the number of twists at the time of the lower twist and the number of twists at the time of the upper twist may be set to be the same. However, in some cases, the number of twists at the time of lower twisting and the number of twists at the time of upper twisting may be slightly different in the final product. Specifically, in the case of a CC twisting machine (Cable Cord Twist machine) used in cord manufacturing, it is driven by one motor. The yarn in the creel passes through the disk connected to the motor and is connected to the regulator (the section where the lower and lower yarns meet and form the upper line), and the yarn in the port passes through the tension control guide roll. is connected to the regulator. At this time, by the rotation of the motor, the regulator to which the yarn from the disk is connected is also rotated. As a result of this mechanical movement, the lower twist is applied to the creel part yarn and the port part yarn connected by the rotation of the motor, and the lower twist yarn is twisted in the regulator to form the upper twist. As such, the raw cord is manufactured while twisting occurs due to the rotational motion of the motor. Even when the same number of twists is given (set) between the lower and upper edges, the number of twists between the upper and lower edges is may be different.
하연사의 꼬임수 및/또는 하연사 간 꼬임수가 상기 범위 내로 제어되는 경우, 강력, 중간신도, 절단신도, 건열 수축율, 접착력, 및/또는 내피로특성 등과 같은 특성과 관련하여, 상업적으로 요구되는 수준의 물성(즉, 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 수준의 물성)을 확보하는데 유리할 수 있다.When the number of twists of the lower twisted yarn and/or the number of twists between the lower twisted yarns is controlled within the above ranges, the level commercially required with respect to properties such as strength, medium elongation, cut elongation, dry heat shrinkage, adhesion, and/or fatigue resistance. It may be advantageous in securing the physical properties of (that is, the level of physical properties of a cord including a conventional chemically synthesized nylon lower-twisted yarn).
상술한 것과 같이, 상기 코드는 소정의 꼬임수를 갖는 제 1 하연사와 제 2 하연사를 포함하는 것으로, 상기 제 1 하연사와 제 2 하연사가 함께 꼬여져 형성된 것이다. 이때, 제 1 하연사 형성을 위한 필라멘트와 제 2 하연사 형성을 위한 필라멘트가 CC 연사기(예를 들어, cable corder twist machine) 또는 링 연사기(ring-twister)에 의해 동시에 각각 하연되면서 상기 제 1 하연사와 제 2 하연사가 형성되므로, 상기 제 1 하연사의 꼬임 방향(제 1 꼬임 방향)과 상기 제 2 하연사의 꼬임 방향(제 2 꼬임 방향)은 동일할 수 있다. 그리고, CC 연사기(예를 들어, cable corder twist machine) 또는 링 연사기(ring-twister)를 사용하는 경우 하연에 이어 연속적으로 하연과 동시에 상연이 수행될 수 있는데, 상연의 꼬임 방향(즉, 제 3 꼬임 방향)은 상기 제1 꼬임 방향(또는 제2 꼬임 방향)과 반대 방향일 수 있다.As described above, the cord includes a first lower twisted yarn and a second lower twisted yarn having a predetermined number of twists, and is formed by twisting the first lower twisted yarn and the second lower twisted yarn together. At this time, the filament for forming the first lower twisted yarn and the filament for forming the second lower twisted yarn are simultaneously lowered by a CC twisting machine (eg, cable corder twist machine) or a ring twisting machine, respectively, while the first lower twisting yarn is twisted. Since the yarn and the second lower twisted yarn are formed, the twist direction (first twist direction) of the first lower twist yarn and the twist direction (second twist direction) of the second lower twist yarn may be the same. And, when using a CC twisting machine (eg, cable corder twist machine) or a ring twisting machine (ring-twister), the upper twisting may be performed continuously following the lower twisting and simultaneously with the lower twisting, in the twist direction of the upper twist (ie, the third twisting direction) may be opposite to the first twisting direction (or second twisting direction).
코드 내 하연사 함량은 코드의 특성에 영향을 미친다. 예를 들어, 아라미드의 함량이 많을 경우 높은 모듈러스에 의해 타이어의 고속 주행 성능은 좋아질 수 있으나, 동일 변형에 대한 하중을 많이 받기 때문에 피로성능이 낮아진다. 또한, 나일론의 함량이 많을 경우 코드의 물성을 나타내는 Stress-Strain Curve Pattern의 초기 부분에 대한 모듈러스가 낮아 동일 변형에 대한 하중을 적게 받아 내피로성능이 높아지지만, 전체적으로 타이어를 지탱해주는 힘이 부족하여 주행 성능에 대한 효과가 낮다. 본 출원에서는 상기와 같은 점을 고려하여, 하연사의 함량이 조절될 수 있다.The content of the lower twisted yarn in the cord affects the characteristics of the cord. For example, when the content of aramid is high, the high-speed running performance of the tire can be improved by the high modulus, but the fatigue performance is lowered because it receives a lot of load for the same deformation. In addition, when the content of nylon is high, the modulus of the initial part of the stress-strain curve pattern, which indicates the physical properties of the cord, is low, so that the load for the same deformation is reduced and the fatigue resistance performance is increased. The effect on driving performance is low. In the present application, in consideration of the above points, the content of the lower twisted yarn may be adjusted.
본 출원의 구체예예서, 상기 하이브리드 로 코드는, 로코드 전체 중량 100 중량%를 기준으로, 상기 제 1 하연사를 20 내지 50 중량% 포함할 수 있다. 구체적으로, 상기 제 1 하연사의 함량 하한은 예를 들어, 20 중량% 초과, 구체적으로는 25 중량% 이상 또는 30 중량% 이상일 수 있고, 보다 구체적으로는 31 중량% 이상, 32 중량% 이상, 33 중량% 이상, 34 중량% 이상, 35 중량% 이상, 36 중량% 이상, 37 중량% 이상, 38 중량% 이상, 39 중량% 이상, 40 중량% 이상, 41 중량% 이상, 42 중량% 이상, 43 중량% 이상, 44 중량% 이상 또는 45 중량% 이상일 수 있다. 그리고, 그 상한은 예를 들어, 50 중량% 미만, 구체적으로는 49 중량% 이하, 48 중량% 이하, 47 중량% 이하, 46 중량% 이하, 45 중량% 이하, 44 중량% 이하, 43 중량% 이하, 42 중량% 이하, 41 중량% 이하 또는 40 중량% 이하일 수 있다. In an embodiment of the present application, the hybrid raw cord may include 20 to 50 wt% of the first lower twisted yarn based on 100 wt% of the total weight of the raw cord. Specifically, the lower limit of the content of the first lower twisted yarn may be, for example, more than 20 wt%, specifically 25 wt% or more, or 30 wt% or more, and more specifically 31 wt% or more, 32 wt% or more, 33 % or more, 34% or more, 35% or more, 36% or more, 37% or more, 38% or more, 39% or more, 40% or more, 41% or more, 42% or more, 43 weight % or greater, 44 weight % or greater, or 45 weight % or greater. And, the upper limit is, for example, less than 50% by weight, specifically 49% by weight or less, 48% by weight or less, 47% by weight or less, 46% by weight or less, 45% by weight or less, 44% by weight or less, 43% by weight or less or less, 42 wt% or less, 41 wt% or less, or 40 wt% or less.
로 코드 중에서, 상기 제 1 하연사와 함께 상연되는 나머지 하연사(제 2 하연사 등)의 함량은 상술한 본 출원의 목적들 해하지 않는 수준에서 적절히 조절될 수 있다. 예를 들어, 상기 로 코드가 제 1 하연사와 제 2 하연사를 상연하여 제조되는 경우, 상기 로 코드 중 제 2 하연사의 함량은, 상술한 제 1 하연사의 함량을 제외한 함량, 즉 50 내지 80 중량% 일 수 있다. 보다 구체적인 제 2 하연사의 함량은, 상술한 제 1 하연사의 함량에 따라 결정될 수 있다.In the raw code, the content of the remaining lower-twisted yarns (such as second lower-twisted yarns) staged together with the first lower-twisted yarn may be appropriately adjusted at a level that does not impair the above-described objectives of the present application. For example, when the raw cord is manufactured by twisting the first lower-twisted yarn and the second lower-twisted yarn, the content of the second lower-twisted yarn in the raw cord is an amount excluding the above-described first lower-twisted yarn content, that is, 50 to 80 weight. % can be More specifically, the content of the second lower-twisted yarn may be determined according to the above-described content of the first lower-twisted yarn.
코드 내 하연사의 함량이 상술한 범위 내로 제어되는 경우, 상업적으로 요구되는 수준의 물성(즉, 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 수준의 물성)을 확보하고, 주행성능과 내피로특성 사이의 밸런스를 확보하는데 유리하다.When the content of the lower-twisted yarn in the cord is controlled within the above-mentioned range, the commercially required level of physical properties (that is, the level of physical properties of the cord including the conventional chemically synthesized nylon lower-twisted yarn) is secured, and driving performance and fatigue resistance characteristics are ensured. It is beneficial to ensure a balance between
상기 제 2 하연사 형성에 사용되는 이종 수지 섬유의 종류는 본 출원의 목적을 해하지 않는 수준에서 선택될 수 있다. 예를 들어, 상기 제 2 하연사는 폴리에스테르 섬유, 방향족 폴리아미드 섬유 및 폴리케톤 섬유 중에서 하나 이상을 포함할 수 있다.The type of the heterogeneous resin fiber used to form the second lower twisted yarn may be selected at a level that does not impair the purpose of the present application. For example, the second lower twisted yarn may include at least one of polyester fibers, aromatic polyamide fibers, and polyketone fibers.
하나의 예시에서, 상기 제 2 하연사는 아라미드 섬유를 포함할 수 있다. 즉, 상기 제 2 하연사는 아라미드 섬유에 꼬임이 부여되어 형성된 것일 수 있고, 본 출원의 하이브리드 코드는 나일론 하연사(제 1 하연사)와 아라미드 하연사(제 2 하연사)를 포함할 수 있다. 높은 모듈러스를 보이는 아라미드는 상온 및 고온에서의 모듈러스의 변화량이 적기 때문에 장시간 주차한 경우 타이어가 변형되는 플랫 스팟 현상을 억제하는데 탁월하고, 고품질 타이어를 제공하는데 유리한 소재이다.In one example, the second lower twisted yarn may include aramid fibers. That is, the second lower twisted yarn may be formed by imparting twist to the aramid fiber, and the hybrid cord of the present application may include a nylon lower twisted yarn (first lower twisted yarn) and an aramid lower twisted yarn (second lower twisted yarn). Aramid, which shows high modulus, has a small amount of change in modulus at room temperature and high temperature, so it is excellent in suppressing flat spots, which are deformed when a tire is parked for a long time, and is an advantageous material for providing high-quality tires.
하나의 예시에서, 상기 코드는 2 플라이 또는 3 플라이 코드일 수 있다. 예를 들어, 상기 코드는 상술한 섬도의 제 1 하연사 1 가닥과 상술한 섬도를 갖는 제 2 하연사 1 가닥이 함께 상연된 2 플라이 구조를 가질 수 있다. 또는, 상기 코드는 상술한 섬도의 제 1 하연사 1 가닥과 상술한 섬도를 갖는 제 2 하연사 2 가닥이 함께 상연된 3 플라이 구조를 가질 수 있다.In one example, the cord may be a two-ply or three-ply cord. For example, the cord may have a two-ply structure in which one first lower twisted yarn having the above-mentioned fineness and one second lower twisted yarn having the above-mentioned fineness are staged together. Alternatively, the cord may have a three-ply structure in which one first lower-twisted yarn having the above-mentioned fineness and two second lower-twisted yarns having the above-mentioned fineness are staged together.
본 출원의 구체예에서, 상기 코드는 하연사 각각의 섬도 및/또는 꼬임수가 특정된 것일 수 있다.In an embodiment of the present application, the code may be one in which the fineness and/or the number of twists of each of the lower twisted yarns are specified.
하나의 예시에서, 상기 제 1 하연사는 750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고, 상기 제 2 하연사는 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것일 수 있다. 이때, 상기 제 1 하연사의 꼬임수는 예를 들어, 300 TPM 이상일 수 있고, 그 상한은 상술한 범위 내에서 조절될 수 있다. 구체적인 섬도 역시 상술한 범위 내에서 조절될 수 있다.In one example, the first lower twisted yarn is formed by applying twist to a bio-nylon fiber having a fineness of 750 to 1100 denier, and the second lower twisted yarn is a different type of bio-nylon and a different resin fiber having a fineness of 900 to 1200 denier. It may be formed by giving twist. In this case, the number of twists of the first lower twisted yarn may be, for example, 300 TPM or more, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
또 하나의 예시에서, 상기 제 1 하연사는 1100 내지 1500 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고, 상기 제 2 하연사는 1200 내지 1800 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것일 수 있다. 이때, 상기 제 1 하연사의 꼬임수는 예를 들어, 400 TPM 이하일 수 있고, 그 상한은 상술한 범위 내에서 조절될 수 있다. 구체적인 섬도 역시 상술한 범위 내에서 조절될 수 있다.In another example, the first lower-twisted yarn is formed by giving twist to bio-nylon fibers having a fineness of 1100 to 1500 denier, and the second lower-twisted yarn is a heterogeneous resin fiber different from bio-nylon having a fineness of 1200 to 1800 denier. It may be formed by imparting twist to the . In this case, the number of twists of the first lower twisted yarn may be, for example, 400 TPM or less, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
본 출원의 구체예에 따라 상기 제 1 하연사인 바이오 나일론 하연사와 함께 사용되는 제 2 하연사가 아라미드 섬유를 포함하는 경우, 합연사(로 코드 또는 딥 코드)에 대해서 상연을 언트위스트한 후 측정되는 제 1 하연사에 대한 제 2 하연사의 길이 비율(제 2 하연사의 길이(L2)/제 1 하연사의 길이(L1))은 이 1.0 내지 1.10 배 범위일 수 있다. 이는, 모듈러스가 높은 제 2 하연사(아라미드 하연사)를 더 길게 함으로써 코드의 초기 모듈러스를 낮아지게 하여 코드의 피로 성능을 향상시키기 위함이다. According to the embodiment of the present application, when the second lower-twisted yarn used together with the bio-nylon lower-twisted yarn that is the first lower-twisted yarn includes aramid fibers, the second lower-twisted yarn measured after untwisting the upper yarn with respect to the ply-twisted yarn (low cord or dip cord). The ratio of the length of the second lower twisted yarn to the first lower twisted yarn (the length of the second lower twisted yarn (L 2 )/the length of the first lower twisted yarn (L 1 )) may be in the range of 1.0 to 1.10 times. This is to improve the fatigue performance of the cord by lowering the initial modulus of the cord by making the second lower-twisted yarn (aramid lower-twisted yarn) having a higher modulus longer.
제 1 하연사에 대한 제 2 하연사의 길이 비율(제 2 하연사의 길이(L2)/제 1 하연사의 길이(L1))이 1.0 미만인 경우에는 모듈러스가 높은 아라미드가 더 짧게 되어 코드의 인장 물성을 나타내는 S-S 커브 패턴(stress-strain curve pattern)에서 초기 부분의 모듈러스가 높아지게 되고, 이는 동일 변형에서 더 많은 하중을 코드가 받게 되는 것이므로, 최종적으로는 내피로 성능이 낮아지게 된다. 그리고, 제 1 하연사에 대한 제 2 하연사의 길이 비율(제 2 하연사의 길이(L2)/제 1 하연사의 길이(L1))이 1.10을 초과하는 경우에는, 코드 인장 시 아라미드와 나일론이 별도로 힘을 받게 되어 최종적인 코드의 강력이 낮아질 수 있다.When the ratio of the length of the second lower twisted yarn to the first lower twisted yarn (the length of the second lower twisted yarn (L2) / the length of the first lower twisted yarn (L1)) is less than 1.0, the aramid with high modulus becomes shorter, indicating the tensile properties of the cord. In the stress-strain curve pattern, the modulus of the initial part is increased, which means that the code receives more load in the same deformation, and ultimately, the fatigue resistance performance is lowered. And, when the ratio of the length of the second lower twisted yarn to the first lower twisted yarn (the length of the second lower twisted yarn (L2) / the length of the first lower twisted yarn (L1)) exceeds 1.10, the aramid and the nylon are separated by force during the cord tension. may reduce the strength of the final code.
구체적으로, 상기 비율의 하한은 예를 들어, 1.01 이상, 1.02 이상, 1.03 이상, 1.04 이상 또는 1.05 이상일 수 있고, 그 상한은 예를 들어, 1.09 이하, 1.08 이하, 1.07 이하, 1.06 이하 또는 1.05 이하일 수 있다.Specifically, the lower limit of the ratio may be, for example, 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, or 1.05 or more, and the upper limit thereof is, for example, 1.09 or less, 1.08 or less, 1.07 or less, 1.06 or less, or 1.05 or less. can
본 출원의 구체예예서, 상기와 같은 길이 비율 제어는 코드를 제조하기 위한 하연 및/또는 상연 공정 중에 제1 하연사를 형성하는 필라멘트와 제 2 하연사를 형성하는 필라멘트 각각에 가해지는 장력 크기를 조절하는 것을 통해 이루어질 수 있다. 보다 구체적으로, 하연과 상연이 이루어질 때, (제 2 하연사를 형성하는) 아라미드 섬유에 가해지는 장력의 크기를 제 1 하연사를 형성하는 바이오 나일론 섬유에 가해지는 장력 보다 더 작게함으로써, 제 2 하연사의 길이를 제 1 하연사의 길이 보다 더 길게 만들 수 있다.In the embodiment of the present application, the length ratio control as described above is the amount of tension applied to each of the filaments forming the first lower twisted yarn and the filaments forming the second lower twisted yarn during the lower twisting and/or upper twisting process for manufacturing the cord. This can be done through control. More specifically, by making the magnitude of the tension applied to the aramid fiber (forming the second lower twisted yarn) smaller than the tension applied to the bionylon fiber forming the first lower twisted yarn, when the lower twist and upper twist are made, the second The length of the lower twisted yarn may be made longer than the length of the first lower twisted yarn.
상기 로 코드 상에 형성된 코팅층은 소정 기능을 발휘할 수 있는 코팅액으로부터 형성된 층을 의미한다. 이러한 코팅층은 상술한 하연사의 적어도 일부분 상에 형성될 수 있다. 코팅층을 형성하는 방법은 특별히 제한되지 않고, 예를 들어, 공지된 디핑 또는 분사 방식을 통해 코팅층을 형성할 수 있다.The coating layer formed on the raw code means a layer formed from a coating solution capable of exhibiting a predetermined function. Such a coating layer may be formed on at least a portion of the aforementioned lower twisted yarn. The method of forming the coating layer is not particularly limited, and for example, the coating layer may be formed through a known dipping or spraying method.
상기 코팅층은 코드에, 소정의 특성을 부여하거나 코드의 특성을 보강하는 구성일 수 있다. 예를 들어, 상기 코팅층은 코드에 접착 기능을 부여할 수 있는 층일 수 있으나, 코팅층에 의해 부여 또는 보강되는 특성이 접착 기능으로만 한정되는 것은 아니다.The coating layer may be configured to impart predetermined characteristics to the cord or to reinforce the characteristics of the cord. For example, the coating layer may be a layer capable of imparting an adhesive function to the cord, but the properties imparted or reinforced by the coating layer are not limited only to the adhesive function.
하나의 예시에서, 상기 코팅층은 접착제(조성물)로부터 형성된 것일 수 있다. 예를 들어, 상기 코팅층은 레조시놀-포름알데하이드-라텍스(RFL: Resorcinol Formaldehyde Latex) 접착제(조성물), 에폭시 접착제(조성물) 또는 우레탄 접착제(조성물)을 포함하거나 그로부터 형성된 것일 수 있다. 그러나, 코팅층을 형성하는 접착제 성분이 상술한 것들에 한정되는 것은 아니다.In one example, the coating layer may be formed from an adhesive (composition). For example, the coating layer may include or be formed from a resorcinol-formaldehyde-latex (RFL) adhesive (composition), an epoxy adhesive (composition), or a urethane adhesive (composition). However, the adhesive component forming the coating layer is not limited to those described above.
특별히 제한되지는 않으나, 상기 접착제 조성물은 수계 또는 비수계 용매를 포함할 수 있다. 이러한 접착제를 통해, 섬유 코드는 타이어 보강재 용도에서 인접하는 다른 구성에 대하여 개선된 접착력을 발휘 수 있다.Although not particularly limited, the adhesive composition may include an aqueous or non-aqueous solvent. These adhesives allow the fiber cord to exhibit improved adhesion to other adjacent constructions in tire reinforcement applications.
상기와 같은 구성의 하이브리드 코드는 상업적으로 요구되는 수준의 물성(즉, 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 수준의 물성)을 제공할 수 있다. 이러한 물성으로는 예를 들어, 강력, 중간신도, 절단신도, 건열 수축률, 접착력, 내피로 특성이 있다. 특히, 본 출원의 하이브리드 코드는 바이오 나일론 하연사의 높은 모듈러스 특성을 보완할 수 있도록 구성 및 제조되기 때문에, 높은 모듈러스를 갖는 바이오 나일론 하연사 사용에 따라 예상되는 코드의 신율과 내피로 특성 저하를 방지할 수 있다.The hybrid cord having the above configuration may provide commercially required level of physical properties (ie, the level of physical properties of a cord including a conventional chemically synthesized nylon lower-twisted yarn). Such physical properties include, for example, strength, medium elongation, elongation at cut, dry heat shrinkage, adhesion, and fatigue resistance. In particular, since the hybrid cord of the present application is constructed and manufactured to supplement the high modulus properties of the bio-nylon lower-twisted yarn, it is possible to prevent deterioration of the expected elongation and fatigue resistance of the cord according to the use of the bio-nylon lower-twisted yarn having a high modulus. can
하나의 예시에서, 상기 하이브리드 코드의 강력은 20 kgf 이상일 수 있다. 구체적으로, 상기 강력은 예를 들어, 21 kgf 이상, 22 kgf 이상, 23 kgf 이상, 24 kgf 이상 또는 25 kgf 이상일 수 있다. 상기 강력은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 강력과 유사한 수준이다. 상기 강력은 후술하는 방법에 따라 측정될 수 있다.In one example, the strength of the hybrid cord may be greater than or equal to 20 kgf. Specifically, the strength may be, for example, 21 kgf or more, 22 kgf or more, 23 kgf or more, 24 kgf or more, or 25 kgf or more. The strength is similar to that of a cord including a conventional chemically synthesized nylon lower-twist yarn. The strength may be measured according to a method to be described later.
하나의 예시에서, 상기 하이브리드 코드의 중간신율(%, @4.5kg)은 2.8 % 이상일 수 있다. 예를 들어, 상기 중간신율은 2.9 % 이상, 3.0 % 이상, 3.1 % 이상, 3.2 % 이상, 3.3 % 이상, 3.4 % 이상, 3.5 % 이상, 3.6 % 이상, 3.7 % 이상, 3.8 % 이상, 3.9 % 이상, 4.0 % 이상, 4.1 % 이상, 4.2 % 이상, 4.3 % 이상, 4.4 % 이상, 4.5 % 이상, 4.6 % 이상, 4.7 % 이상, 4.8 % 이상, 4.9 % 이상 또는 5.0 % 이상일 수 있다. 해당 중간신율은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 중간신율 대비 동등 이상 수준이다. 중간신율은 후술하는 방법에 따라 측정될 수 있다. In one example, the median elongation (%, @4.5 kg) of the hybrid cord may be 2.8% or more. For example, the median elongation is 2.9% or more, 3.0% or more, 3.1% or more, 3.2% or more, 3.3% or more, 3.4% or more, 3.5% or more, 3.6% or more, 3.7% or more, 3.8% or more, 3.9% or more. or more, 4.0% or more, 4.1% or more, 4.2% or more, 4.3% or more, 4.4% or more, 4.5% or more, 4.6% or more, 4.7% or more, 4.8% or more, 4.9% or more, or 5.0% or more. The corresponding intermediate elongation is equivalent to or higher than the intermediate elongation of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The median elongation may be measured according to a method to be described later.
상기 중간신율은 꼬임수에 따라 조절되거나 변화할 수 있다. 예를 들어, 코드의 꼬임수가 낮을 경우 인장시험시 모듈러스가 높게 발현되고, 그에 따라 중간신율이 낮아지게 된다. 꼬임수가 낮을 경우 모듈러스가 높아지는 것은 코드의 구조적인 특성에 의한 것인데, 코드 길이 방향을 기준으로 하여 꼬임수가 낮을 수록 꼬임에 의한 사선이 코드 길이 방향으로 더 세워져 최대의 힘을 더 일찍 받게되서 전체적인 모듈러스가 높아지기 때문이다.The intermediate elongation can be adjusted or changed according to the number of twists. For example, when the number of twists in the cord is low, the modulus is high during the tensile test, and accordingly, the median elongation is lowered. When the number of twists is low, the modulus is higher due to the structural characteristics of the cord. The lower the number of twists in the cord length direction, the more oblique lines caused by the twist are erected in the cord length direction and the maximum force is received earlier, so the overall modulus is lowered. because it rises
하나의 예시에서, 상기 하이브리드 코드의 절단신율(%)은 7.0 % 이상일 수 있다. 예를 들어, 상기 절단신율은 7.1 % 이상, 7.2 % 이상, 7.3 % 이상, 7.4 % 이상, 7.5 % 이상, 7.6 % 이상, 7.7 % 이상, 7.8 % 이상, 7.9 % 이상, 8.0 % 이상, 8.1 % 이상, 8.2 % 이상, 8.3 % 이상, 8.4 % 이상, 8.5 % 이상, 8.6 % 이상, 8.7 % 이상, 8.8 % 이상, 8.9 % 이상, 9.0 % 이상, 9.1 % 이상, 9.2 % 이상, 9.3 % 이상, 9.4 % 이상, 9.5 % 이상, 9.6 % 이상, 9.7 % 이상, 9.8 % 이상, 9.9 % 이상 또는 10 % 이상일 수 있다. 해당 절단신율은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 중간신율 대비 동등 이상 수준이다. 상기 절단신율은 후술하는 방법에 따라 측정될 수 있다.In one example, the cut elongation (%) of the hybrid cord may be 7.0% or more. For example, the elongation at cut is 7.1% or more, 7.2% or more, 7.3% or more, 7.4% or more, 7.5% or more, 7.6% or more, 7.7% or more, 7.8% or more, 7.9% or more, 8.0% or more, 8.1% or more. or more, 8.2% or more, 8.3% or more, 8.4% or more, 8.5% or more, 8.6% or more, 8.7% or more, 8.8% or more, 8.9% or more, 9.0% or more, 9.1% or more, 9.2% or more, 9.3% or more, 9.4% or more, 9.5% or more, 9.6% or more, 9.7% or more, 9.8% or more, 9.9% or more, or 10% or more. The cut elongation is equivalent to or higher than the intermediate elongation of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The cut elongation may be measured according to a method to be described later.
