WO2022230979A1 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
WO2022230979A1
WO2022230979A1 PCT/JP2022/019295 JP2022019295W WO2022230979A1 WO 2022230979 A1 WO2022230979 A1 WO 2022230979A1 JP 2022019295 W JP2022019295 W JP 2022019295W WO 2022230979 A1 WO2022230979 A1 WO 2022230979A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
rolling
steel
less
surface layer
Prior art date
Application number
PCT/JP2022/019295
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 山田
正典 上野
昌弘 山田
美有 佐藤
則暁 三輪
力 大木
直樹 中杤
直太 山本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021077618A external-priority patent/JP2022171155A/en
Priority claimed from JP2021077999A external-priority patent/JP2022171393A/en
Priority claimed from JP2021077119A external-priority patent/JP2022170860A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280030657.5A priority Critical patent/CN117203440A/en
Publication of WO2022230979A1 publication Critical patent/WO2022230979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to rolling bearings.
  • Patent Document 1 (Patent No. 5489111) describes a bearing component.
  • the bearing component described in Patent Document 1 is formed by performing nitriding, quenching, and tempering on a steel member to be processed.
  • the bearing component described in Patent Document 1 has high wear resistance because cementite is dispersed in the steel of the surface layer.
  • Patent Document 2 (Patent No. 6023422) describes a bearing component.
  • the bearing component described in Patent Document 2 is formed by performing nitriding, quenching, and tempering on a steel member to be processed.
  • the bearing component described in Patent Document 2 since the amount of retained austenite in the steel of the surface layer is large, the durability against indentation-induced flaking under lubrication mixed with foreign matter is high.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-263357 describes a gearbox for a wind power generator.
  • a speed increaser for a wind power generator described in Patent Document 3 includes a planetary gear device.
  • planetary gears are rotatably supported by planetary shafts via bearings.
  • the bearing components described in Patent Document 1 and Patent Document 2 have room for further improvement in durability.
  • the rolling bearing using the bearing component described in Patent Document 1 and the bearing component described in Patent Document 2 is applied to the gearbox for a wind power generator described in Patent Document 3, the oil film is likely to run out.
  • a rolling bearing used in a gearbox for a wind power generator is required to have a design life of 20 years or more. Therefore, as the rolling bearing, a bearing having a large rolling element size is used in order to increase the load capacity.
  • the power generation torque fluctuates depending on weather conditions, and the load applied to the rolling bearings also fluctuates.
  • the load applied to the rolling bearing may be less than the minimum required load for the rolling elements to roll.
  • slippage may occur between the rolling elements and the raceway surface in the rolling bearing. Due to the slippage, oil film breakage may occur between the rolling elements and the raceway surface, resulting in metal-to-metal contact. As a result, new surfaces are generated on the rolling elements or raceway surfaces. When hydrogen penetrates into the inside of the steel material that constitutes the rolling element or the like from such a new surface, premature flaking due to hydrogen embrittlement is likely to occur.
  • cylindrical roller bearings that support the planetary gears and cylindrical roller bearings that support the output shaft are mainly used in the gearbox.
  • Cylindrical roller bearings that support planetary gears may be relatively prone to slippage due to skew and uneven contact of rolling elements due to deformation.
  • cylindrical roller bearings that support output shafts that rotate at high speeds are used at high speeds, they are unable to follow rotational speed and torque fluctuations (bearing load). In some cases, slip occurs and wear is accelerated, creating conditions that facilitate hydrogen embrittlement flaking.
  • Hydrogen embrittlement flaking caused by slippage and lubrication of the raceway surface and rolling elements described above is extremely difficult to predict at the design stage of wind turbine equipment, equipment, and bearings used in them. measures are also difficult.
  • the present invention improves durability against hydrogen embrittlement.
  • the rolling bearing of the present invention includes bearing components.
  • the bearing component is made of steel and has a surface layer which is an area up to 20 ⁇ m away from the surface.
  • the steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance being iron and unavoidable impurities.
  • the surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the bearing component may include an inner ring, an outer ring, and rolling elements.
  • the rolling bearing may support a component of a wind turbine gearbox. That is, a rolling bearing according to a first aspect of the present invention includes an inner ring, an outer ring, and rolling elements.
  • the rolling bearing supports the components of the gearbox for the wind power generator.
  • At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 ⁇ m from the surface.
  • the steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese.
  • the surface layer steel has martensite block grains and precipitates.
  • the precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium.
  • the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the above rolling bearing may be used under conditions where the ratio of equivalent load to static load rating is 0.04% or less.
  • the rolling bearing may be used under the condition that the oil film parameter is 0.5 or more and 10 or less.
  • the rolling bearings may be various rolling bearings such as ball bearings including tapered roller bearings, self-aligning roller bearings, deep groove ball bearings, four-point contact ball bearings, and the like.
  • the surface of the rolling bearing may be subjected to nitriding treatment.
  • the bearing component may include at least one of an inner member, an outer member, and rolling elements.
  • Rolling bearings may be used in transmissions. That is, a rolling bearing according to a second aspect of the present invention includes at least one of an inner member, an outer member, and rolling elements, and is used in a transmission. At least one of the inner member, the outer member, and the rolling elements is made of steel and has a surface layer portion that is a region with a distance of up to 20 ⁇ m from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese.
  • the surface layer steel has martensite block grains and precipitates.
  • the precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium.
  • the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the bearing component may include rolling elements and at least one of the inner member and the outer member. That is, the rolling bearing may include rolling elements and at least one of the inner member and the outer member.
  • a combined roughness of the rolling surface of the rolling element and the raceway surface of the inner member or the raceway surface of the outer member may be 0.06 ⁇ m or more.
  • the bearing component may include an inner ring, an outer ring, and rolling elements.
  • Rolling bearings may be used in transmissions. That is, a rolling bearing according to a third aspect of the present invention includes an inner ring, an outer ring, and rolling elements, and is used in a transmission. At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 ⁇ m from the surface.
  • the steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese.
  • the surface layer steel has martensite block grains and precipitates.
  • the precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium.
  • the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the combined roughness of the rolling surface of the rolling element and the raceway surface of the inner ring or the raceway surface of the outer ring may be 0.06 ⁇ m or more.
  • the bearing component may include an inner ring, an outer ring, and rolling elements.
  • a rolling bearing may be mounted in a mechanical structure in which the inner ring is rotated in opposite directions relative to the outer ring, or in which the inner ring is rotated relative to the outer ring from rest. That is, the rolling bearing according to the fourth aspect of the present invention includes an inner ring, an outer ring, and rolling elements. Rolling bearings are mounted in mechanical structures in which the inner ring is rotated in opposite directions relative to the outer ring, or in which the inner ring is rotated relative to the outer ring from rest.
  • At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 ⁇ m from the surface.
  • the steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance being iron and unavoidable impurities.
  • the surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the above rolling bearing may be used under conditions where the oil film parameter is less than 1.2.
  • the rolling bearing may be used under the condition that the dn value is 200,000 or less.
  • the rolling bearing may be a tapered roller bearing.
  • the rolling bearing may be a self-aligning roller bearing.
  • a diamond-like carbon coating or an iron oxide coating may be formed on the surface of the rolling bearing.
  • the steel contains 0.90 mass percent or more and 1.10 mass percent or less of carbon, 0.20 mass percent or more and 0.30 mass percent or less of silicon, and 0.40 mass percent or more and 0.50 mass percent.
  • the area ratio of precipitates in the steel of the surface layer portion may be 2.0% or more.
  • the maximum grain size of precipitates in the steel of the surface layer may be 0.5 ⁇ m or less.
  • the surface steel may further contain cementite.
  • the maximum grain size of cementite in the steel of the surface layer portion may be 1.5 ⁇ m or less.
  • the nitrogen concentration in the steel of the surface layer may be 0.15% by mass or more.
  • the volume ratio of retained austenite in the steel may be 15% or more at a position where the distance from the surface is 50 ⁇ m.
  • the steel may have a hardness of 58 HRC or more at a position where the distance from the surface is 50 ⁇ m.
  • the volume ratio of retained austenite in the steel may be 25% or more and 35% or less at a position where the distance from the surface is 50 ⁇ m.
  • the hardness of the steel may be 58 HRC or more and 64 HRC or less at the position where the distance from the surface is 50 ⁇ m.
  • FIG. 3 is a cross-sectional view of an inner ring 10; FIG. It is an enlarged view in II in FIG. 4A to 4C are process diagrams showing a method of manufacturing the inner ring 10.
  • FIG. 1 is a cross-sectional view of a rolling bearing 100; FIG. It is a sectional view of rolling bearing 100A.
  • FIG. 3 is a cross-sectional view of the gearbox 300 for the wind power generator; 12 is a partial cross-sectional view of planetary gear transmission 1200.
  • FIG. 13 is a cross-sectional view of transmission 1300.
  • FIG. 1 is a cross-sectional view of a rolling bearing 100
  • FIG. It is a sectional view of rolling bearing 100A.
  • FIG. 3 is a cross-sectional view of the gearbox 300 for the wind power generator
  • 12 is a partial cross-sectional view of planetary gear transmission 1200.
  • FIG. 13 is a cross-sectional
  • FIG. 4 is a cross-sectional view of the axle device 2200; 4 is a graph showing measurement results of nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the bearing washer of Sample 1.
  • FIG. 7 is a graph showing measurement results of nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the raceway washer of sample 2; 4 is an SEM image of the surface layer portion of the bearing washer of Sample 1.
  • FIG. 4 is an SEM image of the surface layer portion of the bearing washer of Sample 2.
  • FIG. 4 is a phase map of EBSD in the surface layer portion of the bearing washer of Sample 1.
  • FIG. 4 is a phase map of EBSD in the surface layer portion of the bearing washer of Sample 2.
  • FIG. 3 is a phase map of EBSD in the surface layer portion of the bearing washer of sample 3.
  • FIG. 3 is a bar graph showing the average grain size of martensite block grains in surface layer portions of bearing washers of Samples 1 to 3.
  • FIG. It is a graph which shows the result of a rolling contact fatigue
  • a bearing component according to the embodiment is, for example, an inner ring 10 of a rolling bearing.
  • the inner ring 10 will be described as an example of the bearing component according to the embodiment.
  • the bearing component according to the embodiment is not limited to this.
  • a bearing component according to an embodiment may be an outer ring of a rolling bearing or a rolling element of a rolling bearing.
  • FIG. 1 is a cross-sectional view of the inner ring 10.
  • the inner ring 10 is ring-shaped. Let the central axis of the inner ring 10 be central axis A.
  • the inner ring 10 has a width surface 10a, a width surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d.
  • the width surface 10a, the width surface 10b, the inner peripheral surface 10c, and the outer peripheral surface 10d form the surface of the inner ring 10.
  • FIG. 10 is a cross-sectional view of the inner ring 10.
  • the direction of the central axis A is defined as the axial direction.
  • the direction along the circumference centered on the central axis A when viewed in the axial direction is defined as the circumferential direction.
  • the direction orthogonal to the axial direction is defined as the radial direction.
  • the width surface 10a and the width surface 10b are end surfaces of the inner ring 10 in the axial direction.
  • the width surface 10b is the opposite surface of the width surface 10a in the axial direction.
  • the inner peripheral surface 10c extends in the circumferential direction.
  • the inner peripheral surface 10c faces the central axis A side.
  • One end in the axial direction of the inner peripheral surface 10c is continuous with the width surface 10a, and the other end in the axial direction is continuous with the width surface 10b.
  • the inner ring 10 is fitted to a shaft (not shown) at the inner peripheral surface 10c.
  • the outer peripheral surface 10d extends in the circumferential direction. 10 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 10d is the opposite surface of the inner peripheral surface 10c in the radial direction. One end in the axial direction of the outer peripheral surface 10d is continuous with the width surface 10a, and the other end in the axial direction is continuous with the width surface 10b.
  • the outer peripheral surface 10d has a raceway surface 10da.
  • the raceway surface 10da extends in the circumferential direction.
  • the outer peripheral surface 10d is recessed toward the inner peripheral surface 10c on the raceway surface 10da.
  • the raceway surface 10da has a partially circular shape.
  • the raceway surface 10da is located in the center of the outer peripheral surface 10d in the axial direction.
  • the raceway surface 10da is a portion of the outer peripheral surface 10d that contacts the rolling elements (not shown in FIG. 1).
  • the inner ring 10 is made of steel. More specifically, the inner ring 10 is made of steel that has been hardened and tempered.
  • the steel forming the inner ring 10 contains 0.70 mass percent or more and 1.10 mass percent or less of carbon, 0.15 mass percent or more and 0.35 mass percent or less of silicon, and 0.30 mass percent or more and 0.60 mass percent. 1.30 to 1.60 weight percent chromium, 0.50 weight percent or less vanadium, and 0.50 weight percent or less molybdenum. In this steel, the content of molybdenum is 0.01% by mass or more, and the content of vanadium is 0.01% by mass or more.
  • the content of manganese in the steel forming the inner ring 10 is 0.30% by mass or more to ensure hardenability.
  • the reason why the content of manganese in the steel forming the inner ring 10 is 0.60% by mass or less is that an excessive amount of manganese increases manganese-based non-metallic inclusions in the steel.
  • the reason why the steel forming the inner ring 10 contains vanadium is to refine nitrides and carbonitrides.
  • the reason why the vanadium content in the steel forming the inner ring 10 is 0.50% by mass or less is to suppress an increase in cost due to the addition of vanadium.
  • molybdenum is contained in the steel forming the inner ring 10 is to refine nitrides and carbonitrides and to improve hardenability.
  • the steel forming the inner ring 10 contains 0.90 mass percent or more and 1.10 mass percent or less of carbon, 0.20 mass percent or more and 0.30 mass percent or less of silicon, and 0.40 mass percent or more and 0.50 mass percent. 1.40 to 1.60 mass percent chromium, 0.20 to 0.30 mass percent vanadium, and 0.10 to 0.30 mass percent molybdenum may contain.
  • the rest of the steel forming the inner ring 10 is iron and unavoidable impurities.
  • FIG. 2 is an enlarged view of II in FIG.
  • a region up to 20 ⁇ m from the surface is the surface layer portion 11 .
  • the surface of the inner ring 10 is subjected to nitriding treatment.
  • the nitrogen concentration in the steel of the surface layer portion 11 is, for example, 0.15% by mass or more.
  • the nitrogen concentration in the steel of the surface layer portion 11 is preferably 0.20% by mass or more and 0.30% by mass or less.
  • the nitrogen concentration in the steel of the surface layer portion 11 is measured using an EPMA (Electron Probe Micro Analyzer).
  • Precipitates are dispersed in the steel of the surface layer portion 11 .
  • the precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium.
  • Chromium (vanadium) nitrides are nitrides of chromium (vanadium) or those in which some of the chromium (vanadium) sites in the nitrides are replaced by alloying elements other than chromium (vanadium). is.
  • Carbonitrides whose main component is chromium (vanadium) are those in which some of the carbon sites in the chromium (vanadium) carbides are replaced with nitrogen.
  • the chromium (vanadium) sites of the carbonitride containing chromium (vanadium) as a main component may be substituted with an alloying element other than chromium (vanadium).
  • the area ratio of precipitates in the steel of the surface layer portion 11 is preferably 2.0% or less.
  • the maximum grain size of precipitates in the steel of the surface layer portion 11 is preferably 0.5 ⁇ m or less.
  • the area ratio and maximum grain size of precipitates in the steel of the surface layer 11 are measured by the following methods.
  • a cross-sectional image (hereinafter referred to as “SEM image”) is acquired using a SEM (Scanning Electron Microscope) in a cross section of the inner ring 10 including the surface layer portion 11 .
  • SEM image a cross-sectional image
  • the magnification for acquiring this SEM image is 15000 times.
  • image processing is performed on the acquired SEM image. More specifically, since the precipitate appears white in the SEM image, the area of each of the white portions in the SEM image and the total area are calculated by image processing.
  • the total area of the white portion in the SEM image is regarded as the area ratio of the precipitates in the steel of the surface layer portion 11.
  • the square root of the value obtained by dividing the maximum area of each white portion in the SEM image by ⁇ /4 is regarded as the maximum grain size of precipitates in the steel of the surface layer portion 11 .
  • Cementite (Fe 3 C) may be further dispersed in the steel of the surface layer portion 11 . Some of the iron sites in the cementite may be replaced by alloying elements, and some of the carbon sites in the cementite may be replaced by nitrogen.
  • the maximum grain size of cementite in the steel of the surface layer portion 11 is preferably 1.5 ⁇ m or less.
  • the maximum grain size of cementite in the steel of the surface layer 11 is measured by the following method.
  • the magnification for acquiring this SEM image is 15000 times.
  • the volume ratio of retained austenite in the steel is preferably 15% or more. More preferably, the volume ratio of retained austenite in the steel is 25% or more and 35% or less at the position where the distance from the surface of the inner ring 10 is 50 ⁇ m.
  • the volume ratio of retained austenite in steel is measured by the X-ray diffraction method. That is, the volume ratio of retained austenite in the steel is calculated by comparing the integrated intensity of the diffraction peak in X-ray diffraction of austenite and the integrated intensity of the diffraction peak in X-ray diffraction of phases other than austenite.
  • the hardness of the steel is preferably 58 HRC or more. More preferably, the hardness of the steel is 58 HRC or more and 64 HRC or less at the position where the distance from the surface of the inner ring 10 is 50 ⁇ m.
  • the hardness of steel is measured according to the Rockwell hardness test method defined in JIS (JIS Z 2245:2016).
  • the steel of the surface layer 11 has martensite block grains.
  • Two adjacent martensite block grains have a crystal orientation difference of 15° or more at the grain boundary. From another point of view, even if there is a location with a deviation in crystal orientation, if the difference in crystal orientation is less than 15°, the location is different from the grain boundary of the martensite block grain. not considered.
  • Grain boundaries of martensite block grains are determined by an EBSD (Electron Back Scattered Diffraction) method.
  • the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the average grain size of martensite block grains with a comparative area ratio of 50% is preferably 1.5 ⁇ m or less.
  • the average grain size of martensite block grains with a comparative area ratio of 30 percent (50 percent) is measured by the following method.
  • martensite block grains included in the observation field are specified by the EBSD method.
  • This observation field of view is an area of 50 ⁇ m ⁇ 45 ⁇ m.
  • Second, the area of each martensite block grain included in the observation field is analyzed from the crystal orientation data obtained by the EBSD method.
  • each martensite block grain included in the observation field is added in descending order of area. This addition is performed until thirty percent (50 percent) of the total area of martensite block grains contained in the field of view is reached.
  • the equivalent circle diameter is calculated for each of the martensite block grains subjected to the above addition. This equivalent circle diameter is the square root of the value obtained by dividing the area of martensite block grains by ⁇ /4.
  • the average value of the circle-equivalent diameters of the martensite block grains subjected to the above addition is regarded as the average grain size of the martensite block grains with a comparative area ratio of 30% (50%).
  • FIG. 3 is a process diagram showing a method of manufacturing the inner ring 10.
  • the method for manufacturing the inner ring 10 includes a preparation step S1, a nitriding step S2, a quenching step S3, a tempering step S4, and a post-treatment step S5.
  • the nitriding step S2 is performed after the preparatory step S1.
  • the hardening step S3 is performed after the nitriding step S2.
  • the tempering step S4 is performed after the hardening step S3.
  • the post-treatment step S5 is performed after the tempering step S4.
  • the member to be processed is a ring-shaped member made of the same steel as the inner ring 10 .
  • a nitriding treatment is performed on the surface of the member to be processed.
  • the nitriding treatment is performed by holding the member to be processed in an atmosphere containing a nitrogen source (for example, ammonia) at a temperature equal to or higher than the A1 transformation point of the steel forming the member to be processed.
  • a nitrogen source for example, ammonia
  • the member to be processed is quenched.
  • the member to be processed is held at a temperature equal to or higher than the A1 transformation point of the steel constituting the member to be processed, and then rapidly cooled to a temperature equal to or lower than the MS transformation point of the steel constituting the member to be processed. It is done by It is preferable that the heating and holding temperature in the quenching step S3 is equal to or lower than the heating and holding temperature in the nitriding step S2.
  • the hardening step S3 may be performed twice.
  • the heating and holding temperature in the second hardening step S3 is preferably lower than the heating and holding temperature in the first hardening step S3.
  • the member to be processed is tempered. Tempering is carried out by holding the workpiece at a temperature below the A1 transformation point of the steel from which the workpiece is constructed.
  • machining grinding, polishing, cleaning, and the like are performed on the surface of the member to be processed. As described above, the inner ring 10 having the structure shown in FIGS. 1 and 2 is formed.
  • the martensite block grains are less likely to become large.
  • the average grain size of block grains is 2.0 ⁇ m or less.
  • the martensite block grains in the steel of the surface layer portion 11 are refined so that the average grain size at a comparative area ratio of 30% is 2.0 ⁇ m or less.
  • the surface layer portion 11 is toughened, and the shear resistance of the surface of the inner ring 10 (specifically, the raceway surface 10da) in contact with the rolling elements is improved.
  • the inner ring 10 has improved durability.
  • the maximum grain size of the precipitates in the steel of the surface layer portion 11 is 0.5 ⁇ m, the precipitates are dispersed finely and at high density in the steel of the surface layer portion 11, so wear resistance and toughness are improved. As a result, the durability of the inner ring 10 is further improved.
  • the maximum grain size of cementite in the steel of the surface layer portion 11 is 1.5 ⁇ m or less, fine dispersion of cementite further improves the wear resistance and toughness of the inner ring 10 .
  • the volume ratio of retained austenite in the steel at the position where the distance from the surface of the inner ring 10 is 50 ⁇ m is 15% or more (25% or more and 35% or less)
  • durability against indentation-induced flaking in an environment containing foreign matter is improved.
  • the hardness of the steel at the position where the distance from the surface of the inner ring 10 is 50 ⁇ m is 58 HRC or more (58 HRC or more and 64 HRC or less)
  • the wear resistance of the inner ring 10 is further improved.
  • Rolling bearing 100 A rolling bearing (referred to as “rolling bearing 100") according to the embodiment will be described below.
  • rolling bearing 100 is a deep groove ball bearing.
  • rolling bearing 100 is not limited to this.
  • Rolling bearing 100 may be, for example, a thrust ball bearing.
  • the rolling bearing 100 has an inner ring 10 , an outer ring 20 , rolling elements 30 and a retainer 40 .
  • the outer ring 20 has a width surface 20a, a width surface 20b, an inner peripheral surface 20c, and an outer peripheral surface 20d.
  • the surface of the outer ring 20 is composed of a width surface 20a, a width surface 20b, an inner peripheral surface 20c and an outer peripheral surface 20d.
  • the width surface 20a and the width surface 20b are end surfaces of the outer ring 20 in the axial direction.
  • the width surface 20b is the opposite surface of the width surface 20a in the axial direction.
  • the inner peripheral surface 20c extends in the circumferential direction.
  • the inner peripheral surface 20c faces the central axis A side.
  • One end in the axial direction of the inner peripheral surface 20c is continuous with the width surface 20a, and the other end in the axial direction is continuous with the width surface 20b.
  • the outer ring 20 is arranged such that the inner peripheral surface 20c faces the outer peripheral surface 10d.
  • the inner peripheral surface 20c has a raceway surface 20ca.
  • the raceway surface 20ca extends in the circumferential direction.
  • the inner peripheral surface 20c is recessed toward the outer peripheral surface 20d on the raceway surface 20ca.
  • the raceway surface 20ca has a partially circular shape.
  • the raceway surface 20ca is located in the center of the inner peripheral surface 20c in the axial direction.
  • the raceway surface 20ca is a portion of the inner peripheral surface 20c that contacts the rolling elements 30 .
  • the outer peripheral surface 20d extends in the circumferential direction. 20 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 20d is the opposite surface of the inner peripheral surface 20c in the radial direction.
  • the outer peripheral surface 20d is continuous with the width surface 20a at one end in the axial direction, and is continuous with the width surface 20b at the other end in the axial direction.
  • the outer ring 20 is fitted to a housing (not shown) on the outer peripheral surface 20d.
  • the rolling elements 30 are spherical.
  • the rolling elements 30 are arranged between the outer peripheral surface 10d (raceway surface 10da) and the inner peripheral surface 20c (raceway surface 20ca).
  • the retainer 40 is ring-shaped and arranged between the outer peripheral surface 10d and the inner peripheral surface 20c. The retainer 40 holds the rolling elements 30 such that the distance between the two rolling elements 30 adjacent in the circumferential direction is within a certain range.
  • the outer ring 20 and the rolling elements 30 may be made of the same steel as the inner ring 10.
  • the surface layer portion of the outer ring 20 (region up to 20 ⁇ m from the surface of the outer ring 20) and the surface layer portion of the rolling element 30 (region up to 20 ⁇ m from the surface of the rolling element 30) are the same as the surface layer portion 11. may be configured.
  • Rolling bearing 100A A rolling bearing 100 (hereinafter referred to as “rolling bearing 100A”) according to Modification 1 will be described below.
  • FIG. 5 is a cross-sectional view of the rolling bearing 100A.
  • rolling bearing 100A is a cylindrical roller bearing.
  • Rolling bearing 100 ⁇ /b>A has inner ring 110 , outer ring 120 and rolling elements 130 .
  • the inner ring 110 has a width surface 110a, a width surface 110b, an inner peripheral surface 110c, and an outer peripheral surface 110d.
  • the width surface 110a, the width surface 110b, the inner peripheral surface 110c, and the outer peripheral surface 110d form the surface of the inner ring 110. As shown in FIG.
  • the width surface 110a and the width surface 110b are end surfaces of the inner ring 110 in the axial direction.
  • the width surface 110b is the opposite surface of the width surface 110a in the axial direction.
  • the inner peripheral surface 110c extends in the circumferential direction.
  • the inner peripheral surface 110c faces the central axis A side.
  • One end in the axial direction of the inner peripheral surface 110c is continuous with the width surface 110a, and the other end in the axial direction is continuous with the width surface 110b.
  • the outer peripheral surface 110d extends in the circumferential direction. 110 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 110d is the opposite surface of the inner peripheral surface 110c in the radial direction. The outer peripheral surface 110d is continuous with the width surface 110a at one end in the axial direction, and is continuous with the width surface 110b at the other end in the axial direction. The outer peripheral surface 110d has a raceway surface 110da. The raceway surface 110da extends in the circumferential direction. The raceway surface 110da is a portion of the outer peripheral surface 110d that contacts the rolling elements 130. As shown in FIG.
  • the outer ring 120 has a width surface 120a, a width surface 120b, an inner peripheral surface 120c, and an outer peripheral surface 120d.
  • the surface of the outer ring 120 is composed of a width surface 120a, a width surface 120b, an inner peripheral surface 120c and an outer peripheral surface 120d.
  • the width surface 120a and the width surface 120b are end surfaces of the outer ring 120 in the axial direction.
  • the width surface 120b is the opposite surface of the width surface 120a in the axial direction.
  • the inner peripheral surface 120c extends in the circumferential direction.
  • the inner peripheral surface 120c faces the central axis A side.
  • One end in the axial direction of the inner peripheral surface 120c is continuous with the width surface 120a, and the other end in the axial direction is continuous with the width surface 120b.
  • the outer ring 120 is arranged such that the inner peripheral surface 120c faces the outer peripheral surface 10d.
  • the inner peripheral surface 120c has a raceway surface 120ca.
  • the raceway surface 120ca extends in the circumferential direction.
  • the raceway surface 120ca is a portion of the inner peripheral surface 120c that contacts the rolling elements 130 .
  • the outer peripheral surface 120d extends in the circumferential direction. 120 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 120d is the opposite surface of the inner peripheral surface 120c in the radial direction.
  • the outer peripheral surface 120d is continuous with the width surface 120a at one end in the axial direction, and is continuous with the width surface 120b at the other end in the axial direction.
  • the rolling elements 130 are cylindrical rollers.
  • the rolling elements 130 are arranged between the outer peripheral surface 110d (raceway surface 110da) and the inner peripheral surface 120c (raceway surface 120ca).
  • the outer peripheral surface of the rolling element 130 is a rolling surface 130a that contacts the raceway surface 110da and the raceway surface 120ca.
  • the inner ring 110, the outer ring 120 and the rolling elements 130 may be made of the same steel as the inner ring 10.
  • the surface layer portion of the inner ring 110 (region up to 20 ⁇ m from the surface of the inner ring 110), the surface layer portion of the outer ring 120 (region up to 20 ⁇ m away from the surface of the outer ring 120), and the surface layer portion of the rolling element 130 (rolling element 130 ) may have the same configuration as the surface layer portion 11 .
  • the oil film parameter is calculated, for example, by the formula h 0 / ⁇ 1.1 ⁇ (R a1 2 +R a2 2 ) 1/2 ⁇ .
  • the oil film thickness between the rolling surface 130a and the raceway surface 110da (raceway surface 120ca) is h 0
  • the arithmetic mean roughness of the rolling surface 130a is R a1
  • the arithmetic mean of the raceway surface 110da is R a2 is the roughness. Even when the oil film parameter is 0.5 or more and 10 or less, oil film breakage may easily occur.
  • FIG. 6 is a cross-sectional view of the gearbox 300 for a wind power generator.
  • the wind power generator gearbox 300 mainly includes a planetary gear device 303 , a secondary gearbox 305 and a casing 306 .
  • the planetary gear device 303 accelerates the rotation of the input shaft 301 and transmits it to the low speed shaft 302 .
  • the secondary speed increasing device 305 further speeds up the rotation of the low speed shaft 302 and transmits it to the output shaft 304 .
  • the planetary gear device 303 and the secondary speed increasing device 305 are provided within a common casing 306 .
  • the input shaft 301 is connected to a main shaft (not shown) of a windmill (not shown) or the like.
  • the output shaft 304 is connected to a generator (not shown).
  • planetary shafts 310 are provided at a plurality of places in the circumferential direction of a rotatable carrier 307.
  • a planetary gear 308 as a constituent member is rotatably supported on each planetary shaft 310 via a rolling bearing 309 .
  • the rolling bearing 309 is the rolling bearing 100A according to this embodiment shown in FIG. Although the rolling bearings 309 of each planetary gear 308 are arranged in two rows in the illustrated example, they may be arranged in one row. Also, the rolling bearings 309 may be used in three, four and more rows.
  • the carrier 307 is a member that serves as an input portion in the planetary gear device 303 .
  • a carrier 307 is provided as a member integrated with the input shaft 301 . Carrier 307 may be configured by integrally coupling a separate member to input shaft 301 .
  • a carrier 307 as a component is rotatably supported by the casing 306 via a bearing 311 at the boundary with the input shaft 301 .
  • Each planetary gear 308 supported by the carrier 307 meshes with an internal toothed ring gear 312 provided on the casing 306 .
  • Each planetary gear 308 also meshes with a sun gear 313 rotatably provided concentrically with the ring gear 312 .
  • Ring gear 312 may be formed directly on casing 306 or may be fixed to casing 306 .
  • the sun gear 313 is a component that serves as an output section in the planetary gear device 303 .
  • a sun gear 313 is provided on the low speed shaft 302 .
  • a low-speed shaft 302 as a component is rotatably supported by a casing 306 via bearings 314 and 315 .
  • the secondary speed increasing device 305 is composed of a gear train.
  • a gear 317 fixed to the low speed shaft 302 meshes with a small diameter side gear 318 of the intermediate shaft 321 .
  • a large-diameter side gear 319 provided on the intermediate shaft 321 meshes with the gear 320 on the output shaft 304 .
  • a gear train is composed of the gear 317, the small-diameter side gear 318, the large-diameter side gear 319, and the gear 320.
  • An intermediate shaft 321 and an output shaft 304 as constituent members are rotatably supported by a casing 306 by bearings 322 and 323, respectively.
  • the rolling bearing 100A shown in FIG. 5 may be applied, but rolling bearings with other arbitrary configurations may also be used.
  • the rolling bearing 309 or the like a type in which a retainer retains cylindrical rollers, or a full complement type bearing that does not use a retainer may be used.
  • the outer ring of the rolling bearing 309 or the like has both flanges, and the inner ring has no flanges.
  • the outer ring may have no flanges and the inner ring may have both flanges.
  • the cylindrical rollers which are rolling elements such as the rolling bearing 309, are solid bodies, hollow rollers may be used as the rolling elements.
  • the carrier 307 integrated with the input shaft 301 rotates.
  • the planetary gears 308 supported at a plurality of positions of the carrier 307 revolve.
  • each planetary gear 308 revolves while meshing with a fixed ring gear 312, thereby causing rotation.
  • the sun gear 313 meshes with the planetary gear 308 that rotates while revolving in this way. Therefore, the sun gear 313 rotates at an accelerated speed with respect to the input shaft 301 .
  • a sun gear 313 serving as an output portion of the planetary gear device 303 is provided on the low speed shaft 302 of the secondary speed increasing device 305 .
  • the rotation of the sun gear 313 is accelerated by the secondary speed increasing device 305 and transmitted to the output shaft 304 .
  • the rotation of the wind turbine main shaft (not shown) input to the input shaft 301 is greatly amplified by the planetary gear device 303 and the secondary speed increasing device 305 and transmitted to the output shaft 304 .
  • the output shaft 304 can rotate at a high speed to generate power.
  • the rolling bearings 309 that support each planetary gear 308 are lubricated as follows.
  • the planetary gear 308 and its rolling bearing 309 are supplied with lubricating oil by being immersed in the oil bath 316 when the carrier 307 revolves and is positioned at the bottom of the casing 6 .
  • Lubricating oil may be supplied to planetary gear 308 and rolling bearing 309 by circulating oil supply.
  • wind power generators may continue to be stopped for a long time due to maintenance of the wind turbine or the occurrence of no wind. At this time, the supply of lubricating oil to the rolling bearing 309 may be insufficient.
  • the generated torque changes depending on weather conditions as described above, and a state occurs in which no load is applied to the rolling bearing 309 and other bearings. As a result, slippage occurs between the rolling elements of the rolling bearing 309 and the raceway surface, and metal contact may occur between the rolling elements and the raceway surface.
  • the equivalent load to be used is 0.04 times or less of the static load rating
  • slip occurs between the rolling elements and the raceway surface
  • metal contact occurs between the rolling elements and the raceway surface as described above.
  • the static load rating mentioned above means a basic static load rating.
  • the oil film parameter ⁇ is 0.5 or more and 10 or less, which is a general use condition for a gearbox bearing, metal contact occurs between the rolling elements and the raceway surface.
  • the rolling bearing 309 used in the gearbox 300 for the wind power generator as described above there are cases where slip due to skew or uneven contact of the rolling elements due to deformation is likely to occur.
  • the bearing 323 that supports the output shaft 304 that rotates at high speed cannot follow torque fluctuations caused by the high speed rotation of the output shaft 304, and slippage may occur between the rolling elements and the raceway surface. Also in this case, wear of the rolling elements and raceway surfaces is accelerated, and hydrogen embrittlement may occur.
  • the rolling bearing 100A according to this embodiment is applied to the rolling bearing 309 and the bearings 311, 314, 315, 322, and 323 for the wind power generator gearbox 300 used under these conditions of use.
  • a large number of hard and fine precipitates are dispersed in the surface layer structure due to the combination of the steel material having the composition described above and the nitriding treatment.
  • precipitates are dispersed at a high density in the steel of the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130. Wear does not progress easily.
  • the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130 become trap sites for hydrogen atoms, the surface layer of the inner ring 110 and the surface layer of the outer ring 120 The amount of hydrogen penetration in the surface layer portion of the rolling element 130 and the rolling element 130 becomes smaller. Therefore, according to the rolling bearing 100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
  • the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 110, the outer ring 120 and the rolling elements 130 is 50 ⁇ m. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
  • the rolling bearing 100A is subjected to advanced nitriding treatment, the resistance to foreign matter is enhanced, and a long life can be maintained even under lubrication conditions in which foreign matter is present. Furthermore, the generation of hydrogen atoms originating from the lubricating environment is suppressed, and the arrival of the hydrogen atoms to the stress load region is also delayed. From this point of view as well, the occurrence of premature flaking caused by hydrogen embrittlement can be suppressed, and the durability against premature damage caused by indentation is improved.
  • the speed increaser shown in FIG. 6 may have any other configuration.
  • the planetary gear device may have multiple stages such as two stages, or the parallel shaft may have one stage instead of multiple stages. These number of steps can be changed as appropriate.
  • a speed increasing device configured by only a planetary gear device or only parallel shafts may be used.
  • Rolling bearing 1100A A rolling bearing 1100 (hereinafter referred to as “rolling bearing 1100A”) according to Modification 2 will be described below.
  • FIG. 7 is a partial cross-sectional view of the planetary gear transmission 1200.
  • planetary gear transmission 1200 has shaft 1210 , planetary gear 1220 , rolling elements 1230 , retainer 1240 , carrier 1250 , and retaining member 1260 .
  • the shaft 1210, the planetary gear 1220, the rolling elements 1230, and the retainer 1240 correspond to bearing parts forming the rolling bearing 1100A.
  • Shaft 1210 is an inner member as a bearing component of rolling bearing 1100A
  • planetary gear 1220 is an outer member as a bearing component of rolling bearing 1100A.
  • the shaft 1210 has an outer peripheral surface 1210a.
  • Planetary gear 1220 has an inner peripheral surface 1220a.
  • the outer peripheral surface 1210a faces the inner peripheral surface 1220a with a space therebetween.
  • a rolling element 1230 is arranged between the outer peripheral surface 1210a and the inner peripheral surface 1220a.
  • Rolling elements 1230 are, for example, needle rollers.
  • the rolling element 1230 is arranged between the outer peripheral surface 1210a and the outer peripheral surface 1220a. Thereby, the planetary gear 1220 is rotatably attached to the shaft 1210 .
  • a rolling element 1230 as a bearing component has an outer peripheral surface 1230a.
  • the outer peripheral surface 1230a contacts the outer peripheral surface 1210a and the inner peripheral surface 1220a. That is, the outer peripheral surface 1210 a is the raceway surface of the shaft 1210 , and the inner peripheral surface 1220 a is the raceway surface of the planetary gear 1220 . Further, the outer peripheral surface 1230a serves as the rolling surface of the rolling element 1230. As shown in FIG.
  • the retainer 1240 holds the rolling elements 1230 so that the intervals between the rolling elements 1230 adjacent in the circumferential direction are within a certain range.
  • Carrier 1250 and retaining member 1260 are attached to one end of shaft 1210 and the other end of shaft 1210, respectively.
  • the shaft 1210, the planetary gear 1220 and the rolling elements 1230 may be made of the same steel as the inner ring 10.
  • At least one of the combined roughness between the outer peripheral surface 1230a and the outer peripheral surface 1210a and the combined roughness between the outer peripheral surface 1230a and the inner peripheral surface 1220a is, for example, 0.06 ⁇ m or more.
  • the combined roughness between the outer peripheral surface 1230a and the outer peripheral surface 1210a (inner peripheral surface 1220a) is the arithmetic average roughness of the outer peripheral surface 1230a, R a1 , and the arithmetic average roughness of the outer peripheral surface 1210a (inner peripheral surface 1220a). is R a2 , it is calculated by the formula (R a1 2 +R a2 2 ) 1/2 .
  • the oil film parameter is calculated by the formula h 0 / ⁇ 1.1 ⁇ (R a1 2 + R a2 2 ) 1/2 ⁇ .
  • 1/2 is 0.06 ⁇ m or more, the oil film parameter is less than 1.2, and oil film breakage is likely to occur.
  • the surface of the shaft 1210 (outer peripheral surface 1210a), the surface of the planetary gear 1220 (inner peripheral surface 1220a), and the surface of the rolling element 1230 (outer peripheral surface 1230a) come into metallic contact with each other, causing wear.
  • New surfaces are easily formed on the surface of the shaft 1210 , the surface of the planetary gear 1220 and the surface of the rolling element 1230 .
  • Hydrogen is likely to be generated from the lubricating oil on the new surface, and when this hydrogen penetrates from the new surface, hydrogen embrittlement occurs on the surface of the shaft 1210, the surface of the planetary gear 1220, and the surface of the rolling element 1230.
  • the precipitates are dispersed at high density in the steel of the surface layer of the shaft 1210, the surface layer of the planetary gear 1220, and the surface layer of the rolling element 1230, wear progresses even under conditions where oil film breakage is likely to occur. Hateful.
  • precipitates dispersed in the steel of the surface layer of the shaft 1210, the surface layer of the planetary gear 1220, and the surface layer of the rolling element 1230 become trap sites for hydrogen atoms. and the surface layer of the rolling element 1230 becomes smaller. Therefore, according to the rolling bearing 1100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
  • the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the shaft 1210, the planetary gear 1220 and the rolling elements 1230 is 50 ⁇ m. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
  • Rolling bearing 1100B A rolling bearing 1100 (hereinafter referred to as “rolling bearing 1100B”) according to Modification 3 will be described below.
  • the rolling bearing 1100B basically has the same configuration as the rolling bearing 100A shown in FIG.
  • the structure of the rolling bearing 1100B will be described below with appropriate reference to FIG.
  • at least one of the combined roughness between the rolling surface 130a and the raceway surface 110da and the combined roughness between the rolling surface 130a and the raceway surface 120ca is, for example, , 0.06 ⁇ m or more.
  • the combined roughness between the rolling contact surface 130a and the raceway surface 110da (raceway surface 120ca) is defined by R a1 being the arithmetic mean roughness of the rolling contact surface 130a and the arithmetic mean roughness of the raceway surface 110da (raceway surface 120ca) is R a2 , it is calculated by the formula (R a1 2 +R a2 2 ) 1/2 .
  • the oil film parameter is calculated by the formula h 0 / ⁇ 1.1 ⁇ (R a1 2 + R a2 2 ) 1/2 ⁇ .
  • 1/2 is 0.06 ⁇ m or more, the oil film parameter is less than 1.2, and oil film breakage is likely to occur.
  • FIG. 8 is a cross-sectional view of the transmission 1300.
  • transmission 1300 has carrier 1310 , input shaft 1320 , multiple planetary gears 1330 , ring gear 1340 , sun gear 1350 and output shaft 1360 .
  • Transmission 1300 is a gearbox used in industrial equipment such as wind turbines. However, transmission 1300 is not limited to this.
  • An input shaft 1320 is attached to the carrier 1310 .
  • Carrier 1310 has an axis 1311 .
  • a planetary gear 1330 is rotatably attached to the shaft 1311 via a rolling bearing 1100B. More specifically, the inner peripheral surface 110c (see FIG. 5) of the inner ring 110 (see FIG. 5) as a bearing component is fitted to the outer peripheral surface of the shaft 1311, and the inner peripheral surface 110c (see FIG. 5) of the planetary gear 1330 is fitted as a bearing component. 120d (see FIG. 5) of the outer ring 120 (see FIG. 5) is fitted. The teeth formed on the outer peripheral surface of planetary gear 1330 mesh with the teeth formed on the inner peripheral surface of ring gear 1340 .
  • An output shaft 1360 is attached to the sun gear 1350 .
  • the teeth formed on the outer peripheral surface of each of the plurality of planetary gears 1330 mesh with the teeth formed on the outer peripheral surface of the sun gear 1350 .
  • the carrier 1310 By rotating the input shaft 1320, the carrier 1310 rotates. As the carrier 1310 rotates, the planetary gear 1330 revolves along the inner peripheral surface of the ring gear 1340 while rotating. Since the sun gear 1350 is meshing with the planetary gear 1330, the rotation of the planetary gear 1330 is transmitted to the sun gear 1350, and the output shaft 1360 is rotated. In this way, the rotation input to the input shaft 1320 is output from the output shaft 1360 after being accelerated.
  • the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 110, the outer ring 120 and the rolling elements 130 is 50 ⁇ m. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
  • FIG. 9 is a cross-sectional view of the rolling bearing 2100A.
  • rolling bearing 2100A is a tapered roller bearing. Note that the rolling bearing 2100A may be a self-aligning roller bearing.
  • the rolling bearing 2100A has an inner ring 2110, an outer ring 2120, rolling elements 2130, and a retainer 2140 as bearing components.
  • the inner ring 2110 has a width surface 2110a, a width surface 2110b, an inner peripheral surface 2110c, and an outer peripheral surface 2110d.
  • the width surface 2110a, the width surface 2110b, the inner peripheral surface 2110c, and the outer peripheral surface 2110d form the surface of the inner ring 2110.
  • the inner diameter of inner ring 2110 is preferably 60 mm or more.
  • a width surface 2110a and a width surface 2110b are end surfaces of the inner ring 2110 in the axial direction.
  • the width surface 2110b is the opposite surface of the width surface 2110a in the axial direction.
  • the inner peripheral surface 2110c extends in the circumferential direction.
  • the inner peripheral surface 2110c faces the central axis A side.
  • the inner peripheral surface 2110c is continuous with the width surface 2110a at one end in the axial direction, and is continuous with the width surface 2110b at the other end in the axial direction.
  • the outer peripheral surface 2110d extends in the circumferential direction. 2110 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 2110d is the opposite surface of the inner peripheral surface 2110c in the radial direction. The outer peripheral surface 2110d continues to the width surface 2110a at one end in the axial direction, and continues to the width surface 2110b at the other end in the axial direction.
  • the outer peripheral surface 2110d has a raceway surface 2110da.
  • the raceway surface 2110da extends in the circumferential direction.
  • the raceway surface 2110da is a portion of the outer peripheral surface 2110d that contacts the rolling elements 2130 .
  • the outer ring 2120 has a width surface 2120a, a width surface 2120b, an inner peripheral surface 2120c, and an outer peripheral surface 2120d.
  • the surface of the outer ring 2120 is composed of a width surface 2120a, a width surface 2120b, an inner peripheral surface 2120c and an outer peripheral surface 2120d.
  • a width surface 2120a and a width surface 2120b are end surfaces of the outer ring 2120 in the axial direction.
  • the width surface 2120b is the opposite surface of the width surface 2120a in the axial direction.
  • the inner peripheral surface 2120c extends in the circumferential direction.
  • the inner peripheral surface 2120c faces the central axis A side.
  • the inner peripheral surface 2120c continues to the width surface 2120a at one end in the axial direction, and continues to the width surface 2120b at the other end in the axial direction.
  • Outer ring 2120 is arranged such that inner peripheral surface 2120c faces outer peripheral surface 2110d.
  • the inner peripheral surface 2120c has a raceway surface 2120ca.
  • the raceway surface 2120ca extends in the circumferential direction.
  • the raceway surface 2120ca is a portion of the inner peripheral surface 2120c that contacts the rolling elements 2130 .
  • the outer peripheral surface 2120d extends in the circumferential direction. 2120 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 2120d is the opposite surface of the inner peripheral surface 2120c in the radial direction. The outer peripheral surface 2120d continues to the width surface 2120a at one end in the axial direction, and continues to the width surface 2120b at the other end in the axial direction.
  • the rolling elements 2130 are tapered rollers.
  • the rolling elements 2130 are arranged between the outer peripheral surface 2110d (raceway surface 2110da) and the inner peripheral surface 2120c (raceway surface 2120ca).
  • the retainer 2140 is ring-shaped and arranged between the outer peripheral surface 2110d and the inner peripheral surface 2120c. The retainer 2140 holds the rolling elements 2130 such that the interval between the two rolling elements 2130 adjacent in the circumferential direction is within a certain range.
  • Inner ring 2110 , outer ring 2120 and rolling elements 2130 may be made of the same steel as inner ring 10 .
  • the surface layer of the inner ring 2110 (the region up to 20 ⁇ m from the surface of the inner ring 2110), the surface layer of the outer ring 2120 (the region up to 20 ⁇ m from the surface of the outer ring 2120), and the surface layer of the rolling element 2130 (the rolling element 2130 ) may have the same configuration as the surface layer portion 11 .
  • the surfaces of the inner ring 2110, the outer ring 2120, and the rolling elements 2130 are subjected to surface modification such as forming a diamond-like carbon coating, forming an iron oxide ( Fe3O4 ) coating (performing a blackening treatment), and the like.
  • a rolling bearing 2100A is used in an axle device 2200, for example.
  • the axle device 2200 is, for example, an axle device of a wheel loader.
  • the axle device 2200 may be the axle device of a dump truck.
  • FIG. 10 is a cross-sectional view of the axle device 2200.
  • the axle device 2200 has a differential mechanism 2210 , a body case 2220 and a rotating shaft 2230 .
  • the differential mechanism 2210 is arranged inside the body case 2220 .
  • the differential mechanism 2210 has a gear case 2211a and a gear case 2211b, a spider 2212, a pinion gear 2213, a side gear 2214a and a side gear 2214b, a rotating shaft 2215a and a rotating shaft 2215b, and a ring gear 2216.
  • the gear case 2211a and the gear case 2211b are attached to the rotating shaft 2215a and the rotating shaft 2215b, respectively.
  • the body case 2220 has a partition wall 2221a and a partition wall 2221b.
  • Gear case 2211a and gear case 2211b are rotatably supported by main body case 2220 by rolling bearing 2100A. More specifically, inner ring 2110 is attached to gear case 2211a (gear case 2211b), and outer ring 2120 is attached to partition wall 2221a (partition wall 2221b).
  • the spider 2212 is arranged within a space defined by the gear case 2211a and the gear case 2211b.
  • Pinion gear 2213 is rotatably attached to spider 2212 .
  • the side gear 2214 a and the side gear 2214 b mesh with the pinion gear 2213 .
  • the side gear 2214a and the side gear 2214b are attached to the rotating shaft 2215a and the rotating shaft 2215b, respectively.
  • the ring gear 2216 is attached to the gear case 2211a. Ring gear 2216 is a bevel gear.
  • the rotating shaft 2230 has a pinion gear 2231 at its tip. Pinion gear 2231 meshes with ring gear 2216 .
  • Rotating shaft 2230 is rotatably supported within body case 2220 by a rolling bearing. By rotating the rotating shaft 2230, the rotation of the rotating shaft 2230 is transmitted to the rotating shaft 2215a via the pinion gear 2231, the ring gear 2216 and the gear case 2211a, thereby rotating the rotating shaft 2215a. Also, the rotation of the rotating shaft 2215a is transmitted to the rotating shaft 2215b via the side gear 2214a, the pinion gear 2213 and the side gear 2214b, and rotates the rotating shaft 2215b together with the gear case 2211b.
  • the rotation directions of the rotation shaft 2215a and the rotation shaft 2215b are changed. Therefore, in the rolling bearing 2100A, the inner ring 2110 rotates forward and backward with respect to the outer ring 2120 . Further, in the axle device 2200, the rotating shaft 2230 is repeatedly rotated and stopped, so in the rolling bearing 2100A, the inner ring 2110 is rotated with respect to the outer ring 2120 from a stationary state.
  • the rolling bearing 2100A is used under conditions where the oil film is likely to run out because the forward and reverse rotation of the inner ring 2110 with respect to the outer ring 2120 and the rotation of the inner ring 2110 from a stationary state with respect to the outer ring 2120 are repeated. More specifically, the rolling bearing 2100A is set under the condition that the oil film parameter ( ⁇ ) is less than 1.2 or the dn value (the inner diameter of the inner ring 2110 indicated in mm units multiplied by the number of revolutions of the inner ring 2110 indicated in rpm units). value) is 200,000 or less.
  • the surface of the inner ring 2110 (raceway surface 2110da) and the surface of the outer ring 2120 (raceway surface 2120ca) and the surface of the rolling element 2130 come into metal contact with each other, and wear causes the surface of the inner ring 2110 and the surface of the outer ring 2120 to come into contact with each other. and the surfaces of the rolling elements 2130 are likely to form new surfaces. Hydrogen is likely to be generated from the lubricating oil on the new surface, and this hydrogen penetrates from the new surface, causing hydrogen embrittlement on the surface of the inner ring 2110, the surface of the outer ring 2120, and the surface of the rolling element 2130.
  • the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 2110, the outer ring 2120 and the rolling elements 2130 is 50 ⁇ m. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
  • Rolling contact fatigue life test A rolling contact fatigue life test was conducted in order to confirm the effect of the bearing component according to the embodiment (the effect of suppressing the occurrence of hydrogen embrittlement). Samples 1, 2 and 3 were used for the rolling contact fatigue life test. Samples 1 to 3 are thrust ball bearings of type 51106 specified in JIS.
  • bearing washer inner ring and outer ring
  • bearing washer was formed of the second steel material.
  • Table 1 The compositions of the first steel material and the second steel material are shown in Table 1. As shown in Table 1, the ingredients of the first steel material and the second steel material are almost the same except for the contents of molybdenum and vanadium.
  • the second steel material corresponds to SUJ2, which is a high-carbon chromium bearing steel specified in JIS standards.
  • FIG. 11 is a graph showing the measurement results of the nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the raceway washer of Sample 1.
  • FIG. 12 is a graph showing the measurement results of the nitrogen concentration and the carbon concentration in the vicinity of the raceway surface of the raceway washer of Sample 2;
  • the horizontal axis in FIGS. 11 and 12 is the distance from the orbital plane (unit: mm), and the vertical axis in FIGS. 11 and 12 is the carbon or nitrogen concentration (unit: mass percent).
  • the surface of the washer was subjected to nitriding treatment.
  • the heating and holding temperature during this nitriding treatment was set to 850°C.
  • sample 3 the bearing washer surface was not subjected to nitriding treatment.
  • Table 2 shows the nitrogen concentration in the surface layer of the raceway washer of Samples 1 to 3 (the area up to 20 ⁇ m from the raceway surface). As shown in Table 2, the nitrogen concentration in the surface layer steel of the bearing washers of samples 1 and 2 was 0.3% or more and 0.5% or less. The nitrogen concentration in the surface layer steel of the washer of Sample 3 was 0.0%.
  • Quenching and tempering were performed on the bearing washers of samples 1 to 3.
  • the heating and holding temperature during quenching was set to 850°C.
  • the heating and holding temperature during tempering was set to 180°C.
  • the heating and holding time during tempering was set to 2 hours.
  • FIG. 13 is an SEM image of the surface layer of the bearing washer of Sample 1.
  • 14 is an SEM image of the surface layer of the bearing washer of sample 2.
  • white portions are precipitates, and oval gray portions are cementite.
  • the area ratio of precipitates in the surface layer steel of sample 1 was 2.7%.
  • the area ratio of precipitates in the surface layer steel of sample 2 was 1.6 percent. That is, in the surface layer portion of the bearing washer of Sample 1, the precipitates were dispersed at a higher density than in the surface layer portion of the bearing washer of Sample 2. From this comparison, it became clear that the addition of vanadium and molybdenum in an amount of 0.5% by mass or less resulted in a dense dispersion of precipitates in the surface layer steel of the bearing washer.
  • the maximum grain size of precipitates was 0.5 ⁇ m. In the surface layer portion of the bearing washer of sample 2, the maximum grain size of precipitates was 1.1 ⁇ m. That is, in the surface layer portion of the bearing washer of sample 1, compared with the surface layer portion of the bearing washer of sample 2, the precipitates were finely dispersed. From this comparison, it became clear that the addition of vanadium and molybdenum in an amount of 0.5% by mass or less resulted in a high density and fine dispersion of precipitates in the surface layer steel of the bearing washer.
  • the maximum grain size of cementite was 1.5 ⁇ m or less in the surface layers of the bearing washer of sample 1 and sample 2. In the surface layer portion of the bearing washer of sample 3, the maximum grain size of cementite exceeded 1.5 ⁇ m.
  • the volume ratio of retained austenite in the steel was 15% or more at the position where the distance from the raceway surface was 50 ⁇ m.
  • the volume ratio of retained austenite in the steel was less than 15% at the position where the distance from the raceway surface was 50 ⁇ m.
  • the hardness of the steel was 58 HRC or more at the position where the distance from the raceway surface was 50 ⁇ m.
  • FIG. 15 is an EBSD phase map of the surface layer of the bearing washer of sample 1.
  • FIG. 16 is a phase map of EBSD in the surface layer of the bearing washer of sample 2.
  • FIG. 17 is an EBSD phase map of the surface layer of the bearing washer of Sample 3.
  • martensite block grains are white.
  • FIG. 18 is a bar graph showing the average grain size of martensite block grains in the surface layer portion of bearing washer of Samples 1 to 3.
  • FIG. The vertical axis of the graph in FIG. 18 is the average grain size (unit: ⁇ m) of martensite block grains.
  • the average grain size of martensite block grains at a comparative area ratio of 30% was 2.0 ⁇ m or less.
  • the average grain size of martensite block grains at a comparative area ratio of 30% exceeded 2.0 ⁇ m.
  • the average grain size of martensite block grains at a comparative area ratio of 50% was 1.5 ⁇ m or less.
  • the average grain size of martensite block grains at a comparative area ratio of 50% exceeded 1.5 ⁇ m.
  • Fig. 19 is a graph showing the results of the rolling contact fatigue life test.
  • the horizontal axis of the graph in FIG. 19 indicates life (unit: hours), and the vertical axis of the graph in FIG. 19 indicates cumulative damage probability (unit: percent).
  • the rolling contact fatigue life test was conducted under the conditions shown in Table 6. That is, the maximum contact surface pressure between the rolling elements and the washer is 2.3 GPa, the washer is rapidly accelerated and decelerated between 0 rpm and 2500 rpm, and the lubricating fluid is polyglycol oil. was added with pure water.
  • Sample 1 exhibited better rolling contact fatigue life than Sample 2. More specifically, the L10 life of sample 1 (the life at which the cumulative failure probability reaches 10 percent) is 2.7 times the L10 life of sample 3 , and the L10 life of sample 2 is the L10 life of sample 3. It was 2.1 times the 10 life.
  • the average grain size of martensite grains at a comparative area ratio of 30% was 2.0 ⁇ m or less.
  • the average grain size of martensite grains at a comparative area ratio of 30% exceeded 2.0 ⁇ m. From this comparison, it became clear that the bearing component according to the embodiment has improved durability.
  • the precipitates were dispersed finer and more densely than in the surface layer portion of the bearing washer of sample 2. From this comparison, it is clear that the durability of the bearing component according to the embodiment is further improved by setting the area ratio and maximum grain size of precipitates in the surface layer to 2.0% or more and 0.5 ⁇ m or less, respectively. Became.
  • the L 10 life of sample 2 was longer than the L 10 life of sample 3.
  • the maximum grain size of cementite in the surface layer of the washer of sample 2 was 1.5 ⁇ m or less, while the maximum grain size of cementite in the surface layer of the washer of sample 3 exceeded 1.5 ⁇ m. rice field.
  • the volume ratio of retained austenite at the position where the distance from the raceway surface is 50 ⁇ m is 15% or more, while in the bearing washer of sample 3, the distance from the raceway surface is 50 ⁇ m.
  • the volume fraction of retained austenite at the location was less than 15 percent.
  • raceway washer inner ring and outer ring
  • raceway members of samples 1 and 3 were evaluated by the following method.
  • the raceway members of Sample 1 and Sample 3 before being subjected to the rolling contact fatigue life test were heated from room temperature to 400° C., so that the rolling contact fatigue life test was performed. was measured.
  • This embodiment is particularly advantageously applied to bearing components and rolling bearings having the same.

Abstract

Provided is a rolling bearing that exhibits an improved resistance to hydrogen embrittlement. The rolling bearing is provided with a bearing component. The bearing component is made of steel and has a surface layer region, which is the region to a distance of 20 µm from the surface. The steel contains 0.70-1.10 mass% carbon, 0.15-0.35 mass% silicon, 0.30-0.60 mass% manganese, 1.30-1.60 mass% chromium, not more than 0.50 mass% vanadium, and not more than 0.50 mass% molybdenum, with the balance being iron and unavoidable impurities.

Description

転がり軸受rolling bearing
 本発明は、転がり軸受に関する。 The present invention relates to rolling bearings.
 特許文献1(特許第5489111号公報)には、軸受部品が記載されている。特許文献1に記載の軸受部品は、鋼製の加工対象部材に対して、浸窒、焼入れ及び焼戻しを行うことにより形成されている。特許文献1に記載の軸受部品では、表層部の鋼中にセメンタイトが分散されているため、高い耐摩耗性を有している。 Patent Document 1 (Patent No. 5489111) describes a bearing component. The bearing component described in Patent Document 1 is formed by performing nitriding, quenching, and tempering on a steel member to be processed. The bearing component described in Patent Document 1 has high wear resistance because cementite is dispersed in the steel of the surface layer.
 特許文献2(特許第6023422号公報)には、軸受部品が記載されている。特許文献2に記載の軸受部品は、鋼製の加工対象部材に対して、浸窒、焼入れ及び焼戻しを行うことにより形成されている。特許文献2に記載の軸受部品では、表層部の鋼中における残留オーステナイト量が大きいため、異物混入潤滑下における圧痕起点型剥離に対する耐久性が高い。 Patent Document 2 (Patent No. 6023422) describes a bearing component. The bearing component described in Patent Document 2 is formed by performing nitriding, quenching, and tempering on a steel member to be processed. In the bearing component described in Patent Document 2, since the amount of retained austenite in the steel of the surface layer is large, the durability against indentation-induced flaking under lubrication mixed with foreign matter is high.
 特許文献3(特開2007-263357号公報)には、風力発電機用増速機が記載されている。特許文献3に記載の風力発電機用増速機は、遊星歯車装置を備えている。遊星歯車装置では、遊星歯車が軸受を介して遊星軸に回転自在に支持されている。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-263357) describes a gearbox for a wind power generator. A speed increaser for a wind power generator described in Patent Document 3 includes a planetary gear device. In a planetary gear device, planetary gears are rotatably supported by planetary shafts via bearings.
特許第5489111号公報Japanese Patent No. 5489111 特許第6023422号公報Japanese Patent No. 6023422 特開2007-263357号公報JP 2007-263357 A
 本発明者らが鋭意検討したところ、特許文献1に記載の軸受部品及び特許文献2に記載の軸受部品は、耐久性にさらに改善の余地がある。特に、特許文献1に記載の軸受部品及び特許文献2に記載の軸受部品を用いた転がり軸受を、特許文献3に記載の風力発電機用増速機に適用した場合など、油膜切れが生じやすい条件下で使用される場合の耐久性に改善の余地がある。具体的には、風力発電機用増速機に使用される転がり軸受には、20年以上の設計寿命が要求される。そこで、当該転がり軸受としては、負荷容量を大きくするため転動体サイズの大きな軸受が用いられる。一方、風力発電機では気象条件によって発電トルクが変動し、転がり軸受に負荷される荷重も変動する。このとき、転がり軸受に負荷される当該荷重が、転動体が転がるために必要な必要最小限荷重に満たない場合が発生する。このとき、転がり軸受において転動体と軌道面との間に滑りが発生する場合がある。当該滑りにより、転動体と軌道面との間に油膜切れが生じ、金属接触が発生する場合がある。この結果、転動体または軌道面には新生面が発生する。このような新生面から転動体などを構成する鋼材の内部に水素が侵入すると、水素脆性に起因した早期剥離が生じやすい。 As a result of extensive studies by the present inventors, the bearing components described in Patent Document 1 and Patent Document 2 have room for further improvement in durability. In particular, when the rolling bearing using the bearing component described in Patent Document 1 and the bearing component described in Patent Document 2 is applied to the gearbox for a wind power generator described in Patent Document 3, the oil film is likely to run out. There is room for improvement in durability when used under conditions. Specifically, a rolling bearing used in a gearbox for a wind power generator is required to have a design life of 20 years or more. Therefore, as the rolling bearing, a bearing having a large rolling element size is used in order to increase the load capacity. On the other hand, in wind power generators, the power generation torque fluctuates depending on weather conditions, and the load applied to the rolling bearings also fluctuates. At this time, the load applied to the rolling bearing may be less than the minimum required load for the rolling elements to roll. At this time, slippage may occur between the rolling elements and the raceway surface in the rolling bearing. Due to the slippage, oil film breakage may occur between the rolling elements and the raceway surface, resulting in metal-to-metal contact. As a result, new surfaces are generated on the rolling elements or raceway surfaces. When hydrogen penetrates into the inside of the steel material that constitutes the rolling element or the like from such a new surface, premature flaking due to hydrogen embrittlement is likely to occur.
 また、当用途では、主として、増速機において、遊星歯車を支持する円筒ころ軸受、出力軸を支持する円筒ころ軸受が用いられる。遊星歯車を支持する円筒ころ軸受においては、変形し転動体のスキューや片当たりにより比較的滑りが発生しやすい場合がある。また、高速回転する出力軸を支持する円筒ころ軸受においては、高速回転で使用されることから、回転速度やトルク変動(軸受荷重)に追従できず、軸受の転動体と軌道面との間で滑りが発生し摩耗が促進され水素脆性剥離が生じやすい条件となる場合がある。 In addition, in this application, cylindrical roller bearings that support the planetary gears and cylindrical roller bearings that support the output shaft are mainly used in the gearbox. Cylindrical roller bearings that support planetary gears may be relatively prone to slippage due to skew and uneven contact of rolling elements due to deformation. In addition, since cylindrical roller bearings that support output shafts that rotate at high speeds are used at high speeds, they are unable to follow rotational speed and torque fluctuations (bearing load). In some cases, slip occurs and wear is accelerated, creating conditions that facilitate hydrogen embrittlement flaking.
 風力発電の場合、風の状況によっては、長い間、回転せずに停止している場合もある。その場合、軸受への給油が停止し、軸受中に潤滑油が殆どない状態になってしまっている。このような、長時間停止状態にあって潤滑油が殆どない状態となっている軸受が、風の状況の変化によって突然に回転することになる。そのため潤滑不良により、金属接触が発生し、水素脆性が発生しやすい状況になることもある。 In the case of wind power generation, depending on the wind conditions, it may stop without rotating for a long time. In this case, the supply of oil to the bearing is stopped, leaving almost no lubricating oil in the bearing. Such a bearing, which has been at rest for a long time and is almost depleted of lubrication, will suddenly rotate due to a change in wind conditions. As a result, poor lubrication may lead to metal contact, making hydrogen embrittlement more likely to occur.
 上述の軌道面と転動体の滑りや潤滑状態によって生じる水素脆性はく離は、風力発電設備、機器、それらに使用する軸受の設計段階で予知することが極めて困難であり、また軸受などの構造面での対策も難しい。一方で、耐水素脆性を改善し、風力発電設備の信頼性を向上させたいニーズもあり、軸受に表面処理を施して対応する場合がある。 Hydrogen embrittlement flaking caused by slippage and lubrication of the raceway surface and rolling elements described above is extremely difficult to predict at the design stage of wind turbine equipment, equipment, and bearings used in them. measures are also difficult. On the other hand, there is also a need to improve the resistance to hydrogen embrittlement and improve the reliability of wind power generation equipment, and this is sometimes addressed by applying surface treatment to bearings.
 本発明は、水素脆性に対する耐久性を改善するものである。 The present invention improves durability against hydrogen embrittlement.
 本発明の転がり軸受は、軸受部品を備える。軸受部品は、鋼製であり、かつ、表面からの距離が20μmまでの領域である表層部を有している。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物である。表層部の鋼は、マルテンサイトブロック粒と、析出物とを有する。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。表層部の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。 The rolling bearing of the present invention includes bearing components. The bearing component is made of steel and has a surface layer which is an area up to 20 μm away from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance being iron and unavoidable impurities. The surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less.
 上記転がり軸受において、軸受部品は、内輪と、外輪と、転動体とを含んでもよい。転がり軸受は、風力発電機用増速機の構成部材を支持してもよい。すなわち、本発明の第1態様に係る転がり軸受は、内輪と、外輪と、転動体とを備える。転がり軸受は、風力発電機用増速機の構成部材を支持する。内輪、外輪及び転動体の少なくともいずれかは、鋼製であり、かつ、表面からの距離が20μmまでの領域である表層部を有している。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物である。表層部の鋼は、マルテンサイトブロック粒と、析出物とを有する。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。表層部の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。 In the above rolling bearing, the bearing component may include an inner ring, an outer ring, and rolling elements. The rolling bearing may support a component of a wind turbine gearbox. That is, a rolling bearing according to a first aspect of the present invention includes an inner ring, an outer ring, and rolling elements. The rolling bearing supports the components of the gearbox for the wind power generator. At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 μm from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance being iron and unavoidable impurities. The surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less.
 上記転がり軸受は、静定格荷重に対する、等価荷重の割合が0.04%以下となる条件で使用されてもよい。上記転がり軸受は、油膜パラメータが0.5以上10以下となる条件で使用されてもよい。 The above rolling bearing may be used under conditions where the ratio of equivalent load to static load rating is 0.04% or less. The rolling bearing may be used under the condition that the oil film parameter is 0.5 or more and 10 or less.
 上記転がり軸受は、円錐ころ軸受、自動調心ころ軸受、深溝玉軸受、四点接触玉軸受などを含む玉軸受など、各種の転がり軸受であってもよい。上記転がり軸受では、表面には浸窒処理が行われていてもよい。 The rolling bearings may be various rolling bearings such as ball bearings including tapered roller bearings, self-aligning roller bearings, deep groove ball bearings, four-point contact ball bearings, and the like. The surface of the rolling bearing may be subjected to nitriding treatment.
 上記転がり軸受において、軸受部品は、内方部材、外方部材及び転動体の少なくともいずれかを含んでもよい。転がり軸受は、変速機に用いられてもよい。すなわち、本発明の第2態様に係る転がり軸受は、内方部材、外方部材及び転動体の少なくともいずれかを備え、変速機に用いられる。内方部材、外方部材及び転動体の少なくともいずれかは、鋼製であり、かつ、表面からの距離が20μmまでの領域である表層部を有する。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ、残部が鉄及び不可避不純物である。表層部の鋼は、マルテンサイトブロック粒と、析出物とを有する。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。表層部の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。 In the above rolling bearing, the bearing component may include at least one of an inner member, an outer member, and rolling elements. Rolling bearings may be used in transmissions. That is, a rolling bearing according to a second aspect of the present invention includes at least one of an inner member, an outer member, and rolling elements, and is used in a transmission. At least one of the inner member, the outer member, and the rolling elements is made of steel and has a surface layer portion that is a region with a distance of up to 20 μm from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance is iron and unavoidable impurities. The surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less.
 上記転がり軸受において、軸受部品は、転動体と内方部材及び外方部材の少なくともいずれかとを含んでもよい。すなわち、上記転がり軸受は、転動体と内方部材及び外方部材の少なくともいずれかとを備えていてもよい。転動体の転動面と内方部材の軌道面又は外方部材の軌道面との合成粗さが、0.06μm以上であってもよい。 In the above rolling bearing, the bearing component may include rolling elements and at least one of the inner member and the outer member. That is, the rolling bearing may include rolling elements and at least one of the inner member and the outer member. A combined roughness of the rolling surface of the rolling element and the raceway surface of the inner member or the raceway surface of the outer member may be 0.06 μm or more.
 上記転がり軸受において、軸受部品は、内輪と、外輪と、転動体とを含んでもよい。転がり軸受は、変速機に用いられてもよい。すなわち、本発明の第3態様に係る転がり軸受は、内輪と、外輪と、転動体とを備え、変速機に用いられる。内輪、外輪及び転動体の少なくともいずれかは、鋼製であり、かつ表面からの距離が20μmまでの領域である表層部を有している。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ、残部が鉄及び不可避不純物である。表層部の鋼は、マルテンサイトブロック粒と、析出物とを有する。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。表層部の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。 In the above rolling bearing, the bearing component may include an inner ring, an outer ring, and rolling elements. Rolling bearings may be used in transmissions. That is, a rolling bearing according to a third aspect of the present invention includes an inner ring, an outer ring, and rolling elements, and is used in a transmission. At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 μm from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance is iron and unavoidable impurities. The surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less.
 上記転がり軸受では、転動体の転動面と内輪の軌道面又は外輪の軌道面との合成粗さが0.06μm以上であってもよい。 In the above rolling bearing, the combined roughness of the rolling surface of the rolling element and the raceway surface of the inner ring or the raceway surface of the outer ring may be 0.06 μm or more.
 上記転がり軸受において、軸受部品は、内輪と、外輪と、転動体とを含んでもよい。転がり軸受は、内輪が外輪に対して正逆回転される又は内輪が静止状態から外輪に対して回転される機械構造に取り付けられてもよい。すなわち、本発明の第4形態に係る転がり軸受は、内輪と、外輪と、転動体とを備える。転がり軸受は、内輪が外輪に対して正逆回転される又は内輪が静止状態から外輪に対して回転される機械構造に取り付けられる。内輪、外輪及び転動体の少なくともいずれかは、鋼製であり、かつ、表面からの距離が20μmまでの領域である表層部を有している。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物である。表層部の鋼は、マルテンサイトブロック粒と、析出物とを有する。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。表層部の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。 In the above rolling bearing, the bearing component may include an inner ring, an outer ring, and rolling elements. A rolling bearing may be mounted in a mechanical structure in which the inner ring is rotated in opposite directions relative to the outer ring, or in which the inner ring is rotated relative to the outer ring from rest. That is, the rolling bearing according to the fourth aspect of the present invention includes an inner ring, an outer ring, and rolling elements. Rolling bearings are mounted in mechanical structures in which the inner ring is rotated in opposite directions relative to the outer ring, or in which the inner ring is rotated relative to the outer ring from rest. At least one of the inner ring, the outer ring and the rolling elements is made of steel and has a surface layer portion which is a region with a distance of up to 20 μm from the surface. The steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30 mass percent or more and 1.60 mass percent or less of chromium, 0.50 mass percent or less of vanadium, and 0.50 mass percent or less of molybdenum, and the balance being iron and unavoidable impurities. The surface layer steel has martensite block grains and precipitates. The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium. In the steel of the surface layer portion, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less.
 上記転がり軸受は、油膜パラメータが1.2未満となる条件で使用されてもよい。上記転がり軸受は、dn値が200000以下となる条件で使用されてもよい。 The above rolling bearing may be used under conditions where the oil film parameter is less than 1.2. The rolling bearing may be used under the condition that the dn value is 200,000 or less.
 上記転がり軸受は、円錐ころ軸受であってもよい。上記転がり軸受は、自動調心ころ軸受であってもよい。上記転がり軸受では、表面にダイヤモンドライクカーボン被膜又は酸化鉄被膜が形成されていてもよい。 The rolling bearing may be a tapered roller bearing. The rolling bearing may be a self-aligning roller bearing. A diamond-like carbon coating or an iron oxide coating may be formed on the surface of the rolling bearing.
 上記転がり軸受では、鋼が、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムと、0.10質量パーセント以上0.30質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物であってもよい。 In the rolling bearing, the steel contains 0.90 mass percent or more and 1.10 mass percent or less of carbon, 0.20 mass percent or more and 0.30 mass percent or less of silicon, and 0.40 mass percent or more and 0.50 mass percent. 1.40 to 1.60 mass percent chromium, 0.20 to 0.30 mass percent vanadium, and 0.10 to 0.30 mass percent of molybdenum, and the balance may be iron and unavoidable impurities.
 上記転がり軸受では、表層部の鋼中における析出物の面積率が、2.0パーセント以上であってもよい。 In the above rolling bearing, the area ratio of precipitates in the steel of the surface layer portion may be 2.0% or more.
 上記転がり軸受では、表層部の鋼中において、析出物の最大粒径が、0.5μm以下であってもよい。 In the rolling bearing, the maximum grain size of precipitates in the steel of the surface layer may be 0.5 μm or less.
 上記転がり軸受では、表層部の鋼が、セメンタイトをさらに有していてもよい。表層部の鋼中において、セメンタイトの最大粒径は、1.5μm以下であってもよい。 In the rolling bearing, the surface steel may further contain cementite. The maximum grain size of cementite in the steel of the surface layer portion may be 1.5 μm or less.
 上記転がり軸受では、表層部の鋼中における窒素濃度が、0.15質量パーセント以上であってもよい。 In the rolling bearing, the nitrogen concentration in the steel of the surface layer may be 0.15% by mass or more.
 上記転がり軸受では、表面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が、15パーセント以上であってもよい。 In the above rolling bearing, the volume ratio of retained austenite in the steel may be 15% or more at a position where the distance from the surface is 50 μm.
 上記転がり軸受では、表面からの距離が50μmとなる位置において、鋼の硬さが、58HRC以上であってもよい。  In the above rolling bearing, the steel may have a hardness of 58 HRC or more at a position where the distance from the surface is 50 µm.
 上記転がり軸受では、表面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が、25パーセント以上35パーセント以下であってもよい。表面からの距離が50μmとなる位置において、鋼の硬さが、58HRC以上64HRC以下であってもよい。 In the above rolling bearing, the volume ratio of retained austenite in the steel may be 25% or more and 35% or less at a position where the distance from the surface is 50 μm. The hardness of the steel may be 58 HRC or more and 64 HRC or less at the position where the distance from the surface is 50 μm.
 本発明の転がり軸受によると、水素脆性に対する耐久性を改善することができる。 According to the rolling bearing of the present invention, durability against hydrogen embrittlement can be improved.
内輪10の断面図である。3 is a cross-sectional view of an inner ring 10; FIG. 図1中のIIにおける拡大図である。It is an enlarged view in II in FIG. 内輪10の製造方法を示す工程図である。4A to 4C are process diagrams showing a method of manufacturing the inner ring 10. FIG. 転がり軸受100の断面図である。1 is a cross-sectional view of a rolling bearing 100; FIG. 転がり軸受100Aの断面図である。It is a sectional view of rolling bearing 100A. 風力発電機用増速機300の断面図である。FIG. 3 is a cross-sectional view of the gearbox 300 for the wind power generator; 遊星歯車変速機1200の部分断面図である。12 is a partial cross-sectional view of planetary gear transmission 1200. FIG. 変速機1300の断面図である。13 is a cross-sectional view of transmission 1300. FIG. 転がり軸受2100Aの断面図である。It is a sectional view of rolling bearing 2100A. アスクル装置2200の断面図である。FIG. 4 is a cross-sectional view of the axle device 2200; サンプル1の軌道盤の軌道面近傍における窒素濃度及び炭素濃度の測定結果を示すグラフである。4 is a graph showing measurement results of nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the bearing washer of Sample 1. FIG. サンプル2の軌道盤の軌道面近傍における窒素濃度及び炭素濃度の測定結果を示すグラフである。7 is a graph showing measurement results of nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the raceway washer of sample 2; サンプル1の軌道盤の表層部におけるSEM画像である。4 is an SEM image of the surface layer portion of the bearing washer of Sample 1. FIG. サンプル2の軌道盤の表層部におけるSEM画像である。4 is an SEM image of the surface layer portion of the bearing washer of Sample 2. FIG. サンプル1の軌道盤の表層部におけるEBSDの相マップである。4 is a phase map of EBSD in the surface layer portion of the bearing washer of Sample 1. FIG. サンプル2の軌道盤の表層部におけるEBSDの相マップである。4 is a phase map of EBSD in the surface layer portion of the bearing washer of Sample 2. FIG. サンプル3の軌道盤の表層部におけるEBSDの相マップである。3 is a phase map of EBSD in the surface layer portion of the bearing washer of sample 3. FIG. サンプル1~サンプル3の軌道盤の表層部におけるマルテンサイトブロック粒の平均粒径を示す棒グラフである。3 is a bar graph showing the average grain size of martensite block grains in surface layer portions of bearing washers of Samples 1 to 3. FIG. 転動疲労寿命試験の結果を示すグラフである。It is a graph which shows the result of a rolling contact fatigue life test.
 本発明の実施形態の詳細を、図面を参照しながら説明する。ここでは、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。 Details of embodiments of the present invention will be described with reference to the drawings. Here, the same reference numerals are given to the same or corresponding parts, and redundant description will not be repeated.
 実施形態に係る軸受部品は、例えば、転がり軸受の内輪10である。以下においては、内輪10を実施形態に係る軸受部品の例として説明する。但し、実施形態に係る軸受部品は、これに限られない。実施形態に係る軸受部品は、転がり軸受の外輪又は転がり軸受の転動体であってもよい。 A bearing component according to the embodiment is, for example, an inner ring 10 of a rolling bearing. In the following, the inner ring 10 will be described as an example of the bearing component according to the embodiment. However, the bearing component according to the embodiment is not limited to this. A bearing component according to an embodiment may be an outer ring of a rolling bearing or a rolling element of a rolling bearing.
 (内輪10の構成)
 図1は、内輪10の断面図である。図1に示されるように、内輪10は、リング状である。内輪10の中心軸を、中心軸Aとする。内輪10は、幅面10aと、幅面10bと、内周面10cと、外周面10dとを有している。幅面10a、幅面10b、内周面10c及び外周面10dは、内輪10の表面を構成している。
(Configuration of inner ring 10)
FIG. 1 is a cross-sectional view of the inner ring 10. FIG. As shown in FIG. 1, the inner ring 10 is ring-shaped. Let the central axis of the inner ring 10 be central axis A. As shown in FIG. The inner ring 10 has a width surface 10a, a width surface 10b, an inner peripheral surface 10c, and an outer peripheral surface 10d. The width surface 10a, the width surface 10b, the inner peripheral surface 10c, and the outer peripheral surface 10d form the surface of the inner ring 10. As shown in FIG.
 以下においては、中心軸Aの方向を、軸方向とする。また、以下においては、軸方向に沿って見た際に中心軸Aを中心とする円周に沿う方向を、周方向とする。さらに、以下においては、軸方向に直交する方向を、径方向とする。 In the following, the direction of the central axis A is defined as the axial direction. Also, hereinafter, the direction along the circumference centered on the central axis A when viewed in the axial direction is defined as the circumferential direction. Furthermore, in the following description, the direction orthogonal to the axial direction is defined as the radial direction.
 幅面10a及び幅面10bは、軸方向における内輪10の端面である。幅面10bは、軸方向における幅面10aの反対面である。 The width surface 10a and the width surface 10b are end surfaces of the inner ring 10 in the axial direction. The width surface 10b is the opposite surface of the width surface 10a in the axial direction.
 内周面10cは、周方向に延在している。内周面10cは、中心軸A側を向いている。内周面10cは、軸方向における一方端で幅面10aに連なっており、軸方向における他方端で幅面10bに連なっている。内輪10は、内周面10cにおいて、軸(図示せず)に嵌め合わされる。 The inner peripheral surface 10c extends in the circumferential direction. The inner peripheral surface 10c faces the central axis A side. One end in the axial direction of the inner peripheral surface 10c is continuous with the width surface 10a, and the other end in the axial direction is continuous with the width surface 10b. The inner ring 10 is fitted to a shaft (not shown) at the inner peripheral surface 10c.
 外周面10dは、周方向に延在している。外周面10dは、中心軸Aとは反対側を向いている。すなわち、外周面10dは、径方向における内周面10cの反対面である。外周面10dは、軸方向における一方端で幅面10aに連なっており、軸方向における他方端で幅面10bに連なっている。 The outer peripheral surface 10d extends in the circumferential direction. 10 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 10d is the opposite surface of the inner peripheral surface 10c in the radial direction. One end in the axial direction of the outer peripheral surface 10d is continuous with the width surface 10a, and the other end in the axial direction is continuous with the width surface 10b.
 外周面10dは、軌道面10daを有している。軌道面10daは、周方向に延在している。外周面10dは、軌道面10daにおいて、内周面10c側に窪んでいる。断面視において、軌道面10daは、部分円形状である。軌道面10daは、軸方向において外周面10dの中央にある。軌道面10daは、転動体(図1中において図示せず)に接触する外周面10dの一部である。 The outer peripheral surface 10d has a raceway surface 10da. The raceway surface 10da extends in the circumferential direction. The outer peripheral surface 10d is recessed toward the inner peripheral surface 10c on the raceway surface 10da. In a cross-sectional view, the raceway surface 10da has a partially circular shape. The raceway surface 10da is located in the center of the outer peripheral surface 10d in the axial direction. The raceway surface 10da is a portion of the outer peripheral surface 10d that contacts the rolling elements (not shown in FIG. 1).
 内輪10は、鋼製である。より具体的には、内輪10は、焼入れ及び焼戻しが行われている鋼製である。内輪10を構成している鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素、0.15質量パーセント以上0.35質量パーセント以下のシリコン、0.30質量パーセント以上0.60質量パーセント以下のマンガン、1.30質量パーセント以上1.60質量パーセント以下のクロム、0.50質量パーセント以下のバナジウム及び0.50質量パーセント以下のモリブデンを含んでいる。なお、この鋼では、モリブデンの含有量は0.01質量パーセント以上であり、バナジウムの含有量は0.01質量パーセント以上である。 The inner ring 10 is made of steel. More specifically, the inner ring 10 is made of steel that has been hardened and tempered. The steel forming the inner ring 10 contains 0.70 mass percent or more and 1.10 mass percent or less of carbon, 0.15 mass percent or more and 0.35 mass percent or less of silicon, and 0.30 mass percent or more and 0.60 mass percent. 1.30 to 1.60 weight percent chromium, 0.50 weight percent or less vanadium, and 0.50 weight percent or less molybdenum. In this steel, the content of molybdenum is 0.01% by mass or more, and the content of vanadium is 0.01% by mass or more.
 内輪10を構成している鋼中の炭素が0.70質量パーセント以上であるのは、硬さを改善するためである。内輪10を構成している鋼中の炭素が1.10質量パーセント以下であるのは、焼割れを抑制するためである。 The reason why the carbon content in the steel forming the inner ring 10 is 0.70% by mass or more is to improve the hardness. The reason why the carbon content in the steel forming the inner ring 10 is 1.10% by mass or less is to suppress quench cracking.
 内輪10を構成している鋼中のシリコンが0.15質量パーセント以上であるのは、焼戻し軟化抵抗を高めるため及び加工性を改善するためである。内輪10を構成している鋼中のシリコンが0.35質量パーセント以下であるのは、シリコン量が過剰となると加工性がかえって低下するためである。 The reason why the silicon content in the steel forming the inner ring 10 is 0.15% by mass or more is to increase temper softening resistance and to improve workability. The reason why the silicon content in the steel forming the inner ring 10 is 0.35% by mass or less is that an excessive amount of silicon lowers workability.
 内輪10を構成している鋼中のマンガンが0.30質量パーセント以上であるのは、焼入れ性確保のためである。内輪10を構成している鋼中のマンガンが0.60質量パーセント以下であるのは、マンガン量が過剰となると鋼中にマンガン系の非金属介在物が増加するためである。 The content of manganese in the steel forming the inner ring 10 is 0.30% by mass or more to ensure hardenability. The reason why the content of manganese in the steel forming the inner ring 10 is 0.60% by mass or less is that an excessive amount of manganese increases manganese-based non-metallic inclusions in the steel.
 内輪10を構成している鋼中のクロムが1.30質量パーセント以上であるのは、焼入れ性を確保するため並びに窒化物及び炭窒化物を形成させるためである。内輪10を構成している鋼中のクロムが1.60質量パーセント以下であるのは、粗大な析出物が形成されることを抑制するためである。 The reason why the content of chromium in the steel forming the inner ring 10 is 1.30% by mass or more is to ensure hardenability and to form nitrides and carbonitrides. The reason why the content of chromium in the steel forming the inner ring 10 is 1.60% by mass or less is to suppress the formation of coarse precipitates.
 内輪10を構成している鋼中にバナジウムが含まれているのは、窒化物及び炭窒化物を微細化するためである。内輪10を構成している鋼中のバナジウムが0.50質量パーセント以下であるのは、バナジウム添加に伴うコスト増大を抑制するためである。 The reason why the steel forming the inner ring 10 contains vanadium is to refine nitrides and carbonitrides. The reason why the vanadium content in the steel forming the inner ring 10 is 0.50% by mass or less is to suppress an increase in cost due to the addition of vanadium.
 内輪10を構成している鋼中にモリブデンが含まれているのは、窒化物及び炭窒化物を微細化するため並びに焼入れ性の改善のためである。内輪10を構成している鋼中のモリブデンが0.50質量パーセント以下であるのは、モリブデン添加に伴うコスト増大を抑制するためである。 The reason why molybdenum is contained in the steel forming the inner ring 10 is to refine nitrides and carbonitrides and to improve hardenability. The reason why the molybdenum content in the steel forming the inner ring 10 is 0.50% by mass or less is to suppress an increase in cost due to the addition of molybdenum.
 内輪10を構成している鋼は、0.90質量パーセント以上1.10質量パーセント以下の炭素、0.20質量パーセント以上0.30質量パーセント以下のシリコン、0.40質量パーセント以上0.50質量パーセント以下のマンガン、1.40質量パーセント以上1.60質量パーセント以下のクロム、0.20質量パーセント以上0.30質量パーセント以下のバナジウム、0.10質量パーセント以上0.30質量パーセント以下のモリブデンを含んでいてもよい。なお、内輪10を構成している鋼の残部は、鉄及び不可避不純物である。 The steel forming the inner ring 10 contains 0.90 mass percent or more and 1.10 mass percent or less of carbon, 0.20 mass percent or more and 0.30 mass percent or less of silicon, and 0.40 mass percent or more and 0.50 mass percent. 1.40 to 1.60 mass percent chromium, 0.20 to 0.30 mass percent vanadium, and 0.10 to 0.30 mass percent molybdenum may contain. The rest of the steel forming the inner ring 10 is iron and unavoidable impurities.
 図2は、図1中のIIにおける拡大図である。図2に示されるように、内輪10では、表面からの距離が20μmまでの領域が、表層部11になっている。内輪10の表面に対しては、例えば、浸窒処理が行われている。その結果、表層部11の鋼中における窒素濃度は、例えば、0.15質量パーセント以上になっている。表層部11の鋼中における窒素濃度は、0.20質量パーセント以上0.30質量パーセント以下であることが好ましい。表層部11の鋼中における窒素濃度は、EPMA(Electron Probe Micro Analyzer)を用いて測定される。 FIG. 2 is an enlarged view of II in FIG. As shown in FIG. 2 , in the inner ring 10 , a region up to 20 μm from the surface is the surface layer portion 11 . For example, the surface of the inner ring 10 is subjected to nitriding treatment. As a result, the nitrogen concentration in the steel of the surface layer portion 11 is, for example, 0.15% by mass or more. The nitrogen concentration in the steel of the surface layer portion 11 is preferably 0.20% by mass or more and 0.30% by mass or less. The nitrogen concentration in the steel of the surface layer portion 11 is measured using an EPMA (Electron Probe Micro Analyzer).
 表層部11の鋼中には、析出物が分散している。析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物である。 Precipitates are dispersed in the steel of the surface layer portion 11 . The precipitates are nitrides based on chromium or vanadium or carbonitrides based on chromium or vanadium.
 クロム(バナジウム)を主成分とする窒化物は、クロム(バナジウム)の窒化物又は当該窒化物中のクロム(バナジウム)のサイトの一部がクロム(バナジウム)以外の合金元素により置換されているものである。 Chromium (vanadium) nitrides are nitrides of chromium (vanadium) or those in which some of the chromium (vanadium) sites in the nitrides are replaced by alloying elements other than chromium (vanadium). is.
 クロム(バナジウム)を主成分とする炭窒化物は、クロム(バナジウム)の炭化物中の炭素のサイトの一部が窒素により置換されているものである。クロム(バナジウム)を主成分とする炭窒化物のクロム(バナジウム)のサイトは、クロム(バナジウム)以外の合金元素により置換されていてもよい。 Carbonitrides whose main component is chromium (vanadium) are those in which some of the carbon sites in the chromium (vanadium) carbides are replaced with nitrogen. The chromium (vanadium) sites of the carbonitride containing chromium (vanadium) as a main component may be substituted with an alloying element other than chromium (vanadium).
 表層部11の鋼中において、析出物の面積率は、2.0パーセント以下であることが好ましい。表層部11の鋼中において、析出物の最大粒径は、0.5μm以下であることが好ましい。 The area ratio of precipitates in the steel of the surface layer portion 11 is preferably 2.0% or less. The maximum grain size of precipitates in the steel of the surface layer portion 11 is preferably 0.5 μm or less.
 表層部11の鋼中における析出物の面積率及び最大粒径は、以下の方法により測定される。第1に、表層部11を含む内輪10の断面において、SEM(Scanning Electron Microscope)を用いて断面画像(以下「SEM画像」とする)が取得される。このSEM画像を取得する際の倍率は、15000倍とされる。 The area ratio and maximum grain size of precipitates in the steel of the surface layer 11 are measured by the following methods. First, a cross-sectional image (hereinafter referred to as “SEM image”) is acquired using a SEM (Scanning Electron Microscope) in a cross section of the inner ring 10 including the surface layer portion 11 . The magnification for acquiring this SEM image is 15000 times.
 第2に、取得されたSEM画像に対して、画像処理が行われる。より具体的には、SEM画像中において析出物は白色に見えるため、SEM画像中において白色になっている部分の各々の面積及び合計の面積を、画像処理により算出する。 Second, image processing is performed on the acquired SEM image. More specifically, since the precipitate appears white in the SEM image, the area of each of the white portions in the SEM image and the total area are calculated by image processing.
 SEM画像中において白色になっている部分の合計面積は、表層部11の鋼中における析出物の面積率と見做される。SEM画像中において白色になっている各々の部分の面積の最大値をπ/4で除した値の平方根が、表層部11の鋼中における析出物の最大粒径と見做される。 The total area of the white portion in the SEM image is regarded as the area ratio of the precipitates in the steel of the surface layer portion 11. The square root of the value obtained by dividing the maximum area of each white portion in the SEM image by π/4 is regarded as the maximum grain size of precipitates in the steel of the surface layer portion 11 .
 表層部11の鋼中には、セメンタイト(FeC)がさらに分散していてもよい。セメンタイト中の鉄のサイトの一部は合金元素により置換されていてもよく、セメンタイト中の炭素のサイトの一部は窒素により置換されていてもよい。表層部11の鋼中におけるセメンタイトの最大粒径は、1.5μm以下であることが好ましい。 Cementite (Fe 3 C) may be further dispersed in the steel of the surface layer portion 11 . Some of the iron sites in the cementite may be replaced by alloying elements, and some of the carbon sites in the cementite may be replaced by nitrogen. The maximum grain size of cementite in the steel of the surface layer portion 11 is preferably 1.5 μm or less.
 表層部11の鋼中におけるセメンタイトの最大粒径は、以下の方法により測定される。第1に、表層部11を含む内輪10の断面において、SEM画像が取得される。このSEM画像を取得する際の倍率は、15000倍とされる。第2に、取得されたSEM画像に対して、画像処理が行われる。より具体的には、SEM画像中においてセメンタイトは楕円状の灰色に見えるため、SEM画像中において楕円状の灰色になっている部分の各々の面積を、画像処理により算出する。そして、SEM画像中において楕円状の灰色になっている各々の部分の面積の最大値をπ/4で除した値の平方根が、表層部11の鋼中におけるセメンタイトの最大粒径と見做される。 The maximum grain size of cementite in the steel of the surface layer 11 is measured by the following method. First, a SEM image is acquired in a cross section of the inner ring 10 including the surface layer portion 11 . The magnification for acquiring this SEM image is 15000 times. Second, image processing is performed on the acquired SEM image. More specifically, since cementite appears oval gray in the SEM image, the area of each oval gray portion in the SEM image is calculated by image processing. Then, the square root of the value obtained by dividing the maximum value of the area of each elliptical gray portion in the SEM image by π/4 is regarded as the maximum grain size of cementite in the steel of the surface layer portion 11. be.
 内輪10の表面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比は、15パーセント以上であることが好ましい。内輪10の表面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比は、25パーセント以上35パーセント以下であることがさらに好ましい。 At a position where the distance from the surface of the inner ring 10 is 50 μm, the volume ratio of retained austenite in the steel is preferably 15% or more. More preferably, the volume ratio of retained austenite in the steel is 25% or more and 35% or less at the position where the distance from the surface of the inner ring 10 is 50 μm.
 鋼中の残留オーステナイトの体積比は、X線回折法により測定される。すなわち、オーステナイトのX線回折における回折ピークの積分強度とオーステナイト以外の相のX線回折における回折ピークの積分強度とを比較することにより、鋼中の残留オーステナイトの体積比が算出される。 The volume ratio of retained austenite in steel is measured by the X-ray diffraction method. That is, the volume ratio of retained austenite in the steel is calculated by comparing the integrated intensity of the diffraction peak in X-ray diffraction of austenite and the integrated intensity of the diffraction peak in X-ray diffraction of phases other than austenite.
 内輪10の表面からの距離が50μmとなる位置において、鋼の硬さは、58HRC以上であることが好ましい。内輪10の表面からの距離が50μmとなる位置において、鋼の硬さは、58HRC以上64HRC以下であることがさらに好ましい。鋼の硬さは、JIS規格(JIS Z 2245:2016)に定められたロックウェル硬さ試験法にしたがって測定される。 At a position where the distance from the surface of the inner ring 10 is 50 μm, the hardness of the steel is preferably 58 HRC or more. More preferably, the hardness of the steel is 58 HRC or more and 64 HRC or less at the position where the distance from the surface of the inner ring 10 is 50 μm. The hardness of steel is measured according to the Rockwell hardness test method defined in JIS (JIS Z 2245:2016).
 表層部11の鋼は、マルテンサイトブロック粒を有している。隣り合う2つのマルテンサイトブロック粒は、粒界において、結晶方位の差が15°以上になっている。このことを別の観点から言えば、結晶方位にずれがある箇所が存在していても、結晶方位の差が15°未満である場合、当該箇所は、マルテンサイトブロック粒の結晶粒界とは見做されない。マルテンサイトブロック粒の粒界は、EBSD(Electron Back Scattered Diffraction)法により決定される。 The steel of the surface layer 11 has martensite block grains. Two adjacent martensite block grains have a crystal orientation difference of 15° or more at the grain boundary. From another point of view, even if there is a location with a deviation in crystal orientation, if the difference in crystal orientation is less than 15°, the location is different from the grain boundary of the martensite block grain. not considered. Grain boundaries of martensite block grains are determined by an EBSD (Electron Back Scattered Diffraction) method.
 表層部11の鋼中において、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、2.0μm以下である。表層部11の鋼中において、比較面積率が50パーセントでのマルテンサイトブロック粒の平均粒径は、1.5μm以下であることが好ましい。 In the steel of the surface layer portion 11, the average grain size of martensite block grains with a comparative area ratio of 30% is 2.0 μm or less. In the steel of the surface layer portion 11, the average grain size of martensite block grains with a comparative area ratio of 50% is preferably 1.5 μm or less.
 比較面積率が30パーセント(50パーセント)でのマルテンサイトブロック粒の平均粒径は、以下の方法により測定される。第1に、表層部11を含む内輪10の断面において、断面観察が行われる。この際、EBSD法により、観察視野に含まれているマルテンサイトブロック粒が特定される。この観察視野は、50μm×45μmの領域とされる。第2に、EBSD法により得られた結晶方位データから、観察視野に含まれているマルテンサイトブロック粒の各々の面積が解析される。 The average grain size of martensite block grains with a comparative area ratio of 30 percent (50 percent) is measured by the following method. First, cross-sectional observation is performed on a cross section of the inner ring 10 including the surface layer portion 11 . At this time, martensite block grains included in the observation field are specified by the EBSD method. This observation field of view is an area of 50 μm×45 μm. Second, the area of each martensite block grain included in the observation field is analyzed from the crystal orientation data obtained by the EBSD method.
 第3に、観察視野に含まれているマルテンサイトブロック粒の各々の面積を、面積が大きいものから順に加算していく。この加算は、観察視野に含まれているマルテンサイトブロック粒の合計面積の30パーセント(50パーセント)に達するまで行われる。上記の加算の対象になったマルテンサイトブロック粒の各々について、円相当径が算出される。この円相当径は、マルテンサイトブロック粒の面積をπ/4で除した値の平方根である。上記の加算の対象になったマルテンサイトブロック粒の円相当径の平均値が、比較面積率が30パーセント(50パーセント)でのマルテンサイトブロック粒の平均粒径と見做される。 Third, the area of each martensite block grain included in the observation field is added in descending order of area. This addition is performed until thirty percent (50 percent) of the total area of martensite block grains contained in the field of view is reached. The equivalent circle diameter is calculated for each of the martensite block grains subjected to the above addition. This equivalent circle diameter is the square root of the value obtained by dividing the area of martensite block grains by π/4. The average value of the circle-equivalent diameters of the martensite block grains subjected to the above addition is regarded as the average grain size of the martensite block grains with a comparative area ratio of 30% (50%).
 (内輪10の製造方法)
 図3は、内輪10の製造方法を示す工程図である。図3に示されるように、内輪10の製造方法は、準備工程S1と、浸窒工程S2と、焼入れ工程S3と、焼戻し工程S4と、後処理工程S5とを有している。浸窒工程S2は、準備工程S1の後に行われる。焼入れ工程S3は、浸窒工程S2の後に行われる。焼戻し工程S4は、焼入れ工程S3の後に行われる。後処理工程S5は、焼戻し工程S4の後に行われる。
(Manufacturing method of inner ring 10)
FIG. 3 is a process diagram showing a method of manufacturing the inner ring 10. As shown in FIG. As shown in FIG. 3, the method for manufacturing the inner ring 10 includes a preparation step S1, a nitriding step S2, a quenching step S3, a tempering step S4, and a post-treatment step S5. The nitriding step S2 is performed after the preparatory step S1. The hardening step S3 is performed after the nitriding step S2. The tempering step S4 is performed after the hardening step S3. The post-treatment step S5 is performed after the tempering step S4.
 準備工程S1では、加工対象部材が準備される。加工対象部材は、内輪10と同じ鋼で形成されているリング状の部材である。 In the preparation step S1, members to be processed are prepared. The member to be processed is a ring-shaped member made of the same steel as the inner ring 10 .
 浸窒工程S2では、加工対象部材の表面に対して、浸窒処理が行われる。浸窒処理は、加工対象部材を、窒素源(例えば、アンモニア)を含む雰囲気中において、加工対象部材を構成している鋼のA変態点以上の温度で保持することにより行われる。 In the nitriding step S2, a nitriding treatment is performed on the surface of the member to be processed. The nitriding treatment is performed by holding the member to be processed in an atmosphere containing a nitrogen source (for example, ammonia) at a temperature equal to or higher than the A1 transformation point of the steel forming the member to be processed.
 焼入れ工程S3では、加工対象部材に対して、焼入れが行われる。焼入れは、加工対象部材を、加工対象部材を構成している鋼のA変態点以上の温度で保持し、その後に加工対象部材を構成している鋼のM変態点以下の温度まで急冷することにより行われる。焼入れ工程S3における加熱保持の温度は、浸窒工程S2における加熱保持の温度以下であることが好ましい。焼入れ工程S3は、2回行われてもよい。2回目の焼入れ工程S3における加熱保持温度は、1回目の焼入れ工程S3における加熱保持温度よりも低いことが好ましい。これにより、加工対象部材の表層部に、析出物が微細かつ多量に分散される。 In the quenching step S3, the member to be processed is quenched. In quenching, the member to be processed is held at a temperature equal to or higher than the A1 transformation point of the steel constituting the member to be processed, and then rapidly cooled to a temperature equal to or lower than the MS transformation point of the steel constituting the member to be processed. It is done by It is preferable that the heating and holding temperature in the quenching step S3 is equal to or lower than the heating and holding temperature in the nitriding step S2. The hardening step S3 may be performed twice. The heating and holding temperature in the second hardening step S3 is preferably lower than the heating and holding temperature in the first hardening step S3. As a result, precipitates are finely and abundantly dispersed in the surface layer of the member to be processed.
 焼戻し工程S4では、加工対象部材に対する焼戻しが行われる。焼戻しは、加工対象部材を、加工対象部材を構成している鋼のA変態点未満の温度で保持することにより行われる。後処理工程S5では、加工対象部材の表面に対する機械加工(研削、研磨)及び洗浄等が行われる。以上により、図1及び図2に示される構造の内輪10が形成される。 In the tempering step S4, the member to be processed is tempered. Tempering is carried out by holding the workpiece at a temperature below the A1 transformation point of the steel from which the workpiece is constructed. In the post-processing step S5, machining (grinding, polishing), cleaning, and the like are performed on the surface of the member to be processed. As described above, the inner ring 10 having the structure shown in FIGS. 1 and 2 is formed.
 なお、表層部11の鋼中に析出物が微細かつ多量に分散されることにより、マルテンサイトブロック粒が大きくなりにくくなるため、表層部11の鋼中において、比較面積率30パーセントでのマルテンサイトブロック粒の平均粒径が、2.0μm以下になる。 In addition, since the precipitates are finely and abundantly dispersed in the steel of the surface layer portion 11, the martensite block grains are less likely to become large. The average grain size of block grains is 2.0 μm or less.
 (内輪10の効果)
 内輪10では、表層部11の鋼中において、比較面積率30パーセントでの平均粒径が2.0μm以下となるようにマルテンサイトブロック粒が微細化されている。その結果、内輪10では、表層部11が高靭性化により、転動体と接触する内輪10の表面(具体的には、軌道面10da)の剪断抵抗が改善されている。このように、内輪10によると、耐久性が改善されている。
(Effect of inner ring 10)
In the inner ring 10 , the martensite block grains in the steel of the surface layer portion 11 are refined so that the average grain size at a comparative area ratio of 30% is 2.0 μm or less. As a result, in the inner ring 10, the surface layer portion 11 is toughened, and the shear resistance of the surface of the inner ring 10 (specifically, the raceway surface 10da) in contact with the rolling elements is improved. Thus, the inner ring 10 has improved durability.
 表層部11の鋼中における析出物の面積率が2.0パーセント以上になっている場合、すなわち、表層部11の鋼中に析出物が高密度で分散している場合、転動体と接触する内輪10の表面(具体的には、軌道面10da)の剪断抵抗が改善されることにより、耐久性がさらに改善される。 When the area ratio of the precipitates in the steel of the surface layer portion 11 is 2.0% or more, that is, when the precipitates are dispersed in the steel of the surface layer portion 11 at a high density, contact with the rolling elements Durability is further improved by improving the shear resistance of the surface of the inner ring 10 (specifically, the raceway surface 10da).
 表層部11の鋼中における析出物の最大粒径が0.5μmである場合、表層部11の鋼中に析出物が高密度かつ微細に分散しているため、耐摩耗性及び靱性が改善されることになり、内輪10の耐久性がさらに改善される。表層部11の鋼中におけるセメンタイトの最大粒径が1.5μm以下である場合、セメンタイトの微細な分散により、内輪10の耐摩耗性及び靱性がさらに改善される。 When the maximum grain size of the precipitates in the steel of the surface layer portion 11 is 0.5 μm, the precipitates are dispersed finely and at high density in the steel of the surface layer portion 11, so wear resistance and toughness are improved. As a result, the durability of the inner ring 10 is further improved. When the maximum grain size of cementite in the steel of the surface layer portion 11 is 1.5 μm or less, fine dispersion of cementite further improves the wear resistance and toughness of the inner ring 10 .
 内輪10の表面からの距離が50μmとなる位置における鋼中の残留オーステナイトの体積比が15パーセント以上(25パーセント以上35パーセント以下)である場合、異物混入環境下での圧痕起点型剥離に対する耐久性が改善される。内輪10の表面からの距離が50μmとなる位置における鋼の硬さが58HRC以上(58HRC以上64HRC以下)である場合、内輪10の耐摩耗性がさらに改善される。 When the volume ratio of retained austenite in the steel at the position where the distance from the surface of the inner ring 10 is 50 μm is 15% or more (25% or more and 35% or less), durability against indentation-induced flaking in an environment containing foreign matter is improved. When the hardness of the steel at the position where the distance from the surface of the inner ring 10 is 50 μm is 58 HRC or more (58 HRC or more and 64 HRC or less), the wear resistance of the inner ring 10 is further improved.
 (実施形態に係る転がり軸受)
 以下に、実施形態に係る転がり軸受(「転がり軸受100」とする)を説明する。
(Rolling bearing according to the embodiment)
A rolling bearing (referred to as "rolling bearing 100") according to the embodiment will be described below.
 図4は、転がり軸受100の断面図である。図4に示されるように、転がり軸受100は、深溝玉軸受である。但し、転がり軸受100は、これに限られない。転がり軸受100は、例えば、スラスト玉軸受であってもよい。転がり軸受100は、内輪10と、外輪20と、転動体30と、保持器40とを有している。 4 is a cross-sectional view of the rolling bearing 100. FIG. As shown in FIG. 4, rolling bearing 100 is a deep groove ball bearing. However, the rolling bearing 100 is not limited to this. Rolling bearing 100 may be, for example, a thrust ball bearing. The rolling bearing 100 has an inner ring 10 , an outer ring 20 , rolling elements 30 and a retainer 40 .
 外輪20は、幅面20aと、幅面20bと、内周面20cと、外周面20dとを有している。外輪20の表面は、幅面20a、幅面20b、内周面20c及び外周面20dにより構成されている。 The outer ring 20 has a width surface 20a, a width surface 20b, an inner peripheral surface 20c, and an outer peripheral surface 20d. The surface of the outer ring 20 is composed of a width surface 20a, a width surface 20b, an inner peripheral surface 20c and an outer peripheral surface 20d.
 幅面20a及び幅面20bは、軸方向における外輪20の端面である。幅面20bは、軸方向における幅面20aの反対面である。 The width surface 20a and the width surface 20b are end surfaces of the outer ring 20 in the axial direction. The width surface 20b is the opposite surface of the width surface 20a in the axial direction.
 内周面20cは、周方向に延在している。内周面20cは、中心軸A側を向いている。内周面20cは、軸方向における一方端で幅面20aに連なっており、軸方向における他方端で幅面20bに連なっている。外輪20は、内周面20cが外周面10dと対向するように配置されている。 The inner peripheral surface 20c extends in the circumferential direction. The inner peripheral surface 20c faces the central axis A side. One end in the axial direction of the inner peripheral surface 20c is continuous with the width surface 20a, and the other end in the axial direction is continuous with the width surface 20b. The outer ring 20 is arranged such that the inner peripheral surface 20c faces the outer peripheral surface 10d.
 内周面20cは、軌道面20caを有している。軌道面20caは、周方向に延在している。内周面20cは、軌道面20caにおいて、外周面20d側に窪んでいる。断面視において、軌道面20caは、部分円形状である。軌道面20caは、軸方向において内周面20cの中央にある。軌道面20caは、転動体30に接触する内周面20cの一部である。 The inner peripheral surface 20c has a raceway surface 20ca. The raceway surface 20ca extends in the circumferential direction. The inner peripheral surface 20c is recessed toward the outer peripheral surface 20d on the raceway surface 20ca. In a cross-sectional view, the raceway surface 20ca has a partially circular shape. The raceway surface 20ca is located in the center of the inner peripheral surface 20c in the axial direction. The raceway surface 20ca is a portion of the inner peripheral surface 20c that contacts the rolling elements 30 .
 外周面20dは、周方向に延在している。外周面20dは、中心軸Aとは反対側を向いている。すなわち、外周面20dは、径方向における内周面20cの反対面である。外周面20dは、軸方向における一方端で幅面20aに連なっており、軸方向における他方端で幅面20bに連なっている。外輪20は、外周面20dにおいて、ハウジング(図示せず)に嵌め合わされる。 The outer peripheral surface 20d extends in the circumferential direction. 20 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 20d is the opposite surface of the inner peripheral surface 20c in the radial direction. The outer peripheral surface 20d is continuous with the width surface 20a at one end in the axial direction, and is continuous with the width surface 20b at the other end in the axial direction. The outer ring 20 is fitted to a housing (not shown) on the outer peripheral surface 20d.
 転動体30は、球状である。転動体30は、外周面10d(軌道面10da)と内周面20c(軌道面20ca)との間に配置されている。保持器40は、リング状であり、外周面10dと内周面20cとの間に配置されている。保持器40は、周方向において隣り合う2つの転動体30の間隔が一定範囲内となるように、転動体30を保持している。 The rolling elements 30 are spherical. The rolling elements 30 are arranged between the outer peripheral surface 10d (raceway surface 10da) and the inner peripheral surface 20c (raceway surface 20ca). The retainer 40 is ring-shaped and arranged between the outer peripheral surface 10d and the inner peripheral surface 20c. The retainer 40 holds the rolling elements 30 such that the distance between the two rolling elements 30 adjacent in the circumferential direction is within a certain range.
 外輪20及び転動体30は、内輪10と同一の鋼で形成されていてもよい。また、外輪20の表層部(外輪20の表面からの距離が20μmまでの領域)及び転動体30の表層部(転動体30の表面からの距離が20μmまでの領域)は、表層部11と同一の構成になっていてもよい。 The outer ring 20 and the rolling elements 30 may be made of the same steel as the inner ring 10. In addition, the surface layer portion of the outer ring 20 (region up to 20 μm from the surface of the outer ring 20) and the surface layer portion of the rolling element 30 (region up to 20 μm from the surface of the rolling element 30) are the same as the surface layer portion 11. may be configured.
 (変形例1)
 以下に、変形例1に係る転がり軸受100(以下「転がり軸受100A」とする)を説明する。
(Modification 1)
A rolling bearing 100 (hereinafter referred to as “rolling bearing 100A”) according to Modification 1 will be described below.
 図5は、転がり軸受100Aの断面図である。図5に示されるように、転がり軸受100Aは、円筒ころ軸受である。なお、転がり軸受100Aは、内輪110と、外輪120と、転動体130とを有している。 FIG. 5 is a cross-sectional view of the rolling bearing 100A. As shown in FIG. 5, rolling bearing 100A is a cylindrical roller bearing. Rolling bearing 100</b>A has inner ring 110 , outer ring 120 and rolling elements 130 .
 内輪110は、幅面110aと、幅面110bと、内周面110cと、外周面110dとを有している。幅面110a、幅面110b、内周面110c及び外周面110dは、内輪110の表面を構成している。 The inner ring 110 has a width surface 110a, a width surface 110b, an inner peripheral surface 110c, and an outer peripheral surface 110d. The width surface 110a, the width surface 110b, the inner peripheral surface 110c, and the outer peripheral surface 110d form the surface of the inner ring 110. As shown in FIG.
 幅面110a及び幅面110bは、軸方向における内輪110の端面である。幅面110bは、軸方向における幅面110aの反対面である。 The width surface 110a and the width surface 110b are end surfaces of the inner ring 110 in the axial direction. The width surface 110b is the opposite surface of the width surface 110a in the axial direction.
 内周面110cは、周方向に延在している。内周面110cは、中心軸A側を向いている。内周面110cは、軸方向における一方端で幅面110aに連なっており、軸方向における他方端で幅面110bに連なっている。 The inner peripheral surface 110c extends in the circumferential direction. The inner peripheral surface 110c faces the central axis A side. One end in the axial direction of the inner peripheral surface 110c is continuous with the width surface 110a, and the other end in the axial direction is continuous with the width surface 110b.
 外周面110dは、周方向に延在している。外周面110dは、中心軸Aとは反対側を向いている。すなわち、外周面110dは、径方向における内周面110cの反対面である。外周面110dは、軸方向における一方端で幅面110aに連なっており、軸方向における他方端で幅面110bに連なっている。外周面110dは、軌道面110daを有している。軌道面110daは、周方向に延在している。軌道面110daは、転動体130に接触する外周面110dの一部である。 The outer peripheral surface 110d extends in the circumferential direction. 110 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 110d is the opposite surface of the inner peripheral surface 110c in the radial direction. The outer peripheral surface 110d is continuous with the width surface 110a at one end in the axial direction, and is continuous with the width surface 110b at the other end in the axial direction. The outer peripheral surface 110d has a raceway surface 110da. The raceway surface 110da extends in the circumferential direction. The raceway surface 110da is a portion of the outer peripheral surface 110d that contacts the rolling elements 130. As shown in FIG.
 外輪120は、幅面120aと、幅面120bと、内周面120cと、外周面120dとを有している。外輪120の表面は、幅面120a、幅面120b、内周面120c及び外周面120dにより構成されている。 The outer ring 120 has a width surface 120a, a width surface 120b, an inner peripheral surface 120c, and an outer peripheral surface 120d. The surface of the outer ring 120 is composed of a width surface 120a, a width surface 120b, an inner peripheral surface 120c and an outer peripheral surface 120d.
 幅面120a及び幅面120bは、軸方向における外輪120の端面である。幅面120bは、軸方向における幅面120aの反対面である。 The width surface 120a and the width surface 120b are end surfaces of the outer ring 120 in the axial direction. The width surface 120b is the opposite surface of the width surface 120a in the axial direction.
 内周面120cは、周方向に延在している。内周面120cは、中心軸A側を向いている。内周面120cは、軸方向における一方端で幅面120aに連なっており、軸方向における他方端で幅面120bに連なっている。外輪120は、内周面120cが外周面10dと対向するように配置されている。内周面120cは、軌道面120caを有している。軌道面120caは、周方向に延在している。軌道面120caは、転動体130に接触する内周面120cの一部である。 The inner peripheral surface 120c extends in the circumferential direction. The inner peripheral surface 120c faces the central axis A side. One end in the axial direction of the inner peripheral surface 120c is continuous with the width surface 120a, and the other end in the axial direction is continuous with the width surface 120b. The outer ring 120 is arranged such that the inner peripheral surface 120c faces the outer peripheral surface 10d. The inner peripheral surface 120c has a raceway surface 120ca. The raceway surface 120ca extends in the circumferential direction. The raceway surface 120ca is a portion of the inner peripheral surface 120c that contacts the rolling elements 130 .
 外周面120dは、周方向に延在している。外周面120dは、中心軸Aとは反対側を向いている。すなわち、外周面120dは、径方向における内周面120cの反対面である。外周面120dは、軸方向における一方端で幅面120aに連なっており、軸方向における他方端で幅面120bに連なっている。 The outer peripheral surface 120d extends in the circumferential direction. 120 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 120d is the opposite surface of the inner peripheral surface 120c in the radial direction. The outer peripheral surface 120d is continuous with the width surface 120a at one end in the axial direction, and is continuous with the width surface 120b at the other end in the axial direction.
 転動体130は、円筒ころである。転動体130は、外周面110d(軌道面110da)と内周面120c(軌道面120ca)との間に配置されている。転動体130の外周面は、軌道面110da及び軌道面120caに接触する転動面130aである。 The rolling elements 130 are cylindrical rollers. The rolling elements 130 are arranged between the outer peripheral surface 110d (raceway surface 110da) and the inner peripheral surface 120c (raceway surface 120ca). The outer peripheral surface of the rolling element 130 is a rolling surface 130a that contacts the raceway surface 110da and the raceway surface 120ca.
 内輪110、外輪120及び転動体130は、内輪10と同一の鋼で形成されていてもよい。内輪110の表層部(内輪110の表面からの距離が20μmまでの領域)、外輪120の表層部(外輪120の表面からの距離が20μmまでの領域)及び転動体130の表層部(転動体130の表面からの距離が20μmまでの領域)は、表層部11と同一の構成になっていてもよい。 The inner ring 110, the outer ring 120 and the rolling elements 130 may be made of the same steel as the inner ring 10. The surface layer portion of the inner ring 110 (region up to 20 μm from the surface of the inner ring 110), the surface layer portion of the outer ring 120 (region up to 20 μm away from the surface of the outer ring 120), and the surface layer portion of the rolling element 130 (rolling element 130 ) may have the same configuration as the surface layer portion 11 .
 油膜パラメータは、たとえばh/{1.1×(Ra1 +Ra2 1/2}との式により算出される。なお、転動面130aと軌道面110da(軌道面120ca)との間の油膜厚さをh、転動面130aの算術平均粗さをRa1、軌道面110da(軌道面120ca)の算術平均粗さをRa2とする。当該油膜パラメータが0.5以上10以下である場合においても、油膜切れが生じやすくなる可能性がある。 The oil film parameter is calculated, for example, by the formula h 0 /{1.1×(R a1 2 +R a2 2 ) 1/2 }. The oil film thickness between the rolling surface 130a and the raceway surface 110da (raceway surface 120ca) is h 0 , the arithmetic mean roughness of the rolling surface 130a is R a1 , and the arithmetic mean of the raceway surface 110da (raceway surface 120ca) is R a2 is the roughness. Even when the oil film parameter is 0.5 or more and 10 or less, oil film breakage may easily occur.
 転がり軸受100Aは、例えば、風力発電機用増速機300に用いられる。図6は、風力発電機用増速機300の断面図である。図6に示されるように、風力発電機用増速機300は、遊星歯車装置303と、2次増速装置305と、ケーシング306とを主に備える。遊星歯車装置303は、入力軸301の回転を増速して低速軸302に伝達する。2次増速装置305は、低速軸302の回転をさらに増速して出力軸304に伝達する。遊星歯車装置303および2次増速装置305は、共通のケーシング306内に設けられている。入力軸301は風車(図示せず)の主軸(図示せず)等に接続される。出力軸304は発電機(図示せず)に接続される。 The rolling bearing 100A is used, for example, in the gearbox 300 for a wind power generator. FIG. 6 is a cross-sectional view of the gearbox 300 for a wind power generator. As shown in FIG. 6 , the wind power generator gearbox 300 mainly includes a planetary gear device 303 , a secondary gearbox 305 and a casing 306 . The planetary gear device 303 accelerates the rotation of the input shaft 301 and transmits it to the low speed shaft 302 . The secondary speed increasing device 305 further speeds up the rotation of the low speed shaft 302 and transmits it to the output shaft 304 . The planetary gear device 303 and the secondary speed increasing device 305 are provided within a common casing 306 . The input shaft 301 is connected to a main shaft (not shown) of a windmill (not shown) or the like. The output shaft 304 is connected to a generator (not shown).
 遊星歯車装置303では、旋回自在なキャリア307の周方向複数箇所に遊星軸310が設けられる。各遊星軸310に構成部材としての遊星歯車308が転がり軸受309を介して回転自在に支持されている。転がり軸受309は図5に示した本実施形態に係る転がり軸受100Aである。各遊星歯車308の転がり軸受309は、図示の例では2列に並べて用いているが、1列であってもよい。また、転がり軸受309は、3列、4列およびそれ以上の列数で用いられてもよい。キャリア307は、遊星歯車装置303における入力部となる部材である。キャリア307は、上記入力軸301と一体の部材として設けられる。キャリア307は、別部材を入力軸301と一体に結合することで構成してもよい。構成部材としてのキャリア307は、入力軸301のとの境界部において軸受311を介してケーシング306に旋回自在に支持されている。 In the planetary gear device 303, planetary shafts 310 are provided at a plurality of places in the circumferential direction of a rotatable carrier 307. A planetary gear 308 as a constituent member is rotatably supported on each planetary shaft 310 via a rolling bearing 309 . The rolling bearing 309 is the rolling bearing 100A according to this embodiment shown in FIG. Although the rolling bearings 309 of each planetary gear 308 are arranged in two rows in the illustrated example, they may be arranged in one row. Also, the rolling bearings 309 may be used in three, four and more rows. The carrier 307 is a member that serves as an input portion in the planetary gear device 303 . A carrier 307 is provided as a member integrated with the input shaft 301 . Carrier 307 may be configured by integrally coupling a separate member to input shaft 301 . A carrier 307 as a component is rotatably supported by the casing 306 via a bearing 311 at the boundary with the input shaft 301 .
 キャリア307に支持された各遊星歯車308は、ケーシング306に設けられた内歯のリングギヤ312に噛み合う。各遊星歯車308は、リングギヤ312と同心位置に回転自在に設けられた太陽歯車313にも噛み合う。リングギヤ312は、ケーシング306に直接に形成されたものであっても、ケーシング306に固定されたものであってもよい。太陽歯車313は、遊星歯車装置303における出力部となる部品である。太陽歯車313は、上記低速軸302に設けられている。構成部材としての低速軸302は、軸受314,315を介してケーシング306に回転自在に支持されている。 Each planetary gear 308 supported by the carrier 307 meshes with an internal toothed ring gear 312 provided on the casing 306 . Each planetary gear 308 also meshes with a sun gear 313 rotatably provided concentrically with the ring gear 312 . Ring gear 312 may be formed directly on casing 306 or may be fixed to casing 306 . The sun gear 313 is a component that serves as an output section in the planetary gear device 303 . A sun gear 313 is provided on the low speed shaft 302 . A low-speed shaft 302 as a component is rotatably supported by a casing 306 via bearings 314 and 315 .
 2次増速装置305は、ギヤ列により構成されている。図示の例において、2次増速装置305では、低速軸302に固定されたギヤ317が中間軸321の小径側ギヤ318に噛み合う。中間軸321に設けられ大径側ギヤ319が出力軸304のギヤ320に噛み合う。上記ギヤ317、小径側ギヤ318、大径側ギヤ319、ギヤ320によりギヤ列が構成される。構成部材としての中間軸321および出力軸304は、それぞれ軸受322,323によってケーシング306に回転自在に支持されている。 The secondary speed increasing device 305 is composed of a gear train. In the illustrated example, in the secondary speed increasing device 305 , a gear 317 fixed to the low speed shaft 302 meshes with a small diameter side gear 318 of the intermediate shaft 321 . A large-diameter side gear 319 provided on the intermediate shaft 321 meshes with the gear 320 on the output shaft 304 . A gear train is composed of the gear 317, the small-diameter side gear 318, the large-diameter side gear 319, and the gear 320. As shown in FIG. An intermediate shaft 321 and an output shaft 304 as constituent members are rotatably supported by a casing 306 by bearings 322 and 323, respectively.
 転がり軸受309および軸受311,314,315、322、323としては、図5に示した転がり軸受100Aを適用してもよいが、他の任意の構成の転がり軸受を用いてもよい。たとえば、転がり軸受309などとして、保持器で円筒ころを保持器する形式や、保持器を用いない総ころ型の軸受を用いてもよい。転がり軸受309などの外輪は両鍔付きであり、内輪は鍔無しとされている。なお、転がり軸受309などにおいて、外輪を鍔無しとし、内輪を両鍔付きとしてもよい。また、転がり軸受309などの転動体である円筒ころは中実体であるが、転動体として中空形状の中空ころを用いてもよい。 As the rolling bearing 309 and the bearings 311, 314, 315, 322, 323, the rolling bearing 100A shown in FIG. 5 may be applied, but rolling bearings with other arbitrary configurations may also be used. For example, as the rolling bearing 309 or the like, a type in which a retainer retains cylindrical rollers, or a full complement type bearing that does not use a retainer may be used. The outer ring of the rolling bearing 309 or the like has both flanges, and the inner ring has no flanges. In addition, in the rolling bearing 309 or the like, the outer ring may have no flanges and the inner ring may have both flanges. Further, although the cylindrical rollers, which are rolling elements such as the rolling bearing 309, are solid bodies, hollow rollers may be used as the rolling elements.
 上述した風力発電機用増速機300の動作を説明する。入力軸301が回転すると、入力軸301と一体のキャリア307が旋回する。この結果、キャリア307の複数箇所に支持された遊星歯車308が公転移動する。このとき各遊星歯車308は、固定のリングギヤ312に噛み合いながら公転することで、自転を生じる。このように公転しながら自転する遊星歯車308に太陽歯車313が噛み合っている。そのため、太陽歯車313は入力軸301に対して増速されて回転する。遊星歯車装置303の出力部となる太陽歯車313は、2次増速装置305の低速軸302に設けられている。このため、太陽歯車313の回転が2次増速装置305で増速されて出力軸304に伝えられる。このように、入力軸301に入力される風車主軸(図示せず)の回転が、遊星歯車装置303と2次増速装置305とで大幅に増幅されて出力軸304に伝えられる。この結果、出力軸304からは発電が可能な高速回転が得られる。 The operation of the wind power generator gearbox 300 described above will be described. When the input shaft 301 rotates, the carrier 307 integrated with the input shaft 301 rotates. As a result, the planetary gears 308 supported at a plurality of positions of the carrier 307 revolve. At this time, each planetary gear 308 revolves while meshing with a fixed ring gear 312, thereby causing rotation. The sun gear 313 meshes with the planetary gear 308 that rotates while revolving in this way. Therefore, the sun gear 313 rotates at an accelerated speed with respect to the input shaft 301 . A sun gear 313 serving as an output portion of the planetary gear device 303 is provided on the low speed shaft 302 of the secondary speed increasing device 305 . Therefore, the rotation of the sun gear 313 is accelerated by the secondary speed increasing device 305 and transmitted to the output shaft 304 . Thus, the rotation of the wind turbine main shaft (not shown) input to the input shaft 301 is greatly amplified by the planetary gear device 303 and the secondary speed increasing device 305 and transmitted to the output shaft 304 . As a result, the output shaft 304 can rotate at a high speed to generate power.
 各遊星歯車308を支持する転がり軸受309の潤滑は、次のように行われる。遊星歯車308およびその転がり軸受309は、キャリア307の旋回により公転してケーシング6の底に位置した時に油浴316に浸かることで潤滑油が供給される。なお、遊星歯車308および転がり軸受309には循環給油により潤滑油が供給されてもよい。  The rolling bearings 309 that support each planetary gear 308 are lubricated as follows. The planetary gear 308 and its rolling bearing 309 are supplied with lubricating oil by being immersed in the oil bath 316 when the carrier 307 revolves and is positioned at the bottom of the casing 6 . Lubricating oil may be supplied to planetary gear 308 and rolling bearing 309 by circulating oil supply.
 ここで、風力発電機においては、風車のメンテナンス、あるいは無風状態の発生などによって長時間の停止が続く場合がある。このとき、転がり軸受309では潤滑油の供給が不足する場合がある。特に、風力発電機用増速機300は、前述のように気象状況により発電トルクが変化し、転がり軸受309および他の軸受などに荷重が加わらない状態が発生する。この結果、転がり軸受309の転動体と軌道面との間に滑りが生じ、当該転動体と軌道面との間に金属接触が発生する場合がある。 Here, wind power generators may continue to be stopped for a long time due to maintenance of the wind turbine or the occurrence of no wind. At this time, the supply of lubricating oil to the rolling bearing 309 may be insufficient. In particular, in the wind power generator gearbox 300, the generated torque changes depending on weather conditions as described above, and a state occurs in which no load is applied to the rolling bearing 309 and other bearings. As a result, slippage occurs between the rolling elements of the rolling bearing 309 and the raceway surface, and metal contact may occur between the rolling elements and the raceway surface.
 特に、使用する等価荷重が静定格荷重の0.04倍以下の場合、転動体と軌道面との間に滑りが生じ、上述のように転動体と軌道面との間に金属接触が発生する場合がある。なお、上述した静定格荷重とは基本静定格荷重を意味する。さらに、潤滑状態が、増速機用軸受において一般的な使用条件である、油膜パラメータΛが0.5以上10以下という条件においても、転動体と軌道面との間に金属接触が発生する場合がある。 In particular, when the equivalent load to be used is 0.04 times or less of the static load rating, slip occurs between the rolling elements and the raceway surface, and metal contact occurs between the rolling elements and the raceway surface as described above. Sometimes. The static load rating mentioned above means a basic static load rating. Furthermore, even when the lubricating state is such that the oil film parameter Λ is 0.5 or more and 10 or less, which is a general use condition for a gearbox bearing, metal contact occurs between the rolling elements and the raceway surface. There is
 また、上記のような風力発電機用増速機300に用いられ転がり軸受309では、変形によって転動体のスキューまたは片当たりによる滑りが発生し易くなる場合がある。さらに、高速回転する出力軸304を支持する軸受323は、出力軸304の高速回転によるトルク変動などに追従できず、転動体と軌道面との間で滑りが発生する場合がある。この場合も、転動体および軌道面の摩耗が促進され、水素脆性が発生する恐れがある。 In addition, in the rolling bearing 309 used in the gearbox 300 for the wind power generator as described above, there are cases where slip due to skew or uneven contact of the rolling elements due to deformation is likely to occur. Furthermore, the bearing 323 that supports the output shaft 304 that rotates at high speed cannot follow torque fluctuations caused by the high speed rotation of the output shaft 304, and slippage may occur between the rolling elements and the raceway surface. Also in this case, wear of the rolling elements and raceway surfaces is accelerated, and hydrogen embrittlement may occur.
 これらの使用条件で用いられる風力発電機用増速機300用の転がり軸受309および軸受311,314,315、322、323に、本実施形態に係る転がり軸受100Aを適用する。本実施形態に係る転がり軸受100Aでは、上述のような組成の鋼材と浸窒処理との組合せにより、硬質かつ微細な析出物が表層組織に多数分散している。つまり、転がり軸受100Aでは、内輪110の表層部、外輪120の表層部及び転動体130の表層部の鋼中に析出物が高密度で分散しているため、油膜切れが発生しやすい条件下でも摩耗が進展しにくい。また、内輪110の表層部、外輪120の表層部及び転動体130の表層部の鋼中に分散している析出物が水素原子のトラップサイトになるため、内輪110の表層部、外輪120の表層部及び転動体130の表層部における水素侵入量が小さくなる。そのため、転がり軸受100Aによると、水素脆性に起因した早期剥離現象の発生を抑制することができる。 The rolling bearing 100A according to this embodiment is applied to the rolling bearing 309 and the bearings 311, 314, 315, 322, and 323 for the wind power generator gearbox 300 used under these conditions of use. In the rolling bearing 100A according to the present embodiment, a large number of hard and fine precipitates are dispersed in the surface layer structure due to the combination of the steel material having the composition described above and the nitriding treatment. In other words, in the rolling bearing 100A, precipitates are dispersed at a high density in the steel of the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130. Wear does not progress easily. In addition, since the precipitates dispersed in the steel on the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130 become trap sites for hydrogen atoms, the surface layer of the inner ring 110 and the surface layer of the outer ring 120 The amount of hydrogen penetration in the surface layer portion of the rolling element 130 and the rolling element 130 becomes smaller. Therefore, according to the rolling bearing 100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
 また、転がり軸受100Aでは、内輪110、外輪120及び転動体130の表面の距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が15パーセント以上(25パーセント以上35パーセント以下)になっているため、異物混入環境下での圧痕起点型剥離に対する耐久性が改善される。 In the rolling bearing 100A, the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 110, the outer ring 120 and the rolling elements 130 is 50 μm. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
 また、転がり軸受100Aでは、高度な浸窒処理が施されているため、耐異物性が強化され、異物混入潤滑条件下でも長寿命を保つことができる。さらに、潤滑環境由来の水素原子の発生が抑制され、応力負荷域への水素原子の到達も遅延される。この点からも、水素脆性に起因した早期剥離現象の発生を抑制できるともに、圧痕起点型の早期損傷に対する耐久性が改善される。 In addition, since the rolling bearing 100A is subjected to advanced nitriding treatment, the resistance to foreign matter is enhanced, and a long life can be maintained even under lubrication conditions in which foreign matter is present. Furthermore, the generation of hydrogen atoms originating from the lubricating environment is suppressed, and the arrival of the hydrogen atoms to the stress load region is also delayed. From this point of view as well, the occurrence of premature flaking caused by hydrogen embrittlement can be suppressed, and the durability against premature damage caused by indentation is improved.
 本実施形態では、図6に示す増速機について説明したが、本実施の形態に係る増速機は他の任意の構成としてもよい。たとえば、遊星歯車装置を2段等の複数段としたり、平行軸を複数段でなく1段にしたりしてもよい。これらの段数は適宜変更できる。また、遊星歯車装置と平行軸との組合せでなく、遊星歯車装置のみや、平行軸のみにより構成される増速機であってもよい。 Although the speed increaser shown in FIG. 6 has been described in this embodiment, the speed increaser according to this embodiment may have any other configuration. For example, the planetary gear device may have multiple stages such as two stages, or the parallel shaft may have one stage instead of multiple stages. These number of steps can be changed as appropriate. Moreover, instead of a combination of a planetary gear device and parallel shafts, a speed increasing device configured by only a planetary gear device or only parallel shafts may be used.
 (変形例2)
 以下に、変形例2に係る転がり軸受1100(以下「転がり軸受1100A」とする)を説明する。
(Modification 2)
A rolling bearing 1100 (hereinafter referred to as “rolling bearing 1100A”) according to Modification 2 will be described below.
 図7は、遊星歯車変速機1200の部分断面図である。図7に示されるように、遊星歯車変速機1200は、軸1210と、遊星歯車1220と、転動体1230と、保持器1240と、キャリア1250と、抜け止め部材1260とを有している。軸1210、遊星歯車1220、転動体1230及び保持器1240は、転がり軸受1100Aを構成している軸受部品に相当する。軸1210は転がり軸受1100Aの軸受部品としての内方部材であり、遊星歯車1220は転がり軸受1100Aの軸受部品としての外方部材である。 7 is a partial cross-sectional view of the planetary gear transmission 1200. FIG. As shown in FIG. 7 , planetary gear transmission 1200 has shaft 1210 , planetary gear 1220 , rolling elements 1230 , retainer 1240 , carrier 1250 , and retaining member 1260 . The shaft 1210, the planetary gear 1220, the rolling elements 1230, and the retainer 1240 correspond to bearing parts forming the rolling bearing 1100A. Shaft 1210 is an inner member as a bearing component of rolling bearing 1100A, and planetary gear 1220 is an outer member as a bearing component of rolling bearing 1100A.
 軸1210は、外周面1210aを有している。遊星歯車1220は、内周面1220aを有している。外周面1210aは、内周面1220aと間隔を空けて対向している。外周面1210aと内周面1220aとの間には、転動体1230が配置されている。転動体1230は、例えば、ニードルころである。転動体1230は、外周面1210aと外周面1220aとの間に配置されている。これにより、遊星歯車1220が、軸1210に対して回転自在に取り付けられている。 The shaft 1210 has an outer peripheral surface 1210a. Planetary gear 1220 has an inner peripheral surface 1220a. The outer peripheral surface 1210a faces the inner peripheral surface 1220a with a space therebetween. A rolling element 1230 is arranged between the outer peripheral surface 1210a and the inner peripheral surface 1220a. Rolling elements 1230 are, for example, needle rollers. The rolling element 1230 is arranged between the outer peripheral surface 1210a and the outer peripheral surface 1220a. Thereby, the planetary gear 1220 is rotatably attached to the shaft 1210 .
 軸受部品としての転動体1230は、外周面1230aを有している。外周面1230aは、外周面1210a及び内周面1220aに接触する。すなわち、外周面1210aが軸1210の軌道面になっており、内周面1220aが遊星歯車1220の軌道面になっている。また、外周面1230aは、転動体1230の転動面になっている。 A rolling element 1230 as a bearing component has an outer peripheral surface 1230a. The outer peripheral surface 1230a contacts the outer peripheral surface 1210a and the inner peripheral surface 1220a. That is, the outer peripheral surface 1210 a is the raceway surface of the shaft 1210 , and the inner peripheral surface 1220 a is the raceway surface of the planetary gear 1220 . Further, the outer peripheral surface 1230a serves as the rolling surface of the rolling element 1230. As shown in FIG.
 保持器1240は、周方向において隣り合う転動体1230の間の間隔を一定範囲内になるように、転動体1230を保持している。キャリア1250及び抜け止め部材1260は、それぞれ、軸1210の一方端及び軸1210の他方端に取り付けられている。 The retainer 1240 holds the rolling elements 1230 so that the intervals between the rolling elements 1230 adjacent in the circumferential direction are within a certain range. Carrier 1250 and retaining member 1260 are attached to one end of shaft 1210 and the other end of shaft 1210, respectively.
 軸1210、遊星歯車1220及び転動体1230は、内輪10と同一の鋼で形成されていてもよい。また、軸1210の表層部(軸1210の表面からの距離が20μmまでの領域)、遊星歯車1220の表層部(遊星歯車1220の表面からの距離が20μmまでの領域)及び転動体1230の表層部(転動体1230の表面からの距離が20μmまでの領域)は、表層部11と同一の構成になっていてもよい。 The shaft 1210, the planetary gear 1220 and the rolling elements 1230 may be made of the same steel as the inner ring 10. In addition, the surface layer of the shaft 1210 (the area up to 20 μm from the surface of the shaft 1210), the surface layer of the planetary gear 1220 (the area up to 20 μm from the surface of the planetary gear 1220), and the surface of the rolling element 1230 (A region up to 20 μm from the surface of the rolling element 1230 ) may have the same configuration as the surface layer portion 11 .
 外周面1230aと外周面1210aとの間の合成粗さ及び外周面1230aと内周面1220aとの間の合成粗さの少なくとも一方は、例えば、0.06μm以上である。なお、外周面1230aと外周面1210a(内周面1220a)との間の合成粗さは、外周面1230aの算術平均粗さをRa1、外周面1210a(内周面1220a)の算術平均粗さをRa2とすると、(Ra1 +Ra2 1/2との式により算出される。 At least one of the combined roughness between the outer peripheral surface 1230a and the outer peripheral surface 1210a and the combined roughness between the outer peripheral surface 1230a and the inner peripheral surface 1220a is, for example, 0.06 μm or more. Note that the combined roughness between the outer peripheral surface 1230a and the outer peripheral surface 1210a (inner peripheral surface 1220a) is the arithmetic average roughness of the outer peripheral surface 1230a, R a1 , and the arithmetic average roughness of the outer peripheral surface 1210a (inner peripheral surface 1220a). is R a2 , it is calculated by the formula (R a1 2 +R a2 2 ) 1/2 .
 油膜パラメータは、h/{1.1×(Ra1 +Ra2 1/2}との式により算出されるため、hを0.08μmとすると、(Ra1 +Ra2 1/2が0.06μm以上である場合に油膜パラメータが1.2未満となり、油膜切れが生じやすくなる。 The oil film parameter is calculated by the formula h 0 /{1.1×(R a1 2 + R a2 2 ) 1/2 } . When 1/2 is 0.06 μm or more, the oil film parameter is less than 1.2, and oil film breakage is likely to occur.
 油膜切れが発生しやすい条件では、軸1210の表面(外周面1210a)及び遊星歯車1220の表面(内周面1220a)と転動体1230の表面(外周面1230a)とが互いに金属接触し、摩耗により軸1210の表面、遊星歯車1220の表面及び転動体1230の表面に新生面が形成されやすくなる。新生面では潤滑油中から水素が発生しやすく、この水素が新生面から侵入することにより、軸1210の表面、遊星歯車1220の表面及び転動体1230の表面に水素脆性を生じさせる。 Under conditions where the oil film is likely to run out, the surface of the shaft 1210 (outer peripheral surface 1210a), the surface of the planetary gear 1220 (inner peripheral surface 1220a), and the surface of the rolling element 1230 (outer peripheral surface 1230a) come into metallic contact with each other, causing wear. New surfaces are easily formed on the surface of the shaft 1210 , the surface of the planetary gear 1220 and the surface of the rolling element 1230 . Hydrogen is likely to be generated from the lubricating oil on the new surface, and when this hydrogen penetrates from the new surface, hydrogen embrittlement occurs on the surface of the shaft 1210, the surface of the planetary gear 1220, and the surface of the rolling element 1230.
 しかしながら、軸1210の表層部、遊星歯車1220の表層部及び転動体1230の表層部の鋼中に析出物が高密度で分散しているため、油膜切れが発生しやすい条件下でも摩耗が進展しにくい。また、軸1210の表層部、遊星歯車1220の表層部及び転動体1230の表層部の鋼中に分散している析出物が水素原子のトラップサイトになるため、軸1210の表層部、遊星歯車1220の表層部及び転動体1230の表層部における水素拡散量が小さくなる。そのため、転がり軸受1100Aによると、水素脆性に起因した早期剥離現象の発生を抑制することができる。 However, since the precipitates are dispersed at high density in the steel of the surface layer of the shaft 1210, the surface layer of the planetary gear 1220, and the surface layer of the rolling element 1230, wear progresses even under conditions where oil film breakage is likely to occur. Hateful. In addition, precipitates dispersed in the steel of the surface layer of the shaft 1210, the surface layer of the planetary gear 1220, and the surface layer of the rolling element 1230 become trap sites for hydrogen atoms. and the surface layer of the rolling element 1230 becomes smaller. Therefore, according to the rolling bearing 1100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
 また、転がり軸受1100Aでは、軸1210、遊星歯車1220及び転動体1230の表面の距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が15パーセント以上(25パーセント以上35パーセント以下)になっているため、異物混入環境下での圧痕起点型剥離に対する耐久性が改善される。 In the rolling bearing 1100A, the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the shaft 1210, the planetary gear 1220 and the rolling elements 1230 is 50 μm. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
 (変形例3)
 以下に、変形例3に係る転がり軸受1100(以下「転がり軸受1100B」とする)を説明する。転がり軸受1100Bは、基本的には図5に示された転がり軸受転がり軸受100Aと同様の構成を備える。以下、転がり軸受1100Bの構造については図5を適宜参照しながら説明する。転がり軸受1100Bでは、図5に示される構成において、転動面130aと軌道面110daとの間の合成粗さ及び転動面130aと軌道面120caとの間の合成粗さの少なくとも一方は、例えば、0.06μm以上である。なお、転動面130aと軌道面110da(軌道面120ca)との間の合成粗さは、転動面130aの算術平均粗さをRa1、軌道面110da(軌道面120ca)の算術平均粗さをRa2とすると、(Ra1 +Ra2 1/2との式により算出される。
(Modification 3)
A rolling bearing 1100 (hereinafter referred to as “rolling bearing 1100B”) according to Modification 3 will be described below. The rolling bearing 1100B basically has the same configuration as the rolling bearing 100A shown in FIG. The structure of the rolling bearing 1100B will be described below with appropriate reference to FIG. In the rolling bearing 1100B, in the configuration shown in FIG. 5, at least one of the combined roughness between the rolling surface 130a and the raceway surface 110da and the combined roughness between the rolling surface 130a and the raceway surface 120ca is, for example, , 0.06 μm or more. The combined roughness between the rolling contact surface 130a and the raceway surface 110da (raceway surface 120ca) is defined by R a1 being the arithmetic mean roughness of the rolling contact surface 130a and the arithmetic mean roughness of the raceway surface 110da (raceway surface 120ca) is R a2 , it is calculated by the formula (R a1 2 +R a2 2 ) 1/2 .
 油膜パラメータは、h/{1.1×(Ra1 +Ra2 1/2}との式により算出されるため、hを0.08μmとすると、(Ra1 +Ra2 1/2が0.06μm以上である場合に油膜パラメータが1.2未満となり、油膜切れが生じやすくなる。 The oil film parameter is calculated by the formula h 0 /{1.1×(R a1 2 + R a2 2 ) 1/2 } . When 1/2 is 0.06 μm or more, the oil film parameter is less than 1.2, and oil film breakage is likely to occur.
 図8は、変速機1300の断面図である。図8に示されるように、変速機1300は、キャリア1310と、入力軸1320と、複数の遊星歯車1330と、リングギヤ1340と、サンギヤ1350と、出力軸1360とを有している。変速機1300は、風車等の産業機器に用いられる増速機である。但し、変速機1300は、これに限られない。 FIG. 8 is a cross-sectional view of the transmission 1300. FIG. As shown in FIG. 8 , transmission 1300 has carrier 1310 , input shaft 1320 , multiple planetary gears 1330 , ring gear 1340 , sun gear 1350 and output shaft 1360 . Transmission 1300 is a gearbox used in industrial equipment such as wind turbines. However, transmission 1300 is not limited to this.
 キャリア1310には、入力軸1320が取り付けられている。キャリア1310は、軸1311を有している。軸1311には、転がり軸受1100Bを介して、遊星歯車1330が回転自在に取り付けられている。より具体的には、軸1311の外周面に軸受部品としての内輪110(図5参照)の内周面110c(図5参照)が嵌め合わされており、遊星歯車1330の内周面に軸受部品としての外輪120(図5参照)の外周面120d(図5参照)が嵌め合わされている。遊星歯車1330の外周面に形成されている歯は、リングギヤ1340の内周面に形成されている歯に噛み合わされている。サンギヤ1350には、出力軸1360が取り付けられている。複数の遊星歯車1330の各々の外周面に形成されている歯は、サンギヤ1350の外周面に形成されている歯に噛み合わされている。 An input shaft 1320 is attached to the carrier 1310 . Carrier 1310 has an axis 1311 . A planetary gear 1330 is rotatably attached to the shaft 1311 via a rolling bearing 1100B. More specifically, the inner peripheral surface 110c (see FIG. 5) of the inner ring 110 (see FIG. 5) as a bearing component is fitted to the outer peripheral surface of the shaft 1311, and the inner peripheral surface 110c (see FIG. 5) of the planetary gear 1330 is fitted as a bearing component. 120d (see FIG. 5) of the outer ring 120 (see FIG. 5) is fitted. The teeth formed on the outer peripheral surface of planetary gear 1330 mesh with the teeth formed on the inner peripheral surface of ring gear 1340 . An output shaft 1360 is attached to the sun gear 1350 . The teeth formed on the outer peripheral surface of each of the plurality of planetary gears 1330 mesh with the teeth formed on the outer peripheral surface of the sun gear 1350 .
 入力軸1320を回転させることにより、キャリア1310が回転する。キャリア1310の回転に伴って、遊星歯車1330がリングギヤ1340の内周面に沿って自転しながら公転する。サンギヤ1350が遊星歯車1330と噛み合っていることにより、遊星歯車1330の回転がサンギヤ1350に伝達され、出力軸1360が回転される。このようにして、入力軸1320に入力された回転が、出力軸1360から増速された上で出力される。 By rotating the input shaft 1320, the carrier 1310 rotates. As the carrier 1310 rotates, the planetary gear 1330 revolves along the inner peripheral surface of the ring gear 1340 while rotating. Since the sun gear 1350 is meshing with the planetary gear 1330, the rotation of the planetary gear 1330 is transmitted to the sun gear 1350, and the output shaft 1360 is rotated. In this way, the rotation input to the input shaft 1320 is output from the output shaft 1360 after being accelerated.
 油膜切れが発生しやすい条件では、転がり軸受1100Bにおいて、図5に示される内輪110の表面(軌道面110da)及び外輪120の表面(軌道面120ca)と転動体130の表面とが互いに金属接触し、摩耗により内輪110の表面、外輪120の表面及び転動体130の表面に新生面が形成されやすくなる。新生面では潤滑油中から水素が発生しやすく、この水素が新生面から侵入することにより、内輪110の表面、外輪120の表面及び転動体130の表面に水素脆性を生じさせる。 In the rolling bearing 1100B, under conditions where the oil film is likely to run out, the surface of the inner ring 110 (raceway surface 110da) and the surface of the outer ring 120 (raceway surface 120ca) shown in FIG. , new surfaces are likely to be formed on the surfaces of the inner ring 110, the outer ring 120, and the rolling elements 130 due to wear. Hydrogen is likely to be generated from the lubricating oil on the new surface, and this hydrogen penetrates from the new surface, causing hydrogen embrittlement on the surface of the inner ring 110, the surface of the outer ring 120, and the surface of the rolling element 130.
 しかしながら、内輪110の表層部、外輪120の表層部及び転動体130の表層部の鋼中に析出物が高密度で分散しているため、油膜切れが発生しやすい条件下でも摩耗が進展しにくい。また、内輪110の表層部、外輪120の表層部及び転動体130の表層部の鋼中に分散している析出物が水素原子のトラップサイトになるため、内輪110の表層部、外輪120の表層部及び転動体130の表層部における水素拡散量が小さくなる。そのため、転がり軸受100Aによると、水素脆性に起因した早期剥離現象の発生を抑制することができる。 However, since precipitates are dispersed at a high density in the steel of the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130, wear does not progress easily even under conditions where the oil film tends to break. . In addition, since the precipitates dispersed in the steel on the surface layer of the inner ring 110, the surface layer of the outer ring 120, and the surface layer of the rolling element 130 become trap sites for hydrogen atoms, the surface layer of the inner ring 110 and the surface layer of the outer ring 120 The diffusion amount of hydrogen in the surface layer portion of the rolling element 130 and the surface layer portion of the rolling element 130 becomes small. Therefore, according to the rolling bearing 100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
 また、転がり軸受1100Bでは、内輪110、外輪120及び転動体130の表面の距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が15パーセント以上(25パーセント以上35パーセント以下)になっているため、異物混入環境下での圧痕起点型剥離に対する耐久性が改善される。 In the rolling bearing 1100B, the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 110, the outer ring 120 and the rolling elements 130 is 50 μm. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
 (変形例4)
 変形例4に係る転がり軸受2100(以下「転がり軸受2100A」とする)を説明する。
(Modification 4)
A rolling bearing 2100 (hereinafter referred to as “rolling bearing 2100A”) according to Modification 4 will be described.
 図9は、転がり軸受2100Aの断面図である。図9に示されるように、転がり軸受2100Aは、円錐ころ軸受である。なお、転がり軸受2100Aは、自動調心ころ軸受であってもよい。転がり軸受2100Aは、軸受部品として、内輪2110と、外輪2120と、転動体2130と、保持器2140とを有している。 FIG. 9 is a cross-sectional view of the rolling bearing 2100A. As shown in FIG. 9, rolling bearing 2100A is a tapered roller bearing. Note that the rolling bearing 2100A may be a self-aligning roller bearing. The rolling bearing 2100A has an inner ring 2110, an outer ring 2120, rolling elements 2130, and a retainer 2140 as bearing components.
 内輪2110は、幅面2110aと、幅面2110bと、内周面2110cと、外周面2110dとを有している。幅面2110a、幅面2110b、内周面2110c及び外周面2110dは、内輪2110の表面を構成している。内輪2110の内径は、好ましくは、60mm以上である。 The inner ring 2110 has a width surface 2110a, a width surface 2110b, an inner peripheral surface 2110c, and an outer peripheral surface 2110d. The width surface 2110a, the width surface 2110b, the inner peripheral surface 2110c, and the outer peripheral surface 2110d form the surface of the inner ring 2110. As shown in FIG. The inner diameter of inner ring 2110 is preferably 60 mm or more.
 幅面2110a及び幅面2110bは、軸方向における内輪2110の端面である。幅面2110bは、軸方向における幅面2110aの反対面である。 A width surface 2110a and a width surface 2110b are end surfaces of the inner ring 2110 in the axial direction. The width surface 2110b is the opposite surface of the width surface 2110a in the axial direction.
 内周面2110cは、周方向に延在している。内周面2110cは、中心軸A側を向いている。内周面2110cは、軸方向における一方端で幅面2110aに連なっており、軸方向における他方端で幅面2110bに連なっている。 The inner peripheral surface 2110c extends in the circumferential direction. The inner peripheral surface 2110c faces the central axis A side. The inner peripheral surface 2110c is continuous with the width surface 2110a at one end in the axial direction, and is continuous with the width surface 2110b at the other end in the axial direction.
 外周面2110dは、周方向に延在している。外周面2110dは、中心軸Aとは反対側を向いている。すなわち、外周面2110dは、径方向における内周面2110cの反対面である。外周面2110dは、軸方向における一方端で幅面2110aに連なっており、軸方向における他方端で幅面2110bに連なっている。外周面2110dは、軌道面2110daを有している。軌道面2110daは、周方向に延在している。軌道面2110daは、転動体2130に接触する外周面2110dの一部である。 The outer peripheral surface 2110d extends in the circumferential direction. 2110 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 2110d is the opposite surface of the inner peripheral surface 2110c in the radial direction. The outer peripheral surface 2110d continues to the width surface 2110a at one end in the axial direction, and continues to the width surface 2110b at the other end in the axial direction. The outer peripheral surface 2110d has a raceway surface 2110da. The raceway surface 2110da extends in the circumferential direction. The raceway surface 2110da is a portion of the outer peripheral surface 2110d that contacts the rolling elements 2130 .
 外輪2120は、幅面2120aと、幅面2120bと、内周面2120cと、外周面2120dとを有している。外輪2120の表面は、幅面2120a、幅面2120b、内周面2120c及び外周面2120dにより構成されている。 The outer ring 2120 has a width surface 2120a, a width surface 2120b, an inner peripheral surface 2120c, and an outer peripheral surface 2120d. The surface of the outer ring 2120 is composed of a width surface 2120a, a width surface 2120b, an inner peripheral surface 2120c and an outer peripheral surface 2120d.
 幅面2120a及び幅面2120bは、軸方向における外輪2120の端面である。幅面2120bは、軸方向における幅面2120aの反対面である。 A width surface 2120a and a width surface 2120b are end surfaces of the outer ring 2120 in the axial direction. The width surface 2120b is the opposite surface of the width surface 2120a in the axial direction.
 内周面2120cは、周方向に延在している。内周面2120cは、中心軸A側を向いている。内周面2120cは、軸方向における一方端で幅面2120aに連なっており、軸方向における他方端で幅面2120bに連なっている。外輪2120は、内周面2120cが外周面2110dと対向するように配置されている。内周面2120cは、軌道面2120caを有している。軌道面2120caは、周方向に延在している。軌道面2120caは、転動体2130に接触する内周面2120cの一部である。 The inner peripheral surface 2120c extends in the circumferential direction. The inner peripheral surface 2120c faces the central axis A side. The inner peripheral surface 2120c continues to the width surface 2120a at one end in the axial direction, and continues to the width surface 2120b at the other end in the axial direction. Outer ring 2120 is arranged such that inner peripheral surface 2120c faces outer peripheral surface 2110d. The inner peripheral surface 2120c has a raceway surface 2120ca. The raceway surface 2120ca extends in the circumferential direction. The raceway surface 2120ca is a portion of the inner peripheral surface 2120c that contacts the rolling elements 2130 .
 外周面2120dは、周方向に延在している。外周面2120dは、中心軸Aとは反対側を向いている。すなわち、外周面2120dは、径方向における内周面2120cの反対面である。外周面2120dは、軸方向における一方端で幅面2120aに連なっており、軸方向における他方端で幅面2120bに連なっている。 The outer peripheral surface 2120d extends in the circumferential direction. 2120 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 2120d is the opposite surface of the inner peripheral surface 2120c in the radial direction. The outer peripheral surface 2120d continues to the width surface 2120a at one end in the axial direction, and continues to the width surface 2120b at the other end in the axial direction.
 転動体2130は、円錐ころである。転動体2130は、外周面2110d(軌道面2110da)と内周面2120c(軌道面2120ca)との間に配置されている。保持器2140は、リング状であり、外周面2110dと内周面2120cとの間に配置されている。保持器2140は、周方向において隣り合う2つの転動体2130の間隔が一定範囲内となるように、転動体2130を保持している。 The rolling elements 2130 are tapered rollers. The rolling elements 2130 are arranged between the outer peripheral surface 2110d (raceway surface 2110da) and the inner peripheral surface 2120c (raceway surface 2120ca). The retainer 2140 is ring-shaped and arranged between the outer peripheral surface 2110d and the inner peripheral surface 2120c. The retainer 2140 holds the rolling elements 2130 such that the interval between the two rolling elements 2130 adjacent in the circumferential direction is within a certain range.
 内輪2110、外輪2120及び転動体2130は、内輪10と同一の鋼で形成されていてもよい。内輪2110の表層部(内輪2110の表面からの距離が20μmまでの領域)、外輪2120の表層部(外輪2120の表面からの距離が20μmまでの領域)及び転動体2130の表層部(転動体2130の表面からの距離が20μmまでの領域)は、表層部11と同一の構成になっていてもよい。内輪2110、外輪2120及び転動体2130の表面には、ダイヤモンドライクカーボン被膜を形成する、酸化鉄(Fe)被膜を形成する(黒染め処理を行う)等の表面改質が行われていてもよい。 Inner ring 2110 , outer ring 2120 and rolling elements 2130 may be made of the same steel as inner ring 10 . The surface layer of the inner ring 2110 (the region up to 20 μm from the surface of the inner ring 2110), the surface layer of the outer ring 2120 (the region up to 20 μm from the surface of the outer ring 2120), and the surface layer of the rolling element 2130 (the rolling element 2130 ) may have the same configuration as the surface layer portion 11 . The surfaces of the inner ring 2110, the outer ring 2120, and the rolling elements 2130 are subjected to surface modification such as forming a diamond-like carbon coating, forming an iron oxide ( Fe3O4 ) coating (performing a blackening treatment), and the like. may
 転がり軸受2100Aは、例えば、アスクル装置2200に用いられる。アスクル装置2200は、例えば、ホイールローダのアスクル装置である。アスクル装置2200は、ダンプトラックのアスクル装置であってもよい。 A rolling bearing 2100A is used in an axle device 2200, for example. The axle device 2200 is, for example, an axle device of a wheel loader. The axle device 2200 may be the axle device of a dump truck.
 図10は、アスクル装置2200の断面図である。図10に示されるように、アスクル装置2200は、ディファレンシャル機構2210と、本体ケース2220と、回転軸2230とを有している。 10 is a cross-sectional view of the axle device 2200. FIG. As shown in FIG. 10 , the axle device 2200 has a differential mechanism 2210 , a body case 2220 and a rotating shaft 2230 .
 ディファレンシャル機構2210は、本体ケース2220の内部に配置されている。ディファレンシャル機構2210は、ギヤケース2211a及びギヤケース2211bと、スパイダ2212と、ピニオンギヤ2213と、サイドギヤ2214a及びサイドギヤ2214bと、回転軸2215a及び回転軸2215bと、リングギヤ2216とを有している。 The differential mechanism 2210 is arranged inside the body case 2220 . The differential mechanism 2210 has a gear case 2211a and a gear case 2211b, a spider 2212, a pinion gear 2213, a side gear 2214a and a side gear 2214b, a rotating shaft 2215a and a rotating shaft 2215b, and a ring gear 2216.
 ギヤケース2211a及びギヤケース2211bは、それぞれ回転軸2215a及び回転軸2215bに取り付けられている。本体ケース2220は、隔壁2221a及び隔壁2221bを有している。ギヤケース2211a及びギヤケース2211bは、転がり軸受2100Aにより回転可能に本体ケース2220に支持されている。より具体的には、内輪2110はギヤケース2211a(ギヤケース2211b)に取り付けられており、外輪2120は隔壁2221a(隔壁2221b)に取り付けられている。 The gear case 2211a and the gear case 2211b are attached to the rotating shaft 2215a and the rotating shaft 2215b, respectively. The body case 2220 has a partition wall 2221a and a partition wall 2221b. Gear case 2211a and gear case 2211b are rotatably supported by main body case 2220 by rolling bearing 2100A. More specifically, inner ring 2110 is attached to gear case 2211a (gear case 2211b), and outer ring 2120 is attached to partition wall 2221a (partition wall 2221b).
 スパイダ2212は、ギヤケース2211a及びギヤケース2211bにより画される空間内に配置されている。ピニオンギヤ2213は、回転可能にスパイダ2212に取り付けられている。サイドギヤ2214a及びサイドギヤ2214bは、ピニオンギヤ2213に噛み合っている。サイドギヤ2214a及びサイドギヤ2214bは、それぞれ回転軸2215a及び回転軸2215bに取り付けられている。リングギヤ2216は、ギヤケース2211aに取り付けられている。リングギヤ2216は、ベベルギヤである。 The spider 2212 is arranged within a space defined by the gear case 2211a and the gear case 2211b. Pinion gear 2213 is rotatably attached to spider 2212 . The side gear 2214 a and the side gear 2214 b mesh with the pinion gear 2213 . The side gear 2214a and the side gear 2214b are attached to the rotating shaft 2215a and the rotating shaft 2215b, respectively. The ring gear 2216 is attached to the gear case 2211a. Ring gear 2216 is a bevel gear.
 回転軸2230は、先端にピニオンギヤ2231を有している。ピニオンギヤ2231は、リングギヤ2216に噛み合っている。回転軸2230は、転がり軸受により、本体ケース2220内において回転可能に支持されている。回転軸2230が回転されることにより、回転軸2230の回転がピニオンギヤ2231、リングギヤ2216及びギヤケース2211aを介して回転軸2215aに伝達され、回転軸2215aを回転させる。また、回転軸2215aの回転は、サイドギヤ2214a、ピニオンギヤ2213及びサイドギヤ2214bを介して回転軸2215bに伝達され、回転軸2215bをギヤケース2211bとともに回転させる。 The rotating shaft 2230 has a pinion gear 2231 at its tip. Pinion gear 2231 meshes with ring gear 2216 . Rotating shaft 2230 is rotatably supported within body case 2220 by a rolling bearing. By rotating the rotating shaft 2230, the rotation of the rotating shaft 2230 is transmitted to the rotating shaft 2215a via the pinion gear 2231, the ring gear 2216 and the gear case 2211a, thereby rotating the rotating shaft 2215a. Also, the rotation of the rotating shaft 2215a is transmitted to the rotating shaft 2215b via the side gear 2214a, the pinion gear 2213 and the side gear 2214b, and rotates the rotating shaft 2215b together with the gear case 2211b.
 回転軸2230の回転方向が変わることにより、回転軸2215a及び回転軸2215b(ギヤケース2211a及びギヤケース2211b)の回転方向が変化する。そのため、転がり軸受2100Aでは、内輪2110が外輪2120に対して正逆回転することになる。また、アスクル装置2200では、回転軸2230の回転及び停止が繰り返されるため、転がり軸受2100Aでは、内輪2110が静止状態から外輪2120に対して回転される。 By changing the rotation direction of the rotation shaft 2230, the rotation directions of the rotation shaft 2215a and the rotation shaft 2215b (gear case 2211a and gear case 2211b) are changed. Therefore, in the rolling bearing 2100A, the inner ring 2110 rotates forward and backward with respect to the outer ring 2120 . Further, in the axle device 2200, the rotating shaft 2230 is repeatedly rotated and stopped, so in the rolling bearing 2100A, the inner ring 2110 is rotated with respect to the outer ring 2120 from a stationary state.
 上記のように、転がり軸受2100Aは、内輪2110の外輪2120に対する正逆回転及び内輪2110の静止状態からの外輪2120の対する回転が繰り返されるため、油膜切れが発生しやすい条件下で使用される。より具体的には、転がり軸受2100Aは、油膜パラメータ(Λ)が1.2未満になる条件又はdn値(mm単位で示される内輪2110の内径にrpm単位で示される内輪2110の回転数を乗じた値)が200000以下になる条件で使用される。 As described above, the rolling bearing 2100A is used under conditions where the oil film is likely to run out because the forward and reverse rotation of the inner ring 2110 with respect to the outer ring 2120 and the rotation of the inner ring 2110 from a stationary state with respect to the outer ring 2120 are repeated. More specifically, the rolling bearing 2100A is set under the condition that the oil film parameter (Λ) is less than 1.2 or the dn value (the inner diameter of the inner ring 2110 indicated in mm units multiplied by the number of revolutions of the inner ring 2110 indicated in rpm units). value) is 200,000 or less.
 油膜切れが発生しやすい条件では、内輪2110の表面(軌道面2110da)及び外輪2120の表面(軌道面2120ca)と転動体2130の表面とが互いに金属接触し、摩耗により内輪2110の表面、外輪2120の表面及び転動体2130の表面に新生面が形成されやすくなる。新生面では潤滑油中から水素が発生しやすく、この水素が新生面から侵入することにより、内輪2110の表面、外輪2120の表面及び転動体2130の表面に水素脆性を生じさせる。 Under conditions where the oil film is likely to run out, the surface of the inner ring 2110 (raceway surface 2110da) and the surface of the outer ring 2120 (raceway surface 2120ca) and the surface of the rolling element 2130 come into metal contact with each other, and wear causes the surface of the inner ring 2110 and the surface of the outer ring 2120 to come into contact with each other. and the surfaces of the rolling elements 2130 are likely to form new surfaces. Hydrogen is likely to be generated from the lubricating oil on the new surface, and this hydrogen penetrates from the new surface, causing hydrogen embrittlement on the surface of the inner ring 2110, the surface of the outer ring 2120, and the surface of the rolling element 2130.
 しかしながら、内輪2110の表層部、外輪2120の表層部及び転動体2130の表層部の鋼中に析出物が高密度で分散しているため、油膜切れが発生しやすい条件下でも摩耗が進展しにくい。また、内輪2110の表層部、外輪2120の表層部及び転動体2130の表層部の鋼中に分散している析出物が水素原子のトラップサイトになるため、内輪2110の表層部、外輪2120の表層部及び転動体2130の表層部における水素侵入量が小さくなる。そのため、転がり軸受2100Aによると、水素脆性に起因した早期剥離現象の発生を抑制することができる。 However, since precipitates are dispersed at a high density in the steel of the surface layer of the inner ring 2110, the surface layer of the outer ring 2120, and the surface layer of the rolling element 2130, wear does not progress easily even under conditions where oil film breakage is likely to occur. . In addition, the precipitates dispersed in the steel on the surface layer of the inner ring 2110, the surface layer of the outer ring 2120, and the surface layer of the rolling element 2130 become trap sites for hydrogen atoms. The amount of hydrogen penetration in the surface layer portion of the rolling element 2130 and the rolling element 2130 becomes small. Therefore, according to the rolling bearing 2100A, it is possible to suppress the occurrence of premature flaking caused by hydrogen embrittlement.
 また、転がり軸受2100Aでは、内輪2110、外輪2120及び転動体2130の表面の距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が15パーセント以上(25パーセント以上35パーセント以下)になっているため、異物混入環境下での圧痕起点型剥離に対する耐久性が改善される。 In the rolling bearing 2100A, the volume ratio of retained austenite in the steel is 15% or more (25% or more and 35% or less) at the position where the distance between the surfaces of the inner ring 2110, the outer ring 2120 and the rolling elements 2130 is 50 μm. Therefore, durability against indentation-induced flaking in an environment containing foreign matter is improved.
 (転動疲労寿命試験)
 実施形態に係る軸受部品の効果(水素脆性の発生を抑制する効果)を確認するために、転動疲労寿命試験を行った。転動疲労寿命試験には、サンプル1、サンプル2及びサンプル3が用いられた。サンプル1~サンプル3は、JIS規格に定められている51106型番のスラスト玉軸受である。
(Rolling contact fatigue life test)
A rolling contact fatigue life test was conducted in order to confirm the effect of the bearing component according to the embodiment (the effect of suppressing the occurrence of hydrogen embrittlement). Samples 1, 2 and 3 were used for the rolling contact fatigue life test. Samples 1 to 3 are thrust ball bearings of type 51106 specified in JIS.
 サンプル1では、軌道盤(内輪及び外輪)が、第1鋼材により形成された。サンプル2及びサンプル3では、軌道盤が、第2鋼材により形成された。第1鋼材及び第2鋼材の組成は、表1に示されている。表1に示されるように、第1鋼材及び第2鋼材の成分は、モリブデン及びバナジウムの含有量を除いて、ほぼ同一である。なお、第2鋼材は、JIS規格に定められている高炭素クロム軸受鋼であるSUJ2に対応している。 In sample 1, the bearing washer (inner ring and outer ring) was formed from the first steel material. In samples 2 and 3, bearing washer was formed of the second steel material. The compositions of the first steel material and the second steel material are shown in Table 1. As shown in Table 1, the ingredients of the first steel material and the second steel material are almost the same except for the contents of molybdenum and vanadium. The second steel material corresponds to SUJ2, which is a high-carbon chromium bearing steel specified in JIS standards.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図11は、サンプル1の軌道盤の軌道面近傍における窒素濃度及び炭素濃度の測定結果を示すグラフである。図12は、サンプル2の軌道盤の軌道面近傍における窒素濃度及び炭素濃度の測定結果を示すグラフである。図11及び図12の横軸は、軌道面からの距離(単位:mm)であり、図11及び図12の縦軸は、炭素又は窒素の濃度(単位:質量パーセント)である。図11及び図12に示されるように、サンプル1及びサンプル2では、軌道盤の表面に対して浸窒処理が行われた。この浸窒処理が行われる際の加熱保持温度は、850℃とされた。他方で、サンプル3では、軌道盤の表面に対して、浸窒処理が行われなかった。 FIG. 11 is a graph showing the measurement results of the nitrogen concentration and carbon concentration in the vicinity of the raceway surface of the raceway washer of Sample 1. FIG. 12 is a graph showing the measurement results of the nitrogen concentration and the carbon concentration in the vicinity of the raceway surface of the raceway washer of Sample 2; The horizontal axis in FIGS. 11 and 12 is the distance from the orbital plane (unit: mm), and the vertical axis in FIGS. 11 and 12 is the carbon or nitrogen concentration (unit: mass percent). As shown in FIGS. 11 and 12, in samples 1 and 2, the surface of the washer was subjected to nitriding treatment. The heating and holding temperature during this nitriding treatment was set to 850°C. On the other hand, in sample 3, the bearing washer surface was not subjected to nitriding treatment.
 表2には、サンプル1~サンプル3の軌道盤の表層部(軌道面からの距離が20μmまでの領域)における窒素濃度が示されている。表2に示されるように、サンプル1及びサンプル2の軌道盤の表層部の鋼中では、窒素濃度が0.3パーセント以上0.5パーセント以下であった。サンプル3の軌道盤の表層部の鋼中では、窒素濃度が0.0パーセントであった。 Table 2 shows the nitrogen concentration in the surface layer of the raceway washer of Samples 1 to 3 (the area up to 20 μm from the raceway surface). As shown in Table 2, the nitrogen concentration in the surface layer steel of the bearing washers of samples 1 and 2 was 0.3% or more and 0.5% or less. The nitrogen concentration in the surface layer steel of the washer of Sample 3 was 0.0%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 サンプル1~サンプル3の軌道盤に対しては、焼入れ及び焼戻しが行われた。焼入れの際の加熱保持温度は、850℃とされた。焼戻しの際の加熱保持温度は、180℃とされた。焼戻しの際の加熱保持時間は、2時間とされた。 Quenching and tempering were performed on the bearing washers of samples 1 to 3. The heating and holding temperature during quenching was set to 850°C. The heating and holding temperature during tempering was set to 180°C. The heating and holding time during tempering was set to 2 hours.
 図13は、サンプル1の軌道盤の表層部におけるSEM画像である。図14は、サンプル2の軌道盤の表層部におけるSEM画像である。図13及び図14のSEM画像中において、白色の部分が析出物であり、楕円状の灰色の部分がセメンタイトである。 FIG. 13 is an SEM image of the surface layer of the bearing washer of Sample 1. 14 is an SEM image of the surface layer of the bearing washer of sample 2. FIG. In the SEM images of FIGS. 13 and 14, white portions are precipitates, and oval gray portions are cementite.
 表3に示されるように、サンプル1の軌道盤の表層部の鋼中では、析出物の面積率は、2.7パーセントであった。表3に示されるように、サンプル2の表層部の鋼中では、析出物の面積率は、1.6パーセントであった。すなわち、サンプル1の軌道盤の表層部では、サンプル2の軌道盤の表層部と比較して、析出物が高密度に分散していた。この比較から、0.5質量パーセント以下のバナジウム及びモリブデンを添加することにより、軌道盤の表層部の鋼中において析出物が高密度に分散されることが明らかになった。 As shown in Table 3, the area ratio of precipitates in the surface layer steel of sample 1 was 2.7%. As shown in Table 3, the area ratio of precipitates in the surface layer steel of sample 2 was 1.6 percent. That is, in the surface layer portion of the bearing washer of Sample 1, the precipitates were dispersed at a higher density than in the surface layer portion of the bearing washer of Sample 2. From this comparison, it became clear that the addition of vanadium and molybdenum in an amount of 0.5% by mass or less resulted in a dense dispersion of precipitates in the surface layer steel of the bearing washer.
 サンプル1の軌道盤の表層部では、析出物の最大粒径が、0.5μmであった。サンプル2の軌道盤の表層部では、析出物の最大粒径が、1.1μmであった。すなわち、サンプル1の軌道盤の表層部では、サンプル2の軌道盤の表層部と比較して、析出物が微細に分散していた。この比較から、0.5質量パーセント以下のバナジウム及びモリブデンを添加することにより、軌道盤の表層部の鋼中において析出物が高密度かつ微細に分散されることが明らかになった。 In the surface layer of the bearing washer of sample 1, the maximum grain size of precipitates was 0.5 μm. In the surface layer portion of the bearing washer of sample 2, the maximum grain size of precipitates was 1.1 μm. That is, in the surface layer portion of the bearing washer of sample 1, compared with the surface layer portion of the bearing washer of sample 2, the precipitates were finely dispersed. From this comparison, it became clear that the addition of vanadium and molybdenum in an amount of 0.5% by mass or less resulted in a high density and fine dispersion of precipitates in the surface layer steel of the bearing washer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4に示されるように、サンプル1及びサンプル2の軌道盤の表層部では、セメンタイトの最大粒径が、1.5μm以下であった。サンプル3の軌道盤の表層部では、セメンタイトの最大粒径が、1.5μmを超えていた。 As shown in Table 4, the maximum grain size of cementite was 1.5 μm or less in the surface layers of the bearing washer of sample 1 and sample 2. In the surface layer portion of the bearing washer of sample 3, the maximum grain size of cementite exceeded 1.5 μm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表5に示されるように、サンプル1及びサンプル2では、軌道面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が、15パーセント以上であった。サンプル3では、軌道面からの距離が50μmとなる位置において、鋼中の残留オーステナイトの体積比が、15パーセント未満であった。サンプル1~サンプル3では、軌道面からの距離が50μmとなる位置において、鋼の硬さが、58HRC以上であった。 As shown in Table 5, in samples 1 and 2, the volume ratio of retained austenite in the steel was 15% or more at the position where the distance from the raceway surface was 50 μm. In sample 3, the volume ratio of retained austenite in the steel was less than 15% at the position where the distance from the raceway surface was 50 μm. In samples 1 to 3, the hardness of the steel was 58 HRC or more at the position where the distance from the raceway surface was 50 μm.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図15は、サンプル1の軌道盤の表層部におけるEBSDの相マップである。図16は、サンプル2の軌道盤の表層部におけるEBSDの相マップである。図17は、サンプル3の軌道盤の表層部におけるEBSDの相マップである。図15~図17中において、マルテンサイトブロック粒は、白色になっている。図18は、サンプル1~サンプル3の軌道盤の表層部におけるマルテンサイトブロック粒の平均粒径を示す棒グラフである。図18のグラフの縦軸は、マルテンサイトブロック粒の平均粒径(単位:μm)である。 FIG. 15 is an EBSD phase map of the surface layer of the bearing washer of sample 1. FIG. 16 is a phase map of EBSD in the surface layer of the bearing washer of sample 2. FIG. FIG. 17 is an EBSD phase map of the surface layer of the bearing washer of Sample 3. FIG. In FIGS. 15 to 17, martensite block grains are white. FIG. 18 is a bar graph showing the average grain size of martensite block grains in the surface layer portion of bearing washer of Samples 1 to 3. FIG. The vertical axis of the graph in FIG. 18 is the average grain size (unit: μm) of martensite block grains.
 図15~図18に示されるように、サンプル1の軌道盤の表層部では、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径が、2.0μm以下であった。他方で、サンプル2及びサンプル2の軌道盤の表層部では、比較面積率が30パーセントでのマルテンサイトブロック粒の平均粒径が、2.0μmを超えていた。 As shown in FIGS. 15 to 18, in the surface layer portion of the bearing washer of Sample 1, the average grain size of martensite block grains at a comparative area ratio of 30% was 2.0 μm or less. On the other hand, in the surface layers of the bearing washer of Sample 2 and Sample 2, the average grain size of martensite block grains at a comparative area ratio of 30% exceeded 2.0 μm.
 サンプル1の軌道盤の表層部では、比較面積率が50パーセントでのマルテンサイトブロック粒の平均粒径が、1.5μm以下であった。他方で、サンプル2及びサンプル2の軌道盤の表層部では、比較面積率が50パーセントでのマルテンサイトブロック粒の平均粒径が、1.5μmを超えていた。 In the surface layer portion of the bearing washer of sample 1, the average grain size of martensite block grains at a comparative area ratio of 50% was 1.5 µm or less. On the other hand, in the surface layers of the bearing washer of Sample 2 and Sample 2, the average grain size of martensite block grains at a comparative area ratio of 50% exceeded 1.5 μm.
 図19は、転動疲労寿命試験の結果を示すグラフである。なお、図19のグラフの横軸は寿命(単位:時間)を示しており、図19のグラフの縦軸は累積破損確率(単位:パーセント)を示している。転動疲労寿命試験は、表6に示されている条件で行われた。すなわち、転動体と軌道盤との最大接触面圧は2.3GPaとされ、軌道盤は0回転/分と2500回転/分との間で急速な加減速が行われ、潤滑液はポリグリコール油に純水を加えたものが用いられた。 Fig. 19 is a graph showing the results of the rolling contact fatigue life test. The horizontal axis of the graph in FIG. 19 indicates life (unit: hours), and the vertical axis of the graph in FIG. 19 indicates cumulative damage probability (unit: percent). The rolling contact fatigue life test was conducted under the conditions shown in Table 6. That is, the maximum contact surface pressure between the rolling elements and the washer is 2.3 GPa, the washer is rapidly accelerated and decelerated between 0 rpm and 2500 rpm, and the lubricating fluid is polyglycol oil. was added with pure water.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図19及び表7に示されるように、サンプル1は、サンプル2よりも優れた転動疲労寿命を示した。より具体的には、サンプル1のL10寿命(累積破損確率が10パーセントにとなる寿命)はサンプル3のL10寿命の2.7倍であり、サンプル2のL10寿命はサンプル3のL10寿命の2.1倍であった。 As shown in FIG. 19 and Table 7, Sample 1 exhibited better rolling contact fatigue life than Sample 2. More specifically, the L10 life of sample 1 (the life at which the cumulative failure probability reaches 10 percent) is 2.7 times the L10 life of sample 3 , and the L10 life of sample 2 is the L10 life of sample 3. It was 2.1 times the 10 life.
 上記のとおり、サンプル1の軌道盤の表層部において、比較面積率が30パーセントでのマルテンサイト粒の平均粒径が2.0μm以下であった。他方で、サンプル2及びサンプル3の軌道盤の表層部において、比較面積率が30パーセントでのマルテンサイト粒の平均粒径が2.0μmを超えていた。この比較から、実施形態に係る軸受部品によると耐久性が改善されることが明らかになった。 As described above, in the surface layer portion of the bearing washer of Sample 1, the average grain size of martensite grains at a comparative area ratio of 30% was 2.0 μm or less. On the other hand, in the surface layer portion of the bearing washer of Samples 2 and 3, the average grain size of martensite grains at a comparative area ratio of 30% exceeded 2.0 μm. From this comparison, it became clear that the bearing component according to the embodiment has improved durability.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、上記のとおり、サンプル1の軌道盤の表層部では、サンプル1の軌道盤の表層部では、サンプル2の軌道盤の表層部よりも析出物が微細かつ高密度に分散していた。この比較から、表層部における析出物の面積率及び最大粒径をそれぞれ2.0パーセント以上及び0.5μm以下とすることにより、実施形態に係る軸受部品の耐久性がさらに改善されることが明らかになった。 In addition, as described above, in the surface layer portion of the bearing washer of sample 1, the precipitates were dispersed finer and more densely than in the surface layer portion of the bearing washer of sample 2. From this comparison, it is clear that the durability of the bearing component according to the embodiment is further improved by setting the area ratio and maximum grain size of precipitates in the surface layer to 2.0% or more and 0.5 μm or less, respectively. Became.
 また、サンプル2のL10寿命は、サンプル3のL10寿命よりも長かった。上記のとおり、サンプル2の軌道盤の表層部ではセメンタイトの最大粒径が1.5μm以下であった一方で、サンプル3の軌道盤の表層部ではセメンタイトの最大粒径が1.5μmを超えていた。また、サンプル2の軌道盤では軌道面からの距離が50μmとなる位置における残留オーステナイトの体積比が15パーセント以上になっている一方で、サンプル3の軌道盤では軌道面からの距離が50μmとなる位置における残留オーステナイトの体積比が15パーセント未満になっていた。 Also, the L 10 life of sample 2 was longer than the L 10 life of sample 3. As described above, the maximum grain size of cementite in the surface layer of the washer of sample 2 was 1.5 µm or less, while the maximum grain size of cementite in the surface layer of the washer of sample 3 exceeded 1.5 µm. rice field. In addition, in the bearing washer of sample 2, the volume ratio of retained austenite at the position where the distance from the raceway surface is 50 μm is 15% or more, while in the bearing washer of sample 3, the distance from the raceway surface is 50 μm. The volume fraction of retained austenite at the location was less than 15 percent.
 この比較から、軸受部品の表層部においてセメンタイトの最大粒径を1.5μm以下にすること及び軸受部品の表面からの距離が50μmとなる位置において残留オーステナイトの体積比を15パーセント以上とすることにより、軸受部品の耐久性が改善されることが明らかになった。 From this comparison, by setting the maximum grain size of cementite to 1.5 µm or less in the surface layer of the bearing component and setting the volume ratio of retained austenite to 15% or more at a position where the distance from the surface of the bearing component is 50 µm, , the durability of the bearing components is improved.
 (水素侵入特性に関する試験)
 サンプル1及びサンプル3の軌道部材としての軌道盤(内輪及び外輪)の表層部への水素侵入特性を、以下の方法により評価した。この評価では、第1に、上記の転動疲労寿命試験に供される前のサンプル1及びサンプル3の軌道部材を室温から400℃まで加熱することにより、転動疲労寿命試験に供される前のサンプル1及びサンプル3の軌道部材からの水素放出量が測定された。第2に、転動疲労寿命試験に50時間供された後のサンプル1及びサンプル3の軌道部材を室温から400°まで加熱することにより、転動疲労寿命試験に50時間供された後のサンプル1及びサンプル3の軌道部材からの水素放出量が測定された。
(Test on Hydrogen Penetration Characteristics)
The characteristics of hydrogen permeation into the surface layer portion of raceway washer (inner ring and outer ring) as raceway members of samples 1 and 3 were evaluated by the following method. In this evaluation, first, the raceway members of Sample 1 and Sample 3 before being subjected to the rolling contact fatigue life test were heated from room temperature to 400° C., so that the rolling contact fatigue life test was performed. was measured. Second, by heating the raceway members of Sample 1 and Sample 3 after being subjected to the rolling contact fatigue life test for 50 hours from room temperature to 400°, the samples after being subjected to the rolling contact fatigue life test for 50 hours The amount of hydrogen released from the track members of Sample 1 and Sample 3 was measured.
 サンプル3では、転動疲労寿命試験の前後での水素放出量の比(すなわち、転動疲労寿命試験に供された後の水素放出量を転動疲労寿命試験に供される前の水素放出量で除した値)が、3.2になっていた。他方で、サンプル1では、転動疲労寿命試験の前後での水素放出量の比が、0.9になっていた。この比較から、接触面に表層部11が形成されることにより表層部11への水素侵入が抑制され、水素脆性に起因した早期剥離が抑制されることが、実験的に明らかにされた。 In sample 3, the ratio of the hydrogen release amount before and after the rolling contact fatigue life test (that is, the hydrogen release amount after being subjected to the rolling contact fatigue life test is ) was 3.2. On the other hand, in sample 1, the ratio of hydrogen release amounts before and after the rolling contact fatigue life test was 0.9. From this comparison, it was experimentally clarified that the formation of the surface layer portion 11 on the contact surface suppresses penetration of hydrogen into the surface layer portion 11 and suppresses premature flaking caused by hydrogen embrittlement.
 以上のように本発明の実施形態について説明を行ったが、上記の実施形態を様々に変形することも可能である。また、本発明の範囲は、上記の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更を含むことが意図される。 Although the embodiment of the present invention has been described as above, it is also possible to modify the above embodiment in various ways. Moreover, the scope of the present invention is not limited to the above embodiments. The scope of the present invention is indicated by the scope of claims, and is intended to include all changes within the meaning and scope of equivalence to the scope of the claims.
 本実施形態は、軸受部品及びそれを有する転がり軸受に特に有利に適用される。 This embodiment is particularly advantageously applied to bearing components and rolling bearings having the same.
 6,306 ケーシング、10,110,2110 内輪、10a,10b,20a,20b,110a,110b,120a,120b,2110a,2110b,2120a,2120b 幅面、10c,20c,110c,120c,1220a,2110c,2120c 内周面、10d,20d,110d,120d,1210a,1220a,1230a,2110d,2120d 外周面、10da,20ca,110da,120ca,2110da,2120ca 軌道面、11 表層部、20,120,2120 外輪、30,130,1230,2130 転動体、40,1240,2140 保持器、100,100A,309,311,314,315,322,323,1100,1100A,1100B,2100,2100A 軸受、130a 転動面、300 風力発電機用増速機、301,1320 入力軸、302 低速軸、303 遊星歯車装置、304,1360 出力軸、305 2次増速装置、307,1250,1310 キャリア、308,1220,1330 遊星歯車、310 遊星軸、312 リングギヤ、313 太陽歯車、316 油浴、317,320 ギヤ、318 小径側ギヤ、319 大径側ギヤ、321 中間軸、1200 遊星歯車変速機、1210,1311 軸、1260 抜け止め部材、1300 変速機、1340,2216 リングギヤ、1350 サンギヤ、2200 アスクル装置、2210 ディファレンシャル機構、2211a,2211b ギヤケース、2212 スパイダ、2213,2231 ピニオンギヤ、2214a,2214b サイドギヤ、2215a,2215b,2230 回転軸、2220 本体ケース、2221a,2221b 隔壁、A 中心軸、S1 準備工程、S2 浸窒工程、S3 焼入れ工程、S4 焼戻し工程、S5 後処理工程。 6, 306 casing, 10, 110, 2110 inner ring, 10a, 10b, 20a, 20b, 110a, 110b, 120a, 120b, 2110a, 2110b, 2120a, 2120b width surface, 10c, 20c, 110c, 120c, 1220a, 2110c, 2120c Inner peripheral surface 10d, 20d, 110d, 120d, 1210a, 1220a, 1230a, 2110d, 2120d Outer peripheral surface 10da, 20ca, 110da, 120ca, 2110da, 2120ca Raceway surface 11 Surface layer 20, 120, 2120 Outer ring 30 , 130, 1230, 2130 Rolling elements, 40, 1240, 2140 Cage, 100, 100A, 309, 311, 314, 315, 322, 323, 1100, 1100A, 1100B, 2100, 2100A Bearing, 130a Rolling surface, 300 Gearbox for wind power generator, 301, 1320 input shaft, 302 low speed shaft, 303 planetary gear device, 304, 1360 output shaft, 305 secondary gearbox, 307, 1250, 1310 carrier, 308, 1220, 1330 planetary gear , 310 planetary shaft, 312 ring gear, 313 sun gear, 316 oil bath, 317, 320 gear, 318 small diameter side gear, 319 large diameter side gear, 321 intermediate shaft, 1200 planetary gear transmission, 1210, 1311 shaft, 1260 retainer Member, 1300 transmission, 1340, 2216 ring gear, 1350 sun gear, 2200 axle device, 2210 differential mechanism, 2211a, 2211b gear case, 2212 spider, 2213, 2231 pinion gear, 2214a, 2214b side gear, 2215a, 2215b, 2230 main body, 2220 Case, 2221a, 2221b: partition wall, A: center shaft, S1: preparation process, S2: nitriding process, S3: hardening process, S4: tempering process, S5: post-treatment process.

Claims (22)

  1.  軸受部品を備える転がり軸受であって、
     前記軸受部品は、鋼製であり、かつ表面からの距離が20μmまでの領域である表層部を有し、
     前記鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.50質量パーセント以下のバナジウムと、0.50質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物であり、
     前記表層部の前記鋼は、マルテンサイトブロック粒と、析出物とを有し、
     前記析出物は、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物であり、
     前記表層部の前記鋼中において、比較面積率が30パーセントでの前記マルテンサイトブロック粒の平均粒径は、2.0μm以下である、転がり軸受。
    A rolling bearing comprising bearing parts,
    The bearing component is made of steel and has a surface layer portion that is a region with a distance of up to 20 μm from the surface,
    The steel contains 0.70 mass percent to 1.10 mass percent carbon, 0.15 mass percent to 0.35 mass percent silicon, and 0.30 mass percent to 0.60 mass percent manganese. and 1.30% by mass or more and 1.60% by mass or less of chromium, 0.50% by mass or less of vanadium, and 0.50% by mass or less of molybdenum, and the balance being iron and inevitable impurities,
    The steel of the surface layer portion has martensite block grains and precipitates,
    The precipitate is a nitride containing chromium or vanadium as a main component or a carbonitride containing chromium or vanadium as a main component,
    The rolling bearing, wherein in the steel of the surface layer portion, the average grain size of the martensite block grains at a comparative area ratio of 30% is 2.0 µm or less.
  2.  前記軸受部品は、内輪と、外輪と、転動体とを含み、
     前記転がり軸受は、風力発電機用増速機の構成部材を支持する、請求項1に記載の転がり軸受。
    The bearing component includes an inner ring, an outer ring, and rolling elements,
    2. The rolling bearing according to claim 1, wherein said rolling bearing supports a component of a gearbox for a wind power generator.
  3.  前記転がり軸受は、静定格荷重に対する、等価荷重の割合が0.04以下となる条件で使用される、請求項2に記載の転がり軸受。 The rolling bearing according to claim 2, wherein the rolling bearing is used under conditions where the ratio of equivalent load to static load rating is 0.04 or less.
  4.  前記転がり軸受は、油膜パラメータが0.5以上10以下となる条件で使用される、請求項2または請求項3に記載の転がり軸受。 The rolling bearing according to claim 2 or 3, wherein the rolling bearing is used under the condition that the oil film parameter is 0.5 or more and 10 or less.
  5.  前記軸受部品は、内方部材、外方部材及び転動体の少なくともいずれかを含み、
     前記転がり軸受は、変速機に用いられる、請求項1に記載の転がり軸受。
    The bearing component includes at least one of an inner member, an outer member and rolling elements,
    The rolling bearing according to claim 1, wherein said rolling bearing is used in a transmission.
  6.  前記軸受部品は、前記転動体と前記内方部材及び前記外方部材の少なくともいずれかとを含み、
     前記転動体の転動面と前記内方部材の軌道面又は前記外方部材の軌道面との合成粗さは0.06μm以上である、請求項5に記載の転がり軸受。
    the bearing component includes the rolling element and at least one of the inner member and the outer member;
    6. The rolling bearing according to claim 5, wherein the combined roughness of the rolling surface of the rolling element and the raceway surface of the inner member or the raceway surface of the outer member is 0.06 [mu]m or more.
  7.  前記軸受部品は、内輪と、外輪と、転動体とを含み、
     前記転がり軸受は、変速機に用いられる、請求項1に記載の転がり軸受。
    The bearing component includes an inner ring, an outer ring, and rolling elements,
    The rolling bearing according to claim 1, wherein said rolling bearing is used in a transmission.
  8.  前記転動体の転動面と前記内輪の軌道面又は前記外輪の軌道面との合成粗さは、0.06μm以上である、請求項7に記載の転がり軸受。 The rolling bearing according to claim 7, wherein the combined roughness of the rolling surface of the rolling element and the raceway surface of the inner ring or the raceway surface of the outer ring is 0.06 µm or more.
  9.  前記軸受部品は、内輪と、外輪と、転動体とを含み、
     前記転がり軸受は、前記内輪が前記外輪に対して正逆回転される又は前記内輪が静止状態から前記外輪に対して回転される機械構造に取り付けられる、請求項1に記載の転がり軸受。
    The bearing component includes an inner ring, an outer ring, and rolling elements,
    2. A rolling bearing according to claim 1, wherein said rolling bearing is mounted in a mechanical structure in which said inner ring is rotated in opposite directions relative to said outer ring or in which said inner ring is rotated relative to said outer ring from a stationary state.
  10.  前記転がり軸受は、油膜パラメータが1.2未満となる条件で使用される、請求項9に記載の転がり軸受。 The rolling bearing according to claim 9, wherein the rolling bearing is used under conditions where the oil film parameter is less than 1.2.
  11.  前記転がり軸受は、dn値が200000以下となる条件で使用される、請求項9又は請求項10に記載の転がり軸受。 The rolling bearing according to claim 9 or 10, wherein the rolling bearing is used under conditions where the dn value is 200000 or less.
  12.  前記転がり軸受は、円錐ころ軸受である、請求項9~請求項11のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 9 to 11, wherein said rolling bearing is a tapered roller bearing.
  13.  前記転がり軸受は、自動調心ころ軸受である、請求項9~請求項11のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 9 to 11, wherein said rolling bearing is a self-aligning roller bearing.
  14.  前記表面には、ダイヤモンドライクカーボン被膜又は酸化鉄被膜が形成されている、請求項9~請求項13のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 9 to 13, wherein a diamond-like carbon coating or an iron oxide coating is formed on the surface.
  15.  前記鋼は、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムと、0.10質量パーセント以上0.30質量パーセント以下のモリブデンとを含み、かつ残部が鉄及び不可避不純物である、請求項1~請求項14のいずれか1項に記載の転がり軸受。 The steel contains 0.90 to 1.10 mass percent carbon, 0.20 to 0.30 mass percent silicon, and 0.40 to 0.50 mass percent manganese. and 1.40% by mass or more and 1.60% by mass or less of chromium, 0.20% by mass or more and 0.30% by mass or less of vanadium, and 0.10% by mass or more and 0.30% by mass or less of molybdenum A rolling bearing according to any one of claims 1 to 14, comprising iron and the balance being iron and unavoidable impurities.
  16.  前記表層部の前記鋼中における前記析出物の面積率は、2.0パーセント以上である、請求項1~請求項15のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 15, wherein the area ratio of the precipitates in the steel of the surface layer portion is 2.0 percent or more.
  17.  前記表層部の前記鋼中において、前記析出物の最大粒径は、0.5μm以下である、請求項1~請求項16のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 16, wherein the maximum grain size of said precipitates in said steel of said surface layer portion is 0.5 µm or less.
  18.  前記表層部の前記鋼は、セメンタイトをさらに有し、
     前記表層部の前記鋼中において、前記セメンタイトの最大粒径は、1.5μm以下である、請求項1~請求項17のいずれか1項に記載の転がり軸受。
    The steel of the surface layer further has cementite,
    The rolling bearing according to any one of claims 1 to 17, wherein the cementite has a maximum grain size of 1.5 µm or less in the steel of the surface layer portion.
  19.  前記表層部の前記鋼中における窒素濃度は、0.15質量パーセント以上である、請求項1~請求項18のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 18, wherein the nitrogen concentration in the steel of the surface layer portion is 0.15% by mass or more.
  20.  前記表面からの距離が50μmとなる位置において、前記鋼中の残留オーステナイトの体積比は、15パーセント以上である、請求項1~請求項19のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 19, wherein the volume ratio of retained austenite in the steel is 15% or more at a position where the distance from the surface is 50 µm.
  21.  前記表面からの距離が50μmとなる位置において、前記鋼の硬さは、58HRC以上である、請求項1~請求項20のいずれか1項に記載の転がり軸受。 The rolling bearing according to any one of claims 1 to 20, wherein the steel has a hardness of 58 HRC or more at a position where the distance from the surface is 50 μm.
  22.  前記表面からの距離が50μmとなる位置において、前記鋼中の残留オーステナイトの体積比は、25パーセント以上35パーセント以下であり、
     前記表面からの距離が50μmとなる位置において、前記鋼の硬さは、58HRC以上64HRC以下である、請求項1~請求項21のいずれか1項に記載の転がり軸受。
    At a position where the distance from the surface is 50 μm, the volume ratio of retained austenite in the steel is 25% or more and 35% or less,
    The rolling bearing according to any one of claims 1 to 21, wherein the steel has a hardness of 58 HRC or more and 64 HRC or less at a position where the distance from the surface is 50 µm.
PCT/JP2022/019295 2021-04-30 2022-04-28 Rolling bearing WO2022230979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280030657.5A CN117203440A (en) 2021-04-30 2022-04-28 Rolling bearing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021077618A JP2022171155A (en) 2021-04-30 2021-04-30 rolling bearing
JP2021-077999 2021-04-30
JP2021077999A JP2022171393A (en) 2021-04-30 2021-04-30 rolling bearing
JP2021077119A JP2022170860A (en) 2021-04-30 2021-04-30 rolling bearing
JP2021-077119 2021-04-30
JP2021-077618 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230979A1 true WO2022230979A1 (en) 2022-11-03

Family

ID=83848575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019295 WO2022230979A1 (en) 2021-04-30 2022-04-28 Rolling bearing

Country Status (1)

Country Link
WO (1) WO2022230979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100762A1 (en) * 2021-11-30 2023-06-08 Ntn株式会社 Rolling component and rolling bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505679A (en) * 1992-12-21 1995-06-22 スタックポール リミテッド Bearing manufacturing method
JPH1151065A (en) * 1997-07-31 1999-02-23 Nippon Seiko Kk Rolling bearing
JP2009127110A (en) * 2007-11-27 2009-06-11 Ntn Corp Machine part
WO2010067872A1 (en) * 2008-12-12 2010-06-17 株式会社ジェイテクト Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
WO2019039610A1 (en) * 2017-08-25 2019-02-28 新日鐵住金株式会社 Steel material for carburized bearing component
JP2019108576A (en) * 2017-12-18 2019-07-04 Ntn株式会社 Bearing parts, and roller bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505679A (en) * 1992-12-21 1995-06-22 スタックポール リミテッド Bearing manufacturing method
JPH1151065A (en) * 1997-07-31 1999-02-23 Nippon Seiko Kk Rolling bearing
JP2009127110A (en) * 2007-11-27 2009-06-11 Ntn Corp Machine part
WO2010067872A1 (en) * 2008-12-12 2010-06-17 株式会社ジェイテクト Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
WO2019039610A1 (en) * 2017-08-25 2019-02-28 新日鐵住金株式会社 Steel material for carburized bearing component
JP2019108576A (en) * 2017-12-18 2019-07-04 Ntn株式会社 Bearing parts, and roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100762A1 (en) * 2021-11-30 2023-06-08 Ntn株式会社 Rolling component and rolling bearing

Similar Documents

Publication Publication Date Title
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
WO2019124074A1 (en) Bearing component and rolling bearing
EP1489318A1 (en) Rolling bearing for belt type non-stage transmission
JP5982782B2 (en) Rolling bearings for wind power generation facilities
JP2011220357A (en) Planetary gear device
JP5728844B2 (en) Rolling bearing
WO2022230979A1 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP5168898B2 (en) Rolling shaft
JP2005214390A (en) Needle bearing, planetary gear mechanism and pinion shaft
JP2013249500A (en) Rolling bearing
JP2006009887A (en) Ball bearing and ball bearing for transmission
JP2022170860A (en) rolling bearing
JP2015007265A (en) Rolling shaft
WO2021065809A1 (en) Bearing component
JP2022171393A (en) rolling bearing
JP2022148544A (en) bearing ring and shaft
JP2012201933A (en) Planetary gear device
JP2006045591A (en) Tapered roller bearing
JP2013234702A (en) Planetary gear device
JP2014020394A (en) Planetary gear device
JP2005140275A (en) Planetary gear device
JP2010001521A (en) Shaft and pinion shaft
JP2022171155A (en) rolling bearing
JP2006112559A (en) Tapered roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE