WO2022230535A1 - Glass, optical glass, and optical element - Google Patents

Glass, optical glass, and optical element Download PDF

Info

Publication number
WO2022230535A1
WO2022230535A1 PCT/JP2022/015038 JP2022015038W WO2022230535A1 WO 2022230535 A1 WO2022230535 A1 WO 2022230535A1 JP 2022015038 W JP2022015038 W JP 2022015038W WO 2022230535 A1 WO2022230535 A1 WO 2022230535A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
component
still
content
Prior art date
Application number
PCT/JP2022/015038
Other languages
French (fr)
Japanese (ja)
Inventor
菜那 岩▲崎▼
健介 鈴木
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to JP2022519690A priority Critical patent/JPWO2022230535A1/ja
Publication of WO2022230535A1 publication Critical patent/WO2022230535A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to glass, optical glass and optical elements.
  • In-vehicle glass which may be installed in multiple locations, is exposed to various impacts.
  • the size of flying objects such as dust and pebbles caught in the air by the tires and the speed of the vehicle change the impact on the glass, so it is necessary to have extremely high strength.
  • the Knoop hardness of JOGIS is known as an indicator of the hardness of glass, and can also be used as an indicator of glass with high mechanical durability.
  • a glass composition as typified by Patent Document 1 is known.
  • the glass disclosed in Patent Document 1 is an invention in which it was found that the moldability of the lens can be improved by increasing the Knoop hardness, and the increased hardness of the glass makes the glass lens less likely to be scratched. However, it cannot be said that the impact resistance is sufficient.
  • Tempered glass is an example of glass with high strength. Tempered glass has excellent strength because it has a compressive stress layer on the glass surface. Chemical strengthening or the like is required, which complicates the manufacturing process. Also, it is necessary to introduce an alkaline component for ion exchange, which deteriorates the impact resistance.
  • the present invention has been made in view of the above problems, and its purpose is to simply produce glass with higher impact resistance than conventional glass and to stably provide it.
  • the present inventors have conducted intensive testing and research, and found that while suppressing the contents of the SiO 2 component and the BaO component, the SiO 2 component, the B 2 O 3 component, and the Al 2 O 3 component , La 2 O 3 component, Y 2 O 3 component, and Gd 2 O 3 component, and adjusting the mass ratio of Al 2 O 3 component to SiO 2 component and B 2 O 3 component to 0.01 or more,
  • the average linear expansion coefficient
  • ⁇ / ⁇ which is the ratio of ⁇ to ⁇ , to 7.80 or more
  • a highly stable and impact-resistant glass material found that it is possible to create, and completed the present invention.
  • the present invention provides the following.
  • mass sum of SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 50.0% or more (however, the SiO 2 component is 22.0% or less); mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.01 or more; BaO content is 10.0% or less, and
  • ⁇ / ⁇ which is the ratio of ⁇ to ⁇ , is 7.80 or more.
  • Mass ratio Gd 2 O 3 /Ln 2 O 3 is 0.10 or less (Ln is one or more selected from the group consisting of La, Y, Gd and Yb) The glass according to (1) to (3).
  • Knoop hardness is grade 6 or higher, The glass according to (1) to (4), which has an average linear expansion coefficient ⁇ of 90 ⁇ 10 -7 ° C. -1 or less at 100 to 300°C.
  • the present invention provides a glass, optical glass, and optical element having better impact resistance than conventional glass by adjusting each component and adjusting the ratio between the average linear expansion coefficient ⁇ and the Knoop hardness at 100 to 300 ° C. can be obtained.
  • composition converted to oxide means that, when it is assumed that oxides, composite salts, metal fluorides, etc. used as raw materials for the constituent components of the glass of the present invention are all decomposed and changed into oxides when melted, It is a composition in which each component contained in the glass is expressed with the total mass of the produced oxide being 100% by mass.
  • the SiO2 component is a component that can increase the viscosity of the molten glass and increase the hardness of the glass. It is also a component that enhances the stability of the glass and makes it easier to obtain a glass that can withstand mass production. Therefore, the lower limit of the content of the SiO2 component is preferably more than 0%, more preferably 2.0% or more, more preferably 4.0% or more. On the other hand, by setting the content of the SiO 2 component to 22.0% or less, the deterioration of the impact resistance of the glass can be suppressed. In particular, the SiO 2 component is inferior to the B 2 O 3 component and the Al 2 O 3 component, which will be described later, in impact resistance. Therefore, the upper limit of the content of the SiO2 component is preferably 22.0% or less, more preferably 21.0% or less, still more preferably 18.0% or less, still more preferably 16.0% or less.
  • the B 2 O 3 component is a component that becomes a glass-forming oxide in the glass of the present invention containing a large amount of rare earth oxides.
  • the lower limit of the content of the B 2 O 3 component is preferably more than 0%, more preferably 1.5% or more, still more preferably 2.0% or more, and still more preferably 3.5% or more.
  • the content of the B 2 O 3 component is preferably 20.0% or less, more preferably 18.0% or less, more preferably 16.0% or less, and still more preferably 15.0% or less. do.
  • the Al 2 O 3 component is a component that, when included, forms a strong bond, suppresses the thermal expansion of the glass, and improves the devitrification resistance of the molten glass.
  • the Al 2 O 3 component is the component that maximizes the impact resistance when compared with the SiO 2 component and the B 2 O 3 component. Therefore, the lower limit of the content of the Al 2 O 3 component is preferably 0.1% or more, more preferably 0.3% or more, still more preferably 0.5% or more, and still more preferably 0.8% or more. .
  • the content of the Al 2 O 3 component is preferably 15.0% or less, more preferably 13.0% or less, even more preferably 12.0% or less, still more preferably 10.0% or less, and even more preferably is 7.0% or less, more preferably 6.0% or less, more preferably 5.0% or less.
  • the TiO 2 component is a component that increases the refractive index of the glass, increases the Abbe's number, and increases the hardness of the glass. In particular, by adjusting the content of the TiO 2 component, devitrification due to excessive content can be reduced, and the transmittance in the infrared region can be increased. Cameras for in-vehicle use should preferably have high transmittance in the infrared region because they need to be used day and night.
  • the lower limit of the TiO 2 component content is preferably 3.0% or more, more preferably 4.5% or more, still more preferably 6.0% or more, and still more preferably 7.0% or more.
  • the upper limit of the content of the TiO 2 component is preferably 28.0% or less, more preferably 26.0% or less, still more preferably 24.0% or less, and even more preferably 22.0% or less.
  • the La 2 O 3 component is a component that increases the refractive index and Abbe number of the glass while increasing the Knoop hardness. Therefore, the content of the La 2 O 3 component is preferably 18.0% or more, more preferably 20.0% or more, still more preferably 24.0% or more, and still more preferably 30.0% or more. .
  • the content of the La 2 O 3 component is preferably 18.0% or more, more preferably 20.0% or more, still more preferably 24.0% or more, and still more preferably 30.0% or more. .
  • by setting the content of the La 2 O 3 component to 55.0% or less devitrification can be reduced by increasing the stability of the glass, and an unnecessary increase in the Abbe number can be suppressed.
  • the upper limit is 55.0% or less, more preferably 53.0% or less, still more preferably 51.0% or less, still more preferably 48.0% or less, and even more preferably 45.0% or less.
  • the Y 2 O 3 component is a component capable of increasing the stability of the glass by improving the meltability of the raw material for glass while suppressing the material cost of the glass while maintaining the desired refractive index and Abbe number.
  • the upper limit of the content of the three Y 2 O components is preferably 15.0% or less, more preferably 12.0% or less, and still more preferably 10.0% or less.
  • the lower limit of the content of the Y 2 O 3 component is preferably 0.1% or more, preferably 0.5% or more, and more preferably 1.0% or more.
  • the Gd 2 O 3 component and the Yb 2 O 3 component are components capable of increasing the refractive index of the glass.
  • the Gd 2 O 3 component and the Yb 2 O 3 component are expensive as raw materials, and if the content is large, the production cost will be high. Therefore, the contents of the three Gd 2 O components and the three Yb 2 O components are each preferably 3.0% or less, more preferably 2.0% or less, still more preferably 1.0% or less, still more preferably 0.0% or less. 8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, further preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain these components.
  • the ZnO component is a component that increases the meltability of the raw material, increases the hardness of the glass, and increases the stability of the glass. It is also a component that contributes to the improvement of impact resistance.
  • the lower limit of the ZnO component content is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more.
  • the upper limit of the content of the ZnO component is preferably 25.0% or less, more preferably 23.0% or less, and more preferably 21.0% or less.
  • the MgO component is an optional component that can improve the meltability of glass raw materials and the devitrification resistance of glass.
  • the upper limit of the content of the MgO component is preferably 8.0% or less, more preferably 6.0% or less, still more preferably 4.0% or less, still more preferably 3.0% or less.
  • the CaO component is an optional component capable of increasing the hardness and impact resistance of the glass and improving the meltability of the glass raw material.
  • the alkaline earth components it is the most effective component for improving impact resistance.
  • the lower limit of the CaO component content is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more.
  • the upper limit of the CaO content is preferably 20.0% or less, more preferably 18.0% or less, still more preferably 15.0% or less, still more preferably 13.0% or less.
  • the SrO component is an optional component that can improve the meltability of glass raw materials and the devitrification resistance of glass.
  • the upper limit of the SrO component content is preferably 8.0% or less, more preferably 6.0% or less, still more preferably 4.0% or less, and still more preferably 3.0% or less.
  • the BaO component is a component that increases the refractive index and Abbe number of the glass and lowers the liquidus temperature.
  • the BaO component reduces the impact resistance of the glass the most among the alkaline earth metals. Therefore, the content of the BaO component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably 1.0%. % or less is the upper limit.
  • the Li 2 O component, Na 2 O component and K 2 O component are components capable of improving the meltability of the glass and lowering the glass transition point.
  • the Li 2 O component, the Na 2 O component, and the K 2 O component each 5.0% or less, it becomes difficult to lower the refractive index of the glass, and the devitrification of the glass can be reduced. decrease in hardness can be suppressed.
  • the contents of the Li 2 O component, the Na 2 O component and the K 2 O component are each preferably 5.0% or less, more preferably 4.0% or less, even more preferably 3.0% or less, still more preferably is 2.0% or less, more preferably 1.0% or less, more preferably 0.8% or less, still more preferably 0.6% or less, and still more preferably 0.3% or less.
  • the ZrO 2 component is a component capable of increasing the refractive index Abbe number while suppressing coloration. Therefore, the lower limit is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more. On the other hand, the ZrO 2 component causes devitrification when contained excessively. Therefore, the upper limit of the content of the ZrO 2 component is preferably 8.0% or less, more preferably 6.0% or less, and still more preferably 4.0% or less.
  • the Nb 2 O 5 component is an optional component that can increase the refractive index of the glass.
  • the content of the Nb 2 O 5 component is preferably 5.0% or less, more preferably 4.0% or less, still more preferably 3.0% or less, still more preferably 2.0% or less, further preferably
  • the upper limit is 1.0% or less, more preferably 0.8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and even more preferably 0.1% or less.
  • the Nb 2 O 5 component may not be contained.
  • the WO 3 component is a component that can increase the refractive index, improve the resistance to devitrification, and increase the meltability in a small amount.
  • the content of the three WO components is preferably 5.0% or less, more preferably 4.0% or less, even more preferably 3.0% or less, still more preferably 2.0% or less, and still more preferably 1.0% or less.
  • the upper limit is 0% or less, more preferably 0.8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and even more preferably 0.1% or less.
  • the Ta 2 O 5 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance. Also, by setting the content of the Ta 2 O 5 component to 5.0% or less, the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced, so that the manufacturing cost of the glass can be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 1.0% or less, still more preferably 0.5% or less, further preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain the Ta 2 O 5 component.
  • the P 2 O 5 component is a component capable of lowering the liquidus temperature of the glass to improve devitrification resistance.
  • the upper limit of the content of the P 2 O 5 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably 1.0% or less, and still more preferably 0.8% or less.
  • the content of the three Bi 2 O components is preferably 3.0% or less, more preferably 1.0% or less, still more preferably 0.8% or less, still more preferably 0.5% or less, still more preferably 0.5% or less.
  • the upper limit is 3% or less, most preferably 0.1% or less.
  • the content of component F is preferably 5.0% or less, more preferably 3.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, and still more preferably 0.3% or less. is the upper limit, but it may be 0%.
  • the content of TeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