상기 절단신율은 꼬임수에 따라 조절되거나 변화할 수 있다. 예를 들어, 꼬임이 많을수록 모듈러스가 낮아 S-S 커브 패턴(stress-strain curve pattern)이 더 기울어지게 되고, 결과적으로 절단 신율이 높아지는 모습을 보일 수 있다.The breaking elongation may be adjusted or changed according to the number of twists. For example, the higher the twist, the lower the modulus, the more inclined the S-S curve pattern (stress-strain curve pattern), and as a result, the cutting elongation may be increased.
하나의 예시에서, 상기 하이브리드 코드의 건열수축률은 1.2 % 이상일 수 있다. 상기 예를 들어, 건열수축률은 1.3 % 이상, 1.4 % 이상, 1.5 % 이상, 1.6 % 이상, 1.7 % 이상, 1.8 % 이상, 1.9 % 이상 또는 2.0 % 이상일 수 있다. 해당 건열수축률은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 건열수축률 대비 유사한 수준이다. 상기 건열수축률은 후술하는 방법에 따라 측정될 수 있다. In one example, the dry heat shrinkage rate of the hybrid cord may be 1.2% or more. For example, the dry heat shrinkage rate may be 1.3% or more, 1.4% or more, 1.5% or more, 1.6% or more, 1.7% or more, 1.8% or more, 1.9% or more, or 2.0% or more. The dry heat shrinkage rate is similar to the dry heat shrinkage rate of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The dry heat shrinkage rate may be measured according to a method to be described later.
하나의 예시에서, 상기 하이브리드 코드의 접착력은 12.5 kgf 이상일 수 있다. 예를 들어, 상기 접착력은 12.6 kgf 이상, 12.7 kgf 이상, 12.8 kgf 이상, 12.9 kgf 이상, 13.0 kgf 이상, 13.1 kgf 이상, 13.2 kgf 이상, 13.3 kgf 이상, 13.4 kgf 이상, 13.5 kgf 이상, 13.6 kgf 이상, 13.7 kgf 이상, 13.8 kgf 이상, 13.9 kgf 이상 또는 14.0 kgf 이상일 수 있다. 해당 접착력은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 접착력 대비 유사한 수준이다. 상기 접착력은 후술하는 방법에 따라 측정될 수 있다.In one example, the adhesive force of the hybrid cord may be 12.5 kgf or more. For example, the adhesive strength is 12.6 kgf or more, 12.7 kgf or more, 12.8 kgf or more, 12.9 kgf or more, 13.0 kgf or more, 13.1 kgf or more, 13.2 kgf or more, 13.3 kgf or more, 13.4 kgf or more, 13.5 kgf or more, 13.6 kgf or more. , 13.7 kgf or more, 13.8 kgf or more, 13.9 kgf or more, or 14.0 kgf or more. The adhesive strength is at a similar level compared to the adhesive strength of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The adhesive force may be measured according to a method to be described later.
하나의 예시에서, 상기 하이브리드 코드의 8 시간 피로후 강력 유지율은 90 % 이상일 수 있다. 예를 들어, 상기 8 시간 피로후 강력 유지율은 90.5 % 이상, 91.0 % 이상, 91.5 % 이상, 92.0 % 이상, 92.5 % 이상 또는 93.0 % 이상일 수 있다. 상기와 같은 8 시간 피로후 강력 유지율은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 8 시간 피로후 강력 유지율 대비 동등 이상 수준이다. 상기 8 시간 피로후 강력 유지율은 후술하는 방법에 따라 측정될 수 있다. In one example, the strength retention rate after 8 hours fatigue of the hybrid cord may be 90% or more. For example, the strength retention rate after 8 hours fatigue may be 90.5% or more, 91.0% or more, 91.5% or more, 92.0% or more, 92.5% or more, or 93.0% or more. The strength retention after 8 hours fatigue as described above is equivalent to or higher than the strength retention ratio after 8 hours fatigue of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The strength retention rate after 8 hours fatigue may be measured according to a method to be described later.
하나의 예시에서, 상기 하이브리드 코드의 16 시간 피로후 강력 유지율은 70 % 이상일 수 있다. 예를 들어, 상기 16 시간 피로후 강력 유지율은 70.5 % 이상, 71.0 % 이상, 71.5 % 이상, 72.0 % 이상, 72.5 % 이상, 73.0 % 이상, 73.5 % 이상, 74.0 % 이상, 74.5 % 이상, 75.0 % 이상, 75.5 % 이상, 76.0 % 이상, 76.5 % 이상, 77.0 % 이상, 77.5 % 이상, 78.0 % 이상, 78.5 % 이상, 79.0 % 이상, 79.5 % 이상 또는 80.0 % 이상일 수 있다. 상기와 같은 16 시간 피로후 강력 유지율은 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 16 시간 피로후 강력 유지율 대비 동등 이상 수준이다. 상기 16 시간 피로후 강력 유지율은 후술하는 방법에 따라 측정될 수 있다.In one example, the strength retention rate after 16 hours fatigue of the hybrid cord may be 70% or more. For example, the strength retention rate after 16 hours fatigue is 70.5% or more, 71.0% or more, 71.5% or more, 72.0% or more, 72.5% or more, 73.0% or more, 73.5% or more, 74.0% or more, 74.5% or more, 75.0% or more. or more, 75.5% or more, 76.0% or more, 76.5% or more, 77.0% or more, 77.5% or more, 78.0% or more, 78.5% or more, 79.0% or more, 79.5% or more, or 80.0% or more. The strength retention after 16 hours of fatigue as described above is equivalent to or greater than the retention of strength after 16 hours of fatigue of a cord including a conventional chemically synthesized nylon lower-twisted yarn. The strength retention rate after 16 hours of fatigue may be measured according to a method to be described later.
본 출원의 구체예에서, 상기 하이브리드 코드의 특성은 코드의 구성에 따라 상이해질 수 있다. In the embodiment of the present application, the characteristics of the hybrid cord may be different depending on the configuration of the cord.
예를 들어, 본 출원 하이브리드 코드에 관한 일 구체예에서, 상기 제 1 하연사는 750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고, 상기 제 2 하연사는 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것이며, 상기 제 1 하연사의 꼬임수가 예를 들어, 350 이상 400 이하 TPM 인 합연사가 사용될 수 있다. 이러한 경우, 코드의 중간신율은 예를 들어, 3.8 % 이상, 3.9 % 이상, 4.0 % 이상, 4.1 % 이상, 4.2 % 이상, 4.3 % 이상, 4.4 % 이상, 4.5 % 이상, 4.6 % 이상, 4.7 % 이상, 4.8 % 이상, 4.9 % 이상 또는 5.0 % 이상일 수 있다. 또한, 코드의 절단신율은 예를 들어, 8.5 % 이상, 8.6 % 이상, 8.7 % 이상, 8.8 % 이상, 8.9 % 이상, 9.0 % 이상, 9.1 % 이상, 9.2 % 이상, 9.3 % 이상, 9.4 % 이상, 9.5 % 이상, 9.6 % 이상, 9.7 % 이상, 9.8 % 이상, 9.9 % 이상 또는 10 % 이상일 수 있다. 그리고, 상기와 같은 코드의 경우, 8 시간 피로후 강력 유지율은 91.0 % 이상, 91.5 % 이상, 92.0 % 이상, 92.5 % 이상 또는 93.0 % 이상일 수 있고, 16 시간 피로후 강력 유지율은 75.0 % 이상, 75.5 % 이상, 76.0 % 이상, 76.5 % 이상, 77.0 % 이상, 77.5 % 이상, 78.0 % 이상, 78.5 % 이상, 79.0 % 이상, 79.5 % 이상 또는 80.0 % 이상일 수 있다.For example, in one embodiment of the hybrid cord of the present application, the first lower twisted yarn is formed by giving a twist to a bio-nylon fiber having a fineness of 750 to 1100 denier, and the second lower twisted yarn has a fineness of 900 to 1200 denier. It is formed by imparting twist to a different type of resin fiber different from bio nylon having In this case, the median elongation of the cord is, for example, 3.8% or more, 3.9% or more, 4.0% or more, 4.1% or more, 4.2% or more, 4.3% or more, 4.4% or more, 4.5% or more, 4.6% or more, 4.7% or more. or more, 4.8% or more, 4.9% or more, or 5.0% or more. In addition, the cut elongation of the cord is, for example, 8.5% or more, 8.6% or more, 8.7% or more, 8.8% or more, 8.9% or more, 9.0% or more, 9.1% or more, 9.2% or more, 9.3% or more, 9.4% or more. , 9.5% or more, 9.6% or more, 9.7% or more, 9.8% or more, 9.9% or more, or 10% or more. And, in the case of the code as described above, the strength retention after 8 hours fatigue may be 91.0% or more, 91.5% or more, 92.0% or more, 92.5% or more, or 93.0% or more, and the strength retention rate after 16 hours fatigue is 75.0% or more, 75.5 % or more, 76.0% or more, 76.5% or more, 77.0% or more, 77.5% or more, 78.0% or more, 78.5% or more, 79.0% or more, 79.5% or more, or 80.0% or more.
본 출원 하이브리드 코드에 관한 다른 구체에예서, 상기 제 1 하연사는 750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고, 상기 제 2 하연사는 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것이며, 상기 제 1 하연사의 꼬임수가 예를 들어, 300 이상 350 미만 TPM인 합연사가 사용될 수 있다. 이러한 경우, 코드의 중간신율은 예를 들어, 2.8 % 이상, 2.9 % 이상, 3.0 % 이상, 3.1 % 이상, 3.2 % 이상, 3.3 % 이상, 3.4 % 이상, 3.5 % 이상, 3.6 % 이상, 3.7 % 이상, 3.8 % 이상, 3.9 % 이상 또는 4.0 % 이상일 수 있다. 또한, 코드의 절단신율은 예를 들어, 7.0 % 이상, 7.1 % 이상, 7.2 % 이상, 7.3 % 이상, 7.4 % 이상, 7.5 % 이상, 7.6 % 이상, 7.7 % 이상, 7.8 % 이상, 7.9 % 이상, 8.0 % 이상, 8.1 % 이상, 8.2 % 이상, 8.3 % 이상, 8.4 % 이상, 8.5 % 이상, 8.6 % 이상, 8.7 % 이상, 8.8 % 이상, 8.9 % 이상 또는 9.0 % 이상일 수 있다. 그리고, 상기와 같은 합연사의 경우, 8 시간 피로후 강력 유지율은 90 % 이상, 90.5 % 이상 또는 91.0 % 이상일 수 있고, 16 시간 피로후 강력 유지율은 70 % 이상, 70.5 % 이상, 71.0 % 이상, 71.5 % 이상, 72.0 % 이상, 72.5 % 이상, 73.0 % 이상, 73.5 % 이상, 74.0 % 이상, 74.5 % 이상 또는 75.0 % 이상일 수 있다.In another embodiment related to the hybrid cord of the present application, the first lower twisted yarn is formed by giving a twist to a bio nylon fiber having a fineness of 750 to 1100 denier, and the second lower twisted yarn is a bio nylon having a fineness of 900 to 1200 denier. It is formed by imparting twist to a different type of resin fiber, and a ply-twisted yarn having a twist number of the first lower twisted yarn, for example, 300 or more and less than 350 TPM may be used. In this case, the median elongation of the cord is, for example, 2.8% or more, 2.9% or more, 3.0% or more, 3.1% or more, 3.2% or more, 3.3% or more, 3.4% or more, 3.5% or more, 3.6% or more, 3.7% or more. or more, 3.8% or more, 3.9% or more, or 4.0% or more. In addition, the cut elongation of the cord is, for example, 7.0% or more, 7.1% or more, 7.2% or more, 7.3% or more, 7.4% or more, 7.5% or more, 7.6% or more, 7.7% or more, 7.8% or more, 7.9% or more. , 8.0% or more, 8.1% or more, 8.2% or more, 8.3% or more, 8.4% or more, 8.5% or more, 8.6% or more, 8.7% or more, 8.8% or more, 8.9% or more, or 9.0% or more. And, in the case of the ply-twisted yarn as described above, the strength retention after 8 hours fatigue may be 90% or more, 90.5% or more, or 91.0% or more, and the strength retention after 16 hours fatigue is 70% or more, 70.5% or more, 71.0% or more, 71.5% or more, 72.0% or more, 72.5% or more, 73.0% or more, 73.5% or more, 74.0% or more, 74.5% or more, or 75.0% or more.
본 출원에 관한 다른 일례에서, 본 출원은 바이오 유래(bio-based) 섬유를 포함하는 친환경적인 코드(cord)의 제조방법에 관한 것이다. 구체적으로, 상기 방법은 상술한 코드를 제조하는 방법일 수 있다.In another example related to the present application, the present application relates to a method of manufacturing an eco-friendly cord including a bio-based fiber. Specifically, the method may be a method of manufacturing the above-described code.
섬유, 예를 들어 열 용융 과정을 거쳐 제조된 합성섬유의 경우, 그 용도에 적합한 강력 및 모듈러스 특성이 발현되기 위해서는 분자사슬이 섬유 길이 방향으로 잘 배향되도록 열 세팅(heat setting)이 이루어질 수 있다. 한편, 열 세팅(heat setting)된 섬유가 유리전이 온도 이상의 온도를 받게 되면 다시 원래의 꼬불꼬불한 형태로 돌아가게 되는데, 이러한 경우 모듈러스(modulus)가 낮아진다. 이와 관련하여, 딥 코드(dipped cord)를 제조하기 위한 열처리 시 낮은 장력을 부여하면 분자사슬이 원래의 모습으로 돌아가게 되어 모듈러스가 낮아지게 되고, 높은 장력을 가하면 분자 사슬이 배향된 상태로 유지 또는 더 배향되게 되어 모듈러스가 높아지게 된다. 본 출원의 발명자는 상술한 섬유의 열 특성과 딥 코드 제조 과정을 고려하여, 코팅층 형성시 상술한 구성을 갖는 합연사에 가해지는 장력을 소정 범위로 제어하였다.In the case of fibers, for example, synthetic fibers manufactured through a thermal melting process, heat setting may be performed so that molecular chains are well oriented in the fiber length direction in order to express strength and modulus properties suitable for the use. On the other hand, when the heat-setting fiber is subjected to a temperature higher than the glass transition temperature, it returns to its original curly shape. In this case, the modulus is lowered. In this regard, when a low tension is applied during heat treatment for producing a dip cord, the molecular chain returns to its original shape and the modulus is lowered, and when a high tension is applied, the molecular chain is maintained in an oriented state or The more oriented, the higher the modulus. The inventor of the present application controls the tension applied to the ply-twisted yarn having the above-described configuration in a predetermined range when forming the coating layer in consideration of the above-described thermal characteristics of the fiber and the dip code manufacturing process.
구체적으로, 상기 방법은 600 내지 2000 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사, 및 800 내지 2200 데니어의 섬도를 갖는 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사가 함께 상연된 합연사를 마련하는 단계; 및 상기 합연사에 장력을 가하면서 상기 합연사에 코팅층을 형성하는 단계를 포함한다. 이때, 상기 합연사에 가해지는 장력은 1.0 kg/cord 이하이다. 그리고, 상기 제 1 하연사에 부여된 꼬임수가 250 내지 600 TPM 범위이고, 상기 하이브리드 로 코드는 전체 중량 100 중량% 대비 상기 제 1 하연사를 20 내지 50 중량% 포함한다. 상기 방법에 따라 제조되는 하이브리드 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 8 시간 디스크 피로 테스트 후 강력 유지율이 90 % 이상을 만족한다.Specifically, the method includes a first lower twisted yarn formed by applying twist to a bio-nylon fiber having a fineness of 600 to 2000 denier, and a first formed by applying twist to a heterogeneous resin fiber different from nylon having a fineness of 800 to 2200 denier. 2 preparing a ply-twisted yarn staged together with a lower twisted yarn; and forming a coating layer on the ply-twisted yarn while applying tension to the ply-twisted yarn. At this time, the tension applied to the ply-twisted yarn is 1.0 kg/cord or less . The number of twists applied to the first lower twisted yarn is in the range of 250 to 600 TPM, and the hybrid raw cord includes 20 to 50 wt% of the first lower twisted yarn based on 100 wt% of the total weight. The hybrid cord manufactured according to the above method satisfies a strong retention rate of 90% or more after an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
하나의 예시에서, 합연사에 가해지는 상기 장력은 0.1 kg/cord 이상, 0.2 kg/cord 이상, 0.3 kg/cord 이상, 0.4 kg/cord 이상, 0.5 kg/cord 이상, 0.6 kg/cord 이상, 0.7 kg/cord 이상, 0.8 kg/cord 이상 또는 0.9 kg/cord 이상일 수 있다. 그리고, 그 상한은 예를 들어, 0.9 kg/cord 이하, 0.8 kg/cord 이하, 0.7 kg/cord 이하, 0.6 kg/cord 이하, 0.5 kg/cord 이하, 0.4 kg/cord 이하, 0.3 kg/cord 이하 또는 0.2 kg/cord 이하일 수 있다.In one example, the tension applied to the ply-twisted yarn is 0.1 kg/cord or more, 0.2 kg/cord or more, 0.3 kg/cord or more, 0.4 kg/cord or more, 0.5 kg/cord or more, 0.6 kg/cord or more, 0.7 kg/cord or more, 0.8 kg/cord or more, or 0.9 kg/cord or more. And, the upper limit is, for example, less than 0.9 kg / cord, less than 0.8 kg / cord, less than 0.7 kg / cord, less than 0.6 kg / cord, less than 0.5 kg / cord, less than 0.4 kg / cord, less than 0.3 kg / cord or 0.2 kg/cord or less.
상술한 것과 같이, 상기 방법은 바이오 유래 나일론 하연사를 포함하는 합연사(로 코드)에 장력을 가하면서 상기 합연사에 코팅층을 형성하는 단계를 포함한다. 이때, ‘코팅층 형성’ 이란 코팅 조성물(코팅액)이 로 코드 상에 도포된 것을 의미할 수 있다. 도포된 코팅 조성물에 대해서는 후술하는 건조나 경화와 같은 열처리가 이루어질 수 있는데, 이 경우에는 상기 코팅층은 열처리를 통해 얻어진 층을 의미할 수 있다.As described above, the method includes forming a coating layer on the ply-twisted yarn while applying tension to the ply-twisted yarn (low cord) including the bio-derived nylon lower-twisted yarn. In this case, 'coating layer formation' may mean that the coating composition (coating solution) is applied on the raw code. The applied coating composition may be subjected to heat treatment such as drying or curing, which will be described later. In this case, the coating layer may mean a layer obtained through heat treatment.
로코드 상에 코팅 조성물(코팅액)을 도포하는 방법은 특별히 제한되지 않고, 예를 들어, 침지나 분사 방식이 사용될 수 있다. 예를 들어, 상기 방법은 합연사(로 코드)에 코팅층 형성 조성물(코팅액)을 분사하는 단계를 포함할 수 있다. 즉, 상기 방법은 합연사에 코팅층 형성 조성물(코팅액)을 분사하는 방식으로 코팅층을 형성할 수 있다. 또 다른 예시에서, 상기 방법은 합연사(로 코드)를 코팅층 형성 조성물(코팅액)에 침지하는 단계를 포함할 수 있다. 즉, 상기 방법은 합연사를 코팅층 형성 조성물(코팅액)에 침지하는 방식으로 코팅층을 형성할 수 있다. 합연사가 코팅 조성물(코팅액)에 침지(dipping)되는 경우, 합연사를 코팅 조성물에 침지하는 구체적인 방식은 특별히 제한되지 않는다. 예를 들어 롤(roll)을 이용하여 합연사 또는 이를 포함하는 섬유 기재를 이송하면서, 코팅 조성물이 채워진 코팅 조(coating bath)에 합연사를 침지하는 방식이 이용될 수 있다. 침지 후에 코팅 조성물이 코팅된 코드는, 딥 코드(dipped cord)로 호칭될 수 있다.A method of applying the coating composition (coating solution) on the rocode is not particularly limited, and, for example, immersion or spraying may be used. For example, the method may include spraying a coating layer forming composition (coating solution) on the ply-twisted yarn (low code). That is, in the method, the coating layer may be formed by spraying the coating layer forming composition (coating solution) on the ply-twisted yarn. In another example, the method may include immersing the ply-twisted yarn (low code) in the coating layer forming composition (coating solution). That is, in the method, the coating layer may be formed by immersing the ply-twisted yarn in the coating layer forming composition (coating solution). When the ply-twisted yarn is dipping in the coating composition (coating solution), a specific method of dipping the ply-twisted yarn into the coating composition is not particularly limited. For example, a method of immersing the ply-twisted yarn in a coating bath filled with the coating composition while transferring the ply-twisted yarn or a fiber base including the same using a roll may be used. The cord coated with the coating composition after immersion may be referred to as a dip cord.
하나의 예시에서, 코팅층 형성은 코드의 이송, 코드에 대한 코팅 조성물 도포(분사 또는 침지) 및/또는 이후의 열처리 과정을 거치면서 이루어질 수 있다. 예를 들어, 장력을 가하면서 이루어지는 코팅층 형성 단계(공정)는 코드의 이송, 침지(또는 분사) 및 열처리 중 하나 이상의 과정을 포함할 수 있다. 구체적으로, 장력을 가하면서 이루어지는 코팅층 형성 단계(공정)는, 이미 코팅 조성물이 도포된 합연사에 상술한 크기의 장력을 가하면서 열처리하는 것; 상술한 크기의 장력을 가하면서 합연사에 대한 코팅 조성물 도포 및 열처리를 수행하는 것; 또는 상술한 크기의 장력을 가하면서 합연사에 대한 이송, 코팅 조성물 도포 및 열처리를 수행하는 것을 포함할 수 있다.In one example, the coating layer may be formed while passing through the process of transferring the cord, applying a coating composition to the cord (spraying or immersing), and/or a subsequent heat treatment process. For example, the coating layer forming step (process) made while applying tension may include one or more processes of transferring the cord, immersion (or spraying), and heat treatment. Specifically, the coating layer forming step (process) made while applying a tension, heat treatment while applying a tension of the above-described size to the ply-twisted yarn to which the coating composition is already applied; Applying the coating composition to the ply-twisted yarn and performing heat treatment while applying the tension of the size described above; Alternatively, it may include transferring the ply-twisted yarn, applying the coating composition, and performing heat treatment while applying the above-mentioned magnitude of tension.
본 출원의 구체예에서, 상기 열처리는 소정 범위 온도에서 이루어질 수 있다. 예를 들어, 상기 열처리는 50 ℃ 이상의 온도, 구체적으로는 60 내지 350 ℃ 범위의 온도에서 이루어질 수 있다. 특별히 제한되지 않으나, 상기 열처리는 10 내지 300 초 동안 이루어질 수 있다.In an embodiment of the present application, the heat treatment may be performed at a temperature within a predetermined range. For example, the heat treatment may be performed at a temperature of 50 °C or higher, specifically, at a temperature in the range of 60 to 350 °C. Although not particularly limited, the heat treatment may be performed for 10 to 300 seconds.
하나의 예시에서, 상기 방법은 2 회 이상의 열처리 단계를 포함할 수 있다. 구체적으로, 상기 방법은 60 내지 220 ℃ 온도에서 이루어지는 제 1 차 열처리 단계; 및 200 내지 350 ℃ 온도에서 이루어지는 제 2 차 열처리 단계를 포함할 수 있다. 열처리가 이루어지는 시간은 특별히 제한되지는 않으나, 예를 들어, 이들 열처리 각각은 약 10 내지 300 초 동안 이루어질 수 있다.In one example, the method may include two or more heat treatment steps. Specifically, the method includes a first heat treatment step made at a temperature of 60 to 220 ℃; And it may include a second heat treatment step made at a temperature of 200 to 350 ℃. The time period during which the heat treatment is performed is not particularly limited, but, for example, each of these heat treatments may be performed for about 10 to 300 seconds.
하나의 예시에서, 상기 제 1 차 열처리가 수행되는 온도는 제 2 차 열처리가 수행되는 온도보다 낮을 수 있다. 구체적으로, 상기 제 1 차 열처리 온도는 70 내지 180 ℃ 범위일 수 있고, 상기 제 2 차 열처리 온도는 200 내지 300 ℃ 범위일 수 있다. 이때, 상대적으로 낮은 온도에서 이루어지는 상기 제 1 차 열처리를 건조(drying) 공정으로 호칭할 수 있고, 상대적으로 높은 온도에서 이루어지는 상기 제 2 차 열처리를 경화(cruing) 공정으로 호칭할 수 있다.In one example, the temperature at which the first heat treatment is performed may be lower than the temperature at which the second heat treatment is performed. Specifically, the first heat treatment temperature may be in the range of 70 to 180 ℃, the second heat treatment temperature may be in the range of 200 to 300 ℃. In this case, the first heat treatment performed at a relatively low temperature may be referred to as a drying process, and the second heat treatment performed at a relatively high temperature may be referred to as a curing process.
