WO2022231241A1 - Hollow dendritic fibrous nano-silica and manufacturing method therefor - Google Patents

Hollow dendritic fibrous nano-silica and manufacturing method therefor Download PDF

Info

Publication number
WO2022231241A1
WO2022231241A1 PCT/KR2022/005875 KR2022005875W WO2022231241A1 WO 2022231241 A1 WO2022231241 A1 WO 2022231241A1 KR 2022005875 W KR2022005875 W KR 2022005875W WO 2022231241 A1 WO2022231241 A1 WO 2022231241A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
nano
hollow
fiber
type nano
Prior art date
Application number
PCT/KR2022/005875
Other languages
French (fr)
Korean (ko)
Inventor
유효종
트란민녹
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210172147A external-priority patent/KR102624239B1/en
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2022231241A1 publication Critical patent/WO2022231241A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a hollow protrusion fiber-type nano-silica and a manufacturing method thereof.
  • Hollow mesoporous nanosilica with a unique custom morphology has attracted tremendous attention. Due to its high specific surface area, large pore space, low density and non-toxicity, hollow mesoporous nanosilica has potential applications in various fields such as gas adsorption and storage, catalysis and targeted drug delivery. For example, hollow mesoporous silica spheres with a three-dimensional pore network have been used in stimuli-responsive controlled drug delivery systems.
  • DFNS mesoporous silica nanospheres
  • This silica material also termed 'DFNS' in the present invention
  • DFNS has a high surface area fibrous outer morphology and has shown good activity in many fields including catalysts, sensors, and solar energy harvesting.
  • DFNS has better stability under harsh conditions compared to conventional mesoporous materials.
  • DFNS provides a rich nanospace for integrating and stabilizing guest species such as metal nanoparticles, metal oxides, etc.
  • DFNS remains limited in practical use, especially for adsorption and storage of large guest species.
  • Non-Patent Document 1 V. Polshettiwar, D. Cha, X. Zhang and J. M. Basset, Angew. Chem., Int. Ed., 2010, 49, 9652-9656
  • Non-Patent Document 2 A. Maity and V. Polshettiwar, ChemSusChem, 2017, 10, 3866-3913
  • An object of the present invention is to provide a hollow protrusion fiber-type nano-silica having a hollow inside and a protrusion-shaped surface on the inside and outside, and a method for manufacturing the same.
  • the present invention provides a hollow protrusion fiber-type nano-silica, wherein the nano-silica has a hollow inside and has a protrusion-shaped surface on the inside and outside. .
  • the surface area of the nano-silica may be 320 to 1,100 m 2 /g.
  • the average pore diameter of the nano-silica may be 10 to 30 nm.
  • the total pore volume of the nanosilica may be 1 to 5 cm 3 /g.
  • the present invention comprises the steps of reacting a silica precursor solution with a surfactant to prepare a protruding fiber-type nano-silica (S1);
  • It provides a method for manufacturing a hollow protrusion fiber-type nano-silica, comprising the step (S2) of etching the inside by adding a basic solution to the protrusion fiber-type nano-silica.
  • step S1 after step S1, it is characterized in that the surfactant is removed by calcination at 500 °C to 700 °C.
  • the etching in step S2 is characterized in that it is performed for 10 minutes to 300 minutes.
  • the concentration of the basic solution used for the etching in step S2 is characterized in that 0.1 M to 2.0 M.
  • the surfactant is cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, 3-aminopropyltriethyloxysilane, p-aminophenyltri It is characterized in that it contains at least one selected from the group consisting of methoxysilane, mercaptopropyltriethoxysilane and polyvinylpyrrolidone.
  • the surfactant further comprises urea.
  • the silica precursor solution comprises at least one selected from the group consisting of tetraethylorthosilicate, tetramethylorthosilicate, tetrapropylorthosilicate, and tetrabutylorthosilicate. do.
  • the silica precursor solution is characterized in that it further comprises cyclohexane and 1-pentanol.
  • the basic solution is characterized in that at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide.
  • step S2 is,
  • the hollow protrusion fiber-type nano-silica of the present invention has a high specific surface area because the protrusion fibers are formed on the surface, and in particular, it has a hollow inside, so it can have a targeted pore nanospace. Accordingly, the hollow protrusion fiber-type nano-silica may be utilized as a nano-delivery system or a hybrid nano-catalyst.
  • the present invention can provide a simple manufacturing method of the hollow protrusion fiber-type nano-silica.
  • FIG. 1 shows (a) SEM and (c, e) TEM images of DFNS; and (b) SEM and (d, f) TEM images of HFNS after etching with NaOH solution for 120 minutes; (g) and (h) are dark-field TEM images of DFNS and HFNS and EDX line profiles and elements represented by silica (Si, color referenced by dark lines) and oxygen (O, color referenced by light lines). The mapping results are shown (Scale bar: 100 nm).
  • Figure 3 shows the PXRD pattern of HFNS (top) after etching with DFNS (bottom) and NaOH solution for 120 min.
  • HFNS (- ⁇ -) after 30 minutes of reaction with DFNS (- ⁇ -) and NaOH solution HFNS after 60 minutes (- ⁇ -), 90 minutes after HFNS (- ⁇ -), 120 minutes after reaction Shown are (a) nitrogen adsorption and (b) pore size distribution measured at 77K of HFNS(- ⁇ -).
  • the present inventors have studied to manufacture hollow nanosilica, and as a result, a simple and new manufacturing process for hollow fiber-type nanosilica (Hollow Fiber Nanosilica, HFNS) is performed by etching the nano-silica after manufacturing it. By developing a method, the present invention was completed.
  • HFNS Hellow Fiber Nanosilica
  • the present invention is characterized in that the HFNS is generated by selectively self-etching only the "inside" of the dendritic fiber-like nanosilica (DFNS) with a strong base in an aqueous medium.
  • DFNS dendritic fiber-like nanosilica
  • the present invention is a hollow protrusion fiber-type nano-silica
  • the nano-silica has a hollow (hollow) formed therein,
  • It provides a hollow protrusion fiber-type nano-silica, characterized in that the inner and outer surfaces have a protrusion-shaped surface.
  • the present invention comprises the steps of reacting a silica precursor solution with a surfactant to prepare a protruding fiber-type nano-silica (S1);
  • It provides a method for manufacturing a hollow protrusion fiber-type nano-silica, comprising the step (S2) of etching the inside by adding a basic solution to the protrusion fiber-type nano-silica.
  • the present invention is characterized in that the hollow protrusion fiber-type nanosilica has a substantially spherical core-shell structure, and a hollow is formed therein.
  • the nanosilica is characterized in that it has a fibrous surface in the form of projections on the inside and outside. Accordingly, the surface area of the nano-silica may be 320 to 1,100 m 2 /g.
  • the hollow protrusion fiber-type nano-silica has a fibrous surface, and has pores on the surface of the particles.
  • the average pore diameter may be 10 to 30 nm, and the total pore volume may be 1 to 5 cm 3 /g.
  • the manufacturing method of the present invention includes a step S1 of preparing a protrusion fiber-type nano-silica by adding a surfactant to a silica precursor solution, and a step S2 of etching the inside in a simple way of adding a base to the protrusion fiber-type nano-silica.
  • the surfactant may be removed by calcination at 500 °C to 700 °C.
  • the calcination temperature is less than 500 °C, the surfactant and other organic components may not be sufficiently removed, and when calcined at a temperature exceeding 700 °C, the structure of the nano-silica may be collapsed.
  • the etching in step S2 may be performed for 10 minutes to 300 minutes, or may be performed for 20 minutes to 130 minutes.
  • the nano-silica of the present invention may have a structure in which a hollow is formed therein by being etched in the same time as above.
  • the step S2 is,
  • the ultrasonic treatment, stirring, and centrifugation can be used without limitation as long as it is a device used for conventional nanoparticle production.
  • the ultrasonic treatment in step a) may be performed for 1 minute to 10 minutes, more preferably 1 minute to 5 minutes.
  • the mixture may be stirred for 100 to 200 minutes at 300 to 1000 rpm at room temperature. More preferably, stable hollow formation is possible when stirring is performed at 400 to 700 rpm for 100 to 150 minutes.
  • the HFNS prepared through step a) may be purified through step b).
  • the centrifugation may be performed 1 to 5 times, and then redispersed in deionized water after centrifugation, and may be dried and stored.
  • the surfactant is cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, 3-aminopropyltriethyloxysilane, p-aminophenyltrimethoxysilane, mercapto It may include at least one selected from the group consisting of propyltriethoxysilane or polyvinylpyrrolidone, and may further include urea in the surfactant.
  • cetyltrimethylammonium bromide (CTAB) may be used as in the present invention, but is not limited thereto.
  • the silica precursor solution may include at least one selected from the group consisting of tetraethylorthosilicate, tetramethylorthosilicate, tetrapropylorthosilicate, or tetrabutylorthosilicate, but may be formed of silica. If it includes a silica precursor, it is not limited thereto.
  • the silica precursor solution may be used in a form further comprising cyclohexane and 1-pentanol.
  • the basic solution may be sodium hydroxide, potassium hydroxide, calcium hydroxide, or the like, and if it is a strong base, it is not limited to the above type.
  • the basic solution may be sodium hydroxide, and the concentration of the basic solution is preferably 0.1 M to 2.0 M.
  • the present invention may provide a composition for drug delivery comprising the hollow protrusion fiber-type nano-silica.
  • the drug may be included without limitation as long as it is a drug that can be supported in the hollow of nanosilica.
  • the present invention can provide a nano-catalyst composition comprising the hollow protrusion fiber-type nano-silica.
  • the nano-catalyst composition has a form in which the catalyst is supported in the hollow of the nano-silica, and the type of the catalyst may be included without limitation as long as it is a catalyst that can be supported in the hollow of the nano-silica.
  • Electron micrographs and surface measurements of the HFNS prepared in the present invention clearly showed that there was an empty space in the center, and both the inner and outer surfaces showed dendritic fibrous morphology.
  • the synthesized HFNS holds promise for nano-delivery systems or hybrid nanocatalysts through the utilization of inner and outer dendritic fiber morphology, inner cavities and pore channels.
  • Cetyltrimethylammonium bromide CH 3 (CH 2 ) 15 N(CH 3 ) 3 Br, 99%, Acros Organic
  • tetraethylorthosilicate TEOS, 99%, Sigma-Aldrich
  • 3-(aminopropyl) Triethoxysilane APTES, 98%, Sigma-Aldrich
  • sodium hydroxide NaOH, 99%, Sigma-Aldrich
  • ammonium hydroxide NH 4 ) OH, 28-30wt% ammonia, Sigma-Aldrich
  • 1-pentanol CH 3 (CH 2 ) 3 CH 2 OH, 98%, Alfa Aesar
  • cyclohexane C 6 H 12 , 99%, Sigma-Aldrich
  • HCl, HNO 3 and purified water were used as purchased. All chemicals were used without further purification. All reaction solutions were prepared immediately before the
  • DFNS was prepared according to a previously reported protocol with slight modifications.
  • TEOS (0.012 mol) (2.5 g) was dissolved in a mixture of cyclohexane (30 mL) and 1-pentanol (1.5 mL).
  • the TEOS precursor solution was added dropwise to an aqueous solution (30 mL) of CTAB (1.0 g, 0.0027 mol) and urea (0.6 g, 0.01 mol).
  • CTAB 1.0 g, 0.0027 mol
  • urea 0.6 g, 0.01 mol
  • the resulting white solid was collected by centrifugation at 3500 rpm for 5 minutes, washed several times with a solvent (acetone and deionized water (DI water)), and dried at 60° C. for 24 hours. did it Finally, the collected powder was calcined at 550 °C for 6 hours to obtain DFNS.
  • DI water acetone and deionized water
  • s-NS was synthesized using the Stober method with some differences. Typically, 2.5 g of TEOS (0.012 mol) and 4.60 mL of NH 4 OH(aq) (28%) were added to a mixture of ethanol (61.0 mL) and DI water (4.34 mL). After sonicating for 30 min, the reaction mixture was stirred at 500 rpm for 12 h at room temperature. When the reaction was completed, the particles obtained by centrifugation (5000 rpm, 5 minutes) were collected, washed several times with ethanol and deionized water, and then dried at 60° C. for 24 hours. The collected powder was heated in air at 550° C. for 6 hours.
  • the reaction mixture was sonicated for 2 min and then stirred at room temperature at 500 rpm for 120 min.
  • the resulting HFNS was purified by three repeated cycles of centrifugation and centrifugation (12000 rpm, 5 min) and redispersed in deionized water. Finally, the HFNS was dried at 50° C. for 24 hours for further use.
  • Powder X-ray diffraction (PXRD) analysis was performed in a focused beam configuration at a continuous scan rate of 2° min ⁇ 1 in the range of 5°-50° on a RIGAKU Ultima IV diffractometer using Cu-K ⁇ radiation (wavelength 1.5406 ⁇ ) at room temperature.
  • the simulated PXRD pattern was calculated from single crystal X-ray diffraction data using Mercury 3.3 program.Nanoparticles were imaged using Hitachi S-4800 scanning electron microscope (SEM).JEOL JEM-2100F microscope (200kV Field).
  • Emission was used to perform transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis.Samples were concentrated by centrifugation (3 times, 2.30 min and 9,000 rpm) to the nanoparticle mixture, followed by ethanol (200 ⁇ L) ) and TEM grid (Ted Pella, Inc. Formvar/carbon 400 mesh, copper coated). Inductively coupled plasma optical emission spectroscopy (ICP-OES) data were acquired using a PerkinElmer Optima 8300 instrument.
  • ICP-OES Inductively coupled plasma optical emission spectroscopy
  • BELSORP-mini II (BEL Japan, Inc.) instrument was used to obtain N 2 adsorption isotherms and CO 2 adsorption isotherms.High purity (99.999%) gas was used for adsorption experiments.All samples were activated by thorough rinsing, followed by gas adsorption measurements. It was dried under vacuum for 24 hours before.
  • DFNS Dendritic fiber-like nanosilica
  • CAB Cetyltrimethylammonium bromide
  • the synthesized DFNS was calcined to remove organic molecules and CTAB.
  • Scanning electron microscopy (SEM) Fig. 1a
  • TEM transmission electron microscopy
  • Fig. 1c and 1e images clearly show that the synthesized DFNS has a spherical morphology with a fibrous (fibrous) surface.
  • BET Brunauer-Emmett-Teller
  • HFNS hollow fibrous nanosilica
  • the hollow interior space of the HFNS was clearly observed as a dark region at the center of each particle in the SEM image (Fig. 1b) or as a brighter region than the shell in the TEM image (Fig. 1d and f). This was not confirmed in the structure of the DFNS (Figs. 1a, c and e).
  • the hollow morphology was further demonstrated by dark-field TEM images and energy dispersive X-ray (EDX) analysis, showing a much lower density of Si and O in the central region (Fig. 1h). .
  • EDX energy dispersive X-ray
  • DFNS showed that the density of the corresponding element was almost the same (Fig. 1g). Both the inner and outer surfaces of the shell structure of HFNS have a fibrous morphology (Fig. 1f).
  • the high mesoporous shell structure of HFNS can be observed in the enlarged TEM image (Fig. 2a), and a channel connecting the inner void space and the outside of the nanoparticles was confirmed.
  • the powder X-ray diffraction (PXRD) pattern of DFNS and HFNS (Fig. 3) and the selected area electron diffraction (SAED) pattern of HFNS (Fig. 2b) showed a broad peak at approximately 22°. It showed amorphous SiO 2 having, and it can be confirmed that the amorphous phase is preserved before and after etching.
  • HFNS can be used in size selective catalysis and/or nano delivery systems.
  • the total pore volume of DFNS was 0.79 cm 3 g ⁇ 1
  • the value of HFNS after etching for 120 minutes was 2.70 cm 3 g ⁇ 1 , which is the degree of porosity of HFNS compared to DFNS. ) was further confirmed to be higher.
  • the shell thickness of HFNS can be easily changed by changing the concentration of NaOH solution and increased with decreasing NaOH in the reaction (Fig. 7).
  • nanosilica formed by the sol-gel process can be changed by calcination at a temperature of 350 °C or higher.
  • a heating step at 550 °C in DFNS synthesis changes the interatomic structure (siloxane, -Si-O-Si-).
  • heating of the DFNS can produce different Si-O bond densities between the inner and outer fibrous DFNS structures.
  • the inner surface of the DFNS may be less dense and have weaker Si-O bonds than the outer portion. Therefore, the central region of the DFNS can be selectively etched during NaOH reaction in aqueous solution to create a hollow space.
  • HFNSs with hollow cavities and fibrous inner and outer surface morphologies can be fabricated.
  • spherical silica nanoparticles were synthesized using the Stober method and then heated at 550 °C for 6 h.
  • the SEM image of s-NS showed a circular shape on the particle surface with an average diameter of 214 nm (Fig. 8a).
  • the size or shape of s-NS did not show any change (Fig. 8b-d and Table 2).
  • HFNS hollow fibrous nanosilica
  • the abundant active surfaces (internal and external) of HFNS can maximize the loading of other functional components (eg, metal nanoparticles and target molecules). This allows a relatively large number of nanoscale objects to be efficiently deposited on a limited volume of silica.
  • the hollow cavities within the HFNS may be additionally constructed to structurally protect the catalytically active sites and/or guest molecules from undesirable aggregation or poisoning. can be used Thus, accessibility and activity during the process can be well preserved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention provides a hollow dendritic fibrous nano-silica, which has hollows formed therein and of which the inside and the outside have a dendritic surface. The nano-silica is manufactured by reacting a silica precursor with a surfactant to prepare a dendritic fibrous nano-silica and then selectively self-etching the inside of the dendritic fibrous nano-silica through the addition of a basic solution. The nano-silica can be used as a nano-delivery system or a hybrid nano-catalyst by utilizing dendritic fibrous shapes of the inside and the outside, the hollows of the inside, and pore channels.

Description

중공돌기섬유형 나노실리카 및 이의 제조방법Hollow protrusion fiber-type nano-silica and manufacturing method thereof
본 발명은 중공돌기섬유형 나노실리카 및 이의 제조방법에 관한 것이다.The present invention relates to a hollow protrusion fiber-type nano-silica and a manufacturing method thereof.
독특한 맞춤형 형태를 갖는 중공 메조포러스 나노실리카는 엄청난 주목을 받고 있다. 높은 비표면적, 큰 공극 공간, 낮은 밀도 및 무독성으로 인해, 중공 메조포러스 나노실리카는 가스 흡착 및 저장, 촉매 및 표적 약물 전달와 같은 다양한 분야에서 응용 가능성이 있다. 예를 들어, 3차원 기공 네트워크를 가진 중공 메조포러스 실리카 구체는 자극 반응성 제어 약물 전달 시스템에 사용되었다. Hollow mesoporous nanosilica with a unique custom morphology has attracted tremendous attention. Due to its high specific surface area, large pore space, low density and non-toxicity, hollow mesoporous nanosilica has potential applications in various fields such as gas adsorption and storage, catalysis and targeted drug delivery. For example, hollow mesoporous silica spheres with a three-dimensional pore network have been used in stimuli-responsive controlled drug delivery systems.
메조포러스 나노구조 내의 중공 공간은 촉매 활성 부위를 통합하기 위한 나노반응기 또는 생물의학 응용을 위한 약물 저장 및 전달을 위한 나노컨테이너로 활용될 수 있다. 반면에 나노구조 내에서 두께를 조정할 수 있는 메조다공성 쉘은 중공 안 및 바깥으로의 반응물 및 생성물의 물질 전달에 매우 유용할 것이다. 그러나 중공 메조포러스 나노실리카의 구조적 이점에도 불구하고 합성 프로토콜이 간단하지 않고 여전히 매우 어렵기 때문에 높은 활성 표면 밀도, 계층 구조 및 응용 지향적 특성을 가진 새로운 나노 물질을 설계하고 개발하는 것은 제한적이다.Hollow spaces within mesoporous nanostructures can be utilized as nanoreactors to incorporate catalytically active sites or as nanocontainers for drug storage and delivery for biomedical applications. On the other hand, mesoporous shells with tunable thickness within the nanostructure would be very useful for mass transfer of reactants and products into and out of hollows. However, despite the structural advantages of hollow mesoporous nanosilica, the design and development of novel nanomaterials with high active surface density, hierarchical structure and application-oriented properties is limited because the synthesis protocol is not straightforward and still very difficult.
최근에는 새로운 형태의 메조포러스 실리카 나노스피어가 보고되어 다양한 응용 분야에 사용되었다('돌기섬유형 나노실리카(DFNS)'로 명명). 이 실리카 물질(본 발명에서는 'DFNS'라는 용어도 사용)는 표면적이 높은 섬유질 외부 형태를 가지며 촉매, 센서, 및 태양 에너지 획득을 포함한 많은 분야에서 좋은 활성을 보였다. DFNS는 기존의 메조포러스 재료에 비해 가혹한 조건에서 더 나은 안정성을 가지고 있다. DFNS는 금속 나노 입자, 금속 산화물 등과 같은 게스트 종을 통합하고 안정화하기 위한 풍부한 나노 공간을 제공한다. Recently, a new type of mesoporous silica nanospheres have been reported and used in various fields of application (named 'Denticular Fiber Nanosilica (DFNS)'). This silica material (also termed 'DFNS' in the present invention) has a high surface area fibrous outer morphology and has shown good activity in many fields including catalysts, sensors, and solar energy harvesting. DFNS has better stability under harsh conditions compared to conventional mesoporous materials. DFNS provides a rich nanospace for integrating and stabilizing guest species such as metal nanoparticles, metal oxides, etc.
앞서 언급한 이점에도 불구하고, DFNS는 특히 대형 게스트 종의 흡착 및 저장 등의 실질적인 사용에 있어 여전히 제한적으로 활용된다.Despite the aforementioned advantages, DFNS remains limited in practical use, especially for adsorption and storage of large guest species.
[선행기술문헌][Prior art literature]
[비특허문헌][Non-patent literature]
(비특허문헌 1)V. Polshettiwar, D. Cha, X. Zhang and J. M. Basset, Angew. Chem., Int. Ed., 2010, 49, 9652-9656(Non-Patent Document 1) V. Polshettiwar, D. Cha, X. Zhang and J. M. Basset, Angew. Chem., Int. Ed., 2010, 49, 9652-9656
(비특허문헌 2)A. Maity and V. Polshettiwar, ChemSusChem, 2017, 10, 3866-3913(Non-Patent Document 2) A. Maity and V. Polshettiwar, ChemSusChem, 2017, 10, 3866-3913
본 발명의 목적은 내부에 중공이 형성되어 있고, 내부 및 외부가 돌기 형태의 표면을 갖는, 중공돌기섬유형 나노실리카와 이의 제조방법을 제시하는데 있다.An object of the present invention is to provide a hollow protrusion fiber-type nano-silica having a hollow inside and a protrusion-shaped surface on the inside and outside, and a method for manufacturing the same.
본 발명은 중공돌기섬유형 나노실리카로서, 상기 나노실리카는 내부에 중공(hollow)이 형성되어 있고, 내부 및 외부가 돌기 형태의 표면을 갖는 것을 특징으로 하는, 중공돌기섬유형 나노실리카를 제공한다.The present invention provides a hollow protrusion fiber-type nano-silica, wherein the nano-silica has a hollow inside and has a protrusion-shaped surface on the inside and outside. .
본 발명의 구현예로, 상기 나노실리카의 표면적은 320 내지 1,100 m2/g일 수 있다.In an embodiment of the present invention, the surface area of the nano-silica may be 320 to 1,100 m 2 /g.
본 발명의 다른 구현예로, 상기 나노실리카의 평균 기공 직경은 10 내지 30 nm 일 수 있다.In another embodiment of the present invention, the average pore diameter of the nano-silica may be 10 to 30 nm.
본 발명의 또다른 구현예로, 상기 나노실리카의 총 기공 부피는 1 내지 5 cm3/g 일 수 있다.In another embodiment of the present invention, the total pore volume of the nanosilica may be 1 to 5 cm 3 /g.
또한, 본 발명은 실리카 전구체 용액을 계면활성제와 반응시켜 돌기섬유형 나노실리카를 제조하는 단계(S1); 및 In addition, the present invention comprises the steps of reacting a silica precursor solution with a surfactant to prepare a protruding fiber-type nano-silica (S1); and
상기 돌기섬유형 나노실리카에 염기성 용액을 첨가하여 내부를 에칭하는 단계(S2)를 포함하는, 중공돌기섬유형 나노실리카의 제조방법을 제공한다.It provides a method for manufacturing a hollow protrusion fiber-type nano-silica, comprising the step (S2) of etching the inside by adding a basic solution to the protrusion fiber-type nano-silica.
본 발명의 또다른 구현예로, 상기 S1 단계 이후, 500 ℃내지 700 ℃에서 소성하여 계면활성제를 제거하는 것을 특징으로 한다.In another embodiment of the present invention, after step S1, it is characterized in that the surfactant is removed by calcination at 500 °C to 700 °C.
본 발명의 또다른 구현예로, 상기 S2 단계의 에칭은, 10 분 내지 300분 동안 수행되는 것을 특징으로 한다.In another embodiment of the present invention, the etching in step S2 is characterized in that it is performed for 10 minutes to 300 minutes.
본 발명의 또다른 구현예로, 상기 S2 단계의 에칭에 사용되는 염기성용액의 농도는 0.1 M 내지 2.0 M인 것을 특징으로 한다.In another embodiment of the present invention, the concentration of the basic solution used for the etching in step S2 is characterized in that 0.1 M to 2.0 M.
본 발명의 또다른 구현예로, 상기 계면활성제는, 세틸트리메틸암모늄브로마이드, 세틸트리메틸암모늄클로라이드, 소듐도데실설페이트, 소듐도데실벤젠설포네이트, 3-아미노프로필트리에틸옥시실란, p-아미노페닐트리메톡시실란, 메캅토프로필트리에톡시실란 및 폴리비닐피롤리돈으로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 한다.In another embodiment of the present invention, the surfactant is cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, 3-aminopropyltriethyloxysilane, p-aminophenyltri It is characterized in that it contains at least one selected from the group consisting of methoxysilane, mercaptopropyltriethoxysilane and polyvinylpyrrolidone.
본 발명의 또다른 구현예로, 상기 계면활성제는 요소를 더 포함하는 것을 특징으로 한다.In another embodiment of the present invention, the surfactant further comprises urea.
본 발명의 또다른 구현예로, 상기 실리카 전구체 용액은, 테트라에틸오르토실리케이트, 테트라메틸오르토실리케이트, 테트라프로필오르토실리케이트, 및 테트라부틸오르토실리케이트로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 한다.In another embodiment of the present invention, the silica precursor solution comprises at least one selected from the group consisting of tetraethylorthosilicate, tetramethylorthosilicate, tetrapropylorthosilicate, and tetrabutylorthosilicate. do.
본 발명의 또다른 구현예로, 상기 실리카 전구체 용액은, 사이클로헥산 및 1-펜탄올을 더 포함하는 것을 특징으로 한다.In another embodiment of the present invention, the silica precursor solution is characterized in that it further comprises cyclohexane and 1-pentanol.
본 발명의 또다른 구현예로, 상기 염기성 용액은, 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.In another embodiment of the present invention, the basic solution is characterized in that at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide.
본 발명의 또다른 구현예로, 상기 S2 단계는,In another embodiment of the present invention, the step S2 is,
a) 염기성 용액을 첨가한 후, 초음파처리하고 300 내지 1000 rpm에서 100분 내지 200분 동안 교반하는 단계; 및a) after adding the basic solution, sonicating and stirring at 300-1000 rpm for 100-200 minutes; and
b) 상기 교반 후, 원심분리를 복수회 반복하여 정제하고 탈이온수에 재분산하는 단계로 수행되는 것을 특징으로 한다.b) after the stirring, centrifugation is repeated a plurality of times to purify and redisperse in deionized water.
본 발명의 중공돌기섬유형 나노실리카는, 표면에 돌기섬유가 형성되어 있어 높은 비표면적을 가지며, 특히 내부에 중공을 가지고 있어 표적화된 공극 나노 공간을 가질 수 있다. 이에 상기 중공돌기섬유형 나노실리카는, 나노 전달 시스템 또는 하이브리드 나노 촉매로서 활용될 수 있다.The hollow protrusion fiber-type nano-silica of the present invention has a high specific surface area because the protrusion fibers are formed on the surface, and in particular, it has a hollow inside, so it can have a targeted pore nanospace. Accordingly, the hollow protrusion fiber-type nano-silica may be utilized as a nano-delivery system or a hybrid nano-catalyst.
또한 본 발명은 상기 중공돌기섬유형 나노실리카의 간단한 제조방법을 제공할 수 있다.In addition, the present invention can provide a simple manufacturing method of the hollow protrusion fiber-type nano-silica.
도 1은 DFNS의 (a) SEM 및 (c, e) TEM 이미지;와 NaOH 용액으로 120분 동안 에칭한 후 HFNS의 (b) SEM 및 (d, f) TEM 이미지;를 나타낸 것이며, (g) 및 (h)는 DFNS 및 HFNS의 암시야(dark-field) TEM 이미지와 실리카(Si, 어두운 선으로 참조되는 색) 및 산소(O, 밝은 선으로 참조되는 색)으로 표시되는 EDX 라인 프로파일 및 원소매핑 결과를 나타낸 것이다(Scale bar: 100 nm).1 shows (a) SEM and (c, e) TEM images of DFNS; and (b) SEM and (d, f) TEM images of HFNS after etching with NaOH solution for 120 minutes; (g) and (h) are dark-field TEM images of DFNS and HFNS and EDX line profiles and elements represented by silica (Si, color referenced by dark lines) and oxygen (O, color referenced by light lines). The mapping results are shown (Scale bar: 100 nm).
도 2는 HFNS의 (a) 확대된 TEM 이미지 및 (b) SAED 패턴을 나타낸 것이다.2 shows (a) a magnified TEM image and (b) SAED pattern of HFNS.
도 3은 DFNS(아래) 및 NaOH 용액으로 120분 동안 에칭한 후 HFNS(위)의 PXRD 패턴을 나타낸 것이다.Figure 3 shows the PXRD pattern of HFNS (top) after etching with DFNS (bottom) and NaOH solution for 120 min.
도 4는 (a) 반응 전의 나노실리카, (b) 30분, (c) 60분, (d) 90분, (e) 120분, 및 (f) 180분 동안 NaOH와 반응한 후의 나노실리카의 SEM 이미지를 나타낸 것이다(Scale bar: 500 nm).4 shows (a) nanosilica before reaction, (b) 30 min, (c) 60 min, (d) 90 min, (e) 120 min, and (f) nanosilica after reacting with NaOH for 180 min. The SEM image is shown (Scale bar: 500 nm).
도 5는 DFNS(-□-)및 NaOH 용액과 30분 반응 후 HFNS(-◇-), 60분 반응 후 HFNS(-▽-), 90분 반응 후 HFNS(-△-), 120분 반응 후 HFNS(-○-)의 (a) 77K에서 측정된 질소 흡착 및 (b) 기공 크기 분포를 나타낸 것이다.5 shows HFNS (-◇-) after 30 minutes of reaction with DFNS (-□-) and NaOH solution, HFNS after 60 minutes (-▽-), 90 minutes after HFNS (-Δ-), 120 minutes after reaction Shown are (a) nitrogen adsorption and (b) pore size distribution measured at 77K of HFNS(-○-).
도 6은 DFNS 및 HFNS의 반응시간(etching time)에 대한 비표면적(specific surface area)의 변화를 확인한 결과를 나타낸 것이다.6 shows the results of confirming the change of the specific surface area with respect to the etching time of DFNS and HFNS.
도 7은 다른 NaOH 농도((a) 0.8 M, (b) 0.5 M, (c) 0.4 M, 및 (d) 0.1 M)를 갖는 용액과 반응시킨 HFNS 샘플의 SEM 이미지를 나타낸 것이다(Scale bars: 500 nm).7 shows SEM images of HFNS samples reacted with solutions with different NaOH concentrations ((a) 0.8 M, (b) 0.5 M, (c) 0.4 M, and (d) 0.1 M) (Scale bars: 500 nm).
도 8은 (a) 반응 전, (b) 60분, (c) 180분 및 (d) 300분 동안 반응한 후 s-NS의 SEM 이미지 및 상응하는 크기 분포(size distributions)를 나타낸 것이다(Scale bar: 100 nm).8 shows SEM images and corresponding size distributions of s-NS before (a) reaction, (b) 60 min, (c) 180 min, and (d) 300 min after reaction (Scale). bar: 100 nm).
도 9는 NaOH 용액으로 120분 동안 반응 전(-□-) 및 후(-○-)의 77K에서 측정된 s-NS의 질소 흡착을 확인한 결과를 나타낸 것이다.9 shows the results of confirming the nitrogen adsorption of s-NS measured at 77K before (-□-) and after (-○-) reaction with NaOH solution for 120 minutes.
도 10은 (a) 반응 전, (b) 60분, (c) 180분 및 (d) 300분 동안 반응한 후, s-NS(550 ℃에서 가열하지 않음)의 SEM 이미지 및 상응하는 크기 분포(size distributions)를 나타낸 것이다(Scale bar: 100 nm).10 shows SEM images and corresponding size distributions of s-NS (without heating at 550° C.) before (a) reaction, (b) 60 minutes, (c) 180 minutes and (d) after reaction for 300 minutes. (size distributions) are shown (Scale bar: 100 nm).
도 11은 DFNS(-□-)와 HFNS(-○-)의 이산화탄소 흡착실험 결과를 나타낸 것이다.11 shows the carbon dioxide adsorption test results of DFNS (-□-) and HFNS (-○-).
높은 비표면적과 표적화된 공극 나노공간을 갖는 중공 메조포러스 나노실리카의 제조는 상당히 어려웠다. 특히, 일반 나노실리카의 경우 내부의 중공을 형성하기 위해 에칭을 진행할 경우, 외부가 에칭되어, 내부의 중공이 형성되지 않는 문제가 있었다. The preparation of hollow mesoporous nanosilica with high specific surface area and targeted pore nanospace has been quite difficult. In particular, in the case of general nano-silica, when etching is performed to form an internal hollow, the outside is etched, there is a problem that the internal hollow is not formed.
이에 본 발명자들은 중공이 형성된 나노실리카를 제조하고자 연구한 결과, 돌기섬유형 나노실리카를 제조한 후 이를 에칭하는 방식을 통해 중공돌기섬유형 나노실리카(Hollow Fibrous Nanosilica, HFNS)에 대한 간단하고 새로운 제조방법을 개발하여, 본 발명을 완성하였다.Accordingly, the present inventors have studied to manufacture hollow nanosilica, and as a result, a simple and new manufacturing process for hollow fiber-type nanosilica (Hollow Fiber Nanosilica, HFNS) is performed by etching the nano-silica after manufacturing it. By developing a method, the present invention was completed.
이에 본 발명은, 수성 매질에서 강한 염기로 돌기섬유형 나노실리카(DFNS)의 "내부"만을 선택적 자가 에칭하여 HFNS를 생성하는 것을 특징으로 하는 것이다. Accordingly, the present invention is characterized in that the HFNS is generated by selectively self-etching only the "inside" of the dendritic fiber-like nanosilica (DFNS) with a strong base in an aqueous medium.
이에 본 발명은 중공돌기섬유형 나노실리카로서,Accordingly, the present invention is a hollow protrusion fiber-type nano-silica,
상기 나노실리카는 내부에 중공(hollow)이 형성되어 있고,The nano-silica has a hollow (hollow) formed therein,
내부 및 외부가 돌기 형태의 표면을 갖는 것을 특징으로 하는, 중공돌기섬유형 나노실리카를 제공한다.It provides a hollow protrusion fiber-type nano-silica, characterized in that the inner and outer surfaces have a protrusion-shaped surface.
또한, 본 발명은 실리카 전구체 용액을 계면활성제와 반응시켜 돌기섬유형 나노실리카를 제조하는 단계(S1); 및 In addition, the present invention comprises the steps of reacting a silica precursor solution with a surfactant to prepare a protruding fiber-type nano-silica (S1); and
상기 돌기섬유형 나노실리카에 염기성 용액을 첨가하여 내부를 에칭하는 단계(S2)를 포함하는, 중공돌기섬유형 나노실리카의 제조방법을 제공한다.It provides a method for manufacturing a hollow protrusion fiber-type nano-silica, comprising the step (S2) of etching the inside by adding a basic solution to the protrusion fiber-type nano-silica.
이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은, 중공돌기섬유형 나노실리카는, 실질적으로 구형인 코어-쉘 구조를 가지는 것으로, 내부에 중공(hollow)이 형성되어 있는 것을 특징으로 한다. 상기 나노실리카는 내부 및 외부가 돌기 형태의 섬유상 표면을 갖는 것을 특징으로 한다. 이에 상기 나노실리카의 표면적은 320 내지 1,100 m2/g일 수 있다. The present invention is characterized in that the hollow protrusion fiber-type nanosilica has a substantially spherical core-shell structure, and a hollow is formed therein. The nanosilica is characterized in that it has a fibrous surface in the form of projections on the inside and outside. Accordingly, the surface area of the nano-silica may be 320 to 1,100 m 2 /g.
상기 중공돌기섬유형 나노실리카는, 섬유상 표면을 가지는바, 입자의 표면에 기공을 가지고 있다. 평균 기공 직경은 10 내지 30 nm이고, 총 기공 부피는 1 내지 5 cm3/g일 수 있다.The hollow protrusion fiber-type nano-silica has a fibrous surface, and has pores on the surface of the particles. The average pore diameter may be 10 to 30 nm, and the total pore volume may be 1 to 5 cm 3 /g.
본 발명의 제조방법은, 실리카 전구체 용액에 계면활성제를 첨가하여 돌기섬유형 나노실리카를 제조하는 S1 단계와, 상기 돌기섬유형 나노실리카에 염기를 첨가하는 간단한 방식으로 내부를 에칭하는 S2 단계를 포함하는 것이다.The manufacturing method of the present invention includes a step S1 of preparing a protrusion fiber-type nano-silica by adding a surfactant to a silica precursor solution, and a step S2 of etching the inside in a simple way of adding a base to the protrusion fiber-type nano-silica. will do
본 발명의 일구현예로서, 상기 S1 단계 이후, 500 ℃내지 700 ℃에서 소성하여 계면활성제를 제거할 수 있다. 상기 소성 온도가 500 ℃미만일 경우, 계면활성제 및 다른 유기성분 등이 충분히 제거되지 않을 수 있으며, 700 ℃를 초과하는 온도로 소성되면 나노실리카의 구조가 붕괴될 수도 있다.In one embodiment of the present invention, after step S1, the surfactant may be removed by calcination at 500 °C to 700 °C. When the calcination temperature is less than 500 ℃, the surfactant and other organic components may not be sufficiently removed, and when calcined at a temperature exceeding 700 ℃, the structure of the nano-silica may be collapsed.
본 발명의 다른 구현예로서, 상기 S2 단계의 에칭은, 10 분 내지 300분 동안 수행될 수 있고, 20분 내지 130분 동안 수행될 수도 있다. 본 발명의 나노실리카는 상기와 같은 시간으로 에칭되어 내부에 중공이 형성된 구조를 가질 수 있다.As another embodiment of the present invention, the etching in step S2 may be performed for 10 minutes to 300 minutes, or may be performed for 20 minutes to 130 minutes. The nano-silica of the present invention may have a structure in which a hollow is formed therein by being etched in the same time as above.
본 발명의 또다른 구현예로서, 상기 S2 단계는,As another embodiment of the present invention, the step S2 is,
a) 염기성 용액을 첨가한 후, 초음파처리하고 300 내지 1000 rpm에서 100분 내지 200분 동안 교반하는 단계; 및a) after adding the basic solution, sonicating and stirring at 300-1000 rpm for 100-200 minutes; and
b) 상기 교반 후, 원심분리를 복수회 반복하여 정제하고 탈이온수에 재분산하는 단계로 수행될 수 있다.b) after the stirring, centrifugation is repeated a plurality of times to purify and redisperse in deionized water.
상기 초음파 처리, 교반, 및 원심분리는 통상의 나노입자 제조에 사용되는 기기라면 제한 없이 이용이 가능하다.The ultrasonic treatment, stirring, and centrifugation can be used without limitation as long as it is a device used for conventional nanoparticle production.
상기 a) 단계의 초음파 처리는 1분 내지 10분, 보다 바람직하게는 1 분 내지 5분 동안 수행될 수 있다. 상기 초음파 처리한 후 실온에서 300 내지 1000 rpm에서 100분 내지 200분 동안 교반할 수 있다. 보다 바람직하게는 400 내지 700 rpm으로 100분 내지 150 분 동안 교반이 수행될 때 안정적인 중공 형성이 가능하다.The ultrasonic treatment in step a) may be performed for 1 minute to 10 minutes, more preferably 1 minute to 5 minutes. After the sonication, the mixture may be stirred for 100 to 200 minutes at 300 to 1000 rpm at room temperature. More preferably, stable hollow formation is possible when stirring is performed at 400 to 700 rpm for 100 to 150 minutes.
상기 a) 단계를 통해 제조된 HFNS는 b) 단계를 통해 정제될 수 있다. 상기 원심분리는 1회 내지 5회 수행될 수 있으며, 원심분리 후 탈이온수에 재분산되고, 이를 건조하여 보관될 수 있다.The HFNS prepared through step a) may be purified through step b). The centrifugation may be performed 1 to 5 times, and then redispersed in deionized water after centrifugation, and may be dried and stored.
본 발명에서 상기 계면활성제는, 세틸트리메틸암모늄브로마이드, 세틸트리메틸암모늄클로라이드, 소듐도데실설페이트, 소듐도데실벤젠설포네이트, 3-아미노프로필트리에틸옥시실란, p-아미노페닐트리메톡시실란, 메캅토프로필트리에톡시실란 또는 폴리비닐피롤리돈으로 이루어지는 군으로부터 선택되는 1종 이상을 포함할 수 있고, 계면활성제에 요소를 더 포함할 수 있다. 바람직하게는 본 발명과 같이 세틸트리메틸암모늄브로마이드(CTAB)를 사용할 수 있으나 이에 제한되지는 않는다.In the present invention, the surfactant is cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, 3-aminopropyltriethyloxysilane, p-aminophenyltrimethoxysilane, mercapto It may include at least one selected from the group consisting of propyltriethoxysilane or polyvinylpyrrolidone, and may further include urea in the surfactant. Preferably, cetyltrimethylammonium bromide (CTAB) may be used as in the present invention, but is not limited thereto.
본 발명에서 상기 실리카 전구체 용액은, 테트라에틸오르토실리케이트, 테트라메틸오르토실리케이트, 테트라프로필오르토실리케이트, 또는 테트라부틸오르토실리케이트로 이루어지는 군으로부터 선택되는 1종 이상을 포함할 수 있으나, 실리카로 형성될 수 있는 실리카 전구체를 포함하는 것이라면 이에 제한되는 것은 아니다. 상기 실리카 전구체 용액은, 사이클로헥산 및 1-펜탄올을 더 포함하는 형태의 것을 사용할 수 있다.In the present invention, the silica precursor solution may include at least one selected from the group consisting of tetraethylorthosilicate, tetramethylorthosilicate, tetrapropylorthosilicate, or tetrabutylorthosilicate, but may be formed of silica. If it includes a silica precursor, it is not limited thereto. The silica precursor solution may be used in a form further comprising cyclohexane and 1-pentanol.
본 발명에서, 상기 염기성 용액은, 수산화나트륨, 수산화칼륨 또는 수산화칼슘 등일 수 있으며, 강염기라면 상기 종류에 제한되지 않는다. 상기 염기성 용액은 특히 수산화나트륨일 수 있으며, 상기 염기성용액의 농도는 0.1 M 내지 2.0 M인 것이 바람직하다.In the present invention, the basic solution may be sodium hydroxide, potassium hydroxide, calcium hydroxide, or the like, and if it is a strong base, it is not limited to the above type. In particular, the basic solution may be sodium hydroxide, and the concentration of the basic solution is preferably 0.1 M to 2.0 M.
또한 본 발명은 상기 중공돌기섬유형 나노실리카를 포함하는, 약물 전달용 조성물을 제공할 수 있다. 상기 약물은 나노실리카의 중공에 담지될 수 있는 약물이라면 제한없이 포함될 수 있다.In addition, the present invention may provide a composition for drug delivery comprising the hollow protrusion fiber-type nano-silica. The drug may be included without limitation as long as it is a drug that can be supported in the hollow of nanosilica.
아울러 본 발명은 상기 중공돌기섬유형 나노실리카를 포함하는, 나노 촉매 조성물을 제공할 수 있다. 상기 나노 촉매 조성물은 나노실리카의 중공에 촉매가 담지된 형태를 갖는 것으로, 상기 촉매의 종류는 나노실리카의 중공에 담지될 수 있는 촉매라면 제한없이 포함될 수 있다.In addition, the present invention can provide a nano-catalyst composition comprising the hollow protrusion fiber-type nano-silica. The nano-catalyst composition has a form in which the catalyst is supported in the hollow of the nano-silica, and the type of the catalyst may be included without limitation as long as it is a catalyst that can be supported in the hollow of the nano-silica.
본 발명에서 제조한 HFNS의 전자현미경 사진과 표면 측정은 중앙에 빈 공간이 있음을 분명히 보여주었고, 내부와 외부 표면 모두 수지상 섬유질 형태를 보였다. 합성된 HFNS는 내부 및 외부 수지상 섬유 형태, 내부 공동 및 기공 채널의 활용을 통해 나노 전달 시스템 또는 하이브리드 나노 촉매에 대한 가능성을 보유하고 있다.Electron micrographs and surface measurements of the HFNS prepared in the present invention clearly showed that there was an empty space in the center, and both the inner and outer surfaces showed dendritic fibrous morphology. The synthesized HFNS holds promise for nano-delivery systems or hybrid nanocatalysts through the utilization of inner and outer dendritic fiber morphology, inner cavities and pore channels.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, since various changes may be made to the embodiments, the scope of the patent application is not limited or limited by these embodiments. It should be understood that all modifications, equivalents and substitutes for the embodiments are included in the scope of the rights.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the examples are used for the purpose of description only, and should not be construed as limiting. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that this does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiment belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same components are assigned the same reference numerals regardless of the reference numerals, and the overlapping description thereof will be omitted. In the description of the embodiment, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the embodiment, the detailed description thereof will be omitted.
[실시예][Example]
<제조예><Production Example>
시약reagent
세틸트리메틸암모늄 브로마이드(CTAB, CH3(CH2)15 N(CH3)3Br, 99%, Acros Organic), 테트라에틸오르토실리케이트(TEOS, 99%, Sigma-Aldrich), 3-(아미노프로필)트리에톡시실란(APTES, 98%, Sigma-Aldrich), 수산화나트륨(NaOH, 99%, Sigma-Aldrich), 요소[CO(NH2)2, 98%, Sigma-Aldrich], 수산화암모늄(NH4OH, 28-30wt% 암모니아, Sigma-Aldrich), 1-펜탄올(CH3(CH2)3CH2OH, 98%, Alfa Aesar), 사이클로헥산(C6H12, 99%, Sigma-Aldrich), HCl, HNO3 및 정제수는 구입한 대로 사용했다. 모든 화학 물질은 추가 정제 없이 사용되었다. 모든 반응 용액은 반응 직전에 준비하였다. 모든 유리 제품은 사용 전에 왕수(3:1 부피비의 농축 HCl 및 HNO3)로 세척하고 3중 증류수로 철저히 헹구었다(rinsing). Cetyltrimethylammonium bromide (CTAB, CH 3 (CH 2 ) 15 N(CH 3 ) 3 Br, 99%, Acros Organic), tetraethylorthosilicate (TEOS, 99%, Sigma-Aldrich), 3-(aminopropyl) Triethoxysilane (APTES, 98%, Sigma-Aldrich), sodium hydroxide (NaOH, 99%, Sigma-Aldrich), urea [CO(NH 2 ) 2 , 98%, Sigma-Aldrich], ammonium hydroxide (NH 4 ) OH, 28-30wt% ammonia, Sigma-Aldrich), 1-pentanol (CH 3 (CH 2 ) 3 CH 2 OH, 98%, Alfa Aesar), cyclohexane (C 6 H 12 , 99%, Sigma-Aldrich) ), HCl, HNO 3 and purified water were used as purchased. All chemicals were used without further purification. All reaction solutions were prepared immediately before the reaction. All glassware was washed with aqua regia (concentrated HCl and HNO 3 in a 3:1 volume ratio) before use and rinsed thoroughly with triple distilled water.
돌기섬유형 나노실리카(DFNS, dendritic fibrous nanosilica)의 합성Synthesis of dendritic fibrous nanosilica (DFNS)
DFNS는 이전에 보고된 프로토콜에 따라 약간 수정하여 제조했다. TEOS(0.012mol)(2.5g)를 사이클로헥산(30mL)과 1-펜탄올(1.5mL)의 혼합물에 용해했다. TEOS 전구체 용액을 CTAB(1.0g, 0.0027mol) 및 요소(0.6g, 0.01mol)의 수용액(30mL)에 적가하였다. 반응 혼합물을 실온에서 2시간 동안 격렬하게 교반한 후 테플론 라이닝된 스테인리스 스틸 오토클레이브에 옮기고 120 ℃의 온도 조절 오븐에서 6시간 동안 유지했다. 혼합물을 실온으로 자연 냉각시킨 후, 생성된 백색 고체를 3500 rpm에서 5분 동안 원심분리하여 수집하고, 용매(아세톤 및 탈이온수(DI water))로 여러 번 세척하고, 60 ℃에서 24시간 동안 건조시켰다. 마지막으로, 수집된 분말을 550 ℃에서 6시간 동안 소성하여 DFNS를 얻었다.DFNS was prepared according to a previously reported protocol with slight modifications. TEOS (0.012 mol) (2.5 g) was dissolved in a mixture of cyclohexane (30 mL) and 1-pentanol (1.5 mL). The TEOS precursor solution was added dropwise to an aqueous solution (30 mL) of CTAB (1.0 g, 0.0027 mol) and urea (0.6 g, 0.01 mol). The reaction mixture was vigorously stirred at room temperature for 2 hours, then transferred to a Teflon lined stainless steel autoclave and maintained in a temperature controlled oven at 120° C. for 6 hours. After the mixture was naturally cooled to room temperature, the resulting white solid was collected by centrifugation at 3500 rpm for 5 minutes, washed several times with a solvent (acetone and deionized water (DI water)), and dried at 60° C. for 24 hours. did it Finally, the collected powder was calcined at 550 °C for 6 hours to obtain DFNS.
구형 나노실리카(s-NS, spherical nanosilica)의 합성Synthesis of spherical nanosilica (s-NS)
s-NS는 약간의 차이가 있지만 Stober 방법을 사용하여 합성되었다. 일반적으로 2.5g의 TEOS(0.012mol)와 4.60mL의 NH4OH(aq)(28%)를 에탄올(61.0mL)과 DI water(4.34 mL)의 혼합물에 첨가했다. 30분 동안 초음파 처리한 후, 반응 혼합물을 실온에서 12시간 동안 500rpm으로 교반하였다. 반응이 완료되면 원심분리(5000rpm, 5분)로 얻은 입자를 모아 에탄올과 탈이온수로 여러 번 세척한 후 60 ℃에서 24시간 건조시켰다. 수집된 분말을 공기 중에서 550 ℃에서 6시간 동안 가열했다.s-NS was synthesized using the Stober method with some differences. Typically, 2.5 g of TEOS (0.012 mol) and 4.60 mL of NH 4 OH(aq) (28%) were added to a mixture of ethanol (61.0 mL) and DI water (4.34 mL). After sonicating for 30 min, the reaction mixture was stirred at 500 rpm for 12 h at room temperature. When the reaction was completed, the particles obtained by centrifugation (5000 rpm, 5 minutes) were collected, washed several times with ethanol and deionized water, and then dried at 60° C. for 24 hours. The collected powder was heated in air at 550° C. for 6 hours.
중공 돌기섬유형 나노실리카(HFNS, hollow fibrous nanosilica)의 합성Synthesis of hollow fibrous nanosilica (HFNS)
일반적인 합성에서, DFNS의 수성 현탁액(1mL, 1mg/mL)을 NaOH:SiO2=60:1의 몰비에 해당하는, NaOH 수용액(1mL, 1M)에 첨가했다. 반응 혼합물을 2분 동안 초음파 처리한 다음, 실온에서 500rpm에서 120분 동안 교반하였다. 다음으로, 생성된 HFNS를 원심분리 및 원심분리(12000rpm, 5분)의 3회 반복 사이클에 의해 정제하고 탈이온수에 재분산시켰다. 마지막으로, HFNS는 이후 사용을 위해 50 ℃에서 24시간 동안 건조되었다.In a typical synthesis, an aqueous suspension of DFNS (1 mL, 1 mg/mL) was added to an aqueous NaOH solution (1 mL, 1 M), corresponding to a molar ratio of NaOH:SiO 2 =60:1. The reaction mixture was sonicated for 2 min and then stirred at room temperature at 500 rpm for 120 min. Next, the resulting HFNS was purified by three repeated cycles of centrifugation and centrifugation (12000 rpm, 5 min) and redispersed in deionized water. Finally, the HFNS was dried at 50° C. for 24 hours for further use.
특성 확인 방법How to Check Characteristics
유리 제품은 사용 전에 오븐에서 건조되었다. 분말 X선 회절(PXRD) 분석은 실온에서 Cu-Kα 방사선(파장 1.5406 Å을 사용하여 RIGAKU Ultima IV 회절계에서 5°-50° 범위에서 2°·min-1의 연속 주사율로 집속된 빔 구성에서 수행되었다. 시뮬레이션된 PXRD 패턴은 Mercury 3.3 프로그램을 사용하여 단결정 X선 회절 데이터로부터 계산되었다. 나노 입자는 Hitachi S-4800 주사 전자 현미경(SEM)을 사용하여 이미지화되었다. JEOL JEM-2100F 현미경(200kV Field Emission)을 사용하여 투과 전자 현미경(TEM) 및 에너지 분산 X선(EDX) 분석을 수행했다. 샘플은 원심분리(3회, 2.30분 및 9,000rpm)에 의해 나노입자 혼합물을 농축한 후 에탄올(200μL)에 재현탁하고 TEM 그리드(Ted Pella, Inc. Formvar/carbon 400 메쉬, 구리 코팅). PerkinElmer Optima 8300 기기를 사용하여 유도 결합 플라즈마 광 방출 분광법(ICP-OES) 데이터를 획득했다. BELSORP-mini II(BEL Japan, Inc.) 기기를 사용하여 N2 흡착 등온선과 CO2 흡착 등온선을 얻었다. 흡착 실험에는 고순도(99.999%) 가스가 사용되었다. 모든 샘플은 철저한 rinsing에 의해 활성화된 후, 가스 흡착 측정 전에 24시간 동안 진공 하에서 건조되었다.The glassware was dried in an oven before use. Powder X-ray diffraction (PXRD) analysis was performed in a focused beam configuration at a continuous scan rate of 2° min −1 in the range of 5°-50° on a RIGAKU Ultima IV diffractometer using Cu-Kα radiation (wavelength 1.5406 Å) at room temperature. The simulated PXRD pattern was calculated from single crystal X-ray diffraction data using Mercury 3.3 program.Nanoparticles were imaged using Hitachi S-4800 scanning electron microscope (SEM).JEOL JEM-2100F microscope (200kV Field). Emission) was used to perform transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis.Samples were concentrated by centrifugation (3 times, 2.30 min and 9,000 rpm) to the nanoparticle mixture, followed by ethanol (200 μL) ) and TEM grid (Ted Pella, Inc. Formvar/carbon 400 mesh, copper coated). Inductively coupled plasma optical emission spectroscopy (ICP-OES) data were acquired using a PerkinElmer Optima 8300 instrument. BELSORP-mini II (BEL Japan, Inc.) instrument was used to obtain N 2 adsorption isotherms and CO 2 adsorption isotherms.High purity (99.999%) gas was used for adsorption experiments.All samples were activated by thorough rinsing, followed by gas adsorption measurements. It was dried under vacuum for 24 hours before.
<결과><Result>
돌기섬유형 나노실리카(DFNS)는 이전에 문헌에 보고된 절차에 따라 약간의 변형을 가하여 합성되었다. Cetyltrimethylammonium bromide(CTAB)는 계면활성제로 사용되었을 뿐만 아니라 모양 지시제로 사용되어 섬유질 형태를 형성했다. 특히 합성된 DFNS를 소성하여 유기분자와 CTAB를 제거하였다. 주사 전자 현미경(SEM)(도 1a) 및 투과 전자 현미경(TEM)(도 1c 및 1e) 이미지는 합성된 DFNS가 섬유질(섬유질) 표면을 가진 구형 형태를 가지고 있음을 명확하게 보여준다. DFNS의 BET(Brunauer-Emmett-Teller) 표면적(SBET), 총 기공 부피 및 평균 기공 크기는 각각 318 m2·g-1, 0.79 cm3·g-1 및 9.94 nm였다(표 1).Dendritic fiber-like nanosilica (DFNS) was synthesized with slight modifications according to a procedure previously reported in the literature. Cetyltrimethylammonium bromide (CTAB) was used as a surfactant as well as a shape indicator to form a fibrous morphology. In particular, the synthesized DFNS was calcined to remove organic molecules and CTAB. Scanning electron microscopy (SEM) (Fig. 1a) and transmission electron microscopy (TEM) (Fig. 1c and 1e) images clearly show that the synthesized DFNS has a spherical morphology with a fibrous (fibrous) surface. The Brunauer-Emmett-Teller (BET) surface area (SBET), total pore volume and average pore size of DFNS were 318 m 2 ·g -1 , 0.79 cm 3 ·g -1 and 9.94 nm, respectively (Table 1).
EntryEntry 나노입자nanoparticles 반응시간 (min)Reaction time (min) SBET
(m2 g-1)
S BET
(m 2 g -1 )
총기공부피(cm3 g-1)Total pore volume (cm 3 g -1 ) 평균 기공 직경 (nm)Average pore diameter (nm)
1One DFNSDFNS 318318 0.790.79 9.939.93
22 HFNS-30minHFNS-30min 3030 344344 1.121.12 12.7812.78
33 HFNS-60minHFNS-60min 6060 465465 1.481.48 12.9912.99
44 HFNS-90minHFNS-90min 9090 507507 1.961.96 15.4815.48
55 HFNS-120minHFNS-120min 120120 666666 2.702.70 16.2216.22
DFNS의 간단한 처리가 중공 섬유상 나노실리카(HFNS)의 생성으로 이어질 수 있음을 확인하였다. DFNS의 수성 현탁액을 초음파 처리하면서 NaOH(1M) 수용액에 첨가하고, 실온에서 120분 동안 교반하였다. 생성된 나노입자를 원심분리하고 원심분리를 반복하여 정제하고 탈이온수에 재분산한 후 50 ℃에서 24시간 동안 건조시켰다. SEM(도 1b) 및 TEM(도 1d 및 1f) 이미지로부터 DFNS와 비교하여 합성된 나노입자(HFNS)의 구형 및 섬유질 외부 형태에 거의 변화가 없음을 확인하였다. HFNS의 속이 빈 내부 공간은 SEM 이미지(도 1b)에서 각 입자의 중심에서 어두운 영역으로 명확하게 관찰되거나 TEM 이미지(도 1d 및 f)에서 쉘보다 밝은 부분으로 명확하게 관찰되었다. 이는 DFNS의 구조에서는 확인되지 않았다(도 1a, c 및 e). 중공 형태는 암시야(dark-field) TEM 이미지와 에너지 분산 X선(EDX, energy dispersive X-ray) 분석에 의해 추가로 입증되어 중앙 영역에서 훨씬 낮은 밀도의 Si 및 O를 보여주었다(도 1h). 이에 비해 DFNS는 해당 요소의 밀도가 거의 동일함을 보여주었다(도 1g). HFNS의 쉘 구조의 내부 및 외부 표면은 모두 섬유질 형태를 가지고 있다(도 1f). HFNS의 높은 메조포러스 쉘 구조(mesoporous shell structure)는 확대된 TEM 이미지에서 관찰할 수 있으며(도 2a), 내부 공극 공간(inner void space)과 나노입자 외부를 연결하는 채널이 확인되었다. DFNS와 HFNS의 분말 X선 회절(PXRD, powder X-ray diffraction) 패턴(도 3)과 HFNS의 선택 영역 전자 회절(SAED, selected area electron diffraction) 패턴(도 2b)은 대략 22°에서 넓은 피크를 갖는 비결정질의 SiO2를 보여주었고, 이로부터 에칭 전후로 비결정상이 보존되는 것을 확인할 수 있다.It was confirmed that simple treatment of DFNS can lead to the generation of hollow fibrous nanosilica (HFNS). An aqueous suspension of DFNS was added to aqueous NaOH (1M) solution with sonication and stirred at room temperature for 120 minutes. The resulting nanoparticles were centrifuged, purified by repeated centrifugation, redispersed in deionized water, and dried at 50° C. for 24 hours. From the SEM (Fig. 1b) and TEM (Fig. 1d and 1f) images, it was confirmed that there was little change in the spherical and fibrous outer morphology of the synthesized nanoparticles (HFNS) compared to the DFNS. The hollow interior space of the HFNS was clearly observed as a dark region at the center of each particle in the SEM image (Fig. 1b) or as a brighter region than the shell in the TEM image (Fig. 1d and f). This was not confirmed in the structure of the DFNS (Figs. 1a, c and e). The hollow morphology was further demonstrated by dark-field TEM images and energy dispersive X-ray (EDX) analysis, showing a much lower density of Si and O in the central region (Fig. 1h). . In contrast, DFNS showed that the density of the corresponding element was almost the same (Fig. 1g). Both the inner and outer surfaces of the shell structure of HFNS have a fibrous morphology (Fig. 1f). The high mesoporous shell structure of HFNS can be observed in the enlarged TEM image (Fig. 2a), and a channel connecting the inner void space and the outside of the nanoparticles was confirmed. The powder X-ray diffraction (PXRD) pattern of DFNS and HFNS (Fig. 3) and the selected area electron diffraction (SAED) pattern of HFNS (Fig. 2b) showed a broad peak at approximately 22°. It showed amorphous SiO 2 having, and it can be confirmed that the amorphous phase is preserved before and after etching.
HFNS가 생성된 것을 확인하기 위해, 생성된 입자의 형성을 반응 시간의 함수로 이미지화하였다. 도 4는 반응 시간(30, 60, 90, 120, 180분)이 다른 HFNS 샘플의 시간 분해(time-resolved) SEM 이미지를 나타낸 것이다. 30분과 60분 반응에서는 내부의 빈 공간이 명확하게 관찰되지 않았고(도 4b, 4c), NaOH 수용액에서 DFNS를 90분 동안 반응시킨 후 중앙에서 내부의 빈 공간이 관찰되었다(도 4d). 각 나노 입자의 중심 주변의 밝은 섬유질 영역은 반응 시간이 증가함에 따라 좁아졌으며(도 4e 및 4f), 이는 중심 영역의 에칭으로 인한 것이다. NaOH와 반응 시간이 다른 나노 입자의 질소 흡착 특성은 도 5 및 도 6에 나타내었고, 이는 상술한 표 1에 요약되어 있다. DFNS 및 HFNS 샘플의 물리흡착 등온선(physisorption isotherms)은 높은 상대 압력(0.80 ≤ P/P0 ≤ 0.95)에서 날카로운 모세관 응축 단계가 있는 유형 IV 등온선(type IV isotherm)에 속하고, 히스테리시스 루프를 특징으로 하며, 이는 DFNS 및 HFNS 샘플이 큰 기공 크기 시스템(pore size system)을 갖는 메조포러스(mesoporous) 나노구조를 가지고 있음을 시사한다(도 5a). 30분 동안 반응시킨 후, HFNS의 비표면적은 344 m2 g-1, 이는 DFNS(318 m2 g-1)보다 높았다. 반응시간이 60분일 때 HFNS의 비표면적은 465 m2 g-1, 90분 후에는 507 m2 g-1, 120분 후에는 666 m2 g-1로 급격히 증가하였다(표 1). BET 데이터는 나노입자의 현미경 이미지와 잘 일치한다(도 4). 조사된 샘플의 기공 크기 분포는 120분의 반응 시간에서 DFNS(평균 기공 직경 9.93 nm)에서 HFNS(평균 기공 직경 16.22 nm)로 극적으로 증가했으며, 이로부터 에칭 후 더 큰 기공 채널 시스템(pore channel system)이 형성되었음을 알 수 있다(도 5b). 기공 크기 채널(pore size channel)은 다공성 나노 물질(porous nanomaterials)의 표적 응용(targeted-applications)에서 중요한 역할을 한다는 점에 유의해야 한다. 제조된 아키텍처에서 크고 제어 가능한 기공 크기 시스템으로 HFNS는 크기 선택적 촉매(size selective catalysis) 및/또는 나노 전달 시스템(nano delivery system)에 사용할 수 있다. 또한, DFNS의 총 기공 부피(total pore volume)는 0.79 cm3 g-1인 반면, 120분 동안 에칭 후 HFNS의 값은 2.70 cm3 g-1로, DFNS에 비해 HFNS의 다공성 정도(degree of porosity)가 더 높음을 추가로 확인하였다. HFNS의 쉘 두께는 NaOH 용액의 농도를 변화시켜 쉽게 변경할 수 있으며 반응에서 NaOH가 감소함에 따라 증가했다(도 7).To confirm that HFNS was generated, the formation of the resulting particles was imaged as a function of reaction time. 4 shows time-resolved SEM images of HFNS samples with different reaction times (30, 60, 90, 120, 180 min). In the 30-minute and 60-minute reactions, an internal empty space was not clearly observed ( FIGS. 4b and 4c ), and an internal empty space was observed in the center after reacting DFNS in an aqueous NaOH solution for 90 minutes ( FIG. 4d ). The bright fibrous region around the center of each nanoparticle narrowed with increasing reaction time (Figs. 4e and 4f), which is due to the etching of the central region. The nitrogen adsorption properties of nanoparticles with different reaction times with NaOH are shown in FIGS. 5 and 6, which are summarized in Table 1 above. Physisorption isotherms of DFNS and HFNS samples belong to type IV isotherms with sharp capillary condensation steps at high relative pressures (0.80 ≤ P/P 0 ≤ 0.95), and are characterized by a hysteresis loop. This suggests that the DFNS and HFNS samples have mesoporous nanostructures with a large pore size system (Fig. 5a). After reacting for 30 minutes, the specific surface area of HFNS was 344 m 2 g -1 , which was higher than that of DFNS (318 m 2 g -1 ). When the reaction time was 60 minutes, the specific surface area of HFNS increased rapidly to 465 m 2 g -1 , 507 m 2 g -1 after 90 minutes, and 666 m 2 g -1 after 120 minutes (Table 1). The BET data agree well with the microscopic images of the nanoparticles (Fig. 4). The pore size distribution of the irradiated samples increased dramatically from DFNS (mean pore diameter 9.93 nm) to HFNS (mean pore diameter 16.22 nm) at a reaction time of 120 min, from which the larger pore channel system after etching ) was formed (Fig. 5b). It should be noted that the pore size channel plays an important role in the targeted-applications of porous nanomaterials. With a large and controllable pore size system in a fabricated architecture, HFNS can be used in size selective catalysis and/or nano delivery systems. In addition, the total pore volume of DFNS was 0.79 cm 3 g −1 , while the value of HFNS after etching for 120 minutes was 2.70 cm 3 g −1 , which is the degree of porosity of HFNS compared to DFNS. ) was further confirmed to be higher. The shell thickness of HFNS can be easily changed by changing the concentration of NaOH solution and increased with decreasing NaOH in the reaction (Fig. 7).
본 발명과 같이, 변형 없이 나노실리카 내부 공간의 선택적 자가 에칭(selective self-etching)과 섬유 형태(fibrous morphology)의 속이 빈 나노실리카의 생성은 알려진 바 없다. 전자현미경으로 DFNS의 내부 구조를 가시화하는 것은 어려웠지만, DFNS의 전체 영역에 가지(branches)와 주름(wrinkles) (섬유 구조, fibrous structures)이 있을 가능성이 있다. 합성 프로토콜에서 DFNS는 CTAB를 포함한 추가 화학 물질을 제거하기 위해 고온(6시간 동안 550 ℃에서 가열되었다. As in the present invention, selective self-etching of the inner space of nanosilica without deformation and generation of hollow nanosilica with fibrous morphology are not known. Although it was difficult to visualize the internal structure of the DFNS by electron microscopy, it is likely that there are branches and wrinkles (fibrous structures) throughout the entire area of the DFNS. In the synthesis protocol, DFNS was heated at high temperature (550 °C for 6 h) to remove additional chemicals including CTAB.
일반적으로 졸-겔 공정에 의해 형성된 나노실리카는 350 ℃이상의 온도에서 하소에 의해 변화될 수 있다. DFNS 합성에서 550 ℃에서의 가열 단계는 원자간 구조(실록산, -Si-O-Si-)를 변화시킨다. 특히, DFNS의 가열은 내부 및 외부 섬유질 DFNS 구조 사이에 서로 다른 Si-O 결합 밀도를 생성할 수 있다. DFNS의 내부면은 외부 부분보다 덜 조밀하고 약한 Si-O 결합을 가질 수 있다. 따라서 DFNS의 중심 영역은 수용액에서 NaOH가 반응하는 동안 선택적으로 식각되어 중공 공간을 생성할 수 있다. 마지막으로 속이 빈 공동과 섬유질 내부 및 외부 표면 형태를 가진 HFNS를 제작할 수 있다.In general, nanosilica formed by the sol-gel process can be changed by calcination at a temperature of 350 °C or higher. A heating step at 550 °C in DFNS synthesis changes the interatomic structure (siloxane, -Si-O-Si-). In particular, heating of the DFNS can produce different Si-O bond densities between the inner and outer fibrous DFNS structures. The inner surface of the DFNS may be less dense and have weaker Si-O bonds than the outer portion. Therefore, the central region of the DFNS can be selectively etched during NaOH reaction in aqueous solution to create a hollow space. Finally, HFNSs with hollow cavities and fibrous inner and outer surface morphologies can be fabricated.
통제된 실험에서 구형 실리카 나노입자(s-NS)는 Stober 방법을 사용하여 합성된 다음 550°C에서 6시간 동안 가열되었다. s-NS의 SEM 이미지는 평균 직경이 214 nm인 입자 표면에 원형을 나타내었다(도 8a). 물에서 NaOH와 반응(1M, 300분 동안)한 후, s-NS의 크기나 모양은 어떠한 변화도 나타내지 않았다(도 8b-d 및 표 2). In a controlled experiment, spherical silica nanoparticles (s-NS) were synthesized using the Stober method and then heated at 550 °C for 6 h. The SEM image of s-NS showed a circular shape on the particle surface with an average diameter of 214 nm (Fig. 8a). After reaction with NaOH in water (1 M, for 300 min), the size or shape of s-NS did not show any change (Fig. 8b-d and Table 2).
EntryEntry 반응시간 (min)Reaction time (min) 평균 직경 (nm)Average diameter (nm) 평가된 입자의 수number of particles evaluated
1One 00 214±13214±13 347347
22 6060 205±13205±13 107107
33 180180 204±12204±12 142142
44 300300 198±10198±10 139139
또한, NaOH(13 m2 g-1 ~ 17 m2 g-1, 도 9)와의 반응 전후에 s-NS의 표면적에는 큰 변화가 관찰되지 않았다. 이러한 결과는 s-NS 표면에 에칭이 없었고 s-NS 내에 중공 공동이 생성되지 않았음을 입증한다. 흥미롭게도 550 ℃에서 가열되지 않은 s-NS를 NaOH와 반응시키면 입자 크기의 급격한 감소를 관찰할 수 있었다(NaOH와 300분 반응 후 평균 직경 약 216~115 nm, 도 10 및 표 3). 이러한 결과는 (1) 550 ℃에서 실리카 나노입자의 열처리가 염기(NaOH)에 대한 저항을 변화시켰고, (2) DFNS 내부 공간의 선택적 에칭이 HFNS를 제조하는 독특하고 효율적임을 분명히 보여준다.In addition, no significant change was observed in the surface area of s-NS before and after the reaction with NaOH (13 m 2 g -1 to 17 m 2 g -1 , FIG. 9). These results demonstrate that there was no etching on the s-NS surface and no hollow cavities were created within the s-NS. Interestingly, when unheated s-NS was reacted with NaOH at 550 °C, a sharp decrease in particle size was observed (average diameter of about 216 to 115 nm after 300 min reaction with NaOH, Fig. 10 and Table 3). These results clearly show that (1) heat treatment of silica nanoparticles at 550 °C changed the resistance to base (NaOH), and (2) selective etching of the DFNS interior space is unique and efficient to fabricate HFNS.
EntryEntry 반응시간 (min)Reaction time (min) 평균 직경 (nm)Average diameter (nm) 평가된 입자의 수number of particles evaluated
1One 00 216±12216±12 278278
22 6060 174±13174±13 143143
33 180180 144±11144±11 168168
44 300300 115±9115±9 136136
HFNS와 DFNS의 이산화탄소 흡착실험을 수행하여 비교하였다(도 11). 298 K에서 HFNS의 이산화탄소 흡착은 17.9 cm3(STP) g-1 이고 DFNS는 10.8 cm3(STP) g-1 로서 HFNS가 DFNS보다 약 1.7배 흡착이 높은 것을 확인하였다. 이는 질소 흡착의 결과와 일관된 것으로 이산화탄소와 같은 기체를 포집하는 데 HFNS가 활용될 수 있음을 보여준다.The carbon dioxide adsorption experiment of HFNS and DFNS was performed and compared (FIG. 11). At 298 K, the carbon dioxide adsorption of HFNS was 17.9 cm 3 (STP) g -1 and that of DFNS was 10.8 cm 3 (STP) g -1 , confirming that HFNS adsorption was about 1.7 times higher than that of DFNS. This is consistent with the results of nitrogen adsorption and shows that HFNS can be utilized to capture gases such as carbon dioxide.
결론적으로, 중공 섬유상 나노실리카(HFNS)가 성공적으로 합성되고 특성화되었다. 수성 매질에서 NaOH를 사용한 DFNS의 선택적 자체 에칭은 HFNS의 형성으로 이어졌다. DFNS와 비교하여 HFNS의 현미경 이미지와 BET 표면적의 증가는 HFNS의 중앙에 빈 공간이 있었고 내부 및 외부 표면 모두 섬유질 형태를 가짐을 보여주었다. 합성된 HFNS는 독특한 형태로 인해 몇 가지 분명한 이점을 제공할 수 있다. 첫째, 중간 기공(mesopores) 및 섬유 표면(fibrous surfaces)을 포함하여 잘 정의되고 고유한 구조적 특징을 동시에 제어할 수 있다. 다양한 쉘 두께와 큰 기공 채널을 갖는 HFNS는 재료의 잘 정렬된 확산(well-ordered diffusion)에 사용될 수 있다. 둘째, HFNS의 풍부한 활성 표면(내부 및 외부)은 다른 기능적 구성요소(예: 금속 나노입자 및 표적 분자)의 로딩(loading)을 최대화할 수 있다. 이것은 상대적으로 많은 수의 나노 크기 물체가 제한된 부피의 실리카에 효율적으로 증착될 수 있도록 한다. 마지막으로, HFNS 내의 중공 공동(hollow cavity)은 바람직하지 않은 응집(aggregation) 또는 중독(poisoning)으로부터 촉매 활성 부위(catalytically active sites) 및/또는 게스트 분자(guest molecules)를 구조적으로 보호하기 위해 추가로 사용될 수 있다. 따라서 프로세스 중 접근성과 활동이 잘 보존될 수 있다.In conclusion, hollow fibrous nanosilica (HFNS) was successfully synthesized and characterized. Selective self-etching of DFNS with NaOH in aqueous medium led to the formation of HFNS. Microscopic images of HFNS and increase in BET surface area compared to DFNS showed that there was a hollow space in the center of HFNS and that both inner and outer surfaces had a fibrous morphology. Synthesized HFNS may offer several distinct advantages due to its unique morphology. First, well-defined and unique structural features, including mesopores and fibrous surfaces, can be controlled simultaneously. HFNSs with various shell thicknesses and large pore channels can be used for well-ordered diffusion of materials. Second, the abundant active surfaces (internal and external) of HFNS can maximize the loading of other functional components (eg, metal nanoparticles and target molecules). This allows a relatively large number of nanoscale objects to be efficiently deposited on a limited volume of silica. Finally, the hollow cavities within the HFNS may be additionally constructed to structurally protect the catalytically active sites and/or guest molecules from undesirable aggregation or poisoning. can be used Thus, accessibility and activity during the process can be well preserved.

Claims (14)

  1. 중공돌기섬유형 나노실리카로서,As hollow protrusion fiber-type nanosilica,
    상기 나노실리카는 내부에 중공(hollow)이 형성되어 있고,The nano-silica has a hollow (hollow) formed therein,
    내부 및 외부가 돌기 형태의 표면을 갖는 것을 특징으로 하는, 중공돌기섬유형 나노실리카.Hollow protrusion fiber-type nano-silica, characterized in that the inner and outer surfaces have a protrusion-shaped surface.
  2. 제1항에 있어서, According to claim 1,
    상기 나노실리카의 표면적은 320 내지 1,100 m2/g인 것을 특징으로 하는, 중공돌기섬유형 나노실리카.The surface area of the nano-silica is 320 to 1,100 m 2 /g, characterized in that, hollow protrusion fiber-type nano-silica.
  3. 제1항에 있어서,According to claim 1,
    상기 나노실리카의 평균 기공 직경은 10 내지 30 nm인 것을 특징으로 하는, 중공돌기섬유형 나노실리카.The average pore diameter of the nano-silica is characterized in that 10 to 30 nm, hollow protrusion fiber-type nano-silica.
  4. 제1항에 있어서,According to claim 1,
    상기 나노실리카의 총 기공 부피는 1 내지 5 cm3/g인 것을 특징으로 하는, 중공돌기섬유형 나노실리카.The total pore volume of the nano-silica is 1 to 5 cm 3 /g, characterized in that, hollow protrusion fiber-type nano-silica.
  5. 실리카 전구체 용액을 계면활성제와 반응시켜 돌기섬유형 나노실리카를 제조하는 단계(S1); 및 reacting the silica precursor solution with a surfactant to prepare a protruding fiber-type nano-silica (S1); and
    상기 돌기섬유형 나노실리카에 염기성 용액을 첨가하여 내부를 에칭하는 단계(S2)를 포함하는, 중공돌기섬유형 나노실리카의 제조방법.A method of manufacturing a hollow protrusion fiber-type nano-silica comprising the step (S2) of etching the inside by adding a basic solution to the protrusion fiber-type nano-silica.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 S1 단계 이후,After step S1,
    500 ℃내지 700 ℃에서 소성하여 계면활성제를 제거하는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.A method for producing hollow protrusion fiber-type nano-silica, characterized in that the surfactant is removed by calcination at 500° C. to 700° C.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 S2 단계의 에칭은,The etching in step S2 is,
    10 분 내지 300분 동안 수행되는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.Method for producing hollow protrusion fiber-type nano-silica, characterized in that it is carried out for 10 minutes to 300 minutes.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 계면활성제는, 세틸트리메틸암모늄브로마이드, 세틸트리메틸암모늄클로라이드, 소듐도데실설페이트, 소듐도데실벤젠설포네이트, 3-아미노프로필트리에틸옥시실란, p-아미노페닐트리메톡시실란, 메캅토프로필트리에톡시실란 및 폴리비닐피롤리돈으로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.The surfactant is cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecylsulfate, sodium dodecylbenzenesulfonate, 3-aminopropyltriethyloxysilane, p-aminophenyltrimethoxysilane, mercaptopropyltrie A method for producing a hollow protrusion fiber-type nano-silica, comprising at least one selected from the group consisting of oxysilane and polyvinylpyrrolidone.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 계면활성제는 요소를 더 포함하는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.The surfactant is characterized in that it further comprises a urea, hollow protrusion fiber-type manufacturing method of nano-silica.
  10. 제5항에 있어서,6. The method of claim 5,
    상기 실리카 전구체 용액은,The silica precursor solution is
    테트라에틸오르토실리케이트, 테트라메틸오르토실리케이트, 테트라프로필오르토실리케이트, 및 테트라부틸오르토실리케이트로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.A method for producing hollow protrusion fiber-type nano-silica, comprising at least one selected from the group consisting of tetraethyl orthosilicate, tetramethylorthosilicate, tetrapropylorthosilicate, and tetrabutylorthosilicate.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 실리카 전구체 용액은,The silica precursor solution is
    사이클로헥산 및 1-펜탄올을 더 포함하는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.Method for producing a hollow protrusion fiber-type nano-silica, characterized in that it further comprises cyclohexane and 1-pentanol.
  12. 제5항에 있어서,6. The method of claim 5,
    상기 염기성 용액은, 수산화나트륨, 수산화칼륨 및 수산화칼슘으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.The basic solution is, characterized in that at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and calcium hydroxide, a method for producing a hollow protrusion fiber-type nano-silica.
  13. 제5항에 있어서,6. The method of claim 5,
    상기 염기성 용액은, 0.1 M 내지 2.0 M의 농도를 갖는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.The basic solution, characterized in that it has a concentration of 0.1 M to 2.0 M, the method for producing a hollow protrusion fiber-type nano-silica.
  14. 제5항에 있어서,6. The method of claim 5,
    상기 S2 단계는,In step S2,
    a) 염기성 용액을 첨가한 후, 초음파처리하고 300 내지 1000 rpm에서 100분 내지 200분 동안 교반하는 단계; 및a) after adding the basic solution, sonicating and stirring at 300-1000 rpm for 100-200 minutes; and
    b) 상기 교반 후, 원심분리를 복수회 반복하여 정제하고 탈이온수에 재분산하는 단계로 수행되는 것을 특징으로 하는, 중공돌기섬유형 나노실리카의 제조방법.b) After the stirring, centrifugation is repeated a plurality of times to purify and redisperse in deionized water.
PCT/KR2022/005875 2021-04-29 2022-04-25 Hollow dendritic fibrous nano-silica and manufacturing method therefor WO2022231241A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0055781 2021-04-29
KR20210055781 2021-04-29
KR1020210172147A KR102624239B1 (en) 2021-04-29 2021-12-03 Hollow fibrous nanosilica and manufacturing method thereof
KR10-2021-0172147 2021-12-03

Publications (1)

Publication Number Publication Date
WO2022231241A1 true WO2022231241A1 (en) 2022-11-03

Family

ID=83848283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005875 WO2022231241A1 (en) 2021-04-29 2022-04-25 Hollow dendritic fibrous nano-silica and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2022231241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116746677A (en) * 2023-06-19 2023-09-15 广西天下燕都燕窝产业研究中心有限公司 Preparation method of small molecule bird's nest and small molecule bird's nest product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140115629A (en) * 2013-03-21 2014-10-01 계명대학교 산학협력단 hollow sillica spheres synthetic method using of surfactant
KR20160025338A (en) * 2014-08-27 2016-03-08 서울대학교산학협력단 Adsorbents having a Wrinkle Silica Nanoparticle and Method of Preparation of the same
CN110658176A (en) * 2019-09-04 2020-01-07 宁波工程学院 Functional sand paper loaded with gold nanosphere silicon dioxide nanostar composite material for SERS detection and preparation method thereof
KR20200049966A (en) * 2018-10-30 2020-05-11 한림대학교 산학협력단 Hybrid Nanomaterials containing dendritic fibrous nanosilica core - Zn-based coordination polymers shell or dendritic fibrous nanosilica/Au core - Zn-based coordination polymers shell, a synthetic method thereof and applications of the nanomaterials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140115629A (en) * 2013-03-21 2014-10-01 계명대학교 산학협력단 hollow sillica spheres synthetic method using of surfactant
KR20160025338A (en) * 2014-08-27 2016-03-08 서울대학교산학협력단 Adsorbents having a Wrinkle Silica Nanoparticle and Method of Preparation of the same
KR20200049966A (en) * 2018-10-30 2020-05-11 한림대학교 산학협력단 Hybrid Nanomaterials containing dendritic fibrous nanosilica core - Zn-based coordination polymers shell or dendritic fibrous nanosilica/Au core - Zn-based coordination polymers shell, a synthetic method thereof and applications of the nanomaterials
CN110658176A (en) * 2019-09-04 2020-01-07 宁波工程学院 Functional sand paper loaded with gold nanosphere silicon dioxide nanostar composite material for SERS detection and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NGUYEN-THI NGOC-TRAM, PHAM TRAN LINH PHUONG, LE NGOC THUY TRANG, CAO MINH-TRI, TRAN THE-NAM, NGUYEN NGOC TUNG, NGUYEN CONG HAO, NG: "The Engineering of Porous Silica and Hollow Silica Nanoparticles to Enhance Drug-loading Capacity", PROCESSES, vol. 7, no. 11, 1 January 2019 (2019-01-01), pages 1 - 11, XP055982066, DOI: 10.3390/pr7110805 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116746677A (en) * 2023-06-19 2023-09-15 广西天下燕都燕窝产业研究中心有限公司 Preparation method of small molecule bird's nest and small molecule bird's nest product
CN116746677B (en) * 2023-06-19 2024-02-13 广西天下燕都燕窝产业研究中心有限公司 Preparation method of small molecule bird's nest and small molecule bird's nest product

Similar Documents

Publication Publication Date Title
Doustkhah et al. Hard-templated metal–organic frameworks for advanced applications
WO2011129502A1 (en) Method for manufacturing spherical mesoporous silica containing dispersed silver nanoparticles, and spherical mesoporous silica manufactured by said method
Guan et al. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors
Guan et al. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core–shell nanocomposites
WO2016039504A1 (en) Nanocomposite having core-shell structure and comprising carbon nanoparticle and metal-organic framework, method for producing same, and composition for gas absorption comprising same
Wu et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks
Shen et al. A novel Cu-nanowire@ Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air
WO2022231241A1 (en) Hollow dendritic fibrous nano-silica and manufacturing method therefor
JP2015009238A (en) Metal oxide composite including hollow core and porous shell layer and method for manufacturing the same
WO2020180029A1 (en) Metal particle-loaded hollow mesoporous organosilica nano/microparticles and method for manufacturing same
WO2016140443A1 (en) Catalyst produced by using hydrothermal synthesis coprecipitation technique, and carbon nanotube manufactured by using same
Cui et al. Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles
WO2016120795A1 (en) Totally-mesoporous zirconia nanoparticles, use and method for producing thereof
Shan et al. One-pot co-condensation strategy for dendritic mesoporous organosilica nanospheres with fine size and morphology control
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
Moon et al. Photocatalytic activity of metal-decorated SiO 2@ TiO 2 hybrid photocatalysts under water splitting
WO2013105780A1 (en) Method for manufacturing homogenous support catalyst for carbon nanotubes
CN108017047B (en) Rambutan-like aza-hollow mesoporous carbon sphere nano material and preparation method thereof
WO2015190888A1 (en) Method for manufacturing hollow metal nanoparticles, and hollow metal nanoparticles manufactured thereby
CN108046340A (en) A kind of method exempted from template and prepare cobaltosic oxide multi-layer hollow nanosphere
Lin et al. A facile synthetic strategy for the creation of hollow noble metal/transition metal oxide nanocomposites
Wang et al. Nanoengineering of yolk-shell structured silicas for click chemistry
US20110277666A1 (en) Use of self-assembled nanoporous glass colloids for prolongation of plasticity of polymeric materials
KR102666528B1 (en) Water-glass-based synthetic nano-silica particles having dendritic fibrous silica nanolayers and method for preparing the same
WO2014126296A1 (en) Method for forming metal-containing particles by using porous carbon material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22796074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22796074

Country of ref document: EP

Kind code of ref document: A1