  • the upper limit of the content of Ga 2 O 3 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, and still more preferably 0.5% or less, It may be 0%.
  • the content of GeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
  • the content of the CeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
  • the content of the HfO 2 component is preferably 0.5% or less, more preferably 0.1% or less, more preferably 0.05% or less, and most preferably substantially free.
  • the upper limit of the SnO 2 component content is preferably 2.0% or less, more preferably 1.0% or less, and still more preferably 0.5% or less, but may be 0%.
  • the Sb 2 O 3 component is an optional component capable of defoaming the glass melt when it is contained in an amount exceeding 0.0%.
  • the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less.
  • the component for fining and defoaming the glass is not limited to the above Sb 2 O 3 component, and any known fining agent, defoaming agent or combination thereof in the field of glass production can be used.
  • the structure of the glass can be strengthened and the hardness of the glass can be increased.
  • the SiO2 component is a component that lowers the impact resistance of the glass compared to B2O3 and Al2O3 .
  • the content is preferably 22.0% or less. The preferred range of the content of the SiO2 component is as described above.
  • the mass sum of SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is preferably 50.0% or more, more preferably 53.0% or more, still more preferably 55.0%. Above, preferably 57.0% or more, more preferably 58.0% or more, is the lower limit.
  • the mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is preferably 0.01 or more, more preferably 0.015 or more, still more preferably 0.02 or more, still more preferably 0.03 or more, and still more preferably has a lower limit of 0.04 or more.
  • the upper limit of the mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is preferably 0.500 or less, more preferably 0.400 or less, and still more preferably 0.350 or less.
  • Nb 2 O 5 +WO 3 is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably 2.0% or less, further preferably 1.0% or less.
  • the upper limit is 0% or less.
  • the mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 0.20 or more, more preferably 0.25 or more, still more preferably 0.29 or more, still more preferably 0.35 or more, More preferably, the lower limit is 0.40 or more.
  • the mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 1.20 or less, more preferably 1.00 or less, still more preferably 0.90 or less, still more preferably 0.90 or less.
  • the upper limit is 75 or less.
  • the mass ratio Gd 2 O 3 /Ln 2 O 3 is preferably 0.10 or less, more preferably 0.07 or less, still more preferably 0.06 or less, still more preferably 0.03 or less, still more preferably 0.02. Up to the following.
  • the meltability can be improved and the rare earth oxide can be stably introduced.
  • the lower limit of the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.17 or more.
  • the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is 2.00 or less, deterioration of acid resistance can be suppressed.
  • the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 2.00 or less, more preferably 1.96 or less, still more preferably 1.93 or less, still more preferably 1.90. Up to the following.
  • the lower limit of the mass sum CaO+ZnO is preferably 5.0% or more, more preferably 7.0% or more, still more preferably 10.0% or more, and still more preferably 13.0% or more.
  • the upper limit of the mass sum CaO+ZnO is preferably 23.0% or less, more preferably 21.0% or less, and even more preferably 20.0% or less.
  • the coefficient of thermal expansion can be reduced while maintaining the refractive index. It becomes possible to increase the hardness of the glass. Although the B 2 O 3 component and the Al 2 O 3 component can increase the hardness of the glass, it becomes difficult to maintain the refractive index when the content is large. Therefore, by including La 2 O 3 and Y 2 O 3 and adjusting the contents of the components, it is possible to increase the hardness of the glass with a small coefficient of thermal expansion while maintaining the refractive index.
  • the mass ratio (B 2 O 3 +Al 2 O 3 )/(La 2 O 3 +Y 2 O 3 ) is preferably 0.300 or more, more preferably 0.315 or more, still more preferably 0.320 or more, still more preferably has a lower limit of 0.325 or more.
  • the mass ratio (B 2 O 3 +Al 2 O 3 )/(La 2 O 3 +Y 2 O 3 ) is preferably 0.450 or less, more preferably 0.440 or less, still more preferably 0.420 or less. , more preferably 0.418 or less.
  • each transition metal component such as Nd, V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb and Lu, is Even if a small amount of is contained alone or in combination, the glass will be colored and have the property of causing absorption at specific wavelengths in the visible range. preferable.
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with a high environmental load, it is desirable that they are not substantially contained, that is, they are not contained at all except for unavoidable contamination.
  • Th, Cd, Tl, Os, Be, and Se components have recently tended to refrain from being used as hazardous chemical substances.
  • Environmental measures are required up to the present. Therefore, it is preferable not to contain these substantially when environmental influence is emphasized.
  • the glass of the present invention is preferably grade 6 or higher in a measuring method according to "JOGIS09-2019 Method for measuring Knoop hardness of glass".
  • the Knoop hardness of the glass of the present invention is preferably grade 6 or higher, more preferably grade 7 or higher.
  • the Knoop hardness of the glass of the present invention is preferably 600 or more.
  • the Knoop hardness can be represented by a grade, and even in the range of 550 to 650 where the Knoop hardness is grade 6, it is more preferably 600 or more.
  • the lower limit of the Knoop hardness of the glass of the present invention is preferably 600 or higher, more preferably 620 or higher, and still more preferably 650 or higher.
  • the upper limit of the Knoop hardness of the glass of the present invention is not particularly limited, the upper limit of the Knoop hardness of the glass of the present invention may be, for example, 780 or less, 760 or less, 740 or less, or 720 or less.
  • the glass of the present invention preferably has an average linear expansion coefficient ⁇ of 90 ⁇ 10 ⁇ 7 ° C. ⁇ 1 or less at 100 to 300° C.
  • the glass of the present invention has an average coefficient of linear expansion ⁇ at 100 to 300 ° C. specified in Japan Optical Glass Industry Standard JOGIS08-2003, preferably 90 ⁇ 10 -7 ° C. -1 , more preferably 88 ⁇ 10
  • the upper limit is -7 ° C. -1 , more preferably 86 ⁇ 10 -7 ° C. -1 .
  • the lower limit of the average linear expansion coefficient ⁇ of the glass of the present invention is not particularly limited, the average linear expansion coefficient ⁇ of the glass of the present invention is, for example, 60 ⁇ 10 ⁇ 7 ° C. ⁇ 1 or more, 65 ⁇ 10 ⁇ 7 ° C. ⁇
  • the lower limit may be 1 or more and 70 ⁇ 10 ⁇ 7 ° C. ⁇ 1 or more.
  • the glass of the present invention preferably has a ratio of ⁇ to ⁇ , ⁇ / ⁇ , of 7.80 or more, where ⁇ is the average coefficient of linear expansion at 100 to 300°C and the Knoop hardness.
  • Glass has the property that even if there is a minute scratch on the surface of the glass, the scratch will grow, and when an impact is applied, the scratch will grow further and the glass will break.
  • it is effective to increase the hardness of the glass and suppress scratches on the glass surface.
  • the inventors have found that even if the hardness of the glass is the same, the glass does not necessarily withstand the impact of the same degree.
  • the glass of the present invention has an average linear expansion coefficient ⁇ at 100 to 300 ° C. and a Knoop hardness as ⁇ . You can get strong glass.
  • ⁇ / ⁇ is preferably 7.80 or more, more preferably 7.83 or more, still more preferably 7.85 or more, still more preferably 7.88 or more, still more preferably 7.90 or more, still more preferably 7.93 or more is the lower limit.
  • the upper limit of ⁇ / ⁇ is preferably 9.50 or less, more preferably 9.30 or less, and still more preferably 9.10 or less.
  • the lower limit of the refractive index (n d ) of the glass of the present invention is preferably 1.80000 or more, more preferably 1.81000 or more, and still more preferably 1.82000 or more.
  • the refractive index (n d ) of the glass of the present invention may be preferably 1.95000 or less, more preferably 1.94000 or less, and more preferably 1.93000 or less.
  • the Abbe number ( ⁇ d ) of the glass of the present invention is preferably 23.00 or more, more preferably 25.00 or more, still more preferably 28.00 or more.
  • the Abbe number ( ⁇ d ) is preferably 40.00 or less, more preferably 38.00 or less, and even more preferably 36.00 or less.
  • the glass of the present invention is produced, for example, as follows. That is, high-purity raw materials used in ordinary glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, and metaphosphoric acid compounds are used as raw materials for each of the above components, and each component is contained within a predetermined content range.
  • the resulting mixture is put into a platinum crucible and melted in an electric furnace at a temperature range of 1000 to 1400 ° C. for 1 to 10 hours according to the melting difficulty of the glass raw materials, and stirred and homogenized. After that, it is cooled to an appropriate temperature, cast into a mold, and slowly cooled.
  • a glass molded body can be produced from the produced glass by, for example, polishing means or mold press molding means such as reheat press molding or precision press molding.
  • the means for producing the glass molded body is not limited to these means.
  • the glass of the present invention can be used as optical glass and is useful for various optical elements and optical designs.
  • the glass molded body made of the glass of the present invention can be used, for example, for optical elements such as lenses, prisms, and mirrors, and is also used for applications requiring impact resistance, such as vehicle-mounted optical devices such as vehicle-mounted cameras. be able to.
  • compositions of Examples 1 to 15 of the present invention and Comparative Examples 1 to 3, and refractive index (n d ), Abbe number ( ⁇ d ), Knoop hardness, average linear expansion coefficient at 100 to 300 ° C. of these glasses Tables 1 and 2 show the results of ⁇ . It should be noted that the following examples are for the purpose of illustration only, and the present invention is not limited only to these examples.
  • the glasses of the examples of the present invention use high-purity raw materials such as corresponding oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., which are used in ordinary glasses, as raw materials for each component. After selecting, weighing and mixing uniformly so that the composition ratio of each example shown in the table is obtained, it is put into a platinum crucible and heated to 1000 to 1400 ° C. in an electric furnace depending on the melting difficulty of the glass raw material. After being melted for 1 to 10 hours in a temperature range, it was stirred and homogenized, cast into a mold or the like, and slowly cooled.
  • high-purity raw materials such as corresponding oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of the glasses of Examples and Comparative Examples were measured according to the V-block method defined in JIS B 7071-2:2018.
  • the refractive index (n d ) is shown as a measured value for the d-line (587.56 nm) of a helium lamp.
  • the Abbe number ( ⁇ d ) is the refractive index (n d ) for the d-line of the helium lamp, the refractive index (n F ) for the F-line (486.13 nm) of the hydrogen lamp, and the C-line (656.27 nm).
  • Knoop hardness (Hk) of the glass of Examples and Comparative Examples was measured based on the Japan Optical Glass Industry Association Standard (JOGIS09-2019). Specifically, a diamond rhombic indenter (diagonal angles of 172.5° and 130°) on the flat polished surface of the sample was pressed for 15 seconds under a load of 0.98 N (0.1 kgf) to make an indentation, and the longer diagonal of the indentation was measured and obtained by the formula (1).
  • Knoop hardness 1.451 F/l 2 (1)
  • a grade of 650 or higher is defined as grade 7, and the higher the grade, the harder the glass.
  • the average linear expansion coefficient ⁇ of the glasses of Examples and Comparative Examples at 100 to 300 ° C. was determined according to the Japan Optical Glass Industry Standard JOGIS08-2003 "Method for measuring thermal expansion of optical glass" using a vertical expansion measuring instrument (Bruker (manufactured by the company).
  • a sample having a diameter of 4.5 mm and a length of 20 mm was used for the measurement, and the heating rate was 4° C./min.
  • the glass of the example had a Knoop hardness of grade 6 or higher and 600 or higher.
  • the glass of the example of the present invention had an average coefficient of linear expansion ⁇ of 90 ⁇ 10 -7 ° C. -1 or less at 100 to 300°C.
  • all the glasses of Examples had a refractive index (n d ) of 1.80000 or more and 1.95000 or less, which was within the desired range.
  • the Abbe number ( ⁇ d ) of the glass of the examples of the present invention was within the range of 23.00 or more and 40.00 or less.
  • a steel ball of 71.7 g (about 2.6 cm in diameter) made of SUJ2 was prepared, and on a SUS plate, a SUS ball with a diameter of 35 mm was hollowed out in the center so that the opening had a circular diameter of 30 mm.
  • a cylindrical body is installed, and a double-sided optically polished glass with a diameter of 35 mm and a thickness of 2 mm is installed on it, and it is fixed with a SUS lid cut out so that the opening has a circular opening with a diameter of 30 mm. did.
  • the glasses of Examples 3 and 10 of the present invention having ⁇ / ⁇ of 7.80 or more have higher impact resistance than the glass of Comparative Example 2 having ⁇ / ⁇ of less than 7.80. was glass. Furthermore, when the glasses of Example 3 and Example 10 were compared, the glass of Example 3, which had a larger ⁇ / ⁇ , had higher impact resistance. Therefore, it was found that glass having high impact resistance can be obtained by adjusting ⁇ / ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention more simply prepares and stably provides glass having higher impact resistance than in the prior art. Provided is glass in which, in mass% in terms of oxides, the mass sum SiO2+B2O3+Al2O3+La2O3+Y2O3+Gd2O3 is 50.0% or greater (however, the SiO2 component is 22.0% or less), the mass ratio Al2O3/(SiO2+B2O3) is 0.01 or greater, the BaO content is 10.0% or lower, and the ratio β/α of β to α is 7.80 or greater, where α is the average linear expansion coefficient at 100-300°C and β is the Knoop hardness.

Description

ガラス、光学ガラス及び光学素子Glass, optical glass and optical elements
 本発明は、ガラス、光学ガラス及び光学素子に関する。 The present invention relates to glass, optical glass and optical elements.
 近年、車載用途のガラスの要求が高まっている。例えば、従来のリアビューカメラは車庫入れなどで車を後進させる際に車の後方の映像を映し出すだけのものであったが、車体の各所にカメラが搭載され、その映像を合成することで車体全体の映像を映し出すことが可能となった。また、人工知能やセンサー技術の発展により自動運転システムを搭載した車が登場している。こうしたガラスは主に車体の外に設置されることが多く、自動車技術の発展に伴い車外で使用される用途に適したガラスが求められている。 In recent years, the demand for glass for automotive applications has increased. For example, conventional rear view cameras only project images behind the vehicle when the vehicle is put into a garage, etc. It became possible to project the image of Also, with the development of artificial intelligence and sensor technology, cars equipped with automatic driving systems are appearing. Such glass is mainly installed outside the vehicle body in many cases, and with the development of automobile technology, there is a demand for glass suitable for use outside the vehicle.
 複数箇所に搭載することもある車載用途のガラスは、様々な衝撃による危険にさらされている。運転中においてはタイヤによって巻き込まれた大気中の粉塵や小石などの飛来物の大きさや、車の速度によってガラスへの衝撃の大きさがかわるため、極めて高強度であることが必要となる。  In-vehicle glass, which may be installed in multiple locations, is exposed to various impacts. During driving, the size of flying objects such as dust and pebbles caught in the air by the tires and the speed of the vehicle change the impact on the glass, so it is necessary to have extremely high strength.
 ガラスの硬さを表す指標としてはJOGISのヌープ硬さが知られており、機械的耐久性が高いガラスを表す指標としても用いることができる。車載用途で使用される材料としては、例えば特許文献1に代表されるようなガラス組成物が知られている。 The Knoop hardness of JOGIS is known as an indicator of the hardness of glass, and can also be used as an indicator of glass with high mechanical durability. As a material used for in-vehicle applications, for example, a glass composition as typified by Patent Document 1 is known.
特開2013-256446号公報JP 2013-256446 A
 しかし、特許文献1に示されるガラスはヌープ硬さを高めることでレンズの成形性を向上させられることを見出した発明であり、ガラスの硬度高めることでガラスレンズへの傷を付きにくくしているにとどまり、耐衝撃性が充分とはいえない。 However, the glass disclosed in Patent Document 1 is an invention in which it was found that the moldability of the lens can be improved by increasing the Knoop hardness, and the increased hardness of the glass makes the glass lens less likely to be scratched. However, it cannot be said that the impact resistance is sufficient.
 強度が強いガラスとしては強化ガラスが挙げられる。強化ガラスはガラス表面に圧縮応力層を有しているため強度に優れているが、圧縮応力層を作成するためにはガラスを軟化させたあとにガラス表面を急冷させる熱処理法や、イオン交換による化学強化等を行う必要があり、製造工程の煩雑化を招く。またイオン交換を行うためにアルカリ成分を導入する必要があるが、耐衝撃性を悪化させる成分である。  Tempered glass is an example of glass with high strength. Tempered glass has excellent strength because it has a compressive stress layer on the glass surface. Chemical strengthening or the like is required, which complicates the manufacturing process. Also, it is necessary to introduce an alkaline component for ion exchange, which deteriorates the impact resistance.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、従来よりも耐衝撃性の高いガラスを簡易的に作成し、かつ安定して提供することにある。 The present invention has been made in view of the above problems, and its purpose is to simply produce glass with higher impact resistance than conventional glass and to stably provide it.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO成分及びBaO成分の含有量を抑えながら、SiO成分及びB成分、Al成分、La成分、Y成分、Gd成分の合計含有量を調整し、SiO成分及びB成分に対するAl成分の質量比を0.01以上、100~300℃における平均線膨張係数α、ヌープ硬さをβとしたときに、αに対するβの比であるβ/αを7.80以上とすることで、安定性が高く衝撃に強いガラス材料を作成できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。 In order to solve the above problems, the present inventors have conducted intensive testing and research, and found that while suppressing the contents of the SiO 2 component and the BaO component, the SiO 2 component, the B 2 O 3 component, and the Al 2 O 3 component , La 2 O 3 component, Y 2 O 3 component, and Gd 2 O 3 component, and adjusting the mass ratio of Al 2 O 3 component to SiO 2 component and B 2 O 3 component to 0.01 or more, When the average linear expansion coefficient α at 100 to 300 ° C. and the Knoop hardness are β, by setting β / α, which is the ratio of β to α, to 7.80 or more, a highly stable and impact-resistant glass material found that it is possible to create, and completed the present invention. Specifically, the present invention provides the following.
(1)酸化物基準の質量%で、
質量和SiO+B+Al+La+Y+Gdが50.0%以上(但し、SiO成分は22.0%以下)、
質量比Al/(SiO+B)が0.01以上、
BaOの含有量が10.0%以下、
であり、
100~300℃における平均線膨張係数α、ヌープ硬さをβとしたときに、
αに対するβの比であるβ/αが7.80以上である
ガラス。
(1) in mass % based on oxides,
mass sum of SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 50.0% or more (however, the SiO 2 component is 22.0% or less);
mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.01 or more;
BaO content is 10.0% or less,
and
When the average linear expansion coefficient α at 100 to 300 ° C. and the Knoop hardness are β,
A glass in which β/α, which is the ratio of β to α, is 7.80 or more.
(2)質量和Nb+WOが10.0%以下
である(1)に記載のガラス。
(2) The glass according to (1), wherein the mass sum of Nb 2 O 5 +WO 3 is 10.0% or less.
(3)質量比TiO/(SiO+B+Al)が0.20以上
である(1)又は(2)に記載のガラス。
(3) The glass according to (1) or (2), wherein the mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is 0.20 or more.
(4)質量比Gd/Lnが0.10以下(LnはLa、Y、Gd、Ybからなる群より選択される1種以上)
である(1)~(3)に記載のガラス。
(4) Mass ratio Gd 2 O 3 /Ln 2 O 3 is 0.10 or less (Ln is one or more selected from the group consisting of La, Y, Gd and Yb)
The glass according to (1) to (3).
(5) ヌープ硬さが6級以上、
100~300℃における平均線膨張係数αが90×10-7-1以下
である(1)~(4)に記載のガラス。
(5) Knoop hardness is grade 6 or higher,
The glass according to (1) to (4), which has an average linear expansion coefficient α of 90×10 -7 ° C. -1 or less at 100 to 300°C.
(6)(1)~(5)のいずれかに記載のガラスからなる光学ガラス。 (6) Optical glass made of the glass according to any one of (1) to (5).
(7)(6)に記載のガラスからなる光学素子。 (7) An optical element made of the glass described in (6).
 本発明は、各成分を調整し、100~300℃における平均線膨張係数αとヌープ硬さの比率を調整することで、従来のガラスよりも耐衝撃性に優れたガラス、光学ガラス及び光学素子を得ることができる。 The present invention provides a glass, optical glass, and optical element having better impact resistance than conventional glass by adjusting each component and adjusting the ratio between the average linear expansion coefficient α and the Knoop hardness at 100 to 300 ° C. can be obtained.
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass of the present invention will be described in detail. The present invention is by no means limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be suitably omitted about the part which description overlaps, it does not limit the gist of invention.
[ガラス成分]
 本発明のガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全物質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the glass of the present invention is described below. Unless otherwise specified in this specification, the content of each component is expressed in % by mass with respect to the total mass of the glass in terms of oxide composition. Here, the term "composition converted to oxide" means that, when it is assumed that oxides, composite salts, metal fluorides, etc. used as raw materials for the constituent components of the glass of the present invention are all decomposed and changed into oxides when melted, It is a composition in which each component contained in the glass is expressed with the total mass of the produced oxide being 100% by mass.
 SiO成分は、熔融ガラスの粘度を高められ、ガラスの硬度を高める成分である。また、ガラスの安定性を高めて量産に耐えるガラスを得易くする成分でもある。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは2.0%以上、より好ましくは4.0%以上を下限とする。
 他方で、SiO成分の含有量を22.0%以下にすることでガラスの耐衝撃性への低下を抑えられる。特に、SiO成分は後述するB成分、Al成分と比べたときに耐衝撃性に劣る成分である。従って、SiO成分の含有量は、好ましくは22.0%以下、より好ましくは21.0%以下、さらに好ましくは18.0%以下、さらに好ましくは16.0%以下を上限とする。
The SiO2 component is a component that can increase the viscosity of the molten glass and increase the hardness of the glass. It is also a component that enhances the stability of the glass and makes it easier to obtain a glass that can withstand mass production. Therefore, the lower limit of the content of the SiO2 component is preferably more than 0%, more preferably 2.0% or more, more preferably 4.0% or more.
On the other hand, by setting the content of the SiO 2 component to 22.0% or less, the deterioration of the impact resistance of the glass can be suppressed. In particular, the SiO 2 component is inferior to the B 2 O 3 component and the Al 2 O 3 component, which will be described later, in impact resistance. Therefore, the upper limit of the content of the SiO2 component is preferably 22.0% or less, more preferably 21.0% or less, still more preferably 18.0% or less, still more preferably 16.0% or less.
 B成分は、希土類酸化物を多く含む本発明のガラスでは、ガラス形成酸化物となる成分である。特にB成分の含有量を調整することで、ガラスの耐失透性を高め、且つガラスの熔融性を高められる。また希土類を増加させる際にB成分が多い方が、ガラスが安定となる。従って、B成分の含有量は、好ましくは0%超、より好ましくは1.5%以上、さらに好ましくは2.0%以上、さらに好ましくは3.5%以上を下限とする。
 他方で、B成分の含有量は、好ましくは20.0%以下、より好ましくは18.0%以下、より好ましくは16.0%以下、さらに好ましくは15.0%以下を上限とする。
The B 2 O 3 component is a component that becomes a glass-forming oxide in the glass of the present invention containing a large amount of rare earth oxides. In particular, by adjusting the content of the B 2 O 3 component, the devitrification resistance of the glass can be enhanced and the meltability of the glass can be enhanced. Also, when increasing the rare earth elements, the more the B 2 O 3 component is, the more stable the glass becomes. Therefore, the lower limit of the content of the B 2 O 3 component is preferably more than 0%, more preferably 1.5% or more, still more preferably 2.0% or more, and still more preferably 3.5% or more.
On the other hand, the content of the B 2 O 3 component is preferably 20.0% or less, more preferably 18.0% or less, more preferably 16.0% or less, and still more preferably 15.0% or less. do.
 Al成分は、含有させることで強固な結合となりガラスの熱膨張を抑え、且つ熔融ガラスの耐失透性を向上できる成分である。Al成分はSiO成分及びB成分と比べたときに、耐衝撃性を最も高める成分である。従って、Al成分の含有量は、好ましくは0.1%以上、より好ましくは0.3%以上、さらに好ましくは0.5%以上、さらに好ましくは0.8%以上を下限とする。
 他方で、Al成分の含有量は、好ましくは15.0%以下、より好ましくは13.0%以下、さらに好ましくは12.0%以下、さらに好ましくは10.0%以下、さらに好ましくは7.0%以下、さらに好ましくは6.0%以下、さらに好ましくは5.0%以下を上限とする。
The Al 2 O 3 component is a component that, when included, forms a strong bond, suppresses the thermal expansion of the glass, and improves the devitrification resistance of the molten glass. The Al 2 O 3 component is the component that maximizes the impact resistance when compared with the SiO 2 component and the B 2 O 3 component. Therefore, the lower limit of the content of the Al 2 O 3 component is preferably 0.1% or more, more preferably 0.3% or more, still more preferably 0.5% or more, and still more preferably 0.8% or more. .
On the other hand, the content of the Al 2 O 3 component is preferably 15.0% or less, more preferably 13.0% or less, even more preferably 12.0% or less, still more preferably 10.0% or less, and even more preferably is 7.0% or less, more preferably 6.0% or less, more preferably 5.0% or less.
 TiO成分は、ガラスの屈折率を高め、アッベ数を高め、ガラスの硬度を高める成分である。特にTiO成分の含有量を調整することで、過剰な含有による失透を低減でき、また赤外線域の透過率を高めることが可能である。車載用途のカメラは昼夜対応する必要があるため赤外線域の透過率が高いことが好ましい。TiO成分の含有量は、好ましくは3.0%以上、より好ましくは4.5%以上、さらに好ましくは6.0%以上、さらに好ましくは7.0%以上を下限とする。
 他方で、TiO成分の含有量は、好ましくは28.0%以下、より好ましくは26.0%以下、さらに好ましくは24.0%以下、さらに好ましくは22.0%以下を上限とする。
The TiO 2 component is a component that increases the refractive index of the glass, increases the Abbe's number, and increases the hardness of the glass. In particular, by adjusting the content of the TiO 2 component, devitrification due to excessive content can be reduced, and the transmittance in the infrared region can be increased. Cameras for in-vehicle use should preferably have high transmittance in the infrared region because they need to be used day and night. The lower limit of the TiO 2 component content is preferably 3.0% or more, more preferably 4.5% or more, still more preferably 6.0% or more, and still more preferably 7.0% or more.
On the other hand, the upper limit of the content of the TiO 2 component is preferably 28.0% or less, more preferably 26.0% or less, still more preferably 24.0% or less, and even more preferably 22.0% or less.
 La成分は、ヌープ硬さを高めつつガラスの屈折率及びアッベ数を高める成分である。従って、La成分の含有量は、好ましくは18.0%以上、より好ましくは20.0%以上、さらに好ましくは24.0%以上、さらに好ましくは30.0%以上を下限とする。
 他方で、La成分の含有量を55.0%以下とすることで、ガラスの安定性を高めることで失透を低減でき、アッベ数の必要以上の上昇を抑えられるため、好ましくは55.0%以下、より好ましくは53.0%以下、さらに好ましくは51.0%以下、さらに好ましくは48.0%以下、さらに好ましくは45.0%以下を上限とする。
The La 2 O 3 component is a component that increases the refractive index and Abbe number of the glass while increasing the Knoop hardness. Therefore, the content of the La 2 O 3 component is preferably 18.0% or more, more preferably 20.0% or more, still more preferably 24.0% or more, and still more preferably 30.0% or more. .
On the other hand, by setting the content of the La 2 O 3 component to 55.0% or less, devitrification can be reduced by increasing the stability of the glass, and an unnecessary increase in the Abbe number can be suppressed. The upper limit is 55.0% or less, more preferably 53.0% or less, still more preferably 51.0% or less, still more preferably 48.0% or less, and even more preferably 45.0% or less.
 Y成分は、所望の屈折率及びアッベ数を維持しながらも、ガラスの材料コストを抑えながらガラス原料の熔融性を向上し、ガラスの安定性を高められる成分である。
 Y成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%以下、さらに好ましくは10.0%以下を上限とする。
 他方で、Y成分の含有量は好ましくは、0.1%以上、好ましくは0.5%以上、更に好ましくは1.0%以上を下限とする。
The Y 2 O 3 component is a component capable of increasing the stability of the glass by improving the meltability of the raw material for glass while suppressing the material cost of the glass while maintaining the desired refractive index and Abbe number.
The upper limit of the content of the three Y 2 O components is preferably 15.0% or less, more preferably 12.0% or less, and still more preferably 10.0% or less.
On the other hand, the lower limit of the content of the Y 2 O 3 component is preferably 0.1% or more, preferably 0.5% or more, and more preferably 1.0% or more.
 Gd成分及びYb成分は、ガラスの屈折率を高められる成分である。しかし、Gd成分及びYb成分は原料価格が高く、その含有量が多いと生産コストが高くなってしまう。従って、Gd成分及びYb成分の含有量は、それぞれ好ましくは3.0%以下、より好ましくは2.0%以下、さらに好ましくは1.0%以下、さらに好ましくは0.8%以下、さらに好ましくは0.5%以下、さらに好ましくは0.3%以下、さらに好ましくは0.1%以下とする。特に、材料コストを低減させる観点では、これらの成分を含有しないことが最も好ましい。 The Gd 2 O 3 component and the Yb 2 O 3 component are components capable of increasing the refractive index of the glass. However, the Gd 2 O 3 component and the Yb 2 O 3 component are expensive as raw materials, and if the content is large, the production cost will be high. Therefore, the contents of the three Gd 2 O components and the three Yb 2 O components are each preferably 3.0% or less, more preferably 2.0% or less, still more preferably 1.0% or less, still more preferably 0.0% or less. 8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, further preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain these components.
 ZnO成分は、原料の熔解性を高め、ガラスの硬度を高め、また、ガラスの安定性を高められる成分である。また、耐衝撃性の向上にも寄与する成分である。ZnO成分の含有量は、好ましくは0%超、より好ましくは0.5%以上、更に好ましくは1.0以上を下限とする。 他方で、ZnO成分の含有量を25.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは25.0%以下、より好ましくは23.0%以下、より好ましくは21.0%以下を上限とする。 The ZnO component is a component that increases the meltability of the raw material, increases the hardness of the glass, and increases the stability of the glass. It is also a component that contributes to the improvement of impact resistance. The lower limit of the ZnO component content is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more. On the other hand, by setting the content of the ZnO component to 25.0% or less, it is possible to suppress a decrease in the refractive index of the glass and reduce devitrification due to an excessive decrease in viscosity. Therefore, the upper limit of the content of the ZnO component is preferably 25.0% or less, more preferably 23.0% or less, and more preferably 21.0% or less.
 MgO成分は、ガラス原料の熔融性やガラスの耐失透性を高められる任意成分である。他方で、MgO成分の含有量を8.0%以下にすることで、耐衝撃性の低下や、過剰な含有による、屈折率の低下や耐失透性の低下を抑えられる。従って、MgO成分の含有量は、好ましくは8.0%以下、より好ましくは6.0%以下、さらに好ましくは4.0%以下、さらに好ましくは3.0%以下を上限とする。 The MgO component is an optional component that can improve the meltability of glass raw materials and the devitrification resistance of glass. On the other hand, by setting the content of the MgO component to 8.0% or less, it is possible to suppress a decrease in impact resistance, a decrease in refractive index, and a decrease in devitrification resistance due to an excessive content. Therefore, the upper limit of the content of the MgO component is preferably 8.0% or less, more preferably 6.0% or less, still more preferably 4.0% or less, still more preferably 3.0% or less.
 CaO成分は、ガラスの硬度及び耐衝撃性を高め、ガラス原料の熔融性を高められる任意成分である。アルカリ土類成分の中では耐衝撃性を改善するのに最も効果的な成分である。
CaO成分の含有量は、好ましくは0%超え、より好ましくは0.5%以上、更に好ましくは1.0%以上を下限とする。他方で、CaO成分の含有量を20.0%以下にすることで、これらの成分の過剰な含有による、屈折率の低下や耐失透性の低下を抑えられる。従って、CaOの含有量は、好ましくは20.0%以下、より好ましくは18.0%以下、さらに好ましくは15.0%以下、さらに好ましくは13.0%以下を上限とする。
The CaO component is an optional component capable of increasing the hardness and impact resistance of the glass and improving the meltability of the glass raw material. Among the alkaline earth components, it is the most effective component for improving impact resistance.
The lower limit of the CaO component content is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more. On the other hand, by setting the content of the CaO component to 20.0% or less, it is possible to suppress the decrease in the refractive index and the devitrification resistance due to the excessive content of these components. Therefore, the upper limit of the CaO content is preferably 20.0% or less, more preferably 18.0% or less, still more preferably 15.0% or less, still more preferably 13.0% or less.
 SrO成分は、ガラス原料の熔融性やガラスの耐失透性を高められる任意成分である。他方で、SrO成分の含有量を8.0%以下にすることで、これらの成分の過剰な含有による、屈折率の低下や耐失透性の低下を抑えられる。従って、SrO成分の含有量は、好ましくは8.0%以下、より好ましくは6.0%以下、さらに好ましくは4.0%以下、さらに好ましくは3.0%以下を上限とする。 The SrO component is an optional component that can improve the meltability of glass raw materials and the devitrification resistance of glass. On the other hand, by setting the content of the SrO component to 8.0% or less, it is possible to suppress a decrease in refractive index and a decrease in devitrification resistance due to an excessive content of these components. Therefore, the upper limit of the SrO component content is preferably 8.0% or less, more preferably 6.0% or less, still more preferably 4.0% or less, and still more preferably 3.0% or less.
 BaO成分は、ガラスの屈折率及びアッベ数を高められ、液相温度を低くする成分である。他方で、BaO成分は、アルカリ土類金属の中で最もガラスの耐衝撃性を低減させてしまうため、10.0%以下にすることで耐衝撃性の悪化を抑えられる。従って、BaO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下、さらに好ましくは1.0%以下を上限とする。 The BaO component is a component that increases the refractive index and Abbe number of the glass and lowers the liquidus temperature. On the other hand, the BaO component reduces the impact resistance of the glass the most among the alkaline earth metals. Therefore, the content of the BaO component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably 1.0%. % or less is the upper limit.
 LiO成分、NaO成分及びKO成分は、ガラスの熔融性を改善でき、ガラス転移点を低くできる成分である。他方で、LiO成分、NaO成分及びKO成分をそれぞれ5.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減でき、さらにガラスの硬度の低下を抑制できる。従って、LiO成分、NaO成分及びKO成分の含有量は、それぞれ好ましくは5.0%以下、より好ましくは4.0%以下、さらに好ましくは3.0%以下、さらに好ましくは2.0%以下、さらに好ましくは1.0%以下、さらに好ましくは0.8%以下、さらに好ましくは0.6%以下、さらに好ましくは0.3%以下を上限とする。 The Li 2 O component, Na 2 O component and K 2 O component are components capable of improving the meltability of the glass and lowering the glass transition point. On the other hand, by making the Li 2 O component, the Na 2 O component, and the K 2 O component each 5.0% or less, it becomes difficult to lower the refractive index of the glass, and the devitrification of the glass can be reduced. decrease in hardness can be suppressed. Therefore, the contents of the Li 2 O component, the Na 2 O component and the K 2 O component are each preferably 5.0% or less, more preferably 4.0% or less, even more preferably 3.0% or less, still more preferably is 2.0% or less, more preferably 1.0% or less, more preferably 0.8% or less, still more preferably 0.6% or less, and still more preferably 0.3% or less.
 ZrO成分は、着色を抑制しながら、屈折率アッベ数を高められる成分である。従って好ましくは0%超え、より好ましくは0.5%以上、更に好ましくは1.0%以上を下限とする。
 他方で、ZrO成分は過剰に含有した場合失透を起こしてしまう。従って、ZrO成分の含有量は、好ましくは8.0%以下、より好ましくは6.0%以下、さらに好ましくは4.0%以下を上限とする。
The ZrO 2 component is a component capable of increasing the refractive index Abbe number while suppressing coloration. Therefore, the lower limit is preferably more than 0%, more preferably 0.5% or more, and still more preferably 1.0% or more.
On the other hand, the ZrO 2 component causes devitrification when contained excessively. Therefore, the upper limit of the content of the ZrO 2 component is preferably 8.0% or less, more preferably 6.0% or less, and still more preferably 4.0% or less.
 Nb成分は、ガラスの屈折率を高められる任意成分である。他方で、Nb成分の含有量を5.0%以下にすることで、ガラスの材料コストを抑えられる。また、Nb成分の過剰な含有による失透を低減できる。従って、Nb成分の含有量は、好ましくは5.0%以下、より好ましくは4.0%以下、さらに好ましくは3.0%以下、さらに好ましくは2.0%以下、さらに好ましくは1.0%以下、さらに好ましくは0.8%以下、さらに好ましくは0.5%以下、さらに好ましくは0.3%以下、さらに好ましくは0.1%以下を上限とする。特に、材料コストを低減させる観点では、Nb成分を含有しなくてもよい。 The Nb 2 O 5 component is an optional component that can increase the refractive index of the glass. On the other hand, by setting the content of the Nb 2 O 5 component to 5.0% or less, the material cost of the glass can be suppressed. Also, devitrification due to excessive Nb 2 O 5 component content can be reduced. Therefore, the content of the Nb 2 O 5 component is preferably 5.0% or less, more preferably 4.0% or less, still more preferably 3.0% or less, still more preferably 2.0% or less, further preferably The upper limit is 1.0% or less, more preferably 0.8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and even more preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, the Nb 2 O 5 component may not be contained.
 WO成分は、屈折率を高め、耐失透性を高められ、少量であれば熔融性を高める成分である。他方で、WO成分の含有量を5.0%以下にすることで、ガラスの材料コストを抑えられる。従って、WO成分の含有量は、好ましくは5.0%以下、より好ましくは4.0%以下、さらに好ましくは3.0%以下、さらに好ましくは2.0%以下、さらに好ましくは1.0%以下、さらに好ましくは0.8%以下、さらに好ましくは0.5%以下、さらに好ましくは0.3%以下、さらに好ましくは0.1%以下を上限とする。特に、材料コストを低減させる観点では、WO成分を含有しないことが最も好ましい。 The WO 3 component is a component that can increase the refractive index, improve the resistance to devitrification, and increase the meltability in a small amount. On the other hand, by setting the content of the three WO components to 5.0% or less, the material cost of the glass can be suppressed. Therefore, the content of the three WO components is preferably 5.0% or less, more preferably 4.0% or less, even more preferably 3.0% or less, still more preferably 2.0% or less, and still more preferably 1.0% or less. The upper limit is 0% or less, more preferably 0.8% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and even more preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain 3 WO components.
 Ta成分は、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。また、Ta成分の含有量を5.0%以下にすることで、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、ガラスの製造コストも低減できる。従って、Ta成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%以下、さらに好ましくは0.5%以下、さらに好ましくは0.1%以下とする。特に、材料コストを低減させる観点では、Ta成分を含有しないことが最も好ましい。 The Ta 2 O 5 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance. Also, by setting the content of the Ta 2 O 5 component to 5.0% or less, the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced, so that the manufacturing cost of the glass can be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 1.0% or less, still more preferably 0.5% or less, further preferably 0.1% or less. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain the Ta 2 O 5 component.
 P成分は、ガラスの液相温度を下げて耐失透性を高められる成分である。P成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、より好ましくは1.0%以下、さらに好ましくは0.8%以下を上限とする。 The P 2 O 5 component is a component capable of lowering the liquidus temperature of the glass to improve devitrification resistance. The upper limit of the content of the P 2 O 5 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably 1.0% or less, and still more preferably 0.8% or less.
 Bi成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%以下、さらに好ましくは0.8%以下、さらに好ましくは0.5%以下、さらに好ましくは0.3%以下、最も好ましくは0.1%以下を上限とする。 The content of the three Bi 2 O components is preferably 3.0% or less, more preferably 1.0% or less, still more preferably 0.8% or less, still more preferably 0.5% or less, still more preferably 0.5% or less. The upper limit is 3% or less, most preferably 0.1% or less.
 F成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下、さらに好ましくは0.3%以下を上限とするが、0%としてもよい。 The content of component F is preferably 5.0% or less, more preferably 3.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, and still more preferably 0.3% or less. is the upper limit, but it may be 0%.
 TeO成分の含有量は、好ましくは3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下を上限とするが、0%としてもよい。 The content of TeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
 Ga成分の含有量は、好ましくは3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下を上限とするが、0%としてもよい。 The upper limit of the content of Ga 2 O 3 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, and still more preferably 0.5% or less, It may be 0%.
 GeO成分の含有量は、好ましくは3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下を上限とするが、0%としてもよい。 The content of GeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
 CeO成分の含有量は、好ましくは3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下を上限とするが、0%としてもよい。 The content of the CeO 2 component is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.5% or less, but the upper limit is 0% may be
 HfO成分の含有量は、好ましくは0.5%以下、より好ましくは0.1%以下、より好ましくは0.05%以下、最も好ましくは実質的に含有しない。 The content of the HfO 2 component is preferably 0.5% or less, more preferably 0.1% or less, more preferably 0.05% or less, and most preferably substantially free.
 SnO成分の含有量は、好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下を上限とするが、0%としてもよい。 The upper limit of the SnO 2 component content is preferably 2.0% or less, more preferably 1.0% or less, and still more preferably 0.5% or less, but may be 0%.
 Sb成分は、0.0%超含有する場合に熔融ガラスを脱泡できる任意成分である。
 他方で、Sb量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下とする。
The Sb 2 O 3 component is an optional component capable of defoaming the glass melt when it is contained in an amount exceeding 0.0%.
On the other hand, if the amount of Sb 2 O 3 is too large, the transmittance in the short wavelength region of the visible light region will deteriorate. Therefore, the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。 The component for fining and defoaming the glass is not limited to the above Sb 2 O 3 component, and any known fining agent, defoaming agent or combination thereof in the field of glass production can be used.
 質量和SiO+B+Al+La+Y+Gdは50.0%以上とすることで、ガラスの構造が強化されガラスの硬度を高めることができる。しかし、希土類酸化物成分を増加させながら耐衝撃性を強化しようとする際にSiO成分はBやAlと比較するとガラスの耐衝撃性を低下させてしまう成分であるため、含有量を22.0%以下とすることが好ましい。SiO成分の含有量の好ましい範囲は前述の通りである。質量和SiO+B+Al+La+Y+Gdは、好ましくは50.0%以上、より好ましくは53.0%以上、さらに好ましくは55.0%以上、さらに好ましくは57.0%以上、さらに好ましくは58.0%以上を下限とする。 By setting the mass sum SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 to 50.0% or more, the structure of the glass can be strengthened and the hardness of the glass can be increased. However, when trying to strengthen the impact resistance while increasing the rare earth oxide component , the SiO2 component is a component that lowers the impact resistance of the glass compared to B2O3 and Al2O3 . , the content is preferably 22.0% or less. The preferred range of the content of the SiO2 component is as described above. The mass sum of SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is preferably 50.0% or more, more preferably 53.0% or more, still more preferably 55.0%. Above, preferably 57.0% or more, more preferably 58.0% or more, is the lower limit.
 質量比Al/(SiO+B)は0.01以上とすることで、ガラスの構造が強化され、熱膨張係数を小さくすることができる。Al成分及びSiO成分、B成分はガラス構造を強化することができるが、その中でもAl成分を含有させることでよりガラス構造を強めることが可能である。質量比Al/(SiO+B)は、好ましくは0.01以上、より好ましくは0.015以上、さらに好ましくは0.02以上、さらに好ましくは0.03以上、さらに好ましくは0.04以上を下限とする。
 他方で、質量比Al/(SiO+B)は0.500以下とすることで、ガラスの耐衝撃性を維持しつつ熔融性の悪化を抑制することができる。質量比Al/(SiO+B)は、好ましくは0.500以下、より好ましくは0.400以下、さらに好ましくは0.350以下を上限とする。
By setting the mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) to 0.01 or more, the structure of the glass is strengthened and the coefficient of thermal expansion can be reduced. Al 2 O 3 component , SiO 2 component, and B 2 O 3 component can strengthen the glass structure. The mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is preferably 0.01 or more, more preferably 0.015 or more, still more preferably 0.02 or more, still more preferably 0.03 or more, and still more preferably has a lower limit of 0.04 or more.
On the other hand, by setting the mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) to 0.500 or less, deterioration of the meltability can be suppressed while maintaining the impact resistance of the glass. The upper limit of the mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is preferably 0.500 or less, more preferably 0.400 or less, and still more preferably 0.350 or less.
 質量和Nb+WOは、10.0%以下とすることで、ガラスの安定性を高めながら原料費を抑えることができる。従って、Nb+WOは、好ましくは10.0%以下、より好ましくは5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.0%以下、さらに好ましくは1.0%以下を上限とする。 By setting the mass sum Nb 2 O 5 +WO 3 to 10.0% or less, it is possible to suppress raw material costs while enhancing the stability of the glass. Therefore, Nb 2 O 5 +WO 3 is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably 2.0% or less, further preferably 1.0% or less. The upper limit is 0% or less.
 質量比TiO/(SiO+B+Al)は、所望の範囲にすることでガラスの硬度を高めつつ、TiO成分による失透を抑制しながら耐衝撃性を高めることができる。質量比TiO/(SiO+B+Al)は、好ましくは0.20以上、より好ましくは0.25以上、さらに好ましくは0.29以上、さらに好ましくは0.35以上、さらに好ましくは0.40以上を下限とする。他方で、質量比TiO/(SiO+B+Al)は、好ましくは1.20以下、より好ましくは1.00以下、さらに好ましくは0.90以下、さらに好ましくは0.75以下を上限とする。 By setting the mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) within a desired range, it is possible to increase the impact resistance while increasing the hardness of the glass and suppressing devitrification due to TiO 2 components. can. The mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 0.20 or more, more preferably 0.25 or more, still more preferably 0.29 or more, still more preferably 0.35 or more, More preferably, the lower limit is 0.40 or more. On the other hand, the mass ratio TiO 2 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 1.20 or less, more preferably 1.00 or less, still more preferably 0.90 or less, still more preferably 0.90 or less. The upper limit is 75 or less.
 質量比Gd/Lnは、0.10以下にすることで生産コストを抑えることができる(LnはLa、Y、Gd、Ybからなる群より選択される1種以上)。希土類酸化物に対するGd成分の含有量を調整することで、相対的にGd成分の含有量を減らすことが可能となる。質量比Gd/Lnは、好ましくは0.10以下、より好ましくは0.07以下、さらに好ましくは0.06以下、さらに好ましくは0.03以下、さらに好ましくは0.02以下を上限とする。 By setting the mass ratio Gd 2 O 3 /Ln 2 O 3 to 0.10 or less, production costs can be suppressed (Ln is at least one selected from the group consisting of La, Y, Gd, and Yb). By adjusting the content of the Gd 2 O 3 component with respect to the rare earth oxide, it is possible to relatively reduce the content of the Gd 2 O 3 component. The mass ratio Gd 2 O 3 /Ln 2 O 3 is preferably 0.10 or less, more preferably 0.07 or less, still more preferably 0.06 or less, still more preferably 0.03 or less, still more preferably 0.02. Up to the following.
 質量比B/(SiO+B+Al)は、0.10以上とすることで、熔融性を向上でき、希土類酸化物を安定して導入することができる。質量比B/(SiO+B+Al)は、好ましくは0.10以上、より好ましくは0.15以上、さらに好ましくは0.17以上を下限とする。他方で、質量比B/(SiO+B+Al)は、2.00以下とすることで、耐酸性の悪化を抑制することができる。質量比B/(SiO+B+Al)は、好ましくは2.00以下、より好ましくは1.96以下、さらに好ましくは1.93以下、さらに好ましくは1.90以下を上限とする。 By setting the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) to 0.10 or more, the meltability can be improved and the rare earth oxide can be stably introduced. The lower limit of the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.17 or more. On the other hand, when the mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is 2.00 or less, deterioration of acid resistance can be suppressed. The mass ratio B 2 O 3 /(SiO 2 +B 2 O 3 +Al 2 O 3 ) is preferably 2.00 or less, more preferably 1.96 or less, still more preferably 1.93 or less, still more preferably 1.90. Up to the following.
 質量和CaO+ZnOは、5.0以上とすることで、熔融性及びガラスの硬さを維持し、耐衝撃性に強いガラスを得ることができる。アルカリ土類金属はガラスの硬さを低下させ、熱膨張を大きくしてしまう成分であるが、CaO成分とZnO成分を所望の範囲で含有することで、耐衝撃性に強いガラスを得ることができる。質量和CaO+ZnOは、好ましくは5.0%以上、より好ましくは7.0%以上、さらに好ましくは10.0%以上、さらに好ましくは13.0%以上を下限とする。他方で、質量和CaO+ZnOは、好ましくは23.0%以下、より好ましくは21.0%以下、さらに好ましくは20.0%以下を上限とする。 By setting the mass sum CaO + ZnO to 5.0 or more, it is possible to maintain the meltability and hardness of the glass and obtain a glass with high impact resistance. Alkaline earth metals are components that lower the hardness of the glass and increase the thermal expansion. can. The lower limit of the mass sum CaO+ZnO is preferably 5.0% or more, more preferably 7.0% or more, still more preferably 10.0% or more, and still more preferably 13.0% or more. On the other hand, the upper limit of the mass sum CaO+ZnO is preferably 23.0% or less, more preferably 21.0% or less, and even more preferably 20.0% or less.
 質量比(B+Al)/(La+Y)は、0.300~0.450の範囲にすることで、屈折率を維持しつつ熱膨張係数が小さくガラスの硬さを高めることが可能となる。B成分及びAl成分はガラスの硬さを高めることが可能であるが、含有量が多いと屈折率を維持することが難しくなる。そのため、La及びYを含有し、成分の含有量を調整することで、屈折率を維持しつつ熱膨張係数が小さくガラスの硬さを高めることが可能となる。質量比(B+Al)/(La+Y)は、好ましくは0.300以上、より好ましくは0.315以上、さらに好ましくは0.320以上、さらに好ましくは0.325以上を下限とする。他方で、質量比(B+Al)/(La+Y)は、好ましくは0.450以下、より好ましくは0.440以下、さらに好ましくは0.420以下、さらに好ましくは0.418以下を上限とする。 By setting the mass ratio (B 2 O 3 +Al 2 O 3 )/(La 2 O 3 +Y 2 O 3 ) in the range of 0.300 to 0.450, the coefficient of thermal expansion can be reduced while maintaining the refractive index. It becomes possible to increase the hardness of the glass. Although the B 2 O 3 component and the Al 2 O 3 component can increase the hardness of the glass, it becomes difficult to maintain the refractive index when the content is large. Therefore, by including La 2 O 3 and Y 2 O 3 and adjusting the contents of the components, it is possible to increase the hardness of the glass with a small coefficient of thermal expansion while maintaining the refractive index. The mass ratio (B 2 O 3 +Al 2 O 3 )/(La 2 O 3 +Y 2 O 3 ) is preferably 0.300 or more, more preferably 0.315 or more, still more preferably 0.320 or more, still more preferably has a lower limit of 0.325 or more. On the other hand, the mass ratio (B 2 O 3 +Al 2 O 3 )/(La 2 O 3 +Y 2 O 3 ) is preferably 0.450 or less, more preferably 0.440 or less, still more preferably 0.420 or less. , more preferably 0.418 or less.
<含有すべきでない成分について>
 次に、本発明のガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<Ingredients that should not be contained>
Next, components that should not be contained in the glass of the present invention and components that are not preferable to be contained will be described.
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、Nd、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用するガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as necessary within a range that does not impair the properties of the glass of the present invention. However, each transition metal component such as Nd, V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb and Lu, is Even if a small amount of is contained alone or in combination, the glass will be colored and have the property of causing absorption at specific wavelengths in the visible range. preferable.
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 In addition, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with a high environmental load, it is desirable that they are not substantially contained, that is, they are not contained at all except for unavoidable contamination.
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 In addition, Th, Cd, Tl, Os, Be, and Se components have recently tended to refrain from being used as hazardous chemical substances. Environmental measures are required up to the present. Therefore, it is preferable not to contain these substantially when environmental influence is emphasized.
<物性>
本発明のガラスは、「JOGIS09-2019ガラスのヌープ硬さの測定方法」に準じた測定方法おいて、6級以上であることが好ましい。これにより、ガラスが硬くなるため、ガラスの研磨時における傷や割れ、及び、ガラスの運搬時等における表面への傷が発生し難くなるため、所望の表面状態を有し、且つその表面状態を維持することが容易なガラスを得ることができる。従って、本発明のガラスのヌープ硬さは、好ましくは6級以上、さらに好ましくは7級以上である。さらに、本発明のガラスのヌープ硬さが600以上であることが好ましい。ヌープ硬さは等級で表すことができるが、ヌープ硬さが6級とされている550~650の範囲でも、600以上であることがより好ましい。本発明のガラスのヌープ硬さは、好ましくは600以上、より好ましくは620以上、さらに好ましくは650以上を下限とする。なお、本発明のガラスのヌープ硬さの上限は特に限定されないが、本発明のガラスのヌープ硬さは、例えば780以下、760以下、740以下、720以下を上限としてもよい。
<Physical properties>
The glass of the present invention is preferably grade 6 or higher in a measuring method according to "JOGIS09-2019 Method for measuring Knoop hardness of glass". As a result, the glass is hardened, so that scratches and cracks during polishing of the glass and scratches on the surface during transportation of the glass are less likely to occur. A glass that is easy to maintain can be obtained. Therefore, the Knoop hardness of the glass of the present invention is preferably grade 6 or higher, more preferably grade 7 or higher. Furthermore, the Knoop hardness of the glass of the present invention is preferably 600 or more. The Knoop hardness can be represented by a grade, and even in the range of 550 to 650 where the Knoop hardness is grade 6, it is more preferably 600 or more. The lower limit of the Knoop hardness of the glass of the present invention is preferably 600 or higher, more preferably 620 or higher, and still more preferably 650 or higher. Although the upper limit of the Knoop hardness of the glass of the present invention is not particularly limited, the upper limit of the Knoop hardness of the glass of the present invention may be, for example, 780 or less, 760 or less, 740 or less, or 720 or less.
 本発明のガラスは、100~300℃の平均線膨張係数αが90×10-7-1以下であることが好ましい。特に、本発明のガラスは、日本光学硝子工業会規格JOGIS08-2003に規定される100~300℃における平均線膨張係数αが、好ましくは90×10-7-1、より好ましくは88×10-7-1、さらに好ましくは86×10-7-1を上限とする。なお、本発明のガラスの平均線膨張係数αの下限は特に限定されないが、本発明のガラスの平均線膨張係数αは、例えば60×10-7-1以上、65×10-7-1以上、70×10-7-1以上を下限としてもよい。 The glass of the present invention preferably has an average linear expansion coefficient α of 90×10 −7 ° C. −1 or less at 100 to 300° C. In particular, the glass of the present invention has an average coefficient of linear expansion α at 100 to 300 ° C. specified in Japan Optical Glass Industry Standard JOGIS08-2003, preferably 90 × 10 -7 ° C. -1 , more preferably 88 × 10 The upper limit is -7 ° C. -1 , more preferably 86×10 -7 ° C. -1 . Although the lower limit of the average linear expansion coefficient α of the glass of the present invention is not particularly limited, the average linear expansion coefficient α of the glass of the present invention is, for example, 60×10 −7 ° C. −1 or more, 65×10 −7 ° C. The lower limit may be 1 or more and 70×10 −7 ° C. −1 or more.
 本発明のガラスは、100~300℃における平均線膨張係数α、ヌープ硬さをβとしたときに、αに対するβの比であるβ/αが7.80以上であることが好ましい。ガラスは、ガラス表面に微細な傷があるだけで傷が成長し、衝撃が加わることにより、更に傷が成長し、割れてしまう性質を備えている。化学強化等を行わず割れにくいガラスを作製するためには、ガラスの硬さを高め、ガラス表面への傷を抑制することが有効である。しかしながら、本発明者はガラスの硬さが同程度であっても必ずしも同程度の衝撃に耐え得るガラスではないということを見出した。すなわち、ガラスの硬さが同程度であっても平均線膨張係数αの大きさを小さくすることによって、ガラス内部の構造が強化されガラス内部への衝撃を抑制することが可能となり、結果として耐衝撃性に強いガラスを得ることができる。本発明のガラスは、100~300℃における平均線膨張係数α、ヌープ硬さをβとしたときに、αに対するβの比であるβ/αが7.80以上にすることによって、耐衝撃性に強いガラスを得ることができる。β/αは好ましくは7.80以上、より好ましくは7.83以上、さらに好ましくは7.85以上、さらに好ましくは7.88以上、さらに好ましくは7.90以上、さらに好ましくは7.93以上を下限とする。他方で、β/αは好ましくは9.50以下、より好ましくは9.30以下、さらに好ましくは9.10以下を上限とする。 The glass of the present invention preferably has a ratio of β to α, β/α, of 7.80 or more, where β is the average coefficient of linear expansion at 100 to 300°C and the Knoop hardness. Glass has the property that even if there is a minute scratch on the surface of the glass, the scratch will grow, and when an impact is applied, the scratch will grow further and the glass will break. In order to produce a glass that is hard to break without chemical strengthening or the like, it is effective to increase the hardness of the glass and suppress scratches on the glass surface. However, the inventors have found that even if the hardness of the glass is the same, the glass does not necessarily withstand the impact of the same degree. That is, even if the hardness of the glass is about the same, by reducing the average coefficient of linear expansion α, the structure inside the glass can be strengthened and the impact to the inside of the glass can be suppressed, resulting in resistance. A glass with high impact resistance can be obtained. The glass of the present invention has an average linear expansion coefficient α at 100 to 300 ° C. and a Knoop hardness as β. You can get strong glass. β/α is preferably 7.80 or more, more preferably 7.83 or more, still more preferably 7.85 or more, still more preferably 7.88 or more, still more preferably 7.90 or more, still more preferably 7.93 or more is the lower limit. On the other hand, the upper limit of β/α is preferably 9.50 or less, more preferably 9.30 or less, and still more preferably 9.10 or less.
 本発明のガラスの屈折率(n)は、好ましくは1.80000以上、より好ましくは1.81000以上、さらに好ましくは1.82000以上を下限とする。本発明のガラスの屈折率(n)は、好ましくは1.95000以下、より好ましくは1.94000以下、より好ましくは1.93000以下としてもよい。
また、本発明のガラスのアッベ数(ν)は、好ましくは23.00以上、より好ましくは25.00以上、さらに好ましくは28.00以上とする。このアッベ数(ν)は、好ましくは40.00以下、より好ましくは38.00以下とし、さらに好ましくは36.00以下としてもよい。
The lower limit of the refractive index (n d ) of the glass of the present invention is preferably 1.80000 or more, more preferably 1.81000 or more, and still more preferably 1.82000 or more. The refractive index (n d ) of the glass of the present invention may be preferably 1.95000 or less, more preferably 1.94000 or less, and more preferably 1.93000 or less.
The Abbe number (ν d ) of the glass of the present invention is preferably 23.00 or more, more preferably 25.00 or more, still more preferably 28.00 or more. The Abbe number (ν d ) is preferably 40.00 or less, more preferably 38.00 or less, and even more preferably 36.00 or less.
[製造方法]
 本発明のガラスは、例えば以下のように作製される。すなわち、上記各成分の原料として、酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常のガラスに使用される高純度原料を、各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1400℃の温度範囲で1~10時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The glass of the present invention is produced, for example, as follows. That is, high-purity raw materials used in ordinary glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, and metaphosphoric acid compounds are used as raw materials for each of the above components, and each component is contained within a predetermined content range. The resulting mixture is put into a platinum crucible and melted in an electric furnace at a temperature range of 1000 to 1400 ° C. for 1 to 10 hours according to the melting difficulty of the glass raw materials, and stirred and homogenized. After that, it is cooled to an appropriate temperature, cast into a mold, and slowly cooled.
 このとき、ガラス原料として熔解性の高いものを用いることが好ましい。これにより、より低温での熔解や、より短時間での熔解が可能になるため、ガラスの生産性を高め、生産コストを低減できる。また、成分の揮発や坩堝等との反応が低減されるため、着色の少ないガラスを得易くできる。 At this time, it is preferable to use a glass raw material with high meltability. As a result, melting at a lower temperature and melting in a shorter time are possible, so that the productivity of glass can be improved and the production cost can be reduced. In addition, volatilization of the components and reaction with the crucible and the like are reduced, so that less colored glass can be easily obtained.
[光学ガラス及び光学素子]
 作製されたガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Optical glass and optical element]
A glass molded body can be produced from the produced glass by, for example, polishing means or mold press molding means such as reheat press molding or precision press molding. In addition, the means for producing the glass molded body is not limited to these means.
 本発明のガラスは、光学ガラスとして用いることができ、様々な光学素子及び光学設計に有用である。本発明のガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、また車載カメラなどの車載用光学機器等の、耐衝撃性が求められる用途に用いることができる。 The glass of the present invention can be used as optical glass and is useful for various optical elements and optical designs. The glass molded body made of the glass of the present invention can be used, for example, for optical elements such as lenses, prisms, and mirrors, and is also used for applications requiring impact resistance, such as vehicle-mounted optical devices such as vehicle-mounted cameras. be able to.
 本発明の実施例1~15、比較例1~3の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、ヌープ硬さ、100~300℃における平均線膨張係数αの結果を表1、2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。 Compositions of Examples 1 to 15 of the present invention and Comparative Examples 1 to 3, and refractive index (n d ), Abbe number (ν d ), Knoop hardness, average linear expansion coefficient at 100 to 300 ° C. of these glasses Tables 1 and 2 show the results of α. It should be noted that the following examples are for the purpose of illustration only, and the present invention is not limited only to these examples.
 本発明の実施例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常のガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1400℃の温度範囲で1~10時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。 The glasses of the examples of the present invention use high-purity raw materials such as corresponding oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., which are used in ordinary glasses, as raw materials for each component. After selecting, weighing and mixing uniformly so that the composition ratio of each example shown in the table is obtained, it is put into a platinum crucible and heated to 1000 to 1400 ° C. in an electric furnace depending on the melting difficulty of the glass raw material. After being melted for 1 to 10 hours in a temperature range, it was stirred and homogenized, cast into a mold or the like, and slowly cooled.
実施例及び比較例のガラスの屈折率(n)、アッベ数(ν)は、JIS B 7071-2:2018に規定されるVブロック法に準じて測定した。ここで、屈折率(n)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、ヘリウムランプのd線に対する屈折率(n)と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。これらの屈折率(n)、アッベ数(ν)は、徐冷降温速度を-25℃/hrにして得られたガラスについて測定を行うことで求めた。 The refractive index (n d ) and Abbe number (ν d ) of the glasses of Examples and Comparative Examples were measured according to the V-block method defined in JIS B 7071-2:2018. Here, the refractive index (n d ) is shown as a measured value for the d-line (587.56 nm) of a helium lamp. In addition, the Abbe number (ν d ) is the refractive index (n d ) for the d-line of the helium lamp, the refractive index (n F ) for the F-line (486.13 nm) of the hydrogen lamp, and the C-line (656.27 nm). Using the value of the refractive index (n C ), it was calculated from the formula of Abbe number (ν d )=[(n d −1)/(n F −n C )]. These refractive index (n d ) and Abbe's number (ν d ) were determined by measuring the glass obtained at a slow cooling rate of −25° C./hr.
 また、実施例及び比較例のガラスのヌープ硬さ(Hk)は、日本光学硝子工業会規格(JOGIS09-2019)に基づいて測定した。具体的には、試料の平面研磨面ダイヤモンド菱形圧子(対稜角172.5°と130°)を0.98N(0.1kgf)の荷重をかけ15秒間押しつけくぼみをつけ、くぼみの長い方の対角線の長さを測定し、式(1)により求めた。 In addition, the Knoop hardness (Hk) of the glass of Examples and Comparative Examples was measured based on the Japan Optical Glass Industry Association Standard (JOGIS09-2019). Specifically, a diamond rhombic indenter (diagonal angles of 172.5° and 130°) on the flat polished surface of the sample was pressed for 15 seconds under a load of 0.98 N (0.1 kgf) to make an indentation, and the longer diagonal of the indentation was measured and obtained by the formula (1).
ヌープ硬さ=1.451F/l(1)
F:荷重(N)
l:長い方の対角線の長さ(mm)
ヌープ硬さが150未満の場合を1級、150以上250未満を2級、250以上350未満を3級、350以上450未満を4級、450以上550未満を5級、550以上650未満を6級、650以上を7級として、級が大きいほどガラスが硬いことを意味する。
Knoop hardness = 1.451 F/l 2 (1)
F: Load (N)
l: length of the longer diagonal (mm)
Grade 1 if the Knoop hardness is less than 150, Grade 2 for 150 or more and less than 250, Grade 3 for 250 or more and less than 350, Grade 4 for 350 or more and less than 450, Grade 5 for 450 or more and less than 550, Grade 5 for 550 or more and less than 650 A grade of 650 or higher is defined as grade 7, and the higher the grade, the harder the glass.
 また、実施例及び比較例のガラスの100~300℃における平均線膨張係数αは、日本光学硝子工業会規格JOGIS08-2003「光学ガラスの熱膨張の測定方法」に従い、縦型膨張測定器(Bruker社製)を用いた測定を行うことで求めた。ここで、測定を行う際のサンプルはφ4.5mm、長さ20mmのものを使用し、昇温速度を4℃/minとした。 In addition, the average linear expansion coefficient α of the glasses of Examples and Comparative Examples at 100 to 300 ° C. was determined according to the Japan Optical Glass Industry Standard JOGIS08-2003 "Method for measuring thermal expansion of optical glass" using a vertical expansion measuring instrument (Bruker (manufactured by the company). Here, a sample having a diameter of 4.5 mm and a length of 20 mm was used for the measurement, and the heating rate was 4° C./min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表に表されるように、実施例のガラスは、ヌープ硬さが6級以上、かつ600以上であった。 As shown in the table, the glass of the example had a Knoop hardness of grade 6 or higher and 600 or higher.
また、本発明の実施例のガラスは、100~300℃における平均線膨張係数αが90×10-7-1以下であった。 Further, the glass of the example of the present invention had an average coefficient of linear expansion α of 90×10 -7 ° C. -1 or less at 100 to 300°C.
また、実施例のガラスは、いずれも屈折率(n)が1.80000以上1.95000以下であり、所望の範囲内であった。また、本発明の実施例のガラスは、いずれもアッベ数(ν)が、23.00以上40.00以下の範囲内であった。 Further, all the glasses of Examples had a refractive index (n d ) of 1.80000 or more and 1.95000 or less, which was within the desired range. In addition, the Abbe number (ν d ) of the glass of the examples of the present invention was within the range of 23.00 or more and 40.00 or less.
次に、実施例3、10及び比較例2について下記の実験を行った。 Next, the following experiments were conducted for Examples 3 and 10 and Comparative Example 2.
SUJ2からなる71.7g(直径約2.6cm)の鋼球を用意し、SUS製の板上に、開口部の口径が30mmの円形となるように中心部がくり抜かれた直径35mmのSUS製円柱形胴体を設置し、その上に直径35mm×厚さ2mmの光学二面研磨されたガラスを設置し、これを開口部の口径が30mmの円形となるようにくり抜いたSUS製の蓋で固定した。上記固定治具に設置した直径35mm×厚さ2mmの光学二面研磨されたガラスの主表面の中心に鋼球を自由落下させたときに、ガラスの少なくとも一部が、ひび割れ、欠け、割れ等によって破損する、最小の高さ(cm)を求めた。 A steel ball of 71.7 g (about 2.6 cm in diameter) made of SUJ2 was prepared, and on a SUS plate, a SUS ball with a diameter of 35 mm was hollowed out in the center so that the opening had a circular diameter of 30 mm. A cylindrical body is installed, and a double-sided optically polished glass with a diameter of 35 mm and a thickness of 2 mm is installed on it, and it is fixed with a SUS lid cut out so that the opening has a circular opening with a diameter of 30 mm. did. When a steel ball is allowed to fall freely in the center of the main surface of the optically double-sided polished glass with a diameter of 35 mm and a thickness of 2 mm set on the above fixing jig, at least a part of the glass cracks, chips, breaks, etc. The minimum height (cm) that is damaged by
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3の通り、β/αが7.80以上の本発明の実施例3、10のガラスは、β/αが7.80未満である比較例2のガラスと比べて、耐衝撃性に強いガラスであった。さらに、実施例3と実施例10のガラスを比べたときに、β/αが大きい実施例3のガラスほうが、より耐衝撃性に強いものであった。よって、β/αを調整することによって、耐衝撃性に強いガラスを得られることが明らかとなった。 As shown in Table 3, the glasses of Examples 3 and 10 of the present invention having β/α of 7.80 or more have higher impact resistance than the glass of Comparative Example 2 having β/α of less than 7.80. was glass. Furthermore, when the glasses of Example 3 and Example 10 were compared, the glass of Example 3, which had a larger β/α, had higher impact resistance. Therefore, it was found that glass having high impact resistance can be obtained by adjusting β/α.
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the invention has been described in detail for purposes of illustration, the examples are for illustration only and many modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. be understood.

Claims (7)

  1.  酸化物基準の質量%で、
    質量和SiO+B+Al+La+Y+Gdが50.0%以上(但し、SiO成分は22.0%以下)、
    質量比Al/(SiO+B)が0.01以上、
    BaOの含有量が10.0%以下、
    であり、
    100~300℃における平均線膨張係数α、ヌープ硬さをβとしたときに、
    αに対するβの比であるβ/αが7.80以上である
    ガラス。
    % by mass based on oxides,
    mass sum of SiO 2 +B 2 O 3 +Al 2 O 3 +La 2 O 3 +Y 2 O 3 +Gd 2 O 3 is 50.0% or more (however, the SiO 2 component is 22.0% or less);
    mass ratio Al 2 O 3 /(SiO 2 +B 2 O 3 ) is 0.01 or more;
    BaO content is 10.0% or less,
    and
    When the average linear expansion coefficient α at 100 to 300 ° C. and the Knoop hardness are β,
    A glass in which β/α, which is the ratio of β to α, is 7.80 or more.
  2. 質量和Nb+WOが10.0%以下
    である請求項1に記載のガラス。
    2. The glass according to claim 1 , wherein the mass sum of Nb2O5 +WO3 is 10.0% or less.
  3. 質量比TiO/(SiO+B+Al)が0.20以上
    である請求項1又は2に記載のガラス。
    The glass according to claim 1 or 2 , wherein the mass ratio TiO2 /( SiO2 + B2O3 + Al2O3 ) is 0.20 or more.
  4. 質量比Gd/Lnが0.10以下(LnはLa、Y、Gd、Ybからなる群より選択される1種以上)
    である請求項1~3に記載のガラス。
    Mass ratio Gd 2 O 3 /Ln 2 O 3 is 0.10 or less (Ln is one or more selected from the group consisting of La, Y, Gd, and Yb)
    The glass according to any one of claims 1 to 3.
  5.  ヌープ硬さが6級以上、
    100~300℃における平均線膨張係数αが90×10-7-1以下
    である請求項1~4に記載のガラス。
    Knoop hardness is grade 6 or higher,
    The glass according to any one of claims 1 to 4, which has an average linear expansion coefficient α of 90 × 10 -7 °C -1 or less at 100 to 300°C.
  6. 請求項1~5のいずれかに記載のガラスからなる光学ガラス。 An optical glass comprising the glass according to any one of claims 1 to 5.
  7. 請求項6に記載のガラスからなる光学素子。
     
    An optical element made of the glass according to claim 6 .
PCT/JP2022/015038 2021-04-27 2022-03-28 Glass, optical glass, and optical element WO2022230535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022519690A JPWO2022230535A1 (en) 2021-04-27 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074834 2021-04-27
JP2021074834 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022230535A1 true WO2022230535A1 (en) 2022-11-03

Family

ID=83848033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015038 WO2022230535A1 (en) 2021-04-27 2022-03-28 Glass, optical glass, and optical element

Country Status (2)

Country Link
JP (1) JPWO2022230535A1 (en)
WO (1) WO2022230535A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777045A (en) * 1980-10-28 1982-05-14 Fuji Photo Film Co Ltd Glass containing phosphate
JPH0360440A (en) * 1989-07-27 1991-03-15 Corning Inc Rare earth oxynitride glass
JP2003021701A (en) * 2001-05-08 2003-01-24 Carl Zeiss:Fa Optical glass and its usage
JP2012036081A (en) * 2010-08-05 2012-02-23 Schott Corp Rare earth aluminoborosilicate glass composition
JP2014237564A (en) * 2013-06-07 2014-12-18 日本電気硝子株式会社 Optical glass
JP2015020913A (en) * 2013-07-16 2015-02-02 日本電気硝子株式会社 Optical glass
CN109775981A (en) * 2019-03-28 2019-05-21 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN109970338A (en) * 2019-04-28 2019-07-05 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN110028239A (en) * 2019-05-23 2019-07-19 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777045A (en) * 1980-10-28 1982-05-14 Fuji Photo Film Co Ltd Glass containing phosphate
JPH0360440A (en) * 1989-07-27 1991-03-15 Corning Inc Rare earth oxynitride glass
JP2003021701A (en) * 2001-05-08 2003-01-24 Carl Zeiss:Fa Optical glass and its usage
JP2012036081A (en) * 2010-08-05 2012-02-23 Schott Corp Rare earth aluminoborosilicate glass composition
JP2014237564A (en) * 2013-06-07 2014-12-18 日本電気硝子株式会社 Optical glass
JP2015020913A (en) * 2013-07-16 2015-02-02 日本電気硝子株式会社 Optical glass
CN109775981A (en) * 2019-03-28 2019-05-21 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN109970338A (en) * 2019-04-28 2019-07-05 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN110028239A (en) * 2019-05-23 2019-07-19 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument

Also Published As

Publication number Publication date
JPWO2022230535A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
TWI585056B (en) Optical glass and optical components
JP4429295B2 (en) Optical glass
JP4746995B2 (en) Optical glass
TWI594966B (en) Optical glass, preform and optical element
US7867934B2 (en) Optical glass
TWI532698B (en) Optical glass, preformed stock and optical components
JP2012229148A (en) Optical glass and optical element
JP5345806B2 (en) Optical glass, preform, and optical element
JP5946237B2 (en) Optical glass, preform material and optical element
JP5823859B2 (en) Optical glass, optical element and precision press molding preform
JP2015044724A (en) Optical glass, preform, and optical element
JP5823658B2 (en) Optical glass, preform, and optical element
JP2011230997A (en) Optical glass, optical element and preform for precision press forming
JP2012224501A (en) Optical glass, optical element and preform
JP2014210694A (en) Optical glass, preform material, and optical element
JP2018172282A (en) Glass, glass blank for press-forming, optical element blank, and optical element
CN112159098A (en) Optical glass, optical element and optical instrument
JP2018039729A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP2014015384A (en) Optical glass, preform and optical element
JP6062613B2 (en) Optical glass, preform material and optical element
JP2014015383A (en) Optical glass, preform and optical element
WO2022230535A1 (en) Glass, optical glass, and optical element
JP6910702B2 (en) Optical glass, preform materials and optical elements
JP6689057B2 (en) Optical glass, preforms and optical elements
JP2023103956A (en) Optical glass and optical element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022519690

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795452

Country of ref document: EP

Kind code of ref document: A1