하나의 예시에서, 상기 장력을 가하면서 이루어지는 코팅층 형성 단계(공정)는, 이미 코팅 조성물이 도포된 합연사에 상술한 크기의 장력을 가하면서 열처리하는 것을 포함하는 의미로 사용될 수 있다. 보다 구체적으로, 상기 장력을 가하면서 이루어지는 코팅층 형성 단계(공정)는, 코팅 조성물이 도포된 후 제 1 차 열처리까지 수행된 합연사에 상술한 크기의 장력을 가하면서 제 2 차 열처리하는 것을 포함하는 의미로 사용될 수 있다. 고온이 가해지는 열처리, 특히 제 2 열처리의 경우 코드의 최종 물성에 영향을 크게 미치기 때문에, 상술한 장력 범위를 만족하는 것이 중요하다. 따라서, 상술한 범위의 장력은 적어도 열처리, 보다 구체적으로는 제 2 열처리 하는 동안 유지될 수 있고, 그 외 코팅층 형성을 위한 이송 및 침지(분사), 그리고 제 1 차 열처리 과정에서는 동일 또는 상이(다소 변경) 될 수 있다.In one example, the coating layer forming step (process) performed while applying the tension may be used in the sense of including heat treatment while applying a tension of the above-described size to the ply-twisted yarn to which the coating composition has been applied. More specifically, the coating layer forming step (process) performed while applying the tension includes performing a second heat treatment while applying a tension of the above-described size to the ply-twisted yarn performed up to the first heat treatment after the coating composition is applied can be used for meaning. Since high temperature heat treatment, particularly the second heat treatment, greatly affects the final physical properties of the cord, it is important to satisfy the above-described tension range. Therefore, the tension in the above-mentioned range can be maintained at least during the heat treatment, more specifically, the second heat treatment, and in addition to the transfer and immersion (spray) for forming the coating layer, and the first heat treatment process, the same or different (slightly different) can be changed.
하나의 예시에서, 상기 침지 또는 분사는 1 회 이상 수행될 수 있다. 침지 또는 분사가 2 회 이상 이루어지는 경우, 각 침지 또는 분사에 사용되는 코팅 조성물의 성분은 동일 또는 상이할 수 있다. In one example, the immersion or spraying may be performed one or more times. When immersion or spraying is performed two or more times, the components of the coating composition used for each immersion or spraying may be the same or different.
예를 들어, 제 1 차 침지, 제 2 차 침지 및 열처리가 순차로 이루어질 수 있다. 이때, 상기 열처리는 제 1 차 열처리(예: 건조) 및/또는 제 2 차 열처리(예: 경화)를 순차로 포함할 수 있다. For example, the first immersion, the second immersion, and the heat treatment may be sequentially performed. In this case, the heat treatment may sequentially include a first heat treatment (eg, drying) and/or a second heat treatment (eg, curing).
또 다른 예시에서는 제 1 차 침지, 열처리, 제 2 차 침지 및 열처리가 순차로 이루어질 수 있다. 이 경우, 제 1 차 침지와 제 2 차 침지에 사이에 이루어지는 열처리는 상대적으로 낮은 온도에서 이루어지는 건조 공정일 수 있고, 제 2 차 침지 후에 이루어지는 열처리는 상대적으로 높은 온도에서 이루어지는 경화 공정일 수 있다.In another example, the first immersion, heat treatment, second immersion and heat treatment may be sequentially performed. In this case, the heat treatment performed between the first immersion and the second immersion may be a drying process made at a relatively low temperature, and the heat treatment performed after the second immersion may be a hardening process made at a relatively high temperature.
하나의 예시에서, 상기 방법은, 제 1 꼬임 방향으로 바이오 유래 나일론 섬유(필라멘트)를 하연하여 제 1 하연사를 제조하면서, 동시에 제 2 꼬임 방향으로 이종 섬유(필라멘트)를 하연하여 제 2 하연사를 제조하는 방법일 수 있다. In one example, in the method, a bio-derived nylon fiber (filament) is lower-twisted in a first twist direction to produce a first lower twisted yarn, and at the same time, a second lower twisted yarn is lowered by lowering a heterogeneous fiber (filament) in a second twist direction. may be a method of manufacturing
하나의 예시에서, 상기 방법은 상기와 같은 하연사 제조 이후에 또는 하연사 제조와 동시에 제 3 꼬임 방향으로 상기 제 1 및 제 2 하연사를 상연하여 합연사를 제조하는 방법일 수 있다. 이러한 경우, 상기 제 1 꼬임 방향과 제 2 꼬임 방향이 동일하고, 상기 제 1 꼬임 방향과 제 3 꼬임 방향은 서로 상이할 수 있다.In one example, the method may be a method of manufacturing a ply-twisted yarn by twisting the first and second lower-twisted yarns in a third twist direction after or simultaneously with the production of the lower-twisted yarn as described above. In this case, the first twisting direction and the second twisting direction may be the same, and the first twisting direction and the third twisting direction may be different from each other.
본 출원의 구체예에 따르면, 케이블 코더(Cable Corder)와 같이 하연 및 상연을 동시에 수행하는 연사기가 합연사 제조에 이용될 수 있다. 예를 들어, 하이브리드 코드를 제조하는 경우에는 제 1 하연사 형성 필라멘트(바이오 유래 나일론 필라멘트사)와 제 2 하연사 형성 필라멘트(예: 아라미드 등)가 하나의 연사기(예: cable corder)에 의해 동시에 각각 하연되면서 상기 제 1 하연사와 상기 제 2 하연사가 형성되기 때문에, 상기 제 1 하연사의 꼬임 방향(제 1 꼬임 방향)과 상기 제 2 하연사의 꼬임 방향(제 2 꼬임 방향)은 동일할 수 있다. 또한, 하연 및 상연을 동시에 수행할 수 있는 케이블 코더(Cable Corder)와 같은 연사기를 이용하여 수행되는 본 출원의 구체예에 따르면, 하연에 이어 연속적으로 하연과 동시에 상연이 수행될 수 있고, 이러한 상연의 꼬임 방향(즉, 제 3 꼬임 방향)은 상기 제1 꼬임 방향(또는 제2 꼬임 방향)과 반대 방향일 수 있다.According to an embodiment of the present application, a twisting machine that simultaneously performs lower twisting and upper twisting, such as a cable coder, may be used to manufacture a ply-twisted yarn. For example, in the case of manufacturing a hybrid cord, the first lower twisted yarn forming filament (bio-derived nylon filament yarn) and the second lower twisted yarn forming filament (e.g., aramid, etc.) are simultaneously produced by one twisting machine (e.g., cable corder). Since the first lower-twisted yarn and the second lower-twisted yarn are respectively lower-twisted, the twisting direction (first twisting direction) of the first lower twisted yarn and the second twisting direction (second twisting direction) of the lower twisted yarn may be the same. In addition, according to an embodiment of the present application performed using a twisting machine such as a cable coder capable of performing both lower and upper twisting at the same time, following the lower twisting, the lowering and lowering twisting may be performed continuously and simultaneously, such a stage The twist direction (ie, the third twist direction) may be opposite to the first twist direction (or the second twist direction).
하나의 예시에서, 상기 방법은 제 2 하연사를 형성하는 섬유(필라멘트)에 250 내지 600 TPM 범위 내의 꼬임수를 부여하여 제 2 하연사를 형성하는 방법일 수 있다. 즉, 상기 제 2 하연사에 부여된 꼬임수가 250 내지 600 TPM 범위이다. In one example, the method may be a method of forming the second lower twisted yarn by imparting a twist number within the range of 250 to 600 TPM to the fibers (filaments) forming the second lower twisted yarn. That is, the number of twists imparted to the second lower twisted yarn is in the range of 250 to 600 TPM.
하나의 예시에서, 상기 방법은 상기 제 1 하연사와 상기 제 2 하연사를 250 내지 600 TPM 범위 내의 꼬임수로 상연하여 합연사를 형성할 수 있다.In one example, the method may form a ply-twisted yarn by twisting the first lower-twisted yarn and the second lower-twisted yarn with a twist number within a range of 250 to 600 TPM.
하나의 예시에서, 상기 방법은 750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임을 부여하여 상기 제 1 하연사를 형성하고, 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임을 부여하여 상기 제 2 하연사를 형성할 수 있다. 이때, 상기 제 1 하연사에 부여된 꼬임수가 300 TPM 이상일 수 있고, 그 상한은 상술한 범위 내에서 조절될 수 있다. 구체적인 섬도 역시 상술한 범위 내에서 조절될 수 있다In one example, the method provides twist to a bio-nylon fiber having a fineness of 750 to 1100 denier to form the first lower twisted yarn, and twisting to a heterogeneous resin fiber different from the bio-nylon having a fineness of 900 to 1200 denier. to form the second lower twisted yarn. In this case, the number of twists applied to the first lower twisted yarn may be 300 TPM or more, and the upper limit thereof may be adjusted within the above-described range. Specific fineness can also be adjusted within the above-mentioned range.
하나의 예시에서, 상기 방법은 1100 내지 1500 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임을 부여하여 상기 제 1 하연사를 형성하고, 1200 내지 1800 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임을 부여하여 상기 제 2 하연사를 형성할 수 있다. 이때, 상기 제 1 하연사의 꼬임수는 예를 들어, 400 TPM 이하일 수 있고, 그 상한은 상술한 범위 내에서 조절될 수 있다. 구체적인 섬도 역시 상술한 범위 내에서 조절될 수 있다.In one example, the method imparts twist to a bio-nylon fiber having a fineness of 1100 to 1500 denier to form the first lower twisted yarn, and twisting to a heterogeneous resin fiber different from the bio-nylon having a fineness of 1200 to 1800 denier to form the second lower twisted yarn. In this case, the number of twists of the first lower twisted yarn may be, for example, 400 TPM or less, and the upper limit thereof may be adjusted within the above-described range. Specific fineness may also be adjusted within the above-described range.
본 출원의 구체예에서, 상기 제 1 하연사인 바이오 나일론 하연사와 함께 사용되는 제 2 하연사는 아라미드 섬유를 포함할 수 있다. 이 경우, 상기 방법은 하연 및/또는 상연이 이루어질 때, (제 2 하연사를 형성하는) 아라미드 섬유에 가해지는 장력의 크기를 (제 1 하연사를 형성하는) 바이오 나일론 섬유에 가해지는 장력 보다 더 작게 제어하는 방법일 수 있다. 이를 통해, 합연사(로 코드 또는 딥 코드)에 대해서 상연을 언트위스트한 후 측정되는 제 1 하연사에 대한 제 2 하연사의 길이 비율(제 2 하연사의 길이(L2)/제 1 하연사의 길이(L1))이 이 1.0 내지 1.10 배 범위로 조절할 수 있다.In an embodiment of the present application, the second lower twisted yarn used together with the first lower twisted bio-nylon lower twisted yarn may include aramid fibers. In this case, the method determines the magnitude of the tension applied to the aramid fiber (forming the second lower twisted yarn) when the lower twisting and/or upper twisting is made, rather than the tension applied to the bionylon fiber (forming the first lower twisted yarn). It may be a way to control smaller. Through this, the ratio of the length of the second lower-twisted yarn to the first lower-twisted yarn (length of the second lower-twisted yarn (L 2 )/length of the first lower-twisted yarn) measured after untwisting the upper yarn with respect to the ply-twisted yarn (low code or deep code). (L 1 )) can be adjusted in this 1.0 to 1.10 times range.
본 출원의 제조방법과 관련하여, 상술한 것 외에 코드와 이를 형성하는 하연사의 구성, 특성 및 제조 등에 관한 설명은 하이브리드 코드에서 설명한 것과 같으므로, 이를 생략한다.With respect to the manufacturing method of the present application, in addition to the above-described descriptions of the configuration, characteristics, and manufacture of the cord and the lower twisted yarn forming the same are the same as those described in the hybrid cord, and thus will be omitted.
상술한 바와 같이, 바이오 유래 나일론 하연사를 포함하여 형성된 합연사(로 코드)는, 중간신율이 낮은(즉, 모듈러스가 높음) 바이오 유래 나일론 원사의 특성으로 인해 물성 밸런스가 좋지 않다(예를 들어, 피로후 강력 특성이 좋지 못함). 그러나, 상기와 같이 섬유의 특성(예: 섬유의 종류, 꼬임수, 섬도, 함량 등)과 코팅층 형성시의 장력을 소정 범위로 제어하는 본 출원의 방법은, 모듈러스가 높은 바이오 유래 나일론 하연사를 사용하면서도, 화학적으로 합성된 나일론 하연사를 포함하는 종래 코드 대비 동등 이상 수준의 신율 특성과 피로 후 강력 유지율을 제공할 수 있다.As described above, the ply-twisted yarn (low code) formed including the bio-derived nylon lower-twisted yarn has poor physical property balance due to the characteristics of the bio-derived nylon yarn with a low intermediate elongation (ie, high modulus) (for example, , poor strength properties after fatigue). However, as described above, the method of the present application for controlling the properties of the fibers (eg, the type of fibers, the number of twists, the fineness, the content, etc.) and the tension at the time of forming the coating layer within a predetermined range is a bio-derived nylon lower-twisted yarn with high modulus. While using, it is possible to provide the same or higher level of elongation characteristics and strength retention after fatigue compared to conventional cords including chemically synthesized nylon lower-twisted yarns.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 코드(cord)를 포함하는 고무 복합체 또는 고무 보강재에 관한 것이다. 상기 고무 복합체 또는 고무 보강재는, 상술한 코드 외에 고무 시트와 같은 고무 기재를 더 포함할 수 있다.In another example related to the present application, the present application relates to a rubber composite or rubber reinforcement including the cord. The rubber composite or rubber reinforcing material may further include a rubber substrate such as a rubber sheet in addition to the above-described code.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 코드(cord)를 포함하는 타이어에 관한 것이다. 상기 타이어는, 트레드, 숄더, 사이드월, 캡플라이, 벨트, 카카스(또는 보디 플라이), 이너라이너, 비드 등과 같이 일반적으로 알려진 구성을 갖는 것일 수 있다.In another example related to the present application, the present application relates to a tire including the cord. The tire may have a generally known configuration such as a tread, shoulder, sidewall, cap ply, belt, carcass (or body ply), inner liner, bead, and the like.
본 출원에 따르면, 바이오 유래 나일론 하연사를 포함하고, 강력, 중간신도, 절단신도, 건열 수축율, 접착력, 및/또는 내피로특성 등과 관련하여, 상업적으로 요구되는 수준의 물성을 충족하는 하이브리드 코드가 제공된다. 특히, 본 출원은 화학적으로 합성된 나일론 대비 높은 모듈러스를 갖는 바이오 유래 나일론 하연사를 포함하면서도, 신율 및 내피로 특성이 상업적으로 요구되는 수준(즉, 종래 화학적 합성 나일론 하연사를 포함하는 코드가 갖는 수준) 대비 동등 이상인 하이브리드 코드를 제공하는 발명의 효과를 갖는다.According to the present application, a hybrid cord that includes a bio-derived nylon lower-twist yarn and meets the commercially required level of physical properties in relation to strength, medium elongation, cut elongation, dry heat shrinkage, adhesion, and/or fatigue resistance, etc. is provided In particular, the present application includes a bio-derived nylon lower-twisted yarn having a higher modulus compared to chemically synthesized nylon, while elongation and fatigue resistance properties are commercially required (that is, a cord including a conventional chemically synthesized nylon lower-twisted yarn has level) has the effect of the invention to provide a hybrid code that is equal to or greater than the level.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the operation and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention and the scope of the invention is not limited in any sense by this.
<실험 1: 원사의 물성 평가><Experiment 1: Evaluation of yarn properties>
ASTM D885에 따라 측정된 Chemicla Nylon과 Bio-based Nylon 원사의 물성을 비교 평가하면 아래와 같다. 인장물성 측정시에는 인스트론 시험기(Instron Engineering Corp., Canton, Mass)가 사용되었고, Hot air shrinkage 측정에는 테스트라이트(Testrite)가 사용되었으며, Heat resistance strength retention rate 측정에는 오븐(oven)과 인스트론 시험기가 사용되었다.The comparative evaluation of the physical properties of Chemicla Nylon and Bio-based Nylon yarn measured according to ASTM D885 is as follows. An Instron tester (Instron Engineering Corp., Canton, Mass) was used to measure the tensile properties, a Testrite was used to measure the hot air shrinkage, and an oven and Instron were used to measure the heat resistance strength retention rate. A tester was used.
Chemical Nylon
PA 66
Chemical Nylon
PA 66
Bio-based Nylon
PA 56
Bio-based nylon
PA 56
섬도(detex)fineness (detex) 약 940±18Approx. 940±18 938938
파단강도(Breaking strength) (N)Breaking strength (N) ≥ 78.0≥ 78.0 ≥ 79.7≥ 79.7
강도(Tenacity) (cN/dtex)Tenacity (cN/dtex) ≥ 8.3≥ 8.3 ≥ 8.5≥ 8.5
파단신율(elongation at break) (%)elongation at break (%) 19.0±3.019.0±3.0 18.418.4
중간신율(4.7 Constant load elongation of cN/ dtex) (%)Medium elongation (4.7 Constant load elongation of cN/ dtex) (%) 12.0±1.512.0±1.5 10.110.1
Hot air shrinkage (177℃*2min) (%)Hot air shrinkage (177℃*2min) (%) 6.2±1.56.2±1.5 7.27.2
Heat resistance strength retention rate(180℃*4h) (%)Heat resistance strength retention rate(180℃*4h) (%) 9090 93.793.7
유사한 섬도를 갖는 것을 전제로, Bio-based Nylon 은 Chemical Nylon 보다 중간신율이 낮고(즉, 모듈러스가 높고), 파단신율(절단신율)이 낮다는 것이 확인된다. 그 외 원사의 특성상 Bio-based Nylon의 건열수축률이 Chemical Nylon의 그것 보다 대체적으로 높은 것이 확인된다.It is confirmed that Bio-based Nylon has a lower intermediate elongation (ie, higher modulus) and a lower elongation at break (elongation at break) than Chemical Nylon, assuming that it has a similar fineness. It is confirmed that the dry heat shrinkage rate of Bio-based Nylon is generally higher than that of Chemical Nylon due to the characteristics of other yarns.
<하이브리드 코드의 물성 평가 1><Evaluation of properties of hybrid code 1>
실시예 1Example 1
약 1000 데니어의 아라미드 필라멘트사와 약 840 데니어의 Bio-based Nylon(PA 56)필라멘트사를 케이블 코드 연사기(Allma社의 Cable Corder)에 투입하고, Z-방향의 하연과 S-방향의 상연을 동시에 각각 수행하여 2-ply 합연사(2-ply cabled yarn)(로 코드)를 제조하였다. 이때, 하연과 상연을 위해 360 TPM(twist per meter)의 꼬임수로 상기 케이블 코드 연사기가 세팅되었으며, 상기 나일론 필라멘트사 및 아라미드 필라멘트사에 각각 가해지는 장력을 조절함으로써 상기 합연사(로 코드)에 있어서 아라미드 단사(하연사) 길이에 대한 나일론(Bio-Based Nylon) 단사(하연사) 길이의 비율(=아라미드 단사 길이(LA)/Bio-Based Nylon 단사 길이(LN))이 1.01이 되도록 하였다. 아라미드 단사와 Bio-Based Nylon 단사의 길이 비율을 구하기 위하여, 1m 길이의 합연사(로 코드) 샘플에 0.05g/d 하중을 주어 상연 꼬임을 풀어 아라미드 단사와 Bio-Based Nylon 단사를 서로 분리한 후, 아라미드 단사의 길이 및 Bio-Based Nylon 단사의 길이를 0.05g/d의 하중을 부여한 상태에서 각각 측정하였다. 상기와 같이 제조된 로 코드는 (바이오 나일론 섬유 포함) 제 1 하연사 약 45.7 중량% 와 (아라미드 섬유 포함) 제 2 하연사 약 54.3 중량%를 포함한다.About 1000 denier aramid filament yarn and about 840 denier Bio-based Nylon (PA 56) filament yarn are put into the cable cord twister (Allma’s Cable Corder), and the lower edge in the Z-direction and the upper edge in the S-direction are performed at the same time, respectively. was carried out to prepare a 2-ply cabled yarn (low code). At this time, the cable cord twisting machine was set with a twist number of 360 TPM (twist per meter) for the lower and upper twisting, and by adjusting the tension applied to the nylon filament yarn and the aramid filament yarn, respectively, the ply-twisted yarn (low cord) so that the ratio of the length of the nylon (Bio-Based Nylon) single yarn (lower twisted yarn) to the aramid single yarn (lower twisted yarn) length (= aramid single yarn length ( LA )/Bio-Based Nylon single yarn length (L N )) is 1.01 did. To obtain the length ratio of aramid single yarn and Bio-Based Nylon single yarn, apply a 0.05 g/d load to a 1 m long ply-twisted yarn (low code) sample and untwist the upper strand to separate the aramid single yarn and Bio-Based Nylon single yarn from each other. , The length of the aramid single yarn and the length of the Bio-Based Nylon single yarn were measured under a load of 0.05 g/d, respectively. The raw cord prepared as described above contains about 45.7 wt% of the first lower-twisted yarn (including bio-nylon fibers) and about 54.3 wt% of the second lower-twisted yarn (including aramid fibers).
이어서, 상기 합연사(로 코드)를 2.0 중량%의 레소시놀, 3.2 중량%의 포르말린(37%), 1.1 중량%의 수산화나트륨(10%), 43.9 중량%의 스티렌/부타디엔/비닐피리딘(15/70/15) 고무(41%), 및 물을 포함하는 레솔시놀-포름알데히드-라텍스(RFL) 접착제 용액에 디핑하였다. 침지에 의해 RFL 용액을 함유하게 된 합연사(로 코드)를 150℃에서 100초 동안 건조시키고 240℃에서 100초 동안 열처리(경화)함으로써 하이브리드 타이어 코드를 완성하였다. 상기 침지, 건조, 및 열처리 공정시 합연사에 가해진 장력은 0.6 kg/cord이었다.Then, the ply-twisted yarn (low code) was prepared with 2.0 wt% resorcinol, 3.2 wt% formalin (37%), 1.1 wt% sodium hydroxide (10%), 43.9 wt% styrene/butadiene/vinylpyridine ( 15/70/15) was dipped in a resorcinol-formaldehyde-latex (RFL) adhesive solution containing rubber (41%) and water. A hybrid tire cord was completed by drying the ply-twisted yarn (raw cord) containing the RFL solution by immersion at 150° C. for 100 seconds and heat treatment (curing) at 240° C. for 100 seconds. The tension applied to the ply-twisted yarn during the immersion, drying, and heat treatment processes was 0.6 kg/cord.
실시예 2Example 2
코팅시 합연사에 가해진 장력을 0.3 kg/cord로 한 것을 제외하고, 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 0.3 kg/cord.
참고예 1Reference Example 1
840 데니어의 Bio-Based Nylon 대신 840 데니어의 Chemical Nylon(PA 66)을 사용한 것, 그리고 코팅시 합연사에 가해지는 장력을 0.8 kg으로 한 것을 제외하고, 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 1, except that 840 denier Chemical Nylon (PA 66) was used instead of 840 denier Bio-Based Nylon, and the tension applied to the ply-twisted yarn during coating was 0.8 kg. did.
비교예 1 Comparative Example 1
코팅시 합연사에 가해진 장력을 1.5 kg/cord로 한 것을 제외하고, 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 1.5 kg/cord.
비교예 2Comparative Example 2
코팅시 합연사에 가해진 장력을 1.1 kg/cord로 한 것을 제외하고, 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 1, except that the tension applied to the ply-twisted yarn during coating was 1.1 kg/cord.
실시예 1 내지 2, 참고예 1 및 비교예 1 내지 2에서 제조된 코드에 대한 물성 평가 방법과 그 결과(표 2)는 아래와 같다.Examples 1 and 2, Reference Examples 1 and Comparative Examples 1 and 2, the physical property evaluation method for the prepared cords and the results (Table 2) are as follows.
* 강력(kgf): ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가함으로써 하이브리드 코드의 강력(산술평균치)을 측정하였다. * Strength (kgf) : Hybrid cord by applying a tensile speed of 300 m/min to 10 samples of 250 mm using an Instron testing machine (Instron Engineering Corp., Canton, Mass) according to the ASTM D-885 test method. The strength (arithmetic mean value) of was measured.
* 중간신율(%)(@4.5kgf): ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가하여 하이브리드 코드의 4.5kgf에서의 신율(산술평균치)을 측정하였다. * Medium elongation (%) (@4.5kgf) : 300 m/min tensile for 10 samples of 250 mm using an Instron testing machine (Instron Engineering Corp., Canton, Mass) according to ASTM D-885 test method The elongation (arithmetic mean value) of the hybrid cord at 4.5 kgf was measured by applying speed.
* 절단신율(%): ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가함으로써 하이브리드 코드의 절단신율(산술평균치)을 측정하였다. * Elongation at cut (%) : According to ASTM D-885 test method, using an Instron testing machine (Instron Engineering Corp., Canton, Mass), a hybrid by applying a tensile speed of 300 m/min to 10 samples of 250 mm The cut elongation (arithmetic mean value) of the cord was measured.
* 건열수축률(%): ASTM D885에 규정되어 있는 건열수축율 측정 방법에 따라 Testright 기기를 사용하여 177℃의 온도에서 2분간 방치한 후 수축율을 측정하였다. * Dry heat shrinkage (%) : According to the dry heat shrinkage measurement method stipulated in ASTM D885, the shrinkage was measured after standing at a temperature of 177° C. for 2 minutes using a Testright instrument.
* 접착력(kgf): ASTM D885에 규정되어 있는 H-Test 방법을 사용하여 하이브리드 코드의 고무에 대한 접착력을 측정하였다. 이는, 고무에서 Cord 한가닥이 뽑혀져 나올 때 걸리는 힘을 측정한 것이다. * Adhesion (kgf) : The adhesion of the hybrid cord to the rubber was measured using the H-Test method specified in ASTM D885. This is a measure of the force applied when a single cord is pulled out of the rubber.
* 내피로 특성(Fatigue 8H, ±5% (%)): 강력(피로 전 강력)이 측정된 하이브리드 타이어 코드를 고무에 가류하여 시료를 제조한 후, 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 디스크 피로 측정기(Disk Fatigue Tester)를 이용하여 80℃에서 2500 rpm의 속도로 회전시키면서 ±5% 범위 내에서 인장 및 수축을 8시간 동안 반복함으로써 상기 시료에 피로를 가하였다. 이어서, 상기 시료로부터 고무를 제거한 후 하이브리드 타이어 코드의 피로 후 강력을 측정하였다. 상기 피로 전 강력과 피로 후 강력을 기초로 하여 하기의 식 1에 의해 정의되는 강력 유지율을 계산하였다. * Fatigue resistance (Fatigue 8H, ±5% (%)) : After preparing a sample by vulcanizing a hybrid tire cord with measured strength (strength before fatigue) to rubber, Fatigue was applied to the sample by repeating tension and contraction within ±5% for 8 hours while rotating at a speed of 2500 rpm at 80° C. using a Disk Fatigue Tester according to the JIS-L 1017 method. . Then, after removing the rubber from the sample, the strength after fatigue of the hybrid tire cord was measured. The strength retention rate defined by Equation 1 below was calculated based on the strength before fatigue and strength after fatigue.
<식 1>: 강력 유지율(%) = [피로 후 강력(kgf)/피로 전 강력(kgf)] × 100<Equation 1>: Strong retention rate (%) = [Strength after fatigue (kgf)/Strength before fatigue (kgf)] × 100
여기서, 피로 전 및 피로 후 강력(kgf)은, ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플에 대하여 300 m/min 인장속도를 가하면서 하이브리드 타이어 코드의 절단 강력(Strength at Break)을 측정함으로써 구하였다.Here, the strength (kgf) before and after fatigue is, according to ASTM D-885 test method, 300 m/min tensile speed for a sample of 250 mm using an Instron tester (Instron Engineering Corp., Canton, Mass). It was obtained by measuring the strength at break of the hybrid tire cord while applying .
* 내피로 특성(Fatigue 16H, ±5% (%)): 인장 및 수축을 16시간 진행한 것 외에는, 상술한 내피로 특성(Fatigue 8H, ±5% (%))과 동일하게 측정하였다. * Fatigue resistance properties (Fatigue 16H, ±5% (%)) : Measurements were made in the same manner as the aforementioned fatigue resistance properties (Fatigue 8H, ±5% (%)), except that tension and contraction were performed for 16 hours.
실시예 1Example 1 실시예 2Example 2 참고예 1Reference Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
나일론 하연사 종류Types of Nylon Bottom Twist Yarns PA 56PA 56 PA 56PA 56 PA 66PA 66 PA 56PA 56 PA 56PA 56
꼬임수(TPM)*Twists (TPM)* 360360 360360 360360 360360 360360
코팅시 장력(kgf/cord)**Tension at coating (kgf/cord)** 0.60.6 0.30.3 0.80.8 1.51.5 1.11.1
강력(kgf)Strong (kgf) 25.125.1 25.225.2 25.325.3 25.325.3 25.425.4
중간신율@4.5kgf(%)Medium elongation@4.5kgf(%) 4.04.0 4.54.5 4.14.1 3.03.0 3.53.5
절단신율(%)Elongation at cut (%) 9.39.3 9.99.9 9.69.6 7.57.5 8.28.2
건열수축률(%)Dry heat shrinkage (%) 1.61.6 1.41.4 1.61.6 2.12.1 1.81.8
접착력(kgf)Adhesion (kgf) 13.313.3 13.813.8 13.713.7 13.713.7 13.013.0
Fatigue 8H, ±5% (%)Fatigue 8H, ±5% (%) 91.591.5 92.892.8 92.792.7 82.382.3 84.784.7
Fatigue 16H, ±5% (%)Fatigue 16H, ±5% (%) 76.876.8 80.180.1 77.277.2 68.468.4 70.370.3
*꼬임수: 각 실시예와 비교예의 코드 제조시에, 각 하연사에 대하여 설정된 꼬임수와 하연사를 상연할 때 설정된 꼬임수는 동일하다.
**코팅시 장력: RFL 접착 코팅층 형성과 관련하여, 열처리를 포함하는 과정에서 가해지는 장력을 의미한다.
*Number of twists: When manufacturing the cords of Examples and Comparative Examples, the number of twists set for each lower twisted yarn and the set number of twists when twisting the lower twisted yarn are the same.
**Tension during coating: In relation to the formation of the RFL adhesive coating layer, it refers to the tension applied in the process including heat treatment.
PA56을 사용한 실시예와 비교예의 특성을 비교해보면, 비교예의 코드는 중간신율이 낮고(s-s curve 패턴 상의 초기 모듈러스가 높음), 내피로 특성이 열화했음이 확인된다. 반면에, 실시예의 코드는 PA66을 사용한 참고예 1 대비 동등 또는 그 이상의 특성을 보인다.Comparing the characteristics of the example using PA56 and the comparative example, it was confirmed that the code of the comparative example had a low intermediate elongation (high initial modulus on the s-s curve pattern) and deteriorated fatigue resistance. On the other hand, the code of the example shows characteristics equal to or higher than that of Reference Example 1 using PA66.
<하이브리드 코드의 물성 평가 2><Evaluation of properties of hybrid code 2>
실시예 3Example 3
합연사 제조시 꼬임수를 335 TPM으로 설정한 것, 그리고 코팅시 합연사에 가해진 장력을 1.0 kg/cord로 한 것을 제외하고, 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was manufactured in the same manner as in Example 1, except that the number of twists was set to 335 TPM during the manufacture of the ply-twisted yarn, and the tension applied to the ply-twisted yarn during coating was set to 1.0 kg/cord.
실시예 4Example 4
코팅시 합연사에 가해진 장력을 0.8 kg/cord로 한 것을 제외하고, 실시예 3과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 0.8 kg/cord.
참고예 2Reference Example 2
840 데니어의 Bio-Based Nylon 대신 840 데니어의 Chemical Nylon(PA 66)을 사용한 것, 그리고 코팅시 합연사에 가해지는 장력을 1.2 kg으로 한 것을 제외하고, 실시예 3과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 3, except that 840 denier Chemical Nylon (PA 66) was used instead of 840 denier Bio-Based Nylon, and the tension applied to the ply-twisted yarn during coating was 1.2 kg. did.
비교예 3Comparative Example 3
코팅시 합연사에 가해진 장력을 2.0 kg/cord로 한 것을 제외하고, 실시예 3과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 2.0 kg/cord.
비교예 4Comparative Example 4
코팅시 합연사에 가해진 장력을 1.5 kg/cord로 한 것을 제외하고, 실시예 3과 동일한 방법으로 하이브리드 코드를 제조하였다.A hybrid cord was prepared in the same manner as in Example 3, except that the tension applied to the ply-twisted yarn during coating was 1.5 kg/cord.
실시예 3-4, 참고예 2 및 비교예 3-4에서 제조된 코드에 대한 물성 평가 결과는 아래 표 3과 같다. 표 3에 기재된 물성 평가 방법은 상술한 것과 동일하다.The results of evaluation of physical properties of the cords prepared in Examples 3-4, Reference Example 2 and Comparative Example 3-4 are shown in Table 3 below. The physical property evaluation method described in Table 3 is the same as described above.
실시예 3Example 3 실시예 4Example 4 참고예 1Reference Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
나일론 하연사 종류Types of Nylon Bottom Twist Yarns PA 56PA 56 PA 56PA 56 PA 66PA 66 PA 56PA 56 PA 56PA 56
꼬임수(TPM)*Twists (TPM)* 335335 335335 335335 335335 335335
코팅시 장력(kgf/cord)**Tension at coating (kgf/cord)** 1.01.0 0.80.8 1.21.2 2.02.0 1.51.5
강력(kgf)Strong (kgf) 25.425.4 24.824.8 25.625.6 25.125.1 25.525.5
중간신율@4.5kgf(%)Medium elongation@4.5kgf(%) 3.13.1 3.33.3 3.13.1 2.32.3 2.62.6
절단신율(%)Elongation at cut (%) 7.57.5 7.77.7 7.77.7 6.36.3 6.96.9
건열수축률(%)Dry heat shrinkage (%) 1.81.8 1.61.6 1.81.8 2.42.4 2.02.0
접착력(kgf)Adhesion (kgf) 13.013.0 13.613.6 13.113.1 12.812.8 13.513.5
Fatigue 8H, ±5% (%)Fatigue 8H, ±5% (%) 90.190.1 90.690.6 90.390.3 78.478.4 83.683.6
Fatigue 16H, ±5% (%)Fatigue 16H, ±5% (%) 74.374.3 77.677.6 76.476.4 66.766.7 67.167.1
*꼬임수: 각 실시예와 비교예의 코드 제조시에, 각 하연사에 대하여 설정된 꼬임수와 하연사를 상연할 때 설정된 꼬임수는 동일하다.
**코팅시 장력: RFL 접착 코팅층 형성과 관련하여, 열처리를 포함하는 과정에서 가해지는 장력을 의미한다.
*Number of twists: When manufacturing the cords of Examples and Comparative Examples, the number of twists set for each lower twisted yarn and the set number of twists when twisting the lower twisted yarn are the same.
**Tension during coating: In relation to the formation of the RFL adhesive coating layer, it refers to the tension applied in the process including heat treatment.
PA56을 사용한 실시예와 비교예의 특성을 비교해보면, 비교예의 코드는 중간신율이 낮고(s-s curve 패턴 상의 초기 모듈러스가 높음), 내피로 특성이 열화했음이 확인된다. 반면에, 실시예의 코드는 PA66을 사용한 참고예 1 대비 동등 또는 그 이상의 특성을 보인다.Comparing the characteristics of the example using PA56 and the comparative example, it was confirmed that the code of the comparative example had a low intermediate elongation (high initial modulus on the s-s curve pattern) and deteriorated fatigue resistance. On the other hand, the code of the example shows characteristics equal to or higher than that of Reference Example 1 using PA66.

Claims (20)

  1. 하이브리드 로 코드(hybrid raw cord) 및 상기 하이브리드 로 코드 상에 형성된 코팅층(coating layer)을 포함하고,A hybrid raw cord and a coating layer formed on the hybrid raw cord,
    상기 하이브리드 로 코드는 600 내지 2000 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사; 및 800 내지 2200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사를 포함하며,The hybrid raw cord includes: a first lower twisted yarn formed by twisting bio-nylon fibers having a fineness of 600 to 2000 denier; and a second lower twisted yarn formed by imparting twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 800 to 2200 denier,
    상기 제 1 하연사의 꼬임수는 250 내지 600 TPM 범위이고,The number of twists of the first lower twisted yarn is in the range of 250 to 600 TPM,
    상기 하이브리드 로 코드 전체 중량 100 중량% 대비 상기 제 1 하연사를 20 내지 50 중량% 포함하며,20 to 50% by weight of the first lower twisted yarn based on 100% by weight of the total weight of the hybrid raw cord,
    일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 8 시간 디스크 피로 테스트 후 강력 유지율이 90 % 이상을 만족하는,After an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA), the strength retention rate satisfies 90% or more,
    하이브리드 코드(hybrid cord).Hybrid cord.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 하연사의 꼬임수가 250 내지 600 TPM 범위인, 하이브리드 코드.The number of twists of the second lower twisted yarn is in the range of 250 to 600 TPM, a hybrid cord.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 하이브리드 로 코드는 상기 제 1 하연사와 상기 제 2 하연사가 250 내지 600 TPM 범위 내로 상연되어 형성된, 하이브리드 코드.The hybrid raw code is a hybrid cord, wherein the first lower twist yarn and the second lower twist yarn are formed in a range of 250 to 600 TPM.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 하연사는 아라미드 섬유에 꼬임이 부여되어 형성된 것인, 하이브리드 코드.The second lower twisted yarn is a hybrid cord formed by giving twist to the aramid fiber.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 하연사는 750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고,The first lower twisted yarn is formed by applying twist to bio-nylon fibers having a fineness of 750 to 1100 denier,
    상기 제 2 하연사는 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것인,The second lower twisted yarn is formed by imparting twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 900 to 1200 denier,
    하이브리드 코드.hybrid code.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 제 1 하연사의 꼬임수가 300 TPM 이상인, 하이브리드 코드.The number of twists of the first lower twisted yarn is 300 TPM or more, a hybrid cord.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 하연사는 1100 내지 1500 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 것이고,The first lower twisted yarn is formed by applying twist to bio-nylon fibers having a fineness of 1100 to 1500 denier,
    상기 제 2 하연사는 1200 내지 1800 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 것인,The second lower twisted yarn is formed by imparting twist to a heterogeneous resin fiber different from bio-nylon having a fineness of 1200 to 1800 denier,
    하이브리드 코드.hybrid code.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 제 1 하연사의 꼬임수가 400 TPM 이하인, 하이브리드 코드.The number of twists of the first lower twisted yarn is 400 TPM or less, a hybrid cord.
  9. 제 1 항에 있어서, The method of claim 1,
    일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 16 시간 디스크 피로 테스트 후 강력 유지율이 70 % 이상을 만족하는, 하이브리드 코드Hybrid cord that satisfies 70% or more of strong retention after 16-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA)
  10. 제 1 항에 있어서,The method of claim 1,
    상기 하이브리드 코드는 4.5 kgf에서 2.8 % 이상의 중간신율을 갖는, 하이브리드 코드.The hybrid cord is 2.8% at 4.5 kgf A hybrid cord having a medium elongation of greater than or equal to.
  11. 600 내지 2000 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임이 부여되어 형성된 제 1 하연사, 및 800 내지 2200 데니어의 섬도를 갖는 나일론과 상이한 이종 수지 섬유에 꼬임이 부여되어 형성된 제 2 하연사가 함께 상연된 합연사를 마련하는 단계; 및A first lower twisted yarn formed by applying twist to a bio-nylon fiber having a fineness of 600 to 2000 denier, and a second lower twisted yarn formed by applying twist to a heterogeneous resin fiber different from nylon having a fineness of 800 to 2200 denier preparing a plying speech; and
    상기 합연사에 장력을 가하면서 상기 합연사에 코팅층을 형성하는 단계를 포함하는 하이브리드 코드의 제조방법이고,It is a method of manufacturing a hybrid cord comprising the step of forming a coating layer on the ply-twisted yarn while applying tension to the ply-twisted yarn,
    상기 제 1 하연사에 부여된 꼬임수가 250 내지 600 TPM 범위이며,The number of twists imparted to the first lower twisted yarn is in the range of 250 to 600 TPM,
    상기 하이브리드 로 코드는 전체 중량 100 중량% 대비 상기 제 1 하연사를 20 내지 50 중량% 포함하고,The hybrid raw cord contains 20 to 50% by weight of the first lower twisted yarn based on 100% by weight of the total weight,
    상기 합연사에 가해지는 장력은 1.0 kg/cord 이하이며,The tension applied to the ply-twisted yarn is 1.0 kg/cord or less,
    상기 하이브리드 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 8 시간 디스크 피로 테스트 후 강력 유지율이 90 % 이상을 만족하는, 하이브리드 코드의 제조방법.The hybrid cord is a method of manufacturing a hybrid cord, wherein the strength retention rate is 90% or more after an 8-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 제 2 하연사에 부여된 꼬임수가 250 내지 600 TPM 범위인, 하이브리드 코드의 제조방법.The number of twists imparted to the second lower twisted yarn is in the range of 250 to 600 TPM, a method of manufacturing a hybrid cord.
  13. 제 11 항에 있어서,12. The method of claim 11,
    상기 제 1 하연사와 상기 제 2 하연사를 250 내지 600 TPM 범위 내의 꼬임수로 상연하여 합연사를 형성하는, 하이브리드 코드의 제조방법.A method of manufacturing a hybrid cord by twisting the first lower-twisted yarn and the second lower-twisted yarn with a twist number within a range of 250 to 600 TPM to form a ply-twisted yarn.
  14. 제 11 항에 있어서,12. The method of claim 11,
    상기 제 2 하연사는 아라미드 섬유에 꼬임이 부여되어 형성된 것인, 하이브리드 코드의 제조방법.The second lower twisted yarn will be formed by giving twist to the aramid fiber, a method for producing a hybrid cord.
  15. 제 11 항에 있어서,12. The method of claim 11,
    750 내지 1100 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임을 부여하여 상기 제 1 하연사를 형성하고, 900 내지 1200 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임을 부여하여 상기 제 2 하연사를 형성하는, 하이브리드 코드의 제조방법.The first lower twisted yarn is formed by imparting twist to the bio-nylon fiber having a fineness of 750 to 1100 denier, and twist is given to a heterogeneous resin fiber different from the bio-nylon having a fineness of 900 to 1200 denier to give the second lower twisted yarn Forming a, hybrid cord manufacturing method.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 제 1 하연사에 부여된 꼬임수가 300 TPM 이상인, 하이브리드 코드의 제조방법.The method of manufacturing a hybrid cord, wherein the number of twists applied to the first lower twisted yarn is 300 TPM or more.
  17. 제 11 항에 있어서,12. The method of claim 11,
    1100 내지 1500 데니어의 섬도를 갖는 바이오 나일론 섬유에 꼬임을 부여하여 상기 제 1 하연사를 형성하고, 1200 내지 1800 데니어의 섬도를 갖는 바이오 나일론과 상이한 이종 수지 섬유에 꼬임을 부여하여 상기 제 2 하연사를 형성하는, 하이브리드 코드의 제조방법.The first lower twisted yarn is formed by applying twist to the bio-nylon fiber having a fineness of 1100 to 1500 denier, and twisting is applied to a heterogeneous resin fiber different from the bio-nylon having a fineness of 1200 to 1800 denier to give the second lower twisted yarn Forming a, hybrid cord manufacturing method.
  18. 제 17 항에 있어서,18. The method of claim 17,
    상기 제 1 하연사에 부여된 꼬임수가 400 TPM 이하인, 하이브리드 코드의 제조방법.The method for manufacturing a hybrid cord, wherein the number of twists applied to the first lower twisted yarn is 400 TPM or less.
  19. 제 11 항에 있어서,12. The method of claim 11,
    상기 하이브리드 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 16 시간 디스크 피로 테스트 후 강력 유지율이 70 % 이상을 만족하는, 하이브리드 코드의 제조방법.The hybrid cord is a method of manufacturing a hybrid cord, which satisfies a strong retention rate of 70% or more after a 16-hour disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
  20. 제 11 항에 있어서,12. The method of claim 11,
    상기 하이브리드 코드는 4.5 kgf에서 2.8 % 이상의 중간신율을 갖는, 하이브리드 코드의 제조방법.The hybrid cord is 2.8% at 4.5 kgf A method for producing a hybrid cord, having an intermediate elongation of more than one.
PCT/KR2022/005981 2021-04-26 2022-04-27 Cord comprising bio-based component and method for preparing same WO2022231286A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280022952.6A CN117043402A (en) 2021-04-30 2022-04-27 Cord comprising biobased component and method for producing the same
JP2023559720A JP2024511515A (en) 2021-04-30 2022-04-27 Cord containing bio-derived components and its manufacturing method
EP22796119.0A EP4276229A1 (en) 2021-04-30 2022-04-27 Cord comprising bio-based component and method for preparing same
US18/262,551 US20240076810A1 (en) 2021-04-26 2022-04-27 Cord including bio-based component and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210056810 2021-04-30
KR10-2021-0056810 2021-04-30
KR10-2022-0051246 2022-04-26
KR1020220051246A KR20220149436A (en) 2021-04-30 2022-04-26 Cord including bio-based component and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2022231286A1 true WO2022231286A1 (en) 2022-11-03

Family

ID=83848290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005981 WO2022231286A1 (en) 2021-04-26 2022-04-27 Cord comprising bio-based component and method for preparing same

Country Status (5)

Country Link
US (1) US20240076810A1 (en)
EP (1) EP4276229A1 (en)
JP (1) JP2024511515A (en)
TW (1) TWI804297B (en)
WO (1) WO2022231286A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140819A1 (en) * 2022-01-19 2023-07-27 Kordsa Teknik Tekstil A.S. Polyamide 5.6 based reinforcement cords for elostomeric articles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195964A (en) * 2010-03-17 2011-10-06 Toray Ind Inc High-strength nylon 56 staple fiber and method for producing the same
KR101602605B1 (en) * 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 Hybrid Tire Cord and Method for Manufacturing The Same
KR20200080602A (en) * 2018-12-27 2020-07-07 코오롱인더스트리 주식회사 Hybrid Tire Cord with Strong Adhesion to Rubber and Excellent Fatigue Resistance and Method for Manufacturing The Same
KR20200128791A (en) * 2019-05-07 2020-11-17 건국대학교 산학협력단 Polyamide resin, method for producing the same, and anti static fiber using the same
CN112342655A (en) * 2020-10-10 2021-02-09 图木舒克市东湖兴纺织有限公司 Bio-based polyamide yarn and preparation process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108523A1 (en) * 2012-09-12 2014-05-28 Continental Reifen Deutschland Gmbh Reinforcement cord for elastomeric products, in particular for a pneumatic vehicle tire, and pneumatic vehicle tires
KR101580352B1 (en) * 2012-12-27 2015-12-23 코오롱인더스트리 주식회사 Hybrid Fiber Cord and Method for Manufacturing The Same
US20170175301A1 (en) * 2015-12-17 2017-06-22 E I Du Pont De Nemours And Company Hybrid Cord and Use Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195964A (en) * 2010-03-17 2011-10-06 Toray Ind Inc High-strength nylon 56 staple fiber and method for producing the same
KR101602605B1 (en) * 2015-06-29 2016-03-21 코오롱인더스트리 주식회사 Hybrid Tire Cord and Method for Manufacturing The Same
KR20200080602A (en) * 2018-12-27 2020-07-07 코오롱인더스트리 주식회사 Hybrid Tire Cord with Strong Adhesion to Rubber and Excellent Fatigue Resistance and Method for Manufacturing The Same
KR20200128791A (en) * 2019-05-07 2020-11-17 건국대학교 산학협력단 Polyamide resin, method for producing the same, and anti static fiber using the same
CN112342655A (en) * 2020-10-10 2021-02-09 图木舒克市东湖兴纺织有限公司 Bio-based polyamide yarn and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140819A1 (en) * 2022-01-19 2023-07-27 Kordsa Teknik Tekstil A.S. Polyamide 5.6 based reinforcement cords for elostomeric articles

Also Published As

Publication number Publication date
JP2024511515A (en) 2024-03-13
TWI804297B (en) 2023-06-01
EP4276229A1 (en) 2023-11-15
TW202246606A (en) 2022-12-01
US20240076810A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US9789731B2 (en) Hybrid fiber cord and method for manufacturing the same
WO2018062960A1 (en) Hybrid tire cord and method for manufacturing same
WO2013048097A2 (en) Aramid fiber cord, and preparation method thereof
EP1225260B1 (en) Wrapped cord
WO2022231286A1 (en) Cord comprising bio-based component and method for preparing same
KR20060126101A (en) Hybrid tire cord and preparation method thereof
WO2019088464A1 (en) Polyester tire cord and radial tire using same
US6539698B2 (en) Wrapped cord
KR20200120225A (en) High thermostable Polyethylene terephthalate cord and its manufacturing method
KR20220092849A (en) Hybrid Tire Cord and Method for Manufacturing The Same
WO2021045418A1 (en) Polyester tire cord having excellent heat resistance, and tire comprising same
US11938765B2 (en) Hybrid tire cord with strong adhesion to rubber and excellent fatigue resistance, and method for manufacturing the same
KR20220149436A (en) Cord including bio-based component and method for preparing the same
WO2021066385A1 (en) Hybrid tire cord and method for manufacturing thereof
WO2024043707A1 (en) Eco-friendly tire cord and tire using same
CN117043402A (en) Cord comprising biobased component and method for producing the same
KR102376147B1 (en) Hybrid Tire Cord for Carcass and Method for Manufacturing The Same
WO2018139763A1 (en) Polyester tire cord and radial tire using same
JPH06294072A (en) Rubber reinforcing fiber material, pneumatic tire using the fiber material as reinforcing member and its production
WO2021133005A1 (en) Tire cord, manufacturing method thereof and tire comprising same
WO2019088463A1 (en) Radial tire to which polyester tire cord having lowered stiffness is applied
WO2018135794A1 (en) Lyocell heat-treated cord having improved fatigue resistance, comprising additive
JPH06279591A (en) Rubber-reinforcing fibrous material, pneumatic tire comprising the same as reinforcing material, and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22796119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262551

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022796119

Country of ref document: EP

Effective date: 20230810

WWE Wipo information: entry into national phase

Ref document number: 202280022952.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023559720

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE