WO2022230689A1 - Power system - Google Patents
Power system Download PDFInfo
- Publication number
- WO2022230689A1 WO2022230689A1 PCT/JP2022/017901 JP2022017901W WO2022230689A1 WO 2022230689 A1 WO2022230689 A1 WO 2022230689A1 JP 2022017901 W JP2022017901 W JP 2022017901W WO 2022230689 A1 WO2022230689 A1 WO 2022230689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power system
- power converter
- converter
- excitation circuit
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 88
- 230000005284 excitation Effects 0.000 claims abstract description 87
- 230000001360 synchronised effect Effects 0.000 claims abstract description 61
- 239000003607 modifier Substances 0.000 claims abstract description 54
- 230000005856 abnormality Effects 0.000 claims description 24
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 230000007257 malfunction Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/70—Regulating power factor; Regulating reactive current or power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Definitions
- the present invention relates to power systems.
- Patent Document 1 states that "the charging voltage is determined so that the field current reaches a predetermined value required for initial excitation after a predetermined time has elapsed since initial excitation was started at a predetermined rotation speed.” ing.
- Patent Document 1 does not describe such a technique.
- an object of the present invention is to provide a highly reliable electric power system.
- the power system provides a synchronous phase modifier having an armature winding electrically connected to a first power system and a field winding functioning as an excitation circuit.
- the source of power supply to the excitation circuit is the first power It is characterized in that it is configured to switch from the grid to the second power grid.
- the power system includes a synchronous phase modifier having an armature winding electrically connected to a first power system and a field winding functioning as an excitation circuit, When the system is normal, power is supplied from the first power system to the excitation circuit, and power is supplied to the excitation circuit from at least one of the second power system and the storage battery, and the first power system is abnormal. At least one of the second electric power system and the storage battery may be the supply source of electric power to the excitation circuit.
- a highly reliable electric power system can be provided.
- FIG. 1 is a configuration diagram of a power system according to a first embodiment;
- FIG. It is a lineblock diagram of an electric power system concerning a 2nd embodiment. It is a lineblock diagram of an electric power system concerning a 3rd embodiment. It is a lineblock diagram of an electric power system concerning a 4th embodiment.
- FIG. 1 is a configuration diagram of a power system 100 according to the first embodiment.
- power lines are indicated by solid lines, while signal lines are indicated by broken lines.
- a power system 100 shown in FIG. 1 is a system in which a synchronous phase modifier 11 adjusts the reactive power of a power system P1 (first power system) that is a main system.
- the power supply source for the field winding 11b (excitation circuit) of the synchronous phase modifier 11 is changed from the power system P1 to the power system P2 (second power system). It also has a function to switch between two power systems.
- the power systems P1 and P2 are facilities for transmitting and distributing power (three-phase AC power) generated by predetermined power generation facilities (not shown) to the demand side. Also, even if an abnormality such as a ground fault occurs in the power system P1, it is assumed that the other power system P2 is hardly affected.
- the power system 100 includes a synchronous phase modifier 11 and the like.
- the synchronous phase modifier 11 is a synchronous motor driven with no load, and has a function of adjusting the reactive power of the electric power system P1.
- the synchronous phase modifier 11 includes an armature winding 11a and a field winding 11b.
- the armature winding 11a is a winding wound around a stator core (not shown) and is electrically connected to the power system P1 via a transformer 12.
- the armature winding 11a is not particularly connected to the other electric power system P2.
- the field winding 11b functions as an excitation circuit for the synchronous phase modifier 11 and is wound around a field core (not shown).
- the field winding 11b (excitation circuit) is connected to the electric power system P1 (first electric power system) via the circuit breaker 14 (first circuit breaker) and the like, and is connected to another circuit breaker 23 (second circuit breaker). etc., to the power system P2 (second power system).
- a rotor including the field winding 11b and a field iron core (not shown) rotates. Accordingly, a predetermined AC voltage is generated in the armature winding 11a.
- a configuration may be adopted in which a predetermined brush (not shown) is in sliding contact with a slip ring (not shown) that rotates integrally with the rotor of the synchronous phase modifier 11 .
- the field winding 11b when the field of the synchronous phase modifier 11 is overexcited, the field winding 11b functions as a capacitor that absorbs leading-phase current from the electric power system P1.
- the field winding 11b when the field of the synchronous phase modifier 11 is underexcited, the field winding 11b functions as a reactor that absorbs the lagging phase current from the electric power system P1. Note that the magnetic field and the like of the synchronous phase modifier 11 are adjusted by a control device 30 which will be described later.
- a predetermined DC circuit (not shown) used for initial excitation of the field winding 11b of the synchronous phase modifier 11 may be provided. Then, after starting the synchronous phase modifier 11 using the DC circuit for initial excitation, the power supply board 15 turns on the breaker 14 near the rated operation, and the power for excitation is supplied from the electric power system P1 to the field winding. It may be supplied to the line 11b.
- the power system 100 shown in FIG. 1 includes a transformer 12, an excitation transformer 13, and a circuit breaker 14 (first circuit breaker) as a configuration used for power supply from the power system P1, which is the main system, to the synchronous phase modifier 11. , a power panel 15 and a power converter 16 .
- the transformer 12 is a device that adjusts the height of AC voltage and the like between the power system P1 and the synchronous phase modifier 11 .
- the primary side of the transformer 12 is connected to the electric power system P 1 , while the secondary side of the transformer 12 is connected to the armature winding 11 a of the synchronous phase modifier 11 .
- the excitation transformer 13 is a device that adjusts the height of AC voltage between the AC side of the power converter 16 and the transformer 12 .
- the primary side of the excitation transformer 13 is connected to the secondary side of the transformer 12 , while the secondary side of the excitation transformer 13 is connected to the circuit breaker 14 .
- the circuit breaker 14 switches connection/disconnection between the power system P1 and the field winding 11b (excitation circuit). For example, when electrically connecting the power system P1 and the field winding 11b, the circuit breaker 14 is turned on. On the other hand, when the power system P1 and the field winding 11b are to be electrically cut off, the circuit breaker 14 is opened.
- the power panel 15 opens and closes the circuit breakers 14 and 23 based on a signal from the control device 30. As shown in FIG. 1, the power panel 15 is connected to the power system P1 via the circuit breaker 14 and the like, and is connected to the power system P2 via another circuit breaker 23 and the like. Also, the power panel 15 is connected to the field winding 11b via a power converter 16, which will be described below.
- the power converter 16 is a device that converts AC voltage applied to itself via the circuit breaker 14 or the like into a predetermined DC voltage.
- a power converter 16 for example, a thyristor rectifier is used.
- the power converter 16 has its AC side connected to the power panel 15 and its DC side connected to the field winding 11b (excitation circuit). Then, the synchronous phase modifier 11 is excited by a predetermined DC current flowing through the field winding 11b.
- the power system 100 includes a transformer 21, an excitation transformer 22, and a circuit breaker 23 (second 2 circuit breaker).
- the transformer 21 is a device that adjusts the height of AC voltage, etc., when the power system P2 is used as an excitation power source for the synchronous phase modifier 11 .
- the primary side of transformer 21 is connected to power system P2, while the secondary side of transformer 21 is connected to the primary side of excitation transformer 22 .
- the excitation transformer 22 is a device that adjusts the height of AC voltage and the like between the AC side of the power converter 16 and the transformer 21 .
- the primary side of excitation transformer 22 is connected to the secondary side of transformer 21 , while the secondary side of excitation transformer 22 is connected to circuit breaker 23 .
- the circuit breaker 23 switches connection/disconnection between the electric power system P2 and the field winding 11b (excitation circuit). For example, when electrically connecting the power system P2 and the field winding 11b, the circuit breaker 23 is turned on. On the other hand, when the power system P2 and the field winding 11b are to be electrically cut off, the circuit breaker 23 is opened.
- the electric power system 100 also includes a control device 30 in addition to the configuration described above.
- the control device 30 includes electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and developed in the RAM, and the CPU executes various processes.
- CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the control device 30 has a function of outputting a predetermined gate signal to the power converter 16 (for example, a thyristor rectifier) and adjusting the excitation of the synchronous phase modifier 11 based on the state of the power system P1. Further, for example, based on the detected value of the voltage of the power system P1, the control device 30 determines whether the voltage (effective value) of the power system P1 has decreased below a predetermined value, and responds to the determination result. A predetermined signal is output to the power panel 15 .
- a predetermined gate signal for example, a thyristor rectifier
- the control device 30 sends a predetermined signal indicating that the power system P1 is normal to the power panel 15. Output. Based on this signal, the power panel 15 keeps the circuit breaker 14 closed and the other circuit breaker 23 open.
- the field winding 11b excitation circuit of the synchronous phase modifier 11 Power is supplied.
- the synchronous phase modifier 11 adjusts the reactive power of the power system P1 to a predetermined value.
- the controller 30 sends a predetermined signal indicating that the power system P1 is abnormal to the power panel 15. Output.
- an abnormality of the electric power system P1 there are a ground fault, a disconnection, a short circuit, an open phase, and the like.
- the power supply panel 15 opens the circuit breaker 14 (first circuit breaker), while the other circuit breaker 23 (second circuit breaker) opens. ) are introduced. That is, when there is an abnormality in the power system P1, the power supply source for the field winding 11b (excitation circuit) of the synchronous phase modifier 11 is changed from the power system P1 (first power system) to the power system P2 (second power system).
- the power system 100 is configured to switch to .
- the power board 15 opens the circuit breaker 14 on the side of the power system P1, and then closes the circuit breaker 23 on the side of the power system P2. do. In this way, it is possible to prevent voltages out of phase from being applied to the power converter 16 at the same time by avoiding the time during which both the two circuit breakers 14 and 23 are closed. .
- the field winding 11b (excitation circuit) of the synchronous phase modifier 11
- the field winding 11b is switched from the power system P1 to the power system P2.
- the excitation voltage of the synchronous phase modifier 11 is maintained at a predetermined value, so that the reactive power adjustment capability of the synchronous phase modifier 11 can be sufficiently extracted even after the voltage of the power system P1 has decreased.
- the reactive power of the power system P1 is appropriately adjusted by the synchronous phase modifier 11, so the reliability of the power system 100 can be enhanced.
- a generator such as a nuclear power plant
- the synchronous phase modifier 11 it is possible to effectively utilize the power supply equipment and reduce the equipment cost.
- adjustment of reactive power using the synchronous phase modifier 11 can be applied to power transmission/distribution of power generated by renewable energy, thereby contributing to society.
- the second embodiment is characterized in that it does not have a circuit breaker or a power panel for switching the power supply source to the field winding 11b (excitation circuit) of the synchronous phase modifier 11 (see FIG. 2). It differs from one embodiment.
- the second embodiment differs from the first embodiment in that a large-capacity storage battery 41 (see FIG. 2) is used as a backup power source for supplying power to the field winding 11b. .
- Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
- FIG. 2 is a configuration diagram of a power system 100A according to the second embodiment.
- the power system 100A includes a synchronous phase modifier 11, a transformer 12, an excitation transformer 13, a power converter 17 (first power converter), and a large-capacity storage battery 41 (storage battery). , a power converter 42 (third power converter), and a control device 30A.
- the configuration used for power supply from the power system P1, which is the main system, to the synchronous phase modifier 11 includes a transformer 12, an excitation transformer 13, and a power converter 17.
- the power converter 17 (first power converter) converts AC power supplied from the power system P1 (first power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to
- the AC side of the power converter 17 is connected to the secondary side of the excitation transformer 13 via the power line W1.
- the DC side of the power converter 17 is connected to the field winding 11b of the synchronous phase modifier 11 through power lines W2 and W3 in sequence.
- no circuit breaker is provided on the power line W1 on the AC side of the power converter 17, and circuit breakers are not particularly provided on the power lines W2 and W3 on the DC side of the power converter 17. Not provided. In other words, no circuit breaker is provided on either the AC side or the DC side of the power converter 17 (first power converter).
- the large-capacity storage battery 41 (storage battery) is a secondary battery used as a backup power source for the synchronous phase modifier 11, and is connected to the power converter 42 via the power line W5. In the large-capacity storage battery 41, even when the voltage of the power system P1 drops, the voltage of the field winding 11b is maintained by the DC voltage of the large-capacity storage battery 41 (the same voltage as when the power system P1 is normal is maintained). capacity).
- the power converter 42 (third power converter) adjusts the DC voltage of the large-capacity storage battery 41 (storage battery) by stepping it up or down, and applies the adjusted DC voltage to the field winding 11b (excitation circuit). It is a DC-DC converter.
- the input side of the power converter 42 is connected to the large-capacity storage battery 41 via the power line W5.
- the output side of the power converter 42 is connected to the field winding 11b through power lines W4 and W3 in sequence.
- the power line W5 on the input side of the power converter 42 is not provided with a breaker, and the power lines W4 and W3 on the output side of the power converter 42 are also provided with breakers.
- no circuit breaker is provided on either the large-capacity storage battery 41 (storage battery) side or the field winding 11b (excitation circuit) side of the power converter 42 (third power converter).
- the control device 30A controls the power converter 17 (first power converter) and the power converter 42 (third power converter) in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30 sets the voltages on the output sides of the power converter 17 (first power converter) and the power converter 42 (third power converter) to be equal. The power converters 17 and 42 are driven so that As a result, when the power system P1 (first power system) is normal, power is supplied from the power system P1 to the field winding 11b (excitation circuit), and the field winding is also supplied from the large-capacity storage battery 41 (storage battery). 11b is powered.
- control device 30A continues to drive at least the power converter 42 (third power converter) when there is an abnormality in the power system P1 (first power system).
- the power converter 42 third power converter
- the power system 100A is configured such that the large-capacity storage battery 41 (storage battery) supplies power to the field winding 11b (excitation circuit) when there is an abnormality in the power system P1 (first power system). ing.
- control device 30A may continue to drive the power converter 17 in a predetermined manner not only when the power system P1 is normal, but also when the power system P1 is abnormal. Even if such control is performed, there is almost no current flow through the power converter 17 because the voltage of the power system P1 has decreased. do not have. Alternatively, for example, the control device 30A may stop driving the power converter 17 when an abnormality occurs in the power system P1.
- control device 30A can continue to drive power converters 17 and 42 in a predetermined manner, so the processing of control device 30A can be simplified.
- the third embodiment differs from the second embodiment (see FIG. 2) in that another power system P2 is used as a backup power supply for exciting the field winding 11b when the power system P1 (see FIG. 3) malfunctions. ) is different. Further, the third embodiment differs from the second embodiment in that the power converter 24 converts the AC voltage that has been transformed by the transformer 21 (see FIG. 3) into the DC voltage. Others are the same as those of the second embodiment. Therefore, the parts different from the second embodiment will be explained, and the explanation of overlapping parts will be omitted.
- FIG. 3 is a configuration diagram of a power system 100B according to the third embodiment.
- the power system 100B includes a transformer 12, an excitation transformer 13, and a power converter 17 (second 1 power converter).
- the power converter 17 second 1 power converter
- no circuit breaker is particularly provided on either the AC side or the DC side of the power converter 17 (first power converter).
- the power system 100B includes a transformer 21 and a power converter 24 (second power converter);
- the transformer 21 is a device that adjusts the height of AC voltage, etc., when the power system P2 is used as an excitation power source for the synchronous phase modifier 11 .
- the power converter 24 (second power converter) converts AC power supplied from the power system P2 (second power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to As such a power converter 24, for example, a thyristor rectifier is used.
- the AC side of the power converter 24 is connected to the secondary side of the transformer 21 via the power line W6.
- the DC side of power converter 24 is connected to field winding 11b through power lines W7 and W3 in sequence.
- no circuit breaker is provided on either the AC side or the DC side of the power converter 24 (second power converter).
- the control device 30B controls the power converter 17 (first power converter) and the power converter 24 (second power converter) in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30B makes the voltages on the output sides of the power converter 17 (first power converter) and the power converter 24 (second power converter) equal to each other. The power converters 17 and 24 are driven so that As a result, when the power system P1 (first power system) is normal, power is supplied from the power system P1 to the field winding 11b (excitation circuit), and the power system P2 (second power system) also supplies the field winding 11b. Power is supplied to the winding 11b.
- control device 30B continues to drive at least the power converter 24 (second power converter) when there is an abnormality in the power system P1 (first power system).
- the power converter 24 second power converter
- the power system 100B is configured so that the power system P2 (second output system) supplies power to the field winding 11b (excitation circuit). It is configured.
- control device 30B may continue to drive the power converter 17 in a predetermined manner not only when the power system P1 is normal, but also when the power system P1 is abnormal. Even if such control is performed, there is almost no current flow through the power converter 17 because the voltage of the power system P1 has decreased. do not have. Alternatively, for example, the control device 30B may stop driving the power converter 17 when an abnormality occurs in the power system P1.
- control device 30B can continue to control power converters 17 and 24 in a predetermined manner regardless of the presence or absence of an abnormality in power system P1, so the processing of control device 30B can be simplified. Moreover, since there is no particular need to provide a large-capacity storage battery for backup, equipment costs can be reduced more than in the second embodiment (see FIG. 2).
- a power system 100C (see FIG. 4) according to the fourth embodiment has a configuration in which the second embodiment (see FIG. 2) and the third embodiment (see FIG. 3) are combined. That is, in the fourth embodiment, when the voltage of the power system P1 (see FIG. 4) drops, the field of the synchronous phase modifier 11 from both the large-capacity storage battery 41 (see FIG. 4) and the power system P2 (see FIG. 4) Power is supplied to the magnetic winding 11b (excitation circuit). Note that descriptions of portions overlapping those of the second embodiment and the third embodiment will be omitted as appropriate.
- FIG. 4 is a configuration diagram of a power system 100C according to the fourth embodiment.
- the power system 100C includes a transformer 12, an excitation transformer 13, and a power converter 17 (second 1 power converter).
- the power converter 17 (first power converter) converts AC power supplied from the power system P1 (first power system) into DC power, and converts the converted DC power into the field winding 11b (excitation power). circuit).
- the electric power system 100C includes a large-capacity storage battery 41, a power converter 42 (third power converter), and a It has
- the power converter 42 increases or decreases the DC voltage of the large-capacity storage battery 41 (storage battery) to adjust it, and the DC voltage after adjustment is applied to the field winding 11b (excitation circuit). This is the device that applies the voltage.
- the power system 100C includes a transformer 21 and a power converter 24 (second power converter) as a configuration used for power supply from the power system P2 to the field winding 11b of the synchronous phase modifier 11. ing.
- the power converter 24 (second power converter) converts AC power supplied from the power system P2 (second power system) into DC power, and converts the converted DC power into the field winding 11b (excitation power). circuit).
- the control device 30C controls the power converters 17, 24, and 42 in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30C controls the power converter 17 (first power converter), the power converter 24 (second power converter), and the power converter 42 ( The power converters 17, 24 and 42 are driven so that the voltages on the output side of the third power converter) become equal. As a result, power is supplied from the power systems P1 and P2 and the large-capacity storage battery 41 to the field winding 11b (excitation circuit).
- control device 30C continues to drive at least the power converter 24 (second power converter) and the power converter 42 (third power converter) when there is an abnormality in the power system P1 (first power system).
- the DC voltages on the output sides of the remaining power converters 24 and 42 become relatively high.
- the DC voltage continues to be applied to the field winding 11b (excitation circuit) from the electric power system P2 or the large-capacity storage battery 41, the voltage of the field winding 11b hardly drops.
- control device 30C can continue to control power converters 17, 24, and 42 in a predetermined manner regardless of the presence or absence of an abnormality in power system P1, so the processing of control device 30C can be simplified.
- the power system 100 and the like according to the present invention have been described according to the respective embodiments, but the present invention is not limited to these descriptions, and various modifications can be made.
- the power converter 16 see FIG. 1
- another type of power converter such as a rectifier having an IGBT (Insulated Gate Bipolar Transistor) may be used.
- the power converter 42 see FIGS. 2 and 4) described in the second and fourth embodiments, The same applies to the power converter 24 (see FIGS. 3 and 4) described in the third and fourth embodiments.
- the present invention is not limited to this.
- the administrator may manually operate the circuit breakers 14 and 23 .
- the second embodiment a configuration in which no circuit breaker is particularly provided in the power line W2 on the output side of the power converter 17 (see FIG. 2) or the power line W4 on the output side of the power converter 42 (see FIG. 2) Illustrated, but not limited to. That is, the power lines W2 and W4 may be appropriately provided with circuit breakers. The same can be said for the third and fourth embodiments.
- each embodiment can be applied to, for example, facilities of power plants such as thermal power plants and hydroelectric power plants in addition to nuclear power plants.
- the synchronous phase modifier 11 including brushes and slip rings has been described, but the present invention can also be applied to a brushless excitation type synchronous phase modifier.
- each embodiment can be applied to a synchronous machine such as a synchronous motor in addition to the synchronous phase modifier 11 .
- each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
- power lines and signal lines indicate those that are considered necessary for explanation, and do not necessarily indicate all power lines and signal lines on the product. In practice, it may be considered that almost all configurations are interconnected.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Provided is a highly reliable power system. The power system (100) comprises a synchronous phase modifier (11) that has: an armature winding (11a) electrically connected to a power grid (P1); and a field winding (11b) that functions as a magnetic excitation circuit. The power system is configured such that: power is supplied from the power grid (P1) to the field winding (11b) when the power grid (P1) is operating normally; and the source of power supply to the field winding (11b) is switched from the power grid (P1) to a power grid (P2) when the power grid (P1) has an error.
Description
本発明は、電力システムに関する。
The present invention relates to power systems.
同期機の励磁に関して、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、「所定回転数で初期励磁を開始してから所定時間経過後に界磁電流が初期励磁に必要な所定値になるように充電電圧が決定されている」と記載されている。
Regarding the excitation of a synchronous machine, for example, the technique described in Patent Document 1 is known. That is, Patent Document 1 states that "the charging voltage is determined so that the field current reaches a predetermined value required for initial excitation after a predetermined time has elapsed since initial excitation was started at a predetermined rotation speed." ing.
特許文献1に記載の技術において、仮に、同期機の給電元である電力系統で地絡等の不具合が生じた場合、この電力系統の電圧が低下する。なお、電力系統の不具合の発生時からしばらくの間は、同期機の誘導起電力によって電力系統の電圧が所定に維持されるが、その後は電力系統の電圧が低下し、これに伴って、同期機の界磁巻線(励磁回路)の電圧も低下する。
In the technology described in Patent Document 1, if a problem such as a ground fault occurs in the power system that is the power supply source of the synchronous machine, the voltage of this power system will drop. For a while after the occurrence of a problem in the power system, the voltage of the power system is maintained at a predetermined level by the induced electromotive force of the synchronous machine. The voltage of the field winding (excitation circuit) of the machine also drops.
その結果、例えば、同期機が調相機として機能している場合において、その給電元である電力系統に不具合が生じると、同期機による無効電力の調整能力が低下する。したがって、電力系統を介した給電の信頼性をさらに高めることが望まれているが、そのような技術については特許文献1には記載されていない。
As a result, for example, when a synchronous machine functions as a phase modifier, if a problem occurs in the power system that is the power supply source, the reactive power adjustment capability of the synchronous machine is reduced. Therefore, it is desired to further improve the reliability of power supply through the electric power system, but Patent Document 1 does not describe such a technique.
そこで、本発明は、信頼性の高い電力システムを提供することを課題とする。
Therefore, an object of the present invention is to provide a highly reliable electric power system.
前記した課題を解決するために、本発明に係る電力システムは、第1電力系統に電気的に接続される電機子巻線と、励磁回路として機能する界磁巻線と、を有する同期調相機を備え、前記第1電力系統の正常時には、前記第1電力系統から前記励磁回路に電力が供給され、前記第1電力系統の異常時には、前記励磁回路への電力の供給元が前記第1電力系統から第2電力系統に切り替わるように構成されていることを特徴とする。
In order to solve the above problems, the power system according to the present invention provides a synchronous phase modifier having an armature winding electrically connected to a first power system and a field winding functioning as an excitation circuit. When the first power system is normal, power is supplied from the first power system to the excitation circuit, and when the first power system is abnormal, the source of power supply to the excitation circuit is the first power It is characterized in that it is configured to switch from the grid to the second power grid.
また、本発明に係る電力システムは、第1電力系統に電気的に接続される電機子巻線と、励磁回路として機能する界磁巻線と、を有する同期調相機を備え、前記第1電力系統の正常時には、前記第1電力系統から前記励磁回路に電力が供給されるとともに、第2電力系統及び蓄電池のうち少なくとも一方からも前記励磁回路に電力が供給され、前記第1電力系統の異常時には、前記励磁回路への電力の供給元が前記第2電力系統及び前記蓄電池のうち前記少なくとも一方となるように構成されていることを特徴とする。
Further, the power system according to the present invention includes a synchronous phase modifier having an armature winding electrically connected to a first power system and a field winding functioning as an excitation circuit, When the system is normal, power is supplied from the first power system to the excitation circuit, and power is supplied to the excitation circuit from at least one of the second power system and the storage battery, and the first power system is abnormal. At least one of the second electric power system and the storage battery may be the supply source of electric power to the excitation circuit.
本発明によれば、信頼性の高い電力システムを提供できる。
According to the present invention, a highly reliable electric power system can be provided.
≪第1実施形態≫
<電力システムの構成>
図1は、第1実施形態に係る電力システム100の構成図である。
なお、図1では、電力線を実線で示す一方、信号線を破線で示している。
図1に示す電力システム100は、主系統である電力系統P1(第1電力系統)の無効電力を同期調相機11によって調整するシステムである。また、電力システム100は、電力系統P1で地絡等が生じた場合、同期調相機11の界磁巻線11b(励磁回路)への電力の供給元を、電力系統P1から電力系統P2(第2電力系統)に切り替える機能も有している。 <<First embodiment>>
<Configuration of electric power system>
FIG. 1 is a configuration diagram of apower system 100 according to the first embodiment.
In FIG. 1, power lines are indicated by solid lines, while signal lines are indicated by broken lines.
Apower system 100 shown in FIG. 1 is a system in which a synchronous phase modifier 11 adjusts the reactive power of a power system P1 (first power system) that is a main system. Further, in the power system 100, when a ground fault or the like occurs in the power system P1, the power supply source for the field winding 11b (excitation circuit) of the synchronous phase modifier 11 is changed from the power system P1 to the power system P2 (second power system). It also has a function to switch between two power systems.
<電力システムの構成>
図1は、第1実施形態に係る電力システム100の構成図である。
なお、図1では、電力線を実線で示す一方、信号線を破線で示している。
図1に示す電力システム100は、主系統である電力系統P1(第1電力系統)の無効電力を同期調相機11によって調整するシステムである。また、電力システム100は、電力系統P1で地絡等が生じた場合、同期調相機11の界磁巻線11b(励磁回路)への電力の供給元を、電力系統P1から電力系統P2(第2電力系統)に切り替える機能も有している。 <<First embodiment>>
<Configuration of electric power system>
FIG. 1 is a configuration diagram of a
In FIG. 1, power lines are indicated by solid lines, while signal lines are indicated by broken lines.
A
なお、電力系統P1,P2は、所定の発電設備(図示せず)で発電された電力(三相交流電力)を需要側に送電・配電する設備である。また、電力系統P1で地絡等の異常が生じた場合でも、他方の電力系統P2にはほとんど影響がないものとする。
The power systems P1 and P2 are facilities for transmitting and distributing power (three-phase AC power) generated by predetermined power generation facilities (not shown) to the demand side. Also, even if an abnormality such as a ground fault occurs in the power system P1, it is assumed that the other power system P2 is hardly affected.
図1に示すように、電力システム100は、同期調相機11等を備えている。同期調相機11は、無負荷で駆動される同期電動機であり、電力系統P1の無効電力を調整する機能を有している。図1に示すように、同期調相機11は、電機子巻線11aと、界磁巻線11bと、を備えている。電機子巻線11aは、固定子鉄心(図示せず)に巻回される巻線であり、変圧器12を介して、電力系統P1に電気的に接続されている。なお、図1の例では、電機子巻線11aは、他の電力系統P2には特に接続されていない。
As shown in FIG. 1, the power system 100 includes a synchronous phase modifier 11 and the like. The synchronous phase modifier 11 is a synchronous motor driven with no load, and has a function of adjusting the reactive power of the electric power system P1. As shown in FIG. 1, the synchronous phase modifier 11 includes an armature winding 11a and a field winding 11b. The armature winding 11a is a winding wound around a stator core (not shown) and is electrically connected to the power system P1 via a transformer 12. In addition, in the example of FIG. 1, the armature winding 11a is not particularly connected to the other electric power system P2.
界磁巻線11bは、同期調相機11の励磁回路として機能し、界磁鉄心(図示せず)に巻回されている。界磁巻線11b(励磁回路)は、遮断器14(第1遮断器)等を介して電力系統P1(第1電力系統)に接続されるとともに、別の遮断器23(第2遮断器)等を介して電力系統P2(第2電力系統)に接続されている。
The field winding 11b functions as an excitation circuit for the synchronous phase modifier 11 and is wound around a field core (not shown). The field winding 11b (excitation circuit) is connected to the electric power system P1 (first electric power system) via the circuit breaker 14 (first circuit breaker) and the like, and is connected to another circuit breaker 23 (second circuit breaker). etc., to the power system P2 (second power system).
そして、界磁巻線11bに所定の励磁電流(直流電流)が流れることで、界磁巻線11bや界磁鉄心(図示せず)を含む回転子(図示せず)が回転し、これに伴って、電機子巻線11aに所定の交流電圧が生じるようになっている。なお、同期調相機11の回転子と一体で回転するスリップリング(図示せず)に所定のブラシ(図示せず)が摺接する構成であってもよい。
When a predetermined exciting current (direct current) flows through the field winding 11b, a rotor (not shown) including the field winding 11b and a field iron core (not shown) rotates. Accordingly, a predetermined AC voltage is generated in the armature winding 11a. In addition, a configuration may be adopted in which a predetermined brush (not shown) is in sliding contact with a slip ring (not shown) that rotates integrally with the rotor of the synchronous phase modifier 11 .
例えば、同期調相機11の界磁を過励磁にした場合、界磁巻線11bは、電力系統P1から進み位相の電流を吸収するコンデンサとして機能する。一方、同期調相機11の界磁を不足励磁にした場合、界磁巻線11bは、電力系統P1から遅れ位相の電流を吸収するリアクトルとして機能する。なお、同期調相機11の界磁等は、後記する制御装置30によって調整される。
For example, when the field of the synchronous phase modifier 11 is overexcited, the field winding 11b functions as a capacitor that absorbs leading-phase current from the electric power system P1. On the other hand, when the field of the synchronous phase modifier 11 is underexcited, the field winding 11b functions as a reactor that absorbs the lagging phase current from the electric power system P1. Note that the magnetic field and the like of the synchronous phase modifier 11 are adjusted by a control device 30 which will be described later.
また、同期調相機11の界磁巻線11bの初期励磁に用いられる所定の直流回路(図示せず)が設けられるようにしてもよい。そして、初期励磁用の直流回路を用いて、同期調相機11を始動させた後、定格運転の付近で電源盤15が遮断器14を投入し、電力系統P1から励磁用の電力を界磁巻線11bに供給するようにしてもよい。
Further, a predetermined DC circuit (not shown) used for initial excitation of the field winding 11b of the synchronous phase modifier 11 may be provided. Then, after starting the synchronous phase modifier 11 using the DC circuit for initial excitation, the power supply board 15 turns on the breaker 14 near the rated operation, and the power for excitation is supplied from the electric power system P1 to the field winding. It may be supplied to the line 11b.
図1に示す電力システム100は、主系統である電力系統P1から同期調相機11への給電に用いられる構成として、変圧器12と、励磁変圧器13と、遮断器14(第1遮断器)と、電源盤15と、電力変換器16と、を備えている。
変圧器12は、電力系統P1と同期調相機11との間で交流電圧の高さ等を調整する機器である。変圧器12の一次側は電力系統P1に接続される一方、変圧器12の二次側は同期調相機11の電機子巻線11aに接続されている。 Thepower system 100 shown in FIG. 1 includes a transformer 12, an excitation transformer 13, and a circuit breaker 14 (first circuit breaker) as a configuration used for power supply from the power system P1, which is the main system, to the synchronous phase modifier 11. , a power panel 15 and a power converter 16 .
Thetransformer 12 is a device that adjusts the height of AC voltage and the like between the power system P1 and the synchronous phase modifier 11 . The primary side of the transformer 12 is connected to the electric power system P 1 , while the secondary side of the transformer 12 is connected to the armature winding 11 a of the synchronous phase modifier 11 .
変圧器12は、電力系統P1と同期調相機11との間で交流電圧の高さ等を調整する機器である。変圧器12の一次側は電力系統P1に接続される一方、変圧器12の二次側は同期調相機11の電機子巻線11aに接続されている。 The
The
励磁変圧器13は、電力変換器16の交流側と変圧器12との間で交流電圧の高さ等を調整する機器である。励磁変圧器13の一次側は変圧器12の二次側に接続される一方、励磁変圧器13の二次側は遮断器14に接続されている。
遮断器14は、電力系統P1と界磁巻線11b(励磁回路)との間の接続/遮断を切り替えるものである。例えば、電力系統P1と界磁巻線11bとを電気的に接続する際には、遮断器14が投入される。一方、電力系統P1と界磁巻線11bとを電気的に遮断する際には、遮断器14が開放される。 Theexcitation transformer 13 is a device that adjusts the height of AC voltage between the AC side of the power converter 16 and the transformer 12 . The primary side of the excitation transformer 13 is connected to the secondary side of the transformer 12 , while the secondary side of the excitation transformer 13 is connected to the circuit breaker 14 .
The circuit breaker 14 switches connection/disconnection between the power system P1 and the field winding 11b (excitation circuit). For example, when electrically connecting the power system P1 and the field winding 11b, thecircuit breaker 14 is turned on. On the other hand, when the power system P1 and the field winding 11b are to be electrically cut off, the circuit breaker 14 is opened.
遮断器14は、電力系統P1と界磁巻線11b(励磁回路)との間の接続/遮断を切り替えるものである。例えば、電力系統P1と界磁巻線11bとを電気的に接続する際には、遮断器14が投入される。一方、電力系統P1と界磁巻線11bとを電気的に遮断する際には、遮断器14が開放される。 The
The circuit breaker 14 switches connection/disconnection between the power system P1 and the field winding 11b (excitation circuit). For example, when electrically connecting the power system P1 and the field winding 11b, the
電源盤15は、制御装置30からの信号に基づいて、遮断器14,23を開閉するものである。図1に示すように、電源盤15は、遮断器14等を介して電力系統P1に接続される一方、別の遮断器23等を介して電力系統P2に接続されている。また、電源盤15は、次に説明する電力変換器16を介して、界磁巻線11bに接続されている。
The power panel 15 opens and closes the circuit breakers 14 and 23 based on a signal from the control device 30. As shown in FIG. 1, the power panel 15 is connected to the power system P1 via the circuit breaker 14 and the like, and is connected to the power system P2 via another circuit breaker 23 and the like. Also, the power panel 15 is connected to the field winding 11b via a power converter 16, which will be described below.
電力変換器16は、遮断器14等を介して自身に印加される交流電圧を所定の直流電圧に変換する機器である。このような電力変換器16として、例えば、サイリスタ整流器が用いられる。電力変換器16は、その交流側が電源盤15に接続される一方、直流側が界磁巻線11b(励磁回路)に接続されている。そして、界磁巻線11bに所定の直流電流が流れることで、同期調相機11が励磁されるようになっている。
The power converter 16 is a device that converts AC voltage applied to itself via the circuit breaker 14 or the like into a predetermined DC voltage. As such a power converter 16, for example, a thyristor rectifier is used. The power converter 16 has its AC side connected to the power panel 15 and its DC side connected to the field winding 11b (excitation circuit). Then, the synchronous phase modifier 11 is excited by a predetermined DC current flowing through the field winding 11b.
また、電力システム100は、バックアップ系統である電力系統P2から同期調相機11の界磁巻線11bへの給電に用いられる構成として、変圧器21と、励磁変圧器22と、遮断器23(第2遮断器)と、を備えている。
変圧器21は、電力系統P2を同期調相機11の励磁電源として使用する際、交流電圧の高さ等を調整する機器である。変圧器21の一次側は電力系統P2に接続される一方、変圧器21の二次側は励磁変圧器22の一次側に接続されている。 Further, thepower system 100 includes a transformer 21, an excitation transformer 22, and a circuit breaker 23 (second 2 circuit breaker).
Thetransformer 21 is a device that adjusts the height of AC voltage, etc., when the power system P2 is used as an excitation power source for the synchronous phase modifier 11 . The primary side of transformer 21 is connected to power system P2, while the secondary side of transformer 21 is connected to the primary side of excitation transformer 22 .
変圧器21は、電力系統P2を同期調相機11の励磁電源として使用する際、交流電圧の高さ等を調整する機器である。変圧器21の一次側は電力系統P2に接続される一方、変圧器21の二次側は励磁変圧器22の一次側に接続されている。 Further, the
The
励磁変圧器22は、電力変換器16の交流側と変圧器21との間で交流電圧の高さ等を調整する機器である。励磁変圧器22の一次側は変圧器21の二次側に接続される一方、励磁変圧器22の二次側は遮断器23に接続されている。
遮断器23は、電力系統P2と界磁巻線11b(励磁回路)との間の接続/遮断を切り替えるものである。例えば、電力系統P2と界磁巻線11bとを電気的に接続する際には、遮断器23が投入される。一方、電力系統P2と界磁巻線11bとを電気的に遮断する際には、遮断器23が開放される。 Theexcitation transformer 22 is a device that adjusts the height of AC voltage and the like between the AC side of the power converter 16 and the transformer 21 . The primary side of excitation transformer 22 is connected to the secondary side of transformer 21 , while the secondary side of excitation transformer 22 is connected to circuit breaker 23 .
Thecircuit breaker 23 switches connection/disconnection between the electric power system P2 and the field winding 11b (excitation circuit). For example, when electrically connecting the power system P2 and the field winding 11b, the circuit breaker 23 is turned on. On the other hand, when the power system P2 and the field winding 11b are to be electrically cut off, the circuit breaker 23 is opened.
遮断器23は、電力系統P2と界磁巻線11b(励磁回路)との間の接続/遮断を切り替えるものである。例えば、電力系統P2と界磁巻線11bとを電気的に接続する際には、遮断器23が投入される。一方、電力系統P2と界磁巻線11bとを電気的に遮断する際には、遮断器23が開放される。 The
The
また、電力システム100は、前記した構成の他に、制御装置30を備えている。制御装置30は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。
The electric power system 100 also includes a control device 30 in addition to the configuration described above. Although not shown, the control device 30 includes electronic circuits such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and developed in the RAM, and the CPU executes various processes.
制御装置30は、電力系統P1の状況等に基づいて、電力変換器16(例えば、サイリスタ整流器)に所定のゲート信号を出力し、同期調相機11の励磁を調整する機能を有している。また、制御装置30は、例えば、電力系統P1の電圧の検出値に基づいて、電力系統P1の電圧(実効値)が所定値以下に低下したか否かを判定し、その判定結果に対応する所定の信号を電源盤15に出力する。
The control device 30 has a function of outputting a predetermined gate signal to the power converter 16 (for example, a thyristor rectifier) and adjusting the excitation of the synchronous phase modifier 11 based on the state of the power system P1. Further, for example, based on the detected value of the voltage of the power system P1, the control device 30 determines whether the voltage (effective value) of the power system P1 has decreased below a predetermined value, and responds to the determination result. A predetermined signal is output to the power panel 15 .
次に、電力系統P1の正常時・異常時における電力システム100の動作について説明する。例えば、電力系統P1の電圧の検出値等に基づいて、電力系統P1が正常であると判定した場合、制御装置30は、電力系統P1が正常であることを示す所定の信号を電源盤15に出力する。この信号に基づいて、電源盤15は、遮断器14を投入した状態で維持する一方、他方の遮断器23を開放した状態で維持する。これによって、電力系統P1から変圧器12、励磁変圧器13、遮断器14、電源盤15、及び電力変換器16を順次に介して、同期調相機11の界磁巻線11b(励磁回路)に電力が供給される。その結果、同期調相機11によって、電力系統P1の無効電力が所定に調整される。
Next, the operation of the power system 100 when the power system P1 is normal or abnormal will be described. For example, when it is determined that the power system P1 is normal based on the detected value of the voltage of the power system P1, the control device 30 sends a predetermined signal indicating that the power system P1 is normal to the power panel 15. Output. Based on this signal, the power panel 15 keeps the circuit breaker 14 closed and the other circuit breaker 23 open. As a result, from the power system P1 through the transformer 12, the excitation transformer 13, the circuit breaker 14, the power panel 15, and the power converter 16 in sequence, the field winding 11b (excitation circuit) of the synchronous phase modifier 11 Power is supplied. As a result, the synchronous phase modifier 11 adjusts the reactive power of the power system P1 to a predetermined value.
このように、電力系統P1(第1電力系統)の正常時には、遮断器14(第1遮断器)が投入された状態である一方、他方の遮断器23(第2遮断器)は開放された状態であり、電力系統P1から界磁巻線11b(励磁回路)に電力が供給される。
Thus, when the power system P1 (first power system) is normal, the circuit breaker 14 (first circuit breaker) is closed, while the other circuit breaker 23 (second circuit breaker) is opened. In this state, power is supplied from the electric power system P1 to the field winding 11b (excitation circuit).
一方、電力系統P1の電圧の検出値等に基づいて、電力系統P1に異常が生じたと判定した場合、制御装置30は、電力系統P1が異常であることを示す所定の信号を電源盤15に出力する。なお、電力系統P1の異常として、地絡や断線の他、短絡、欠相等が挙げられる。
On the other hand, when it is determined that an abnormality has occurred in the power system P1 based on the detected value of the voltage of the power system P1, the controller 30 sends a predetermined signal indicating that the power system P1 is abnormal to the power panel 15. Output. In addition, as an abnormality of the electric power system P1, there are a ground fault, a disconnection, a short circuit, an open phase, and the like.
電力系統P1に異常が生じた際、仮に、界磁巻線11b(励磁回路)への電力の供給元が電力系統P1のままであった場合には、同期調相機11の慣性に伴う誘導起電力によって、しばらくの間は、電力系統P1の無効電力の調整が継続される。しかしながら、電力系統P1の電圧が低下すると、界磁巻線11bに印加される直流電圧も低下するため、同期調相機11における無効電力の調整能力も低下する。
When an abnormality occurs in the power system P1, if the source of power supply to the field winding 11b (excitation circuit) remains the power system P1, the induced electromotive force due to the inertia of the synchronous phase modifier 11 The power continues to regulate the reactive power of the power system P1 for some time. However, when the voltage of the power system P1 drops, the DC voltage applied to the field winding 11b also drops, so the reactive power adjustment capability of the synchronous phase modifier 11 also drops.
そこで、第1実施形態では、電力系統P1(第1電力系統)の異常時には、電源盤15が、遮断器14(第1遮断器)を開放する一方、他方の遮断器23(第2遮断器)を投入するようにしている。つまり、電力系統P1の異常時には、同期調相機11の界磁巻線11b(励磁回路)への電力の供給元が、電力系統P1(第1電力系統)から電力系統P2(第2電力系統)に切り替わるように電力システム100が構成されている。
Therefore, in the first embodiment, when there is an abnormality in the power system P1 (first power system), the power supply panel 15 opens the circuit breaker 14 (first circuit breaker), while the other circuit breaker 23 (second circuit breaker) opens. ) are introduced. That is, when there is an abnormality in the power system P1, the power supply source for the field winding 11b (excitation circuit) of the synchronous phase modifier 11 is changed from the power system P1 (first power system) to the power system P2 (second power system). The power system 100 is configured to switch to .
より詳しく説明すると、電力系統P1の異常を示す信号を制御装置30から受信した場合、電源盤15は、電力系統P1側の遮断器14を開放した後、電力系統P2側の遮断器23を投入する。このように、2つの遮断器14,23の両方が投入された状態になっている時間を設けないようにすることで、位相の異なる電圧が電力変換器16に同時に印加されることを防止できる。
More specifically, when a signal indicating an abnormality in the power system P1 is received from the control device 30, the power board 15 opens the circuit breaker 14 on the side of the power system P1, and then closes the circuit breaker 23 on the side of the power system P2. do. In this way, it is possible to prevent voltages out of phase from being applied to the power converter 16 at the same time by avoiding the time during which both the two circuit breakers 14 and 23 are closed. .
なお、遮断器14が開放された後、他方の遮断器23が投入される過程で、これら2つの遮断器14,23の両方が開放されている時間は比較的短い。この時間において、同期調相機11の界磁巻線11b(励磁回路)に印加される電圧が一時的に低下した場合でも、同期調相機11の慣性に伴う誘導起電力によって、無効電力の調整能力が所定に維持される。そして、遮断器23が投入された後は、電力系統P2から電力変換器16等を介して、界磁巻線11bに所定の直流電圧が印加される。その結果、同期調相機11の励磁電圧が高めに維持されるため、電力系統P1における無効電力を適切に調整できる。
After the circuit breaker 14 is opened, in the process of closing the other circuit breaker 23, the time during which both of these two circuit breakers 14 and 23 are open is relatively short. During this time, even if the voltage applied to the field winding 11b (excitation circuit) of the synchronous phase modifier 11 temporarily drops, the induced electromotive force associated with the inertia of the synchronous phase modifier 11 can adjust the reactive power. is kept in place. After the circuit breaker 23 is turned on, a predetermined DC voltage is applied to the field winding 11b from the power system P2 via the power converter 16 and the like. As a result, since the excitation voltage of the synchronous phase modifier 11 is maintained at a high level, the reactive power in the electric power system P1 can be appropriately adjusted.
<効果>
第1実施形態によれば、同期調相機11の界磁巻線11b(励磁回路)に電力系統P1から電力が供給される構成において、電力系統P1に異常が生じた場合、界磁巻線11bへの電力の供給元が、電力系統P1から電力系統P2に切り替わる。これよって、同期調相機11の励磁電圧が所定に維持されるため、電力系統P1の電圧が低下した後も同期調相機11による無効電力の調整能力を十分に引き出すことができる。その結果、同期調相機11によって電力系統P1の無効電力が適切に調整されるため、電力システム100の信頼性を高めることができる。 <effect>
According to the first embodiment, in a configuration in which power is supplied from the power system P1 to the field winding 11b (excitation circuit) of thesynchronous phase modifier 11, when an abnormality occurs in the power system P1, the field winding 11b is switched from the power system P1 to the power system P2. As a result, the excitation voltage of the synchronous phase modifier 11 is maintained at a predetermined value, so that the reactive power adjustment capability of the synchronous phase modifier 11 can be sufficiently extracted even after the voltage of the power system P1 has decreased. As a result, the reactive power of the power system P1 is appropriately adjusted by the synchronous phase modifier 11, so the reliability of the power system 100 can be enhanced.
第1実施形態によれば、同期調相機11の界磁巻線11b(励磁回路)に電力系統P1から電力が供給される構成において、電力系統P1に異常が生じた場合、界磁巻線11bへの電力の供給元が、電力系統P1から電力系統P2に切り替わる。これよって、同期調相機11の励磁電圧が所定に維持されるため、電力系統P1の電圧が低下した後も同期調相機11による無効電力の調整能力を十分に引き出すことができる。その結果、同期調相機11によって電力系統P1の無効電力が適切に調整されるため、電力システム100の信頼性を高めることができる。 <effect>
According to the first embodiment, in a configuration in which power is supplied from the power system P1 to the field winding 11b (excitation circuit) of the
また、例えば、原子力発電所等の発電機を同期調相機11として用いることで、電源設備を有効に活用し、設備コストの削減を図ることも可能である。また、同期調相機11を用いた無効電力の調整は、再生可能エネルギによる発電電力の送電・配電にも適用できるため、社会貢献に寄与できる。
Also, for example, by using a generator such as a nuclear power plant as the synchronous phase modifier 11, it is possible to effectively utilize the power supply equipment and reduce the equipment cost. In addition, adjustment of reactive power using the synchronous phase modifier 11 can be applied to power transmission/distribution of power generated by renewable energy, thereby contributing to society.
≪第2実施形態≫
第2実施形態は、同期調相機11(図2参照)の界磁巻線11b(励磁回路)への電力の供給元を切り替えるための遮断器や電源盤が特に設けられていない点が、第1実施形態とは異なっている。また、第2実施形態は、界磁巻線11bに電力を供給するためのバックアップ用の電源として、大容量蓄電池41(図2参照)が用いられる点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。 <<Second embodiment>>
The second embodiment is characterized in that it does not have a circuit breaker or a power panel for switching the power supply source to the field winding 11b (excitation circuit) of the synchronous phase modifier 11 (see FIG. 2). It differs from one embodiment. The second embodiment differs from the first embodiment in that a large-capacity storage battery 41 (see FIG. 2) is used as a backup power source for supplying power to the field winding 11b. . Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
第2実施形態は、同期調相機11(図2参照)の界磁巻線11b(励磁回路)への電力の供給元を切り替えるための遮断器や電源盤が特に設けられていない点が、第1実施形態とは異なっている。また、第2実施形態は、界磁巻線11bに電力を供給するためのバックアップ用の電源として、大容量蓄電池41(図2参照)が用いられる点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。 <<Second embodiment>>
The second embodiment is characterized in that it does not have a circuit breaker or a power panel for switching the power supply source to the field winding 11b (excitation circuit) of the synchronous phase modifier 11 (see FIG. 2). It differs from one embodiment. The second embodiment differs from the first embodiment in that a large-capacity storage battery 41 (see FIG. 2) is used as a backup power source for supplying power to the field winding 11b. . Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.
図2は、第2実施形態に係る電力システム100Aの構成図である。
図2に示すように、電力システム100Aは、同期調相機11と、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、大容量蓄電池41(蓄電池)と、電力変換器42(第3電力変換器)と、制御装置30Aと、を備えている。 FIG. 2 is a configuration diagram of apower system 100A according to the second embodiment.
As shown in FIG. 2, thepower system 100A includes a synchronous phase modifier 11, a transformer 12, an excitation transformer 13, a power converter 17 (first power converter), and a large-capacity storage battery 41 (storage battery). , a power converter 42 (third power converter), and a control device 30A.
図2に示すように、電力システム100Aは、同期調相機11と、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、大容量蓄電池41(蓄電池)と、電力変換器42(第3電力変換器)と、制御装置30Aと、を備えている。 FIG. 2 is a configuration diagram of a
As shown in FIG. 2, the
なお、主系統である電力系統P1から同期調相機11への給電に用いられる構成には、変圧器12と、励磁変圧器13と、電力変換器17と、が含まれる。
電力変換器17(第1電力変換器)は、電力系統P1(第1電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。 The configuration used for power supply from the power system P1, which is the main system, to thesynchronous phase modifier 11 includes a transformer 12, an excitation transformer 13, and a power converter 17.
The power converter 17 (first power converter) converts AC power supplied from the power system P1 (first power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to
電力変換器17(第1電力変換器)は、電力系統P1(第1電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。 The configuration used for power supply from the power system P1, which is the main system, to the
The power converter 17 (first power converter) converts AC power supplied from the power system P1 (first power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to
電力変換器17の交流側は、電力線W1を介して、励磁変圧器13の二次側に接続されている。一方、電力変換器17の直流側は、電力線W2,W3を順次に介して、同期調相機11の界磁巻線11bに接続されている。
The AC side of the power converter 17 is connected to the secondary side of the excitation transformer 13 via the power line W1. On the other hand, the DC side of the power converter 17 is connected to the field winding 11b of the synchronous phase modifier 11 through power lines W2 and W3 in sequence.
なお、図2の例では、電力変換器17の交流側の電力線W1には遮断器が特に設けられておらず、また、電力変換器17の直流側の電力線W2,W3にも遮断器が特に設けられていない。つまり、電力変換器17(第1電力変換器)の交流側及び直流側のいずれにも遮断器が特に設けられていない。
In the example of FIG. 2, no circuit breaker is provided on the power line W1 on the AC side of the power converter 17, and circuit breakers are not particularly provided on the power lines W2 and W3 on the DC side of the power converter 17. Not provided. In other words, no circuit breaker is provided on either the AC side or the DC side of the power converter 17 (first power converter).
大容量蓄電池41(蓄電池)は、同期調相機11のバックアップ電源として用いられる二次電池であり、電力線W5を介して電力変換器42に接続されている。大容量蓄電池41は、電力系統P1の電圧が低下した場合でも、大容量蓄電池41の直流電圧によって界磁巻線11bの電圧がそのまま維持される(電力系統P1の正常時と同様の電圧が維持される)程度の容量を有している。
The large-capacity storage battery 41 (storage battery) is a secondary battery used as a backup power source for the synchronous phase modifier 11, and is connected to the power converter 42 via the power line W5. In the large-capacity storage battery 41, even when the voltage of the power system P1 drops, the voltage of the field winding 11b is maintained by the DC voltage of the large-capacity storage battery 41 (the same voltage as when the power system P1 is normal is maintained). capacity).
電力変換器42(第3電力変換器)は、大容量蓄電池41(蓄電池)の直流電圧を昇圧又は降圧して調整し、調整後の直流電圧を界磁巻線11b(励磁回路)に印加するDC-DCコンバータである。電力変換器42の入力側は、電力線W5を介して、大容量蓄電池41に接続されている。一方、電力変換器42の出力側は、電力線W4,W3を順次に介して、界磁巻線11bに接続されている。
The power converter 42 (third power converter) adjusts the DC voltage of the large-capacity storage battery 41 (storage battery) by stepping it up or down, and applies the adjusted DC voltage to the field winding 11b (excitation circuit). It is a DC-DC converter. The input side of the power converter 42 is connected to the large-capacity storage battery 41 via the power line W5. On the other hand, the output side of the power converter 42 is connected to the field winding 11b through power lines W4 and W3 in sequence.
図2の例では、電力変換器42の入力側の電力線W5には遮断器が特に設けられておらず、また、電力変換器42の出力側の電力線W4,W3にも遮断器が特に設けられていない。つまり、電力変換器42(第3電力変換器)の大容量蓄電池41(蓄電池)側、及び、界磁巻線11b(励磁回路)側のいずれにも遮断器が特に設けられていない。
In the example of FIG. 2, the power line W5 on the input side of the power converter 42 is not provided with a breaker, and the power lines W4 and W3 on the output side of the power converter 42 are also provided with breakers. not In other words, no circuit breaker is provided on either the large-capacity storage battery 41 (storage battery) side or the field winding 11b (excitation circuit) side of the power converter 42 (third power converter).
制御装置30Aは、電力変換器17(第1電力変換器)及び電力変換器42(第3電力変換器)を所定に制御する。例えば、制御装置30は、電力系統P1(第1電力系統)の正常時には、電力変換器17(第1電力変換器)及び電力変換器42(第3電力変換器)の出力側の電圧が等しくなるように、電力変換器17,42を駆動させる。これによって、電力系統P1(第1電力系統)の正常時には、電力系統P1から界磁巻線11b(励磁回路)に電力が供給されるとともに、大容量蓄電池41(蓄電池)からも界磁巻線11bに電力が供給される。
The control device 30A controls the power converter 17 (first power converter) and the power converter 42 (third power converter) in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30 sets the voltages on the output sides of the power converter 17 (first power converter) and the power converter 42 (third power converter) to be equal. The power converters 17 and 42 are driven so that As a result, when the power system P1 (first power system) is normal, power is supplied from the power system P1 to the field winding 11b (excitation circuit), and the field winding is also supplied from the large-capacity storage battery 41 (storage battery). 11b is powered.
また、制御装置30Aは、電力系統P1(第1電力系統)の異常時には、少なくとも電力変換器42(第3電力変換器)の駆動を継続させる。例えば、電力系統P1に異常が生じて、電力変換器17の直流側の電圧が低下した場合には、他方の電力変換器42の出力側の電圧が相対的に高くなる。その結果、大容量蓄電池41から電力変換器42を介して、界磁巻線11bに所定の直流電圧が印加され続けるため、界磁巻線11bの電圧が低下することはほとんどない。このように、電力系統P1(第1電力系統)の異常時には、界磁巻線11b(励磁回路)への電力の供給元が大容量蓄電池41(蓄電池)となるように電力システム100Aが構成されている。
In addition, the control device 30A continues to drive at least the power converter 42 (third power converter) when there is an abnormality in the power system P1 (first power system). For example, when an abnormality occurs in the power system P1 and the voltage on the DC side of the power converter 17 drops, the voltage on the output side of the other power converter 42 becomes relatively high. As a result, since a predetermined DC voltage continues to be applied to the field winding 11b from the large-capacity storage battery 41 via the power converter 42, the voltage of the field winding 11b hardly drops. In this way, the power system 100A is configured such that the large-capacity storage battery 41 (storage battery) supplies power to the field winding 11b (excitation circuit) when there is an abnormality in the power system P1 (first power system). ing.
なお、電力系統P1が正常である場合の他、電力系統P1が異常である場合にも、制御装置30Aが電力変換器17を所定に駆動し続けるようにしてもよい。このような制御が行われても、電力系統P1の電圧が低下しているため、電力変換器17を介した電流の流れはほとんどないが、電力変換器17を駆動させ続けても特に問題はない。その他にも、例えば、電力系統P1で異常が生じた場合、制御装置30Aが電力変換器17の駆動を停止させるようにしてもよい。
Note that the control device 30A may continue to drive the power converter 17 in a predetermined manner not only when the power system P1 is normal, but also when the power system P1 is abnormal. Even if such control is performed, there is almost no current flow through the power converter 17 because the voltage of the power system P1 has decreased. do not have. Alternatively, for example, the control device 30A may stop driving the power converter 17 when an abnormality occurs in the power system P1.
<効果>
第2実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11bへの給電元が大容量蓄電池41に即座に切り替わる。これによって、界磁巻線11bに印加される直流電圧の変動が大容量蓄電池41の電圧で補償されるため、遮断器14,23(図1参照)を用いる第1実施形態に比べて電圧の過渡的な安定性が高く、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Aは、電力変換器17,42を所定に駆動させ続ければよいため、制御装置30Aの処理を簡素化できる。 <effect>
According to the second embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b of thesynchronous phase modifier 11 is immediately switched to the large-capacity storage battery 41. switch to As a result, fluctuations in the DC voltage applied to the field winding 11b are compensated for by the voltage of the large-capacity storage battery 41, so the voltage is lower than in the first embodiment using the circuit breakers 14 and 23 (see FIG. 1). The transient stability is high, and the voltage fluctuation of the field winding 11b can be suppressed. In addition, regardless of the presence or absence of an abnormality in power system P1, control device 30A can continue to drive power converters 17 and 42 in a predetermined manner, so the processing of control device 30A can be simplified.
第2実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11bへの給電元が大容量蓄電池41に即座に切り替わる。これによって、界磁巻線11bに印加される直流電圧の変動が大容量蓄電池41の電圧で補償されるため、遮断器14,23(図1参照)を用いる第1実施形態に比べて電圧の過渡的な安定性が高く、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Aは、電力変換器17,42を所定に駆動させ続ければよいため、制御装置30Aの処理を簡素化できる。 <effect>
According to the second embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b of the
≪第3実施形態≫
第3実施形態は、電力系統P1(図3参照)の異常時に界磁巻線11bを励磁するためのバックアップ電源として、別の電力系統P2が用いられる点が、第2実施形態(図2参照)とは異なっている。また、第3実施形態は、変圧器21(図3参照)で所定に変圧された交流電圧を、電力変換器24が直流電圧に変換する点が、第2実施形態とは異なっている。なお、その他については第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。 <<Third Embodiment>>
The third embodiment differs from the second embodiment (see FIG. 2) in that another power system P2 is used as a backup power supply for exciting the field winding 11b when the power system P1 (see FIG. 3) malfunctions. ) is different. Further, the third embodiment differs from the second embodiment in that thepower converter 24 converts the AC voltage that has been transformed by the transformer 21 (see FIG. 3) into the DC voltage. Others are the same as those of the second embodiment. Therefore, the parts different from the second embodiment will be explained, and the explanation of overlapping parts will be omitted.
第3実施形態は、電力系統P1(図3参照)の異常時に界磁巻線11bを励磁するためのバックアップ電源として、別の電力系統P2が用いられる点が、第2実施形態(図2参照)とは異なっている。また、第3実施形態は、変圧器21(図3参照)で所定に変圧された交流電圧を、電力変換器24が直流電圧に変換する点が、第2実施形態とは異なっている。なお、その他については第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。 <<Third Embodiment>>
The third embodiment differs from the second embodiment (see FIG. 2) in that another power system P2 is used as a backup power supply for exciting the field winding 11b when the power system P1 (see FIG. 3) malfunctions. ) is different. Further, the third embodiment differs from the second embodiment in that the
図3は、第3実施形態に係る電力システム100Bの構成図である。
図3に示すように、電力システム100Bは、主系統である電力系統P1から同期調相機11への給電に用いられる構成として、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、を備えている。図3の例では、第2実施形態(図2参照)と同様に、電力変換器17(第1電力変換器)の交流側及び直流側のいずれにも遮断器が特に設けられていない。 FIG. 3 is a configuration diagram of apower system 100B according to the third embodiment.
As shown in FIG. 3, thepower system 100B includes a transformer 12, an excitation transformer 13, and a power converter 17 (second 1 power converter). In the example of FIG. 3, like the second embodiment (see FIG. 2), no circuit breaker is particularly provided on either the AC side or the DC side of the power converter 17 (first power converter).
図3に示すように、電力システム100Bは、主系統である電力系統P1から同期調相機11への給電に用いられる構成として、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、を備えている。図3の例では、第2実施形態(図2参照)と同様に、電力変換器17(第1電力変換器)の交流側及び直流側のいずれにも遮断器が特に設けられていない。 FIG. 3 is a configuration diagram of a
As shown in FIG. 3, the
また、電力システム100Bは、バックアップ系統である電力系統P2から同期調相機11の界磁巻線11b(励磁回路)への給電に用いられる構成として、変圧器21と、電力変換器24(第2電力変換器)と、を備えている。
Further, the power system 100B includes a transformer 21 and a power converter 24 (second power converter);
変圧器21は、電力系統P2を同期調相機11の励磁電源として使用する際、交流電圧の高さ等を調整する機器である。
電力変換器24(第2電力変換器)は、電力系統P2(第2電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。このような電力変換器24として、例えば、サイリスタ整流器が用いられる。 Thetransformer 21 is a device that adjusts the height of AC voltage, etc., when the power system P2 is used as an excitation power source for the synchronous phase modifier 11 .
The power converter 24 (second power converter) converts AC power supplied from the power system P2 (second power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to As such apower converter 24, for example, a thyristor rectifier is used.
電力変換器24(第2電力変換器)は、電力系統P2(第2電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。このような電力変換器24として、例えば、サイリスタ整流器が用いられる。 The
The power converter 24 (second power converter) converts AC power supplied from the power system P2 (second power system) into DC power, and converts the converted DC power to the field winding 11b (excitation circuit). It is a device that outputs to As such a
電力変換器24の交流側は、電力線W6を介して、変圧器21の二次側に接続されている。一方、電力変換器24の直流側は、電力線W7,W3を順次に介して、界磁巻線11bに接続されている。図3の例では、電力変換器24(第2電力変換器)の交流側及び直流側のいずれにも遮断器は特に設けられていない。
The AC side of the power converter 24 is connected to the secondary side of the transformer 21 via the power line W6. On the other hand, the DC side of power converter 24 is connected to field winding 11b through power lines W7 and W3 in sequence. In the example of FIG. 3, no circuit breaker is provided on either the AC side or the DC side of the power converter 24 (second power converter).
制御装置30Bは、電力変換器17(第1電力変換器)及び電力変換器24(第2電力変換器)を所定に制御する。例えば、制御装置30Bは、電力系統P1(第1電力系統)の正常時には、電力変換器17(第1電力変換器)及び電力変換器24(第2電力変換器)の出力側の電圧が等しくなるように、電力変換器17,24を駆動させる。これによって、電力系統P1(第1電力系統)の正常時には、電力系統P1から界磁巻線11b(励磁回路)に電力が供給されるとともに、電力系統P2(第2電力系統)からも界磁巻線11bに電力が供給される。
The control device 30B controls the power converter 17 (first power converter) and the power converter 24 (second power converter) in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30B makes the voltages on the output sides of the power converter 17 (first power converter) and the power converter 24 (second power converter) equal to each other. The power converters 17 and 24 are driven so that As a result, when the power system P1 (first power system) is normal, power is supplied from the power system P1 to the field winding 11b (excitation circuit), and the power system P2 (second power system) also supplies the field winding 11b. Power is supplied to the winding 11b.
また、制御装置30Bは、電力系統P1(第1電力系統)の異常時には、少なくとも電力変換器24(第2電力変換器)の駆動を継続させる。例えば、電力系統P1に異常が生じて、電力変換器17の直流側の電圧が低下した場合には、他方の電力変換器24の直流側の電圧が相対的に高くなる。その結果、電力系統P2から電力変換器24を介して、界磁巻線11bに所定の直流電圧が印加され続けるため、界磁巻線11bの電圧が低下することはほとんどない。このように、電力系統P1(第1電力系統)の異常時には、界磁巻線11b(励磁回路)への電力の供給元が電力系統P2(第2出力系統)となるように電力システム100Bが構成されている。
In addition, the control device 30B continues to drive at least the power converter 24 (second power converter) when there is an abnormality in the power system P1 (first power system). For example, when an abnormality occurs in the power system P1 and the voltage on the DC side of the power converter 17 drops, the voltage on the DC side of the other power converter 24 becomes relatively high. As a result, since a predetermined DC voltage continues to be applied to the field winding 11b from the power system P2 via the power converter 24, the voltage of the field winding 11b hardly drops. In this way, when the power system P1 (first power system) is abnormal, the power system 100B is configured so that the power system P2 (second output system) supplies power to the field winding 11b (excitation circuit). It is configured.
なお、電力系統P1が正常である場合の他、電力系統P1が異常である場合にも、制御装置30Bが電力変換器17を所定に駆動し続けるようにしてもよい。このような制御が行われても、電力系統P1の電圧が低下しているため、電力変換器17を介した電流の流れはほとんどないが、電力変換器17を駆動させ続けても特に問題はない。その他にも、例えば、電力系統P1で異常が生じた場合、制御装置30Bが電力変換器17の駆動を停止させるようにしてもよい。
Note that the control device 30B may continue to drive the power converter 17 in a predetermined manner not only when the power system P1 is normal, but also when the power system P1 is abnormal. Even if such control is performed, there is almost no current flow through the power converter 17 because the voltage of the power system P1 has decreased. do not have. Alternatively, for example, the control device 30B may stop driving the power converter 17 when an abnormality occurs in the power system P1.
<効果>
第3実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11b(励磁回路)への給電元が電力系統P2に即座に切り替わる。したがって、遮断器14,23(図1参照)を用いる第1実施形態に比べて、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Bは、電力変換器17,24を所定に制御し続ければよいため、制御装置30Bの処理を簡素化できる。また、バックアップ用の大容量蓄電池を設ける必要が特にないため、第2実施形態(図2参照)よりも設備コストを削減できる。 <effect>
According to the third embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b (excitation circuit) of thesynchronous phase modifier 11 is changed to the power system. Immediately switch to P2. Therefore, compared with the first embodiment using the circuit breakers 14 and 23 (see FIG. 1), the voltage fluctuation of the field winding 11b can be suppressed. In addition, control device 30B can continue to control power converters 17 and 24 in a predetermined manner regardless of the presence or absence of an abnormality in power system P1, so the processing of control device 30B can be simplified. Moreover, since there is no particular need to provide a large-capacity storage battery for backup, equipment costs can be reduced more than in the second embodiment (see FIG. 2).
第3実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11b(励磁回路)への給電元が電力系統P2に即座に切り替わる。したがって、遮断器14,23(図1参照)を用いる第1実施形態に比べて、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Bは、電力変換器17,24を所定に制御し続ければよいため、制御装置30Bの処理を簡素化できる。また、バックアップ用の大容量蓄電池を設ける必要が特にないため、第2実施形態(図2参照)よりも設備コストを削減できる。 <effect>
According to the third embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b (excitation circuit) of the
≪第4実施形態≫
第4実施形態に係る電力システム100C(図4参照)は、第2実施形態(図2参照)と、第3実施形態(図3参照)と、を組み合わせた構成になっている。つまり、第4実施形態では、電力系統P1(図4参照)の電圧が低下した場合、大容量蓄電池41(図4参照)及び電力系統P2(図4参照)の両方から同期調相機11の界磁巻線11b(励磁回路)に電力が供給されるように構成されている。なお、第2実施形態や第3実施形態と重複する部分については、説明を適宜に省略する。 <<Fourth Embodiment>>
Apower system 100C (see FIG. 4) according to the fourth embodiment has a configuration in which the second embodiment (see FIG. 2) and the third embodiment (see FIG. 3) are combined. That is, in the fourth embodiment, when the voltage of the power system P1 (see FIG. 4) drops, the field of the synchronous phase modifier 11 from both the large-capacity storage battery 41 (see FIG. 4) and the power system P2 (see FIG. 4) Power is supplied to the magnetic winding 11b (excitation circuit). Note that descriptions of portions overlapping those of the second embodiment and the third embodiment will be omitted as appropriate.
第4実施形態に係る電力システム100C(図4参照)は、第2実施形態(図2参照)と、第3実施形態(図3参照)と、を組み合わせた構成になっている。つまり、第4実施形態では、電力系統P1(図4参照)の電圧が低下した場合、大容量蓄電池41(図4参照)及び電力系統P2(図4参照)の両方から同期調相機11の界磁巻線11b(励磁回路)に電力が供給されるように構成されている。なお、第2実施形態や第3実施形態と重複する部分については、説明を適宜に省略する。 <<Fourth Embodiment>>
A
図4は、第4実施形態に係る電力システム100Cの構成図である。
図4に示すように、電力システム100Cは、主系統である電力系統P1から同期調相機11への給電に用いられる構成として、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、を備えている。なお、電力変換器17(第1電力変換器)は、電力系統P1(第1電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。 FIG. 4 is a configuration diagram of apower system 100C according to the fourth embodiment.
As shown in FIG. 4, thepower system 100C includes a transformer 12, an excitation transformer 13, and a power converter 17 (second 1 power converter). The power converter 17 (first power converter) converts AC power supplied from the power system P1 (first power system) into DC power, and converts the converted DC power into the field winding 11b (excitation power). circuit).
図4に示すように、電力システム100Cは、主系統である電力系統P1から同期調相機11への給電に用いられる構成として、変圧器12と、励磁変圧器13と、電力変換器17(第1電力変換器)と、を備えている。なお、電力変換器17(第1電力変換器)は、電力系統P1(第1電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。 FIG. 4 is a configuration diagram of a
As shown in FIG. 4, the
また、電力システム100Cは、大容量蓄電池41から同期調相機11の界磁巻線11bへの給電に用いられる構成として、大容量蓄電池41と、電力変換器42(第3電力変換器)と、を備えている。なお、電力変換器42(第3電力変換器)は、大容量蓄電池41(蓄電池)の直流電圧を昇圧又は降圧して調整し、調整後の直流電圧を界磁巻線11b(励磁回路)に印加する機器である。
Further, the electric power system 100C includes a large-capacity storage battery 41, a power converter 42 (third power converter), and a It has In addition, the power converter 42 (third power converter) increases or decreases the DC voltage of the large-capacity storage battery 41 (storage battery) to adjust it, and the DC voltage after adjustment is applied to the field winding 11b (excitation circuit). This is the device that applies the voltage.
また、電力システム100Cは、電力系統P2から同期調相機11の界磁巻線11bへの給電に用いられる構成として、変圧器21と、電力変換器24(第2電力変換器)と、を備えている。なお、電力変換器24(第2電力変換器)は、電力系統P2(第2電力系統)から供給される交流電力を直流電力に変換し、変換後の直流電力を界磁巻線11b(励磁回路)に出力する機器である。
Further, the power system 100C includes a transformer 21 and a power converter 24 (second power converter) as a configuration used for power supply from the power system P2 to the field winding 11b of the synchronous phase modifier 11. ing. The power converter 24 (second power converter) converts AC power supplied from the power system P2 (second power system) into DC power, and converts the converted DC power into the field winding 11b (excitation power). circuit).
制御装置30Cは、電力変換器17,24,42を所定に制御する。例えば、制御装置30Cは、電力系統P1(第1電力系統)の正常時には、電力変換器17(第1電力変換器)、電力変換器24(第2電力変換器)、及び電力変換器42(第3電力変換器)の出力側の電圧が等しくなるように、電力変換器17,24,42を駆動させる。これによって、電力系統P1,P2及び大容量蓄電池41から界磁巻線11b(励磁回路)に電力が供給される。
The control device 30C controls the power converters 17, 24, and 42 in a predetermined manner. For example, when the power system P1 (first power system) is normal, the control device 30C controls the power converter 17 (first power converter), the power converter 24 (second power converter), and the power converter 42 ( The power converters 17, 24 and 42 are driven so that the voltages on the output side of the third power converter) become equal. As a result, power is supplied from the power systems P1 and P2 and the large-capacity storage battery 41 to the field winding 11b (excitation circuit).
また、制御装置30Cは、電力系統P1(第1電力系統)の異常時には、少なくとも電力変換器24(第2電力変換器)及び電力変換器42(第3電力変換器)の駆動を継続させる。例えば、電力系統P1で地絡等が生じて、電力変換器17の出力側の直流電圧が低下した場合、残りの電力変換器24,42の出力側の直流電圧が相対的に高くなる。その結果、電力系統P2や大容量蓄電池41から界磁巻線11b(励磁回路)に直流電圧が印加され続けるため、界磁巻線11bの電圧が低下することはほとんどない。
In addition, the control device 30C continues to drive at least the power converter 24 (second power converter) and the power converter 42 (third power converter) when there is an abnormality in the power system P1 (first power system). For example, when a ground fault or the like occurs in the power system P1 and the DC voltage on the output side of the power converter 17 drops, the DC voltages on the output sides of the remaining power converters 24 and 42 become relatively high. As a result, since the DC voltage continues to be applied to the field winding 11b (excitation circuit) from the electric power system P2 or the large-capacity storage battery 41, the voltage of the field winding 11b hardly drops.
<効果>
第4実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11b(励磁回路)への給電元が電力系統P2や大容量蓄電池41に即座に切り替わる。したがって、遮断器14,23(図1参照)を用いる第1実施形態に比べて、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Cは、電力変換器17,24,42を所定に制御し続ければよいため、制御装置30Cの処理を簡素化できる。 <effect>
According to the fourth embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b (excitation circuit) of thesynchronous phase modifier 11 is changed to the power system. It immediately switches to P2 or the large-capacity storage battery 41. Therefore, compared with the first embodiment using the circuit breakers 14 and 23 (see FIG. 1), the voltage fluctuation of the field winding 11b can be suppressed. In addition, control device 30C can continue to control power converters 17, 24, and 42 in a predetermined manner regardless of the presence or absence of an abnormality in power system P1, so the processing of control device 30C can be simplified.
第4実施形態によれば、電力系統P1に異常が生じて、電力系統P1の電圧が低下した場合には、同期調相機11の界磁巻線11b(励磁回路)への給電元が電力系統P2や大容量蓄電池41に即座に切り替わる。したがって、遮断器14,23(図1参照)を用いる第1実施形態に比べて、界磁巻線11bの電圧変動を抑制できる。また、電力系統P1の異常の有無に関わらず、制御装置30Cは、電力変換器17,24,42を所定に制御し続ければよいため、制御装置30Cの処理を簡素化できる。 <effect>
According to the fourth embodiment, when an abnormality occurs in the power system P1 and the voltage of the power system P1 drops, the source of power supply to the field winding 11b (excitation circuit) of the
また、電力変換器17の他、電力変換器24の出力側の電圧が瞬間的に低下した場合でも、大容量蓄電池41から電力変換器42を介して、界磁巻線11bに直流電圧が印加される。したがって、第2実施形態や第3実施形態に比べて、同期調相機11の界磁巻線11bに所定の直流電圧に安定して印加し続けることができる。
In addition, even if the voltage on the output side of the power converter 24 other than the power converter 17 drops momentarily, a DC voltage is applied to the field winding 11b from the large-capacity storage battery 41 via the power converter 42. be done. Therefore, compared with the second embodiment and the third embodiment, a predetermined DC voltage can be stably and continuously applied to the field winding 11b of the synchronous phase modifier 11. FIG.
≪変形例≫
以上、本発明に係る電力システム100等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、電力変換器16(図1参照)として、サイリスタ整流器を用いる場合について説明したが、これに限らない。すなわち、電力変換器16(図1参照)として、IGBT(Insulated Gate Bipolar Transistor)を有する整流器といった他の種類の電力変換器を用いるようにしてもよい。なお、第2~第4実施形態で説明した電力変換器17(図2~図4参照)の他、第2、第4実施形態で説明した電力変換器42(図2、図4参照)や、第3、第4実施形態で説明した電力変換器24(図3、図4参照)についても同様のことがいえる。 <<Modification>>
As described above, thepower system 100 and the like according to the present invention have been described according to the respective embodiments, but the present invention is not limited to these descriptions, and various modifications can be made.
For example, in the first embodiment, the case of using a thyristor rectifier as the power converter 16 (see FIG. 1) has been described, but the present invention is not limited to this. That is, as the power converter 16 (see FIG. 1), another type of power converter such as a rectifier having an IGBT (Insulated Gate Bipolar Transistor) may be used. In addition to the power converter 17 (see FIGS. 2 to 4) described in the second to fourth embodiments, the power converter 42 (see FIGS. 2 and 4) described in the second and fourth embodiments, The same applies to the power converter 24 (see FIGS. 3 and 4) described in the third and fourth embodiments.
以上、本発明に係る電力システム100等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、電力変換器16(図1参照)として、サイリスタ整流器を用いる場合について説明したが、これに限らない。すなわち、電力変換器16(図1参照)として、IGBT(Insulated Gate Bipolar Transistor)を有する整流器といった他の種類の電力変換器を用いるようにしてもよい。なお、第2~第4実施形態で説明した電力変換器17(図2~図4参照)の他、第2、第4実施形態で説明した電力変換器42(図2、図4参照)や、第3、第4実施形態で説明した電力変換器24(図3、図4参照)についても同様のことがいえる。 <<Modification>>
As described above, the
For example, in the first embodiment, the case of using a thyristor rectifier as the power converter 16 (see FIG. 1) has been described, but the present invention is not limited to this. That is, as the power converter 16 (see FIG. 1), another type of power converter such as a rectifier having an IGBT (Insulated Gate Bipolar Transistor) may be used. In addition to the power converter 17 (see FIGS. 2 to 4) described in the second to fourth embodiments, the power converter 42 (see FIGS. 2 and 4) described in the second and fourth embodiments, The same applies to the power converter 24 (see FIGS. 3 and 4) described in the third and fourth embodiments.
また、第1実施形態では、制御装置30(図1参照)が遮断器14,23(図1参照)を切り替える場合について説明したが、これに限らない。例えば、電力系統P1に異常が生じた場合、管理者が遮断器14,23を手動で操作してもよい。
Also, in the first embodiment, the case where the control device 30 (see FIG. 1) switches the circuit breakers 14 and 23 (see FIG. 1) has been described, but the present invention is not limited to this. For example, when an abnormality occurs in the power system P1, the administrator may manually operate the circuit breakers 14 and 23 .
また、第2実施形態では、電力変換器17(図2参照)の出力側の電力線W2や、電力変換器42(図2参照)の出力側の電力線W4に遮断器が特に設けられない構成について説明したが、これに限らない。すなわち、電力線W2,W4に適宜に遮断器が設けられてもよい。なお、第3、第4実施形態についても同様のことがいえる。
Further, in the second embodiment, a configuration in which no circuit breaker is particularly provided in the power line W2 on the output side of the power converter 17 (see FIG. 2) or the power line W4 on the output side of the power converter 42 (see FIG. 2) Illustrated, but not limited to. That is, the power lines W2 and W4 may be appropriately provided with circuit breakers. The same can be said for the third and fourth embodiments.
また、各実施形態は、例えば、原子力発電所の他、火力発電所や水力発電所といった発電所の設備に適用することも可能である。
また、各実施形態では、ブラシ及びスリップリングを備える同期調相機11について説明したが、ブラシレス励磁方式の同期調相機に適用することも可能である。
また、各実施形態は、同期調相機11の他、同期電動機等の同期機にも適用できる。 Further, each embodiment can be applied to, for example, facilities of power plants such as thermal power plants and hydroelectric power plants in addition to nuclear power plants.
In each embodiment, thesynchronous phase modifier 11 including brushes and slip rings has been described, but the present invention can also be applied to a brushless excitation type synchronous phase modifier.
Moreover, each embodiment can be applied to a synchronous machine such as a synchronous motor in addition to thesynchronous phase modifier 11 .
また、各実施形態では、ブラシ及びスリップリングを備える同期調相機11について説明したが、ブラシレス励磁方式の同期調相機に適用することも可能である。
また、各実施形態は、同期調相機11の他、同期電動機等の同期機にも適用できる。 Further, each embodiment can be applied to, for example, facilities of power plants such as thermal power plants and hydroelectric power plants in addition to nuclear power plants.
In each embodiment, the
Moreover, each embodiment can be applied to a synchronous machine such as a synchronous motor in addition to the
また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
In addition, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration. Further, the mechanisms and configurations described above show those considered necessary for explanation, and do not necessarily show all the mechanisms and configurations on the product.
また、電力線や信号線は説明上必要と考えられるものを示しており、製品上必ずしも全ての電力線や信号線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
In addition, power lines and signal lines indicate those that are considered necessary for explanation, and do not necessarily indicate all power lines and signal lines on the product. In practice, it may be considered that almost all configurations are interconnected.
11 同期調相機
11a 電機子巻線
11b 界磁巻線(励磁回路)
12 変圧器
13 励磁変圧器
14 遮断器(第1遮断器)
15 電源盤
16 電力変換器
17 電力変換器(第1電力変換器)
21 変圧器
22 励磁変圧器
23 遮断器(第2遮断器)
24 電力変換器(第2電力変換器)
30,30A,30B,30C 制御装置
41 大容量蓄電池(蓄電池)
42 電力変換器(第3電力変換器)
100,100A,100B,100C 電力システム
P1 電力系統(第1電力系統)
P2 電力系統(第2電力系統) 11synchronous phase modifier 11a armature winding 11b field winding (excitation circuit)
12transformer 13 excitation transformer 14 circuit breaker (first circuit breaker)
15power panel 16 power converter 17 power converter (first power converter)
21transformer 22 excitation transformer 23 circuit breaker (second circuit breaker)
24 power converter (second power converter)
30, 30A, 30B,30C Control device 41 Large capacity storage battery (storage battery)
42 power converter (third power converter)
100, 100A, 100B, 100C power system P1 power system (first power system)
P2 power system (second power system)
11a 電機子巻線
11b 界磁巻線(励磁回路)
12 変圧器
13 励磁変圧器
14 遮断器(第1遮断器)
15 電源盤
16 電力変換器
17 電力変換器(第1電力変換器)
21 変圧器
22 励磁変圧器
23 遮断器(第2遮断器)
24 電力変換器(第2電力変換器)
30,30A,30B,30C 制御装置
41 大容量蓄電池(蓄電池)
42 電力変換器(第3電力変換器)
100,100A,100B,100C 電力システム
P1 電力系統(第1電力系統)
P2 電力系統(第2電力系統) 11
12
15
21
24 power converter (second power converter)
30, 30A, 30B,
42 power converter (third power converter)
100, 100A, 100B, 100C power system P1 power system (first power system)
P2 power system (second power system)
Claims (8)
- 第1電力系統に電気的に接続される電機子巻線と、励磁回路として機能する界磁巻線と、を有する同期調相機を備え、
前記第1電力系統の正常時には、前記第1電力系統から前記励磁回路に電力が供給され、
前記第1電力系統の異常時には、前記励磁回路への電力の供給元が前記第1電力系統から第2電力系統に切り替わるように構成されていること
を特徴とする電力システム。 A synchronous phase modifier having an armature winding electrically connected to the first power system and a field winding functioning as an excitation circuit,
When the first power system is normal, power is supplied from the first power system to the excitation circuit,
An electric power system, wherein a supply source of electric power to the excitation circuit is switched from the first electric power system to the second electric power system when the first electric power system malfunctions. - 前記励磁回路は、第1遮断器を介して前記第1電力系統に接続されるとともに、第2遮断器を介して前記第2電力系統に接続され、
前記第1遮断器及び前記第2遮断器を開閉する電源盤を備え、
前記第1電力系統の正常時には、前記第1遮断器が投入された状態である一方、前記第2遮断器は開放された状態であり、
前記第1電力系統の異常時には、前記電源盤は、前記第1遮断器を開放する一方、前記第2遮断器を投入すること
を特徴とする請求項1に記載の電力システム。 The excitation circuit is connected to the first power system via a first circuit breaker and is connected to the second power system via a second circuit breaker,
A power panel that opens and closes the first circuit breaker and the second circuit breaker,
When the first power system is normal, the first circuit breaker is in a closed state, while the second circuit breaker is in an open state,
2. The power system according to claim 1, wherein, when the first power system has an abnormality, the power board opens the first circuit breaker and closes the second circuit breaker. - 第1電力系統に電気的に接続される電機子巻線と、励磁回路として機能する界磁巻線と、を有する同期調相機を備え、
前記第1電力系統の正常時には、前記第1電力系統から前記励磁回路に電力が供給されるとともに、第2電力系統及び蓄電池のうち少なくとも一方からも前記励磁回路に電力が供給され、
前記第1電力系統の異常時には、前記励磁回路への電力の供給元が前記第2電力系統及び前記蓄電池のうち前記少なくとも一方となるように構成されていること
を特徴とする電力システム。 A synchronous phase modifier having an armature winding electrically connected to the first power system and a field winding functioning as an excitation circuit,
When the first power system is normal, power is supplied from the first power system to the excitation circuit, and power is supplied to the excitation circuit from at least one of a second power system and a storage battery,
An electric power system, wherein at least one of the second electric power system and the storage battery supplies electric power to the excitation circuit when the first electric power system is abnormal. - 前記第1電力系統の正常時に、前記第1電力系統及び前記第2電力系統から前記励磁回路に電力が供給される構成において、
前記第1電力系統から供給される交流電力を直流電力に変換し、変換後の直流電力を前記励磁回路に出力する第1電力変換器と、
前記第2電力系統から供給される交流電力を直流電力に変換し、変換後の直流電力を前記励磁回路に出力する第2電力変換器と、
前記第1電力変換器及び前記第2電力変換器を制御する制御装置と、を備え、
前記制御装置は、
前記第1電力系統の正常時には、前記第1電力変換器及び前記第2電力変換器の出力側の電圧が等しくなるように、前記第1電力変換器及び前記第2電力変換器を駆動させ、
前記第1電力系統の異常時には、少なくとも前記第2電力変換器の駆動を継続させること
を特徴とする請求項3に記載の電力システム。 In a configuration in which power is supplied from the first power system and the second power system to the excitation circuit when the first power system is normal,
a first power converter that converts AC power supplied from the first power system into DC power and outputs the converted DC power to the excitation circuit;
a second power converter that converts AC power supplied from the second power system into DC power and outputs the converted DC power to the excitation circuit;
A control device that controls the first power converter and the second power converter,
The control device is
When the first power system is normal, the first power converter and the second power converter are driven so that the voltages on the output sides of the first power converter and the second power converter are equal,
4. The power system according to claim 3, wherein at least the second power converter continues to be driven when the first power system is abnormal. - 前記第1電力変換器の交流側及び直流側のいずれにも遮断器が設けられておらず、
前記第2電力変換器の交流側及び直流側のいずれにも遮断器が設けられていないこと
を特徴とする請求項4に記載の電力システム。 Neither the AC side nor the DC side of the first power converter is provided with a circuit breaker,
The electric power system according to claim 4, wherein no circuit breaker is provided on either the AC side or the DC side of the second power converter. - 前記第1電力系統の正常時に、前記第1電力系統及び前記蓄電池から前記励磁回路に電力が供給される構成において、
前記第1電力系統から供給される交流電力を直流電力に変換し、変換後の直流電力を前記励磁回路に出力する第1電力変換器と、
前記蓄電池の直流電圧を昇圧又は降圧して調整し、調整後の直流電圧を前記励磁回路に印加する第3電力変換器と、
前記第1電力変換器及び前記第3電力変換器を制御する制御装置と、を備え、
前記制御装置は、
前記第1電力系統の正常時には、前記第1電力変換器及び前記第3電力変換器の出力側の電圧が等しくなるように、前記第1電力変換器及び前記第3電力変換器を駆動させ、
前記第1電力系統の異常時には、少なくとも前記第3電力変換器の駆動を継続させること
を特徴とする請求項3に記載の電力システム。 In a configuration in which power is supplied to the excitation circuit from the first power system and the storage battery when the first power system is normal,
a first power converter that converts AC power supplied from the first power system into DC power and outputs the converted DC power to the excitation circuit;
a third power converter that adjusts the DC voltage of the storage battery by stepping it up or down and applying the adjusted DC voltage to the excitation circuit;
A control device that controls the first power converter and the third power converter,
The control device is
When the first power system is normal, the first power converter and the third power converter are driven so that the voltages on the output sides of the first power converter and the third power converter are equal,
4. The power system according to claim 3, wherein at least the third power converter continues to be driven when the first power system is abnormal. - 前記第1電力変換器の交流側及び直流側のいずれにも遮断器が設けられておらず、
前記第3電力変換器の前記蓄電池側及び前記励磁回路側のいずれにも遮断器が設けられていないこと
を特徴とする請求項6に記載の電力システム。 Neither the AC side nor the DC side of the first power converter is provided with a circuit breaker,
7. The electric power system according to claim 6, wherein no circuit breaker is provided on either the storage battery side or the excitation circuit side of the third power converter. - 前記第1電力系統の正常時に、前記第1電力系統、前記第2電力系統、及び前記蓄電池から前記励磁回路に電力が供給される構成において、
前記第1電力系統から供給される交流電力を直流電力に変換し、変換後の直流電力を前記励磁回路に出力する第1電力変換器と、
前記第2電力系統から供給される交流電力を直流電力に変換し、変換後の直流電力を前記励磁回路に出力する第2電力変換器と、
前記蓄電池の直流電圧を昇圧又は降圧して調整し、調整後の直流電圧を前記励磁回路に印加する第3電力変換器と、
前記第1電力変換器、前記第2電力変換器、及び前記第3電力変換器を制御する制御装置と、を備え、
前記制御装置は、
前記第1電力系統の正常時には、前記第1電力変換器、前記第2電力変換器、及び前記第3電力変換器の出力側の電圧が等しくなるように、前記第1電力変換器、前記第2電力変換器、及び前記第3電力変換器を駆動させ、
前記第1電力系統の異常時には、少なくとも前記第2電力変換器及び前記第3電力変換器の駆動を継続させること
を特徴とする請求項3に記載の電力システム。 In a configuration in which power is supplied to the excitation circuit from the first power system, the second power system, and the storage battery when the first power system is normal,
a first power converter that converts AC power supplied from the first power system into DC power and outputs the converted DC power to the excitation circuit;
a second power converter that converts AC power supplied from the second power system into DC power and outputs the converted DC power to the excitation circuit;
a third power converter that adjusts the DC voltage of the storage battery by stepping it up or down and applying the adjusted DC voltage to the excitation circuit;
A control device that controls the first power converter, the second power converter, and the third power converter,
The control device is
When the first power system is normal, the first power converter, the third Driving the second power converter and the third power converter,
4. The power system according to claim 3, wherein at least the second power converter and the third power converter continue to be driven when the first power system is abnormal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-076191 | 2021-04-28 | ||
JP2021076191A JP2022170210A (en) | 2021-04-28 | 2021-04-28 | power system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230689A1 true WO2022230689A1 (en) | 2022-11-03 |
Family
ID=83848164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/017901 WO2022230689A1 (en) | 2021-04-28 | 2022-04-15 | Power system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022170210A (en) |
WO (1) | WO2022230689A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140111A (en) * | 1978-04-21 | 1979-10-31 | Hitachi Ltd | Control device of electric generator |
JPS62239215A (en) * | 1986-04-10 | 1987-10-20 | Toshiba Corp | Device and method for controlling excitation of synchronous phase modifier |
WO1999053606A1 (en) * | 1998-04-09 | 1999-10-21 | Mitsubishi Denki Kabushiki Kaisha | Exciter for generator |
JP2007288836A (en) * | 2006-04-12 | 2007-11-01 | Chugoku Electric Power Co Inc:The | Control system of field current |
-
2021
- 2021-04-28 JP JP2021076191A patent/JP2022170210A/en active Pending
-
2022
- 2022-04-15 WO PCT/JP2022/017901 patent/WO2022230689A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140111A (en) * | 1978-04-21 | 1979-10-31 | Hitachi Ltd | Control device of electric generator |
JPS62239215A (en) * | 1986-04-10 | 1987-10-20 | Toshiba Corp | Device and method for controlling excitation of synchronous phase modifier |
WO1999053606A1 (en) * | 1998-04-09 | 1999-10-21 | Mitsubishi Denki Kabushiki Kaisha | Exciter for generator |
JP2007288836A (en) * | 2006-04-12 | 2007-11-01 | Chugoku Electric Power Co Inc:The | Control system of field current |
Also Published As
Publication number | Publication date |
---|---|
JP2022170210A (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102810990B (en) | For dynamically changing rectification circuit and the corresponding control method of output electromotor | |
US6559559B2 (en) | Power system utilizing a DC bus | |
CA2826437C (en) | Voltage control in a doubly-fed induction generator wind turbine system | |
KR100997559B1 (en) | System for providing assured power to a critical load | |
JP5014437B2 (en) | Low voltage ride-through system for a variable speed wind turbine having an exciter and a power converter not connected to the transmission system | |
US6611068B2 (en) | Power system | |
US6218744B1 (en) | Uninterruptible power supply and ferroresonant transformer for use therewith | |
CN108288853B (en) | Direct current power supply system and power supply method for airplane | |
US6404075B1 (en) | Uninterruptible power generation system | |
US9325272B2 (en) | Hot standby power supply for a variable frequency drive | |
CN103414411A (en) | Method and apparatus for operating electrical machines | |
CN103683318A (en) | System and method for controlling dual-fed induction generator in response to high-voltage grid events | |
EP3736939B1 (en) | System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation | |
US20220308605A1 (en) | Wind turbine transformer control | |
WO2022230689A1 (en) | Power system | |
KR100926630B1 (en) | Dual PWM Digital Excitation System of Regeneration Type | |
WO2020131005A1 (en) | Fault current control sub-system and related method | |
JP4660524B2 (en) | On-site power supply equipment for power plants | |
US11196260B2 (en) | System and method for control of reactive power from a reactive power compensation device in a wind turbine system | |
KR20220146941A (en) | Power transforming apparatus and air conditioner including the same | |
JP2004336933A (en) | Power supplying system | |
WO2011013187A1 (en) | Self-excited reactive power compensation device | |
RU2208285C1 (en) | N0-break power supply system for ac current and voltage users | |
CN112865178B (en) | Doubly-fed wind power generation system, doubly-fed converter and machine side shutdown control method of doubly-fed converter | |
JP7483875B2 (en) | Power generating unit and method for operating the power generating unit in a power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22795602 Country of ref document: EP Kind code of ref document: A1 |