WO2022230855A1 - Illumination apparatus for special purpose having improved color rendering index, and method for designing same - Google Patents
Illumination apparatus for special purpose having improved color rendering index, and method for designing same Download PDFInfo
- Publication number
- WO2022230855A1 WO2022230855A1 PCT/JP2022/018832 JP2022018832W WO2022230855A1 WO 2022230855 A1 WO2022230855 A1 WO 2022230855A1 JP 2022018832 W JP2022018832 W JP 2022018832W WO 2022230855 A1 WO2022230855 A1 WO 2022230855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cri
- illumination
- primary
- lighting
- peak
- Prior art date
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims description 14
- 238000009877 rendering Methods 0.000 title description 14
- 230000003595 spectral effect Effects 0.000 claims description 32
- 238000001228 spectrum Methods 0.000 claims description 26
- 230000006870 function Effects 0.000 description 27
- 238000013461 design Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 238000000295 emission spectrum Methods 0.000 description 10
- 238000005457 optimization Methods 0.000 description 9
- 230000008635 plant growth Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000011012 sanitization Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- 208000025721 COVID-19 Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000004456 color vision Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000002763 pyramidal cell Anatomy 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/155—Coordinated control of two or more light sources
Definitions
- the present invention relates to illumination systems, visible light illumination, devices adapted to specific treatments, control of the color of light and control of light sources according to determined parameters.
- CRI Color Rendering Index
- Special purpose lighting usually refers to a light source emitting a predetermined relative energy distribution at selected wavelengths, which itself can effectively serve a specific purpose.
- “Special purpose” is used throughout this document to mean that the emission spectral power density is 1) light that is constrained to emit at a given energy ratio between multiple wavelengths, or at least one pair of wavelengths at a given energy ratio; and 2) CRI R a alone. ⁇ 80 lighting systems are described as referring to light. Lighting that produces light across the visible spectrum is general purpose lighting with a CRI R a >80.
- Special purpose lighting can be designed in a variety of design variations.
- the claims made in this document are independent of the form factor, shape, or size of the lighting system.
- Some common forms of illumination are shown in the panel of FIG.
- Panels 1-4 of FIG. 1A show examples of printed circuit boards (PCBs) with LEDs.
- Panels 5-8 of FIG. 1A show examples of table lamps, portable lights, ceiling or wall fixed luminaires, or panel lights (commonly used in surgical procedures and art studios).
- Figures 1B and 1D-E show examples of using such PCB lights in devices that resemble light bulbs ( Figure 1B) or fluorescent tubes ( Figures 1D-E).
- FIG. 1C shows that the lighting device can consist of elements that can passively adjust the light output, for example diffusers used as bulbs or lamp covers, or optical filters. Such diffusers or filters can also be used to tune the emission spectrum of a particular device.
- Special purpose lighting generally has a low CRI value (ie, CRI R a ⁇ 50) and generally produces “non-natural light” as opposed to general purpose light, which is most commonly considered white and natural.
- CRI R a ⁇ 50 CRI R a ⁇ 50
- the use of special purpose lighting with a high CRI light source generally degrades the overall CRI index value of the high CRI light source.
- Special purpose lighting is usually designed to operate on its own. However, there are times when special purpose lighting needs to be activated when other lighting is already in use. When there is such a need, the color rendering index of the white high color rendering light source is disturbed, thus causing interference with the existing first lighting system.
- Applicant's research indicates that when used alone it serves its primary purpose (i.e., disinfection or support of plant growth), and when used as a secondary, complementary light, the primary light source It is possible to design additional independent special purpose light sources that enhance at least one of the CRI indices of .
- the Color Rendering Index is a quantitative measure used to evaluate white light sources, specifically comparing their color rendering properties with an ideal white light source as a reference.
- CRI calculation relies on human photoreceptor sensitivity aggregated by a normalized human spectral sensitivity function (Fig. 2A).
- FIG. 2A shows normalized spectral sensitivities of human pyramidal cells. Short (“S”, 420 nm-440 nm), medium (“M”, 530 nm-540 nm), and long (“L”, 560 nm-580 nm) spectral sensitivities peak roughly at blue, red, Distributed corresponding to green wavelengths.
- Tristimulus values depend on the observer's visual field, and CIE standard (colorimetric) observers exclude this variable.
- the standard observer function represents the average human color response within the 2° fovea.
- the CIE color matching function shown in FIG. 2B is a numerical representation of the observer's color response.
- a light source that produces white light represents a set of coordinates that form a curve called the blackbody locus (the dashed curve).
- a light source with a high CRI occupies the area around the blackbody locus, and the CRI decreases as the x,y coordinate distance of the light source increases.
- the solid line that intersects the blackbody locus curve is the line of constant equivalent blackbody temperature. Optimizing for high CRI means minimizing the distance of the light source x,y coordinates from the blackbody locus curve.
- a "perfect" ideal white light is described by the black body radiation spectrum if the correlated color temperature (CCT) is less than 5000 K, otherwise by the phase of CIE standard illuminant D (daylight) .
- the maximum CRI Ra value is 100 (see the blackbody locus line in Fig. 3), and the series of test color samples is exactly the same as they would be rendered under an ideal white light source. (TCS, see FIG. 2C for an example).
- FIG. 2C shows an example of the spectral power distribution of three test color samples (red tones (TCS08, TCS09) are responsible for indices R 8 and R 9 , blue tones for CRI index R 12 ).
- the CRI index quantifies the similarity of human photoreceptor responses to test color samples under the evaluated illuminant and an ideal blackbody illuminant.
- the CRI value of a light source is calculated as the average of the first eight color rendering indices R 1 -R 8 and is sometimes referred to as CRI R a .
- CRI value and "CRI Ra value” are used interchangeably.
- the individual indices of the CRI (at the time of this writing, there are a total of 16 indices.
- R a (average of R 1 -R 8 ) and the individual indices R 1 -R 15 ) are referred to by their names R i or Call in the range R i -R j , where i and j are numerical indices.
- the index R a is a general measure of the quality of the approximation of natural white light.
- An index Ri with i>8 is used to assess the color reproduction quality of colors that are very important in certain fields. For example, R 15 was added to support the reproduction of Japanese skin tones. The number of indicators can grow, and the present invention concerns them all.
- the present invention discloses a method for designing a special purpose light source that complements at least one other primary light source that is not a special purpose light source and enhances at least one CRI index value of the primary light source.
- the purpose of designing a light source using the methods described is to: 1) be used solely as a primary light source for a specific purpose; 2) be used as a secondary light source complementary to an independent primary light source; is to obtain a light source that improves any one or more CRI index values of .
- Another object of the present invention is to provide low cost, high CRI lighting.
- the design of a secondary special purpose illumination that increases at least one of the CRI index values of another primary light source corresponds to the design of the light source applying certain restrictions to its emission spectral density function.
- the spectral distribution of the emitted energy at the desired wavelength is determined by 1) the method of CRI calculation and 2) the emission spectral density function of the considered primary light source.
- the illumination device of the present invention can be a secondary illumination that improves the CRI of the primary illumination.
- the lighting device is a special purpose lighting device suitable for a special purpose when used alone, CRI ⁇ 80 when used alone;
- a primary illumination separate from the illumination device and used simultaneously with a primary illumination having a CRI>90 the CRI of the illumination device and the primary illumination as a whole is lower than the CRI of the primary illumination alone. also increase.
- a special purpose lighting system may have both primary and secondary lighting.
- a special purpose lighting device is a primary lighting with a CRI>90 and a secondary lighting suitable for special purposes when used alone, comprising: CRI ⁇ 80 when used alone; a secondary illumination that, when used simultaneously with the primary illumination, causes the combined CRI of the primary illumination and the secondary illumination to be greater than the CRI of the primary illumination alone.
- the CRI of the primary illumination is preferably greater than 92.
- the CRI of the primary illumination and the secondary illumination as a whole is 94 or higher.
- the secondary illumination has a first peak in the wavelength range of 625-665 nm, and the spectral power at the first peak is 0.1-0.9 times the maximum spectral power of the primary illumination. is desirable.
- the secondary illumination has a second peak in the wavelength range of 400-410 nm, and the spectral power at the second peak is 0.7-5 times the maximum spectral power of the primary illumination. .
- the primary illumination may have a CRI ⁇ 93 when used alone. In this case, the cost of primary lighting can be reduced.
- Switching between a state in which the primary lighting and the secondary lighting are turned on simultaneously and a state in which the secondary lighting is turned on without turning on the primary lighting is switched by a user's operation or according to a predetermined condition. It is desirable to further include a controller that enables.
- the CRI R 9 of the primary illumination may be 65 or less. In this case, the cost of primary lighting can be reduced.
- a control device capable of changing the output of the secondary illumination independently of the primary illumination may be further provided. By changing the output of the secondary illumination, it is possible to improve the CRI and adjust the color according to the user's preference.
- Another aspect of the present invention is a lighting apparatus comprising a special purpose secondary lighting that is suitable for a particular purpose when used alone, said secondary lighting and said A method of designing a special purpose lighting system that makes the overall CRI of a primary illumination greater than the CRI of said primary illumination alone.
- PSD 1 is a function obtained by normalizing the power spectrum of the primary illumination by the maximum power spectrum
- PSD 2 is a function obtained by normalizing the power spectrum of the first peak of the secondary illumination by the maximum power spectrum
- a 1 is a constant
- A2 is a variable
- ⁇ 1 is the peak wavelength of the first peak
- the characteristics of the secondary illumination are determined by selecting ⁇ 1 and A 2 such that at least one of the CRI Ra and the CRI Ri is greater than a predetermined threshold.
- a function obtained by normalizing the power spectrum of the second peak of the secondary illumination by the maximum power spectrum is defined as PSD 3 and A 3 as variables
- the peak wavelength of the second peak is defined as ⁇ 2
- CRI R a and CRI R i (i any number from 1 to 15) over a predetermined range of ⁇ 1 , ⁇ 2 and A 2 , A 3 At least one may be calculated.
- a lighting device designed according to the method described in the present invention it is possible to improve the color reproduction characteristics of the primary lighting while enjoying the benefits of the primary purpose of the secondary lighting. For example, sanitizing lights can be added to retail stores that require a high CRI light source without degrading the CRI while using both primary and secondary lights simultaneously.
- the spectral emission distribution of the final design may also depend on the availability of light emitting elements (existing LEDs or other lamps).
- the methods described herein facilitate light source design for special purpose lighting using existing individual components.
- the illumination device is in the shape of a light bulb.
- the illumination device is in the shape of a light bulb.
- a diffuser or the like is provided in the lighting device.
- Normalized spectral sensitivity of human cone cells. CIE standard observer color matching functions.
- Fig. 3 is an example of spectral power distribution of three test color samples for CRI evaluation; CIE 1931 chromaticity diagram, high CRI region and blackbody locus.
- Visualization of the objective function for maximizing the R a and R 9 CRI index values Visualization of the objective function for maximizing the mean of the R a +R 9 CRI index values.
- 4 shows wavelength distributions of a primary light source and a secondary light source; Weighted combination of primary and secondary light sources and CRI optimization results.
- FIG. 1A shows a linear strip using LEDs as light sources.
- Example 1A is various examples of the shape of the plate in which the light source is embedded.
- Examples 5-8 illustrate desk lamps, portable flashlights, ceiling/wall fixed luminaires, and panel lights. Any shape or form of such devices can be general purpose or special purpose lighting.
- the strips of panels A1-4 in FIG. 1 serve as printed circuit boards and can be flexible or solid. Such a circuit board can be embedded in a housing similar to a light bulb or fluorescent lamp.
- FIG. 1B shows another such possible format, where it is common to place the light source in a device resembling an incandescent lamp.
- FIG. 1C shows possible bulb components where a diffuser or filter is used to modulate the emission spectrum of the device.
- FIG. 1D shows a cross-section of a diffuser tube (such as those used in fluorescent tubes) with embedded linear strips of LEDs.
- FIG. 1E is a 3D view of the same object as FIG. 1D.
- the linear illumination of FIG. 1E in the form of a flexible or solid linear strip is implemented with LEDs (Light Emitting Diodes) of the desired emission spectrum.
- the relative intensity of the luminous sources is determined by the relative distribution of currents in the electrical circuit, and in particular in each LED. This is most often accomplished with a voltage divider or constant current source.
- Power to a single device can be supplied by single or multiple independent power supplies.
- the output of the powered device can be controlled by pulse width modulation (PWM) dimming or by limiting the supply voltage.
- PWM pulse width modulation
- Embodiments are not limited to devices that use LEDs as light-emitting elements, but use visible radiation for the purpose of producing light based on any technology, including but not limited to semiconductor-based lighting, incandescent lighting, and fluorescent lighting. shall include any device that emits.
- An example scenario is a white light source A in a retail store with two additional light sources B, such as combined UV/crimson light for plant growth (crimson and blue) or disinfection (UV extended to blue band). This is the case when it is necessary to add a second light source. As the emission spectrum of secondary light reaches visible wavelengths, such light can perturb the color rendering index of the primary illumination. A special Additional purpose lighting is still possible. Increased CRI can be obtained in multiple ways by adding additional emitting sources and/or by blocking the primary light source emission at selected wavelengths with optical filters, diffusers, or shaders. . A common element of the above approaches is the goal of obtaining a specific emission spectral distribution.
- primary illuminant A is considered a white high-CRI light with a CRI>92 (see hash bars in FIG. 5B). Its emission spectrum is shown by the dashed line in FIG. 5A.
- the design process for the special purpose illuminator B described in this document begins with the emitted power and emitted wavelength requirements. In the example considered, the requirements are: 1) Include deep red LEDs for the purpose of supporting photosynthesis 2) Include blue light with wavelengths that support disinfection function and plant growth Increment the CRI index R i (where i>0).
- the profile of the primary light source in the left panel of FIG. 5A is the catalog value of the component, whereas the profile of the primary light source in the right panel is the measured value of the component. Since the emission intensity and wavelength of an LED change depending on variations in the device and temperature, the peak wavelength and its intensity include errors. For example, the primary source in FIG. 5A has a peak around 450 nm, but its relative intensity differs between the left and right panels.
- the most important step in light source design is the optimization problem.
- Our aim is to find pairs of wavelengths and their relative intensities.
- the objective function to optimize is the average of R a and R 9 or (R a +R 9 )/2.0.
- the primary source in this example has a high CRI, but the index values of R8 and R9 are not optimal. Therefore, the greatest improvement in Ra is achieved by increasing the value of R8. Focusing on improving the R9 index value could lead to an improved R8 value and possibly even an improved R a ( see spectral characteristics of the test color samples in Fig. 2C).
- the R8 benefits from blue ( 380-450 nm) and red (>600 nm) wavelength light sources.
- the optimization process has multiple variations of the objective function as well as a set of free parameters. Free parameters represent the properties of the available components.
- FIG. 4 shows an example of optimizing CRI Ra and CRI R 9 using free parameters chosen for 1) wavelength and 2) relative intensity of the light source.
- This approach exhaustively searches the free parameter space and evaluates index values for all parameter value combinations. Assuming that the resulting CRI index values produce a smooth function, we can reduce the number of computations by evaluating the index values on a sparse grid and obtain smooth results by interpolation. This approach is particularly suitable when the choice of components for the final device assembly is limited.
- FIG. 4A shows the CRI R a and CRI R 9 ratings.
- Y A 1 PSD 1 +A 2 PSD 2 +A 3 PSD 3 is.
- a grayscale heat map shows the values of the CRI(Y) indices R a and R 9 (left and right, respectively) for various combinations of white and additional light sources.
- the CRI index value was then visualized as a function of the relative intensity (A 3 ) and peak wavelength of yet another additional light source.
- the parameter space investigated has peak wavelengths in the range 380-780 nm and relative intensities A3 in the range 1-10.
- the weights A 1 -A 3 are unitless multipliers that determine the relative intensities of the final mixed individual light sources, and the values are the electrical or physical components of the physical components used to construct the actual light source. determine the relevant parameters. Black areas correspond to a high color rendering index (solid black corresponds to a color rendering index of 100).
- FIG. 4B shows the average of the two indices of FIG. 4A.
- the two contour lines indicate the optimal region of high CRI.
- the solid outline (dark inside) encloses the region where the average CRI of the two indices is 90, (R a +R 9 )/2.0>90.
- White dashed outlines enclose regions where the average of the two values is greater than 93. The addition of light sources with wavelengths and relative intensities in the white dashed region increases the CRI values of both the R9 and Ra indices the most.
- the peak wavelength of the first peak of the secondary illumination is around 645 nm (for example, 620-670 nm or 625-665 nm), and the spectral power at the first peak is three times the maximum spectral power of the primary illumination.
- the secondary illumination has a second peak near 405 nm.
- A2 is assumed to be a constant, but the value of Y may be calculated in a wider range using A2 as a variable.
- contour lines in FIG. 4B provide a region or optimal set of special purpose secondary illumination.
- the use of components whose peak wavelength lies within this contour allows the design of intended special purpose lights.
- the left panel of FIG. 5A shows the spectral power distributions of three independent light sources.
- the primary light source is characterized by a broadband spectrum (white primary universal light) and is plotted with a dashed line.
- Two additional narrowband light sources are contemplated for secondary special purpose illumination.
- the dotted line shows the blue light spectrum and the solid line shows the red light source spectrum.
- the right panel of FIG. 5A shows two functions of the original white spectrum (the dashed line corresponding to the dashed line in the left panel) and the spectrum of the special purpose primary light source operating simultaneously. Special purpose spectral functions were obtained by optimization described in the body of this specification.
- FIG. 5B was then generated using the spectral distribution functions of the primary and special purpose illumination.
- Panel 5B shows two sets of bars for comparing the CRI of the white primary light source only (bars filled with hashes) and the CRI of the two light sources operated together (blank white bars).
- the result of the optimization of the plant growth support and sanitizing lightning device in this example are two light emitting elements.
- the first emitter peaks at 660 nm (normalized emission spectrum in left panel of FIG. 5A—solid line for individual light source) and the second emitter peaks at 405 nm (normalized emission spectrum in FIG. 5A).
- emission spectra dotted lines for individual sources).
- the spectra shown in FIG. 5 and used in the example optimization problem are examples of emission spectra of real light sources (LEDs) available on the market.
- the white light source spectrum is the actual component white high CRI 3000K LED (GW JCLPS2.CM (GEN 2) DURIS® E3 - normalized emission spectrum in Figure 5A - dashed lines in both left and right panels). .
- the secondary illumination has a second peak in the wavelength range of 400-410 nm, and the spectral power at the second peak is 0.7-5 times the maximum spectral power of the primary illumination (white light).
- a light source with a peak at 405 nm may have a relatively high intensity, since the visible wavelength component is part of the light.
- the emission intensity and wavelength of the LED have errors during operation, so the peak wavelength and its intensity should include a certain error range.
- FIG. 5B shows the results of one possible exhaustive search of the parameter space shown in FIG.
- the CRI values are shown in FIG. 5B in two bar sets, the hashed set showing the original white light index.
- the CRI Ra for this example increased from 92.03 to 96.10 and the index R9 increased from 59.14 to 95.0.
- the bar graph in Figure 5B shows that other indices increased as well. The greatest improvement was obtained at indices R 8 , R 9 and R 12 .
- the CRI R 9 is 65 or less, and adding secondary illumination that can improve the CRI R 9 may also improve the CRI R a .
- the lighting device include a control device.
- the controller may, for example, be able to vary the output of the secondary lighting independently of the primary lighting. By changing the output of the secondary illumination, it is possible to improve the CRI and adjust the color according to the user's preference.
- control device switches between a state in which the primary lighting and the secondary lighting are turned on at the same time and a state in which the secondary lighting is turned on without turning on the primary lighting, according to a user's operation or a predetermined condition.
- the control device is, for example, a switching device. With such a control device, for example, when the store is open, the primary lighting and secondary lighting are turned on at the same time to realize appropriate product display and sterilization at the same time with high CRI, and the store is closed at night. Sometimes sterilization alone can be continued by turning on only the secondary lighting.
- the control device may be capable of switching to a state in which the primary lighting is turned on and the secondary lighting is not turned on.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
An illumination apparatus for a special purpose, comprising: a primary illumination satisfying CRI > 90; and a secondary illumination suitable for a special purpose when used independently, wherein the secondary illumination is such that CRI < 80 when used independently, and, when used simultaneously with the primary illumination, the CRI of the primary illumination and the secondary illumination as a whole is greater than the CRI of the primary illumination alone. Preferably, the CRI of the primary illumination and the secondary illumination as a whole is greater than or equal to 94.
Description
本発明は、照明システム、可視光照明、特定の治療に適合した装置、光の色の制御および決定されたパラメータに応じた光源の制御に関する。
The present invention relates to illumination systems, visible light illumination, devices adapted to specific treatments, control of the color of light and control of light sources according to determined parameters.
人工照明下での色再現の品質は、アート、デザイン、小売業において非常に重要である。正しい色調の判断は、ヘルスケアとウェルネスの診断に不可欠である。光源下での色再現品質を評価するための最も一般的な方法は、演色評価数(CRI)である。CRIの測定は、「発明の概要」のセクションと非特許文献1に要約されている。
The quality of color reproduction under artificial lighting is very important in art, design and retail. Correct color tone determination is essential for health care and wellness diagnostics. The most common method for evaluating color reproduction quality under a light source is the Color Rendering Index (CRI). CRI measurements are summarized in the "Summary of the Invention" section and in Non-Patent Document 1.
本発明は、特別な目的の照明を扱う。特別な目的の照明は、通常、選択された波長で所定の相対エネルギー分布を放出する光源を指し、それ自体で特定の目的を効果的に果たすことができる。「特別な目的」は、この文書全体で、発光スペクトルパワー密度が、
1)複数の波長間で所定のエネルギー比で発光するように、または、少なくとも1対の波長間で所定のエネルギー比で発光するように制限されている光であること
2)単独でCRI Ra<80の照明システムであること
の光を指すものとして説明する。
可視スペクトル全体で光を発生する照明は、CRI Ra>80の汎用照明である。 The present invention deals with special purpose lighting. Special purpose lighting usually refers to a light source emitting a predetermined relative energy distribution at selected wavelengths, which itself can effectively serve a specific purpose. "Special purpose" is used throughout this document to mean that the emission spectral power density is
1) light that is constrained to emit at a given energy ratio between multiple wavelengths, or at least one pair of wavelengths at a given energy ratio; and 2) CRI R a alone. <80 lighting systems are described as referring to light.
Lighting that produces light across the visible spectrum is general purpose lighting with a CRI R a >80.
1)複数の波長間で所定のエネルギー比で発光するように、または、少なくとも1対の波長間で所定のエネルギー比で発光するように制限されている光であること
2)単独でCRI Ra<80の照明システムであること
の光を指すものとして説明する。
可視スペクトル全体で光を発生する照明は、CRI Ra>80の汎用照明である。 The present invention deals with special purpose lighting. Special purpose lighting usually refers to a light source emitting a predetermined relative energy distribution at selected wavelengths, which itself can effectively serve a specific purpose. "Special purpose" is used throughout this document to mean that the emission spectral power density is
1) light that is constrained to emit at a given energy ratio between multiple wavelengths, or at least one pair of wavelengths at a given energy ratio; and 2) CRI R a alone. <80 lighting systems are described as referring to light.
Lighting that produces light across the visible spectrum is general purpose lighting with a CRI R a >80.
特別な目的の照明は、さまざまなデザインのバリエーションで設計できる。このドキュメントに記載されているクレームは、照明システムのフォームファクター、形状、またはサイズとは無関係である。照明の一般的な形式のいくつかを図1のパネルに示す。図1Aのパネル1-4は、LEDを備えたプリント回路基板(PCB)の例を示す。図1Aのパネル5-8は、テーブルランプ、ポータブルライト、天井または壁に固定される照明器具、またはパネルライト(外科手術やアートアトリエで一般的に使用される)の例を示す。図1Bおよび図1D-Eは、電球(図1B)または蛍光灯(図1D-E)に似たデバイスでこのようなPCBライトを使用する例を示す。図1Cは、照明装置が、たとえば電球やランプカバーとして使用されるディフューザーや光学フィルタなど、光出力を受動的に調整できる要素で構成できることを示す。このようなディフューザーまたはフィルタは、特定のデバイスの発光スペクトルを調整するためにも使用できる。
Special purpose lighting can be designed in a variety of design variations. The claims made in this document are independent of the form factor, shape, or size of the lighting system. Some common forms of illumination are shown in the panel of FIG. Panels 1-4 of FIG. 1A show examples of printed circuit boards (PCBs) with LEDs. Panels 5-8 of FIG. 1A show examples of table lamps, portable lights, ceiling or wall fixed luminaires, or panel lights (commonly used in surgical procedures and art studios). Figures 1B and 1D-E show examples of using such PCB lights in devices that resemble light bulbs (Figure 1B) or fluorescent tubes (Figures 1D-E). FIG. 1C shows that the lighting device can consist of elements that can passively adjust the light output, for example diffusers used as bulbs or lamp covers, or optical filters. Such diffusers or filters can also be used to tune the emission spectrum of a particular device.
特別な目的の照明の実用的な例は、医学的に関連する細菌、カビ、真菌およびウイルスを不活化するための光、または、例えば、魚のタンクおよび細菌培養における、植物の成長および生物の発達を支援するための光源である。植物成長照明は通常、青(400-450nm)と深紅(660nm付近のバンド)の特定の比率を必要とする(非特許文献2)。クロモセラピーの分野自体の科学的妥当性に関係なく、クロモセラピー用のさまざまな照明は、所定の周波数で特定の色の光を放射するように設計されており、「特別な」目的の照明と見なされるべきである。発光スペクトルが可視波長のスペクトル領域に到達する殺菌光も、同様に、「特別な目的」の照明システムと見なされる。
Practical examples of special purpose lighting are light for inactivating medically relevant bacteria, molds, fungi and viruses, or plant growth and biological development, for example in fish tanks and bacterial cultures. It is a light source to support the Plant growth lighting usually requires a specific ratio of blue (400-450 nm) and deep red (band around 660 nm) [2]. Regardless of the scientific validity of the field of chromotherapy itself, various types of lighting for chromotherapy are designed to emit specific colors of light at predetermined frequencies, making them categorized as "special" purpose lighting. should be considered. Germicidal light whose emission spectrum reaches the visible wavelength spectral region is likewise considered a "special purpose" lighting system.
特別な目的の照明は、一般にCRI値が低く(つまり、CRI Ra<50)、最も一般的に白色で自然と見なされる汎用光とは対照的に、一般に「非自然光」を発生する。特別な目的の照明を高CRIの光源と一緒に使用すると、通常、高CRIの光源のCRIインデックス値が全体的に劣化する。
Special purpose lighting generally has a low CRI value (ie, CRI R a <50) and generally produces “non-natural light” as opposed to general purpose light, which is most commonly considered white and natural. The use of special purpose lighting with a high CRI light source generally degrades the overall CRI index value of the high CRI light source.
特別な目的の照明は、通常、単独で作動させるように設計されている。しかし、他の照明が既に使用されているときに、特別な目的の照明を作動させる必要があることもある。そのような必要があるときには、白色の高演色性光源の演色評価数が乱されるため、既設の第1の照明システムとの干渉を引き起こす。ただし、後述するように、出願人の研究によれば、単独で使用するとその主な目的(つまり、消毒または植物成長のサポート)を果たし、二次的で補完的な光として使用すると、一次光源のCRIインデックスの少なくとも1つを強化する、追加の独立した特別な目的の光源を設計することは可能である。
Special purpose lighting is usually designed to operate on its own. However, there are times when special purpose lighting needs to be activated when other lighting is already in use. When there is such a need, the color rendering index of the white high color rendering light source is disturbed, thus causing interference with the existing first lighting system. However, as discussed below, Applicant's research indicates that when used alone it serves its primary purpose (i.e., disinfection or support of plant growth), and when used as a secondary, complementary light, the primary light source It is possible to design additional independent special purpose light sources that enhance at least one of the CRI indices of .
演色評価数(CRI)は、白色光源の評価に使用される定量的尺度であり、具体的には、それらの演色性を参照としての理想的な白色光源と比較する。CRIの計算は、正規化された人間のスペクトル感度関数によって集約された人間の光受容体感度に依存している(図2A)。図2Aは、人間の錐体細胞の正規化されたスペクトル感度を示す。短波長(”S”、420nm-440nm)、中波長(”M”、530nm-540nm)、および長波長(”L”、560nm-580nm)のスペクトル感度のピークは、おおまかに、青、赤、緑の波長に対応して分布する。3種類の錐体細胞の刺激レベルに対応する3つのパラメータは、人間の色の感覚をエンコードする。三刺激値は観察者の視野に依存し、CIE標準(比色)観察者はこの変数を排除する。標準オブザーバー関数は、2°の中心窩内での平均的な人間の色彩応答を表す。図2Bに示されているCIEのカラーマッチング関数は、観察者の色応答の数値表現である。
The Color Rendering Index (CRI) is a quantitative measure used to evaluate white light sources, specifically comparing their color rendering properties with an ideal white light source as a reference. CRI calculation relies on human photoreceptor sensitivity aggregated by a normalized human spectral sensitivity function (Fig. 2A). FIG. 2A shows normalized spectral sensitivities of human pyramidal cells. Short ("S", 420 nm-440 nm), medium ("M", 530 nm-540 nm), and long ("L", 560 nm-580 nm) spectral sensitivities peak roughly at blue, red, Distributed corresponding to green wavelengths. Three parameters, corresponding to three types of cone stimulation levels, encode human color perception. Tristimulus values depend on the observer's visual field, and CIE standard (colorimetric) observers exclude this variable. The standard observer function represents the average human color response within the 2° fovea. The CIE color matching function shown in FIG. 2B is a numerical representation of the observer's color response.
CIE1931色度図(図3)では、色の明るさを無視して、2つの座標のみを使用して3つの受容体(図2AのS、M、L)から知覚される色をエンコードできる(灰色と白は同じ色で、明るさが異なる)。白色光を生成する光源は、黒体軌跡(破線の曲線)と呼ばれる曲線を形成する一連の座標を表す。高CRIの光源は黒体軌跡の周囲の領域を占め、光源のx,y座標の距離が長くなるとCRIは低下する。黒体軌跡曲線と交差する実線は、一定の等価黒体温度の線である。高CRIの最適化は、黒体軌跡曲線からの光源x,y座標の距離を最小化することを意味する。
In the CIE 1931 chromaticity diagram (Fig. 3), ignoring the brightness of the color, only two coordinates can be used to encode the perceived color from the three receptors (S, M, L in Fig. 2A) ( Gray and white are the same color, but different brightness). A light source that produces white light represents a set of coordinates that form a curve called the blackbody locus (the dashed curve). A light source with a high CRI occupies the area around the blackbody locus, and the CRI decreases as the x,y coordinate distance of the light source increases. The solid line that intersects the blackbody locus curve is the line of constant equivalent blackbody temperature. Optimizing for high CRI means minimizing the distance of the light source x,y coordinates from the blackbody locus curve.
「完全な」理想的な白色光は、相関色温度(CCT)が5000K未満の場合は黒体放射スペクトルで表され、それ以外の場合はCIE標準光源D(昼光)の位相で表される。最大のCRI Ra値は、100であり(図3の黒体軌跡線を参照)、理想的な白色光源の下でテストカラーサンプルがレンダリングされるのとまったく同じように、一連のテストカラーサンプル(TCS、例については図2Cを参照)をレンダリングする光源に割り当てられる。図2Cは、3つのテストカラーサンプルのスペクトルパワー分布の例を示す(赤のトーン(TCS08,TCS09)はインデックスR8とR9を担当し、青のトーンはCRIインデックスR12を担当する)。CRIインデックスは、評価された光源と理想的な黒体光源の下で、テストカラーサンプルに対する人間の光受容体の応答の類似性を数値化している。
A "perfect" ideal white light is described by the black body radiation spectrum if the correlated color temperature (CCT) is less than 5000 K, otherwise by the phase of CIE standard illuminant D (daylight) . The maximum CRI Ra value is 100 (see the blackbody locus line in Fig. 3), and the series of test color samples is exactly the same as they would be rendered under an ideal white light source. (TCS, see FIG. 2C for an example). FIG. 2C shows an example of the spectral power distribution of three test color samples (red tones (TCS08, TCS09) are responsible for indices R 8 and R 9 , blue tones for CRI index R 12 ). The CRI index quantifies the similarity of human photoreceptor responses to test color samples under the evaluated illuminant and an ideal blackbody illuminant.
光源のCRI値は、最初の8つの演色評価数R1-R8の平均として計算され、CRI Raと呼ばれることもある。このドキュメントで特に明記されていない限り、「CRI値」と「CRI Ra値」という用語は同じ意味で使用される。CRIの個々のインデックス(これを書いている時点では、合計16のインデックスがある。Ra(R1-R8の平均)と個々のインデックスR1-R15)は、それらの名前Riまたは範囲Ri-Rj(ここで、iとjは数値インデックスである)で呼ぶ。インデックスRaは、自然白色光の近似性についての品質の一般的な指標である。i>8のインデックスRiは、特定の分野で非常に重要な色の色再現品質を評価するために使用される。たとえば、日本の肌の色の再現に対応するためにR15が追加された。指標の数は増える可能性があり、本発明はそれらすべてに関係する。
The CRI value of a light source is calculated as the average of the first eight color rendering indices R 1 -R 8 and is sometimes referred to as CRI R a . Unless otherwise specified in this document, the terms " CRI value" and "CRI Ra value" are used interchangeably. The individual indices of the CRI (at the time of this writing, there are a total of 16 indices. R a (average of R 1 -R 8 ) and the individual indices R 1 -R 15 ) are referred to by their names R i or Call in the range R i -R j , where i and j are numerical indices. The index R a is a general measure of the quality of the approximation of natural white light. An index Ri with i>8 is used to assess the color reproduction quality of colors that are very important in certain fields. For example, R 15 was added to support the reproduction of Japanese skin tones. The number of indicators can grow, and the present invention concerns them all.
他にも多くの演色評価数が存在し、それらには特定の利点がある可能性があり、一般に、これらの代替方法の最適化による色再現の改善により、CRIも向上する。本発明は、他の演色評価数指数に容易に適用することができ、本明細書に記載された本発明の保護は、CRIも増加させる代替演色評価数の最適化に対する保護を含むべきである。
There are many other color rendering indices, and they may have certain advantages, and in general, improving color reproduction by optimizing these alternative methods will also improve CRI. The invention can be readily applied to other color rendering indices, and the protection of the invention described herein should include protection against alternate color rendering index optimizations that also increase the CRI. .
本発明は、特別な目的の光源ではない別の少なくとも1つの一次光源を補完し、一次光源の少なくとも1つのCRI指標値を増強する特別な目的の光源を設計するための方法を開示する。
The present invention discloses a method for designing a special purpose light source that complements at least one other primary light source that is not a special purpose light source and enhances at least one CRI index value of the primary light source.
説明する方法を使用して光源を設計する目的は、1)特定の目的のための主光源として単独で使用でき、2)独立した一次光源の補完的な第2光源として使用でき、同時に一次光源の任意の1つまたは複数のCRIインデックス値を改善する光源を得ることである。
The purpose of designing a light source using the methods described is to: 1) be used solely as a primary light source for a specific purpose; 2) be used as a secondary light source complementary to an independent primary light source; is to obtain a light source that improves any one or more CRI index values of .
ところで、高CRIの白色照明(LED等)を入手しようとする場合、CRIが90を超えると高額となる。例えば、CRIが94や95を実現する光源も存在するが、極めて高額な単価となっている。そのため、本発明の他の目的は、低コストで高CRIの照明を実現することになる。
By the way, when trying to obtain white lighting with a high CRI (LED, etc.), if the CRI exceeds 90, it becomes expensive. For example, there are light sources that achieve a CRI of 94 or 95, but the unit price is extremely high. Therefore, another object of the present invention is to provide low cost, high CRI lighting.
別の一次光源のCRIインデックス値の少なくとも1つを増加させる二次的な特別な目的な照明の設計は、その発光スペクトル密度関数に特定の制限を適用した光源の設計に相当する。所望の波長での発光エネルギーのスペクトル分布は、1)CRI計算の方法、および2)考慮される一次光源の発光スペクトル密度関数によって決定される。
The design of a secondary special purpose illumination that increases at least one of the CRI index values of another primary light source corresponds to the design of the light source applying certain restrictions to its emission spectral density function. The spectral distribution of the emitted energy at the desired wavelength is determined by 1) the method of CRI calculation and 2) the emission spectral density function of the considered primary light source.
本発明の照明装置は、1次照明のCRIを改善する、2次照明とすることができる。例えば、照明装置は、単独で使用した場合に特別な目的に適する特別な目的の照明装置であって、
単独で使用した場合、CRI<80であり、
前記照明装置とは別の1次照明であって、CRI>90の1次照明と同時に使用すると、前記照明装置と前記1次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする。 The illumination device of the present invention can be a secondary illumination that improves the CRI of the primary illumination. For example, the lighting device is a special purpose lighting device suitable for a special purpose when used alone,
CRI<80 when used alone;
When a primary illumination separate from the illumination device and used simultaneously with a primary illumination having a CRI>90, the CRI of the illumination device and the primary illumination as a whole is lower than the CRI of the primary illumination alone. also increase.
単独で使用した場合、CRI<80であり、
前記照明装置とは別の1次照明であって、CRI>90の1次照明と同時に使用すると、前記照明装置と前記1次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする。 The illumination device of the present invention can be a secondary illumination that improves the CRI of the primary illumination. For example, the lighting device is a special purpose lighting device suitable for a special purpose when used alone,
CRI<80 when used alone;
When a primary illumination separate from the illumination device and used simultaneously with a primary illumination having a CRI>90, the CRI of the illumination device and the primary illumination as a whole is lower than the CRI of the primary illumination alone. also increase.
また、特別な目的の照明装置は、1次照明と2次照明の両方を備えたものとすることができる。例えば、特別な目的の照明装置は、CRI>90を満たす1次照明と、単独で使用した場合に特別な目的に適する2次照明であって、
単独で使用した場合、CRI<80であり、
前記1次照明と同時に使用すると、前記1次照明および前記2次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする2次照明とを備える。 Also, a special purpose lighting system may have both primary and secondary lighting. For example, a special purpose lighting device is a primary lighting with a CRI>90 and a secondary lighting suitable for special purposes when used alone, comprising:
CRI<80 when used alone;
a secondary illumination that, when used simultaneously with the primary illumination, causes the combined CRI of the primary illumination and the secondary illumination to be greater than the CRI of the primary illumination alone.
単独で使用した場合、CRI<80であり、
前記1次照明と同時に使用すると、前記1次照明および前記2次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする2次照明とを備える。 Also, a special purpose lighting system may have both primary and secondary lighting. For example, a special purpose lighting device is a primary lighting with a CRI>90 and a secondary lighting suitable for special purposes when used alone, comprising:
CRI<80 when used alone;
a secondary illumination that, when used simultaneously with the primary illumination, causes the combined CRI of the primary illumination and the secondary illumination to be greater than the CRI of the primary illumination alone.
1次照明のCRIは、望ましくは92より大きい。
The CRI of the primary illumination is preferably greater than 92.
従来の照明装置では、高CRI(例えばCRI>90)の1次照明(白色光、例えばLED)に、他の低CRIの2次照明を一緒に使用すると、全体としてのCRIが悪化するのが通常であった。しかし、本願の発明者の研究によれば、高CRIの1次照明と低CRIの2次照明とを、他の低CRIの光源を極めて限られた条件の組み合わせで使用すると、1次照明単独のCRIよりも、高いCRIを実現することが確認された。このため、低CRIの2次照明の特別な目的の効果を得ながら、高いCRIの照明としても使用することができる。例えば、高級ブランド品の店舗において、商品の色合いを正確に再現するのは重要なことである。一方、COVID-19の広がりから、店舗において、光により殺菌すること等が望まれることがある。このような要望の下において、殺菌性能を実現しながら、同時に、1次照明のCRIを高めることで、色合いの再現性を高めることが可能になった。また、殺菌用途に限らず、植物の成長をサポートする特別な目的の照明を用いる場合においても、1次照明のCRIを高めることで、植物の色合いの再現性を高めることが可能になった。さらに、本発明によれば、1次照明のCRIを2次照明によって高めることができるので、1次照明の光源として極めて高額な、非常に高いCRIの光源を用いる必要が無くなるので、低コストで、高いCRIの照明装置を製造することが可能となる。
In conventional lighting systems, the use of high CRI (e.g., CRI>90) primary illumination (white light, e.g., LEDs) with other low CRI secondary illumination often degrades the overall CRI. was normal. However, according to the research of the inventors of the present application, when a high CRI primary illumination and a low CRI secondary illumination are used in a very limited combination of other low CRI light sources, the primary illumination alone It was confirmed that a higher CRI than the CRI of . Thus, it can be used as a high CRI illuminator as well, while still achieving the special purpose effect of a low CRI secondary illuminator. For example, in luxury brand stores, it is important to accurately reproduce the colors of products. On the other hand, due to the spread of COVID-19, it is sometimes desired to sterilize with light in stores. Under such a demand, it has become possible to improve the reproducibility of color shades by increasing the CRI of the primary illumination while realizing the sterilization performance. In addition, not only for sterilization applications, but also when using special purpose lighting to support plant growth, it has become possible to improve the reproducibility of the color of plants by increasing the CRI of the primary lighting. Furthermore, according to the present invention, since the CRI of the primary illumination can be enhanced by the secondary illumination, there is no need to use an extremely expensive light source with a very high CRI as the light source for the primary illumination, which reduces costs. , making it possible to manufacture lighting devices with high CRI.
前記2次照明は、前記1次照明と同時に使用すると、前記1次照明および前記2次照明の全体としてのCRIを94以上とするものであることが望ましい。
When the secondary illumination is used simultaneously with the primary illumination, it is desirable that the CRI of the primary illumination and the secondary illumination as a whole is 94 or higher.
前記2次照明は、625~665nmの波長範囲に第1ピークを有し、前記第1ピークにおけるスペクトルパワーは、前記1次照明の最大スペルトルパワーの0.1~0.9倍であることが望ましい。
The secondary illumination has a first peak in the wavelength range of 625-665 nm, and the spectral power at the first peak is 0.1-0.9 times the maximum spectral power of the primary illumination. is desirable.
前記2次照明は、400~410nmの波長範囲に第2ピークを有し、前記第2ピークにおけるスペクトルパワーは、前記1次照明の最大スペルトルパワーの0.7~5倍であることが望ましい。
Preferably, the secondary illumination has a second peak in the wavelength range of 400-410 nm, and the spectral power at the second peak is 0.7-5 times the maximum spectral power of the primary illumination. .
前記1次照明は、単独で使用した場合に、CRI<93であってもよい。この場合には、1次照明のコストを下げることができる。
The primary illumination may have a CRI<93 when used alone. In this case, the cost of primary lighting can be reduced.
前記1次照明と前記2次照明を同時に点灯させる状態と、前記1次照明を点灯させず、前記2次照明を点灯させる状態とを、ユーザの操作により、または、所定の条件により切り替えることを可能にする制御装置をさらに備えることが望ましい。
Switching between a state in which the primary lighting and the secondary lighting are turned on simultaneously and a state in which the secondary lighting is turned on without turning on the primary lighting is switched by a user's operation or according to a predetermined condition. It is desirable to further include a controller that enables.
前記1次照明のCRI R9は、65以下であってもよい。この場合には、1次照明のコストを下げることができる。
The CRI R 9 of the primary illumination may be 65 or less. In this case, the cost of primary lighting can be reduced.
前記2次照明の出力を前記1次照明とは独立して変更可能な制御装置をさらに備えていてもよい。2次照明の出力を変更することで、CRIを改善したり、ユーザの好みに応じて色味の調整をしたりすることができる。
A control device capable of changing the output of the secondary illumination independently of the primary illumination may be further provided. By changing the output of the secondary illumination, it is possible to improve the CRI and adjust the color according to the user's preference.
本発明の他の側面は、単独で使用した場合に特別な目的に適する特別な目的に適する2次照明を含む照明装置であって、他の1次照明と同時に使用すると前記2次照明と前記1次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする、特別な目的の照明装置の設計方法である。
この設計方法は、前記1次照明のパワースペクトルを最大パワースペクトルで正規化した関数をPSD1、前記2次照明の第1ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD2、A1を定数、A2を変数とし、前記第1ピークのピーク波長をλ1とし、パワースペクトル関数
Y=A1PSD1+A2PSD2
で定まる光源について、所定範囲のλ1およびA2にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1およびA2を選択することで前記2次照明の特性を決定することを特徴とする。 Another aspect of the present invention is a lighting apparatus comprising a special purpose secondary lighting that is suitable for a particular purpose when used alone, said secondary lighting and said A method of designing a special purpose lighting system that makes the overall CRI of a primary illumination greater than the CRI of said primary illumination alone.
In this design method, PSD 1 is a function obtained by normalizing the power spectrum of the primary illumination by the maximum power spectrum, PSD 2 is a function obtained by normalizing the power spectrum of the first peak of the secondary illumination by the maximum power spectrum, A 1 is a constant, A2 is a variable, λ1 is the peak wavelength of the first peak, and the power spectrum function Y = A1PSD1 + A2PSD2
calculating at least one of CRI R a and CRI R i (where i=any number from 1 to 15) over a range of λ 1 and A 2 for an illuminant defined by
The characteristics of the secondary illumination are determined by selecting λ 1 and A 2 such that at least one of the CRI Ra and the CRI Ri is greater than a predetermined threshold.
この設計方法は、前記1次照明のパワースペクトルを最大パワースペクトルで正規化した関数をPSD1、前記2次照明の第1ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD2、A1を定数、A2を変数とし、前記第1ピークのピーク波長をλ1とし、パワースペクトル関数
Y=A1PSD1+A2PSD2
で定まる光源について、所定範囲のλ1およびA2にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1およびA2を選択することで前記2次照明の特性を決定することを特徴とする。 Another aspect of the present invention is a lighting apparatus comprising a special purpose secondary lighting that is suitable for a particular purpose when used alone, said secondary lighting and said A method of designing a special purpose lighting system that makes the overall CRI of a primary illumination greater than the CRI of said primary illumination alone.
In this design method, PSD 1 is a function obtained by normalizing the power spectrum of the primary illumination by the maximum power spectrum, PSD 2 is a function obtained by normalizing the power spectrum of the first peak of the secondary illumination by the maximum power spectrum, A 1 is a constant, A2 is a variable, λ1 is the peak wavelength of the first peak, and the power spectrum function Y = A1PSD1 + A2PSD2
calculating at least one of CRI R a and CRI R i (where i=any number from 1 to 15) over a range of λ 1 and A 2 for an illuminant defined by
The characteristics of the secondary illumination are determined by selecting λ 1 and A 2 such that at least one of the CRI Ra and the CRI Ri is greater than a predetermined threshold.
また、前記2次照明の光源として、第2ピークを有する場合には、
前記2次照明の第2ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD3、A3を変数とし、前記第2ピークのピーク波長をλ2とし、パワースペクトル関数
Y=A1PSD1+A2PSD2+A3PSD3
で定まる光源について、所定範囲のλ1,λ2およびA2,A3にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1,λ2およびA2,A3を選択することで前記2次照明の特性を決定することができる。 Further, when the light source for the secondary illumination has a second peak,
A function obtained by normalizing the power spectrum of the second peak of the secondary illumination by the maximum power spectrum is defined as PSD 3 and A 3 as variables, the peak wavelength of the second peak is defined as λ 2 , and the power spectrum function Y=A 1 PSD 1 + A 2 PSD 2 + A 3 PSD 3
calculating at least one of CRI R a and CRI R i (i=any number from 1 to 15) over a predetermined range of λ 1 , λ 2 and A 2 , A 3 for a light source defined by
By selecting λ 1 , λ 2 and A 2 , A 3 for which at least one of the CRI Ra and the CRI R i is greater than a predetermined threshold, the characteristics of the secondary illumination can be determined.
前記2次照明の第2ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD3、A3を変数とし、前記第2ピークのピーク波長をλ2とし、パワースペクトル関数
Y=A1PSD1+A2PSD2+A3PSD3
で定まる光源について、所定範囲のλ1,λ2およびA2,A3にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1,λ2およびA2,A3を選択することで前記2次照明の特性を決定することができる。 Further, when the light source for the secondary illumination has a second peak,
A function obtained by normalizing the power spectrum of the second peak of the secondary illumination by the maximum power spectrum is defined as PSD 3 and A 3 as variables, the peak wavelength of the second peak is defined as λ 2 , and the power spectrum function Y=A 1 PSD 1 + A 2 PSD 2 + A 3 PSD 3
calculating at least one of CRI R a and CRI R i (i=any number from 1 to 15) over a predetermined range of λ 1 , λ 2 and A 2 , A 3 for a light source defined by
By selecting λ 1 , λ 2 and A 2 , A 3 for which at least one of the CRI Ra and the CRI R i is greater than a predetermined threshold, the characteristics of the secondary illumination can be determined.
前記方法において、A2,A3の一方を定数として、所定範囲のλ1,λ2およびA2,A3にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算してもよい。
In the above method, with one of A 2 and A 3 being a constant, CRI R a and CRI R i (i = any number from 1 to 15) over a predetermined range of λ 1 , λ 2 and A 2 , A 3 At least one may be calculated.
本発明に記載の方法に従って設計された照明装置を使用すれば、2次照明の主な目的の利点を享受しながら、1次照明の色再現特性を向上させることができる。たとえば、サニタイズライトは、プライマリライトとセカンダリライトの両方を同時に使用しながら、CRIを低下させることなく、高CRIの光源を必要とする小売店に追加できる。
Using a lighting device designed according to the method described in the present invention, it is possible to improve the color reproduction characteristics of the primary lighting while enjoying the benefits of the primary purpose of the secondary lighting. For example, sanitizing lights can be added to retail stores that require a high CRI light source without degrading the CRI while using both primary and secondary lights simultaneously.
最終設計のスペクトル発光分布は、発光素子(既存のLEDまたは他のランプ)の可用性にも依存する場合がある。ここで説明する方法は、既存の個々のコンポーネントを使用して、特別な目的の照明の光源設計を容易にする。
The spectral emission distribution of the final design may also depend on the availability of light emitting elements (existing LEDs or other lamps). The methods described herein facilitate light source design for special purpose lighting using existing individual components.
この文書の残りの部分は、本発明による特別な目的の照明装置の様々な可能な実施形態を説明する。最初に、図1に示すいくつかの可能な実施形態について説明し、次に、図面とプロットを参照して、使用例の動作デバイスを得る方法を説明する。
The remainder of this document describes various possible embodiments of a special purpose lighting device according to the invention. First, some possible embodiments shown in FIG. 1 will be described, and then, with reference to drawings and plots, how to obtain an example working device will be described.
実施例を図1に示す。図1Aは、LEDを光源として使用する線形ストリップを示す。実施例1Aは、光源が埋め込まれたプレートの形状のさまざまな例である。実施例5~8は、電気スタンド、ポータブルフラッシュライト、天井/壁に固定される照明器具、およびパネルライトを示す。このようなデバイスの任意の形状または姿は、汎用のまたは特別な目的の照明とすることができる。図1のパネルA1-4のストリップは、プリント回路基板として機能し、可撓性または固形にすることができる。このような回路基板は、電球または蛍光灯に似たハウジング内に埋め込むことができる。図1Bは、他のそのような可能な形式を示しており、白熱灯に似たデバイスに光源を配置するのが一般的である。図1Cは、デバイスの発光スペクトルを変調するためにディフューザーまたはフィルターが使用されている、可能な電球のコンポーネントを示す。図1Dは、LEDの線形ストリップが埋め込まれたディフューザーチューブ(蛍光灯チューブに使用されるものなど)の断面を示す。図1Eは、図1Dと同じ物の3Dビューである。
An example is shown in FIG. FIG. 1A shows a linear strip using LEDs as light sources. Example 1A is various examples of the shape of the plate in which the light source is embedded. Examples 5-8 illustrate desk lamps, portable flashlights, ceiling/wall fixed luminaires, and panel lights. Any shape or form of such devices can be general purpose or special purpose lighting. The strips of panels A1-4 in FIG. 1 serve as printed circuit boards and can be flexible or solid. Such a circuit board can be embedded in a housing similar to a light bulb or fluorescent lamp. FIG. 1B shows another such possible format, where it is common to place the light source in a device resembling an incandescent lamp. FIG. 1C shows possible bulb components where a diffuser or filter is used to modulate the emission spectrum of the device. FIG. 1D shows a cross-section of a diffuser tube (such as those used in fluorescent tubes) with embedded linear strips of LEDs. FIG. 1E is a 3D view of the same object as FIG. 1D.
可撓性または固形の線形ストリップの形態の図1Eの線形照明は、所望の発光スペクトルのLED(発光ダイオード)が実装されている。発光源の相対強度は、電気回路、特に各LEDの電流の相対分布によって決まる。これは、ほとんどの場合、分圧器または定電流源によって実現される。単一のデバイスへの電力は、単一または複数の独立した電源装置から供給できる。給電されるデバイスの出力は、パルス幅変調(PWM)調光、または電源電圧の制限によって制御できる。
The linear illumination of FIG. 1E in the form of a flexible or solid linear strip is implemented with LEDs (Light Emitting Diodes) of the desired emission spectrum. The relative intensity of the luminous sources is determined by the relative distribution of currents in the electrical circuit, and in particular in each LED. This is most often accomplished with a voltage divider or constant current source. Power to a single device can be supplied by single or multiple independent power supplies. The output of the powered device can be controlled by pulse width modulation (PWM) dimming or by limiting the supply voltage.
他の可能な実施形態を図1A-Eに示す。実施形態は、発光要素としてLEDを使用するデバイスに限定されず、半導体ベースの発光、白熱光源および蛍光源を含むがこれらに限定されない任意の技術に基づいて、光を発生する目的で可視放射線を放出する任意のデバイスを含むものとする。
Another possible embodiment is shown in FIGS. 1A-E. Embodiments are not limited to devices that use LEDs as light-emitting elements, but use visible radiation for the purpose of producing light based on any technology, including but not limited to semiconductor-based lighting, incandescent lighting, and fluorescent lighting. shall include any device that emits.
次に、考えられる使用例でのCRI向上機能を備えた特別な目的の光源について説明する。一例のシナリオは、小売店の白色光源Aに、植物の成長(深紅と青)または消毒(青色帯域に拡張したUV)のためのUV光/深紅光を組み合わせた光源Bなどの、追加の二次光源を加える必要がある場合である。二次光の発光スペクトルが可視波長に達すると、そのような光が一次照明の演色評価数を乱す可能性がある。そのような二次光Bの発光スペクトルが2つの光源AおよびBの複合発光を調整するように設計され、単一または複数の演色評価数値が改善されるように設計されている場合、特別な目的の照明の追加は依然として可能である。CRIの増加は、追加の発光源を追加することによって、および/または光学フィルタ、ディフューザー、またはシェーダーによって、選択された波長において一次光源の放出をブロックすることによって、複数の方法で得ることができる。上記のアプローチの共通の要素は、特定の発光スペクトル分布を取得するという目的である。
Next, we describe special purpose light sources with CRI enhancement capabilities in possible use cases. An example scenario is a white light source A in a retail store with two additional light sources B, such as combined UV/crimson light for plant growth (crimson and blue) or disinfection (UV extended to blue band). This is the case when it is necessary to add a second light source. As the emission spectrum of secondary light reaches visible wavelengths, such light can perturb the color rendering index of the primary illumination. A special Additional purpose lighting is still possible. Increased CRI can be obtained in multiple ways by adding additional emitting sources and/or by blocking the primary light source emission at selected wavelengths with optical filters, diffusers, or shaders. . A common element of the above approaches is the goal of obtaining a specific emission spectral distribution.
この例では、一次光源AをCRI>92の白色の高CRI光と見なす(図5Bのハッシュバーを参照)。その発光スペクトルは、図5Aに破線で示されている。このドキュメントで説明されている特別な目的の照明Bの設計プロセスは、放出出力と放出される波長の要件から始まる。考慮される例では、要件は次のとおりである。
1)光合成をサポートする目的で深紅のLEDを含める
2)消毒機能と植物の成長をサポートする波長を備えた青色光を含める
3)一次照明のCRI Raを増加し、少なくとも1つの単一のCRIインデックスRiを増加する(ここで、i>0である)。 In this example, primary illuminant A is considered a white high-CRI light with a CRI>92 (see hash bars in FIG. 5B). Its emission spectrum is shown by the dashed line in FIG. 5A. The design process for the special purpose illuminator B described in this document begins with the emitted power and emitted wavelength requirements. In the example considered, the requirements are:
1) Include deep red LEDs for the purpose of supporting photosynthesis 2) Include blue light with wavelengths that support disinfection function and plant growth Increment the CRI index R i (where i>0).
1)光合成をサポートする目的で深紅のLEDを含める
2)消毒機能と植物の成長をサポートする波長を備えた青色光を含める
3)一次照明のCRI Raを増加し、少なくとも1つの単一のCRIインデックスRiを増加する(ここで、i>0である)。 In this example, primary illuminant A is considered a white high-CRI light with a CRI>92 (see hash bars in FIG. 5B). Its emission spectrum is shown by the dashed line in FIG. 5A. The design process for the special purpose illuminator B described in this document begins with the emitted power and emitted wavelength requirements. In the example considered, the requirements are:
1) Include deep red LEDs for the purpose of supporting photosynthesis 2) Include blue light with wavelengths that support disinfection function and plant growth Increment the CRI index R i (where i>0).
ここで、図5Aの左のパネルの1次光源のプロファイルは、コンポーネントのカタログ値であるのに対し、右のパネルの1次光源のプロファイルは、コンポーネントの実測値である。LEDの発光強度や波長は、素子のばらつきや、温度によって変化するので、ピーク波長およびその強度には、誤差が含まれる。例えば、図5Aの1次光源は、450nm付近のピークを有するが、その相対強度は、左のパネルと右のパネルで異なる。
Here, the profile of the primary light source in the left panel of FIG. 5A is the catalog value of the component, whereas the profile of the primary light source in the right panel is the measured value of the component. Since the emission intensity and wavelength of an LED change depending on variations in the device and temperature, the peak wavelength and its intensity include errors. For example, the primary source in FIG. 5A has a peak around 450 nm, but its relative intensity differs between the left and right panels.
光源設計で最も重要なステップは、最適化問題である。私たちの目的は、波長のペアとそれらの相対強度を見つけることである。最適化する目的関数は、RaとR9の平均または(Ra+R9)/2.0である。この例の1次光源は、高いCRIを持っているが、R8とR9のインデックス値は最適ではない。したがって、Raの最大の改善は、R8の値を増やすことによって達成される。R9インデックス値の改善に焦点を当てると、R8の値が改善され、さらにRaも改善される可能性がある(図2Cのテストカラーサンプルのスペクトル特性を参照)。R8は、青(380-450nm)および赤(>600nm)の波長の光源の恩恵を受ける。最適化プロセスには、自由パラメータのセットと同様に、目的関数の複数のバリエーションがある。自由パラメータは、利用可能なコンポーネントの特性を表す。図4に、1)波長と2)光源の相対強度を選択した自由パラメータを使用した、CRI RaとCRI R9の最適化の例を示す。
The most important step in light source design is the optimization problem. Our aim is to find pairs of wavelengths and their relative intensities. The objective function to optimize is the average of R a and R 9 or (R a +R 9 )/2.0. The primary source in this example has a high CRI, but the index values of R8 and R9 are not optimal. Therefore, the greatest improvement in Ra is achieved by increasing the value of R8. Focusing on improving the R9 index value could lead to an improved R8 value and possibly even an improved R a ( see spectral characteristics of the test color samples in Fig. 2C). The R8 benefits from blue ( 380-450 nm) and red (>600 nm) wavelength light sources. The optimization process has multiple variations of the objective function as well as a set of free parameters. Free parameters represent the properties of the available components. FIG. 4 shows an example of optimizing CRI Ra and CRI R 9 using free parameters chosen for 1) wavelength and 2) relative intensity of the light source.
この問題を凸最適化の問題として定式化することが可能である。ただし、より単純なアプローチを使用することもできる。このアプローチでは、自由パラメータ空間を徹底的に検索し、すべてのパラメータ値の組み合わせについてインデックス値を評価する。結果のCRIインデックス値が滑らかな関数を生成すると仮定すると、まばらなグリッドでインデックス値を評価することによって計算の数を減らし、補間によって滑らかな結果を得ることができる。このアプローチは、最終的なデバイスアセンブリ用のコンポーネントの選択肢が限られている場合に特に適している。
It is possible to formulate this problem as a convex optimization problem. However, a simpler approach can also be used. This approach exhaustively searches the free parameter space and evaluates index values for all parameter value combinations. Assuming that the resulting CRI index values produce a smooth function, we can reduce the number of computations by evaluating the index values on a sparse grid and obtain smooth results by interpolation. This approach is particularly suitable when the choice of components for the final device assembly is limited.
CRI値の計算には条件付きのステップがあり、徹底的な検索により、スペクトル放射関数の離散関数または微分不可能関数が可能になる。パラメータ空間からの最終設計のパラメータの視覚化と選択により、最適化中に、各パラメータの重み付けの利点のオプションが提供される。パラメータ空間の複数の切断された領域に目的の解が含まれている可能性がある。最適値(目的関数の最大値または最小値)ではなく、その近傍からの別の値を使用することも有益である。
There is a conditional step in the calculation of the CRI value, and an exhaustive search allows discrete or non-differentiable functions of the spectral radiation function. Visualization and selection of parameters for the final design from the parameter space provides options for the weighting advantage of each parameter during optimization. Multiple truncated regions of parameter space may contain the desired solution. It is also beneficial to use another value from its neighborhood rather than the optimal value (maximum or minimum of the objective function).
RaおよびR9のCRIインデックス値を最大化するための目的関数の視覚化を図4に示す。図4Aは、CRI RaおよびCRI R9の評価を示す。この例では、目的関数は3つの正規化された(max[PSD]=1)パワースペクトル密度関数PSDi(i=[1,2,3])の加重和である。つまり、
Y=A1PSD1+A2PSD2+A3PSD3
である。グレースケールヒートマップは、白色光源と追加の光源のさまざまな組み合わせに対するCRI(Y)インデックスRaおよびR9(それぞれ左および右)の値を示す。図4Aでは、白色光源(PSD1)と1つの追加の405nm光源(PSD2)の強度は固定強度である(A1=定数、A2=定数)。そして、さらに別の追加光源の相対強度(A3)とピーク波長の関数としてCRIインデックス値を視覚化した。調査したパラメータ空間は、ピーク波長が380~780nmの範囲と、相対強度A3が1~10の範囲である。重みA1~A3は、最終的に混合した個々の光源の相対強度を決定する単位のない乗数であり、値は、実際の光源を構築するために使用される物理コンポーネントの電気的または物理的パラメータを決定する。黒の領域は高い演色評価数に対応する(黒一色は演色評価数100に対応する)。この図は、ピーク波長と相対強度のさまざまな組み合わせで一次光と二次光を組み合わせると、複数の極大値を持つCRI関数が得られることを示す(灰色の濃い色合いは高い値をエンコードする)。図4Bは、図4Aの2つのインデックスの平均を示す。2つの等高線は、高CRIの最適な領域を示す。実線の輪郭(暗い部分が内側)は、2つのインデックスの平均CRIが90の領域、(Ra+R9)/2.0>90の領域を囲む。白い破線の輪郭は、2つの値の平均が93より大きい領域を囲む。白い破線で囲まれた領域の波長と相対強度を持つ光源の追加は、R9とRaの両方のインデックスのCRI値を最も増加させる。この結果からは、2次照明の第1ピークのピーク波長を645nm付近(例えば、620~670nmまたは625~665nmなど)とし、第1ピークにおけるスペクトルパワーを、1次照明の最大スペクトルパワーの3倍以上、望ましくは7倍以上、さらに望ましくは8倍以上とすると、1次照明と2次照明を組み合わせたCRIを高くすることができる可能性がある。なお、上述の例において、2次照明は、405nm付近に第2ピークを有する。また、上述の例においては、A2を定数として説明したが、A2を変数として、より広い範囲でYの値の計算をしてもよい。 A visualization of the objective function for maximizing the CRI index values of R a and R 9 is shown in FIG. FIG. 4A shows the CRI R a and CRI R 9 ratings. In this example, the objective function is a weighted sum of three normalized (max[PSD]=1) power spectral density functions PSD i (i=[1,2,3]). in short,
Y=A 1 PSD 1 +A 2 PSD 2 +A 3 PSD 3
is. A grayscale heat map shows the values of the CRI(Y) indices R a and R 9 (left and right, respectively) for various combinations of white and additional light sources. In FIG. 4A, the intensities of the white light source (PSD 1 ) and one additional 405 nm light source (PSD 2 ) are fixed intensities (A 1 =constant, A 2 =constant). The CRI index value was then visualized as a function of the relative intensity (A 3 ) and peak wavelength of yet another additional light source. The parameter space investigated has peak wavelengths in the range 380-780 nm and relative intensities A3 in the range 1-10. The weights A 1 -A 3 are unitless multipliers that determine the relative intensities of the final mixed individual light sources, and the values are the electrical or physical components of the physical components used to construct the actual light source. determine the relevant parameters. Black areas correspond to a high color rendering index (solid black corresponds to a color rendering index of 100). This figure shows that combining primary and secondary light at various combinations of peak wavelengths and relative intensities yields CRI functions with multiple maxima (dark shades of gray encode high values). . FIG. 4B shows the average of the two indices of FIG. 4A. The two contour lines indicate the optimal region of high CRI. The solid outline (dark inside) encloses the region where the average CRI of the two indices is 90, (R a +R 9 )/2.0>90. White dashed outlines enclose regions where the average of the two values is greater than 93. The addition of light sources with wavelengths and relative intensities in the white dashed region increases the CRI values of both the R9 and Ra indices the most. From this result, the peak wavelength of the first peak of the secondary illumination is around 645 nm (for example, 620-670 nm or 625-665 nm), and the spectral power at the first peak is three times the maximum spectral power of the primary illumination. As described above, preferably 7 times or more, more preferably 8 times or more, there is a possibility that the CRI of the combination of primary illumination and secondary illumination can be increased. Note that in the above example, the secondary illumination has a second peak near 405 nm. Also, in the above example, A2 is assumed to be a constant, but the value of Y may be calculated in a wider range using A2 as a variable.
Y=A1PSD1+A2PSD2+A3PSD3
である。グレースケールヒートマップは、白色光源と追加の光源のさまざまな組み合わせに対するCRI(Y)インデックスRaおよびR9(それぞれ左および右)の値を示す。図4Aでは、白色光源(PSD1)と1つの追加の405nm光源(PSD2)の強度は固定強度である(A1=定数、A2=定数)。そして、さらに別の追加光源の相対強度(A3)とピーク波長の関数としてCRIインデックス値を視覚化した。調査したパラメータ空間は、ピーク波長が380~780nmの範囲と、相対強度A3が1~10の範囲である。重みA1~A3は、最終的に混合した個々の光源の相対強度を決定する単位のない乗数であり、値は、実際の光源を構築するために使用される物理コンポーネントの電気的または物理的パラメータを決定する。黒の領域は高い演色評価数に対応する(黒一色は演色評価数100に対応する)。この図は、ピーク波長と相対強度のさまざまな組み合わせで一次光と二次光を組み合わせると、複数の極大値を持つCRI関数が得られることを示す(灰色の濃い色合いは高い値をエンコードする)。図4Bは、図4Aの2つのインデックスの平均を示す。2つの等高線は、高CRIの最適な領域を示す。実線の輪郭(暗い部分が内側)は、2つのインデックスの平均CRIが90の領域、(Ra+R9)/2.0>90の領域を囲む。白い破線の輪郭は、2つの値の平均が93より大きい領域を囲む。白い破線で囲まれた領域の波長と相対強度を持つ光源の追加は、R9とRaの両方のインデックスのCRI値を最も増加させる。この結果からは、2次照明の第1ピークのピーク波長を645nm付近(例えば、620~670nmまたは625~665nmなど)とし、第1ピークにおけるスペクトルパワーを、1次照明の最大スペクトルパワーの3倍以上、望ましくは7倍以上、さらに望ましくは8倍以上とすると、1次照明と2次照明を組み合わせたCRIを高くすることができる可能性がある。なお、上述の例において、2次照明は、405nm付近に第2ピークを有する。また、上述の例においては、A2を定数として説明したが、A2を変数として、より広い範囲でYの値の計算をしてもよい。 A visualization of the objective function for maximizing the CRI index values of R a and R 9 is shown in FIG. FIG. 4A shows the CRI R a and CRI R 9 ratings. In this example, the objective function is a weighted sum of three normalized (max[PSD]=1) power spectral density functions PSD i (i=[1,2,3]). in short,
Y=A 1 PSD 1 +A 2 PSD 2 +A 3 PSD 3
is. A grayscale heat map shows the values of the CRI(Y) indices R a and R 9 (left and right, respectively) for various combinations of white and additional light sources. In FIG. 4A, the intensities of the white light source (PSD 1 ) and one additional 405 nm light source (PSD 2 ) are fixed intensities (A 1 =constant, A 2 =constant). The CRI index value was then visualized as a function of the relative intensity (A 3 ) and peak wavelength of yet another additional light source. The parameter space investigated has peak wavelengths in the range 380-780 nm and relative intensities A3 in the range 1-10. The weights A 1 -A 3 are unitless multipliers that determine the relative intensities of the final mixed individual light sources, and the values are the electrical or physical components of the physical components used to construct the actual light source. determine the relevant parameters. Black areas correspond to a high color rendering index (solid black corresponds to a color rendering index of 100). This figure shows that combining primary and secondary light at various combinations of peak wavelengths and relative intensities yields CRI functions with multiple maxima (dark shades of gray encode high values). . FIG. 4B shows the average of the two indices of FIG. 4A. The two contour lines indicate the optimal region of high CRI. The solid outline (dark inside) encloses the region where the average CRI of the two indices is 90, (R a +R 9 )/2.0>90. White dashed outlines enclose regions where the average of the two values is greater than 93. The addition of light sources with wavelengths and relative intensities in the white dashed region increases the CRI values of both the R9 and Ra indices the most. From this result, the peak wavelength of the first peak of the secondary illumination is around 645 nm (for example, 620-670 nm or 625-665 nm), and the spectral power at the first peak is three times the maximum spectral power of the primary illumination. As described above, preferably 7 times or more, more preferably 8 times or more, there is a possibility that the CRI of the combination of primary illumination and secondary illumination can be increased. Note that in the above example, the secondary illumination has a second peak near 405 nm. Also, in the above example, A2 is assumed to be a constant, but the value of Y may be calculated in a wider range using A2 as a variable.
図4Bの等高線は、特別な目的の二次的な照明の領域または最適なセットを提供する。ピーク波長がこの輪郭内にあるコンポーネントを使用すれば、意図された特殊目的の光の設計が可能である。
The contour lines in FIG. 4B provide a region or optimal set of special purpose secondary illumination. The use of components whose peak wavelength lies within this contour allows the design of intended special purpose lights.
図5Aの左側のパネルは、3つの独立した光源のスペクトルパワー分布を示す。一次光源は広帯域スペクトル(白色の一次汎用光)によって特徴付けられ、破線でプロットされている。二次的な特別な目的の照明のために、2つの追加の狭帯域光源が考えられる。点線は青色光のスペクトルを示し、実線は赤色光源のスペクトルを示す。図5Aの右側のパネルは、元の白色スペクトル(左側のパネルの破線に相当する破線)と、同時に動作する特別な目的の一次光源のスペクトルの2つの関数を示す。特別な目的のスペクトル関数は、この明細書の本文で説明されている最適化によって取得された。次に、一次および特別な目的の照明のスペクトル分布関数を使用して、図5Bを作成した。パネル5Bは、白色一次光源のみのCRI(ハッシュで満たされたバー)と一緒に動作する2つの光源のCRI(空白の白いバー)を比較するための2セットのバーを示す。
The left panel of FIG. 5A shows the spectral power distributions of three independent light sources. The primary light source is characterized by a broadband spectrum (white primary universal light) and is plotted with a dashed line. Two additional narrowband light sources are contemplated for secondary special purpose illumination. The dotted line shows the blue light spectrum and the solid line shows the red light source spectrum. The right panel of FIG. 5A shows two functions of the original white spectrum (the dashed line corresponding to the dashed line in the left panel) and the spectrum of the special purpose primary light source operating simultaneously. Special purpose spectral functions were obtained by optimization described in the body of this specification. FIG. 5B was then generated using the spectral distribution functions of the primary and special purpose illumination. Panel 5B shows two sets of bars for comparing the CRI of the white primary light source only (bars filled with hashes) and the CRI of the two light sources operated together (blank white bars).
出願人は、図4の結果から、入手し易い光源として、ピーク波長660nmの光源を決定し、A3の値の最適化を行った。この例の植物成長サポートとサニタイズライトニングデバイスの最適化の結果は、2つの発光要素である。第1の発光素子は660nmにピークがあり(図5Aの左パネルの正規化された発光スペクトル-個々の光源の実線)、第2の発光素子は405nmにピークがある(図5Aの正規化された発光スペクトル-個々の光源の点線)。図5に示され、最適化問題の例で使用されているスペクトルは、市場で入手可能な実際の光源(LED)の発光スペクトルの例である。白色光源スペクトルは、実際のコンポーネントである白色高CRI 3000K LEDである(GW JCLPS2.CM(GEN 2)DURIS(登録商標)E3-図5Aの正規化された発光スペクトル-左右両方のパネルの破線)。
The applicant determined a light source with a peak wavelength of 660 nm as an easily available light source from the results of FIG. 4 , and optimized the value of A3. The result of the optimization of the plant growth support and sanitizing lightning device in this example are two light emitting elements. The first emitter peaks at 660 nm (normalized emission spectrum in left panel of FIG. 5A—solid line for individual light source) and the second emitter peaks at 405 nm (normalized emission spectrum in FIG. 5A). emission spectra—dotted lines for individual sources). The spectra shown in FIG. 5 and used in the example optimization problem are examples of emission spectra of real light sources (LEDs) available on the market. The white light source spectrum is the actual component white high CRI 3000K LED (GW JCLPS2.CM (GEN 2) DURIS® E3 - normalized emission spectrum in Figure 5A - dashed lines in both left and right panels). .
要するに、2次照明が、図5Aの右側のパネルの実線のようなパワースペクトル分布であると、優れたCRIを得られることが確認できた。このときのA2は、およそ1.7(620nm付近のブロードなピークに対する405nmのピークの強度の比)であり、A3は、およそ0.65(白色光のブロードな分布に対する660nmのピークの突出量の比)であった。このため、一例として、良好なCRIを実現する特別な目的の照明は、2次照明が、625~665nm(望ましくは650~665nm)の波長範囲に第1ピークを有し、第1ピークにおけるスペクトルパワーが、1次照明(白色光)の最大スペルトルパワーの0.1~0.9倍である。そして、2次照明は、400~410nmの波長範囲に第2ピークを有し、第2ピークにおけるスペクトルパワーは、1次照明(白色光)の最大スペルトルパワーの0.7~5倍である。405nmのピークの光源は、可視波長成分は一部であるので、比較的大きな強度であってもよい。また、前記したように、LEDの発光強度や波長は、作動時の誤差があるので、ピーク波長およびその強度には、ある程度の誤差範囲が含まれるべきである。
In short, it was confirmed that excellent CRI can be obtained when the secondary illumination has a power spectrum distribution like the solid line in the right panel of FIG. 5A. A2 at this time is approximately 1.7 (the ratio of the intensity of the 405 nm peak to the broad peak near 620 nm), and A3 is approximately 0.65 (the ratio of the intensity of the 660 nm peak to the broad distribution of white light). ratio of the amount of protrusion). Thus, as an example, special purpose illumination to achieve good CRI would be such that the secondary illumination has a first peak in the wavelength range of 625-665 nm (preferably 650-665 nm) and the spectrum at the first peak The power is 0.1-0.9 times the maximum spectral power of the primary illumination (white light). And the secondary illumination has a second peak in the wavelength range of 400-410 nm, and the spectral power at the second peak is 0.7-5 times the maximum spectral power of the primary illumination (white light). . A light source with a peak at 405 nm may have a relatively high intensity, since the visible wavelength component is part of the light. In addition, as described above, the emission intensity and wavelength of the LED have errors during operation, so the peak wavelength and its intensity should include a certain error range.
図5Bは、図4に示されているパラメータ空間の1つの可能な徹底的な検索の結果を示す。CRI値は2つのバーセットで図5Bに示され、ハッシュされたセットは元の白色光のインデックスを示す。この例のCRI Raは92.03から96.10に増加し、インデックスR9は59.14から95.0に増加している。図5Bの棒グラフは、他のインデックスも同様に増加したことを示す。インデックスR8、R9、およびR12で最大の向上が得られた。この例では、CRI R9が65以下であり、CRI R9を改善できる2次照明を追加することで、CRI Raも改善できる可能性がある。
FIG. 5B shows the results of one possible exhaustive search of the parameter space shown in FIG. The CRI values are shown in FIG. 5B in two bar sets, the hashed set showing the original white light index. The CRI Ra for this example increased from 92.03 to 96.10 and the index R9 increased from 59.14 to 95.0. The bar graph in Figure 5B shows that other indices increased as well. The greatest improvement was obtained at indices R 8 , R 9 and R 12 . In this example, the CRI R 9 is 65 or less, and adding secondary illumination that can improve the CRI R 9 may also improve the CRI R a .
本発明の照明装置を実用的なものとするために、照明装置は、制御装置を備えることが望ましい。制御装置は、例えば、2次照明の出力を1次照明とは独立して変更可能であってもよい。2次照明の出力を変更することで、CRIを改善したり、ユーザの好みに応じて色味の調整をしたりすることができる。
In order to make the lighting device of the present invention practical, it is desirable that the lighting device include a control device. The controller may, for example, be able to vary the output of the secondary lighting independently of the primary lighting. By changing the output of the secondary illumination, it is possible to improve the CRI and adjust the color according to the user's preference.
また、制御装置は、1次照明と2次照明を同時に点灯させる状態と、1次照明を点灯させず、2次照明を点灯させる状態とを、ユーザの操作により、または、所定の条件により切り替えることを可能にするものであってもよい。制御装置は、例えば切替装置である。このような制御装置により、例えば、店舗の開店中は、1次照明と2次照明を同時に点灯させ、高CRIによる商品の適切なディスプレイと殺菌を同時に実現し、夜間などに店舗を閉めているときには、2次照明のみを点灯させることで、殺菌のみを継続することができる。もちろん、制御装置は、1次照明を点灯させ、2次照明を点灯させない状態に切り替えることが可能であってもよい。
In addition, the control device switches between a state in which the primary lighting and the secondary lighting are turned on at the same time and a state in which the secondary lighting is turned on without turning on the primary lighting, according to a user's operation or a predetermined condition. It may be possible to The control device is, for example, a switching device. With such a control device, for example, when the store is open, the primary lighting and secondary lighting are turned on at the same time to realize appropriate product display and sterilization at the same time with high CRI, and the store is closed at night. Sometimes sterilization alone can be continued by turning on only the secondary lighting. Of course, the control device may be capable of switching to a state in which the primary lighting is turned on and the secondary lighting is not turned on.
本明細書で説明され、図1のパネルに示されている例とバリエーションは、例としてのみ作成されたものであり、制限を目的としたものではありません。本発明の範囲から逸脱することなく、発光素子、フィルタまたはディフーザーの他の多くの配置が可能である。説明したように、作用に大きな変更を加えることなく、小さな変更を加えることができることは、当業者には明らかであろう。
The examples and variations described herein and shown in the panel of Figure 1 are made by way of example only and are not intended to be limiting. Many other arrangements of light emitting elements, filters or diffusers are possible without departing from the scope of the invention. It will be apparent to those skilled in the art that minor changes can be made without major changes in operation as described.
The examples and variations described herein and shown in the panel of Figure 1 are made by way of example only and are not intended to be limiting. Many other arrangements of light emitting elements, filters or diffusers are possible without departing from the scope of the invention. It will be apparent to those skilled in the art that minor changes can be made without major changes in operation as described.
Claims (12)
- 単独で使用した場合に特別な目的に適する特別な目的の照明装置であって、
単独で使用した場合、CRI<80であり、
前記照明装置とは別の1次照明であって、CRI>90の1次照明と同時に使用すると、前記照明装置と前記1次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする、照明装置。 Special purpose lighting devices suitable for special purposes when used alone,
CRI<80 when used alone;
When a primary illumination separate from the illumination device and used simultaneously with a primary illumination having a CRI>90, the CRI of the illumination device and the primary illumination as a whole is lower than the CRI of the primary illumination alone. A lighting device that also makes it bigger. - CRI>90を満たす1次照明と、
単独で使用した場合に特別な目的に適する2次照明であって、
単独で使用した場合、CRI<80であり、
前記1次照明と同時に使用すると、前記1次照明および前記2次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする2次照明とを備える、特別な目的の照明装置。 a primary illumination that satisfies CRI>90;
Secondary lighting suitable for special purposes when used alone,
CRI<80 when used alone;
a secondary illumination that, when used simultaneously with said primary illumination, causes the combined CRI of said primary illumination and said secondary illumination to be greater than the CRI of said primary illumination alone. . - 前記2次照明は、前記1次照明と同時に使用すると、前記1次照明および前記2次照明の全体としてのCRIを94以上とする、請求項2に記載の特別な目的の照明装置。 3. The special purpose lighting device of claim 2, wherein said secondary illumination, when used concurrently with said primary illumination, provides a combined CRI of said primary illumination and said secondary illumination of 94 or greater.
- 前記2次照明は、625~665nmの波長範囲に第1ピークを有し、前記第1ピークにおけるスペクトルパワーは、前記1次照明の最大スペルトルパワーの0.1~0.9倍であることを特徴とする請求項3に記載の照明装置。 The secondary illumination has a first peak in the wavelength range of 625-665 nm, and the spectral power at the first peak is 0.1-0.9 times the maximum spectral power of the primary illumination. The illumination device according to claim 3, characterized by:
- 前記2次照明は、400~410nmの波長範囲に第2ピークを有し、前記第2ピークにおけるスペクトルパワーは、前記1次照明の最大スペルトルパワーの0.7~5倍であることを特徴とする請求項4に記載の照明装置。 The secondary illumination has a second peak in the wavelength range of 400-410 nm, and the spectral power at the second peak is 0.7-5 times the maximum spectral power of the primary illumination. 5. The lighting device according to claim 4.
- 前記1次照明は、単独で使用した場合に、CRI<93であることを特徴とする請求項4または請求項5に記載の照明装置。 The illumination device according to claim 4 or 5, wherein the primary illumination has a CRI<93 when used alone.
- 前記1次照明と前記2次照明を同時に点灯させる状態と、前記1次照明を点灯させず、前記2次照明を点灯させる状態とを、ユーザの操作により、または、所定の条件により切り替えることを可能にする制御装置をさらに備えることを特徴とする請求項4または請求項5に記載の照明装置。 Switching between a state in which the primary lighting and the secondary lighting are turned on simultaneously and a state in which the secondary lighting is turned on without turning on the primary lighting is switched by a user's operation or according to a predetermined condition. 6. A lighting device according to claim 4 or 5, further comprising an enabling control device.
- 前記1次照明のCRI R9は、65以下であることを特徴とする請求項4または請求項5に記載の照明装置。 6. The illumination device of claim 4 or 5 , wherein the CRI R9 of the primary illumination is 65 or less.
- 前記2次照明の出力を前記1次照明とは独立して変更可能な制御装置をさらに備えることを特徴とする請求項4または請求項5に記載の照明装置。 6. The lighting device according to claim 4, further comprising a control device capable of changing the output of said secondary lighting independently of said primary lighting.
- 単独で使用した場合に特別な目的に適する特別な目的に適する2次照明を含む照明装置であって、他の1次照明と同時に使用すると前記2次照明と前記1次照明の全体としてのCRIを前記1次照明の単独でのCRIよりも大きくする、特別な目的の照明装置の設計方法であって、
前記1次照明のパワースペクトルを最大パワースペクトルで正規化した関数をPSD1、前記2次照明の第1ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD2、A1を定数、A2を変数とし、前記第1ピークのピーク波長をλ1とし、パワースペクトル関数
Y=A1PSD1+A2PSD2
で定まる光源について、所定範囲のλ1およびA2にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1およびA2を選択することで前記2次照明の特性を決定すること
を特徴とする特別な目的の照明装置の設計方法。 1. A lighting device comprising a special purpose suitable secondary lighting when used alone, wherein the combined CRI of said secondary lighting and said primary lighting when used together with other primary lighting is greater than the CRI of the primary illumination alone, comprising:
PSD 1 is a function obtained by normalizing the power spectrum of the primary illumination by the maximum power spectrum, PSD 2 is a function obtained by normalizing the power spectrum of the first peak of the secondary illumination by the maximum power spectrum, A 1 is a constant, A 2 as a variable, the peak wavelength of the first peak is λ 1 , and the power spectrum function Y=A 1 PSD 1 +A 2 PSD 2
calculating at least one of CRI R a and CRI R i (where i=any number from 1 to 15) over a range of λ 1 and A 2 for an illuminant defined by
determining characteristics of said secondary illumination by selecting λ 1 and A 2 such that at least one of said CRI Ra and CRI R i is greater than a predetermined threshold. . - 前記2次照明の光源として、第2ピークを有する場合に、
前記2次照明の第2ピークのパワースペクトルを最大パワースペクトルで正規化した関数をPSD3、A3を変数とし、前記第2ピークのピーク波長をλ2とし、パワースペクトル関数
Y=A1PSD1+A2PSD2+A3PSD3
で定まる光源について、所定範囲のλ1,λ2およびA2,A3にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算し、
当該CRI RaおよびCRI Riの少なくとも1つが所定の閾値より大きいλ1,λ2およびA2,A3を選択することで前記2次照明の特性を決定すること
を特徴とする請求項10に記載の特別な目的の照明装置の設計方法。 When the light source for the secondary illumination has a second peak,
A function obtained by normalizing the power spectrum of the second peak of the secondary illumination by the maximum power spectrum is defined as PSD 3 and A 3 as variables, the peak wavelength of the second peak is defined as λ 2 , and the power spectrum function Y=A 1 PSD 1 + A 2 PSD 2 + A 3 PSD 3
calculating at least one of CRI R a and CRI R i (i=any number from 1 to 15) over a predetermined range of λ 1 , λ 2 and A 2 , A 3 for a light source defined by
10. The characteristics of the secondary illumination are determined by selecting λ 1 , λ 2 and A 2 , A 3 for which at least one of the CRI Ra and the CRI R i is greater than a predetermined threshold. A method of designing a special purpose lighting device as described in . - A2,A3の一方を定数として、所定範囲のλ1,λ2およびA2,A3にわたって、CRI RaおよびCRI Ri(i=1から15の任意の数)の少なくとも1つを計算することを特徴とする請求項11に記載の特別な目的の照明装置の設計方法。
With one of A 2 and A 3 as a constant, at least one of CRI R a and CRI R i (i = any number from 1 to 15) over a predetermined range of λ 1 , λ 2 and A 2 , A 3 12. The method of designing a special-purpose lighting device according to claim 11, wherein calculating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023517543A JPWO2022230855A1 (en) | 2021-04-26 | 2022-04-26 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021073994 | 2021-04-26 | ||
JP2021-073994 | 2021-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230855A1 true WO2022230855A1 (en) | 2022-11-03 |
Family
ID=83848417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/018832 WO2022230855A1 (en) | 2021-04-26 | 2022-04-26 | Illumination apparatus for special purpose having improved color rendering index, and method for designing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022230855A1 (en) |
WO (1) | WO2022230855A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164849A (en) * | 2015-03-06 | 2016-09-08 | パナソニックIpマネジメント株式会社 | Luminaire and display rack having the same |
JP2017530525A (en) * | 2014-10-07 | 2017-10-12 | ジーイー・ライティング・ソルーションズ,エルエルシー | LED device using neodymium fluorine material |
JP2018120755A (en) * | 2017-01-25 | 2018-08-02 | パナソニックIpマネジメント株式会社 | Lighting device |
JP2020141027A (en) * | 2019-02-27 | 2020-09-03 | パナソニックIpマネジメント株式会社 | Light emitting device and luminaire |
-
2022
- 2022-04-26 JP JP2023517543A patent/JPWO2022230855A1/ja active Pending
- 2022-04-26 WO PCT/JP2022/018832 patent/WO2022230855A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017530525A (en) * | 2014-10-07 | 2017-10-12 | ジーイー・ライティング・ソルーションズ,エルエルシー | LED device using neodymium fluorine material |
JP2016164849A (en) * | 2015-03-06 | 2016-09-08 | パナソニックIpマネジメント株式会社 | Luminaire and display rack having the same |
JP2018120755A (en) * | 2017-01-25 | 2018-08-02 | パナソニックIpマネジメント株式会社 | Lighting device |
JP2020141027A (en) * | 2019-02-27 | 2020-09-03 | パナソニックIpマネジメント株式会社 | Light emitting device and luminaire |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022230855A1 (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10039169B2 (en) | Light source apparatus | |
US8403523B2 (en) | Methods, luminaires and systems for matching a composite light spectrum to a target light spectrum | |
KR101892996B1 (en) | Visible Lighting Lamp with a Built In LED Package Light | |
US7972028B2 (en) | System, method and tool for optimizing generation of high CRI white light, and an optimized combination of light emitting diodes | |
JP6893786B2 (en) | Light source with improved color preference | |
US10485070B2 (en) | Light source apparatus and display apparatus | |
US20090224693A1 (en) | Illumination source, illumination system, and dimming control method for the production of different colour temperatures | |
KR100220304B1 (en) | General purpose discharge lamp and general purpose lighting apparatus | |
US20040218387A1 (en) | LED lighting arrays, fixtures and systems and method for determining human color perception | |
JP2005534155A (en) | Lamp system comprising a green-blue gas discharge lamp and a yellow-red LED | |
WO2019139637A1 (en) | Multi-channel systems for providing tunable light with high color rendering and biological effects | |
JP2012511801A (en) | How to maximize lighting fixture performance | |
US10697591B1 (en) | Light bulb with controlled color and flicker | |
EP4151053A1 (en) | Melanopic light system with high cri using cyan direct emitters | |
WO2019140306A1 (en) | Two-channel tunable lighting systems with controllable equivalent melanopic lux and correlated color temperature outputs | |
KR100973078B1 (en) | White light illumination device using light emitting diodes and color temperature control method | |
Protzman et al. | LEDs for general illumination: The state of the science | |
JP4140157B2 (en) | Illumination light source and illumination device using light emitting diode | |
WO2022230855A1 (en) | Illumination apparatus for special purpose having improved color rendering index, and method for designing same | |
US9322513B2 (en) | Lighting apparatus using white-light LEDs | |
US20200057339A1 (en) | Light source apparatus and display apparatus | |
JP7426164B2 (en) | Light emitting module and lighting device | |
JPH0855610A (en) | Electric discharge lamp for general-purpose lighting and lighting fixture for general-purpose lighting | |
WO2020027783A1 (en) | Systems and methods for providing tunable warm white light | |
US9803811B2 (en) | Method for producing high-quality light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795768 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023517543 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22795768 Country of ref document: EP Kind code of ref document: A1 |